WorldWideScience

Sample records for explain glass formation

  1. Atomic structure and formation of CuZrAl bulk metallic glasses and composites

    International Nuclear Information System (INIS)

    Kaban, I.; Jóvári, P.; Escher, B.; Tran, D.T.; Svensson, G.; Webb, M.A.; Regier, T.Z.; Kokotin, V.; Beuneu, B.; Gemming, T.; Eckert, J.

    2015-01-01

    Graphical abstract: Partial radial distribution functions for Cu 47.5 Zr 47.5 Al 5 metallic glass and relevant crystal structures. - Abstract: Cu 47.5 Zr 47.5 Al 5 metallic glass is studied experimentally by high-energy X-ray diffraction, neutron diffraction with isotopic substitution, electron diffraction and X-ray absorption spectroscopy. The atomic structure of the glass is modeled by reverse Monte-Carlo and molecular dynamics simulations. RMC modeling of seven experimental datasets enabled reliable separation of all partial pair distribution functions for Cu 47.5 Zr 47.5 Al 5 metallic glass. A peculiar structural feature of the ternary alloy is formation of the strong Al–Zr bonds, which are supposed to determine its high viscosity and enhanced bulk glass formation. Analysis of the local atomic order in Cu 47.5 Zr 47.5 Al 5 glass and Cu 10 Zr 7 , CuZr 2 and CuZr B2 crystalline structures elucidates their similarities and differences explaining the phase formation sequence by devitrification of the glass.

  2. The descent into glass formation in polymer fluids.

    Science.gov (United States)

    Freed, Karl F

    2011-03-15

    Glassy materials have been fundamental to technology since the dawn of civilization and remain so to this day: novel glassy systems are currently being developed for applications in energy storage, electronics, food, drugs, and more. Glass-forming fluids exhibit a universal set of transitions beginning at temperatures often in excess of twice the glass transition temperature T(g) and extending down to T(g), below which relaxation becomes so slow that systems no longer equilibrate on experimental time scales. Despite the technological importance of glasses, no prior theory explains this universal behavior nor describes the huge variations in the properties of glass-forming fluids that result from differences in molecular structure. Not surprisingly, the glass transition is currently regarded by many as the deepest unsolved problem in solid state theory. In this Account, we describe our recently developed theory of glass formation in polymer fluids. Our theory explains the origin of four universal characteristic temperatures of glass formation and their dependence on monomer-monomer van der Waals energies, conformational energies, and pressure and, perhaps most importantly, on molecular details, such as monomer structure, molecular weight, size of side groups, and so forth. The theory also provides a molecular explanation for fragility, a parameter that quantifies the rate of change with temperature of the viscosity and other dynamic mechanical properties at T(g). The fragility reflects the fluid's thermal sensitivity and determines the manner in which glass-formers can be processed, such as by extrusion, casting, or inkjet spotting. Specifically, the theory describes the change in thermodynamic properties and fragility of polymer glasses with variations in the monomer structure, the rigidity of the backbone and side groups, the cohesive energy, and so forth. The dependence of the structural relaxation time at lower temperatures emerges from the theory as the Vogel

  3. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

    2013-01-01

    Highlights: ► We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. ► Periodic microstructures are printed on the glass surface for superhydrophobicity. ► The contact angle of water droplet on the microstructured glass surface is 155°. ► The transparency of superhydrophobic glass is higher than 77% in visible spectrum. ► We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  4. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Md. Shamim, E-mail: shamim@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Electronics and Communication Engineering Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208 (Bangladesh); Dewanda, Fadia, E-mail: fdewanda@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Man Seop, E-mail: leems1502@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sekita, Hitoshi, E-mail: sekita@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan); Sumiyoshi, Tetsumi, E-mail: sumiy@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. Black-Right-Pointing-Pointer Periodic microstructures are printed on the glass surface for superhydrophobicity. Black-Right-Pointing-Pointer The contact angle of water droplet on the microstructured glass surface is 155 Degree-Sign . Black-Right-Pointing-Pointer The transparency of superhydrophobic glass is higher than 77% in visible spectrum. Black-Right-Pointing-Pointer We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152 Degree-Sign to 155 Degree-Sign . The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  5. Glass formation, properties, and structure of soda-yttria-silicate glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1991-01-01

    The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.

  6. Glass formation, properties and structure of soda-yttria-silica glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1992-01-01

    The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.

  7. Formation enthalpy of alkali-borosilicate glass

    International Nuclear Information System (INIS)

    Borisova, N.V.; Ushakov, V.M.

    1991-01-01

    Temperature dependence of formation enthalpy of glass of the composition 0.0438Na 2 O-0.0385K 2 O-0.3394B 2 O 3 -0.5783SiO 2 was determined using the method of high-temperature colorimetry-dissolution, mixing and differential scanning calorimetry. The glass considered has liquation nature-two-vitrification ranges at 713 K and 817 K are detected. The brightening point is 922 K. The calculation of formation enthalpy using the method of partial heat capacities is made in the temperature range of 973-1473 K. Formation enthalpy does not depend on temperature in the temperature range of 298-1273 K

  8. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  9. Atomic size effect on critical cooling rate and glass formation

    International Nuclear Information System (INIS)

    Jalali, Payman; Li Mo

    2005-01-01

    Atomic size effect on critical cooling rate and glass formability in a model binary system is investigated using molecular dynamics simulation. To isolate atomic size effect from the rest of the factors that critically influence the glass formation, a hard sphere model is employed in conjunction with a newly developed densification method. The glass formability is defined as a set of optimal conditions that result in the slowest cooling rate of the glass-forming liquid. Critical cooling rates are identified from extensive molecular dynamics simulations. A kinetic glass-forming diagram is mapped out that marks the boundary between the glass-forming regions and competing crystalline phases in terms of the parameters of the atomic size ratio and alloy concentration. It is found that the potency of the atomic size difference on glass formation is influenced greatly by the competing metastable and equilibrium crystalline phases in the system, and the kinetic processes leading to the formation of these phases. The mechanisms of the atomic size effect on topological instability of crystal packing and glass formation are discussed

  10. Effect of alteration phase formation on the glass dissolution rate

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1997-01-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests

  11. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W L [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  12. Glass formation and the third harmonic generation of Cu2Se–GeSe2–As2Se3 glasses

    International Nuclear Information System (INIS)

    Reshak, A. H.; Klymovych, O. S.; Zmiy, O. F.; Myronchuk, G. L.; Zamuruyeva, O. V.; Alahmed, Z. A.; Chyský, J.; Bila, Jiri; Kamarudin, H.

    2014-01-01

    We have performed the investigation of the nonlinear optical properties namely the third harmonic generation (THG) of the glass-formation region in the Cu 2 Se–GeSe 2 –As 2 Se 3 system. The samples were synthesized by direct single-temperature method from high-purity elementary substances. We have found that the value of disorder parameter Δ depends on the composition of the glassy alloys. The measurements show that increasing the Cu 2 Se concentration leads to increased slope of the absorption edge, which may be explained by the decrease of the height of random potential relief for the electrons in the tails of the state density which border the band edges. A very sharp increase in the THG at low temperature was observed. Significant enhancement in THG was obtained with decreasing the energy gap, which agreed well with the nonlinear optical susceptibilities obtained from other glasses.

  13. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  14. Shattered glass seeking the densest matter: the color glass condensate

    CERN Multimedia

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  15. Determination of the free enthalpies of formation of borosilicate glasses

    International Nuclear Information System (INIS)

    Linard, Y.

    2000-01-01

    This work contributes to the study of the thermochemical properties of nuclear waste glasses. Results are used to discuss mechanisms and parameters integrated in alteration models of conditioning materials. Glass is a disordered material defined thermodynamically as a non-equilibrium state. Taking into account one order parameter to characterise its configurational state, the metastable equilibrium for the glass was considered and the main thermochemical properties were determined. Calorimetric techniques were used to measure heat capacities and formation enthalpies of borosilicate glasses (from 3 to 8 constitutive oxides). Formation Entropies were measured too, using the entropy theory of relaxation processes proposed by Adam and Gibbs (1965). The configurational entropy contribution were determined from viscosity measurements. This set of data has allowed the calculation of Gibb's free energies of dissolution of glasses in pure water. By comparison with leaching experiments, it has been demonstrated that the decreasing of the dissolution rate at high reaction progress cannot be associated to the approach of an equilibrium between the sound glass and the aqueous solution. The composition changes of the reaction area at the glass surface need to be considered too. To achieve a complete description of the thermodynamic stability, the equilibrium between hydrated de-alkalinized glass and/or the gel layer with the aqueous solution should also be evaluated. (author)

  16. Study of the glass formation of high temperature superconductors

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.

  17. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-01-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar + laser beam (intensity: 9.2 x 10 4 W/cm 2 ) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  18. Electron irradiation induced nanocrystal formation in Cu-borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Mohammed Mohammed; Möbus, Günter, E-mail: g.moebus@sheffield.ac.uk [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2016-03-15

    Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass.

  19. Glass formation and physicochemical properties of glasses of Ba(PO3)2-LiRAlF6 (R=Mg, Ca, Sr, Ba) system

    International Nuclear Information System (INIS)

    Khalilev, V.D.; Chkhenkeli, G.D.; Vakhrameev, V.I.

    1987-01-01

    Glass formation regions, crystallizability, optical constants, thermal linear expansion coefficient and IR absorption spectra of glass are studied in Ba(PO) 3 ) 2 - LiRAlF 6 system where R=Mg, Ca, Sr, Ba. The carried out investigation confirms participation of introduced fluorides (as modified cryolites) in structural transformations manifested in increase of glass formation regions and nonlinear variations of properties

  20. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  1. Glass formation and properties in the system calcia-gallia-germania

    Science.gov (United States)

    Angel, P. W.; Ray, C. S.; Day, D. E.

    1985-01-01

    The critical cooling rate for glass formation, R sub c was measured for four compositions in the system calcia-gallia-germania. The activation energy, E, and frequency factor, nu, for the crystallization process were determined by reheating the glasses at varied constant heating rates and measuring the temperature of crystallization. Both E and nu increased, with increasing germania content of the glass, whereas R sub c decreased. The density, refractive index, and Abbe number were also measured; all decreased with increasing GeO2 content. These results are compared with those for calcia-gallia-silica glasses of comparable compositions.

  2. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  3. Properties of glass, oil's formation...how to explain it? The secret is to amaze!

    Science.gov (United States)

    Merlino, Silvia; Evangelista, Rosaria; Bianucci, Marco; Mantovani, Carlo; Gambarelli, Licia

    2013-04-01

    The design and testing of numerous routes for teaching and dissemination of topics in physics, biology, geology and energy is born from a collaboration between teachers and researchers that lasted for many years in Parma, Italy. These projects are implemented by the association "Parma Casa della Scienza", which promotes the dissemination of scientific culture in schools and among the public. The main purpose of the association is to create a science center in Parma, offering also training opportunities on techniques for teaching science. The funds for the projects come from European competitions and Cariparma Foundation. Currently the association is proposing laboratory activities, with the widespread diffusion of 20 educational programs, included in school curricula. The approach is informal and aims at the stimulation of curiosity and surprise. Students who participate arise so spontaneously in an attitude of research - action, working directly on the phenomena under study. This avoids the clichés of standard passive listening. Our work is a constant search for ideas, ways and means to demonstrate, for the purposes of school education, how useful is the game and the interaction with the phenomena, many of which are usually only seen in books and not lived with awareness. Two in particular are the educational proposals that we would like to present , relating to content of great importance that are rarely addressed in the context of schooling completed First Path: explains the physico-chemical properties and structural properties of glassy materials; enters the details of the molecular structure of "amorphous solid" contrasting it with that of crystalline solid; llustrates the process of formation; gives reason for its peculiar properties from which derive extreme flexibility of working and the many optical properties. This is achieved through the actual processing of a fluid "pseudo glassy" realized at low temperatures, which simulates the processes described

  4. Control of Polymer Glass Formation Behaviour Using Molecular Diluents and Dynamic Interfaces

    Science.gov (United States)

    Mangalara, Jayachandra Hari

    The end use application of polymeric materials is mainly determined by their viscosity, thermal stability and processability. These properties are primarily determined by the segmental relaxation time (taualpha) of the polymer and its glass state modulus, which determines its glassy mechanical response. Developing design principles to obtain rational control over these properties would enable fabrication of new polymers or polymer blends with improved thermal stability, enhanced processability and better mechanical robustness of the material. Introduction of diluents and nanostructuring of the material serve as invaluable tools for altering polymers' glass transition and associated dynamic and mechanical properties. Besides providing guidelines for technologically important improvements in processability, glassy mechanical properties, and transport behavior, diluent effects and behavior of nanostructured materials can provide insights into the fundamental physics of the glass transition, for example, by elucidating the interrelation between high- and low-frequency structural relaxation processes. It has been previously suggested that there exists a similarity between how diluents and interfaces impact the glass formation behavior of the polymer, raising the possibility that the effects of these two polymer modifications may be separate manifestations of a common set of physics in glass forming polymers. Here we address several interrelated questions in the understanding of glass formation in polymer/diluent blends and nanostructured polymers. First, what is the relationship between a diluent's molecular structure and its impact on a polymer's glass formation behavior? How does this compare to the effect of interfaces? Second, how does the introduction of diluents impact the role of interfaces in modifying polymer glass formation? Third, how does the introduction of interfaces impact metrology of the polymer glass transition? Finally, we address a major open

  5. Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn,Fe)-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Ran, E-mail: liran@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Xiao, Ruijuan [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Gang [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Jianfeng [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-02-25

    A family of Mn-rich bulk metallic glasses (BMGs) was developed through the similar solvent elements (SSE) substitution of Mn for Fe in (Mn{sub x}Fe{sub 80−x})P{sub 10}B{sub 7}C{sub 3} alloys. The effect of the SSE substitution on glass formation, thermal stability, elastic constants, mechanical properties, fracture morphologies, Weibull modulus and indentation fracture toughness was discussed. A thermodynamics analysis provided by Battezzati et al. (L. Battezzati, E. Garrone, Z. Metallkd. 75 (1984) 305–310) was adopted to explain the compositional dependence of the glass-forming ability (GFA). The elastic moduli follow roughly linear correlations with the substitution concentration of Mn in (Mn{sub x}Fe{sub 80−x})P{sub 10}B{sub 7}C{sub 3} BMGs. The introduction of Mn to replace Fe significantly decreases the plasticity of the resulting BMGs and the Weibull modulus of the fracture strength. A super-brittle Mn-based BMGs of (Mn{sub 55}Fe{sub 25})P{sub 10}B{sub 7}C{sub 3} BMGs were found with the indentation fracture toughness (K{sub c}) of 1.91±0.04 MPa m{sup 1/2}, the lowest value among all kinds of BMGs so far. The atomic and electronic structure of the selected BMGs were simulated by the first principles molecular dynamics calculations based on density functional theory, which provided a possible understanding of the brittleness caused by the similar chemical element replacement of Mn for Fe.

  6. Glass formation and the third harmonic generation of Cu{sub 2}Se–GeSe{sub 2}–As{sub 2}Se{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk [New Technologies-Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Klymovych, O. S.; Zmiy, O. F. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Av. 13, 43025 Lutsk (Ukraine); Myronchuk, G. L.; Zamuruyeva, O. V. [Department of Physics, Lesya Ukrainka Eastern European National University, Voli Av. 13, 43025 Lutsk (Ukraine); Alahmed, Z. A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Chyský, J.; Bila, Jiri [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2014-10-14

    We have performed the investigation of the nonlinear optical properties namely the third harmonic generation (THG) of the glass-formation region in the Cu{sub 2}Se–GeSe{sub 2}–As{sub 2}Se{sub 3} system. The samples were synthesized by direct single-temperature method from high-purity elementary substances. We have found that the value of disorder parameter Δ depends on the composition of the glassy alloys. The measurements show that increasing the Cu{sub 2}Se concentration leads to increased slope of the absorption edge, which may be explained by the decrease of the height of random potential relief for the electrons in the tails of the state density which border the band edges. A very sharp increase in the THG at low temperature was observed. Significant enhancement in THG was obtained with decreasing the energy gap, which agreed well with the nonlinear optical susceptibilities obtained from other glasses.

  7. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  8. Glass formation via structural fragmentation of a 2D coordination network.

    Science.gov (United States)

    Umeyama, D; Funnell, N P; Cliffe, M J; Hill, J A; Goodwin, A L; Hijikata, Y; Itakura, T; Okubo, T; Horike, S; Kitagawa, S

    2015-08-18

    The structure of a glass obtained by the melt quenching of a two-dimensional (2D) coordination network was examined. X-ray analyses disclosed a 2D-to-0D structural transformation before and after glass formation. The mechanism is unique to coordination compounds, as it is characterized by labile and flexible coordination bonds.

  9. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  10. Formation of novel morphologies of aragonite induced by inorganic template

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Nan, Zhaodong

    2011-01-01

    Graphical abstract: Glass-slices were used as a template to induce formation and assembly of aragonite. Different morphologies, such as hemisphere, twinborn hemisphere and flower-shaped particles, were produced by direction of the glass-slices. Highlights: → Glass-slices were used as a template to induce formation and assembly of aragonite. → Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. → Planes were always appeared in these as-synthesized samples. → Thermodynamic theory was applied to explain the production of the aragonite. -- Abstract: A glass-slice was used as a template to induce formation and assembly of aragonite. Thermodynamic theory was applied to explain the production of the aragonite. Transformation of three-dimensional nucleation to template-based two-dimensional surface nucleation caused the production of aragonite. Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. Planes were always appeared in these as-synthesized samples because the nucleation and the growth of these samples were adsorbed at the surfaces of the glass-slices. The formation mechanism of the as-formed sample was proposed. Compared with organic template, the present study provides a facile method to apply inorganic template to prepare functional materials.

  11. Shear viscosity of glass-forming melts in the liquid-glass transition region

    International Nuclear Information System (INIS)

    Sanditov, D. S.

    2010-01-01

    A new approach to interpreting the hole-activation model of a viscous flow of glass-forming liquids is proposed. This model underlies the development of the concept on the exponential temperature dependence of the free energy of activation of a flow within the range of the liquid-glass transition in complete agreement with available experimental data. The 'formation of a fluctuation hole' in high-heat glass-forming melts is considered as a small-scale low-activation local deformation of a structural network, i.e., the quasi-lattice necessary for the switching of the valence bond, which is the main elementary event of viscous flow of glasses and their melts. In this sense, the hole formation is a conditioned process. A drastic increase in the activation free energy of viscous flow in the liquid-glass transition region is explained by a structural transformation that is reduced to a limiting local elastic deformation of the structural network, which, in turn, originates from the excitation (critical displacement) of a bridging atom like the oxygen atom in the Si-O-Si bridge. At elevated temperatures, as a rule, a necessary amount of excited bridging atoms (locally deformed regions of the structural network) always exists, and the activation free energy of viscous flow is almost independent of temperature. The hole-activation model is closely connected with a number of well-known models describing the viscous flow of glass-forming liquids (the Avramov-Milchev, Nemilov, Ojovan, and other models).

  12. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation

    International Nuclear Information System (INIS)

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.

    2017-01-01

    Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.

  13. A deep water turbidity origin for the Altuda Formation (Capitanian, Permian), Northwest Glass Mountains, Texas

    Science.gov (United States)

    Haneef, Mohammad; Rohr, D.M.; Wardlaw, B.R.

    2000-01-01

    The Altuda Formation (Capitanian) in the northwestern Glass Mountains is comprised of thin, even bedded limestones, dolostones, mixed clastic-carbonates, and silt/sandstones interbedded with basin-ward dipping wedge-shaped clinoforms of the Captian Limestone. The formation is characterized by graded bedding, planar laminations, flame structures, contorted/convolute bedding, horizontal branching burrows, and shelf-derived normal marine fauna. A detailed study of the Altuda Formation north of Old Blue Mountain, Glass Mountains, reveals that the formation in this area was deposited by turbidity currents in slope to basinal settings.

  14. Radiation effects on transport and bubble formation in silicate glasses. 1998 annual progress report

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1998-01-01

    'To study the fundamental chemistry of radiation damage in silicate/borosilicate glasses and simulated high-level nuclear waste (HLW) forms. Special emphasis is on delineating molecular processes crucial for understanding the aggregation of defects and formation of oxygen bubbles. The knowledge obtained will provide the needed scientific basis for extrapolating long-term behavior of stored radiative waste glass forms. This report summarizes the first 6 months of a 3-year project. The following issues have been addressed: (i) the production of radiolytic oxygen, (ii) the chemistry of hydrogenous species, and (iii) the effect of glass composition and microstructure on the formation and accumulation of metastable point defects.'

  15. Changes in glass formation and glass forming ability of Nd2Fe14B by the addition of TiC

    International Nuclear Information System (INIS)

    Branagan, D.J.; Iowa State Univ. of Science and Technology, Ames, IA; McCallum, R.W.; Iowa State Univ. of Science and Technology, Ames, IA

    1996-01-01

    The glass forming ability (GFA) of a stoichiometric Nd 2 Fe 14 B alloy modified with TiC additions was studied. Structural, magnetic, and thermal measurements of as-quenched melt-spun ribbons indicate increasing enhancement of GFA with increasing amounts of TiC addition. The limit of the glass formation range and the amount of glass formed at a particular cooling rate also increased with TiC addition. Enhanced GFA was concurrent with changes in the intrinsic properties of the glass. The crystallization temperature, as well as the transformation rate of crystallization, was raised by TiC addition. The intrinsic magnetic properties of the glass were changed with reductions in saturation magnetization and Curie temperature T c with increasing amounts of TiC addition. The intrinsic glass changes were related to changes in the local short range order of the glass and are consistent with a reduction in free volume and an increased packing efficiency. These changes in local structure of the glass increase the glass stability, which means that less undercooling is needed to prevent crystallization. Thus, at a particular cooling rate, a higher percentage of glass will be formed and the GFA is increased. (orig.)

  16. Effects of S/V on secondary phase formation on waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Buck, E.C.; Bates, J.K.; Gong, M.; Dietz, N.L.; Pegg, I.L.

    1994-01-01

    Simulated West Valley high-level nuclear waste glass, WV205, was leached with and without buffered media in both deuterated and ordinary water at glass surface area to solution volumes (S/N) of 200--6000 m -1 . Examination of the glass surface after testing for 14 days indicated that the S/V-induced pH change plays a dominant role in the development of the altered surface layer and the secondary phases formed. The changes due to SN-induced pH determine the rate of surface layer formation, the element distribution in the surface layer, and possibly, the identities of the secondary phases. Changes due to SN-induced elemental concentration also influence glass reaction rate in terms of the layer thickness and the elemental distribution in the surface layers

  17. Glass formation and properties in the gallia-calcia system

    Science.gov (United States)

    Whichard, G.; Day, D. E.

    1984-01-01

    The critical cooling rate for glass formation was measured for five compositions in the Ga2O3-CaO system and varied from a low of (315 + or - 85) C/s for a eutectic melt containing 37.5 mol pct Ga2O3 to a high of (840 + or - 60) C/s for a melt containing 52 mol pct Ga2O3. The density and refractive index both increased with increasing Ga2O3 content, but the crystallization temperature and microhardness varied only slightly. The IR spectra of these glasses suggest that both GaO4 tetrahedra and GaO6 octahedra are present.

  18. Formation of a metallic glass by thermal decomposition of Fe(CO)5

    DEFF Research Database (Denmark)

    Wonterghem, Jacques van; Mørup, Steen; Charles, Stuart W.

    1985-01-01

    Iron pentacarbonyl has been thermally decomposed in an organic liquid. Mössbauer spectroscopy and x-ray diffraction studies show that the sample contains small particles of a metallic glass. Annealing of the particles at 523 K results in crystallization of the particles into a mixture of α-Fe and χ......-Fe5C2. The mechanism of glass formation is discussed....

  19. Glass formation and crystallization in Zr based alloys

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Metallic glasses have come in to prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. Though these have been produced for the last four decades, the necessity of rapid solidification at cooling rates of 10 5 K/sec or higher for their production, have restricted their geometry to thin ribbons and prevented their application to many areas despite their excellent properties. It has been shown in recent investigations that, many Zr base multicomponent alloys can be obtained in glassy state by cooling at much lower rate typically 10 2 to 10 3 K/sec. This has enabled production of these alloys in the glassy stat in bulk. By now, bulk metallic glasses have been produced in Mg, Ln, Zr, Fe, Pd-Cu, Pd-Fe, Ti and Ni- based alloys. Production of these glasses in bulk has opened avenue for their application in many areas where their excellent mechanical properties an corrosion resistance can be exploited. The transformation of the amorphous phase in these alloys to one or more crystalline phases, is an interesting phase transformation and can lead to formation of crystals in a variety of morphologies and a wide range of crystal sizes, including nanometer size crystals or nanocrystals. The bulk amorphous alloys exhibit higher fracture stress, combined with higher hardness and lower young's modulus than those of any crystalline alloy. The Zr- and Ti-based bulk amorphous alloy exhibit high bending and flexural strength values which are typically 2.0 to 2.5 time higher than those for crystalline counterparts. The composites of bulk metallic glass containing crystalline phases have been found to have special properties. This has been demonstrated in the case of composites of bulk metallic glass and tungsten wires wit the glass forming the matrix. Such a composite has a very high impact strength and is especially suitable for application as an armour penetrator in various types of shells used

  20. Glass formation and properties of glasses in V/sub 2/O/sub 5/-B/sub 2/O/sub 3/-P/sub 2/O/sub 5/ system

    Energy Technology Data Exchange (ETDEWEB)

    Sedmale, G P; Vajvad, Ya A; Arkhipova, S E; Laukmanis, L A

    1987-01-01

    The glass formation in the system V/sub 2/O/sub 5/-B/sub 2/O/sub 3/-P/sub 2/O/sub 5/ and the properties of the obtained glasses have been studied by methods including that of the mathematical design and the treatment of the obtained data on ECM. The glass formation region is limited by the molar content of V/sub 2/O/sub 5/ 30-80%, B/sub 2/O/sub 3/ 0-45%, P/sub 2/O/sub 5/ 20-65%. The chemical stability data show that at the molar content of V/sub 2/O/sub 5/ 45-50% the transfer of vanadium from the state of the modificator to the glass-forming agent takes place. For the studied glasses the electron mechanism of conductivity is the dominating one.

  1. Natural analogue of nuclear waste glass in a geologic formation. Study on long-term behavior of volcanic glass shards collected from drill cores

    International Nuclear Information System (INIS)

    Yoshikawa, Hideki; Yui, Mikazu; Futakuchi, Katsuhito; Hiroki, Minenari

    2005-01-01

    Alteration of the volcanic glass in geologic formation was investigated as one of the natural analog for a glass of high-level nuclear waste in geological disposal. We analyzed some volcanic glasses included in the core sample of the bore hole and estimated the history of its burying and observed its alteration using the polarizing microscope. Some information at the piling up temperature and the piling up time was collected. (author)

  2. Atomistic modeling to investigate the favored composition for metallic glass formation in the Ca-Mg-Ni ternary system.

    Science.gov (United States)

    Zhao, S; Li, J H; An, S M; Li, S N; Liu, B X

    2017-05-17

    A realistic interatomic potential was first constructed for the Ca-Mg-Ni system and then applied to Monte Carlo simulations to predict the favored composition for metallic glass formation in the ternary system. The simulations not only predict a hexagonal composition region, within which the Ca-Mg-Ni metallic glass formation is energetically favored, but also pinpoint an optimized sub-region within which the amorphization driving force, i.e. the energy difference between the solid solution and disordered phase, is larger than that outside. The simulations further reveal that the physical origin of glass formation is the solid solution collapsing when the solute atom exceeds the critical solid solubility. Further structural analysis indicates that the pentagonal bi-pyramids dominate in the optimized sub-region. The large atomic size difference between Ca, Mg and Ni extends the short-range landscape and facilitates the development of a hybridized packing model in the medium-range, and eventually enhancing the glass formation in the system. The predictions are well supported by the experimental observations reported so far, and could be of help for designing the ternary glass formation.

  3. Oxycarbonitride glass formation by melt solidification

    Energy Technology Data Exchange (ETDEWEB)

    Imon, M M; Risbud, S H

    1986-04-01

    Experimental results are presented from the synthesis and characterization of multianion oxycarbonitride glasses composed of MgSiAlON glass powders with SiC additions of 5, 10, or 15 wt pct. Nitrogen additions to the oxide MgO-Al2O3-SiO2 glasses increased devitrification resistance, but carbon additions to MgSiAlON glasses promote crystal nucleation. These properties are relevant to the oxycarbonitride glasses use in refractory glass-ceramic and ceramic-ceramic composite systems with good elevated temperature performance. 9 references.

  4. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  5. Processing and characterization of new oxysulfide glasses in the Ge-Ga-As-S-O system

    International Nuclear Information System (INIS)

    Maurel, C.; Petit, L.; Dussauze, M.; Kamitsos, E.I.; Couzi, M.; Cardinal, T.; Miller, A.C.; Jain, H.; Richardson, K.

    2008-01-01

    New oxysulfide glasses have been prepared in the Ge-Ga-As system employing a two-step melting process which involves the processing of the chalcogenide glass (ChG) and its subsequent melting with amorphous GeO 2 powder. Optical characterization of the synthesized oxysulfide glasses has shown that the cut-off wavelength decreases with increasing oxygen content, and this has been correlated to results of Raman and infrared (IR) spectroscopies which show the formation of new oxysulfide structural units. X-ray photoelectron spectroscopy (XPS) analysis to probe the bonding environment of oxygen atoms in the oxysulfide glass network, has revealed the preferred formation of Ga-O and Ge-O bonds in comparison to As-O bonds. This work has demonstrated that melting a ChG glass with GeO 2 leads to the formation of new oxysulfide glassy materials. - Graphical abstract: In this paper, we explain how new oxysulfide glasses are prepared in the Ge-Ga-As system employing a two-step process: (1) the processing of the chalcogenide glass (ChG) and (2) the re-melting of the ChG with GeO 2 powder. Raman, infrared and XPS spectroscopies show the formation of new oxysulfide structural units

  6. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  7. Binary eutectic clusters and glass formation in ideal glass-forming liquids

    International Nuclear Information System (INIS)

    Lu, Z. P.; Shen, J.; Xing, D. W.; Sun, J. F.; Liu, C. T.

    2006-01-01

    In this letter, a physical concept of binary eutectic clusters in 'ideal' glass-forming liquids is proposed based on the characteristics of most well-known bulk metallic glasses (BMGs). The authors approach also includes the treatment of binary eutectic clusters as basic units, which leads to the development of a simple but reliable method for designing BMGs more efficiently and effectively in these unique glass-forming liquids. As an example, bulk glass formers with superior glass-forming ability in the Zr-Ni-Cu-Al and Zr-Fe-Cu-Al systems were identified with the use of the strategy

  8. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr--Ni--Cu--Al metallic glasses

    International Nuclear Information System (INIS)

    Fan, Cang; Li, Chunfei; Inoue, Akihisa; Haas, Volker

    2001-01-01

    This work shows that the crystallization process of Zr--Ni--Cu--Al metallic glass is greatly influenced by adding Nb as an alloying element. Based on the results of the differential scanning calorimetry experiments for metallic glasses Zr 69-x Nb x Ni 10 Cu 12 Al 9 (x=0--15at.%), the crystallization process takes place through two individual stages. For Zr 69 Ni 10 Cu 12 Al 9 (x=0), metastable hexagonal ω-Zr and a small fraction of tetragonal Zr 2 Cu are precipitated upon completion of the first exothermic reaction. Contrary to this alloy, the precipitation of a nanoquasicrystalline phase is detected when 5--10 at.% Nb is added. Furthermore, the crystallization temperature T x , supercooled liquid region ΔT x and reduced temperature T g /T L (T g is the glass transition temperature, T L the liquidus temperature) increase with increasing Nb content. These results indicate that adding Nb content to Zr--Ni--Cu--Al metallic glasses not only induces quasicrystalline phase formation, but also enhances glass-forming ability. Copyright 2001 American Institute of Physics

  9. A Unified Theory of Melting, Crystallization and Glass Formation

    DEFF Research Database (Denmark)

    Cotterill, R. M. J.; Jensen, F. J.; Damgaard Kristensen, W.

    1975-01-01

    In recent years, dislocations have been involved in theories of melting, in models of the liquid state, and in calculations of the viscosity of glasses. Particularly noteworthy are the Mott-Gurney model of a liquid as a polycrystal with a grain size (i. e. a dislocation network size) of near......-atomic dimensions, and the demonstration by Kotze and Kuhlmann-Wilsdorf that the solid-liquid interfacial energy is proportional to the grain boundary energy for a number of elements. These developments suggest the possibility of a relatively simple picture of crystallization and glass formation. In the liquid...... state dislocations, at the saturation density, are in constant motion and the microscopic grain boundary structure that they form is constantly changing due to dislocation-dislocation interaction. As the liquid is cooled below the melting point the free energy favors the crystalline form and grains...

  10. Effects of flow on corrosion and surface film formation on an alkali borosilicate glass

    International Nuclear Information System (INIS)

    Clark, D.E.; Christensen, H.; Hermansson, H.P.; Sundvall, S.B.; Werme, L.

    1984-01-01

    Samples of the Swedish KBS glass type ABS 39 have been leached in doubly distilled water for 28 days at 90 0 C under static and flow conditions. After leaching, pH, weight loss, and elemental mass loss were determined. Surface film formation was studied by using IRRS, SEM-EDS, and SIMS analyses. Increasing the flow rate resulted in a decreased attack on the glass surface. Na and B were depleted while Al, Fe, La, and U were enriched at the surfaces of all the samples. The depth of the extensively leached layer determined by SIMS was approximately 6 μm on the low-flow-rate sample and about 2 μm on the high-flow-rate sample. SEM analysis also showed some variations in the thickness of the leached layers, but in general, the thickness of the layer on the 0.5 mL/h samples was about 3 times greater than on the 90 mL/g samples. Small particles ( 2 for the static and 0.5 mL/h samples and 6 g/m 2 for the 90 mL/h samples. This factor of 3 difference in weight loss between the low and high flow rates correlates well with the factor of 3 difference in their leached depths. A model is proposed to explain the results based on the effectiveness of protective surface layers

  11. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    Science.gov (United States)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  12. Role of Nb in glass formation of Fe–Cr–Mo–C–B–Nb BMGs

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Fuqiang, E-mail: fuqiangzhai@gmail.com [Departament Física Aplicada, EETAC, Universitat Politècnica Catalunya-BarcelonaTech, Esteve Terradas 5, 08860 Castelldefels (Spain); Pineda, Eloi [Departament Física i Enginyeria Nuclear, ESAB, Universitat Politècnica Catalunya- BarcelonaTech, Esteve Terradas 8, 08860 Castelldefels (Spain); Duarte, M. Jazmín [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf (Germany); Crespo, Daniel [Departament Física Aplicada, EETAC, Universitat Politècnica Catalunya-BarcelonaTech, Esteve Terradas 5, 08860 Castelldefels (Spain)

    2014-08-01

    Highlights: • The Fe{sub 46}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Nb{sub 4} BMG of 3 mm Ø was produced for the first time. • The compressive strength of Fe–Cr–Mo–C–B–Nb BMG is reported. • The fragility parameter of Fe–Cr–Mo–C–B–Nb BMG was studied. • The microscopic mechanism is explained by E{sub g}, E{sub x}, E{sub p} and m parameters. - Abstract: A new Fe-based bulk metallic glass with superior glass-forming ability (GFA), Fe{sub 46}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Nb{sub 4}, was developed based on the Fe–Cr–Mo–C–B alloy system by minor addition of Nb. The effects of Nb addition on glass formation of the Fe{sub 50−x}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Nb{sub x} (x = 0, 2, 4 and 6 at.%) alloys were investigated. The optimum addition content of Nb was determined as 4 at.% by X-ray diffraction and differential scanning calorimeter analysis. A fully amorphous rod sample with 3 mm in diameter was produced by using commercial-grade raw materials and a copper mold casting technique. This alloy shows an ultimate compressive strength of 1920 MPa and Vicker’s hardness 1360 H{sub V}, which is two to three times that of conventional high strength steel and suggests a promising potential for applications combining outstanding corrosion and wear resistance properties. The crystallization kinetics studies found that the activation energies for glass transition, onset of crystallization and crystallization peak were higher than those of other reported Fe-based bulk metallic glasses. The value of the fragility parameter m for the Fe{sub 46}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Nb{sub 4} alloy was calculated to be 34, indicating that the Fe–Cr–Mo–C–B–Nb alloy system is a strong glass former according to the Angell’s classification scheme. It is inferred that the more sequential change in the atomic size, the generation of new atomic pairs with large negative heats of mixing and the amount of oxygen in the molten liquid

  13. Acquisition of rheological and calorimetric properties of borosilicate glass to determine the free energy of formation

    International Nuclear Information System (INIS)

    Linard, Y.; Advocat, Th.

    2000-01-01

    No fundamental thermodynamic data, such as the entropy Δ f S T) and enthalpy Δ f H T) of formation are currently available for nuclear borosilicate glasses. They are necessary to assess the glass thermodynamic stability in water, one of the most important potential long-term glass alteration vectors. Three glass composition ranges were investigated: - 8 compositions ranging from a ternary B 2 O 3 -SiO 2 --Na 2 O (BSN) glass to the simulated SON 68 industrial glass for containment of high active nuclear wastes after reprocessing spent uranium oxide fuel from light water reactors. The basic BSN glass was gradually modified with the additives: Al 2 O 3 , CaO, ZrO 2 , Ce 2 O 3 , Li 2 O and Fe 2 O 3 , and non-radioactive surrogate fission product oxides. - A second using another BSN ternary glass to which Al 2 O 3 , MgO and a group of non-radioactive surrogate fission product oxides, representative of natural uranium GCR fuel, were added. - A third range consisting of various BSN ternary glass compositions. All the glass specimens were fabricated by melting the oxides, carbonates anal nitrates at 1273 to 1473 K in a platinum crucible. Experimental methods based on calorimetry and viscosimetry techniques were used to determine the heat capacity Cp of each glass composition, a necessary parameter in addition to the known heat capacities of the basic glass component oxides, for calculating Δ f S T) and Δ f S T). The heat capacity Cp was measured between 273 K and 1480 K through a combination of three experimental devices: a low-temperature adiabatic calorimeter, a differential scanning calorimeter, and an ice calorimeter. The glass configuration entropy S conf (T g ) necessary to obtain the glass entropy of formation (Eqn.(3)) was determined from tile glass rheological properties. A low-temperature viscosimeter was used to measure the strain ε of a glass specimen subjected to a given uniaxial stress σ to determine the viscosity η. A Couette viscosimeter was used to

  14. Formation of hydroxyapatite on Ti-coated Ti-Zr-Cu-Pd bulk metallic glass

    International Nuclear Information System (INIS)

    Qin, F.X.; Wang, X.M.; Wada, T.; Xie, G.Q.; Asami, K.; Inoue, A.

    2009-01-01

    In this research, Ti coating was conducted on Ti 40 Zr 10 Cu 36 Pd 14 bulk metallic glass (BMG) in order to increase the formation rate of hydroxyapatite layer. The formation behavior of bone-like hydroxyapatite on Ti-coated and uncoated Ti 40 Zr 10 Cu 36 Pd 14 bulk metallic glasses (BMGs) was studied. The surface morphology of Ti-coated and uncoated Ti 40 Zr 10 Cu 36 Pd 14 BMG was investigated by scanning electron microscopy and energy dispersive X-ray spectroscopy. The results revealed that the alkali pretreatment in 5 M NaOH solution at 60degC for 24 h had a beneficial effect on the formation of porous sodium titanate on Ti-coated Ti 40 Zr 10 Cu 36 Pd 14 BMG. A bone-like hydroxyapatite layer was able to form on the alkali-treated Ti-coated Ti 40 Zr 10 Cu 36 Pd 14 BMG after a short-time immersion in simulated body fluid (SBF). On the contrary, hydroxyapatite formation was not observed on the uncoated Ti 40 Zr 10 Cu 36 Pd 14 BMG after the same chemical treatments. (author)

  15. Negative plant soil feedback explaining ring formation in clonal plants

    NARCIS (Netherlands)

    Carteni, F.; Marasco, A.; Bonanomi, G.; Mazzoleni, S.; Rietkerk, M.G.; Giannino, F.

    2012-01-01

    Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in

  16. Formation of nanostructures in Eu3+ doped glass-ceramics: an XAS study.

    Science.gov (United States)

    Pellicer-Porres, J; Segura, A; Martínez-Criado, G; Rodríguez-Mendoza, U R; Lavín, V

    2013-01-16

    We describe the results of x-ray absorption experiments carried out to deduce structural and chemical information in Eu(3+) doped, transparent, oxyfluoride glass and nanostructured glass-ceramic samples. The spectra were measured at the Pb and Eu-L(III) edges. The Eu environment in the glass samples is observed to be similar to that of EuF(3). Complementary x-ray diffraction experiments show that thermal annealing creates β-PbF(2) type nanocrystals. X-ray absorption indicates that Eu ions act as seeds in the nanocrystal formation. There is evidence of interstitial fluorine atoms around Eu ions as well as Eu dimers. X-ray absorption at the Pb-L(III) edge shows that after the thermal treatment most lead atoms form a PbO amorphous phase and that only 10% of the lead atoms remain available to form β-PbF(2) type nanocrystals. Both x-ray diffraction and absorption point to a high Eu content in the nanocrystals. Our study suggests new approaches to the oxyfluoride glass-ceramic synthesis in order to further improve their properties.

  17. Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment

    Energy Technology Data Exchange (ETDEWEB)

    Pan Jie; Chen Qi; Li Ning [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Liu Lin [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)], E-mail: lliu2000@public.wh.hb.cn

    2008-09-08

    The formation of a Fe{sub 43.7}Co{sub 7.3}Cr{sub 14.7}Mo{sub 12.6}C{sub 15.5}B{sub 4.3}Y{sub 1.9} bulk metallic glass (BMG) was attempted in low vacuum environment and in air using commercial raw materials. The glass forming ability of the Fe-based alloys was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analyzer (DTA). It was found that cylindric rods with diameters ranging from 10 mm to 5 mm could be successfully fabricated by copper-mold casting in the pressures from 1.5 Pa to 10{sup 5} Pa (10{sup 5} Pa = 1 atm). All BMGs exhibit a distinct glass transition and wide supercooled liquid region. The preparation condition seems not significantly affected by the thermodynamic parameters of BMG, such as supercooled liquid region, glass transition temperature and melting process. The oxygen content of the alloys prepared in different vacuum conditions was measured by a LECO oxygen analyzer, which revealed that the oxygen content was less than 100 ppm for all BMGs prepared, even in air. The good glass forming ability and excellent oxidation resistance for the present Fe-based alloy are discussed.

  18. EUROPIUM ION INFLUENCE ON THE FORMATION OF Ag-NANOPARTICLES IN FLUORINE PHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    R. O. Pysh'ev

    2015-05-01

    Full Text Available The paper deals with research of formation characteristics of silver nanoparticles in fluorophosphate glasses 0.25 Na2O - 0.5 P2O5 - 0.10 Ga2O3 - 0.075 AlF3 - 0.025 NaF - 0.05 ZnF2 doped with EuF3 (0.8 and 4 wt.% and without them. The synthesis was carried out in closed glassy carbon crucibles in argon atmosphere. Nanoparticles were formed after a low temperature process of Ag+ → Na+ ion-exchange (320 °C and subsequent heat treatment. It was shown that in the initial glasses doped with EuF3, rare earth ions exist in two valence forms (Eu2+ and Eu3+ in dynamic equilibrium and the concentration of Eu2+ increases proportionally to the total concentration of fluoride. It was shown that sizes of molecular clusters or metal nanoparticles depend on the concentration of europium fluoride and duration of ion exchange. The metallic Ag-nanoparticles sizes were defined for different times of heat treatment and ion exchange. The possibility of the stimulating growth of nanoparticles through the introduction of additional EuF3 in the glass was proved. The possibility of obtaining nanoparticles without the heat treatment in glasses with a high concentration of EuF3 was shown. Chemical mechanism for the formation of Ag-nanoparticles during the ion exchange was suggested.

  19. The formation of crystals in glasses containing rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Fadzil, Syazwani Mohd [Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Hrma, Pavel [Pohang University of Science and Technology (POSTECH), Pohang, South Korea and Pacific Northwest National Laboratory, Richland, Washington (United States); Crum, Jarrod [Pacific Northwest National Laboratory, Richland, Washington (United States); Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt [National University of Malaysia, Bandar Baru Bangi, Selangor (Malaysia)

    2014-02-12

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd{sub 2}O{sub 3}–22.7CeO{sub 2}–11.7La{sub 2}O{sub 3}–10.9PrO{sub 2}–1.3Eu{sub 2}O{sub 3}–1.3Gd{sub 2}O{sub 3}–8.1Sm{sub 2}O{sub 3}–4.8Y{sub 2}O{sub 3} with a baseline glass of composition 60.2SiO{sub 2}–16.0B{sub 2}O{sub 3}–12.6Na{sub 2}O–3.8Al{sub 2}O{sub 3}–5.7CaO–1.7ZrO{sub 2}. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La{sub 2}O{sub 3} and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO{sub 5}) and oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26}) were found in glasses containing La{sub 2}O{sub 3}, while oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26} and NaNd{sub 9}Si{sub 6}O{sub 26}) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (T{sub L}) of the glasses containing 5%, 10% and 15% La{sub 2}O{sub 3} were 800°C, 959°C and 986°C, respectively; while T{sub L} was 825°C, 1059°C and 1267°C for glasses

  20. Elemental and isotopic (Si-{sup 29} and O-{sup 18}) tracing of glass alteration mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Verney-Carron, A.; Libourel, G.; Deloule, E. [CNRS, Ctr Rech Petrog and Geochim, UPR 2300, F-54501 Vandoeuvre Les Nancy (France); Valle, N. [Ctr Rech Publ Gabriel Lippmann, Dept Sci and Anal Mat, L-4422 Belvaux (Luxembourg); Sterpenich, J. [Univ H Poincare, G2R, CNRS, UMR 7566, F-54501 Vandoeuvre Les Nancy (France); Jollivet, P. [CEA Marcoule, DEN, Lab Comportement Long Terme, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    To better understand glass alteration mechanisms, especially alteration layers formation, leaching experiments of a borosilicate glass (SON68) doped with a different rare earth element (La, Ce, or Nd) with solutions rich in {sup 29}Si and {sup 18}O were carried out. The coupled analyses of glass, alteration products, and solution led to a complete elemental and isotopic ({sup 29}Si and {sup 18}O) budget. They revealed different behaviours of elements that depend not only on their structural role in the glass, but also on their affinity for alteration products (gel, phyllosilicates, phosphates). However, analyses of both glass and solution are not sufficient to describe the real exchanges occurring between glass and solution. The use of {sup 29}Si and {sup 18}O tracers gives new insights on the formation of alteration layers. During alteration the phyllosilicates records the isotopic variations of the leaching solution. Their isotopic signatures highlight a mechanism of dissolution/precipitation, which implies equilibrium between the secondary phases and the solution. On the other hand the gel isotopic signature, that is intermediate between the glass and the solution, substantiates the hypothesis that the gel is formed by hydrolysis/condensation reactions. This mechanism can thus explain the influence of the gel formation conditions (alteration conditions, solution saturation) on the structure (reorganisation) and texture (porosity) of this layer and on its protective effect. These hydrolysis/condensation reactions are also certainly involved in the aluminosilicate glass alteration and in the formation of palagonite. (authors)

  1. Phase transitions and glass transition in a hyperquenched silica–alumina glass

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Zhao, D.H.; Yue, Yuanzheng

    2017-01-01

    We investigate phase transitions, glass transition, and dynamic behavior in the hyperquenched 69SiO2–31Al2O3 (mol%) glass (SA glass). Upon reheating, the SA glass exhibits a series of thermal responses. Subsequent to the sub-Tg enthalpy release, the glass undergoes a large jump in isobaric heat...... capacity (ΔCp) during glass transition, implying the fragile nature of the SA glass. The mullite starts to form before the end of glass transition, indicating that the SA glass is extremely unstable against crystallization. After the mullite formation, the remaining glass phase exhibits an increased Tg...... and a suppressed ΔCp. The formation of cristobalite at 1553 K indicates the dominance of silica in the remaining glass matrix. The cristobalite gradually re-melts as the isothermal heat-treatment temperature is raised from 1823 to 1853 K, which is well below the melting point of cristobalite, while the amount...

  2. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    Science.gov (United States)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  3. Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2017-01-01

    Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled straight glass capillary actuated by a piezoelectric transducer. Here......, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model explains the dynamical mechanism that leads to the formation...

  4. Novel method for early investigation of bioactivity in different borate bio-glasses

    Science.gov (United States)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  5. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W.; Wang, L.M.

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m -1 , 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions

  6. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  7. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  8. Physical, thermal, infrared and optical properties of Nd3+ doped lithium–lead-germanate glasses

    International Nuclear Information System (INIS)

    Veeranna Gowda, V.C.

    2015-01-01

    The structure–property relationships of neodymium doped lithium–lead-germanate glasses were investigated. The density was found to increase with the increase of Nd 2 O 3 concentration and its variation is explained in terms of its molecular mass, structural transformation and packing density. Addition of modifier oxide to lead-germanate glass suggests a decreased free space within the glass matrix, resulting in the formation of stiff network. The increase in glass transition temperature specifies strengthening of glass by forming bridging oxygens. The optical properties of glass were measured employing UV–visible spectroscopy. The refractive index values varied nonlinearly with Nd 2 O 3 concentration and were speculated to depend on the electronic polarizability of oxide glasses. The frequencies of the infrared absorption bands were affected marginally and the absorption peaks revealed that the glass matrix consists of [GeO 4/2 ], [GeO 6/2 ] and [PbO 4/2 ] structural units

  9. Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Xie Guoqiang; Li Song; Zhang Wei; Inoue, Akihisa

    2008-01-01

    The purpose of the current paper is to study the influence of Ti, V, Nb, Al, Sn and Pd additions on the glass-forming ability, formation of a supercooled liquid region and a devitrification process of some Ni-Zr glassy alloys as well as to compare the results with those obtained for similar Cu-based alloys studied earlier. The Ni-based glassy alloys were investigated by using X-ray diffraction, differential scanning and isothermal calorimetries. Although the studied Ni-based alloys showed high values of the reduced glass-transition temperature of about 0.6, their glass-forming ability is quite low. This fact may be explained by low stability of the supercooled liquid against crystallization and formation of the equilibrium intermetallic compounds with a high growth rate compared to those observed in similar Cu-based alloys studied earlier. Relatively low thermal conductivity of Ni-based alloys is also found to be another factor limiting their glass-forming ability

  10. GLASS FORMATION AND PROPERTIES OF CORDIERITE COMPOSITIONS FROM TALC-BASED NATURAL RAW MATERIALS WITH BORON OXIDE ADDITION

    Directory of Open Access Journals (Sweden)

    Esin GÜNAY

    2010-12-01

    Full Text Available In this study, the glass forming behaviour of cordierite compositions in MAS (MgO-Al2O3-SiO2 system with added B2O3 content up to 3% were studied by melting the natural raw materials such as; talc, kaolin, alumina and boric acid as the source of MgO, SiO2, Al2O3 and B2O3 respectively. XRD analysis revealed the glass formation. Optical properties of the glasses were measured using UV-VIS spectrophotometer and structural changes were monitored by using FT-IR spectrometer. Physical properties such as density, colour, thermal expansion coefficients and hardness were measured according to the standard test methods. Glasses with a green colour were produced and this was attributed to the Fe content in the glass up to 0.5% coming from talc and kaolin. The addition of B2O3 to the glasses increased the glass transition temperatures (Tg values and reduced the thermal expansion coefficient values of the glasses from 5.2226 to 5.0072ºCx10-6, for MAS-T-0 and MAS-T-3, respectively.

  11. Composition dependence of the optical and structural properties of Eu-doped oxyfluoride glasses

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wu, D.Q.; Zhang, Y.F.

    2015-01-01

    Europium doped oxyfluoride glasses were prepared by the melt quenching method for the light emitting diodes applications. The optical and structural properties of these glasses were studied by means of photoluminescence spectra, Commission Internationale de L'Eclairage chromaticity coordinates, X...... compositions. Finally, we propose a mechanism to explain how the glass structure affects the reduction of Eu ions as well as optical properties of the glasses.......Europium doped oxyfluoride glasses were prepared by the melt quenching method for the light emitting diodes applications. The optical and structural properties of these glasses were studied by means of photoluminescence spectra, Commission Internationale de L'Eclairage chromaticity coordinates, X...... on the base glass compositions. For certain base glass compositions, CaF2 crystals can form during the melt cooling process, and thereby enhance the conversion from Eu3+ to Eu2+. The formation of CaF2 crystals can be suppressed by adding CaO, Al2O3 and B2O3, but enhanced by adding Na2O and K2O in glass...

  12. Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: Stopping power dependence of the mechanical properties

    International Nuclear Information System (INIS)

    Mir, A.H.; Monnet, I.; Toulemonde, M.; Bouffard, S.; Jegou, C.; Peuget, S.

    2016-01-01

    Simple and complex borosilicate glasses were irradiated with single and double ion beams of light and heavy ions over a broad fluence and stopping power range. As a result of the heavy ion irradiation (U, Kr, Au), the hardness was observed to diminish and saturate after a decrease by 35 ± 1%. Unlike slow and swift heavy ion irradiation, irradiation with light ions (He,O) induced a saturation hardness decrease of 18 ± 1% only. During double ion beam irradiation; where glasses were first irradiated with a heavy ion (gold) and then by a light ion (helium), the light ion irradiation induced partial damage recovery. As a consequence of the recovery effect, the hardness of the pre-irradiated glasses increased by 10–15% depending on the chemical composition. These results highlight that the nuclear energy loss and high electronic energy loss (≥4 keV/nm) result in significant and similar modifications whereas light ions with low electronic energy loss (≤1 keV/nm) result in only mild damage formation in virgin glasses and recovery in highly pre-damaged glasses. These results are important to understand the damage formation and recovery in actinide bearing minerals and in glasses subjected to self-irradiation by alpha decays. - Highlights: • Behavior of glasses strongly depends on the electronic energy loss (Se) of the ions. • High Se (≥4 keV/nm) induces large changes in comparison to lower Se values. • Apart from mild damage formation, low Se causes recovery of pre-existing damage. • Alpha induced partial recovery of the damage would occur in nuclear waste glasses.

  13. Positron lifetimes at the initial stage of pore formation in Vycor glass

    CERN Document Server

    Jasinska, B; Goworek, T

    2000-01-01

    The formation of narrow pores during leaching of Vycor glass by sulphuric acid was investigated using the positron lifetime technique. During the leaching process the pore diameter remained roughly constant (except for the case of cold leaching). The time of processing changed the total length of capillaries, but not their number; at the temperature 50 deg. C during 20 min of leaching the average leaching depth was 24 mu m.

  14. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  15. An electron microscopy appraisal of tensile fracture in metallic glasses

    International Nuclear Information System (INIS)

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M.; De Hosson, J.Th.M.

    2008-01-01

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, δ, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting

  16. Rhyolitic glasses as natural analogues of nuclear waste glasses: behaviour of an Icelandic glass upon natural aqueous corrosion

    International Nuclear Information System (INIS)

    Magonthier, M.-C.; Petit, J.-C.; Dran, J.-C.

    1992-01-01

    A detailed study of the altered rims present in narrow fissures of a 52 ka-old Icelandic obsidian reveals the behaviour of transition and heavy elements, as well as the mechanism and kinetics of alteration, during glass/solution interaction. These complex altered rims are alkali depleted and consist of alternating layers of Fe-rich aluminosilicate and aluminium thihydroxide. The elemental partitioning observed on this naturally corroded obsidian is supported by laboratory experiments performed on the same glass, the elemental accumulation being explained by the formation of a hydrosilicate. A good correlation exists between the thickness of the altered rims and that calculated from the amounts of Fe and Ti accumulated locally. Thus, immobile elements can be used reliably as indices of the extent of alteration because only near-equilibrium conditions occur. The good agreement between the experimental hydration rate of obsidians and the progress of natural corrosion, leads to the assumption that ion diffusion is the long-term controlling mechanism of corrosion. Such an assumption is supported by the particular distribution of the immobile elements which is due to ion diffusion and coprecipitation processes (self-organization genesis). These observations have implications for nuclear waste disposal topics and support the validity of obsidians as analogues of nuclear waste glasses with respect to some local environmental constraints induced by waste packaging and disposal. (author)

  17. Formation of quasicrystals in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass

    DEFF Research Database (Denmark)

    Wanderka, N.; Macht, M. P.; Siedel, M.

    2000-01-01

    The formation of the quasicrystalline phase is observed as a first step of crystallization during isothermal annealing of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 bulk glass. The structure of the quasicrystals and the sequence of phase formation have been investigated by x-ray powder diffraction and transm......The formation of the quasicrystalline phase is observed as a first step of crystallization during isothermal annealing of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 bulk glass. The structure of the quasicrystals and the sequence of phase formation have been investigated by x-ray powder diffraction...... min) at high temperatures above 683 K. (C) 2000 American Institute of Physics....

  18. Gigaseal formation in patch clamping with applications of nanotechnology

    CERN Document Server

    Malboubi, Majid

    2014-01-01

    This book presents an investigation of gigaseal formation using micro/nanotechnology. The aims of the book are twofold. First, it explains the mechanisms of gigaseal formation using the latest discoveries. Second, it provides practical techniques for frequent formation of high resistance seals. The formation of a high-resistance electrical seal, also known as a gigaseal, between a cell membrane and a glass micropipette tip is essential in patch-clamp experiments. Even though four decades have passed since the introduction of the patch-clamping technique by Neher and Sakmann, gigaseal formation remains an obstacle in developing the high-throughput ion channel screening systems required by the pharmaceutical industry. Here the authors share their latest methods for achieving gigaseal formation and describe techniques that are highly desirable at both research and industrial levels. Nanotechnology has been found to be a powerful tool for studying and modifying glass micropipettes and in tackling the problem of g...

  19. Transport and dielectric studies on silver based molybdo-tungstate quaternary superionic conducting glasses

    International Nuclear Information System (INIS)

    Prasad, P.S.S.; Radhakrishna, S.

    1988-01-01

    The molybdo-tungstate (MoO 3 -WO 3 ) combination of glass formers with silver oxide (Ag 2 O) as glass modifier and silver iodide (AgI) as ionic conductor were prepared to study the transport and dielectric properties of 60% AgI-40% (x Ag 2 O-y(WO 3 -MoO 3 )) for x/y=0.33 to 3.0 and establish the feasibility of using these glasses as electrolytes in the fabrication and characterisation of solid state batteries and potential memory devices. The details of the preparation of glasses and methods of measurement of their capacitance, dielectric loss factor and ac conductivity in the frequency range 100 Hz - 100 kHz from 30-120 C have been reported. The electronic contribution to the total conductivity, the ionic and electronic transport numbers were determined using Wagners dc polarisation technique. The observed high ionic and low electronic conductivities were attributed to the formation of ionic clusters in the glass and the effect of mixing two glass formers. The observed total ionic conductivity and its temperature dependence was explained using Arrhenius relation σ=σ 0 /T exp(-E/RT) and the measured dielectric constant and dielectric loss were explained on the basis of Jonschers theory. The frequency dependence of dielectric constant obeys the theory based on the polarisation of ions. 25 refs.; 8 figs

  20. Long-term behavior of glass-ceramic zirconolite

    International Nuclear Information System (INIS)

    Martin, Ch.

    2003-01-01

    This work is a part of the investigation of new containment matrices considered for specific conditioning of radionuclides after separation. The aim was to demonstrate the long-term aqueous corrosion resistance of the glass-ceramic zirconolite considered for the conditioning of plutonium and the minor actinides. This material is composed of crystals of zirconolite (CaZrTi 2 O 7 ) dispersed in a residual vitreous phase. It appears that glass-ceramic zirconolite presents a better kinetic behavior than the nuclear glass R 7T7. This is mainly due to a more important rate decrease that occurs more rapidly, that induces a quantity of glass altered at least 10 times as small as for R 7T7 glass. This high slowdown of the alteration rate is attributed to the formation of an alteration film that has been the subject of a specific study. We have demonstrated that the rate decrease was controlled as for the R7T7 glass by the amorphous phase of the alteration film forming a diffusion barrier for reactive species. It seems that the porosity is not the single parameter that explains the protective effect of the gel. The main differences compared with R7T7 glass are that silicon does not control the alteration of the material and that the gel is composed of two distinct phases. We have in particular identified a dense phase enriched in titanium and neodymium that probably influences deeply the kinetics. (author)

  1. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    Science.gov (United States)

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Explaining formation of Astronomical Jets using Dynamic Universe Model

    Science.gov (United States)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step

  3. Radioresistance of inorganic glasses

    International Nuclear Information System (INIS)

    Vorob'ev, A.A.; Zavadovskaya, E.K.; Fedorov, B.V.; Starodubtsev, V.A.

    1977-01-01

    Regularities are considered in the variation of properties of glass due to irradiations. On the basis of previous theoretical statements and experimental investigations, it is inferred that the irradiation resistance of glasses of the same type, synthesis conditions, content of impurities and amount of imperfections, is a function of the ''element-oxygen'' bond energy. The irradiation resistance depends on the number and the nature of glass structure imperfections. The averaged level of bonding forces is indicative of the glass formation temperature; the imperfections in glasses are formed in structure elements whose amount predominates as compared to the others. Electric charges which accumulate on the crack surface tend to increase its size, thus lessening even further the electric strength of the dielectric. The greater the irradiation time, the greater the number of irradiation imperfections causing a drop in the electric strength of glass. When choosing a glass for service in a radiation field, it is necessary to select those of a highest temperature of glass formation and with a least amount of imperfections

  4. Formation peculiarities of superconducting Bi-Sr-Ca -cuprates from glass ceramic quenched melts

    International Nuclear Information System (INIS)

    Furmakova, O.E.; Zinov'ev, S.Yu.; Glushkova, V.B.; Bugakov, A.G.; Sulejmanov, S.Kh.

    1992-01-01

    Specimens of varying composition of the Bi-Sr-Ca-Cu-O system, X-ray amorphous Alakes and glass ceramic ingots were prepared by means of different rate quenching of melts. Crystallization temperatures of flakes were determined and sequence of phase formation in both types of specimens during annealing was studied. Microstructure and distribution of elements by volume of specimen in initial and annealed ingot were investigated

  5. Glass-Glass Transitions by Means of an Acceptor-Donor Percolating Electric-Dipole Network

    Science.gov (United States)

    Zhang, Le; Lou, Xiaojie; Wang, Dong; Zhou, Yan; Yang, Yang; Kuball, Martin; Carpenter, Michael A.; Ren, Xiaobing

    2017-11-01

    We report the ferroelectric glass-glass transitions in KN (K+/Nb5 +) -doped BaTiO3 ferroelectric ceramics, which have been proved by x-ray diffraction profile and Raman spectra data. The formation of glass-glass transitions can be attributed to the existence of cubic (C )-tetragonal (T )-orthorhombic (O )-rhombohedral (R ) ferroelectric transitions in short-range order. These abnormal glass-glass transitions can perform very small thermal hysteresis (approximately 1.0 K ) with a large dielectric constant (approximately 3000), small remanent polarization Pr , and relative high maximum polarization Pm remaining over a wide temperature range (220-350 K) under an electrical stimulus, indicating the potential applications in dielectric recoverable energy-storage devices with high thermal reliability. Further phase field simulations suggest that these glass-glass transitions are induced by the formation of a percolating electric defect-dipole network (PEDN). This proper PEDN breaks the long-range ordered ferroelectric domain pattern and results in the local phase transitions at the nanoscale. Our work may further stimulate the fundamental physical theory and accelerate the development of dielectric energy-storing devices.

  6. RADIATION EFFECTS IN PHYSICAL AGING OF BINARY As-S AND As-Se GLASSES

    International Nuclear Information System (INIS)

    Golovchak, Roman; Shpotyuk, O.; Kozdras, A.; Riley, Brian J.; Sundaram, S.K.; McCloy, John S.

    2011-01-01

    Radiation-induced physical aging effects are studied in binary As x S 100-x and As x Se 100-x (30 (le) x (le) 42) glasses by conventional differential scanning calorimetry (DSC) method. It is shown that γ-irradiation (Co 60 source, ∼ 3 MGy dose) of glassy As x S 100-x caused a measurable increase in glass transition temperature and endothermic peak area in the vicinity of glass transition region, which was associated with acceleration of structural relaxation processes in these materials. In contrast to sulfide glasses, the samples of As-Se family did not exhibit any significant changes in DSC curves after γ-irradiation. The observed difference in radiation-induced physical aging between sulfides and selenides was explained by more effective destruction-polymerization transformations and possible metastable defects formation in S-based glassy network.

  7. Toward Molecular Engineering of Polymer Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Karl F. [Univ. of Chicago, IL (United States); Xu, Wen-Sheng [Univ. of Chicago, IL (United States); Dudowicz, Jacek B. [Univ. of Chicago, IL (United States); Douglas, Jack F. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-04-05

    Glass formation has been central to fabrication technologies since the dawn of civilization. Glasses not only encompass window panes, the insulation in our homes, the optical fibers supplying our cable TV, and vessels for eating and drinking, but they also include a vast array of ‘‘plastic’’ polymeric materials. Glasses find applications in high technology (e.g., producing microelectronic materials, etc., amorphous semiconductors), and recent advances have created ‘‘plastic metallic glasses’’ that are promising for fabricating everyday structural materials. Many commercially relevant systems, such as microemulsions and colloidal suspensions, have complex molecular structures and thus solidify by glass formation. Despite the importance of understanding the fundamental nature of glass formation for the synthesis of new materials, a predictive molecular theory has been lacking. Much of our understanding of glass formation derives from the analysis of experimental data, a process that has uncovered a number of interesting universal behaviors, namely, relations between properties that are independent of molecular details. However, these empirically derived relations and their limitations remain to be understood on the basis of theories, and, more importantly, there is strong need for theories of the explicit variation with molecular system to enable the rational design and tailoring of new materials. We have recently developed the generalized entropy theory, the only analytic, theory that enables describing the dependence of the properties of glass-formation on monomer molecular structures. These properties include the two central quantities of glass formation, the glass transition temperature and the glass fragility parameter, material dependent properties that govern how a material may be processed (e.g., by extrusion, ink jet, molding, etc.) Our recent works, which are further described below, extend the studies of glass formation in polymer systems

  8. Influence of clusters in melt on the subsequent glass-formation and crystallization of Fe–Si–B metallic glasses

    Directory of Open Access Journals (Sweden)

    Shaoxiong Zhou

    2015-04-01

    Full Text Available The liquid structure of seven representative Fe–Si–B alloys has been investigated by ab initio molecular dynamics simulation focusing on the role of clusters in terms of glass-forming ability (GFA and crystallization. It is demonstrated that the type of primary phase precipitated from amorphous state under heat treatment is determined by the relative fraction and role of various clusters in melt. The alloy melt shows higher stability and resultantly larger GFA when there is no dominant cluster or several clusters coexist, which explains the different GFAs and crystallization processes at various ratios of Si and B in the Fe–Si–B system. The close correlation among clusters, crystalline phase and GFA is also studied.

  9. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  10. Database and Interim Glass Property Models for Hanford HLW Glasses

    International Nuclear Information System (INIS)

    Hrma, Pavel R; Piepel, Gregory F; Vienna, John D; Cooley, Scott K; Kim, Dong-Sang; Russell, Renee L

    2001-01-01

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region

  11. Study of cooling rates during metallic glass formation in a hammer and anvil apparatus

    International Nuclear Information System (INIS)

    Kroeger, D.M.; Coghlan, W.A.; Easton, D.S.; Koch, C.C.; Scarbrough, J.O.

    1982-01-01

    A model is presented of the simultaneous spreading and cooling of the liquid drop in a hammer and anvil apparatus for rapid quenching of liquid metals. The viscosity of the melt is permitted to vary with temperature, and to avoid mathematical complications which would be associated with spatial variation of the viscosity, Newtonian cooling is assumed. From an expression for the force required to spread the specimen, coupled equations for the mechanical energy balance for the system and the heat transfer from the sample to the hearth and hammer were obtained, and solved numerically. The sample reaches its final thickness when the force required to deform it becomes greater than the force exerted on it by the decelerating hammer. The model was fit to measurements of sample thickness versus hammer speed, using the interface heat transfer coefficient, h, as an adjustable parameter. The values of h so obtained vary somewhat with the melt alloy/substrate metal combination. From predicted cooling curves, the effects of hammer speed, sample size, and initial melt temperature on the cooling rate and the efficiency of glass formation can be assessed. Addition of sample superheat shifts the cooling curve relative to the expected position of the time-temperature-transformation curve for formation of crystalline material from the melt, and thus is an effective means of increasing the probability of glass formation in this type of apparatus

  12. Study on the formation of heterogeneous structures in leached layers during the corrosion process of glass

    Directory of Open Access Journals (Sweden)

    Willemien Anaf

    2010-11-01

    Full Text Available Le verre, corrodé dans des conditions naturelles, montre souvent des hétérogénéités dans la couche lixiviée, comme une structure lamellaire ou des inclusions de MnO2 ou Ca3(PO42. La formation de ces hétérogénéités n’est pas encore bien comprise. Des structures de ce type ont été produites artificiellement en laboratoire en immergeant des échantillons de verre dans des solutions riches en métaux. Les résultats expérimentaux ont été comparés avec des théories décrivant la corrosion du verre.Glass that corrodes under natural conditions often shows heterogeneities in the leached layer, such as a lamellar structure or inclusions of MnO2 or Ca3(PO42. The formation of these heterogeneities is still not well understood. By means of experiments under laboratory conditions, our aim was to artificially generate specific structures. Therefore, glass samples were immersed in metal-rich solutions. The experimental results were compared with theories describing glass corrosion from a molecular point of view.

  13. Ion exchange for glass strengthening

    International Nuclear Information System (INIS)

    Gy, Rene

    2008-01-01

    This paper presents a short overview of silicate glass strengthening by exchange of alkali ions in a molten salt, below the glass transition temperature (chemical tempering). The physics of alkali inter-diffusion is briefly explained and the main parameters of the process, which control the glass reinforcement, are reviewed. Methods for characterizing the obtained residual stress state and the strengthening are described, along with the simplified modelling of the stress build-up. The fragmentation of chemically tempered glass is discussed. The concept of engineered stress profile glass is presented, and finally, the effect of glass and salt compositions is overviewed

  14. Glass leaching performance

    International Nuclear Information System (INIS)

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  15. Nuclear traces in glass

    International Nuclear Information System (INIS)

    Segovia A, M. de N.

    1978-01-01

    The charged particles produce, in dielectric materials, physical and chemical effects which make evident the damaged zone along the trajectory of the particle. This damaged zone is known as the latent trace. The latent traces can be enlarged by an etching of the detector material. This treatment attacks preferently the zones of the material where the charged particles have penetrated, producing concavities which can be observed through a low magnification optical microscope. These concavities are known as developed traces. In this work we describe the glass characteristics as a detector of the fission fragments traces. In the first chapter we present a summary of the existing basic theories to explain the formation of traces in solids. In the second chapter we describe the etching method used for the traces development. In the following chapters we determine some chatacteristics of the traces formed on the glass, such as: the development optimum time; the diameter variation of the traces and their density according to the temperature variation of the detector; the glass response to a radiation more penetrating than that of the fission fragments; the distribution of the developed traces and the existing relation between this ditribution and the fission fragments of 252 Cf energies. The method which has been used is simple and cheap and can be utilized in laboratories whose resources are limited. The commercial glass which has been employed allows the registration of the fission fragments and subsequently the realization of experiments which involve the counting of the traces as well as the identification of particles. (author)

  16. Formation of Fe/mg Smectite Under Acidic Conditions from Synthetic Adirondack Basaltic Glass: an Analog to Fe/mg Smectite Formation on Mars

    Science.gov (United States)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-01-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550 C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Angstroms (02l) and 1.54Angstroms (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200 C for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060 peaks. Moessbauer analysis coupled with future experiments are planned to verify if nontronite can be formed under mildly acidic and oxic conditions. Results of this work demonstrate that acidic conditions could have occurred on an early Mars, which allowed for smectite formation but inhibited carbonate formation.

  17. Leaching of glass

    International Nuclear Information System (INIS)

    Hench, L.L.

    1977-01-01

    Understanding surface compositional profiles of glasses over a range of 0-2000 A with a variety of analytical instruments shows that five general types of glass surfaces exist. The surface character of a glass article depends upon bulk composition and environmental history during which surface dealkalization, film formation, and network dissolution can occur. Environmental-surface interactions generally result in complex compositional profiles of all the constituents in a glass. Durable glasses almost always develop a stable surface film which has a higher concentration of network formers than the bulk composition. Compositional effects that are used to improve glass durability usually improve the stability of the surface films. Durability tests or service conditions that lead to film destruction are especially severe for the most silicate glasses. 43 references

  18. Understanding the origin of the fracture toughness evolution of nuclear glasses under irradiation

    International Nuclear Information System (INIS)

    Kieu, L.-H.

    2011-01-01

    In the nuclear industry, complex borosilicate glasses are used for the confinement of fission products and long-life minor actinides. Under irradiations, the structure and the mechanical properties of these glasses evolve. In this work, atomistic and multi-scale simulations of three simplified borosilicate glasses were run to understand the origin of their fracture behavior change under irradiation. Under the radiation effects, elasticity decreases and plasticity increases. Fracture happens due to the formation and coalescence of nano-cavities. The structural modifications under the radiation effects lead to a delay of the coalescence and of the irradiated glass rupture. Several phenomena overlay to explain this behavior, especially the cavities distribution modifications, the sodium mobility, and the borate and silicate entities organization in the glassy network. Depending on the nature of the more important mechanism, the fracture toughness can increase or decrease under radiation. (author) [fr

  19. Influence of Glass Property Restrictions on Hanford HLW Glass Volume

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2001-01-01

    A systematic evaluation of Hanford High-Level Waste (HLW) loading in alkali-alumino-borosilicate glasses was performed. The waste feed compositions used were obtained from current tank waste composition estimates, Hanford's baseline retrieval sequence, and pretreatment processes. The waste feeds were sorted into groups of like composition by cluster analysis. Glass composition optimization was performed on each cluster to meet property and composition constraints while maximizing waste loading. Glass properties were estimated using property models developed for Hanford HLW glasses. The impacts of many constraints on the volume of HLW glass to be produced at Hanford were evaluated. The liquidus temperature, melting temperature, chromium concentration, formation of multiple phases on cooling, and product consistency test response requirements for the glass were varied one- or many-at-a-time and the resultant glass volume was calculated. This study shows clearly that the allowance of crystalline phases in the glass melter can significantly decrease the volume of HLW glass to be produced at Hanford.

  20. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings

    Science.gov (United States)

    Wagener, V.; Boccaccini, A. R.; Virtanen, S.

    2017-09-01

    In the last years, chitosan-bioactive glass (BG) composites have been developed and investigated as bioactive coatings for orthopedic applications. The increase of bioactivity occurs due to the stimulation of calcium-phosphate/hydroxyapatite formation on the surface while the coating is degrading. In the present work, protein adsorption and its influence on calcium-phosphate precipitation was studied for the first time on such composite coatings. The experiments involved coating of 316L stainless steel substrates with chitosan (Ch) and chitosan-bioactive glass (Ch-BG) and immersion of the coated samples in two different bovine serum albumin (BSA) containing solutions, namely DI H2O (with pH adjusted to about 7.2 with diluted NaOH) and simulated body fluid (SBF). In order to investigate the influence of protein adsorption on calcium-phosphate precipitation, samples were also immersed in DI H2O and in SBF without BSA. Samples were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Surface analysis revealed that adsorption of BSA takes place on all studied samples and that protein adsorption is influenced by the presence of Ca2+ and PO43- ions. Bioactivity in the form of hydroxyapatite pre-stage formation is significantly increased on Ch-BG composite coating as compared with bare stainless steel surface. However, calcium-phosphate precipitation in SBF is reduced by the presence of BSA.

  1. Electronic conductivity studies on oxyhalide glasses containing TMO

    Energy Technology Data Exchange (ETDEWEB)

    Vijayatha, D. [R& D Center, Bharatiar University, Coimbatore, Tamil Nadu (India); Department of Physics, Gurunanak Institute of Technology, Hyderabad -040 (India); Viswanatha, R. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Sujatha, B. [Department of Electronics and Communcation, MSRIT, Bangalore 560054 (India); Narayana Reddy, C., E-mail: nivetejareddy@gmail.com [Department of Physics, Sree Siddaganga College of Arts, Science and Commerce, Tumkur 572102 (India)

    2016-05-06

    Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl{sub 2} – 60 PbO – (40-x) V{sub 2}O{sub 5} (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl{sub 2} containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V{sub 2}O{sub 5} concentration. Analysis of the results is interpreted in view Austin-Mott’s small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.

  2. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Science.gov (United States)

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  3. On the competition in phase formation during the crystallisation of Al-Ni-Y metallic glasses

    International Nuclear Information System (INIS)

    Styles, M.J.; Sun, W.W.; East, D.R.; Kimpton, J.A.; Gibson, M.A.; Hutchinson, C.R.

    2016-01-01

    Glassy metals exhibit a range of interesting properties including high strength and corrosion resistance, but often have poor toughness and tensile ductility in the fully amorphous state. It has been shown that combinations of desirable properties can be achieved by the partial crystallisation of glass-forming alloys, either during controlled solidification or by annealing a fully amorphous glass. The aim of this investigation is to understand the competition in phase formation during the crystallisation of metallic glasses in the Al-Ni-Y system. High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the first crystallisation product was found to vary from FCC Al to the intermetallic Al 9 Ni 2 phase with increasing Ni concentration. In addition, the crystallisation sequence also changed from a two-stage to a three-stage process. High number densities of crystallites (∼10 23  m −3 ) were observed initially for both FCC Al and Al 9 Ni 2 . Upon cooling, the partially disordered Al 9 Ni 3 Y phase was found to form preferentially over the intermetallic phases observed during heating. The difference in competition in phase formation during heating and cooling are discussed in terms of nucleation barriers calculated using a recent thermodynamic assessment of the Al-Ni-Y system. The role of compositional heterogeneities in the as-quenched glasses and long-range diffusion on the nucleation process is discussed. - Graphical abstract: High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the

  4. Formation and microstructure of nickel oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Marcius, Marijan [Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Ristic, Mira, E-mail: ristic@irb.hr [Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Ivanda, Mile; Music, Svetozar [Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Difference in NiO films formed on Ni plate or glass substrate were found. Black-Right-Pointing-Pointer NiO particle sizes on Ni plate changed from nano to micron dimensions. Black-Right-Pointing-Pointer NiO particle sizes on glass substrate changed from {approx}16 to {approx}27 nm. Black-Right-Pointing-Pointer Raman and UV/Vis/NIR spectra are related to the microstructure of NiO films. - Abstract: The formation and microstructure of NiO films on different substrates were monitored using XRD, Raman, UV/Vis/NIR and FE-SEM/EDS techniques. The formation of NiO films on Ni plates in air atmosphere between 400 and 800 Degree-Sign C was confirmed by XRD and Raman spectroscopy. The origin of Raman bands and corresponding Raman shifts in the samples are discussed. An increase in the size of NiO particles in the films from nano to micro dimensions was demonstrated. A change in the atomic ratio Ni:O with an increase in heating temperature was observed. Polished Ni plates coated with a thin Ni-acetate layer upon heating at high temperatures gave similar NiO microstructures on the surface like in the case of non-treated Ni plates. Glass substrates coated with thin Ni-acetate films upon heating between 400 and 800 Degree-Sign C yielded pseudospherical NiO nanoparticles. The dominant Raman band as an indicator of NiO formation on a glass substrate was shown. The formation of NiO nanoparticles on glass substrates with maximum size distribution from 16 to 27 nm in a broad temperature range from 400 to 800 Degree-Sign C can be explained by the absence of a constant source of metallic nickel which was present in the case of Ni plates.

  5. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  6. Thulium-based bulk metallic glass

    International Nuclear Information System (INIS)

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-01-01

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs

  7. The properties and structure of Sn---Ca---P---O---F glasses

    International Nuclear Information System (INIS)

    Ding, J.Y.; Shih, P.Y.; Yung, S.W.; Hsu, K.L.; Chin, T.S.

    2003-01-01

    Low melting modified calcium stannous fluorophosphate glasses based on a basic composition 40P 2 O 5 -25SnO-30SnF 2 -5CaF 2 (in mol%) with glass transition temperature T g ranging 220-240 deg. C have been prepared. The effect of Al(OH) 3 or SiO 2 addition on the properties of these glasses has also been determined. Aluminum and silicon compounds decrease the dissolution rate in water and thermal expansion coefficient while increase the density, T g and softening temperature. The effect of Al(OH) 3 addition on the increase of chemical durability is better for these glasses, due to the partial crystallization effect in stannous calcium silicofluorophosphate glasses. With an addition of 4 wt.% Al(OH) 3 , the dissolution rate of the glass in 30 deg. C water decreases from 1.0x10 -5 to 1.3x10 -7 g cm -2 min. The structure of Al(OH) 3 added glasses was studied by 27 Al and 31 P MAS NMR and Fourier transform IR (FTIR) spectroscopies to explain the relationship between glass properties and composition. The 27 Al spectra show three different aluminum environments [Al(OP) 6 , Al(OP) 5 and Al(OP) 4 ], and Al(OP) 6 species seem to be predominant in these glasses. The formation of P---O-Al covalent bond and more strongly ionic bonds increase the strength of the glass network in stannous calcium aluminofluorophosphate glasses. FTIR spectra indicate the presence of P--F bond in the short range glass structure

  8. Formation of silver colloids on ion exchanged soda lime silicate glasses by irradiation

    International Nuclear Information System (INIS)

    Yoshimura, E.M.; Okuno, E.

    1998-01-01

    The effect of ionizing radiation (gamma rays, X-rays and electrons) on soda lime silicate glasses, in which part of the Na + was substituted by Ag + by means of an ionic exchange process, was studied. The techniques of thermally stimulated depolarization current (TSDC) and transmission electron microscopy (TEM) were employed to follow the formation of silver colloids by irradiation. Also the thermoluminescence (TL) of the samples was measured and three peaks between room temperature and 450 C were observed. The TEM and TSDC results agree that, as expected, ionizing radiation promotes the formation of silver colloids on the ion exchanged surface of soda lime glasses. Soft X-rays are much more efficient in the process than gamma rays and electrons. The correlation with thermoluminescence glow curves indicates that the intensity of a TL peak at 230 C can provide a rapid means of evaluating the presence of silver colloids. TL sensitivities, measured as area under the glow curve per unit mass and unit dose, are very similar for ion exchanged and not exchanged samples submitted to X-ray irradiation, although the peak temperatures differ in about 40 C in the two cases. For both electron and gamma irradiated samples, the TL sensitivity drops about an order of magnitude when compared to the X-ray irradiated ones. (orig.)

  9. Nucleation in ZBLAN glasses

    NARCIS (Netherlands)

    de Leede, G.L.A.; Waal, de H.

    1989-01-01

    Nucleation rates were detd. in a ZrF4-BaF2-NaF-LaF3-AlF3 glass (ZBLAN) using an optical method. The results were compared with a similar glass having a slightly different compn. The difference in the nucleation rate is explained by classical nucleation theory using calcd. free-energy differences

  10. Determination of the free enthalpies of formation of borosilicate glasses; Determination des enthalpies libres de formation des verres borosilicates. Application a l'etude de l'alteration des verres de confinement de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Y

    2000-07-01

    This work contributes to the study of the thermochemical properties of nuclear waste glasses. Results are used to discuss mechanisms and parameters integrated in alteration models of conditioning materials. Glass is a disordered material defined thermodynamically as a non-equilibrium state. Taking into account one order parameter to characterise its configurational state, the metastable equilibrium for the glass was considered and the main thermochemical properties were determined. Calorimetric techniques were used to measure heat capacities and formation enthalpies of borosilicate glasses (from 3 to 8 constitutive oxides). Formation Entropies were measured too, using the entropy theory of relaxation processes proposed by Adam and Gibbs (1965). The configurational entropy contribution were determined from viscosity measurements. This set of data has allowed the calculation of Gibb's free energies of dissolution of glasses in pure water. By comparison with leaching experiments, it has been demonstrated that the decreasing of the dissolution rate at high reaction progress cannot be associated to the approach of an equilibrium between the sound glass and the aqueous solution. The composition changes of the reaction area at the glass surface need to be considered too. To achieve a complete description of the thermodynamic stability, the equilibrium between hydrated de-alkalinized glass and/or the gel layer with the aqueous solution should also be evaluated. (author)

  11. On the structural-optical correlations in radiation-modified chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskyy, T; Tsmots, V [Solid State Microelectronics Laboratory, Drohobych Ivan Franko State Pedagogical University, 24 I. Franko Str., Drohobych, 82100 (Ukraine); Kaban, I; Hoyer, W [Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz (Germany); Shpotyuk, O, E-mail: kavetskyy@yahoo.com [Institute of Materials, Scientific Research Company ' Carat' , 202 Stryjska Str., Lviv, 79031 (Ukraine)

    2011-04-01

    In this work, we report our recent results on the gamma-irradiation-induced structural transformations in the Ge-Sb-S glasses as observed from the structural studies using high-energy synchrotron x-ray diffraction and extended x-ray absorption fine structure spectroscopy in comparison with the optical measurements using VIS/IR spectroscopy techniques. The structural-optical correlations in the radiation-induced effects are established. The structural changes upon irradiation are explained in the frames of the concept of coordination topological defects formation.

  12. On the structural-optical correlations in radiation-modified chalcogenide glasses

    International Nuclear Information System (INIS)

    Kavetskyy, T; Tsmots, V; Kaban, I; Hoyer, W; Shpotyuk, O

    2011-01-01

    In this work, we report our recent results on the gamma-irradiation-induced structural transformations in the Ge-Sb-S glasses as observed from the structural studies using high-energy synchrotron x-ray diffraction and extended x-ray absorption fine structure spectroscopy in comparison with the optical measurements using VIS/IR spectroscopy techniques. The structural-optical correlations in the radiation-induced effects are established. The structural changes upon irradiation are explained in the frames of the concept of coordination topological defects formation.

  13. Phase separation and nanocrystal formation in Al-based metallic glasses

    International Nuclear Information System (INIS)

    Antonowicz, Jerzy

    2007-01-01

    Nanocrystallization in a group of Al-RE and Al-RE-TM (RE = rare earth, TM = transition metal) melt-spun amorphous alloys was studied using in situ small- and wide-angle X-ray scattering techniques (SAXS/WAXS) and transmission electron microscopy (TEM). The SAXS/WAXS measurements were carried out during isothermal annealing at temperatures close to crystallization point. A continuously growing interference maximum shifting progressively toward lower angles was found to develop in SAXS regime. Simultaneously taken WAXS spectra reveal formation of the primary fcc-Al nanocrystalline phase. The presence of the SAXS signal maximum indicates the spatial correlation between the compositional fluctuations. The peak position decay is an evidence of an increase of the fluctuation spacing characteristic for the coarsening stage of phase separation. The SAXS/WAXS data analysis indicates that amorphous phase decomposition triggers and controls the fcc-Al nanocrystalline phase formation. The glassy phase initially decomposes into Al-rich and RE-rich regions with typical lengths scale of about 10 nm. The nanocrystals nucleate preferentially inside the Al-rich amorphous regions and their growth is constrained by the region size because of the sluggish atomic diffusion in the RE-rich zones. A different crystallization mechanism is demonstrated in Al-Y-Ni-Co glass where WAXS spectra show formation of the fcc-Al primary phase but no interference peak in SAXS regime was found

  14. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Wang, Li-Min, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Labardi, Massimiliano [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Capaccioli, Simone, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Department of Physics, Pisa University, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  15. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics.

    Science.gov (United States)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Labardi, Massimiliano; Capaccioli, Simone; Paluch, M; Wang, Li-Min

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  16. In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2014-09-01

    Full Text Available Borate glasses with the basic composition 0.6B2O3·0.2Na2O·0.2CaO and SrO progressively substituting CaO were prepared and characterized for their bone-bonding ability. The obtained glasses were thermally treated and converted to their glass-ceramic derivatives. In this study, FTIR spectral analyses were done for the prepared glasses and glass-ceramics before and after immersion in a sodium phosphate solution for extended times. The appearance of two IR bands within the spectral range 550–680 cm-1 after immersion confirms the formation of hydroxyapatite. X-ray diffraction studies and scanning electron microscope analysis supported the obtained infrared spectroscopy results. The solubility test (measurements of the weight loss in aqueous sodium phosphate solution was conducted for measuring the dissolution of both glassy and crystalline derivatives to find out the role of SrO. The corrosion behaviour of the glasses and glass-ceramics indicate the increase of weight loss with the increase of SrO content. Different suggested proposals were introduced to explain this abnormal behaviour.

  17. Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses.

    Science.gov (United States)

    Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine

    2013-07-01

    Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion

  18. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, C L; Wang, Q; Li, F W; Li, Y H; Wang, Y M; Dong, C [State Key Laboratory of Materials Modification, Dalian University of Technology (DUT), Dalian 116024 (China); Zhang, W; Inoue, A, E-mail: dong@dlut.edu.c [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-01-01

    Bulk metallic glass formations have been explored in Fe-B-Si-Nb alloy system using the so-called atomic cluster line approach in combination with minor alloying guideline. The atomic cluster line refers to a straight line linking binary cluster to the third element in a ternary system. The basic ternary compositions in Fe-B-Si system are determined by the inetersection points of two cluster lines, namely Fe-B cluster to Si and Fe-Si cluster to B, and then further alloyed with 3-5 at. % Nb for enhancing glass forming abilities. BMG rods with a diameter of 3 mm are formed under the case of minor Nb alloying the basic intersecting compositions of Fe{sub 8}B{sub 3}-Si with Fe{sub 12}Si-B and Fe{sub 8}B{sub 2}-Si with Fe{sub 9}Si-B. The BMGs also exhibit high Vickers hardness (H{sub v}) of 1130-1164 and high Young's modulous (E) of 170-180 GPa

  19. Properties Of Soda/Yttria/Silica Glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  20. Neptunium immobilization and recovery using phase separated glasses

    International Nuclear Information System (INIS)

    Meaker, T.F.

    1997-01-01

    A phase separated (amorphous) glass has been developed which allows very efficient recovery of +4 valence actinides. The total amount of crystal formation in a heat treated vycor-type glass can be controlled with time, temperature and loading. Heat treatments at lower temperatures and for less time inhibit crystal formation while still allowing significant phase separation. If the Thorium loading exceeds 10 weight percent oxide, crystal formation during heat treatment may not be avoided. The total amount of crystal growth has a direct affect on thorium leachability. An increase in crystal formation limits the Th recovery significantly. High thorium loaded glasses (15 weight percent) with heat treatments (increased crystal formation) leach at approximately the same rate as non-heat treated glasses. A phase separated (amorphous) glass has been produced using thorium as a surrogate for neptunium. Two different homogeneous vycor compositions targeting 10 and 15 weight percent thorium oxide have been processed, heat treated and leached with concentrated nitric acid at 110 degrees C. Thorium recovery rates have been shown to be considerably better when the glass has been heat treated inducing phase separation that is relatively crystal free. Non-heat treated and crystalline (due to heat treatment) glasses have similar Th recovery rates with respect to surface area. Phase separated amorphous samples were found to have significantly higher thorium concentrations in the leachate compared to non-heat treated and crystalline glasses for all mesh sizes. All glasses had increased thorium concentration in the leachate as surface area increased

  1. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  2. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  3. Evaluation of clot formation in blood-contrast agent mixture: experimental study on ionic/nonionic contrast agents and plastic/ glass syringes

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Lee, Jong Beum; Lee, Yong Chul; Lee, Kwan Seh; Kim, Kun Sang

    1991-01-01

    Recent introduction of low-osmolar nonionic contrast agents has allowed the performance of angiography with certain advantages such as reduced pain, reduced osmotic load and other potential advantages, over high osmolar ionic contrast agents. But the potential thrombogenic risk of nonionic contrast agent has been debate because of their weak anticoagulation effect. Several reports have recently documented the formation of thrombi in catheters and syringes containing nonionic contrast agent, and thromboembolic episodes have been noted during angiographic procedures. We have also been experienced blood clotting within blood mixed contrast agent syringe during angiography. Thus, we have studied with blood mixed ionic (Diatrizoate, Ioglicate) agents and nonionic (Iopamidol, Iopromide) agents, that used usually in our hospital, and saline in plastic and glass syringes. Each syringes were checked the clot formation on 10,30,60,90 minutes. Total 340 samples were obtained from 8 adults before angiography. Our data showed that nonionic contrast agents had significantly lesser anticoagulation effect than ionic contrast agents (ρ < 0.0001) on Chi-square test), both in plastic and glass syringes. And formation of clotting in glass syringes were significantly greater than that in plastic syringes (ρ < 0.0001). Thus meticulous technique is required to prevent thrombosis during angiographic procedure using nonionic contrast agents

  4. Effects of gamma-ray irradiation on optical properties of ZnO-PbO-B2O3 glasses

    DEFF Research Database (Denmark)

    Sharma, G.; Thind, K.S.; Manupriya, -

    2006-01-01

    Effects of gamma-ray irradiation on some optical properties of xZnO(.)2xPbO(.)(1-3x)B2O3 glasses have been studied in the wavelength range 300-800 nm. Decrease in transmittance indicates the formation of color-center defects. Values for the energy-band gap, the width of the energy tail above...... the mobility gap and the cut-off wavelength have been measured before and after irradiation. Changes in the optical properties are explained in terms of radiation-induced structural defects and the composition of the glass....

  5. The influence of Ge on optical and thermo- mechanical properties of S-Se chalcogenide glasses

    Science.gov (United States)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-05-01

    S-Se-Ge glasses were prepared by melt quenching method to investigate the effect of Germanium on thermo-mechanical and optical properties of chalcogenide glasses. The glassy nature of the samples has been verified by x-ray diffraction and DSC studies that the samples are glassy in nature. The optical band gap of the samples was estimated by the absorption spectrum fitting method. The optical band gap increased from 1.61 ev for x = 0 sample to 1.90 ev for x = 40 sample and is explained in terms of cohesive energies. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network, as well as the modulus of Elasticity (E) have been calculated for prepared glasses.in present glasses. The variation in these parameters with Ge content correlated with heat of atomization of alloys.

  6. Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method.

    Science.gov (United States)

    Hong, Young Joon; Kim, Yong-Jin; Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min; Yi, Gyu-Chul

    2011-05-20

    We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

  7. Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Young Joon; Kim, Yong-Jin [Department of Materials Science and Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min [Frontier Research Laboratory, Samsung Advanced Institute of Technology, PO Box 111, Kiheung 446-712 (Korea, Republic of); Yi, Gyu-Chul, E-mail: joonie.choi@samsung.com, E-mail: gcyi@snu.ac.kr [National Creative Research Initiative Center for Semiconductor Nanorods, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2011-05-20

    We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

  8. Effect of sintering on crystallization and structural properties of soda lime silica glass

    Directory of Open Access Journals (Sweden)

    Zaid Mohd Hafiz Mohd

    2017-01-01

    Full Text Available The effect of sintering temperatures on crystallization and structural of the soda lime silica (SLS glass was reported. Elemental weight composition of the SLS glass powder was identified through Energy dispersive X-ray fluorescence (EDXRF analysis while the thermal behavior of the glass was determined using Differential thermal analysis (DTA technique. Archimedes’ method and direct geometric measurement were respectively used to determine bulk density and linear shrinkage of the glass samples. Crystallisation behavior of the samples was investigated by X-ray diffraction (XRD analysis and chemical bonds present in the samples were measured using Fourier Transform Infrared (FTIR spectroscopy. Results showed an increase in the density and linear shrinkage of the samples as a function of the sintering temperature. The XRD analysis revealed the formation of α-quartz (SiO2 and a minor amount of devitrite phases in the samples and these were further verified through the detection of chemical bonds by FTIR after sintering at 800ºC. The properties of the glass-ceramics can be explained on the basis of crystal chemistry which indicated that the alkali ions formed as carriers in the random network structure and can be recommended for the manufacture of glass fiber or toughened glass-ceramic insulators.

  9. Network topology for the formation of solvated electrons in binary CaO–Al2O3 composition glasses

    Science.gov (United States)

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J. K. Richard; Benmore, Chris J.

    2013-01-01

    Glass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass. PMID:23723350

  10. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  11. New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective

    International Nuclear Information System (INIS)

    Wu, Jili; Pan, Ye; Li, Xingzhou; Wang, Xianfei

    2014-01-01

    Highlights: • The equation, T rg = T g /T l , was rotationally modified to T rg = κ(T m /T l ) + C/T l . • The newly generalized equation suggests a way for describing glass-forming ability. • Several new Cu-based bulk metallic glasses were discovered by solidification range. - Abstract: In this paper, a new equation was rationally generalized from the reduced glass transition temperature. This equation indicates that solidification range can be used for describing glass-forming ability, which can be calculated with the aid of computational thermodynamic approach. Based on this scenario, several new Cu-based bulk metallic glasses in the ternary Cu–Zr–Ti alloy system were discovered. The as-cast samples were characterized by X-ray diffraction and transmission electronic microscopy. The results indicate that as-cast samples have monolithic amorphous nature. Thermal analysis validates that the smaller solidification range is closely related to the higher glass-forming ability, which is contributed to the effect of solidification time on the formation of bulk metallic glasses. This work also suggests that solidus can influence glass formation

  12. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    Science.gov (United States)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  13. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Biofilm formation affects surface properties of novel bioactive glass-containing composites.

    Science.gov (United States)

    Hyun, Hong-Keun; Salehi, Satin; Ferracane, Jack L

    2015-12-01

    This study investigated the effects of bacterial biofilm on the surface properties of novel bioactive glass (BAG)-containing composites of different initial surface roughness. BAG (65 mol% Si; 4% P; 31% Ca) and BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B) were synthesized by the sol-gel method and micronized (size ∼0.1-10 μm). Composites with 72wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG, BAG-F, or silanized silica. Specimens (n=10/group) were light-cured and divided into 4 subgroups of different surface roughness by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. Surface roughness (SR), gloss, and Knoop microhardness were measured before and after incubating in media with or without a Streptococcus mutans (UA 159) biofilm for 2 weeks. Results were analyzed with ANOVA/Tukey's test (α=0.05). The SR of the BAG-containing composites with the smoothest surfaces (2400/4000 grit) increased in media or bacteria; the SR of the roughest composites (600 grit) decreased. The gloss of the smoothest BAG-containing composites decreased in bacteria and media-only, but more in media-alone. The microhardness of all of the composites decreased with exposure to media or bacteria, with BAG-containing composites affected more than the control. Exposure to bacterial biofilm and its media produced enhanced roughness and reduced gloss and surface microhardness of highly polished dental composites containing a bioactive glass additive, which could affect further biofilm formation, as well as the esthetics, of restorations made from such a material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Characterization and Morphological Properties of Glass Fiber ...

    African Journals Online (AJOL)

    PROF HORSFALL

    used as the matrix for the glass fibre-epoxy resin formation. E- Glass fibre ... reinforcement of composites, coatings of materials, and other ..... composite for the manufacture of glass-ceramic materials ... reinforced epoxy composites with carbon.

  16. Formation of Infrared Femtosecond Laser Induced Colour Centres in Tb3+-Doped and Tb3+/Ce3+-Codoped Heavy Germanate Glasses

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-Rong(陈国荣); YANG Yun-Xia(杨云霞); QIU Jian-Rong(邱建荣); JIANG Xiong-Wei(姜雄伟); K.Hirao

    2003-01-01

    The formation of infrared femtosecond laser induced colour centres was observed in Tb3+-doped and Tb3+ /Ce3+-codoped heavy germanate glasses.A rectangular scan was made by focusing the laser beam inside the glass samples.A three-dimensional yellowish block was created from the path and it corresponded to the appearance of broad absorption bands in the absorption spectra.The irradiation induced absorption coefficient μ(λ)was used to characterize the distribution of radiation induced colour centres in the samples,whose peak was located at 380nm and extended to the longer wavelength.Ce3+ ions were found not only to inhibit the formation of colour centres,but also to enhance the recovery.

  17. Composition dependence of the optical and structural properties of Eu-doped oxyfluoride glasses

    International Nuclear Information System (INIS)

    Zhu, Chaofeng; Wu, Dongqun; Zhang, Yanfei; Zhang, Meimei; Yue, Yuanzheng

    2015-01-01

    Highlights: • Eu doped oxyfluoride glasses for LED applications are studied. • Conversion of Eu 3+ to Eu 2+ is realized in the glasses prepared in air atmosphere. • CaF 2 crystals formed during melt cooling enhance the conversion of Eu 3+ to Eu 2+ . • Content of CaF 2 crystals can be controlled by adjusting base glass compositions. - Abstract: Europium doped oxyfluoride glasses were prepared by the melt quenching method for the light emitting diodes applications. The optical and structural properties of these glasses were studied by means of photoluminescence spectra, Commission Internationale de L’Eclairage chromaticity coordinates, X-ray diffraction, and Fourier transform infrared spectra. We find that the spontaneous reduction of Eu 3+ to Eu 2+ is realized by Eu 3+ ions occupying the sites of Ca 2+ in the glasses prepared in air atmosphere. The Eu 3+ to Eu 2+ conversion efficiency, optical performances and structure of the glasses strongly depend on the base glass compositions. For certain base glass compositions, CaF 2 crystals can form during the melt cooling process, and thereby enhance the conversion from Eu 3+ to Eu 2+ . The formation of CaF 2 crystals can be suppressed by adding CaO, Al 2 O 3 and B 2 O 3 , but enhanced by adding Na 2 O and K 2 O in glass compositions. Finally, we propose a mechanism to explain how the glass structure affects the reduction of Eu ions as well as optical properties of the glasses

  18. Isotope effect in glass-transition temperature and ionic conductivity of lithium-borate glasses

    International Nuclear Information System (INIS)

    Nagasaki, Takanori; Morishima, Ryuta; Matsui, Tsuneo

    2002-01-01

    The glass-transition temperature and the electrical conductivity of lithium borate (0.33Li 2 O-0.67B 2 O 3 ) glasses with various isotopic compositions were determined by differential thermal analysis and by impedance spectroscopy, respectively. The obtained glass-transition temperature as well as the vibrational frequency of B-O network structure was independent of lithium isotopic composition. This result indicates that lithium ions, which exist as network modifier, only weakly interact with B-O network structure. In addition, the glass-transition temperature increased with 10 B content although the reason has not been understood. The electrical conductivity, on the other hand, increased with 6 Li content. The ratio of the conductivity of 6 Li glass to that of 7 Li glass was found to be 2, being larger than the value (7/6) 1/2 calculated with the simple classical diffusion theory. This strong mass dependence could be explained by the dynamic structure model, which assumes local structural relaxation even far below the glass-transition temperature. Besides, the conductivity appeared to increase with the glass-transition temperature. Possible correlations between the glass-transition temperature and the electrical conductivity were discussed. (author)

  19. The borosilicate glass for 'PAMELA'

    International Nuclear Information System (INIS)

    Schiewer, E.

    1986-01-01

    The low enriched waste concentrate (LEWC) stored at Mol, Belgium, will be solidified in the vitrification plant 'PAMELA'. An alkali-borosilicate glass was developed by the Hahn-Meitner-Institut, Berlin, which dissolves (11 +- 3)wt% waste oxides while providing sufficient flexibility for changes in the process parameters. The development of the glass labelled SM513LW11 is described. Important properties of the glass melt (viscosity, resistivity, formation of yellow phase) and of the glass (corrosion in aqueous solutions, crystallization) are reported. The corrosion data of this glass are similar to those of other HLW-glasses. Less than five wt% of crystalline material are produced upon cooling of large glass blocks. Crystallization does not affect the chemical durability. (Auth.)

  20. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  1. Platinoids and molybdenum in nuclear waste containment glasses: a structural study

    International Nuclear Information System (INIS)

    Le Grand, M.

    2000-01-01

    This work deals with the structure of borosilicate nuclear glasses and with some relationships between structure and macroscopic properties. Two types of elements which may disturb the industrial process - platinoids (Ru and Pd) and molybdenum - are central to this work. Platinoids induce weak modifications on the structure of the glass, causing a depolymerization of the glassy network, an increase of the [3] B/ [4] B ratio and a modification of the medium range order around Si between 3.3 and 4.5 angstrom. The modifications of viscosity and density induced by platinoids in the glass are not due to the structural effect of the platinoids. The increase of viscosity is attributed to needle shaped RuO 2 . It can be moderated by imposing reducing conditions during the elaboration of the glass. The slight difference between experimental and calculated densities is due to the increase of the volume percentage of bubbles in the glass with increasing platinoid content. Mo is either present in the glass as molybdic groupings, or mobilized in chemically complex molybdic crystalline phases. The chemical composition and mineralogy of these phases has been obtained using electronic microprobe data and XRD with Rietveld analysis. The distribution of the different elements between the crystalline phases and the glass is strongly influenced by the structural role of the various cations in the glass. The Mo present in the glass appears as MoO 4 tetrahedra, independent of the borosilicate network. The formation of the crystalline phases can be explained by the existence of a precursor in which the MoO 4 tetrahedra are concentrated in rich alkali and earth-alkali bearing areas of the glass. (author)

  2. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  3. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  4. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  5. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    International Nuclear Information System (INIS)

    Maddrell, Ewan; Thornber, Stephanie; Hyatt, Neil C.

    2015-01-01

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na 2 O–Al 2 O 3 –B 2 O 3 –SiO 2 glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio

  6. Light scattering in glass-ceramics

    International Nuclear Information System (INIS)

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics

  7. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  8. Glass formation in RbF-BeF2-ErF3 system

    International Nuclear Information System (INIS)

    Reshetnikova, L.P.; Topshinoev, A.P.; Zakharova, B.S.; Sipachev, V.A.

    1987-01-01

    IR spectroscopic method (200-2000 cm -1 ) is used to study the glass structure in RbF-BeF 2 -ErF 3 system. It is shown that with increase of erbium fluoride content in fluoroberyllate glasses the absorption bands characteristic of (BeF 3 ) n n- groupings, appear in spectra. DTA and X-ray diffraction analysis of the glass annealing products are used to study the glass crystallization process. It is stated that erbium fluoride introduction into the glass results in increase of crystallization stability. The glass structure model is suggested

  9. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  10. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  11. Glass Durability Modeling, Activated Complex Theory (ACT)

    International Nuclear Information System (INIS)

    CAROL, JANTZEN

    2005-01-01

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple

  12. Phase formation during corrosion experiments with two simulated borosilicate nuclear waste glasses

    International Nuclear Information System (INIS)

    Haaker, R.F.

    1985-10-01

    Corrosion products resulting from the reaction of simulated high-level radioactive waste glasses with various solutions have been identified. At 200degC, in saturated NaCl, a degree of reaction of 10 g C31-3 glass or 2.6 g SON 68 glass per liter of solution was obtained. Analcime, vermiculite (a phyllosilicate) and a 2:1 zinc silicate are the major silica containing alteration products for the C31-3 glass. Analcime was the only silicate alteration product which could be identified for SON 68 glass. C31-3 glass appeared to be less reactive with a quinary brine containing Mg ++ than with NaCl. With the quinary brine, montmorillonite (a phyllosilicate) was the predominant silica containing alteration product. Hydrotalcite (a Mg-Al hydroxysulfate) and montmorillonite were the major Al-containing phases. A phyllosilicate, probably montmorillonite, was observed to form during the reaction of SON 68 glass with quinary brine. With either glass, modified NaCl brines which contained small amounts of MgCl 2 seem to have the effect of decreasing the amount of analcime and increasing the amount of phyllosilicate which is formed. In the case of C31-3 glass, there is approximately enough Mg, Al and Zn to precipitate most of the leached Si; measured Si concentrations remain well below that expected for amorphous silica. SON 68 glass has less Zn, Al and Mg than C31-3 glass and much higher Si concentrations of the leachates. (orig./RB)

  13. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  14. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  15. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  16. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  17. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  18. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  19. Formative feedback from the first-person perspective using Google Glass in a family medicine objective structured clinical examination station in the United States.

    Science.gov (United States)

    Youm, Julie; Wiechmann, Warren

    2018-01-01

    This case study explored the use of Google Glass in a clinical examination scenario to capture the first-person perspective of a standardized patient as a way to provide formative feedback on students' communication and empathy skills 'through the patient's eyes.' During a 3-year period between 2014 and 2017, third-year students enrolled in a family medicine clerkship participated in a Google Glass station during a summative clinical examination. At this station, standardized patients wore Google Glass to record an encounter focused on communication and empathy skills 'through the patient's eyes.' Students completed an online survey using a 4-point Likert scale about their perspectives on Google Glass as a feedback tool (N= 255). We found that the students' experiences with Google Glass 'through the patient's eyes' were largely positive and that students felt the feedback provided by the Google Glass recording to be helpful. Although a third of the students felt that Google Glass was a distraction, the majority believed that the first-person perspective recordings provided an opportunity for feedback that did not exist before. Continuing exploration of first-person perspective recordings using Google Glass to improve education on communication and empathy skills is warranted.

  20. Glass formation and properties in the system calcia-gallia-silica

    Science.gov (United States)

    Angel, Paul W.; Ray, Chandra S.; Day, Delbert E.

    1990-01-01

    The glass-forming region in the calcia-gallia-silica system is studied and found to be fairly large, with a density of 3-4 g/cu cm, a refractive index of 1.6-1.73, an Abbe number of 35-58, a thermal expansion coefficient of 6.5-11.5 x 10 to the -7th/deg C, and a Vickers microhardness of 5.2-7.3 GPa. Crystalline phases are identified at the boundary of the glass-forming region. The structural groups in the glass-forming compositions are analyzed by infrared absorption spectroscopy.

  1. Toward an understanding of surface layer formation, growth, and transformation at the glass-fluid interface

    Science.gov (United States)

    Hopf, J.; Eskelsen, J. R.; Chiu, M.; Ievlev, A. V.; Ovchinnikova, O. S.; Leonard, D.; Pierce, E. M.

    2018-05-01

    Silicate glass is a metastable and durable solid that has application to a number of energy and environmental challenges (e.g., microelectronics, fiber optics, and nuclear waste storage). If allowed to react with water over time silicate glass develops an altered layer at the solid-fluid interface. In this study, we used borosilicate glass (LAWB45) as a model material to develop a robust understanding of altered layer formation (i.e., amorphous hydrated surface layer and crystalline reaction products). Experiments were conducted at high surface area-to-volume ratio (∼200,000 m-1) and 90 °C in the pressurized unsaturated flow (PUF) apparatus for 1.5-years to facilitate the formation of thick altered layers and allow for the effluent solution chemistry to be monitored continuously. A variety of microscopy techniques were used to characterize reacted grains and suggest the average altered layer thickness is 13.2 ± 8.3 μm with the hydrated and clay layer representing 74.8% and 25.2% of the total altered layer, respectively. The estimate of hydrated layer thickness is within the experimental error of the value estimated from the B release rate data (∼10 ± 1 μm/yr) over the 1.5-year duration. PeakForce® quantitative nanomechanical mapping results suggest the hydrated layer has a modulus that ranges between ∼20 and 40 GPa, which is in the range of porous silica that contains from ∼20 to ∼50% porosity, yet significantly lower than dense silica (∼70-80 GPa). Scanning transmission electron microscopy (STEM) images confirm the presence of pores and an analysis of a higher resolution image provides a qualitative estimate of ≥22% porosity in the hydrated layer with variations in void volume with increasing distance from the unaltered glass. Chemical composition analyses, based on a combination of time-of-flight secondary-ion mass spectrometry (ToF-SIMS), scanning electron microscopy with X-ray energy dispersive spectroscopy (EDS), and STEM-EDS, clearly show

  2. Structural role of molybdenum in nuclear glasses: an EXAFS study

    International Nuclear Information System (INIS)

    Calas, G.; Le Grand, M.; Galoisy, L.; Ghaleb, D.

    2003-01-01

    The Mo environment has been investigated in inactive nuclear glasses using extended X-ray absorption spectroscopy (XAS). Mo is present in a tetrahedron coordinated to oxygen in the form of molybdate groups [MoO 4 ] 2- (d(Mo-O)=1.78 A). This surrounding is not affected by the presence of noble metal phases in the nuclear glass. Relying on the XAS results, on the bond-valence model and on molecular dynamics simulations of a simplified borosilicate model glass, we show that these groups are not directly linked to the borosilicate network but rather located within alkali and alkaline-earth rich domains in the glass. This specific location in the glass network is a way to understand the low solubility of Mo in glasses melted under oxidizing conditions. It also explains the possible phase separation of a yellow phase enriched in alkali molybdates in molten nuclear glasses or the nucleation of calcium molybdates during thermal aging of these glasses. Boron coordination changes in the molten and the glassy states may explain the difference in the composition of the crystalline molybdates, as they exert a direct influence on the activity of alkalis in borosilicate glasses and melts

  3. Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass

    International Nuclear Information System (INIS)

    Li, Ran; Wu, Na; Liu, Jijuan; Jin, Yu; Chen, Xiao-Bo; Zhang, Tao

    2017-01-01

    Highlights: • Uniform nanoporous Ag-Cu alloy was fabricated by dealloying Mg-based metallic glass. • The nanoporous structure was built up with numerous Ag-Cu ligaments. • The nanoporous ligaments show two-stage coarsening behavior with dealloying time. • The formation and evolution mechanisms of the nanoporous structure were clarified. • It could provide new guidance to the synthesis of nanoporous multi-component alloys. - Abstract: A three-dimensional nanoporous bimetallic Ag-Cu alloy with uniform chemical composition has been fabricated by dealloying Mg_6_5Ag_1_2_._5Cu_1_2_._5Y_1_0 metallic glass in dilute (0.04 M) H_2SO_4 aqueous solution under free-corrosion conditions. The nanoporous Ag-Cu evolves through two distinct stages. First, ligaments of the nanoporous structure, consisting of supersaturated Ag(Cu) solid solution with a constant Ag/Cu mole ratio of 1:1, are yielded. Second, with excessive immersion, some Cu atoms separate from the metastable nanoporous matrix and form spherical Cu particles on the sample surface. Formation and evolution mechanisms of the nanoporous structure are proposed.

  4. Colloid formation during waste glass corrosion

    International Nuclear Information System (INIS)

    Mertz, C.J.; Buck, E.C.; Fortner, J.A.; Bates, J.K.

    1996-01-01

    The long-term behavior of nuclear waste glass in a geologic repository may require a technical consideration of the role of colloids in the release and transport of radionuclides. The neglect of colloidal properties in assessing the near- and far-field migration behavior of actinides may lead to significant underestimates and poor predictions of biosphere exposure from high-level waste (HLW) disposal. Existing data on colloid-facilitated transport suggests that radionuclide migration may be enhanced, but the importance of colloids is not adequately assessed. Indeed, the occurrence of radionuclide transport, attributed to colloidal species, has been reported at Mortandad Canyon, Los Alamos and at the Nevada Test Site; both unsaturated regions are similar to the proposed HLW repository at Yucca Mountain. Although some developments have been made on understanding the transport characteristics of colloids, the characterization of colloids generated from the corrosion of the waste form has been limited. Colloids are known to incorporate radionuclides either from hydrolysis of dissolved species (real colloids) or from adsorption of dissolved species onto existing groundwater colloids (pseudocolloids); however, these colloids may be considered secondary and solubility limited when compared to the colloids generated during glass alteration

  5. Electronic structure of metallic glasses

    International Nuclear Information System (INIS)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  6. Investigation into the structure of lead-borate glass

    International Nuclear Information System (INIS)

    Kurtsinovskaya, R.I.

    1976-01-01

    X-ray phase and IR analysis of lead borate glasses show that glasses containing from 12 to 45 mole % PbO consist of several phases. A comparison of x-ray different data for lead borate and lead germanate glasses, which have two maxima on the diffraction patterns throughout the glass-formation region, shows that the microstructure of lead borate glasses is far more complex

  7. Kinetic Monte Carlo simulation of formation of microstructures in liquid droplets

    International Nuclear Information System (INIS)

    Block, M; Kunert, R; Schoell, E; Boeck, T; Teubner, Th

    2004-01-01

    We study the deposition of indium droplets on a glass surface and the subsequent formation of silicon microcrystals inside these droplets. Kinetic Monte Carlo methods are used to analyse the influence of growth temperature, flux of incoming particles, surface coverage, and in particular an energy parameter simulating the surface tension, upon the morphology of growth. According to the experimental conditions of crystallization, a temperature gradient and diffusion in spherical droplets are included. The simulations explain the formation of silicon crystal structures in good agreement with the experiment. The dependence of their shape and the conditions of formation on the growth parameters are investigated in detail

  8. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    DEFF Research Database (Denmark)

    Xing, P.F.; Zhuang, Yanxin; Wang, W.H.

    2002-01-01

    The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using...... the Kissinger method. Results indicate that this glass crystallizes by a three-stage reaction: (1) phase separation and primary crystallization of glass, (2) formation of intermetallic compounds, and (3) decomposition of intermetallic compounds and crystallization of residual amorphous phase. The pressure...

  9. Effect of magnesia on the degradability and bioactivity of sol-gel derived SiO2-CaO-MgO-P2O5 system glasses.

    Science.gov (United States)

    Ma, J; Chen, C Z; Wang, D G; Jiao, Y; Shi, J Z

    2010-11-01

    Mesoporous 58SiO(2)-(38-x)CaO-xMgO-4P(2)O(5) glasses (where x=0, 5, 10 and 20 mol%) have been prepared by the sol-gel synthesis route. The effects of the substitution of MgO for CaO on glass degradation and bioactivity were studied in tris-(hydroxymethyl)-aminomethane and hydrochloric acid buffer solution (Tris-HCl) and simulated body fluid (SBF), respectively. It is observed that the synthesized glasses with various MgO contents possess the similar textural properties. The studies of in vitro degradability and bioactivity show that the rate of glass degradation gradually decreases with the increase of MgO and the formation of apatite layer on glass surface is retarded. The influences of the composition upon glass properties are explained in terms of their internal structures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  11. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  12. Effects of B Addition on Glass Formation, Mechanical Properties and Corrosion Resistance of the Zr66.7- x Ni33.3B x ( x = 0, 1, 3, and 5 at.%) Metallic Glasses

    Science.gov (United States)

    Xu, Jing; Niu, Jiazheng; Zhang, Zitang; Ge, Wenjuan; Shang, Caiyun; Wang, Yan

    2016-02-01

    The effects of B addition on glass formation, mechanical properties and electrochemical corrosion of Zr66.7- x Ni33.3B x ( x = 0, 1, 3, and 5 at.%) glassy ribbons have been investigated. The results reveal that the B addition can improve the glass forming ability and obviously raise the thermal stability of the Zr-Ni-B metallic glasses. The 1 at.% B addition exhibits the most positive effect on enhancing the microhardness of Vickers-type (HV) by 13.83%. In addition, Zr63.7Ni33.3B3 possesses the best plasticity in the nanoindentation test. The electrochemical test and microstructural observation show that the moderate B addition effectively enhances the corrosion resistance of the Zr-Ni-B metallic glasses in different solutions. The 3 at.% B addition is beneficial to improve the corrosion resistance in the 0.5 M NaCl solution. But in the 1 M HCl and 2 M NaOH solutions, the better effect is induced by the 1 and 5 at.% B addition. Moreover, the Zr-Ni-B metallic glasses exhibit active dissolution behavior in the chloride- and hydrogen-containing solutions, but passivation occurs in the 2 M NaOH solution.

  13. Influence of rare-earth ions on fluorogallate glass formation and properties

    International Nuclear Information System (INIS)

    Zhang Guoyin; Poulain, M.J.

    1998-01-01

    Various rare earths have been incorporated in a lead fluorogallate glass with the following chemical composition: 30PbF 2 -20GaF 3 -15InF 3 -20CdF 2 -15ZnF 2 (PGICZ). Selected rare earths are La, Ce, Pr, Nd, Gd, Er, Yb and Lu, and the doping level varies between 1 and 10 mol%. The influence of rare earth fluorides on glass forming ability and on physical properties is investigated. At low concentration ( 3 in a modified PGCIZ glass have been cast. Experimental results suggest that rare earths act as modifiers rather than vitrifies in this fluorogallate system. The effect of rare earths on the values of glass transition temperature, refractive index, density and thermal expansion is reported. (orig.)

  14. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  15. Origin of the strain glass transition in Ti_5_0(Ni_5_0_−_x D_x) alloys

    International Nuclear Information System (INIS)

    Wang, Xu; Shang, Jia-Xiang; Wang, Fu-He; Chen, Yue

    2016-01-01

    Direct evidence was recently discovered for the unique strain glass (STG) transition, which breaks the local symmetries (PRL 112, 025701 (2014)). To understand the origin of the STG transition, the effects of doping point defects on Ti_5_0(Ni_5_0_−_x D_x) are investigated using first-principle calculations. The experimental observation that STG only exists in a limited range of chemical composition x is successfully rationalized. The mechanisms that correspond to the division of a system into domains with distinctly different compositions are found to be directly related to a dip in the defect formation energy. - Highlights: • The strain glass transition phenomenon in Ti−Ni-based alloys is rationalized. • The electronic-structure origins of the strain glass transition are uncovered. • The separation of domains with different compositions is explained.

  16. Radiation-induced centers in inorganic glasses

    International Nuclear Information System (INIS)

    Brekhovskikh, S.M.; Tyul'nin, V.A.

    1988-01-01

    The nature, structure and formation mechanisms of radiation-induced colour centers, EPR, luminescence, generated ionizing radiation in nonorganic oxide glasses are considered. Experimental material covering both fundamental aspects of radiation physics and glass chemistry, and aspects intimately connected with the creation of new materials with the given radiation-spectral characteristics, with possibilities to prepare radiation-stable and radiation-sensitive glasses is systematized and generalized. Considerable attention is paid to the detection of radiation-induced center binding with composition, glass structures redox conditions for their synthesis. Some new possibilities of practical application of glasses with radiation-induced centers, in particular, to record optical information are reflected in the paper

  17. On-site Raman analysis of ancient glasses and stained-glass windows: modeling, procedure, lixiviation and characterization

    International Nuclear Information System (INIS)

    Tournie, Aurelie

    2009-01-01

    The aim of this study is to estimate the possibilities of Raman spectrometry to identify on site old glasses (objects, stained-glass windows...) whatever been their preserving state. The efficiency of Raman analysis depends strongly of the structural organization of glasses and then of their technological history. In order to differentiate the great silicate family compounds from their Raman analysis, a methodology has been developed: data acquisition and spectrum processing, Raman parameters extraction and classification of these glasses. This approach has then been extended to crystalline phosphates and silicates. Beforehand, correlations between crystallo-chemical parameters and vibrational signatures have been considered. The old glasses are often recovered by a corrosion layer which induces important changes on the Raman signature. Four layers have been identified and characterized by a multi-scale study: leached porous layer, transition zone, cracked zone and sound glass. The results show that only an analytical chemistry approach (databases of Raman signatures) is not sufficient and that a solid chemistry and physics approach is required to explain the spectral answers and extract the relevant parameters from glasses preserving [fr

  18. Immobilization of gadolinium in iron borophosphate glasses and iron borophosphate based glass-ceramics: Implications for the immobilization of plutonium(Ⅲ)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu, E-mail: wangfu@swust.edu.cn; Liao, Qilong, E-mail: liaoqilong@swust.edu.cn; Dai, Yunya; Zhu, Hanzhen

    2016-08-15

    Immobilization of gadolinium (Gd), a nonradioactive surrogate for Pu{sup 3+}, in iron borophosphate glasses/glass-ceramics (IBP glasses/glass-ceramics) has been investigated. The IBP glass containing 4 mol% Gd{sub 2}O{sub 3} is homogeneously amorphous. At higher Gd{sub 2}O{sub 3} concentrations, additional Gd is retained in the glasses as crystalline inclusions of monazite GdPO{sub 4} crystalline phase detected with X-ray diffraction. Moreover, Gd{sub 2}O{sub 3} addition increases the T{sub g} of the IBP glasses in glass formation range, which is consistent with the structural modification of the glasses. The structure of the Gd{sub 2}O{sub 3}-loaded IBP glasses/glass-ceramics is mainly based on pyrophosphate units. The chemical durability of Gd{sub 2}O{sub 3}-loaded IBP glasses/glass-ceramics is comparable to widely used borosilicate glass waste forms and the existence of monazite GdPO{sub 4} crystalline phase does not degrade the aqueous chemical durability of the IBP glasses/glass-ceramics. The Gd-loading results imply that the solubility should not be a limiting factor in processing nuclide Pu{sup 3+} if the formed crystalline phase(s) have high chemical durability. - Highlights: • Monazite GdPO{sub 4} are identified in the IBP glasses containing up to 6 mol% Gd{sub 2}O{sub 3}. • R{sub L} of the Gd{sub 2}O{sub 3}-loaded IBP glasses/glass-ceramics are about 10{sup −2} g m{sup −2} d{sup −1}. • Existence of GdPO{sub 4} does not degrade aqueous chemical durability of the IBP glass. • T{sub g} increases with increasing Gd{sub 2}O{sub 3} content in glass formation range. • IBP glasses are potential hosts for the immobilization of Pu{sup 3+} containing HLWs.

  19. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Deo, M.N. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kothiyal, G.P., E-mail: gpkoth@barc.gov.in [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-03-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO{sub 2}-50CaO-15P{sub 2}O{sub 5}-(10 - x)Fe{sub 2}O{sub 3}-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca{sub 3}Si{sub 2}O{sub 7}) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  20. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath; Deo, M.N.; Kothiyal, G.P.

    2010-01-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO 2 -50CaO-15P 2 O 5 -(10 - x)Fe 2 O 3 -xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca 3 Si 2 O 7 ) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  1. Glass formation, magnetic properties and magnetocaloric effect of ternary Ho–Al–Co bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang, Huiyan; Li, Ran; Ji, Yunfei; Liu, Fanmao; Luo, Qiang; Zhang, Tao

    2012-01-01

    A ternary Ho–Al–Co system with high glass-forming ability (GFA) was developed and fully glassy rods with diameters up to 1 cm can be produced for the best glass former of Ho 55 Al 27.5 Co 17.5 alloy. The thermal stability and low-temperature magnetic properties of the Ho 55 Al 27.5 Co 17.5 bulk metallic glass (BMG) were studied. The magnetic transition temperature of this alloy is ∼14 K as determined by the thermomagnetic measurement. Two indicators, i.e. isothermal magnetic entropy change (ΔS M ) and the relative cooling power (RCP), were adopted to evaluate the magnetocaloric effect (MCE) of the alloy under a low magnetic field up to 2 T, which can be generated by permanent magnets. The values of |ΔS M | and RCP are 7.98 J kg −1 K −1 and 191.5 J kg −1 , respectively. The Ho 55 Al 27.5 Co 17.5 BMG with good MCE and high GFA provides an attractive candidate for magnetic refrigeration applications, like hydrogen liquefaction and storage. - Highlights: ► A ternary Ho–Al–Co BMG system with high glass-forming ability was developed. ► Fully glassy rods of Ho 55 Al 27.5 Co 17.5 alloy were produced up to 1 cm in diameter. ► The thermal stability and magnetic properties of the BMG were evaluated. ► The BMG exhibits good magnetocaloric effect under a low magnetic field up to 2 T.

  2. Glass formation of the Fe-Hf system studied by thermodynamic calculation and ion beam mixing

    International Nuclear Information System (INIS)

    Wang, T.L.; Wang, W.C.; Li, J.H.; Liu, B.X.

    2010-01-01

    For the Fe-Hf system characterized by a negative heat of formation, the glass-forming range/ability (GFR/GFA) was studied by thermodynamic calculation based on Miedema's model and Alonso's method. It was found that amorphous phase could be formed in a composition range of 24-86 atom% Hf and that alloy with composition of Fe 58 Hf 42 has the best GFA in the system. Experimentally, ion beam mixing was carried out to synthesize amorphous alloys in the Fe-Hf system. It turned out that in the samples with overall compositions located in the calculated GFR, amorphous phases were indeed obtained, whereas no amorphous phase was obtained if the overall compositions were located outside of the predicted region favoring for amorphous alloy formation, showing a good agreement between the experimental results and the thermodynamic calculation.

  3. Theory of glass

    International Nuclear Information System (INIS)

    Rivier, N.

    1985-01-01

    The physical properties of glass are direct consequences of its non-crystalline structure. The structure is described from a topological point of view, since topology is the only geometry surviving non-crystallinity, i.e. absence of metric and trivial space group. This fact has two main consequences: the overall homogeneity of glass is a gauge symmetry, and the only extended, structurally stable constituents are odd lines (or 2π-disclinations in the elastic continuum limit). A gauge theory of glass, based on odd lines as sources of frozen-in strain, can explain those properties of glasses which are both specific to, and universal in amorphous solids: low-temperature excitations, and relaxation at high temperatures. The methods of statistical mechanics can be applied to give a minimal description of amorphous structures in statistical equilibrium. Criteria for statistical equilibrium of the structure and detailed balance are given, together with structural equations of state, which turn out to be well-known empirically among botanists and metallurgists. This review is based on lectures given in 1984 in Niteroi. It contains five parts: I - Structure, from a topological viewpoint; II - gauge invariance; III - Tunneling modes; IV - Supercooled liquid and the glass transitions; V - Statistical crystallography. (Author) [pt

  4. The chemical durability of alkali aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.

    1983-09-01

    The aqueous durabilities of a series of glasses based on the sodium aluminosilicate system (Na 2 O-Al 2 O 3 -SiO 2 ) have been studied. The effects of molecular substitution of K 2 O or CaO for Na 2 O, and B 2 O 3 for Al 2 O 3 have been investigated. The temperature dependence of leaching in the Na 2 O-B 2 O 3 -Al 2 O 3 -SiO 2 system was studied with glasses containing 2 wt percent simulated UO 2 fuel recycle waste. The results confirm that aluminosilicate glasses are more durable than their borosilicate counterparts. The leaching results are explained in terms of glass structure and bonding, and a general leaching mechanism for aluminosilicate glasses is presented

  5. Ion-wake Field inside a Glass Box

    OpenAIRE

    Chen, Mudi; Dropmann, Michael; Zhang, Bo; Matthews, Lorin S.; Hyde, Truell W.

    2016-01-01

    The confinement provided by a glass box is proving ideal for the formation of vertically aligned structures and a convenient method for controlling the number of dust particles comprising these dust structures, as well as their size and shape. In this paper, the electronic confinement of the glass box is mapped and the particle interactions between the particle pairs inside the glass box are measured. The ion-wake field is shown to exist within the glass box and its vertical and horizontal ex...

  6. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  7. Double stage crystallization of bulk Ge20Te80 glass

    International Nuclear Information System (INIS)

    Parthasarathy, G.; Bandyopadhyay, A.K.; Gopal, E.S.R.; Subbanna, G.N.

    1984-01-01

    The growing interest of the semiconducting glasses is partly because of their interesting electrical and optical properties. These properties are usually connected with their crystallization. In many glasses, the glass-supercooled liquid transition precedes crystallization. The glass transition temperature (Tsub(g)) is found to exhibit multistage processes for a few systems. In this communication, we report the observation of a double Tsub(g) effect in bulk Ge 20 Te 80 glass and also explain the structural changes taking place in the two stages. (author)

  8. International Congress on Glass XII

    Energy Technology Data Exchange (ETDEWEB)

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W [eds.

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  9. Formation of quasicrystals and amorphous-to-quasicrystalline phase transformation kinetics in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhuang, Yanxin; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the formation of quasicrystals and the amorphous-to-quasicrystalline phase transformation kinetics in the supercooled liquid region for a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass have been investigated by in situ high-pressure and high-temperature nonisothermal and isothermal...... of quasicrystals decrease, Atomic mobility is important for the formation of quasicrystals from the metallic glass whereas the relationship of the crystallization temperature vs pressure for the transition from the quasicrystalline state to intermetallic compounds may mainly depend on the thermodynamic potential...... energy barrier. To study the amorphous-to-quasicrystalline phase transformation kinetics in the metallic glass, relative volume fractions of the transferred quasicrystalline phase as a function of annealing time, obtained at 663, 673, 683, and 693 K, have been analyzed in details using 14 nucleation...

  10. Edge-melting: nanoscale key-mechanism to explain nanoparticle formation from heated TEM grids

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, Maura, E-mail: maura.cesaria@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy); Taurino, Antonietta; Catalano, Massimo [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, 73100 Lecce (Italy); Caricato, Anna Paola; Martino, Maurizio [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy)

    2016-03-01

    Graphical abstract: - Highlights: • Nanoparticle formation from metal grids explained by edge melting as key mechanism. • The inconsistency of bulk phenomenology invoking the vapor pressure is discussed. • Surface-melting and size-dependent evaporation are questioned as unsatisfactory. • Edge-melting: edges, corners, facets invoked as highly thermally unstable surfaces. • The polycrystalline nature of the really occurring metal grids is accounted for. - Abstract: In this study, we examine at both experimental and fundamental levels, the experimental evidence of nanoparticle formation in transmission electron microscopy (TEM) metal grids annealed at temperatures lower than the melting point of the corresponding metal bulk material. Our experimental investigation considers the most thermally unstable TEM grids (i.e. Cu-grids) and inspects the possible sources and mechanisms of contamination of thin films, conventionally deposited on carbon-coated Cu-grids. The investigations are supported by morphological–compositional analyses performed in different regions of the TEM sample. Then, a general model is formulated and discussed in order to explain the grid thermal instability, based on the critical role of edge-melting (i.e. melting initiated at edges and corners of the grid bars), the enhanced rate of evaporation from a liquid surface and the polycristallinity of the grid bars. Hence, we totally disregard conventional arguments such as bulk evaporation and metal vapor pressure and, in order to emphasize and clarify the alternative point of view of our model, we also overview the nano-scale melting phenomenology relevant to our discussion and survey the discrepancies reported in the literature.

  11. Examining metallic glass formation in LaCe:Nb by ion implantation

    Directory of Open Access Journals (Sweden)

    Sisson Richard

    2017-01-01

    Full Text Available In order to combine niobium (Nb with lanthanum (La and cerium (Ce, Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film of La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. Using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.

  12. Electronic Conductivity of Vanadium-Tellurite Glass-Ceramics

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Bragatto, Caio B.

    2013-01-01

    In this paper, we investigate the electronic conductivity of 2TeO2-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat...... spectroscopy. We find similar activation energies for both glass and crystal, implying that they have similar conduction mechanisms, i.e., thermally activated hopping. The electronic conductivity of 2TeO2-V2O5 glass is about one order of magnitude higher than that of the corresponding crystal......, and a percolation phenomenon occurs at a glass fraction of 61 wt.%, increasing from a lower conductivity in the crystal to a higher conductivity in the glass. We explain the behavior of electronic conduction in the 2TeO2-V2O5 glass-ceramics by considering constriction effects between particles as well...

  13. Glass solution formation in water - In situ amorphization of naproxen and ibuprofen with Eudragit® E PO

    DEFF Research Database (Denmark)

    Doreth, Maria; Löbmann, Korbinian; Grohganz, Holger

    2016-01-01

    is applicable to other drugs. Compacts of drug and Eudragit® E were compressed at a 2:1, 1:1 and 1:2 drug-to-polymer ratio (w/w) and immersed in water for 1 h. Physicochemical characteristics, potential interactions and dissolution behavior were analyzed and compared to non-immersed compacts. Both drugs formed...... a glass solution with Eudragit® E when immersed into water. In XRPD, reflections of the respective drugs decreased or disappeared completely. All samples showed a single glass transition temperature in the DSC, suggesting the formation of single phase amorphous systems. Ionic interactions between drug...... and polymer were identified by infrared spectroscopy. In the dissolution study (pH 4.1), especially the 1:1 (w/w) in situ amorphized samples showed an improved dissolution behavior compared to their non-immersed counterparts. It can be concluded that in situ amorphization is a promising method to amorphize...

  14. Structure peculiarities of mixed alkali silicate glasses

    International Nuclear Information System (INIS)

    Bershtein, V.A.; Gorbachev, V.V.; Egorov, V.

    1980-01-01

    The thermal porperties and structure of alkali and mixed alkali (Li, Na, K) silicate glasses by means of differential scanning calorimetry (DSC), the positron annihilation method, X-ray fluorescence and infrared (300-30 cm -1 ) spectroscopy were studied. Introduction of different alkali cations in glass results in nonadditive change in their electron structure (bond covalence degree growth) and the thermal behaviour. The different manifestations of mixed alkali effect can be explained by the lessening of long distance Coulomb interactions and strengthening the short-range forces in the mixed alkali glasses. (orig.)

  15. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  16. Structure and DC conductivity of lead sodium ultraphosphate glasses

    International Nuclear Information System (INIS)

    Abid, M.; Et-tabirou, M.; Taibi, M.

    2003-01-01

    Glasses of (0.40-x)Na 2 O-xPbO-0.60P 2 O 5 system with (0≤x≤0.40) molar fraction have been prepared with a conventional melting procedure. Their physical, thermal and spectroscopic studies such as density, molar volume, glass transition temperature, ionic conductivity and infrared spectroscopy have been investigated. The density and thermal stability of theses glasses increase with the substitution of PbO for Na 2 O. The ionic conductivity increases substantially with increasing concentration of sodium oxide and diminishes with increasing PbO content. Fourier-transform infrared spectroscopy reveals the formation of P-O-Pb bonds in theses glasses. The formation of P-O-Pb bonds which replace P-O - ...Na + bonds is in accordance with variations of glass transition temperature (T g ), molar volume (V m ) and ionic conductivity (σ). The former bonds are the origin of the partial glass-forming ability of Pb 2+

  17. Factors influencing chemical durability of nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions

  18. Structure-topology-property correlations of sodium phosphosilicate glasses.

    Science.gov (United States)

    Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E; Mauro, John C; Smedskjaer, Morten M; Yue, Yuanzheng

    2015-08-14

    In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.

  19. Strontium borate glass: potential biomaterial for bone regeneration.

    Science.gov (United States)

    Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J

    2010-07-06

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.

  20. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    International Nuclear Information System (INIS)

    Vasileva, A.A.; Nazarov, I.A.; Olshin, P.K.; Povolotskiy, A.V.; Sokolov, I.A.; Manshina, A.A.

    2015-01-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag 2 O–0.4P 2 O 5 –0,1Nb 2 O 5 glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag 2 O–0.1Nb 2 O 5 –0.4P 2 O 5 and 0.55Ag 2 O–0.45P 2 O 5 glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown

  1. Hybrid Glasses from Strong and Fragile Metal-Organic Framework Liquids

    DEFF Research Database (Denmark)

    Bennett, T.D.; Tan, J.C.; Yue, Yuanzheng

    2015-01-01

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship betwee...

  2. First principles process-product models for vitrification of nuclear waste: Relationship of glass composition to glass viscosity, resistivity, liquidus temperature, and durability

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1991-01-01

    Borosilicate glasses will be used in the USA and in Europe to immobilize radioactive high level liquid wastes (HLLW) for ultimate geologic disposal. Process and product quality models based on glass composition simplify the fabrication of the borosilicate glass while ensuring glass processability and quality. The process model for glass viscosity is based on a relationship between the glass composition and its structural polymerization. The relationship between glass viscosity and electrical resistivity is also shown to relate to glass polymerization. The process model for glass liquidus temperature calculates the solubility of the liquidus phases based on the free energies of formation of the precipitating species. The durability product quality model is based on the calculation of the thermodynamic hydration free energy from the glass composition

  3. Glass transition near the free surface studied by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sikorski, M.

    2008-06-15

    A comprehensive picture of the glass transition near the liquid/vapor interface of the model organic glass former dibutyl phthalate is presented in this work. Several surface-sensitive techniques using x-ray synchrotron radiation were applied to investigate the static and dynamic aspects of the formation of the glassy state from the supercooled liquid. The amorphous nature of dibutyl phthalate close to the free surface was confirmed by grazing incidence X-ray diffraction studies. Results from X-ray reflectivity measurements indicate a uniform electron density distribution close to the interface excluding the possibility of surface freezing down to 175 K. Dynamics on sub-{mu}m length-scales at the surface was studied with coherent synchrotron radiation via x-ray photon correlation spectroscopy. From the analysis of the dispersion relation of the surface modes, viscoelastic properties of the dibutyl phthalate are deduced. The Kelvin-Voigt model of viscoelastic media was found to describe well the properties of the liquid/vapor interface below room temperature. The data show that the viscosity at the interface matches the values reported for bulk dibutyl phthalate. The scaled relaxation rate at the surface agrees with the bulk data above 210 K. Upon approaching the glass transition temperature the free surface was observed to relax considerably faster close to the liquid/vapor interface than in bulk. The concept of higher relaxation rate at the free surface is also supported by the results of the quasielastic nuclear forward scattering experiment, during which dynamics on molecular length scales around the calorimetric glass transition temperature is studied. The data were analyzed using mode-coupling theory of the glass transition and the model of the liquid(glass)/vapor interface, predicting inhomogeneous dynamics near the surface. The quasielastic nuclear forward scattering data can be explained when the molecular mobility is assumed to decrease with the increasing

  4. Glass transition near the free surface studied by synchrotron radiation

    International Nuclear Information System (INIS)

    Sikorski, M.

    2008-06-01

    A comprehensive picture of the glass transition near the liquid/vapor interface of the model organic glass former dibutyl phthalate is presented in this work. Several surface-sensitive techniques using x-ray synchrotron radiation were applied to investigate the static and dynamic aspects of the formation of the glassy state from the supercooled liquid. The amorphous nature of dibutyl phthalate close to the free surface was confirmed by grazing incidence X-ray diffraction studies. Results from X-ray reflectivity measurements indicate a uniform electron density distribution close to the interface excluding the possibility of surface freezing down to 175 K. Dynamics on sub-μm length-scales at the surface was studied with coherent synchrotron radiation via x-ray photon correlation spectroscopy. From the analysis of the dispersion relation of the surface modes, viscoelastic properties of the dibutyl phthalate are deduced. The Kelvin-Voigt model of viscoelastic media was found to describe well the properties of the liquid/vapor interface below room temperature. The data show that the viscosity at the interface matches the values reported for bulk dibutyl phthalate. The scaled relaxation rate at the surface agrees with the bulk data above 210 K. Upon approaching the glass transition temperature the free surface was observed to relax considerably faster close to the liquid/vapor interface than in bulk. The concept of higher relaxation rate at the free surface is also supported by the results of the quasielastic nuclear forward scattering experiment, during which dynamics on molecular length scales around the calorimetric glass transition temperature is studied. The data were analyzed using mode-coupling theory of the glass transition and the model of the liquid(glass)/vapor interface, predicting inhomogeneous dynamics near the surface. The quasielastic nuclear forward scattering data can be explained when the molecular mobility is assumed to decrease with the increasing

  5. Gas release and foam formation during melting and fining of glass

    NARCIS (Netherlands)

    Beerkens, R.G.C.; Schaaf, van der J.

    2006-01-01

    A method for the prediction of gas evolution from a glass melt during fining processes has been described. This procedure is based on the assumption of thermodynamic equilibrium conditions between the species in the glass melt and co-existing gas phases. The method has been applied to estimate (a)

  6. Degradation of glass in the soil

    Energy Technology Data Exchange (ETDEWEB)

    Romich, H.; Gerlach, S.; Mottner, P. [Fraunhofer-Institut fur Silicatforschung (ISC), Wertheim-Bronnbach (Germany)

    2004-07-01

    Full text of publication follows: Glass has been produced and used in Europe for over 2000 years. Glass objects from the Roman period onwards have been excavated during the last centuries. In general, Roman glass is chemically quite stable, and often the only sign of chemical alteration is an iridescent surface, caused by the leaching of cations, which leads to the formation of a hydrated silica-rich layer. Medieval potash glasses are much less durable, and their surfaces are often found deeply leached, sometimes to a point that no unaltered glass remains. These surfaces may be coherent, though fragile, or they are laminar, with no cohesion between the layers at all. In this study an analytical examination of a series of fragments of archaeological glass retrieved from different sites near Cologne and Stuttgart (Germany) has been carried out. Samples of corroded glasses were analysed by optical microscopy and SEM/EDX (surface and cross sections) in order to obtain information about the chemical composition of the bulk glass and the weathered layers. Since the environmental parameters have constantly varied for archaeological objects, mechanistic studies have to rely on laboratory experiments under controlled conditions. For an extensive exposure programme standardised soil or natural garden earth was used, for which the pH was modified. Several corrosion sensitive potash-lime silicate glasses have been designed to study the effect of glass composition. A model glass consisting of SiO{sub 2} (54.2), CaO (28.8) and K{sub 2}O (17.0 weight-%) mostly lead to the formation of a crust on the leached layer, with a total thickness of 100 micrometer (for soil with pH 7 to 8, 12 months exposure). Model glasses also containing Al, Mg and P have built up preferably laminated structures (total thickness up to 200 micrometer). This presentation will give an overview about the variety of degradation phenomena observed on originals and compare the results with controlled laboratory

  7. Atomic-scale models of early-stage alkali depletion and SiO2-rich gel formation in bioactive glasses.

    Science.gov (United States)

    Tilocca, Antonio

    2015-01-28

    Molecular dynamics simulations of Na(+)/H(+)-exchanged 45S5 Bioglass® models reveal that a large fraction of the hydroxyl groups introduced into the proton-exchanged, hydrated glass structure do not initially form covalent bonds with Si and P network formers but remain free and stabilised by the modifier metal cations, whereas substantial Si-OH and P-OH bonding is observed only at higher Na(+)/H(+) exchange levels. The strong affinity between free OH groups and modifier cations in the highly fragmented 45S5 glass structure appears to represent the main driving force for this effect. This suggests an alternative direct route for the formation of a repolymerised silica-rich gel in the early stages of the bioactive mechanism, not considered before, which does not require sequential repeated breakings of Si-O-Si bonds and silanol condensations.

  8. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    Science.gov (United States)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudière, Dominique; Saboungi, Marie-Louise

    2011-03-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2O-22.5Al 2O 3-55B 2O 3 co-doped with low concentrations of Fe 2O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2O 4 after annealing the glasses at 560 °C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value.

  9. Fundamental problems on immiscibility, crystallization, and chemical interaction between stainless steel 304 and glasses for radioactivewaste glasses

    International Nuclear Information System (INIS)

    Inoue, Tadashi; Yokoyama, Hayaichi

    1982-01-01

    Immiscibility and crystallization, and chemical interaction with stainless steel, SUS 304, which is designed as a canister material, were investigated on non-radioactive glasses with simulated waste of 26.4 wt%. Although glasses whose initial color was black changed to yellow or yellow-brown by heat-treatment at 600 0 C, the change of color was hardly observed by the treatment at 850 0 C. Molybdenum oxide and molybdate were detected in all heat-treated glasses. It was deduced that the compounds were existing as meta-stable particle corresponding to immiscibility particle at 600 0 C and as stable crystallized particle at 850 0 C. The chemical interaction occurred at the interface between glasses and SUS 304, whose surface was attacked by boundary corrosion proceeding to uniform corrosion with increasing temperature and time. Chromium oxide layer was mainly formed in the region suffered chemical interaction. It was deduced that the chemical interaction was moderated due to the formation of protective layer, which mainly consisted of nickel oxide, at the same time as the formation of Cr 2 O 3 layer. (author)

  10. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  11. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    Science.gov (United States)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  12. Models of agglomeration and glass transition

    CERN Document Server

    Kerner, Richard

    2007-01-01

    This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.

  13. Mechanistic interpretation of glass reaction: Input to kinetic model development

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Bradley, J.P.; Bourcier, W.L.

    1991-05-01

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90 degree C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs

  14. High-Purity Glasses Based on Arsenic Chalcogenides

    Science.gov (United States)

    2001-06-01

    Chemical interaction of chalcogenides and some impurities (CS 2, TeO2 ) with the quartz glass at high temperature leads to the thin layers formation...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1523 TITLE: High-Purity Glasses Based on Arsenic Chalcogenides...Materials Vol. 3, No. 2, June 2001, p. 341 - 349 HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S

  15. Natural analogue study of volcanic glass

    International Nuclear Information System (INIS)

    Arai, T.; Yusa, Y.; Sasaki, N.; Tsunoda, N.; Takano, H.

    1989-02-01

    A considerable range in alteration rates of basaltic glasses in various environments has been reported in previous studies. However, these studies paid only cursory attention to the environmental conditions under which the glass had been altered. In this study, the alteration of basaltic glasses was investigated and the environmental conditions and the alteration rate were discussed. Two sample ages were represented: 280 years and 2800 years. Basaltic glasses and their alteration layers were analyzed by electron probe microanalyzer (EMPA) and the thickness of the alteration layers were measured by scanning electron microscope (SEM). The ground water collected near the sampling point of Zunazawa Scoria (2800 years) and the pore water of both samples were analyzed. The alteration temperature and flow rate of water are estimated to be about 13degC and 0.2 l/cm 2 /y respectively on the basis of meteorological data. The alteration layers of young aged basaltic glasses in freshwater conditions are similar to those of leached borosilicate glasses. The alteration rates of these basaltic glasses are estimated to be several μm/1000y. The elemental concentrations in the ground water can be roughly explained as the result of leaching of the glasses. (author)

  16. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva, A.A., E-mail: anvsilv@gmail.com [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Nazarov, I.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg (Russian Federation); Olshin, P.K.; Povolotskiy, A.V. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Sokolov, I.A. [St.Petersburg State Polytechnical University, St.Petersburg (Russian Federation); LTD “AtomTjazhMash”, St.Petersburg (Russian Federation); Manshina, A.A. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation)

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.

  17. Direct Formation of Silane Coupling Agents on Glass for Improved Composite Performance

    National Research Council Canada - National Science Library

    Boyles, David

    2003-01-01

    ...; and 3) reaction of aminoalkenes with the reduced surface via a hydrosilylation reaction which formed the coupling agent directly on the surface of the glass fiber for glass surfaces incorporated into epoxy systems...

  18. Correlations between elastic moduli and properties in bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang Weihua

    2006-01-01

    A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties

  19. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  20. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    International Nuclear Information System (INIS)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudiere, Dominique; Saboungi, Marie-Louise

    2011-01-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2 O-22.5Al 2 O 3 -55B 2 O 3 co-doped with low concentrations of Fe 2 O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2 O 4 after annealing the glasses at 560 o C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value. - Research Highlights: →Magnetic nanoparticles are formed in borate glasses co-doped with Fe 2 O 3 and MnO. →The nanoparticle structure is close to that of manganese ferrite. →The particles have large morphological distributions with mean size of 3-4 nm. →These glasses remain transparent in a part of visible and near infrared range. →The glasses show hysteresis in the magnetic field dependence of the

  1. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kliava, Janis, E-mail: j.kliava@cpmoh.u-bordeaux1.f [CPMOH, UMR 5798, Universite Bordeaux 1-CNRS, 351 Cours de la Liberation, 33405 Talence Cedex (France); Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora [L.V. Kirensky Institute of Physics, Siberian Branch of the RAS, 660036 Krasnoyarsk (Russian Federation); Hennet, Louis [CEMHTI, UPR3079 CNRS et Universite d' Orleans, 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Thiaudiere, Dominique [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Saboungi, Marie-Louise [CRMD, UMR 6619, Universite d' Orleans-CNRS, 1b Rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2011-03-15

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K{sub 2}O-22.5Al{sub 2}O{sub 3}-55B{sub 2}O{sub 3} co-doped with low concentrations of Fe{sub 2}O{sub 3} and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe{sub 2}O{sub 4} after annealing the glasses at 560 {sup o}C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value. - Research Highlights: >Magnetic nanoparticles are formed in borate glasses co-doped with Fe{sub 2}O{sub 3} and MnO. >The nanoparticle structure is close to that of manganese ferrite. > The particles have large morphological distributions with mean size of 3-4 nm. > These glasses remain transparent in a part of visible and near infrared range. > The glasses show

  2. Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders.

    Science.gov (United States)

    Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2015-10-01

    In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with

  3. Shear-driven dynamic clusters in a colloidal glass

    Science.gov (United States)

    Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David

    2007-03-01

    We investigate the effect of shear applied to a colloidal glass on a microscopic level using a shear device that can be mounted on top of a confocal microscope. We find that the glass yields at a critical strain of about 10%, independently of the shear rate. Surprisingly, the yielding is accompanied by an increase of cooperative particle movements and a formation of dynamic clusters which is in contrast to the normal glass transition where one typically finds heterogeneity increasing whilst moving towards the glass transition.

  4. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  5. The corrosion behavior of DWPF glasses

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.

    1995-01-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed

  6. Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass

    Science.gov (United States)

    Fedotov, S. S.; Drevinskas, R.; Lotarev, S. V.; Lipatiev, A. S.; Beresna, M.; ČerkauskaitÄ--, A.; Sigaev, V. N.; Kazansky, P. G.

    2016-02-01

    Self-assembled nanostructures created by femtosecond laser irradiation are demonstrated in alkali-free aluminoborosilicate glass. The growth of the induced retardance associated with the nanograting formation is three orders of magnitude slower than in silica glass and is observed only within a narrow range of pulse energies. However, the strength of retardance asymptotically approaches the value typically measured in pure silica glass, which is attractive for practical applications. A similar intensity threshold for nanograting formation of about 1 TW/cm2 is observed for all glasses studied. The radially polarized vortex beam micro-converter designed as a space-variant quarter-wave retarder for the near-infrared spectral range is imprinted in commercial Schott AF32 glass.

  7. Glass properties in the yttria-alumina-silica system

    Science.gov (United States)

    Hyatt, M. J.; Day, D. E.

    1987-01-01

    The glass formation region in the yttria-alumina-silica system was investigated. Properties of glasses containing 25 to 55 wt pct yttria were measured and the effect of the composition was determined. The density, refractive index, thermal-expansion coefficient, and microhardness increased with increasing yttria content. The dissolution rate in 1N HCl increased with increasing yttria content and temperature. These glasses were also found to have high electrical resistivity.

  8. Thermal conductivities of some lead and bismuth glasses

    NARCIS (Netherlands)

    Velden, P.F. van

    1965-01-01

    Thermal conductivities have been measured, mainly at 40°C, of glasses within the systems PbO-Bi2O3-SiO2, PbO-Bi2O3-Al2O3-SiO2, and BaO- (Bi2O3 or PbO) -SiO2. Aiming at lowest thermal conductivity, preference was given to glasses of low silica and low alumina contents. Glass formation persists at

  9. Processing and characterization of new oxy-sulfo-telluride glasses in the Ge-Sb-Te-S-O system

    International Nuclear Information System (INIS)

    Smith, C.; Jackson, J.; Petit, L.; Rivero-Baleine, C.; Richardson, K.

    2010-01-01

    New oxy-sulfo-telluride glasses have been prepared in the Ge-Sb-Te-S-O system employing a two-step melting process which involves the processing of a chalcogenide glass (ChG) and subsequent melting with TeO 2 or Sb 2 O 3 . The progressive incorporation of O at the expense of S was found to increase the density and the glass transition temperature and to decrease the molar volume of the investigated oxy-sulfo-telluride glasses. We also observed a shift of the vis-NIR cut-off wavelength to longer wavelength probably due to changes in Sb coordination within the glass matrix and overall matrix polarizability. Using Raman spectroscopy, correlations have been shown between the formation of Ge- and Sb-based oxysulfide structural units and the S/O ratio. Lastly, two glasses with similar composition (Ge 20 Sb 6 S 64 Te 3 O 7 ) processed by melting the Ge 23 Sb 7 S 70 glass with TeO 2 or the Ge 23 Sb 2 S 72 Te 4 glass with Sb 2 O 3 were found to have slightly different physical, thermal, optical and structural properties. These changes are thought to result mainly from the higher moisture content and sensitivity of the TeO 2 starting materials as compared to that of the Sb 2 O 3 . - Graphical abstract: In this paper, we discuss our most recent findings on the processing and characterization of new ChG glasses prepared with small levels of Te, melted either with TeO 2 or Sb 2 O 3 powders. We explain how these new oxy-sulfo-telluride glasses are prepared and we correlate the physical, thermal and optical properties of the investigated glasses to the structure changes induced by the addition of oxygen in the Ge-Sb-S-Te glass network.

  10. Physical and mathematical modelling of gas-fired glass melting furnaces with regard to NO-formation

    International Nuclear Information System (INIS)

    May, F.; Stuchlik, O.; Kremer, H.

    1999-01-01

    The increasing demand in quality, efficiency, energy conservation and the environmental issues drive the operators of high temperature processes to optimize their furnaces. Especially the glass manufacturing industry with their high working temperatures from about 1850 K to more than 1950 K and high air preheating temperatures of above 1480 K will produce high NOx-concentrations in the flue gas if no primary measures are taken. Considering the three different paths for NO-formation it is obvious that increased thermal NO is responsible for higher emissions. The German environmental regulations on air ''TA Luft'' requires a maximum value of 500 mg/mN3 in the flue gas for most of the combustion processes but for glass melting furnaces a temporary regulation of 1200 mg/mN3 and further on to 800 mg/mN3 is valid. Due to economical reasons the level of secondary measures is to be minimized thus the main objective of research is to reduce the NOx-emissions via primary measures. The design of the furnace is very important due to its strong influence on the distribution of velocity and species. That consequently affects the temperature field and the heat transfer to the load and further on the emissions. For the understanding of the processes within these furnaces numerical simulations, which are successfully validated with experiments, can give valuable indications to optimize furnace design for the reduction of NOx-emissions. The glass melting furnace modelled here is a regenerative horseshoe furnace fired with natural gas. Combustion air is preheated within the regenerator onto a level of temperature of 1650 K. (author)

  11. Parental magmas of Mare Fecunditatis - Evidence from pristine glasses

    International Nuclear Information System (INIS)

    Jin, Y.; Taylor, L.A.

    1990-01-01

    Results are presented on the petrography and electron microprobe analyses of 14 discrete glass beads from the Luna 16 core sample (21036,15) from Mare Fecunditatis regolith, that were previously characterized as representing pristine glasses. Compared to Apollo pristine glasses analyzed by Delano (1986), the Luna 16 pristine glasses have higher CaO and Al2O3 contents but lower MgO and Ni. On the basis of their contents of MgO, FeO, Al2O3, and CaO, these pristine glasses could be divided into two groups, A and B. It is suggested that at least two parental magmas are needed to explain the chemical variations among these glasses. The Group B glasses appear to represent primitive parental magma that evolved by olivine fractionation to the compositions of the Luna 16 aluminous mare basalts, whereas the Group A volcanic glasses may represent an unusual new basalt magma type that contains a high plagioclase component. 14 refs

  12. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  13. Glass transition and composite formation in InF{sub 3}-containing oxyfluoroniobate system

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, N. N.; Ignatieva, L. N.; Marchenko, Yu. V. [Institute of Chemistry FEB RAS, Vladivostok (Russian Federation); Bouznik, V. M. [All-Russian Scientific Research Institute of Aviation Materials (Russian Federation)

    2016-05-18

    The glasses in the system MnNbOF{sub 5}-BaF{sub 2}-InF{sub 3} have been firstly synthesized and studied. The thermal parameters of these glasses are analyzed. It was stated that glass of the composition 40MnNbOF{sub 5}-40BaF{sub 2}-20InF{sub 3} is the most thermal stable in the system under study. By X-ray analysis the compositions of the crystalline phases obtained at the glass thermal treatment were determined: the main phases are Ba{sub 3}In{sub 2}F{sub 12} and BaNbOF{sub 5}. By Raman and IR spectra analysis it was stated that the networks of glasses in the system are built by the structural type of the glasses in NbO{sub 2}F-BaF{sub 2} system: (NbO{sub n}F{sub m}) polyhedra joined oxygen bridges. Indium trifluoride forms InF{sub 6} polyhedra, which are embeded between oxyfluoroniobate ions, forming a common networks or forms its own layers from InF{sub 6} polyhedra. IR-spectroscopy method showed that at devitrification of the sample 30MnNbOF{sub 5}-50BaF{sub 2}-20InF{sub 3} the band position and shape change in going from glass state to crystalline. The bands in the range 900–700 cm{sup −1} shift into the low-frequency range and transformed into narrow peaks characteristic for the crystalline state. It was determined that for this sample the IR-spectroscopy method fixes the presence of the crystalline phases at 340°C without time of exposure, despite the fact that X-ray analysis shows an amorphous state for this sample at the same temperature. It was suggested, that controlling the composition and conditions of annealing of the glasses it can be obtain the transparent glass-ceramics of definite composition.

  14. Radiation-induced transmission spectral variations of Ce3+-doped heavy germanate glasses

    International Nuclear Information System (INIS)

    Yang Yunxia; Baccaro, S.; Cecilia, A.; Rao Jinhua; Zhang Junbiao; Xia Fang; Chen Guorong

    2005-01-01

    Radiation-induced transmission spectral variations of Ce 3+ -doped heavy germanate glasses used as scintillating materials are presented. Glass matrix contains mainly GeO 2 , BaO and Gd 2 O 3 with a density higher than 5 g/cm 3 . Glasses are melted in the different atmosphere. The transmission spectra of glasses before and after radiation treatments are measured and compared. Unlike exhibiting the monotonous deterioration effect on the glass matrix, radiation plays the radiation protection role, even making enhanced transmission of Ce 3+ -doped glasses, depending upon glass melting atmosphere and radiation dose. Radiation-induced reducing and oxidizing mechanism is proposed to explain phenomena

  15. A literature review of surface alteration layer effects on waste glass behavior

    International Nuclear Information System (INIS)

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution

  16. Designing biocompatible Ti-based metallic glasses for implant applications

    International Nuclear Information System (INIS)

    Calin, Mariana; Gebert, Annett; Ghinea, Andreea Cosmina; Gostin, Petre Flaviu; Abdi, Somayeh; Mickel, Christine; Eckert, Jürgen

    2013-01-01

    Ti-based metallic glasses show high potential for implant applications; they overcome in several crucial respects their well-established biocompatible crystalline counterparts, e.g. improved corrosion properties, higher fracture strength and wear resistance, increased elastic strain range and lower Young's modulus. However, some of the elements required for glass formation (e.g. Cu, Ni) are harmful for the human body. We critically reviewed the biological safety and glass forming tendency in Ti of 27 elements. This can be used as a basis for the future designing of novel amorphous Ti-based implant alloys entirely free of harmful additions. In this paper, two first alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15 . The overheating temperature of the melt before casting can be used as the controlling parameter to produce fully amorphous materials or bcc-Ti-phase reinforced metallic glass nano-composites. The beneficial effect of Nb addition on the glass-formation and amorphous phase stability was assessed by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Crystallization and mechanical behavior of ribbons are influenced by the amount and distribution of the nano-scaled bcc phase existing in the as-cast state. Their electrochemical stability in Ringer's solution at 310 K was found to be significantly better than that of commercial Ti-based biomaterials; no indication for pitting corrosion was recorded. Highlights: ► Link between biocompatibility and glass-forming ability of alloying additions in Ti ► Selection of Ti–Zr–Si and Ti–Zr–Nb–Si glass-forming alloys ► Two novel glassy alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15. ► Glass-formation, thermal stability, corrosion and mechanical behavior were studied. ► Assessing the suitability for orthopedic applications.

  17. Studies of crystallization of SiO2-glass by positron annihilation

    International Nuclear Information System (INIS)

    Hugenschmidt, C.; Kohn, S.; Janson, M.; Holzwarth, U.; Maier, K.

    1996-01-01

    The crystallization of silica glass has been studied by positron lifetime spectroscopy and accompanying investigations using X-ray diffraction and nuclear magnetic resonance (NMR). To this end isothermal and isochronal heat treatments were performed in the range from 700 deg C up to 1600 deg C. The lifetime spectra are analyzed by two lifetime components. The decrease of the short lifetime (200 ps) is attributed to the increasing volume fraction of the crystalline phase. The long lifetime (1000 ps) is related with the pick-off annihilation of the ο-Ps states in cavities. With starting formation of crystallization nuclei the long lifetime increases which is explained by expanding cavities at the interface between crystalline phase and amorphous matrix. (author)

  18. Glass-formation and hardness of Cu-Y alloys

    International Nuclear Information System (INIS)

    Satta, Marta; Rizzi, Paola; Baricco, Marcello

    2009-01-01

    Metallic glasses exhibit particularly attractive mechanical properties, like high stresses to fracture and large elastic strain (up to 2%), but they show generally low plasticity. Aim of this work is to investigate the glass forming range in the Cu-Y system, in order to form the ductile CuY phase (CsCl structure) upon crystallization. Cu 58 Y 42 , Cu 50 Y 50 and Cu 33 Y 67 alloys have been prepared by rapid solidification and copper mould casting, obtaining ribbons and cylindrical shaped ingots, with diameter of 2 mm. Fully amorphous, partially amorphous and fully crystalline samples have been obtained for different compositions and quenching conditions. In some cases, the X-ray diffraction results, analysed using the Rietveld method, showed CuY nanocrystals embedded in an amorphous matrix. The microstructure was studied by transmission electron microscopy (TEM) and the presence of nanocrystals of the ductile phase CuY has been confirmed. Microhardness results showed a softening of the amorphous phase due to the presence of CuY nanocrystals and a hardening due to the Cu 2 Y phase.

  19. Forming Glasses from Se and Te

    Directory of Open Access Journals (Sweden)

    Pierre Lucas

    2009-10-01

    Full Text Available Despite being close neighbors on the Periodic Table, selenium and tellurium present a totally different abilities to form glasses. Se is a very good glass former, and gives rise to numerous glass compositions which are popular for their transparency in the infrared range and their stability against crystallization. These glasses can be shaped into sophisticated optical devices such as optical fibers, planar guides or lenses. Nevertheless, their transparencies are limited at about 12 μm (depending on the thickness of the optical systems due to the relatively small mass of the Se element. On the other hand, tellurium is heavier and its use in substitution for Se permits to shift the IR cutoff beyond 20 μm. However, the semimetallic nature of Te limits its glass formation ability and this glass family is known to be unstable and consequently has found application as phase change material in the Digital Versatile Disk (DVD technology. In this paper, after a review of selenide glasses and their applications, it will be shown how, in a recent past, it has been possible to stabilize tellurium glasses by introducing new elements like Ga or I in their compositions.

  20. Thermo-chemistry of nuclear waste glasses: a new approach

    International Nuclear Information System (INIS)

    Linard, Y.; Neuville, D.R.; Richet, P.

    1997-01-01

    Understanding of the stability and weathering of glasses used for storing fission products is hampered by a general lack of basic thermochemical information. Models have been setup to predict Gibbs free energies of dissolution of glasses, but ascertaining their accuracy is made difficult by the very lack of reliable experimental data with which model results should be compared. As enthalpies of formation can in principle be determined from usual solution calorimetry experiments, the lack of Gibbs-free energy data for glasses mainly stems from the fact that, as disordered substances, glasses do not obey the third principle and have indeed large configurational entropies. These entropies can be determined from thermochemical measurements only when there exist a congruently melting crystalline compound with the same composition. Using available data, we have calculated the Gibbs-free energies of formation of a series of silicate glasses for which such a calorimetric determination is possible. With these results, we assess the predictions of Paul's model (1977) for calculating Gibbs-free energies of dissolution. As the complex compositions of the borosilicate glasses used for nuclear waste storage prevent determining configurational entropies by calorimetric methods, we point out how these can be determined instead from viscosity measurements. We finally discuss the implications of this approach for modeling of water-glass interactions. (authors)

  1. Studies on color-center formation in glass utilizing measurements made during 1 to 3 MeV electron irradiation

    International Nuclear Information System (INIS)

    Swyler, K.J.; Levy, P.W.

    1976-01-01

    The coloring of NBS 710 glass has been studied using a new facility for making optical absorption measurements during and after electron irradiation. The induced absorption contains three Gaussian shaped bands. The color center growth curves contain two saturating exponential and one linear components. After irradiation the coloring decays and can be described by three decreasing exponentials. At room temperature both the coloring curve plateau and coloring rate increase with increasing dose rate. Coloring measurements made at a fixed dose rate but at increasing temperature indicate: (1) the coloring curve plateau decreases with increasing temperature and coloring has not been observed at 400 0 C; (2) the plateau is reached more rapidly as the temperature increases; (3) the decay occurring after irradiation cannot be described by Arrhenius kinetics. At each temperature the coloring can be explained by simple kinetics. The temperature dependence of the decay can be explained if it is assumed that the thermal untrapping is controlled by a distribution of activation energies

  2. Use of glasses as industrial dosimeters

    International Nuclear Information System (INIS)

    Balestic, F.

    1959-01-01

    Glasses have the property of colouring under the action of ionizing radiations. We endeavoured to specify the conditions under which the intensity of coloration can be used as a measure of the quantity of radiation to which the glass has been submitted. In the case of a glass loaded with cobalt, a study of the optical density at different wavelengths enabled us to find the factors governing the formation of coloured centres and their conservation in the glass. We give a set of calibrating curves for different values of these parameters (irradiation rate, irradiation temperature; fading time and fading temperature), enabling determination of radiation doses in the range from 10 000 to 1 000 000 rep from measured optical density. (author) [fr

  3. Ultrahigh stability of atomically thin metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Sun, Y. T.; Bai, H. Y.; Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-07

    We report the fabrication and study of thermal stability of atomically thin ZrCu-based metallic glass films. The ultrathin films exhibit striking dynamic properties, ultrahigh thermal stability, and unique crystallization behavior with discrete crystalline nanoparticles sizes. The mechanisms for the remarkable high stability and crystallization behaviors are attributed to the dewetting process of the ultrathin film. We demonstrated a promising avenue for understanding some fundamental issues such as glassy structure, crystallization, deformation, and glass formation through atomic resolution imaging of the two dimensional like metallic glasses.

  4. Mechanical Properties of Densified Tectosilicate Calcium-Aluminosilicate Glasses

    DEFF Research Database (Denmark)

    Johnson, Nicole; Lamberson, Lisa; Smedskjær, Morten Mattrup

    Aluminosilicate glasses are widely used in applications such as LCD glass, touchscreens for hand held devices and car windows. We have shown that the tectosilicate compositions exhibit an interesting non-monotonic variation in hardness with increasing SiO2 content. From 40% to 85 mol% SiO2......, hardness and indentation modulus both decrease, consistent with the topological constraint theory. Above 85 mol% SiO2 , hardness increases rapidly with increasing SiO2 content while modulus continues to decrease. A switch from shear to densification based on the species present in the glass has been...... proposed to explain this behavior. To reduce densification and study shear deformation independently, a series of calcium aluminosilicate glasses with tectosilicate compositions were densified by isostatic compression in a gas pressure chamber at elevated temperatures. The compressed glasses have increased...

  5. Discontinuous nature of the repulsive-to-attractive colloidal glass transition.

    Science.gov (United States)

    van de Laar, T; Higler, R; Schroën, K; Sprakel, J

    2016-03-04

    In purely repulsive colloidal systems a glass transition can be reached by increasing the particle volume fraction beyond a certain threshold. The resulting glassy state is governed by configurational cages which confine particles and restrict their motion. A colloidal glass may also be formed by inducing attractive interactions between the particles. When attraction is turned on in a repulsive colloidal glass a re-entrant solidification ensues. Initially, the repulsive glass melts as free volume in the system increases. As the attraction strength is increased further, this weakened configurational glass gives way to an attractive glass in which motion is hindered by the formation of physical bonds between neighboring particles. In this paper, we study the transition from repulsive-to-attractive glasses using three-dimensional imaging at the single-particle level. We show how the onset of cage weakening and bond formation is signalled by subtle changes in local structure. We then demonstrate the discontinuous nature of the solid-solid transition, which is marked by a critical onset at a threshold bonding energy. Finally, we highlight how the interplay between bonding and caging leads to complex and heterogeneous dynamics at the microscale.

  6. Inward Cationic Diffusion and Formation of Silica-Rich Surface Nanolayer of Glass

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

    2009-01-01

    form and are incorporated into the glass structure. Both the V4+ and the hydroxyl contents increase with increasing ta and hydrogen partial pressure. The inward diffusion enhances the hardness of the glass surface. The mechanism of the inward diffusion is suggested on the basis of a model describing...

  7. Ion beam induced nanosized Ag metal clusters in glass

    International Nuclear Information System (INIS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  8. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  9. Alteration of rhyolitic (volcanic) glasses in natural Bolivian salt lakes. - Natural analogue for the behavior of radioactive waste glasses in rock salt repositories

    International Nuclear Information System (INIS)

    Abdelouas, A.

    1996-06-01

    Alteration experiments with the R7T7 glass in three salt brines, saturated respectively in MgCl 2 , MgCl 2 -CaCl 2 and NaCl, showed that the solubilities of most radionuclides are controlled by the secondary phases. Nd, La, and Pr are trapped in powellite, Ce in cerianite, U in coffinite, and Sr is partially immobilized in barite. There is a good similarity between the secondary phases formed experimentally on volcanic glasses and the R7T7 glass altered in MgCl 2 CaCl 2 -saturated brine (formation of hydrotalcite and chlorite-serpentine at short-term and saponite at long-term). These results support the use of volcanic glasses alteration patterns in Mg-rich solutions (seawater, brines) to understand the long-term behavior of nuclear waste glasses and to evaluate the stability of the secondary phases. The study of the sediments of Uyuni (Bolivia) showed that the corrosion rate of the rhyolitic glass in brines at 10 C is 12 to 30 time lower than those of rhyolitic glasses altered in high dilute conditions. The neoformed phases in the sediments are: Smectite, alunite, pyrite, barite, celestite and cerianite. The low alteration rate of rhyolitic glasses in brines and the formation of secondary phases such as smectite, barite and cerianite (also formed during the experimental alteration of the R7T7 glass), permit us to expect the low alteration of nuclear waste glasses at long-term in brines and the trapping of certain radionuclides in secondary phases. (orig.) [de

  10. Modifying glass surfaces via internal diffusion

    DEFF Research Database (Denmark)

    Smedskjaer, M.M.; Yue, Y.Z.; Deubener, J.

    2010-01-01

    leads to outward diffusion (OD) of divalent cations (primarily Mg2+), i.e., diffusion from the interior of the glass to the surface, and thereby, to formation of an oxide surface nano-layer. in contrast, when the glasses are heat-treated in H-2/N-2 gas containing 10 vol.% H-2, reduction of Fe3+ to Fe2...... on some properties such as hardness, chemical durability, and surface wettability....

  11. A new parameter to evaluate the glass-forming ability of bulk metallic glasses

    International Nuclear Information System (INIS)

    Suo, Z.Y.; Qiu, K.Q.; Li, Q.F.; You, J.H.; Ren, Y.L.; Hu, Z.Q.

    2010-01-01

    Research highlights: → Develop a new criterion, i.e., Q=((T g +T x )/T l ).(ΔE/ΔH). → The reliability and benefits of the new criterion have been demonstrated in a wide range of BMG alloys. → It corresponds well with the critical diameter of BMGs investigated up to now. - Abstract: Based on the consideration of the liquid phase stability, the resistance to crystallization and the glass transition enthalpy, a new criterion Q, defined as ((T g + T x )/T l ).(ΔE/ΔH), where the T g , T x , T l , ΔE and ΔH are the glass transition temperature, the onset crystallization temperature, the liquidus temperature, the crystalline enthalpy and the fusion enthalpy, respectively, has been proposed for evaluating the glass-forming ability of bulk metallic glasses. The new criterion Q exhibits better correlation with the maximum cross section thickness (D m ) for glass formation compared with γ (=T x /(T l + T g )), T rg (=T g /T l ) and ΔT x (=T x - T g ) respectively. The available data from literatures and experiments have confirmed the effectiveness of the newly developed criterion.

  12. Glass-water interphase reactivity with calcium rich solutions

    International Nuclear Information System (INIS)

    Chave, T.; Frugier, P.; Gin, S.; Chave, T.; Ayral, A.

    2011-01-01

    The effect of calcium on synthetic glass alteration mechanisms has been studied. It is known that the higher the calcium content in the glass, the higher the forward rate. However, in a confined medium reaching apparent saturation state and a pH (90 degrees C) around 9, synthetic calcium-bearing glasses are those with the lowest alteration rates. This work brings new and fundamental evidence toward understanding the alteration mechanisms: the rate-decreasing effect of calcium exists even if the calcium comes from the solution. Calcium from solution reacts with silica network in the hydrated layer at the glass surface. The calcium effect on the alteration kinetics is explained by the condensation of a passivating reactive interphase (PRI) whose passivating properties are strongly enhanced when calcium participates in its construction. These experiments provide new evidence of the role of condensation mechanisms in glass alteration. This better understanding of the calcium effect on glass long-term behavior will be useful both for improving glass formulations and for understanding the influence of the water composition. (authors)

  13. Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Silva Maurício A.P.

    2002-01-01

    Full Text Available The vitreous domain was established in the PbF2-CdF2-B2O 3 system from melting and quenching experiments. Er3+ containing glasses were prepared and glass ceramics were obtained by selected heat-treatments. Lead fluoride was identified (beta-PbF2 as the crystalline phase. Structural studies were performed in some glassy and partially crystallized samples by means of X-ray Diffraction (XRD and Extended X-ray Absorption Fine Structure (EXAFS measurements. The role of Cd2+ and Pb2+ atoms on the glass network formation and also on the crystallization behavior was put forward by these techniques. After crystallization Er3+ atoms segregated in the crystal phase.

  14. Preparation and characterization of an improved borosilicate glass for the solidification of high level radioactive fission product solutions (HLW). Pt. 2

    International Nuclear Information System (INIS)

    Kahl, L.; Ruiz-Lopez, M.C.; Saidl, J.; Dippel, T.

    1982-04-01

    In the 'Institut fuer Nuklare Entsorgungstechnik' the borosilicate glass VG 98/12 has been developed for the solidification of the high level radioactive waste (HLW). This borosilicate glass can be used in a direct heated ceramic melter and forms together with the HLW the borosilicate glass product GP 98/12. This borosilicate glass product has been examined in detail both in liquid and solid state. The elements contained in the HLW can be incorporated without problems. Only in a few exceptions the concentration must be kept below certain limits to exclude the formation of a second phase ('yellow phase') by separation. No spontaneous crystallization and no crystallization over a long time could be observed as long as the temperature of the borosilicate glass product is kept below its transformation area. Simulating accidental conditions in the final storage, samples had been leached at temperatures up to 200 0 C and pressures up to 130 bar with saturated rock salt brine and saturated quinary salt brine. The leaching process seems to be stopped by the formed 'leached layer' on the surface of the borosilicate glass product after a limited leaching time. Detailed investigations have been started to explain this phenomenon. (orig.) [de

  15. Phase transformations and thermodynamics of aluminum-based metallic glasses

    Science.gov (United States)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  16. New generation Li+ NASICON glass-ceramics for solid state Li+ ion battery applications

    Science.gov (United States)

    Sharma, Neelakshi; Dalvi, Anshuman

    2018-04-01

    Lithiumion conducting NASICON glass-ceramics have been prepared by a novel planetary ball milling assisted synthesis route. Structural, thermal and electrical investigations have been carried out on the novel composites composed of LiTi(PO4)3 (LTP) and 50[Li2SO4]-50[Li2O-P2O5] ionic glass reveal interesting results. Composites were prepared keeping the concentration of the ionic glass fixed at 20 wt%. X-ray diffraction and diffe rential thermal analysis confirm the glass-ceramic formation. Moreover, the structure of LTP remains intact during the glass -ceramic formation. Electrical conductivity of the glass-ceramic composite is found to be higher than that of the pristine glass (50LSLP) and LTP. The bulk and grain boundary conductivities of LTP exhibit improvement in composite. Owing to high ionic conductivity and thermal stability, novel glass -ceramic seems to be a promising candidate for all solid-state battery applications.

  17. Study of rhyolitic glasses alteration in contact with natural brines (Bolivia). Application to the study of the long-term behaviour of the R7T7 nuclear glass

    International Nuclear Information System (INIS)

    Abdelouas, A.

    1996-01-01

    The purpose of this work is to complement an experimental program on the R7T7 nuclear waste glass alteration in brines at 190 deg C in Germany by the analysis of the structure and the chemical composition of the alteration layers, and to study the alteration of rhyolitic glasses in natural brines from Bolivia as analogue for nuclear waste glasses disposed in salt formations. Alteration experiments with the R7T7 and basaltic glasses and obsidian in MgCl 2 -CaCl 2 -saturated brine at 190 deg. C were also conducted in order to study the influence of the glass composition on the nature of the secondary phases. The experiments with the R7T7 glass in three salt brines, saturated respectively in MgCl 2 , MgCl 2 -CaCl 2 and NaCl, showed that the solubilities of most radionuclides are controlled by the secondary phases. Nd, La, and Pr are trapped in powellite, Ce in cerianite, U in coffinite, and Sr is partially immobilized in barite. These phases are stable for more than one year. There is a good similarity between the secondary phases formed experimentally on volcanic glasses and the R7T7 glass altered in MgCl 2 -CaCl 2 -saturated brine. The abundance of Mg in solution permits the formation of similar magnesian clays on the glass samples independently of the nature of the initial glasses. These results support the use of volcanic glasses alteration patterns in Mg-rich solutions to understand the long-term behavior of nuclear waste glasses and to evaluate the stability of the secondary phases. The study of the sediments of Uyuni (Bolivia) showed that the corrosion rate of the rhyolitic glass in brines at 10 deg. C is 12 to 30 time lower than those of rhyolitic glasses altered in high dilute conditions. The low alteration rate of rhyolitic glasses in brines and the formation of secondary phases such as smectite, barite and cerianite (also formed during the experimental alteration of the R7T7 glass), permit us to expect the low alteration of nuclear waste glasses at long

  18. Haw-glass dissolution and radionuclide release: mechanism - modelling - source term

    Energy Technology Data Exchange (ETDEWEB)

    Grambow, B [Forschungszentrum Karlsruhe, Institut fur Nukleare, Karlsruhe (Germany)

    1997-07-01

    Important release controlling processes are: 1) kinetics of glass matrix dissolution (leaching), 2) formation of secondary alteration products (controlling thermodynamic solubility), 3) sorption on surfaces in the engineered barrier system and 4) formation of mobile species. Quantification of these processes requires assessment of the energetics and dynamics of the various reversible and irreversible processes within an overall open non-equilibrium system. Corrosion/dissolution of the waste matrices is not necessarily associated with a proportional release of radionuclides. The formation of new secondary phases, such as silicates, molybdates, uranates, carbonates... establishes a new geochemical barrier for re-immobilization of radionuclides dissolved from the waste matrices. The presence of iron (corroding canisters during glass alteration) reduces the solution concentration of redox sensitive radionuclides. Consequently, the container, after being corroded, constitutes an important geochemical barrier for radionuclide re-immobilization. Geochemical modelling of the long-term behaviour of glasses must be performed in an integrated way, considering simultaneous reactions of the glass, of container corrosion, of repository rock and of backfill material. Until now, only few attempts were made for integral systems modelling. (A.C.)

  19. Bioactive Glass Nanopowder for theTreatment of Oral Bone Defects

    Directory of Open Access Journals (Sweden)

    MH. Fathi

    2007-09-01

    Full Text Available Objective: Osseous defects around dental implants are often seen when implants are placed in areas with inadequate alveolar bone, or around failing implants. Bone regenera-tion in these areas using bone grafts or its substitutes may improve dental implants prog-nosis. The aim of this study was to prepare and characterize the bioactive glass nanopow-der and development of its coating for treatment of oral bone defects.Materials and Methods: Bioactive bioglass coating was made on stainless steel plates by sol-gel technique. The powder shape and size was evaluated by transmission electron mi-cropscopy, and thermal properties studied using differential thermal analysis (DTA. Structural characterization techniques (XRD were used to analyze and study the structure and phase present in the prepared bioactive glass nanopowder. This nanopowder was immersed in the simulated body fluid (SBF solution. Fourier transform infrared spec-troscopy (FTIR was utilized to recognize and confirm the formation of apatite layer on prepared bioactive glass nanopowder.Results: The bioglass powder size was less than 100 nanometers which was necessary for better bioactivity, and preparing a homogeneous coating. The formation of apatite layer confirmed the bioactivity of the bioglass nanopowder. Crack-free and homogeneous bioglass coatings were achieved with no observable defects.Conclusion: It was concluded that the prepared bioactive glass nanopowder could be more effective as a bone replacement material than conventional bioactive glass to pro-mote bone formation in osseous defects. The prepared bioactive glass nanopowder could be more useful for treatment of oral bone defects compare to conventional hydroxyapatite or bioactive glass.

  20. Stereodynamic insight into the thermal history effects on poly(vinyl chloride) calorimetric sub-glass and glass transitions as a fragile glass model.

    Science.gov (United States)

    Pin, Jean-Mathieu; Behazin, Ehsan; Misra, Manjusri; Mohanty, Amar

    2018-05-02

    The dynamic thermal history impact of poly(vinyl chloride) (PVC) has been explored for a wide range of pre-cooling rates, from 1 to 30 °C min-1. A first macroscopic insight into the dynamic thermal history influence has been highlighted through a decrease in the apparent activation energy (Eapp) in the first stage of the glass transition. The overall glass transition Eapp surface was successfully modeled in a polynomial fashion regarding the pre-cooling range. Raman scattering was used to associate the Eapp variations along the glass transition conversion with the stereochemistry evolution during the polymeric relaxation. Herein, the selection of atactic PVC as the polymer model permits us to monitor the glassy polymer segment stereodynamics during the heating ramp through the C-Cl stretching. The intermolecular H-Cl dipole interactions, as well as intramolecular conformational reorganizations among syndiotactic, isotactic and heterotactic polymer sequences, have been associated with non-cooperative and cooperative motions, i.e. the β- and α-process, respectively. The fruitful comparison of the two extreme values of the pre-cooling rates permits us to propose a thermokinetic scenario that explains the occurrence, intensity, and inter-dependence of β- and α-processes in the glassy state and during the glass transition. This scenario could potentially be generalized to all the other polymeric glass-formers.

  1. Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.Y. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, G.P. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Niu, X.R. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-04-05

    Highlights: • An atomistic approach has been developed to predict the glass forming ability (GFA) in Zr–Cu–Al ternary alloy system. • Both of the thermodynamic and structure-dependent kinetic effects to glass formation have been taken into account. • The first-principles calculation and molecular dynamics simulation have been performed. • The approach predicts the best glass former in the model Zr–Cu–Al alloy system. • The predicted GFA is consistent with various experimental results. - Abstract: Prediction of composition-dependent glass-forming ability (GFA) remains to be a key scientific challenge in the metallic-glass community, especially in multi-component alloy systems. In the present study, we apply an atomistic approach to predict the trend of GFA effectively in the Zr–Cu–Al ternary alloy system from alloy compositions alone. This approach is derived from the first-principles calculations based on the density-functional theory and molecular dynamic (MD) simulations. By considering of both the thermodynamic and atomic-structure induced kinetic effects, the predicted GFA trend from this approach shows an excellent agreement with experimental data available in this alloy system, manifesting its capability of seeking metallic glasses with superior GFA in ternary alloy systems.

  2. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  3. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  4. Role of oxygen on the optical properties of borate glass doped with ZnO

    International Nuclear Information System (INIS)

    Abdel-Baki, Manal; El-Diasty, Fouad

    2011-01-01

    Lithium tungsten borate glass (0.56-x)B 2 O 3 -0.4Li 2 O-xZnO-0.04WO 3 (0≤x≤0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B 2 O 3 the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density, which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B 2 O 3 , which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: → New borate glass for photonic application is prepared. → The dispersion property of the glass is effectively controlled using small amounts of ZnO. → ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. → Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.

  5. Paramagnetic centers in ternary coordinated oxygen in beryllium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Blaginina, L.A.; Zatsepin, A.F.; Dmitriev, I.A.

    1988-01-01

    Glasses of the composition 3BeO-Al 2 O 3 -6SiO 2 containing a homogenizing additive of MgF 2 were synthesized. The ESR spectra of x-ray and gamma irradiated specimens were determined. A complex ESR spectrum arose in the original glass. The ESR spectrum of the gamma-irradiated polycrystalline Be 2 SiO 4 glass was almost identical to the crystallized glass. It was shown that the presence of beryllium atoms in the composition of silicate glasses created the conditions for the formation of structural fragments with ternary coordinated oxygen

  6. Glass-formation and hardness of Cu-Y alloys

    Energy Technology Data Exchange (ETDEWEB)

    Satta, Marta; Rizzi, Paola [Dipartimento di Chimica IFM and NIS/INSTM/CNISM, Universita di Torino, v. Giuria 9, I-10125 Torino (Italy); Baricco, Marcello, E-mail: marcello.baricco@unito.i [Dipartimento di Chimica IFM and NIS/INSTM/CNISM, Universita di Torino, v. Giuria 9, I-10125 Torino (Italy)

    2009-08-26

    Metallic glasses exhibit particularly attractive mechanical properties, like high stresses to fracture and large elastic strain (up to 2%), but they show generally low plasticity. Aim of this work is to investigate the glass forming range in the Cu-Y system, in order to form the ductile CuY phase (CsCl structure) upon crystallization. Cu{sub 58}Y{sub 42}, Cu{sub 50}Y{sub 50} and Cu{sub 33}Y{sub 67} alloys have been prepared by rapid solidification and copper mould casting, obtaining ribbons and cylindrical shaped ingots, with diameter of 2 mm. Fully amorphous, partially amorphous and fully crystalline samples have been obtained for different compositions and quenching conditions. In some cases, the X-ray diffraction results, analysed using the Rietveld method, showed CuY nanocrystals embedded in an amorphous matrix. The microstructure was studied by transmission electron microscopy (TEM) and the presence of nanocrystals of the ductile phase CuY has been confirmed. Microhardness results showed a softening of the amorphous phase due to the presence of CuY nanocrystals and a hardening due to the Cu{sub 2}Y phase.

  7. Influence of biofilm formation on the optical properties of novel bioactive glass-containing composites.

    Science.gov (United States)

    Hyun, Hong-Keun; Ferracane, Jack L

    2016-09-01

    Bioactive glass (BAG) has been suggested as a possible additive for dental restorative materials because of its antimicrobial effect and potential for promoting apatite formation in body fluids. The purpose of this study was to investigate the effects of bacterial biofilm on the change of colorimetric value and translucency of novel BAG-containing composites having different initial surface roughness. Composites with 72wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG (65 mol % Si; 4% P; 31% Ca), BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B), or silanized silica. Light-cured discs of 2-mm thickness (n=10/group) were divided into 4 different surface roughness subgroups produced by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. CIE L*a*b* were measured and the color difference and translucency parameter (TP) were calculated before and after incubating in media with or without a Streptococcus mutans (UA 159) biofilm for 2 wks (no agitation). Results were analyzed using ANOVA/Tukey's test (α=0.05). All the color differences for BAG and BAG-F composite showed significant decreases with bacterial biofilm compared to media-only. The mean TP (SD) of BAG and BAG-F composite before aging [10.0 (2.8) and 8.5 (1.4)] was higher than that of the control composite [4.9 (0.8)], while the change in TP with aging was greater compared to the control with or without bacteria. BAG-F composites with the smoothest surfaces showed a greater decrease in TP under bacterial biofilm compared to the BAG composite. Highly polished dental composites containing bioactive glass additives may become slightly rougher and show reduced translucency when exposed to bacterial biofilms, but do not discolor any more than control composites that do not contain the BAG. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  8. Effects of beta/gamma radiation on nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-07-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted {beta}-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of {beta}/{gamma} radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  9. Effects of beta/gamma radiation on nuclear waste glasses

    International Nuclear Information System (INIS)

    Weber, W.J.

    1997-01-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted β-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of β/γ radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  10. Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives.

    Science.gov (United States)

    Agathopoulos, S; Tulyaganov, D U; Ventura, J M G; Kannan, S; Karakassides, M A; Ferreira, J M F

    2006-03-01

    New bioactive glasses with compositions based on the CaO-MgO-SiO(2) system and additives of B(2)O(3), P(2)O(5), Na(2)O, and CaF(2) were prepared. The in vitro mineralization behaviour was tested by immersion of powders or bulk glasses in simulated body fluid (SBF). Monitoring of ionic concentrations in SBF and scanning electron microscopy (SEM) observations at the surface of the glasses were conducted over immersion time. Raman and infrared (IR) spectroscopy shed light on the structural evolution occurring at the surface of the glasses that leads to formation of hydroxyapatite.

  11. Long-term behavior of glass-ceramic zirconolite; Etude du comportement a long terme des vitrocristallins a base de zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ch

    2003-07-01

    This work is a part of the investigation of new containment matrices considered for specific conditioning of radionuclides after separation. The aim was to demonstrate the long-term aqueous corrosion resistance of the glass-ceramic zirconolite considered for the conditioning of plutonium and the minor actinides. This material is composed of crystals of zirconolite (CaZrTi{sub 2}O{sub 7}) dispersed in a residual vitreous phase. It appears that glass-ceramic zirconolite presents a better kinetic behavior than the nuclear glass R 7T7. This is mainly due to a more important rate decrease that occurs more rapidly, that induces a quantity of glass altered at least 10 times as small as for R 7T7 glass. This high slowdown of the alteration rate is attributed to the formation of an alteration film that has been the subject of a specific study. We have demonstrated that the rate decrease was controlled as for the R7T7 glass by the amorphous phase of the alteration film forming a diffusion barrier for reactive species. It seems that the porosity is not the single parameter that explains the protective effect of the gel. The main differences compared with R7T7 glass are that silicon does not control the alteration of the material and that the gel is composed of two distinct phases. We have in particular identified a dense phase enriched in titanium and neodymium that probably influences deeply the kinetics. (author)

  12. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    International Nuclear Information System (INIS)

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  13. Low temperature uniform plastic deformation of metallic glasses during elastic iteration

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Wang Zheng; Liu Yanhui; Sheng, Howard; Wang Weihua; Chen Mingwei

    2012-01-01

    Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.

  14. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    International Nuclear Information System (INIS)

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-01-01

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation

  15. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  16. EXAFS and RDF studies of Ge27S53I20 glass

    International Nuclear Information System (INIS)

    Nasu, H.; Myoren, H.; Makida, S.; Imura, T.; Osaka, Y.

    1988-01-01

    Detailed X-ray diffraction measurements and extended X-ray absorption fine structure (EXAFS) have been applied to Ge 23 S 57 I 20 glass as a typical chalcohalide glass and to GeS 2 glass for comparison, in order to investigate the structure of Ge-S-I glass system. From the derived curves against atomic distance, the formation of Ge-I bonds is evidenced in the glass structure. (author) 4 refs., 2 figs., 1 tab

  17. Structural analysis and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics.

    Science.gov (United States)

    Kansal, Ishu; Tulyaganov, Dilshat U; Goel, Ashutosh; Pascual, Maria J; Ferreira, José M F

    2010-11-01

    Glass-ceramics in the diopside (CaMgSi2O6)-fluorapatite (Ca5(PO4)3F)-wollastonite (CaSiO3) system are potential candidates for restorative dental and bone implant materials. The present study describes the influence of varying SiO2/CaO and CaF2/P2O5 molar ratio on the structure and thermal behavior of glass compositions in the CaO-MgO-SiO2-P2O5-Na2O-CaF2 system. The structural features and properties of the glasses were investigated by nuclear magnetic resonance (NMR), infrared spectroscopy, density measurements and dilatometry. Sintering and crystallization behavior of the glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. The microstructure and crystalline phase assemblage in the sintered glass powder compacts were studied under non-isothermal heating conditions at 825 °C. X-ray diffraction studies combined with the Rietveld-reference intensity ratio (R.I.R) method were employed to quantify the amount of amorphous and crystalline phases in the glass-ceramics, while scanning electron microscopy was used to shed some light on the microstructure of resultant glass-ceramics. An increase in CaO/SiO2 ratio degraded the sinterability of the glass powder compacts, resulting in the formation of akermanite as the major crystalline phase. On the other hand, an increase in P2O5/CaF2 ratio improved the sintering behavior of the glass-ceramics, while varying the amount of crystalline phases, i.e. diopside, fluorapatite and wollastonite. Copyright © 2010. Published by Elsevier Ltd.

  18. Study of radiation effects on some glasses and their applications in radiation dosimetry

    International Nuclear Information System (INIS)

    Mohammad, A.El.

    2008-01-01

    that the obtained X-ray patterns did not reveal any crystalline phase in the glass, i.e. they were completely amorphous before and after irradiation with different gamma doses. Differential thermal analysis (DTA): The differential thermal analysis (DTA) thermo grams, shows the two characteristic glass transition temperature T g and the crystallization temperature T c . The increase of gamma dose leads to an increase in both T g and T c . This behavior again is repeated for LPTB Cu but with lower values of T g and T c compared to LPTB glass. From the measured values of T g and T c it is concluded that T g decreases by 7% and T c decreasing by 8% on adding traces of copper to the glass LPTB. While on the other hand the thermal stability factor (S) increased by 13.5 %. This behavior may be explained on the basis of the increase of rigidity of the network, which has been strengthened by the presence of copper which is participating in the formation of the glass network

  19. Composition effect of potassium-borate glasses on their relaxation properties

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1995-01-01

    Relaxation processes in potassium-borate glasses have been investigated in detail for the first time. It is shown that low-temperature β-process of relaxation relating to rotational mobility of the B-O bond is the same for all potassium-borate glasses and B 2 O 3 . The process of β k -relaxation related to diffusion mobility of potassium ions depends on the composition of the glasses in the same way as α-relaxation (glass formation).12 refs., 10 figs., 2 tabs

  20. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Babilas, Rafał, E-mail: rafal.babilas@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Nowosielski, Ryszard; Pawlyta, Mirosława [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Fitch, Andy [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble (France); Burian, Andrzej [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4 St., 40-007 Katowice (Poland)

    2015-04-15

    New magnesium-based bulk metallic glasses Mg{sub 60}Cu{sub 30}Y{sub 10} have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200 nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3 nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix. - Highlights: • RMC modeling demonstrates some kinds of SRO structures in Mg-based BMGs. • HRTEM indicated MRO regions about 2–3 nm and SRO regions about 0.5 nm in size. • Mg-based glassy alloys were successfully annealed to become nanocomposite material. • Crystalline particles have spherical morphology with an average diameter of 200 nm. • Glassy alloy had higher corrosion resistance than a nanocomposite sample.

  1. Characterization of damage created by alpha disintegrations in radionuclear waste glass

    International Nuclear Information System (INIS)

    Jacquet-Francillon, N.; Mueller, P.

    1990-01-01

    Study of thermostimulated luminescence of an alpha irradiated glass used as radionuclear waste glass has revealed the formation of a structural defect induced by alpha irradiation. To detect this structural modification the thermostimulated signal of an alpha irradiated sample is recorded under certain conditions. The nature of generated defects has been established using synthetic glasses of more simple composition such as silica or boro-silicate glasses. Results obtained with these simple glasses are transposed to alpha irradiated radionuclear waste glass. The problem is to see how autoirradiated glass could evolve in time. For this purpose actinide-doped glasses are now being fabricated and specific thermostimulated luminescence equipment has been developed for this purpose

  2. Casting of organic glass by radiation-induced polymerization of glass-forming monomers at low temperature. II. Optical strain of remaining stress type

    International Nuclear Information System (INIS)

    Okubo, H.; Yoshii, F.; Kaetsu, I.; Honda, S.

    1978-01-01

    Previously it was found that casting could be carried out efficiently without strain formation by radiation-induced polymerization of glass-forming monomers. Two types of strain were observed in casting: thermal stream type, which was studied previously, and remained stress type. In this report, the effect of various factors on the formation of remaining stress-type strain in radiation-induced casting polymerization was studied. It was found that the molecular weight of prepolymer did not affect strain formation, while prepolymer concentration and viscosity of the system had a serious influence on strain formation. It could be deduced that this type of strain formed as a result of remaining inner stress due to poor relaxation of the shrinking stress. It was realized that less volume shrinkage of glass-forming monomers accompanying casting polymerization reduced the strain formation of this type in radiation-induced casting polymerization at low temperatures

  3. Novel Synthesis of Calcium Oxide-Aluminum Oxide Glasses

    Science.gov (United States)

    Weber, J. K. Richard; Tangeman, Jean A.; Key, Thomas S.; Hiera, Kirsten J.; Paradis, Paul-Francois; Ishikawa, Takehiko; Yu, Jianding; Yoda, Shinichi

    2002-05-01

    Binary Al2O3:CaO glasses containing 36-50 mole% Al2O3 were synthesized by containerless processing of liquids in nitrogen using aerodynamic and a pressurized electrostatic-aerodynamic levitator. The critical cooling rate for glass formation RC under containerless conditions was ca. 70 K/s. The Vickers hardness of the glasses was 775-785; and the infrared transmission extended to approximately 5500 nm. The work function of the 36 mole% Al2O3 composition was 3.7 eV at 1100 K.

  4. A new method locating good glass-forming compositions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dechuan [Department of Materials Physics and Chemistry, Northeastern University, No.3-11, Wenhua Road, Shenyang, 110819 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Geng, Yan [Department of Materials Physics and Chemistry, Northeastern University, No.3-11, Wenhua Road, Shenyang, 110819 (China); Li, Zhengkun [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Liu, Dingming [Department of Materials Physics and Chemistry, Northeastern University, No.3-11, Wenhua Road, Shenyang, 110819 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Fu, Huameng; Zhu, Zhengwang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Qi, Yang, E-mail: qiyang@imp.neu.edu.cn [Department of Materials Physics and Chemistry, Northeastern University, No.3-11, Wenhua Road, Shenyang, 110819 (China); Zhang, Haifeng, E-mail: hfzhang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China)

    2015-10-15

    A new method was proposed to pinpoint the compositions with good glass forming ability (GFA) by combining atomic clusters and mixing entropy. The clusters were confirmed by analyzing competing crystalline phases. The method was applied to the Zr–Al–Ni–Cu–Ag alloy system. A series of glass formers with diameter up to 20 mm were quickly detected in this system. The good glass formers were located only after trying 5 compositions around the calculated composition. The method was also effective in other multi-component systems. This method might provide a new way to understand glass formation and to quickly pinpoint compositions with high GFA. - Highlights: • A new method was proposed to quickly design glass formers with high glass forming ability. • The method of designing pentabasic Zr–Al–Ni–Cu–Ag alloys was applied. • A series of new Zr-based bulk metallic glasses with critical diameter of 20 mm were discovered.

  5. A new method locating good glass-forming compositions

    International Nuclear Information System (INIS)

    Yu, Dechuan; Geng, Yan; Li, Zhengkun; Liu, Dingming; Fu, Huameng; Zhu, Zhengwang; Qi, Yang; Zhang, Haifeng

    2015-01-01

    A new method was proposed to pinpoint the compositions with good glass forming ability (GFA) by combining atomic clusters and mixing entropy. The clusters were confirmed by analyzing competing crystalline phases. The method was applied to the Zr–Al–Ni–Cu–Ag alloy system. A series of glass formers with diameter up to 20 mm were quickly detected in this system. The good glass formers were located only after trying 5 compositions around the calculated composition. The method was also effective in other multi-component systems. This method might provide a new way to understand glass formation and to quickly pinpoint compositions with high GFA. - Highlights: • A new method was proposed to quickly design glass formers with high glass forming ability. • The method of designing pentabasic Zr–Al–Ni–Cu–Ag alloys was applied. • A series of new Zr-based bulk metallic glasses with critical diameter of 20 mm were discovered

  6. MoO3 incorporation in magnesium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-01-01

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO 3 ) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO 3 can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO 3 increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO 4 2− units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO 4

  7. Durability of simulated waste glass: effects of pressure and formation of surface layers

    International Nuclear Information System (INIS)

    Wicks, G.G.; Mosley, W.C.; Whitkop, P.G.; Saturday, K.A.

    1981-01-01

    The leaching behavior of simulated Savannah River Plant (SRP) waste glass was studied at elevated pressures and anticipated storage temperatures. An integrated approach, which combined leachate solution analyses with both bulk and surface studies, was used to study the corrosion process. Compositions of leachates were evaluated by colorimetry and atomic absorption. Used in the bulk and surface analyses were optical microscopy, scanning electron microscopy, x-ray energy spectroscopy, wide-angle x-ray, diffraction, electron microprobe analysis, infrared reflectance spectroscopy, electron spectroscopy for chemical analysis, and Auger electron spectroscopy. Results from this study show that there is no significant adverse effect of pressure, up to 1500 psi and 90 0 C, on the chemical durability of simulated SPR waste glass leached for one month in deionized water. In addition, the leached glass surface layer was characterized by an adsorbed film rich in minor constituents from the glass. This film remained on the glass surface even after leaching in relatively alkaline solutions at elevated pressures at 90 0 C for one month. The sample surface area to volume of leachant ratios (SA/V) was 10:1 cm -1 and 1:10 cm -1 . The corrosion mechanisms and surface and subsurface layers produced will be discussed along with the potential importance of these results to repository storage

  8. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  9. Characterization of the alteration products formed at the surface of LaYSiAlO and CeYSiAlO glasses using ERDA and RBS techniques

    International Nuclear Information System (INIS)

    Gavarini, S.; Trocellier, P.; Matzen, G.

    2004-01-01

    Leaching tests have been performed on LnYSiAlO glasses (Ln = La or Ce) that are considered as potential matrices for the specific immobilization of minor actinides. Elastic recoil detection analysis (ERDA) performed on leached samples indicated a superficial hydration of LaYSiAlO glass of about 100-150 nm. This hydrated layer is (Al, Y)-enriched according to SEM-EDS analysis, suggesting the formation of hydroxide (or hydroxycarbonates) compounds including these two elements. This process leads to a very efficient passivation of the material due to the low solubility of Al and Y hydroxides (and hydroxycarbonates) species in near neutral media, even when the solution is rapidly replenished is dynamic leaching experiments. Rutherford Backscattering Spectrometry elemental mapping revealed very localized and significantly Y-enriched deposits at the surface of the sample after leaching. This could be the sign of heterogeneities already present on the pristine glass. These may be correlated with the weak solubility of yttrium (and rare earth) elements in silicate matrices (Y + Ln initial content in the glass ∼11 at.%). In the case of CeYSiAlO glass, a thin layer was formed on the solid after leaching. The simulation of the corresponding RBS spectra showed a surface (Y, Ce)-enrichment and (Al, Si)-depletion in both cases. This could be explained by the oxidation of trivalent cerium initially present in the glass structure during leaching. This might be explained by the low solubility of Ce(IV)-compounds (CeO 2 and/or Ce(OH) 4 ) in solution leading to an enrichment of this element at the glass/solution interface, to form a mixture of amorphous CeO 2 and Y(OH) 3 , as confirmed by XPS and XRD experiments

  10. Gauge theory of glass transition

    International Nuclear Information System (INIS)

    Vasin, Mikhail

    2011-01-01

    A new analytical approach for the description of the glass transition in a frustrated system is suggested. The theory is based on the non-equilibrium dynamics technique, and takes into account the interaction of the local order field with the massive gauge field, which describes frustration-induced plastic deformation. The glass transition is regarded as a phase transition interrupted because of the premature critical slowing-down of one of the degrees of freedom caused by the frustrations. It is shown that freezing of the system appears when the correlation length and relaxation time of the gauge field diverge. The Vogel–Fulcher–Tammann relation for the transition kinetics and the critical exponent for the nonlinear susceptibility, 2.5∼ t correlation function dependence on time, and explains the boson peak appearance on this curve. In addition, the function of the glass transition temperature value with cooling rate is derived; this dependence fully conforms with known experimental data

  11. Influence of P2O5 and Al2O3 content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence properties

    International Nuclear Information System (INIS)

    Bourhis, Kevin; Massera, Jonathan; Petit, Laeticia; Ihalainen, Heikki; Fargues, Alexandre; Cardinal, Thierry; Hupa, Leena; Hupa, Mikko; Dussauze, Marc; Rodriguez, Vincent; Boussard-Plédel, Catherine; Bureau, Bruno; Roiland, Claire; Ferraris, Monica

    2015-01-01

    Highlights: • Reorganization of the glass structure induced by the addition of P 2 O 5 or Al 2 O 3 . • Emission properties related to the presence of P or Al in the Er 3+ coordination shell. • Declustering observed upon addition of P 2 O 5 . • No declustering upon addition of Al 2 O 3 . - Abstract: The effect of P 2 O 5 and/or Al 2 O 3 addition in Er-doped borosilicate glasses on the physical, thermal, optical, and luminescence properties is investigated. The changes in these glass properties are related to the glass structure modifications induced by the addition of P 2 O 5 and/or Al 2 O 3 , which were probed by FTIR, 11 B MAS NMR and X-ray photoelectron spectroscopies. Variations of the polymerization degree of the silicate tetrahedra and modifications in the [3] B/ [4] B ratio are explained by a charge compensation mechanism due to the formation of AlO 4 , PO 4 groups and the formation of Al-O-P linkages in the glass network. From the absorption and luminescence properties of the Er 3+ ions at 980 nm and 1530 nm, declustering is suspected for the highest P 2 O 5 concentrations while for the highest Al 2 O 3 concentrations no declustering is observed

  12. EPR investigation into the structure of boron-containing quartz glasses

    International Nuclear Information System (INIS)

    Amosov, A.V.; Bushmarin, D.B.; Prokhorova, T.I.; Yudin, D.M.

    1975-01-01

    Certain properties of boron-containing quartz glasses and the nature of occurrence of boron in the glass lattice are studied as functions of the method of alloying. The formation of three types of borate structural nodes (BO 4 , BO 3 and BO 4 -BO 3 ) in the lattice of quartz glasses is established. Alloying by boron oxide up to 3% (weight) increases the crystallization stability of quartz glasses, lowers down tsub(g) from 1220 to 950 deg C and does not affect the coefficient of thermal expansion. Low symmetry of borate structural nodes, following from the analysis of EPR spectra, confirms the literature data concerning the low symmetry of glass-forming polyhedrons in a quartz glass

  13. Structural role of Cu in the soil active glasses

    Directory of Open Access Journals (Sweden)

    Irena Wacławska

    2012-06-01

    Full Text Available Glasses from the SiO2-P2O5-K2O-CaO-MgO-CuO system acting as slow release fertilizers were synthesized by the melt-quenching technique. Influence of copper addition on structure of the glasses was evaluated by XRD, SEM, FT-IR and Raman spectroscopy. Chemical activity of the glasses in 2 wt.% citric acid solutions was measured by ICP-AES method. It has been found that increasing content of phosphorous increased solubility of copper in the structure of the studied glasses which was the result of formation of P-O-Cu bonds.

  14. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    International Nuclear Information System (INIS)

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-01-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures

  15. Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glasses

    DEFF Research Database (Denmark)

    Paduraru, Anca; Andersen, Ulrik Grønbjerg; Thyssen, Anders

    2010-01-01

    The formation of shear bands during plastic deformation of Cu0.50Zr0.50 and Mg0.85Cu0.15 metallic glasses is studied using atomic-scale computer simulations. The atomic interactions are described using realistic many-body potentials within the effective medium theory, and are compared with similar...... simulations using a Lennard-Jones description of the material. The metallic glasses are deformed both in simple shear and in a simulated nanoindentation experiment. Plastic shear localizes into shear bands with a width of approximately 5 nm in CuZr and 8 nm in MgCu. In simple shear, the shear band formation...... is very clear, whereas only incipient shear bands are seen in nanoindentation. The shear band formation during nanoindentation is sensitive to the indentation velocity, indenter radius and the cooling rate during the formation of the metallic glass. For comparison, a similar nanoindentation simulation...

  16. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    Science.gov (United States)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  17. Corrosion behavior of environmental assessment glass in product consistency tests of extended duration

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.; Ebert, W.L.; Luo, J.S.; Tam, S.W.

    1998-01-01

    We have conducted static dissolution tests to study the corrosion behavior of the Environmental Assessment (EA) glass, which is the benchmark glass for high-level waste glasses being produced at US Department of Energy facilities. These tests were conducted to evaluate the behavior of the EA glass under the same long-term and accelerated test conditions that are being used to evaluate the corrosion of waste glasses. Tests were conducted at 90 C in a tuff groundwater solution at glass surface area/solution volume (WV) ratios of about 2000 and 20,000 m -1 . The glass dissolved at three distinct dissolution rates in tests conducted at 2000 m -1 . Based on the release of boron, dissolution within the first seven days occurred at a rate of about 0.65 g/(m 2 · d). The rate between seven and 70 days decreased to 0.009 g/(m 2 · d). An increase in the dissolution rate occurred at longer times after the precipitation of zeolite phases analcime, gmelinite, and an aluminum silicate base. The dissolution rate after phase formation was about 0.18 g/(m 2 · d). The formation of the same zeolite alteration phases occurred after about 20 days in tests at 20,000 m - . The average dissolution rate over the first 20 days was 0.5 g/(m 2 · d) and the rate after phase formation was about 0.20 g/(m 2 · d). An intermediate stage with a lower rate was not observed in tests at 20,000 m -1 . The corrosion behavior of EA glass is similar to that observed for other high-level waste glasses reacted under the same test conditions. The dissolution rate of EA glass is higher than that of other high-level waste glasses both in 7-day tests and after alteration phases form

  18. The prediction of the long-term behaviour of glasses

    International Nuclear Information System (INIS)

    Courtois, Ch.; Regent, A.; Plas, F.

    1997-01-01

    Several experts draw a conclusion about the scientific content of this week-long seminar. All agree to highlight the variety and quality of the work done. It appears that there is a consensus about the phenomenology of the long-term behaviour of glasses. All the parameters that are likely to intervene in alteration processes have been identified, but some particular points require further studies: - the impact of alpha, beta and gamma irradiation, - the alteration of glass in no-saturated water, - the coupling effect with the materials surrounding glass (metal canister, over-container...), - the optimization of glass composition to deal with high burn-up spent fuels, - the relation between the formation free energy of glasses and their alteration kinetics, - the release of radionuclides trapped in glass, and - the use of mutual analogue. (A.C.)

  19. Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO·P₂O₅--SiO₂--MgO system.

    Science.gov (United States)

    Daguano, Juliana K M F; Rogero, Sizue O; Crovace, Murilo C; Peitl, Oscar; Strecker, Kurt; Dos Santos, Claudinei

    2013-09-01

    The mechanical strength of bioactive glasses can be improved by controlled crystallization, turning its use as bulk bone implants viable. However, crystallization may affect the bioactivity of the material. The aim of this study was to develop glass-ceramics of the nominal composition (wt%) 52.75(3CaO·P₂O₅)-30SiO₂-17.25MgO, with different crystallized fractions and to evaluate their in vitro cytotoxicity and bioactivity. Specimens were heat-treated at 700, 775 and 975 °C, for 4 h. The major crystalline phase identified was whitlockite, an Mg-substituted tricalcium phosphate. The evaluation of the cytotoxicity was carried out by the neutral red uptake methodology. Ionic exchanges with the simulated body fluid SBF-K9 acellular solution during the in vitro bioactivity tests highlight the differences in terms of chemical reactivity between the glass and the glass-ceramics. The effect of crystallinity on the rates of hydroxycarbonate apatite (HCA) formation was followed by Fourier transformed infrared spectroscopy. Although all glass-ceramics can be considered bioactive, the glass-ceramic heat-treated at 775 °C (V775-4) presented the most interesting result, because the onset for HCA formation is at about 24 h and after 7 days the HCA layer dominates completely the spectrum. This occurs probably due to the presence of the whitlockite phase (3(Ca,Mg)O·P₂O₅). All samples were considered not cytotoxic.

  20. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    formation of the zeolitic phase. Therefore, the kinetics of secondary phase formation is an important parameter that should be taken into account in future glass dissolution modeling efforts. Secondly, the results indicate that, in the absence of a gel layer, the glass dissolution rate controls the rate of analcime precipitation in the long term. Finally, the meaning of these results pertinent to long-term glass durability is discussed.

  1. Homogeneous nucleation limit on the bulk formation of metallic glasses

    International Nuclear Information System (INIS)

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  2. Radiation-induced defects in As-Sb-S glass

    International Nuclear Information System (INIS)

    Balitska, V; Shpotyuk, Ya; Filipecki, J; Shpotyuk, O

    2010-01-01

    Defect-related instability was studied in γ-irradiated (As 2 S 3 ) 1-x (Sb 2 S 3 ) x glasses (x = 0, 0.1, 0.2 and 0.3) using positron annihilation lifetime spectroscopy treated within high-measurement statistics. The observed decrease in average positron lifetime in the studied glasses is explained as a renovation of destroyed covalent chemical bonds after irradiation. This process is governed by monomolecular relaxation kinetics, being described in the framework of universal configuration-coordinate model.

  3. Raman and 11B nuclear magnetic resonance spectroscopic studies of alkaline-earth lanthanoborate glasses

    International Nuclear Information System (INIS)

    Brow, R.K.; Tallant, D.R.; Turner, G.L.

    1996-01-01

    Glasses from the RO·La 2 O 3 ·B 2 O 3 (R = Mg, Ca, and Ba) systems have been examined. Glass formation is centered along the metaborate tie line, from La(BO 2 ) 3 to R(BO 2 ) 2 . Glasses generally have transition temperatures >600 C and expansion coefficients between 60 x 10 -7 /C and 100 x 10 -7 /C. Raman and solid-state nuclear magnetic resonance spectroscopies reveal changes in the metaborate network that depend on both the [R]:[La] ratio and the type of alkaline-earth ion. The fraction of tetrahedral sites is generally reduced in alkaline-earth-rich glasses, with magnesium glasses possessing the lowest concentration of B[4]. Raman spectra indicate that, with increasing [R]:[La] ratio, the preferred metaborate anion changes from a double-chain structure associated with crystalline La(BO 2 ) 3 to the single-chain and ring metaborate anions found in crystalline R(BO 2 ) 2 phases. In addition, disproportionation of the metaborate anions leads to the formation of a variety of other species, including pyroborates with terminal oxygens and more-polymerized species, such as diborates, with tetrahedral borons. Such structural changes are related to the ease of glass formation and some of the glass properties

  4. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Science.gov (United States)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  5. Structural and morphological studies lead borate glasses by melt quenching technique

    International Nuclear Information System (INIS)

    Jetruth Mary Alphonsa, K.; Sumathi, T.

    2013-01-01

    The studies of oxide glasses have gained attention due to their structural features. This type of glass has some remarkable features such as low melting temperature, impressive wide glass formation region, high resistance against devitrification and high refractive index. 60B 2 O 3 -(30-x) PbO-xK 2 O/Li 2 O glasses were prepared using the melt quenching technique because of its rapid glass forming ability. The amorphous nature of the prepared glass samples were confirmed by XRD (X-Ray diffraction technique) and SEM (Scanning Electron Microscopy). The quantitative analysis has been carried out in order to obtain more information about the structure of these glasses using FT-IR (Fourier transform infrared spectroscopy). (author)

  6. Theory of spin-lattice relaxation of diffusing light nuclei in glasses

    International Nuclear Information System (INIS)

    Schirmer, A.; Schirmacher, W.

    1988-01-01

    NMR data of diffusion-induced spin-lattice relaxation in glasses cannot generally be interpreted in the framework of the classical theory of Bloembergen, Purcell and Pound (BPP). Since it is based on exponential density relaxation, generally bnot found in glasses, the BPP formula must be generalized. Here a combination of standard relaxation theory with a hopping model for diffusion in glasses is present. It is shown that the observed anomaties in the NMR data can be explained as a result of anomalous diffusion. 25 refs.; 1 figure

  7. Unusual Crystallization Behavior Close to the Glass Transition

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2018-03-01

    Using molecular simulations, we shed light on the mechanism underlying crystal nucleation in metal alloys and unravel the interplay between crystal nucleation and glass transition, as the conditions of crystallization lie close to this transition. While decreasing the temperature of crystallization usually results in a lower free energy barrier, we find an unexpected reversal of behavior for glass-forming alloys as the temperature of crystallization approaches the glass transition. For this purpose, we simulate the crystallization process in two glass-forming Copper alloys, Ag6 Cu4 , which has a positive heat of mixing, and CuZr, characterized by a large negative heat of mixing. Our results allow us to identify this unusual behavior as directly correlated with a nonmonotonic temperature dependence for the formation energy of connected icosahedral structures, which are incompatible with crystalline order and impede the development of the crystal nucleus, leading to an unexpectedly larger free energy barrier at low temperature. This, in turn, promotes the formation of a predominantly closed-packed critical nucleus, with fewer defects, thereby suggesting a new way to control the structure of the crystal nucleus, which is of key importance in catalysis.

  8. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.

    Science.gov (United States)

    Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

    2015-01-01

    In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications.

  9. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  10. Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al-Ni-Y system

    International Nuclear Information System (INIS)

    Oliveira, M.F. de; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.

    2008-01-01

    A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach, the parameter γ* = ΔH amor /(ΔH inter - ΔH amor ) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and ΔH amor and ΔH inter are the enthalpies for glass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The γ* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the γ* parameter is applied in the ternary Al-Ni-Y system. The calculated γ* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite some misfitting, the best glass formers are found quite close to the highest γ* values, leading to the conclusion that this thermodynamic approach can be extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys

  11. Surface alteration and physical properties of glass from the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Barkatt, A.; Sang, J.C.; Thorpe, A.N.; Senftle, F.E.; Talmy, I.G.; Norr, M.K.; Mazer, J.J.; Izett, G.; Sigurdsson, Haraldur

    1994-01-01

    The scalloped surface feature on Cretaceous-Tertiary boundary glass is often explained as being due to terrestrial aqueous leaching. Leaching of man-made glass results in a reduction in density of the glass. Also, Fe, because of its relative insolubility, is concentrated by the leaching process. Thus, the Haitian glass specimens which have been heavily altered should have a thin rim of less dense glass in which the Fe is concentrated compared to the core glass. The higher Fe concentration in the rim glass should cause it to have an enhanced Curie constant and a lower density compared to the unaltered glass. The magnetic Curie constant, density, and scanning electron microscopic studies were made on altered specimens of Haitian glass and also on specimens showing a minimum of alteration. The results show that the less altered samples have the highest density and the lowest Curie constant. The data substantiate the terrestrial hypothesis. ?? 1994.

  12. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  13. Radiation-induced defects in As-Sb-S glass

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V; Shpotyuk, Ya; Filipecki, J; Shpotyuk, O, E-mail: shpotyuk@novas.lviv.ua

    2010-11-15

    Defect-related instability was studied in {gamma}-irradiated (As{sub 2}S{sub 3}){sub 1-x}(Sb{sub 2}S{sub 3}){sub x} glasses (x = 0, 0.1, 0.2 and 0.3) using positron annihilation lifetime spectroscopy treated within high-measurement statistics. The observed decrease in average positron lifetime in the studied glasses is explained as a renovation of destroyed covalent chemical bonds after irradiation. This process is governed by monomolecular relaxation kinetics, being described in the framework of universal configuration-coordinate model.

  14. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses.

    Science.gov (United States)

    Kaur, Gurbinder; Pickrell, G; Kimsawatde, G; Homa, D; Allbee, H A; Sriranganathan, N

    2014-03-18

    CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol-gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations.

  15. Alkali-free bioactive glasses for bone regeneration =

    Science.gov (United States)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass

  16. ELABORATION OF AMORPHOUS METALS AND GLASS TRANSITIONFORMATION AND CHARACTERIZATION OF AMORPHOUS METALS

    OpenAIRE

    Giessen , B.; Whang , S.

    1980-01-01

    This review deals with the definition of amorphous and glassy metals ; the principal methods for their preparation by atom-by-atom deposition, rapid liquid quenching and particle bombardment ; criteria for their formation, especially ready glass formation (RGF) and its alloy chemical foundations ; and their classification. This is followed by a discussion of their elastic and plastic properties (Young's modulus and microhardness) and thermal stability (glass transition and crystallization tem...

  17. Computer Modeling Of High-Level Waste Glass Temperatures Within DWPF Canisters During Pouring And Cool Down

    International Nuclear Information System (INIS)

    Amoroso, J.

    2011-01-01

    This report describes the results of a computer simulation study to predict the temperature of the glass at any location inside a DWPF canister during pouring and subsequent cooling. These simulations are an integral part of a larger research focus aimed at developing methods to predict, evaluate, and ultimately suppress nepheline formation in HLW glasses. That larger research focus is centered on holistically understanding nepheline formation in HLW glass by exploring the fundamental thermal and chemical driving forces for nepheline crystallization with respect to realistic processing conditions. Through experimental work, the goal is to integrate nepheline crystallization potential in HLW glass with processing capability to ultimately optimize waste loading and throughput while maintaining an acceptable product with respect to durability. The results of this study indicated severe temperature gradients and prolonged temperature dwell times exist throughout different locations in the canister and that the time and temperatures that HLW glass is subjected to during processing is a function of pour rate. The simulations indicate that crystallization driving forces are not uniform throughout the glass volume in a DWPF (or DWPF-like) canister and illustrate the importance of considering overall kinetics (chemical and thermal driving forces) of nepheline formation when developing methods to predict and suppress its formation in HLW glasses. The intended path forward is to use the simulation data both as a driver for future experimental work and, as an investigative tool for evaluating the impact of experimental results. Simulation data will be used to develop laboratory experiments to more acutely evaluate nepheline formation in HLW glass by incorporating the simulated temperatures throughout the canister into the laboratory experiments. Concurrently, laboratory experiments will be performed to identify nepheline crystallization potential in HLW glass as a function of

  18. Stimulated nuclear spin echos and spectral diffusion in glasses

    International Nuclear Information System (INIS)

    Borges, N.M.; Engelsberg, M.

    1984-01-01

    Experimental results of stimulated nuclear spin echos decay in glasses are presented. The measurements were performed in B 2 O 3 glasses, at the 23Na and 11 B resonance lines. The data analysis allows the study of Spectral diffusion at an inhomogeneous nuclear magnetic (NMR) resonance line, broadened for a desordered system of nuclear spins. A model is proposed to explain the time constants, and the particular form of the decay. (A.C.A.S.) [pt

  19. Viscosity properties of tellurite-based glasses

    International Nuclear Information System (INIS)

    Tincher, B.; Massera, J.; Petit, L.; Richardson, K.

    2010-01-01

    The viscosity behavior of glasses with the composition (90-x)TeO 2 -10Bi 2 O 3 -xZnO with x = 15, 17.5, and 20 (TBZ glasses) and 80TeO 2 -(20-y)Na 2 O-yZnO system with y = 0, 5, and 10 (TNZ glasses) have been measured as a function of temperature using a beam-bending (BBV) and a parallel-plate (PPV) viscometer. The structure of the glass' network has been characterized using Raman spectroscopy and has been related to the viscosity temperature behavior and the fragility parameter (m) of the glasses. As the concentration of ZnO in the TBZ system (x) increases, the fragility parameter of the glass increases, whereas it decreases with an increase of the ZnO concentration (y) in the TNZ system. In both glasses, these variations in m have been related to the partial depolymerization of the tellurite network associated with the level of modifier content. The depolymerization of the tellurite network is believed to be the result of a reduction in the number of [TeO 4 ] units and the formation of [TeO 3 ] and [TeO 3+1 ] units that occurs with a change in TeO 2 content in the TBZ system and modifier content in the TNZ system.

  20. The Real Glass Ceiling. Your Career.

    Science.gov (United States)

    Savage, Adrian

    2002-01-01

    There is a powerful and common glass ceiling (barrier that prevents capable employees from being promoted) that affects men as much as women. Between middle management and the executive level, corporate culture shifts to one based on power and a worker must play by new rules even if these have never been explained. (JOW)

  1. Fatigue resistance of 2 different CAD/CAM glass-ceramic materials used for single-tooth implant crowns.

    Science.gov (United States)

    Çavuşoğlu, Yeliz; Sahin, Erdal; Gürbüz, Riza; Akça, Kivanç

    2011-10-01

    To evaluate the fatigue resistance of 2 different CAD/CAM in-office monoceramic materials with single-tooth implant-supported crowns in functional area. A metal experimental model with a dental implant was designed to receive in-office CAD/CAM-generated monoceramic crowns. Laterally positioned axial dynamic loading of 300 N at 2 Hz was applied to implant-supported crowns machined from 2 different glass materials for 100,000 cycle. Failures in terms of fracture, crack formation, and chipping were macroscopically recorded and microscopically evaluated. Four of 10 aluminasilicate glass-ceramic crowns fractured at early loading cycles, the rest completed loading with a visible crack formation. Crack formation was recorded for 2 of 10 leucite glass-ceramic crowns. Others completed test without visible damage but fractured upon removal. Lack in chemical adhesion between titanium abutment and dental cement likely reduces the fatigue resistance of machinable glass-ceramic materials. However, relatively better fractural strength of leucite glass-ceramics could be taken into consideration. Accordingly, progress on developmental changes in filler composition of glass-ceramics may be promising. Machinable glass-ceramics do not possess sufficient fatigue resistance for single-tooth implant crowns in functional area.

  2. Experimental investigation of biofilm formation within a glass porous medium in the presence of carbon dioxide

    Science.gov (United States)

    Sygouni, Varvara; Manariotis, Ioannis D.; Chrysikopoulos, Constantinos V.

    2013-04-01

    Capturing CO2 emissions and storing them in properly selected deep geologic formations is considered a promising solution for the reduction of CO2 in the atmosphere. However, if CO2 leakage occurs from geologic storage formations due to permeability increases caused by rock-brine-supercritical CO2 geochemical reactions or reactivation of existing fractures, the impact to groundwater quality could be significant. Dissolved CO2 in groundwater can decrease the pH, which in turn can solubilize undesired heavy metals from the solid matrix with profound and severe implications to public health. Consequently, it is essential to fully understand the potential impact of CO2 to shallow groundwater systems. In this study, a series of visualization experiments in a glass-etched micromodel were performed in order to estimate the effect of CO2 on biofilm formation. All biofilms were developed using Pseudomonas (P.) Putida. Synthetic water saturated with CO2 was injected through the micromodel through an inlet port, and CO2 was measured at the outlet port. The transient growth of the biofilm was monitored by taking high-resolution digital photographs at various times, and the effect of CO2 on biofilm growth was estimated. Furthermore, transient changes of effective permeability and porosity were measured and the effect of solution chemistry (e.g. pH, ionic strength, redox potential) on the rate of biofilm growth was evaluated.

  3. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  4. Structure-Property Relationships and the Mixed Network Former Effect in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    compositions by substituting Al2O3 for SiO2. We also investigate the various roles of sodium in the glasses including charge compensation of tetrahedral aluminum and boron atoms and formation of non-bridging oxygen. We find that mechanical properties (density, elastic moduli, and hardness), glass transition......Boroaluminosilicate glasses are important materials for various applications, e.g., liquid crystal display substrates, glass fibers for reinforcement, and thermal shock-resistant glass containers. The complicated structural speciation in these glasses leads to a mixed network former effect yielding...... nonlinear variation in many macroscopic properties. It is therefore crucial to investigate and understand structure-property correlations in boroaluminosilicate glasses. Here we study the structure-property relationships of a range of sodium boroaluminosilicate glasses from peralkaline to peraluminous...

  5. Glass frits coated with silver nanoparticles for silicon solar cells

    International Nuclear Information System (INIS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-01-01

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells

  6. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  7. Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

    Directory of Open Access Journals (Sweden)

    Nikolay Nedyalkov

    2017-11-01

    Full Text Available We present results on laser-assisted formation of two- and three-dimensional structures comprised of gold nanoparticles in glass. The sample material was gold-ion-doped borosilicate glass prepared by conventional melt quenching. The nanoparticle growth technique consisted of two steps – laser-induced defect formation and annealing. The first step was realized by irradiating the glass by nanosecond and femtosecond laser pulses over a wide range of fluences and number of applied pulses. The irradiation by nanosecond laser pulses (emitted by a Nd:YAG laser system induced defect formation, expressed by brown coloration of the glass sample, only at a wavelength of 266 nm. At 355, 532 and 1064 nm, no coloration of the sample was observed. The femtosecond laser irradiation at 800 nm also induced defects, again observed as brown coloration. The absorbance spectra indicated that this coloration was related to the formation of oxygen deficiency defects. After annealing, the color of the irradiated areas changed to pink, with a corresponding well-defined peak in the absorbance spectrum. We relate this effect to the formation of gold nanoparticles with optical properties defined by plasmon excitation. Their presence was confirmed by high-resolution TEM analysis. No nanoparticle formation was observed in the samples irradiated by nanosecond pulses at 355, 532 and 1064 nm. The optical properties of the irradiated areas were found to depend on the laser processing parameters; these properties were studied based on Mie theory, which was also used to correlate the experimental optical spectra and the characteristics of the nanoparticles formed. We also discuss the influence of the processing conditions on the characteristics of the particles formed and the mechanism of their formation and demonstrate the fabrication of structures composed of nanoparticles inside the glass sample. This technique can be used for the preparation of 3D nanoparticle systems

  8. Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

    Science.gov (United States)

    Tournier, Robert F.

    2018-01-01

    Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.

  9. Corrosion mechanisms of containment glasses for fission products

    International Nuclear Information System (INIS)

    Nogues, J.L.

    1984-01-01

    After a review of nuclear energy production and waste vitrification principles, the aqueous corrosion mechanisms of the containment glasses and the various parameters affecting the corrosion are studied: effects of glass composition, temperature, lixiviation agent pH, lixiviation duration and mode. Conventional mass loss measurement and solution analyses are coupled to sophisticated surface analysis techniques. The hydrolyzed layer formation and the solubility limits are discussed. 87 figs., 30 tabs., 144 refs

  10. Zhamanshin and Aouelloul - Craters produced by impact of tektite-like glasses?

    Science.gov (United States)

    O'Keefe, John A.

    1987-01-01

    It is shown that the enhanced abundance of siderophile elements and chromium in tektite-like glasses from the two impact craters of Zhamanshin and Aouelloul cannot be explained as a result of contamination of the country rock by meteorites nor, probably, comets. The pattern is, however, like that found in certain Australasian tektites, and in Ivory Coast tektites. It is concluded, in agreement with earlier suggestions by Campbell-Smith and Hey, that these craters were formed by the impact of large masses of tektite-like glass, of which the glasses which were studied are fragments. It follows that it is necessary, in considering an impact crater, to bear in mind that the projectile may have been a glass.

  11. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    International Nuclear Information System (INIS)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.

    2014-01-01

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B 2 O 3 -10SiO 2 were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T g ) and of the maximum crystallization temperature (T p ) on the heating rate was used to determine the activation energy associated with the glass transition (E g ), the activation energy for crystallization (E c ), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB 2 O 4 ) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba 5 Si 8 O 21 ). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E c (χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures

  12. Glass Ceramic Formulation Data Package

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  13. Crystallization in Pd40Ni40P20 glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, K.; Nishiyama, N.

    2002-01-01

    Phase segregation and the effect of pressure on crystallization of bulk and ribbon Pd40Ni40P20 glasses have been studied by means of differential scanning calorimetry (DSC) and x-ray diffraction. The DSC measurements show only one glass transition event in the samples annealed at different...... temperatures in the supercooled liquid region. Phase analyses reveal at least five crystalline phases crystallized from the glass: monoclinic; body-centered tetragonal; orthorhombic; Ni2Pd2P and fcc-(Ni,Pd) solid solution phases. In the pressure range from 0 to 4.2 GPa, the crystallization temperature...... increases with pressure having a slope of 11 K/GPa. The eutectic crystallization reaction mode and crystalline phases formed are unchanged in the pressure range used. The enhancement of the crystallization temperature with increasing pressure in the glass can be explained by the suppression of atomic...

  14. Smartphone Magnification Attachment: Microscope or Magnifying Glass

    Science.gov (United States)

    Hergemöller, Timo; Laumann, Daniel

    2017-09-01

    Today smartphones and tablets do not merely pervade our daily life, but also play a major role in STEM education in general, and in experimental investigations in particular. Enabling teachers and students to make use of these new techniques in physics lessons requires supplying capable and affordable applications. Our article presents the improvement of a low-cost technique turning smartphones into powerful magnifying glasses or microscopes. Adding only a 3D-printed clip attached to the smartphone's camera and inserting a small glass bead in this clip enables smartphones to take pictures with up to 780x magnification (see Fig. 1). In addition, the construction of the smartphone attachments helps to explain and examine the differences between magnifying glasses and microscopes, and shows that the widespread term "smartphone microscope" for this technique is inaccurate from a physics educational perspective.

  15. Antibacterial properties of laser spinning glass nanofibers.

    Science.gov (United States)

    Echezarreta-López, M M; De Miguel, T; Quintero, F; Pou, J; Landin, M

    2014-12-30

    A laser-spinning technique has been used to produce amorphous, dense and flexible glass nanofibers of two different compositions with potential utility as reinforcement materials in composites, fillers in bone defects or scaffolds (3D structures) for tissue engineering. Morphological and microstructural analyses have been carried out using SEM-EDX, ATR-FTIR and TEM. Bioactivity studies allow the nanofibers with high proportion in SiO2 (S18/12) to be classified as a bioinert glass and the nanofibers with high proportion of calcium (ICIE16) as a bioactive glass. The cell viability tests (MTT) show high biocompatibility of the laser spinning glass nanofibers. Results from the antibacterial activity study carried out using dynamic conditions revealed that the bioactive glass nanofibers show a dose-dependent bactericidal effect on Sthaphylococcus aureus (S. aureus) while the bioinert glass nanofibers show a bacteriostatic effect also dose-dependent. The antibacterial activity has been related to the release of alkaline ions, the increase of pH of the medium and also the formation of needle-like aggregates of calcium phosphate at the surface of the bioactive glass nanofibers which act as a physical mechanism against bacteria. The antibacterial properties give an additional value to the laser-spinning glass nanofibers for different biomedical applications, such as treating or preventing surgery-associated infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M., E-mail: mmdesoky@gmail.co [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt); Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S. [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt)

    2009-11-15

    The structural and electrical conductivity (sigma) of annealed SrTiO{sub 3}-PbO{sub 2}-V{sub 2}O{sub 5} glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T{sub c} exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V{sup 4+}-V{sup 5+} pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above theta{sub D}/2 (theta{sub D}, the Debye temperature). The electrical conduction at T >theta{sub D}/2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  17. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    International Nuclear Information System (INIS)

    El-Desoky, M.M.; Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S.

    2009-01-01

    The structural and electrical conductivity (σ) of annealed SrTiO 3 -PbO 2 -V 2 O 5 glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T c exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V 4+ -V 5+ pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above θ D /2 (θ D , the Debye temperature). The electrical conduction at T >θ D /2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  18. Subcritical crack growth in a phosphate laser glass

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, S.N.; Tomozawa, M.; Hayden, J.S.; Suratwala, T.I.; Campbell, J.H.

    1999-11-01

    The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 x 10{sup 4} Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.

  19. Optical and physical properties of samarium doped lithium diborate glasses

    Science.gov (United States)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  20. High-level waste solidification: why we chose glass

    International Nuclear Information System (INIS)

    Grover, J.R.

    1980-01-01

    This paper considers the desirable properties and factors to be assessed in the selection of a solidified waste product, surveys the possible product options and then analyzes in detail their suitability in meeting the criteria. It concludes that glasses are currently the preferred choice for the following reasons: their ability to fix the full spectrum of elements contained in the waste; their tolerance of the composition variations that will occur on a day to day basis in practice; their relatively low formation temperatures that lead to simpler and hence safer processing; their radiation stability; and their adequate leach rates. Suitable compositions are available for the wastes that will arise in the UK and techniques are available for manufacture on a production scale. Lower leach rates might be obtained by choosing glasses with higher formation temperatures or ceramics. However, these latter generally also have higher formation temperatures, have less tolerance for composition variations and their radiation stability is unproven. Supercalcines and synthetic rocks (SYNROC) may eventually be demonstrated to have some advantageous properties, but present indications are that these could be major disadvantages which more than offset any gains. Other advanced concepts (for example, the dispersion of glass beads in a metal matrix) have lower leach rates, but lead to additional complexity in manufacture

  1. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  2. New compositions of fluoroindate glasses with higher chemical resistance

    Directory of Open Access Journals (Sweden)

    B. J. Costa

    1998-06-01

    Full Text Available In this paper, glasses in the systems In-Ba-Mg and In-Ba-Zn-Sr-Mg were water leachead at 80ºC showing surface degradation after 72 hours of leaching. The extent of such degradation is determined by the solubility and the concentration of the elemental fluorides that constitute the glasses. The formation of a layer of crystallized phases on the surface of the samples was observed. Small weight losses were registered and the absence of water on the glass matrix after the attack suggested that the use of MgF2 in the systems studied can lead to better results against moisture corrosion when compared to other fluoride glasses such as the fluorozirconates.

  3. Glass marking with diode-pumped Nd:YLF laser; Handotai reiki Nd:YLF laser ni yoru glass marking

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Hayashi, K. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1996-08-20

    The compact marking system based on a beam scanning system in which the fourth harmonic (FHG: 262 nm in wavelength) of a diode-pumped Nd:YLF (Nd:LiYf4) laser is used for the source of ultraviolet light is described. The result of application to the glass marking that caused a problem due to the generation of cracks is also explained. The machining characteristics significantly vary depending on the type of glass. During actual marking, sample processing must be beforehand carried out to optimize the processing conditions after confirming that there is no problem in practical use. For marking on the glass used for liquid-crystal board, it is valid to improve the density of a dot and increase the number of shots per dot for obtaining high visibility. However, cracks may occur in the clearance of each dot because of the thermal effect. Therefore, the processing conditions must be optimized according to the glass type and crack generation state. The generation of cracks can be suppressed by setting the processing conditions to the optimum level. As a result, satisfactory marking is obtained. 8 refs., 6 figs.

  4. Glass formation and structure of calcium antimony phosphate glasses and those doped with tellurium oxide

    Science.gov (United States)

    Li, Jun; Zhang, Yin; Nian, Shangjiu; Wu, Zhenning; Cao, Weijing; Zhou, Nianying; Wang, Danian

    2017-03-01

    An approximate glass-forming region in the P2O5-Sb2O3-CaO ternary system was determined. The properties and structure of two compositional series of (A) (75- x)P2O5- xSb2O3-25CaO ( x = 20, 25, 30, 35 mol%) and (B) 45P2O5-30Sb2O3-(25- x)CaO- xTeO2 ( x = 5, 10, 15, 20 mol%) were studied systematically. Thermal properties were investigated by means of differential scanning calorimetry (DSC). The densities of all samples were measured by Archimedes' method using distilled water as the immersion liquid. The water durability of the glasses was described by their dissolution rate (DR) in the distilled water at 90 °C for some time periods. Density, thermal stability and water durability were improved with the addition of Sb2O3 and TeO2. Structural studies were carried out by X-ray diffraction (XRD), infrared spectroscopy and Raman spectroscopy. The phosphate chain depolymerization occurred with the increase of Sb2O3 and the Q2 structural units transformed to the Q1 and Q0 structural units with the addition of TeO2.

  5. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  6. Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2018-01-01

    Full Text Available This work deals with the synthesis and characterization of novel Fe-containing sol-gel materials obtained by modifying the composition of a binary SiO2-CaO parent glass with the addition of Fe2O3. The effect of different processing conditions (calcination in air vs. argon flowing on the formation of magnetic crystalline phases was investigated. The produced materials were analyzed from thermal (hot-stage microscopy, differential thermal analysis, and differential thermal calorimetry and microstructural (X-ray diffraction viewpoints to assess both the behavior upon heating and the development of crystalline phases. N2 adsorption–desorption measurements allowed determining that these materials have high surface area (40–120 m2/g and mesoporous texture with mesopore size in the range of 18 to 30 nm. It was assessed that the magnetic properties can actually be tailored by controlling the Fe content and the environmental conditions (oxidant vs. inert atmosphere during calcination. The glasses and glass-ceramics developed in this work show promise for applications in bone tissue healing which require the use of biocompatible magnetic implants able to elicit therapeutic actions, such as hyperthermia for bone cancer treatment.

  7. Electrical and thermal properties of lead titanate glass ceramics

    International Nuclear Information System (INIS)

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  8. Structural and topological aspects of borophosphate glasses and their relation to physical properties

    DEFF Research Database (Denmark)

    Hermansen, Christian; Youngman, R.E.; Wang, J.

    2015-01-01

    We establish a topological model of alkali borophosphate and calcium borophosphate glasses that describes both the effect of the network formers and network modifiers on physical properties. We show that the glass transition temperature (Tg), Vickers hardness (HV), liquid fragility (m) and isobaric....... The origin of the effect of the type of network modifying oxide on Tg, HV, m and ΔCp of calcium borophosphate glasses is revealed in terms of the modifying ion sub-network. The same topological principles quantitatively explain the significant differences in physical properties between the alkali...... and the calcium borophosphate glasses. This work has implications for quantifying structure-property relations in complex glass forming systems containing several types of network forming and modifying oxides....

  9. Crack-resistant Al2O3-SiO2 glasses.

    Science.gov (United States)

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  10. Electron irradiation effect on bubble formation and growth in a sodium borosilicate glass

    International Nuclear Information System (INIS)

    Chen, X.; Birtcher, R. C.; Donnelly, S. E.

    2000-01-01

    In this study, the authors studied simultaneous and intermittent electron irradiation effects on bubble growth in a simple sodium borosilicate glass during Xe ion implantation at 200 C. Simultaneous electron irradiation increases the average bubble size in the glass. This enhanced diffusion is also shown by the migration of Xe from bubbles into the matrix when the sample is irradiated by an electron beam after the Xe implantation

  11. In vitro biocompatibility of a ferrimagnetic glass-ceramic for hyperthermia application

    Energy Technology Data Exchange (ETDEWEB)

    Bretcanu, Oana; Miola, Marta [Applied Science and Technology Department, Institute of Materials Physics and Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Bianchi, Claudia L. [Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan (Italy); Marangi, Ida; Carbone, Roberta [Department of Experimental Oncology, European Institute of Oncology, Milan, Italy. (Italy); Corazzari, Ingrid [Department of Chemistry, University of Torino, Via Pietro Giuria 7, 10125 Torino (Italy); “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and other Toxic Particulates, Via Pietro Giuria 7, 10125 Torino (Italy); Cannas, Mario [Department of Medical Science, Human Anatomy, University of Eastern Piedmont, Novara (Italy); Verné, Enrica, E-mail: enrica.verne@polito.it [Applied Science and Technology Department, Institute of Materials Physics and Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2017-04-01

    Ferrimagnetic glass-ceramics containing magnetite crystals were developed for hyperthermia applications of solid neoplastic tissue. The present work is focused on in vitro evaluation of the biocompatibility of these materials, before and after soaking in a simulated body fluid (SBF). X-ray diffraction, scanning electron microscopy, atomic absorption spectrophotometry, X-ray photoelectron spectrometry and pH measurements were employed in glass-ceramic characterisation. The free-radical mediated reactivity of the glass-ceramic was evaluated by Electron Paramagnetic Resonance (EPR) spin trapping. Cell adhesion and proliferation tests were carried out by using 3T3 murine fibroblasts. Cytotoxicity was performed by qualitative evaluation of human bone osteosarcoma cells U2OS cell line. The results show that almost two times more 3T3 cells proliferated on the samples pre-treated in SBF, compared with the untreated specimens. Moreover a decrease of confluence was observed at 48 and 72 h for U2OS cells exposed to the untreated glass-ceramic, while the powder suspensions of glass-ceramic pre-treated in SBF did not influence the cell morphology up to 72 h of exposition. The untreated glass-ceramic exhibited Fenton-like reactivity, as well as reactivity towards formate molecule. After pre-treatment with SBF the reactivity towards formate was completely suppressed. The concentration of iron released into the SBF solution was below 0.1 ppm at 37 °C, during one month of soaking. The different in vitro behaviour of the samples before and after SBF treatment has been correlated to the bioactive glass-ceramic surface modifications as detected by morphological, structural and compositional analyses. - Highlights: • In vitro characterization of a ferrimagnetic glass-ceramic has been performed, before and after treatment in SBF. • The SBF pre-treatment stimulates the cellular function and acts as a surface activation process, increasing cells activity. • Pre-treatment with SBF

  12. Google glass: a driver distraction cause or cure?

    Science.gov (United States)

    Sawyer, Ben D; Finomore, Victor S; Calvo, Andres A; Hancock, P A

    2014-11-01

    We assess the driving distraction potential of texting with Google Glass (Glass), a mobile wearable platform capable of receiving and sending short-message-service and other messaging formats. A known roadway danger, texting while driving has been targeted by legislation and widely banned. Supporters of Glass claim the head-mounted wearable computer is designed to deliver information without concurrent distraction. Existing literature supports the supposition that design decisions incorporated in Glass might facilitate messaging for drivers. We asked drivers in a simulator to drive and use either Glass or a smartphone-based messaging interface, then interrupted them with an emergency brake event. Both the response event and subsequent recovery were analyzed. Glass-delivered messages served to moderate but did not eliminate distracting cognitive demands. A potential passive cost to drivers merely wearing Glass was also observed. Messaging using either device impaired driving as compared to driving without multitasking. Glass in not a panacea as some supporters claim, but it does point the way to design interventions that effect reduced load in multitasking. Discussions of these identified benefits are framed within the potential of new in-vehicle systems that bring both novel forms of distraction and tools for mitigation into the driver's seat.

  13. 'Unsticking' a colloidal glass, and sticking it again

    CERN Document Server

    Poon, W C K; Egelhaaf, S U; Pusey, P N

    2003-01-01

    We study glass formation in hard spheres with short-range attraction. The system consists of nearly-hard-sphere polymethylmethacrylate particles and non-adsorbing random-coil polystyrene which induced a depletion attraction between the particles. The experiments reveal a re-entrant glass transition and two qualitatively distinct glassy states. Dynamic light scattering, covering eleven orders of magnitude in time, gives insight into the kinds of particle motion responsible for these observations. The possible relevance of our results to generic issues, such as the distinction between fragile and strong glass formers, the nature of the underlying 'free energy landscape', and the relative importance of temperature and pressure, is discussed.

  14. Alteration of basaltic glass in Iceland as a natural analogue for nuclear waste glasses

    International Nuclear Information System (INIS)

    Crovisier, J.L.; Advocat, T.; Fritz, B.; Petit, J.C.

    1989-01-01

    The authors describe the longer term geochemical consequences of basaltic glass dissolution in fresh water at 0 0 C calculated with the computer code DISSOL. The clay minerals were represented by an ideal solid solution model (CISSFIT) able to describe variations in chemical composition of a clay phase in response to variations of the solution chemistry. The predicted mineral phases were iron hydroxides followed by kaolinite, TOT clays, chabazite and clinoptilolite. These results are in reasonably good agreement with experimental results and observations of altered subglacial hyaloclastites from Iceland. The formation of secondary products are mainly controlled by thermodynamic constraints. Kinetic effects, such as diffusion in the near glass surface are not important

  15. Short range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.

    Science.gov (United States)

    Bischoff, Christian; Schuller, Katherine; Martin, Steve W

    2014-04-03

    The 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former (MGF) glass system exhibits a nonlinear and nonadditive negative change in the Na(+) ion conductivity as one glass former, PS5/2, is exchanged for the other, GeS2. This behavior, known as the mixed glass former effect (MGFE), is also manifest in a negative deviation from the linear interpolation of the glass transition temperatures (T(g)) of the binary end-member glasses, x = 0 and x = 1. Interestingly, the composition dependence of the densities of these ternary MGF glasses reveals a slightly positive MGFE deviation from a linear interpolation of the densities of the binary end-member glasses, x = 0 and x = 1. From our previous studies of the structures of these glasses using IR, Raman, and NMR spectroscopies, we find that a disproportionation reaction occurs between PS7/2(4-) and GeS3(2-) units into PS4(3-) and GeS5/2(1-) units. This disproportionation combined with the formation of Ge4S10(4-) anions from GeS5/2(1-) groups leads to the negative MGFE in T(g). A best-fit model of the T(g)s of these glasses was developed to quantify the amount of GeS5/2(1-) units that form Ge4S10(4-) molecular anions in the ternary glasses (∼ 5-10%). This refined structural model was used to develop a short-range structural model of the molar volumes, which shows that the slight densification of the ternary glasses is due to the improved packing efficiency of the germanium sulfide species.

  16. Modern aspects of the kinetic theory of glass transition

    International Nuclear Information System (INIS)

    Tropin, T V; Aksenov, V L; Schmelzer, J W

    2016-01-01

    This paper reviews glass transition kinetics models that are developed to describe the formation of structural (for example, covalent and metallic) glasses, as well as to account for the transition of a polymer to a solid glassy state. As the two approaches most frequently used over the last decade to model the glass transition, the Tool–Narayanaswamy–Moynihan model and the Adam–Gibbs theory of glass transition are described together with examples of their applications. Also discussed are entropy-based approaches that rely on irreversible thermodynamics methods originated in the work of De Donder, Mandelstam, and Leontovich. The actual problems that arise in applying these methods and the prospects of their development are discussed. A brief overview of statistical glass transition models is given, including the mode-coupling and energy-landscape theories. (reviews of topical problems)

  17. MoO{sub 3} incorporation in magnesium aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-03-15

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO{sub 3}) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO{sub 3} can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO{sub 3} increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO{sub 4}{sup 2−} units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO{sub 4}.

  18. Size distribution of BaF2 nanocrystallites in transparent glass ceramics

    International Nuclear Information System (INIS)

    Bocker, Christian; Bhattacharyya, Somnath; Hoeche, Thomas; Ruessel, Christian

    2009-01-01

    In glasses with the composition 1.9 Na 2 O-15 K 2 O-7.5 Al 2 O 3 -69.6 SiO 2 -6 BaF 2 (in mol.%), BaF 2 nanocrystalline precipitates are formed upon heat treatment. Using dark-field and bright-field transmission electron micrographs, crystallite size distributions are obtained for samples crystallized at various temperatures. According to the 'tomato-salad problem', the size distributions are corrected and then compared to various theories of grain growth taking into account coarsening of the crystallites during heat treatment. The experimental crystallite size distributions show for smaller mean crystallite sizes a more symmetric shape in comparison to the theories of Lifshitz-Slyozov-Wagner (LSW) or Brailsford and Wynblatt (B and W). With increasing mean crystallite sizes to about 18 nm at higher heat-treatment temperatures, the full width at half maximum of the observed distributions decreases and becomes even narrower than the LSW function. These findings indicate that in the investigated nano glass ceramics no coarsening by Ostwald ripening or coalescence occurs. This is explained by the formation of a diffusion barrier around each nanocrystallite which limits the size of the crystallites and hence results in such a narrow and uniform crystallite size distribution.

  19. In vitro study of nano-sized zinc doped bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Alshemary, Ammar Z.; Akram, Muhammad [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM skudai, Johor Darul Ta' zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor DarulTa' zim (Malaysia)

    2013-01-15

    Surface reactivity in physiological fluid has been linked to bioactivity of a material. Past research has shown that bioactive glass containing zinc has the potential in bone regeneration field due to its enhanced bioactivity. However, results from literature are always contradictory. Therefore, in this study, surface reactivity of bioactive glass containing zinc was evaluated through the study of morphology and composition of apatite layer formed after immersion in simulated body fluid (SBF). Nano-sized bioactive glass with 5 and 10 mol% zinc were synthesized through quick alkali sol-gel method. The synthesized Zn-bioglass was characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FTIR). Samples after SBF immersion were characterized using scanning electron microscope (SEM) and EDX. Morphological study through SEM showed the formation of spherical apatite particles with Ca/P ratio closer to 1.67 on the surface of 5 mol% Zn-bioglass. Whereas, the 10 mol% Zn-bioglass samples induced the formation of flake-like structure of calcite in addition to the spherical apatite particles with much higher Ca/P ratio. Our results suggest that the higher Zn content increases the bioactivity through the formation of bone-bonding calcite as well as the spherical apatite particles. -- Highlights: Black-Right-Pointing-Pointer Nano-sized bioactive glasses were synthesized through quick alkali sol-gel method. Black-Right-Pointing-Pointer 5 and 10 mol% Zn-bioglass induced the formation of spherical particles in SBF test. Black-Right-Pointing-Pointer 10 mol% Zn-bioglass also induced the formation of flake-like structure. Black-Right-Pointing-Pointer The flake-like structure is calcium carbonate; spherical particles are apatite. Black-Right-Pointing-Pointer High Zn contents negatively influence the chemical composition of the apatite layer.

  20. In situ one-year burial experiments with simulated nuclear waste glasses

    International Nuclear Information System (INIS)

    Hench, L.L.; Spilman, D.; Buonaquisti, T.; Werme, L.

    1985-01-01

    Two simulated nuclear waste glasses were corroded in an in-situ experiment in the Stripa mine up to one year at 90 degree C and ambient temperature. Changes in compositional in-depth profiles were measured using Fourier transform infrared reflection spectroscopy, SIMS and Rutherford back-scattering. For glass/glass interfaces, both glasses showed depletion of Na, Cs and B, but for the more corrosion resistant glass, the lower depletion is ascribed to the formation of a thin (0.2 nm) coherent and dense outer layer enriched in Mg, Ca, Sr, Ba, Zn-Al and Si, which impedes both ion exchange and network attack of the bulk underneath. For the bentonite interfaces, cation exchange of Ca, Mg, Al and Fe from the bentonite for primarily Na and B is found to produce a glass surface that has three silicate-rich layers. The larger concentrations of M/super2+/ and M/super3+/ cation and the high silica content of the reaction layers result in a considerably retarded rate of ion exchange after the formation of these layers during the first three months of burial. The granite interfaces showed the lowest rate of attack. This appears to be due to a large increase of Fe and Al within the glass surfaces exposed to granite. The results obtained using Rutheford back-scattering confirm the results obtained using the other techniques for surface analysis. Analysis of burial samples cast in steel mini-canisters show no significant effects associated with the steel canister-glass interface. (author)

  1. Long-term damage to glass in Paris in a changing environment.

    Science.gov (United States)

    Ionescu, Anda; Lefèvre, Roger-Alexandre; Brimblecombe, Peter; Grossi, Carlota M

    2012-08-01

    Glass weathering depends mainly on its chemical composition: Si-Ca-K mediaeval glass is low durable, while Si-Ca-Na Roman as well as modern glass are very durable. Mediaeval glass is subject to the superficial leaching of K and Ca ions leading to the formation of a hydrated silica-gel layer. Both types of glass develop a superficial stratum of deposited atmospheric particles cemented by crystals of gypsum (and syngenite in the case of Si-Ca-K glass), leading to an impairment of the optical properties: decrease of transparency and increase of haze. Dose-response functions established for the two types of glass reveal that haze depends only on pollution parameters (PM, SO(2), NO(2)), while leaching depends both on pollution and climate parameters (RH, T, SO(2), NO(2)). Instrumental records are available for temperature in Paris from 1800. Air pollution in Paris was estimated from statistics of fuel use from 1875 to 1943, measurements that started in the 1950s and projections across the 21st century. The estimated annual rate of haze development indicates a gradual rise from the 16th century. The increasing importance of coal as a fuel through the 19th century and enhanced sulphur dioxide concentration make a rapid increase in haze formation, which reaches a peak about 1950. The likely damage to mediaeval glass follows a rather similar pattern. The period of damage from aggressive pollutants looks later and for a briefer time in Paris than in London. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Crystallization and dielectric properties of PbTiO3 based glass ceramics

    Science.gov (United States)

    Shankar, J.; Rani, G. Neeraja; Deshpande, V. K.

    2018-04-01

    Glass samples with composition (50 - X) PbO - (25 + X) TiO2 - 25 B2O3 (where X = 0, 5, 10 and 12.5 mol %) were prepared using conventional quenching technique. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The XRD results in the glass ceramics revealed the formation of tetragonal lead titanate as a major crystalline phase. The SEM results show rounded crystallite of lead titanate. The ferroelectric nature of all the glass ceramic samples is confirmed by P - E hysteresis measurements. The extended heat treatment of glass ceramic samples at 593K for 10 h exhibited saturated hysteresis loops with higher values of remnant polarization.

  3. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  4. Investigation of sizing - from glass fibre surface to composite interface

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro

    significantly. The usage span wide, from furniture and car components to construction materials. Even though, the concept of composites is well known and widely applied, the fundamental principles of the interaction of the constituents, in the composites are still not fully understood. This thesis is a part...... of the sizing from the glass fibre surface to the interface in composites. Through soxhlet extraction with acetone it was possible to remove a part of the sizing from the glass fibres for analysis. By burning off the sizing at 565 ºC a higher mass loss was obtained than from the extraction, indicating...... increased after the removal of sizing by extraction but also when the sizing was removed by burning. This could partly be explained by the sizing being less dense than the glass fibres. For the burned glass fibres compactment of the glass structure also yields an increase in stiffness. The fibre strength...

  5. Network rigidity and properties of SiO2 and GeO2 glasses under pressure.

    Science.gov (United States)

    Trachenko, Kostya; Dove, Martin T; Brazhkin, Vadim; El'kin, F S

    2004-09-24

    We report in situ studies of SiO2 glass under pressure and find that temperature-induced densification takes place in a pressure window. To explain this effect, we study how rigidity of glasses changes under pressure, with rigidity percolation affecting the dynamics of local relaxation events. We link rigidity percolation in glasses to other effects, including a large increase of crystallization temperature and logarithmic relaxation under pressure.

  6. Waste glass/metal interactions in brines

    International Nuclear Information System (INIS)

    Shade, J.W.; Pederson, L.R.; McVay, G.L.

    1983-05-01

    Leaching studies of MCC 76-68 glass in synthetic brines high in NaCl were performed from 50 to 150 0 C and included interactive testing with ductile iron and titanium. Hydrolysis of the glass matrix was generally slower in saturated brines than in deionized water, due to a lower solubility of silica in the brines. Inclusion of ductile iron in the tests resulted in accelerated leach rates because irion-silica reactions occurred which reduced the silica saturation fraction. At 150 0 C, iron also accelerated the rate of crystalline reaction product formation which were primarily Fe-bearing sepiolite and talc. 16 references

  7. Evaluation of Candida albicans biofilm formation on various dental ...

    African Journals Online (AJOL)

    Evaluation of Candida albicans biofilm formation on various dental restorative material surfaces. ... Nigerian Journal of Clinical Practice ... was significantly lower on the resin-modified glass ionomer and glass-ionomer cement samples. ... Conclusion: This finding emphasizes the use of glass ionomer restorative cements and ...

  8. High-energy X-ray diffraction studies of short- and intermediate-range structure in oxide glasses

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2002-01-01

    The feature of high-energy X-ray diffraction method is explained. The oxide glasses studies by using BL04B2, high-energy X-ray diffraction beam line of SPring-8, and the random system materials by high-energy monochromatic X-ray diffraction are introduced. An advantage of third generation synchrotron radiation is summarized. On SPring-8, the high-energy X-ray diffraction experiments of random system are carried out by BL04B2 and BL14B1 beam line. BL04B2 can select Si (111)(E=37.8 keV, λ=0.033 nm) and Si(220)(E=61.7 keV, λ=0.020 nm) as Si monochromator. The intermediate-range structure of (MgO) x (P 2 O 5 ) 1-x glass ,MgP 2 O 6 glass, B 2 O 3 glass, SiO 2 and GeO 2 are explained in detail. The future and application of high-energy X-ray diffraction are stated. (S.Y.)

  9. β-Irradiation Effects on the Formation and Stability of CaMoO4 in a Soda Lime Borosilicate Glass Ceramic for Nuclear Waste Storage.

    Science.gov (United States)

    Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian

    2017-02-06

    Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO 4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO 3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO 4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO 4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO 4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO 4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo 6+ to Mo 5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion

  10. Electroless porous silicon formation applied to fabrication of boron–silica–glass cantilevers

    International Nuclear Information System (INIS)

    Teva, J; Davis, Z J; Hansen, O

    2010-01-01

    This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5–1 mm 3 ) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing the etching rate and reproducibility of the etching. In addition to that, a study of the morphology of the pore that is obtained by this technique is presented. The results from the characterization of the process are applied to the fabrication of boron–silica–glass cantilevers that serve as a platform for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH solution

  11. Formation, characterization and magnetic properties of maghemite γ-Fe2O3 nanoparticles in borate glasses

    International Nuclear Information System (INIS)

    Edelman, I.S.; Ivanova, O.S.; Petrakovskaja, E.A.; Velikanov, D.A.; Tarasov, I.A.; Zubavichus, Y.V.; Trofimova, N.N.; Zaikovskii, V.I.

    2015-01-01

    Highlights: • Fe and large-ion-radius elements (Y, Bi, Pb, and Sm) co-doped borate glasses were prepared. • Maghemite, γ-Fe 2 O 3 , nanoparticles arise in the glasses as a result of the thermal treatment. • The particles structure is the same for all large-ion-radius elements used. • The particle size depends on the large-ion-radius elements nature and concentration. • The glass magnetic properties correlate with the particles size. - Abstract: A new type of nanocomposite materials based on maghemite, γ-Fe 2 O 3 , nanoparticles dispersed in borate glasses co-doped with low contents of iron together with the larger radius element combinations: Y and Bi, or Sm and Pb, or Y and Pb is studied. Nanoparticles arise as a result of heat treatment of the glasses which gives them properties characteristic of magnetically ordered substances. Transmission electron microscopy and XRD show that only one magnetic phase, namely γ-Fe 2 O 3 nanoparticles, occurs in glasses subjected to the thermal treatment at 540 °C during 24 h independently on the doping element nature. At the same time doping element and their concentrations ratio in every combination affect the particles average size and glass magnetic properties, such as magnetization temperature dependences, Faraday rotation value and electron magnetic resonance spectrum characteristics

  12. The long-term behavior of glasses for wastes containment purposes

    International Nuclear Information System (INIS)

    Gin, S.

    2010-01-01

    In the presence of water, nuclear glasses undergo reactions that may be attributed, in part, to the nature of the chemical bonds set up within the glass structure, and - as regards other reactions - owing to the properties of the solute species. The main reactions involved include ion exchanges, these chiefly involving alkali metals, weakly bonded as these are to the glass network, silicon hydrolysis-condensation reactions, resulting in the formation of a porous hydrated layer, gradually taking on a passivating role, along with the precipitation of crystallized secondary phases. At the temperatures of interest in the disposal context (25 - 90 C degrees), such secondary phases mainly involve clay minerals. Fundamental research studies, conducted to gain an understanding of the mechanisms involved, have highlighted the existence of a strong coupling, at the mesoscopic scale, between the aforementioned chemical reactions, and solute transport, the hydrated layer having the ability to take on a passivating role, as its porosity closes. A new model named GRAAL (for Glass Reactivity with Allowance for the Alteration Layer), includes an explicit description of the four chief alteration mechanisms acting on glass: formation of the passivating layer by glass hydration, diffusion of water across that layer, dissolution of that layer over its outside surface, and precipitation of crystallized secondary phases. The equations may either be solved analytically, for simple cases, or be integrated into a geochemical code, to cater for chemistry-transport couplings, and simulate complex systems

  13. Sodium Is Not Essential for High Bioactivity of Glasses

    Science.gov (United States)

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S.; Wilson, Rory M.; Law, Robert V.; Hill, Robert G.; Karpukhina, Natalia

    2017-01-01

    This study aims to demonstrate that excellent bioactivity of glass can be achieved without the presence of an alkali metal component in glass composition. In vitro bioactivity of two sodium-free glasses based on the quaternary system SiO2-P2O5-CaO-CaF2 with 0 and 4.5 mol% CaF2 content was investigated and compared with the sodium containing glasses with equivalent amount of CaF2. The formation of apatite after immersion in Tris buffer was followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 31P and 19F solid state MAS-NMR. The dissolution study was completed by ion release measurements in Tris buffer. The results show that sodium free bioactive glasses formed apatite at 3 hours of immersion in Tris buffer, which is as fast as the corresponding sodium containing composition. This signifies that sodium is not an essential component in bioactive glasses and it is possible to make equally degradable bioactive glasses with or without sodium. The results presented here also emphasize the central role of the glass compositions design which is based on understanding of structural role of components and/or predicting the network connectivity of glasses. PMID:29271977

  14. Analysis of form deviation in non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  15. Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses

    International Nuclear Information System (INIS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Hotra, O.; Popov, A.I.

    2016-01-01

    Evolution of free-volume positron trapping defects caused by crystallization process in (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 15 chalcogenide-chalcohalide glasses was studied by positron annihilation lifetime technique. It is established that CsCl additives in Ge–Ga–S glassy matrix transform defect-related component spectra, indicating that the agglomeration of free-volume voids occurs in initial and crystallized (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 10 glasses. Void fragmentation in (80GeS_2–20Ga_2S_3)_8_5(CsCl)_1_5 glass can be associated with loosing of their inner structure. Full crystallization in each of these glasses corresponds to the formation of defect-related voids. These trends are confirmed by positron-positronium decomposition algorithm. It is shown, that CsCl additives result in white shift in the visible regions in transmission spectra. The γ-irradiation of 80GeS_2–20Ga_2S_3 base glass leads to slight long-wavelength shift of the fundamental optical absorption edge and decreasing of transmission speaks in favor of possible formation of additional defects in glasses and their darkening. - Highlights: • CsCl additives in Ge–Ga–S glassy matrix lead to the agglomeration of voids. • Full crystallization of Ge–Ga–S–CsCl glasses corresponds to the formation of defect voids. • Gamma-irradiation of glass stimulates the creation of additional defects and darkening.

  16. Volatility mechanisms of borosilicate glasses and molten glasses of nuclear interest structural effects

    International Nuclear Information System (INIS)

    Delorme, L.

    1998-01-01

    This work is devoted to the study of the mechanisms which control the volatility of the reference glass used for the confinement of radioactive waste. It was conducted on simplified compositions, in the SiO 2 -B 2 O 3 -Al 2 O 3 -αNa 2 O-(1-alpha)Li 2 O-CaO system.The structural approach carried out by NMR, from room temperature up to 1500 deg.C, shows a strong increase in the mobility of alkalis above Tg. A rapid exchange between B III and B IV sites near 700 deg.C, and the change of coordination number B IV- B III near 1100 deg.C, also seem to take place. The analysis of the vapor phase, carried out by High Temperature Mass Spectrometry coupled to Knudsen cells, reveals the presence between 780 deg.C and 830 deg.C of NaBO 2 (g), LiBO 2 (g) and Na 2 (BO 2 )2(g). The calculation of the partial pressure of each species shows that the total pressure of simplified glasses is dominated by the contribution of sodium. To study the volatility of glasses at higher temperature, equipment using the Transpiration method was used. The analysis of the deposits indicate the presence at 1060 deg.C of the species quoted previously. The vaporization rate and the vapor density were determined for each composition studied in a saturated state. Thus, we show that the volatility of the reference glass can be simulated by that of a simplified glass. For α=1, the kinetic of vaporization between 1060 deg.C and 1200 deg.C reveals an evaporation from the surface associated with a mechanism of diffusion in the molten glass. This is similar to the volatility of the reference glass at 1060 deg.C. To finally explain these mechanisms on a microscopic basis, we develop a model of molecular interactions. Between 780 deg.C and 830 deg.C, these mechanisms are controlled by a strong attraction between Na 2 O and Li 2 O, which maintains the total vapor pressure on a quasi-constant lever up to α=0.27. (author)

  17. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  18. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  19. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  20. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  1. Optical Properties of Bismuth Tellurite Based Glass

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi2O3)x (TeO2)100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases. PMID:22605999

  2. Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, M; Golovchak, R; Kozdras, A; Shpotyuk, O

    2010-01-01

    Effect of radiation-induced physical ageing is investigated by differential scanning calorimetry method in As x Se 100-x (10 ≤ x ≤ 42) and As x S 100-x (30 ≤ x ≤ 42) glasses. Obtained results are compared with conventional physical ageing at normal conditions. Significant radiation-induced physical ageing is recorded for glassy As x S 100-x within 30 ≤ x x Se 100-x glasses from the same compositional interval do not show any measurable changes in DSC curves after γ-irradiation. Observed difference in radiation-induced physical ageing in arsenic-sulfide/selenide glasses is explained by a greater lifetime of γ-induced excitations within sulfur-based network in comparison with selenium-based one.

  3. Microwave based method of monitoring crack formation

    International Nuclear Information System (INIS)

    Aman, Sergej; Aman, Alexander; Majcherek, Soeren; Hirsch, Soeren; Schmidt, Bertram

    2014-01-01

    The formation of cracks in glass particles was monitored by application of linearly polarized microwaves. The breakage behavior of glass spheres coated with a thin gold layer of about 50 nm, i.e. a thickness that is lower than the microwave penetration depth, was tested. In this way the investigation of fracture behavior of electronic circuits was simulated. A shielding current was induced in the gold layer by the application of microwaves. During the crack formation the distribution of this current changed abruptly and a scattered microwave signal appeared at the frequency of the incident microwaves. The time behavior of the scattered signal reflects the microscopic processes occurring during the fracture of the specimen. The duration of the increasing signal corresponds to the crack formation time in the tested specimen. This time was estimated as particle size divided by crack development speed in glass. An intense emission of electrons occurs during the formation of cracks. Due to this, coherent Thomson scattering of microwaves by emitted electrons becomes significant with a delay of a few microseconds after the initial phase of crack formation. In this time the intensity of the microwave signal increases. (paper)

  4. Formation of black glass to be used in solar collectors as absorbent and CuO and Fe{sub 2}O{sub 3}'s effect on this glass

    Energy Technology Data Exchange (ETDEWEB)

    Colak, Sadiye Cetinkaya; Birdogan, Selcuk; Aral, Ertunc; Kilic, Gokhan [Eskisehir Osmangazi University, Faculty of Science and Arts, Physics Department, Meselik, 26480 Eskisehir (Turkey)

    2009-06-15

    Solar energy has the highest potential among novel and renewable energies. In order for solar energy to be used it should first be collected. In this study, a black glass was formed by doping silicate glass with Co{sub 3}O{sub 4} at a high concentration to be used as absorbent, and in addition, this black glass was also doped with CuO and Fe{sub 2}O{sub 3}. Optical absorptions, electrical conductivities, thermal diffusion coefficients, SEM images and EDX spectra of all glasses were obtained and effects of transition metal oxides on glass were examined. (author)

  5. The role of natural glasses as analogues in projecting the long-term alteration of high-level nuclear waste glasses: Part 1

    International Nuclear Information System (INIS)

    Mazer, J.J.

    1993-01-01

    The common observation of glasses persisting in natural environments for long periods of time (up to tens of millions of years) provides compelling evidence that these materials can be kinetically stable in a variety of subsurface environments. This paper reviews how natural and historical synthesized glasses can be employed as natural analogues for understanding and projecting the long-term alteration of high-level nuclear waste glasses. The corrosion of basaltic glass results in many of the same alteration features found in laboratory testing of the corrosion of high-level radioactive waste glasses. Evidence has also been found indicating similarities in the rate controlling processes, such as the effects of silica concentration on corrosion in groundwater and in laboratory leachates. Naturally altered rhyolitic glasses and tektites provide additional evidence that can be used to constrain estimates of long-term waste glass alteration. When reacted under conditions where water is plentiful, the corrosion for these glasses is dominated by network hydrolysis, while the corrosion is dominated by molecular water diffusion and secondary mineral formation under conditions where water contact is intermittent or where water is relatively scarce. Synthesized glasses that have been naturally altered result in alkali-depleted alteration features that are similar to those found for natural glasses and for nuclear waste glasses. The characteristics of these alteration features appear to be dependent on the alteration conditions which affect the dominant reaction processes during weathering. In all cases, care must be taken to ensure that the information being provided by natural analogues is related to nuclear waste glass corrosion in a clear and meaningful way

  6. Icosahedral binary clusters of glass-forming Lennard-Jones binary alloy

    International Nuclear Information System (INIS)

    Iwamatsu, Masao

    2007-01-01

    It is widely believed that the local icosahedral structure is related to the formation of bulk metallic glasses (BMGs). Specifically the existence of 13-atom icosahedral cluster in undercooled liquid is imagined to play a key role to initiate the glass formation as the seed of amorphous structure or to block the nucleation of regular crystal as the impurity. The existence of 13-atom icosahedral clusters in one-component liquids was predicted more than half a century ago by Frank from his total energy calculation for isolated clusters. In BMG alloys, however, the situation is less clear. In this report, we present the lowest-energy structures of 13-atom Lennard-Jones binary cluster calculated from the modified space-fixed genetic algorithm. We study, in particular, the artificial Lennard-Jones potential designed by Kob and Andersen [W. Kob, H.C. Andersen, Phys. Rev. E 51 (1995) 4626] that is known to form BMG. Curiously, the lowest-energy structures of 13-atom cluster are non-icosahedral for almost all compositions. Our result suggests that the existence of the icosahedral cluster is not a necessary condition but only a sufficient condition for glass formation

  7. Preparation and studies on surface modifications of calcium-silico-phosphate ferrimagnetic glass-ceramics in simulated body fluid

    International Nuclear Information System (INIS)

    Sharma, K.; Dixit, A.; Singh, Sher; Jagannath,; Bhattacharya, S.; Prajapat, C.L.; Sharma, P.K.; Yusuf, S.M.; Tyagi, A.K.; Kothiyal, G.P.

    2009-01-01

    The structure and magnetic behaviour of 34SiO 2 -(45 - x) CaO-16P 2 O 5 -4.5 MgO-0.5 CaF 2 - x Fe 2 O 3 (where x = 5, 10, 15, 20 wt.%) glasses have been investigated. Ferrimagnetic glass-ceramics are prepared by melt quench followed by controlled crystallization. The surface modification and dissolution behaviour of these glass-ceramics in simulated body fluid (SBF) have also been studied. Phase formation and magnetic behaviour have been studied using XRD and SQUID magnetometer. The room temperature Moessbauer study has been done to monitor the local environment around Fe cations and valence state of Fe ions. X-ray photoelectron spectroscopy (XPS) was used to study the surface modification in glass-ceramics when immersed in simulated body fluid. Formation of bioactive layer in SBF has been ascertained using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The SBF solutions were analyzed using an absorption spectrophotometer. The magnetic measurements indicated that all these glasses possess paramagnetic character and the [Fe 2+ /Fe 3+ ] ions ratio depends on the composition of glass and varied with Fe 2 O 3 concentration in glass matrix. In glass-ceramics saturation magnetization increases with increase in amount of Fe 2 O 3 . The nanostructure of hematite and magnetite is formed in the glass-ceramics with 15 and 20 wt.% Fe 2 O 3 , which is responsible for the magnetic property of these glass-ceramics. Introduction of Fe 2 O 3 induces several modifications at the glass-ceramics surface when immersed in SBF solution and thereby affecting the surface dissolution and the formation of the bioactive layer.

  8. Comprehension and modelling of chromia-forming alloys corrosion mechanisms in nuclear glasses

    International Nuclear Information System (INIS)

    Schmucker, Eric

    2016-01-01

    Nuclear wastes management consists in the confinement of the radioactive wastes in a glass matrix. This is made by inductive melting in a hot crucible at an operating temperature around 1150 C. These crucibles are constituted of nickel based superalloys with high chromium content. They are submitted to a harsh corrosion by the molten glass, eventually leading to their replacement. The protection of the crucible against corrosion is best provided by the establishment of a protective chromium oxide layer at the surface of the alloy. A binary chromia-forming alloy (Ni-30Cr) is studied in this work. Three different binary and ternary glass compositions are chosen in order to understand the influence of the glass basicity and glass viscosity on the corrosion kinetics. Besides, the de-correlation of the formation and dissolution kinetics of the oxide layer allows the modelling of the overall oxide growth in the molten glass. For that purpose, the oxide formation kinetics in molten glass media is assimilated to the oxidation kinetics of the alloy in gaseous media with oxygen partial pressure that are representative of the redox properties of the glasses. Studies of the oxidation kinetics and of the diffusion mechanisms have shown that the oxidation kinetics is independent on the oxygen pressure in the range of 10"-"1"3 up to 10"-"3 atm O_2 at 1150 C. The present work has shown that the dissolution kinetics of the oxide layer is governed by the diffusion of Cr(III) in the glass melt. This dissolution kinetics has been evaluated from the diffusion coefficient and the solubility limit of Cr(III) in the glass. Finally, the overall growth kinetics of the Cr_2O_3 layer in the glass has been successfully modelled for each glass, thanks to the knowledge of (i) the solubility limit of Cr(III), (ii) its diffusion coefficient in the glasses and (iii) the oxidation kinetics of the alloy. The presented model also allows quantifying the influence of each of these parameters on the

  9. Nonlinear optical properties of Sn+ ion-implanted silica glass

    International Nuclear Information System (INIS)

    Takeda, Y.; Hioki, T.; Motohiro, T.; Noda, S.; Kurauchi, T.

    1994-01-01

    The absolute value of the third-order nonlinear optical susceptibility, vertical stroke χ (3) vertical stroke , of Sn + ion-implanted silica glass was found to be similar 10 -6 esu. This value is as large as those reported for semiconductor-doped glasses. Silica glass substrates were implanted with Sn + ions at an acceleration energy of 400 keV to a dose of 2x10 17 ions/cm 2 at room temperature. Metallic Sn microcrystallites of 4-20 nm in diameter were found to be embedded in the silica glass matrix. The average volume fraction of the Sn microcrystallites was evaluated to be 28%. vertical stroke χ (3) vertical stroke and the imaginary part of the dielectric function, Im ε, had peaks at the same wavelength of 500 nm owing to surface plasmon resonance. The peak width of vertical stroke χ (3) vertical stroke was nearly half of that of Im ε, which can be explained by an effective medium theory. ((orig.))

  10. Crack-resistant Al2O3–SiO2 glasses

    Science.gov (United States)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  11. Hydrothermal alteration of the glass R7T7. Glass dissolution kinetics at 150 and 2500, role of neo-formed phases

    International Nuclear Information System (INIS)

    Caurel, J.

    1990-01-01

    The glass R7T7 is chosen in France for vitrification of solution from reprocessing. Safety requires the knowledge of R7T7 long term behavior in deep geologic formations. Temperature dependence of leaching between 50 and 300 0 C is studied by static tests for 7 days. An activation energy of 30kJ/Mole is calculated between 50; 75 or 100 0 C and 250 0 C. Results suggest similar corrosion mechanisms between 90-100 and 250 0 C by a complete change between 250 and 275 0 C. Glass corrosion kinetics at 150 0 C and 250 0 C between 1 day and 1 year evidence the precipitation of aluminosilicates and formation of thick amorphous gels progressively enriched with silica. Glass dissolution at 150 0 C and 250 0 C is simulated with the geochemical DISSOL code. Results suggest that dissolution kinetics are controlled by activity of H 4 SiO 4 in solution only. Silica contained into the gel controls corrosion kinetics different from 0. Even if the nature of dissolution mechanisms does not seem modified between 150 and 250 0 C, sample cracking at 250 0 C induces an increase of dissolved glass that does not allow a direct comparison of corrosion kinetics between 150 and 250 0 C [fr

  12. Smart-Glasses: Exposing and Elucidating the Ethical Issues.

    Science.gov (United States)

    Hofmann, Bjørn; Haustein, Dušan; Landeweerd, Laurens

    2017-06-01

    The objective of this study is to provide an overview over the ethical issues relevant to the assessment, implementation, and use of smart-glasses. The purpose of the overview is to facilitate deliberation, decision making, and the formation of knowledge and norms for this emerging technology. An axiological question-based method for human cognitive enhancement including an extensive literature search on smart-glasses is used to identify relevant ethical issues. The search is supplemented with relevant ethical issues identified in the literature on human cognitive enhancement (in general) and in the study of the technical aspects of smart-glasses. Identified papers were subject to traditional content analysis: 739 references were identified of which 247 were regarded as relevant for full text examinations, and 155 were included in the study. A wide variety of ethical issues with smart-glasses have been identified, such as issues related to privacy, safety, justice, change in human agency, accountability, responsibility, social interaction, power and ideology. Smart-glasses are envisioned to change individual human identity and behavior as well as social interaction. Taking these issues into account appears to be relevant when developing, deliberating, deciding on, implementing, and using smart-glasses.

  13. An isomerization-induced cage-breaking process in a molecular glass former below Tg

    International Nuclear Information System (INIS)

    Teboul, V.; Saiddine, M.; Accary, J.-B.; Nunzi, J.-M.

    2011-01-01

    A recent experimental [P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, L. Brehmer, Nature Mater. 4, 699 (2005)] study has found liquidlike diffusion below the glass-transition temperature in azobenzene-containing materials under irradiation. This result suggests that the isomerization-induced massive mass transport that leads to surface relief gratings formation in these materials, is induced by this huge increase of the matrix diffusion coefficient around the probe. In order to investigate the microscopic origin of the increase of the diffusion, we use molecular dynamics simulations of the photoisomerization of probe dispersed red 1 molecules dispersed inside a glassy molecular matrix. Results show that the increased diffusion is due to an isomerization-induced cage-breaking process. A process that explains the induced cooperative motions recently observed in these photoactive materials.

  14. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). V. EXTENT AND SPATIAL DISTRIBUTION OF STAR FORMATION IN z ∼ 0.5 CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), the University of Tokyo, Kashiwa, 277-8582 (Japan); Treu, Tommaso; Malkan, Matthew; Abramson, Louis [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Schmidt, Kasper B. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Poggianti, Bianca M. [INAF-Astronomical Observatory of Padova (Italy); Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Fontana, Adriano; Pentericci, Laura [INAF—Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monte Porzio Catone (Italy); Bradac, Marusa; Hoag, Austin; Huang, Kuan-Han; He, Julie [Department of Physics, University of California, Davis, CA 95616 (United States); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Trenti, Michele [School of Physics, University of Melbourne, VIC 3010 (Australia); Linden, Anja von der [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Morris, Glenn [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States)

    2015-12-01

    We present the first study of the spatial distribution of star formation in z ∼ 0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS 0717.5+3745 and MACS 1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as a field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 10{sup 8}–10{sup 11} M{sub ⊙} and star formation rates in the range 1–20 M{sub ⊙} yr{sup −1}. Both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside-out growth. In ∼20% of the cases, the Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models, and find no conclusive results. The diversity of morphologies and sizes observed in Hα illustrates the complexity of the environmental processes that regulate star formation. Upcoming analysis of the full GLASS data set will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial data set.

  15. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). V. EXTENT AND SPATIAL DISTRIBUTION OF STAR FORMATION IN z ∼ 0.5 CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Vulcani, Benedetta; Treu, Tommaso; Malkan, Matthew; Abramson, Louis; Schmidt, Kasper B.; Poggianti, Bianca M.; Dressler, Alan; Fontana, Adriano; Pentericci, Laura; Bradac, Marusa; Hoag, Austin; Huang, Kuan-Han; He, Julie; Brammer, Gabriel B.; Trenti, Michele; Linden, Anja von der; Morris, Glenn

    2015-01-01

    We present the first study of the spatial distribution of star formation in z ∼ 0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS 0717.5+3745 and MACS 1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as a field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 10 8 –10 11 M ⊙  and star formation rates in the range 1–20 M ⊙ yr −1 . Both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside-out growth. In ∼20% of the cases, the Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models, and find no conclusive results. The diversity of morphologies and sizes observed in Hα illustrates the complexity of the environmental processes that regulate star formation. Upcoming analysis of the full GLASS data set will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial data set

  16. The Influence of Na and Ti on the In Vitro Degradation and Bioactivity in 58S Sol-Gel Bioactive Glass

    Directory of Open Access Journals (Sweden)

    Shirong Ni

    2012-01-01

    Full Text Available The aim of this study was to investigate the effect of Na and Ti on the in vitro degradation and bioactivity in the 58S bioactive glass. The degradation was evaluated through the activation energy of Si ion release from bioactive glasses and the weight loss of bioactive glasses in Tris-HCl buffer solution. The in vitro bioactivity of the bioactive glasses was investigated by analysis of apatite-formation ability in the simulated body fluid (SBF. The results showed that Na in the 58S glass accelerated the dissolution rate of the glass, whereas Ti in the 58S glass slowed down the rate of glass solubility. Bioactivity tests showed that Na in glass increased the apatite-forming ability in SBF. In contrast, Ti in glass retards the apatite formation at the initial stage of SBF soaking but does not affect the growth of apatite after long periods of soaking.

  17. Wetting of metals and glasses on Mo

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  18. Unusual glass-forming ability induced by changes in the local atomic structure in Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Y C; Chang, H J; Kim, D H; Kim, W T; Cha, P R

    2007-01-01

    The effect of partial replacement of Cu by Be in Ti 50 Cu 32 Ni 15 Sn 3 alloy on the thermal properties, structure, and forming ability of an amorphous phase were investigated by differential scanning calorimetry (DSC), x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and high-resolution transmission electron microscopy (HRTEM). Ti 50 Cu 25 Ni 15 Sn 3 Be 7 alloy shows enhanced glass-forming ability, enabling one to fabricate a fully amorphous bulk metallic glass sample 2 mm in diameter by injection casting. With the replacement, the supercooled liquid region ΔT x (= T x -T g , where T x is the crystallization temperature and T g is the glass transition temperature) decreased from 73 to 45 K and the reduced glass transition temperature T rg (= T g /T 1 , where T 1 is the liquidus temperature) increased from 0.53 to 0.57. The amorphous Ti 50 Cu 25 Ni 15 Sn 3 Be 7 phase showed a formation of short-range-ordered clusters 1-2 nm in size, which is attributed to the strong interaction between Ti and Be. The results show that ΔT x can be used as a thermal parameter reflecting the glass-forming ability of the alloy only when the phase formed during crystallization is the same as the phase competing with the glass transition during solidification

  19. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Influence of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3} content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Bourhis, Kevin, E-mail: k.bourhis@argolight.com [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Massera, Jonathan [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); Petit, Laeticia; Ihalainen, Heikki [nLIGHT Corporation, Sorronrinne 9, FI-08500 Lohja (Finland); Fargues, Alexandre; Cardinal, Thierry [CNRS, Université de Bordeaux, ISM, 351Cours de la Libération, F-33405 Talence (France); Hupa, Leena; Hupa, Mikko [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); Dussauze, Marc; Rodriguez, Vincent [CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Dr Schweitzer, F-33608 Pessac (France); Boussard-Plédel, Catherine; Bureau, Bruno; Roiland, Claire [Equipe Verres et Céramiques, UMR-CNRS 6226, Inst. des Sciences chimiques de Rennes, Université de Rennes 1, 35042 Rennes CEDEX (France); Ferraris, Monica [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)

    2015-03-15

    Highlights: • Reorganization of the glass structure induced by the addition of P{sub 2}O{sub 5} or Al{sub 2}O{sub 3}. • Emission properties related to the presence of P or Al in the Er{sup 3+} coordination shell. • Declustering observed upon addition of P{sub 2}O{sub 5}. • No declustering upon addition of Al{sub 2}O{sub 3}. - Abstract: The effect of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} addition in Er-doped borosilicate glasses on the physical, thermal, optical, and luminescence properties is investigated. The changes in these glass properties are related to the glass structure modifications induced by the addition of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3}, which were probed by FTIR, {sup 11}B MAS NMR and X-ray photoelectron spectroscopies. Variations of the polymerization degree of the silicate tetrahedra and modifications in the {sup [3]}B/{sup [4]}B ratio are explained by a charge compensation mechanism due to the formation of AlO{sub 4}, PO{sub 4} groups and the formation of Al-O-P linkages in the glass network. From the absorption and luminescence properties of the Er{sup 3+} ions at 980 nm and 1530 nm, declustering is suspected for the highest P{sub 2}O{sub 5} concentrations while for the highest Al{sub 2}O{sub 3} concentrations no declustering is observed.

  1. Hybrid glasses from strong and fragile metal-organic framework liquids.

    Science.gov (United States)

    Bennett, Thomas D; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J; Yeung, Hamish H-M; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K; Greaves, G Neville

    2015-08-28

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

  2. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    Science.gov (United States)

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  3. A novel approach to modelling non-exponential spin glass relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Pickup, R.M. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)]. E-mail: r.cywinski@leeds.ac.uk; Cywinski, R. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Pappas, C. [Hahn-Meitner Institut, Glienicker Strasse 100, 14109 Berlin (Germany)

    2007-07-15

    A probabilistic cluster model, originally proposed by Weron to explain the universal power law of dielectric relaxation, is shown to account for the non-exponential relaxation in spin glasses above T {sub g}. Neutron spin echo spectra measured for the cluster glass compound Co{sub 55}Ga{sub 45} are well described by the Weron relaxation function, {phi}(t)={phi} {sub o}(1+k(t/{tau}) {sup {beta}}){sup -1/k}, with the interaction parameter k scaling linearly with the non-Curie-Weiss susceptibility.

  4. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fedotovs, A; Rogulis, U; Sarakovskis, A; Dimitrocenko, L, E-mail: andris-f@navigator.l [Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, LV-1063, Riga (Latvia)

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF{sub 3} crystalline phase.

  5. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Science.gov (United States)

    Fedotovs, A.; Rogulis, U.; Sarakovskis, A.; Dimitrocenko, L.

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF3 crystalline phase.

  6. FY 1999 report on the results of the development of recycling technology of waste architectural materials, glass, etc. Development of the simple glass coloring/decoloring technology; 1999 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kan'igata glass chakudasshoku gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of increasing the ratio of recycling of waste architectural materials, glass, etc., the development was proceeded with of easy coloring of colorless glass by light irradiation and decoloring of it by heat treatment. The important point for technical development is to develop glass materials which are colored by light and decolored by heat at a level of technique with practicality and to develop coloring/decoloring device. Studies were made in the following three fields: 1) optimization of coloring/decoloring conditions for coloring/decoloring occurring from defects (color centers) under light irradiation; 2) optimization of coloring/decoloring conditions occurring from colorless ions and particulate formation under light irradiation; 3) development of a visible drawing device. In 1), bottle, sheet glass, and soda-lime silicate glass are colored brown by X-ray/UV radiation, but the coloring is bad in stability. However, it was found that the addition of silver oxide improved stability. In 2), it was recognized that when the glass containing a trace of Mn was melted in the reducing atmosphere, it became colorless, and when radiated by X-ray and heat-treated at approximately 200 degrees C, it was colored bluish violet which was vivid and stable. (NEDO)

  7. Apollo 15 yellow-brown volcanic glass: Chemistry and petrogenetic relations to green volcanic glass and olivine-normative mare basalts

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, S.S.; Schmitt, R.A.; (Oregon State Univ., Corvallis (USA)); Delano, J.W. (State Univ. of New York, Albany (USA))

    1988-10-01

    Apollo 15 yellow-brown glass is one of twenty-five, high Mg, primary magmas emplaced on the lunar surface in pyroclastic eruptions. Forty spherules of this glass were individually analyzed by electron microprobe and INAA for major- and trace-elements. The abundances demonstrate that this primary magma was produced by partial melting of differentiated cumulates in the lunar mantle. Models are developed to explain the possible source-regions of several Apollo 15 and Apollo 12 low-Ti mare magmas as being products of hybridization involving three ancient differentiated components of a primordial lunar magma ocean: (a) early olivine {plus minus} orthopyroxene cumulates; (b) late-stage clinopyroxene + pigeonite + ilmenite + plagioclase cumulates; and (c) late-stage inter-cumulus liquid.

  8. Vesicles in Apollo 15 Green Glasses: The Nature of Ancient Lunar Gases

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S. J.; Berger, E. L.; Rahman, Z.; McKay, D. S.; Gibson, E. K.; Wentworth, S. J.

    2014-01-01

    Detailed studies of Apollo 15 green glass and related beads have shown they were formed in gas-rich fire fountains.. As the magmatic fluid became super-saturated in volatile gas, bubbles or vesicles formed within the magma. These exsolved gases became trapped within vesicles as the glasses were ejected from the fire-fountain and subsequently quenched. One of the keys to understanding formation processes on the ancient moon includes determining the composition of volatile species and elements, including metals, dissolved in magmatic gases. Here we report the nature of mineral phases spatially associated with vesicles in a green glass bead from Apollo sample 15411,42. The phases reflect the composition of the cooling/degassing magmatic vapors and fluids present at the time of bead formation approx, 3 Ga ago

  9. Percolative ionic conduction in the LiAlSiO4 glass-ceramic system

    International Nuclear Information System (INIS)

    Biefeld, R.M.; Pike, G.E.; Johnson, R.T. Jr.

    1977-01-01

    The effect f crystallinity on the lithium ion conductivity in LiAlSiO 4 glass and glass-ceramic solid electrolytes has been determined. The ionic conductivity is thermally activated with an activation energy and pre-exponential factor that change in a marked and nonsimple manner as the volume fraction of crystallinity changes. These results are explained by using a continuum percolation model (effective-medium approximation) which assumes that ionic conduction in the glass-ceramic is almost entirely within the glass phase until the crystalline volume fraction rises above approx. 55%. The LiAlSiO 4 system would seem to be nearly ideal for application of percolation theory since the crystalline phase, β eucryptite, has nearly the same composition as the glass phase. Hence, as the crystallite volume fraction increases in the glass ceramic, the residual glass composition and conductivity remain the same. This is the first application of percolation theory to ionic transport in glass-ceramics and excellent agreement is obtained between theory and experiment for the LiAlSiO 4 system

  10. A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants.

    Science.gov (United States)

    Maçon, Anthony L B; Kim, Taek B; Valliant, Esther M; Goetschius, Kathryn; Brow, Richard K; Day, Delbert E; Hoppe, Alexander; Boccaccini, Aldo R; Kim, Ill Yong; Ohtsuki, Chikara; Kokubo, Tadashi; Osaka, Akiyoshi; Vallet-Regí, Maria; Arcos, Daniel; Fraile, Leandro; Salinas, Antonio J; Teixeira, Alexandra V; Vueva, Yuliya; Almeida, Rui M; Miola, Marta; Vitale-Brovarone, Chiara; Verné, Enrica; Höland, Wolfram; Jones, Julian R

    2015-02-01

    The aim of this study was to propose and validate a new unified method for testing dissolution rates of bioactive glasses and their variants, and the formation of calcium phosphate layer formation on their surface, which is an indicator of bioactivity. At present, comparison in the literature is difficult as many groups use different testing protocols. An ISO standard covers the use of simulated body fluid on standard shape materials but it does not take into account that bioactive glasses can have very different specific surface areas, as for glass powders. Validation of the proposed modified test was through round robin testing and comparison to the ISO standard where appropriate. The proposed test uses fixed mass per solution volume ratio and agitated solution. The round robin study showed differences in hydroxyapatite nucleation on glasses of different composition and between glasses of the same composition but different particle size. The results were reproducible between research facilities. Researchers should use this method when testing new glasses, or their variants, to enable comparison between the literature in the future.

  11. IR spectra and structure of glasses in the BaO-WO3-P2O5 system

    International Nuclear Information System (INIS)

    Miroshnichenko, O.Ya.; Mombelli, V.V.

    1979-01-01

    Studied are IR absorption spectra and determined are the main structural characteristics of tungstophosphate glasses of the BaO-WO 3 -P 2 O 5 system in all the area of glass formation. It is shown that the main structural components of their anion network are phosphate chains consisting of PO 4 tetrahedrons and tungstate chains consisting of WO 4 tetrahedrons and of WO 6 octahedrons. These chains are connected by P-O-W bridges into three-dimentional tungstophosphate network, where the ratio of phosphate and tungstate structural units and their polymerization degree change without limits depending on the glass composition. Analysis of concentration frequency dependence and spectral band intensity permit to clarify the effect of each component on the glass structure in all the area of glass formation of the triple system

  12. Platinoids and molybdenum in nuclear waste containment glasses: a structural study; Les platinoides et le molybdene dans des verres d'interet nucleaires: etude structurale

    Energy Technology Data Exchange (ETDEWEB)

    Le Grand, M [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification (DRRV), 30 - Marcoule (France); [Paris-7 Univ., 75 (France)

    2000-07-01

    This work deals with the structure of borosilicate nuclear glasses and with some relationships between structure and macroscopic properties. Two types of elements which may disturb the industrial process - platinoids (Ru and Pd) and molybdenum - are central to this work. Platinoids induce weak modifications on the structure of the glass, causing a depolymerization of the glassy network, an increase of the {sup [3]}B/{sup [4]}B ratio and a modification of the medium range order around Si between 3.3 and 4.5 angstrom. The modifications of viscosity and density induced by platinoids in the glass are not due to the structural effect of the platinoids. The increase of viscosity is attributed to needle shaped RuO{sub 2}. It can be moderated by imposing reducing conditions during the elaboration of the glass. The slight difference between experimental and calculated densities is due to the increase of the volume percentage of bubbles in the glass with increasing platinoid content. Mo is either present in the glass as molybdic groupings, or mobilized in chemically complex molybdic crystalline phases. The chemical composition and mineralogy of these phases has been obtained using electronic microprobe data and XRD with Rietveld analysis. The distribution of the different elements between the crystalline phases and the glass is strongly influenced by the structural role of the various cations in the glass. The Mo present in the glass appears as MoO{sub 4} tetrahedra, independent of the borosilicate network. The formation of the crystalline phases can be explained by the existence of a precursor in which the MoO{sub 4} tetrahedra are concentrated in rich alkali and earth-alkali bearing areas of the glass. (author)

  13. Optical, physical and structural studies of boro-zinc tellurite glasses

    International Nuclear Information System (INIS)

    Gayathri Pavani, P.; Sadhana, K.; Chandra Mouli, V.

    2011-01-01

    To investigate the modification effect of the modifier ZnO on boro-tellurite glass, a series of glasses with compositions 50B 2 O 3 -(50-x)ZnO-xTeO 2 have been prepared by conventional melt quenching technique. Amorphous nature of the samples was confirmed through X-ray diffraction technique. Optical absorption and IR structural studies are carried out on the glass system. The optical absorption studies revealed that the cutoff wavelength increases while optical band gap (E opt ) and Urbach energy decreases with an increase of ZnO content. Refractive index evaluated from E opt was found to increase with an increase of ZnO content. The compositional dependence of different physical parameters such as density, molar volume, oxygen packing density, optical basicity, have been analyzed and discussed. The IR studies showed that the structure of glass consists of TeO 4 , TeO 3 /TeO 3+1 , BO 3 , BO 4 and ZnO 4 units. -- Research highlights: → Novel boro-zinc tellurite ternary glasses that can compete with boro-tellurite and zinc tellurite glasses are successfully prepared. → Boro-zinc tellurite ternary glasses are of higher refractive index compared with zinc tellurite glasses. → Optical, physical and structural properties of the novel ternary glass system are explained.→ At 30 mol% of ZnO, TeO 4 is replaced by ZnO 4 indicating the presence of ZnO 4 network.

  14. First-order dissolution rate law and the role of surface layers in glass performance assessment

    Science.gov (United States)

    Grambow, B.; Müller, R.

    2001-09-01

    The first-order dissolution rate law is used for nuclear waste glass performance predictions since 1984. A first discussion of the role of saturation effects was initiated at the MRS conference that year. In paper (1) it was stated that "For glass dissolution A* (the reaction affinity) cannot become zero since saturation only involves the reacting surface while soluble elements still might be extracted from the glass" [B. Grambow, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 15]. Saturation of silica at the surface and condensation of surface silanol groups was considered as being responsible for the slow down of reaction rates by as much as a factor of 1000. Precipitation of Si containing secondary phases such as quartz was invoked as a mechanism for keeping final dissolution affinities higher than zero. Another (2) paper [A.B. Barkatt, P.B. Macedo, B.C. Gibson, C.J. Montrose, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 3] stated that "… under repository conditions the extent of glass dissolution will be moderate due to saturation with respect to certain major elements (in particular, Si, Al and Ca). Consequently, the concentration levels of the more soluble glass constituents in the aqueous medium are expected to fall appreciable below their solubility limit." The formation of dense surface layers was considered responsible for explaining the saturation effect. The mathematical model assumed stop of reaction in closed systems, once solubility limits were achieved. For more than 15 years the question of the correctness of one or the other concept has seldom been posed and has not yet been resolved. The need of repository performance assessment for validated rate laws demands a solution, particularly since the consequences of the two concepts and research requirements for the long-term glass behavior are quite different. In concept (1) the stability of the `equilibrium surface region' is not relevant because, by definition, this region is stable chemically and after a

  15. Aqueous alteration of Japanese simulated waste glass P0798: Effects of alteration-phase formation on alteration rate and cesium retention

    International Nuclear Information System (INIS)

    Inagaki, Y.; Shinkai, A.; Idemistu, K.; Arima, T.; Yoshikawa, H.; Yui, M.

    2006-01-01

    Aqueous alteration tests were performed with a Japanese simulated waste glass P0798 in alkaline solutions as a function of pH or species/concentration of alkaline metals in the solution in order to evaluate the alteration conditions determining whether smectite (2:1 clay mineral) or analcime (zeolite) forms as the major alteration-phase. XRD analysis of the alteration-phases showed that smectite forms at any pH between 9.5 and 12, and analcime forms at pH above 11, though the formation also depends on species and concentrations of alkaline metals in the solution. These results cannot agree with the thermodynamically predicted phase stability, e.g., smectite is more stable than the thermodynamic prediction shows. On the basis of the results of alteration conditions, the alteration tests were performed under smectite forming conditions, where only smectite forms or no crystalline phases form, in order to evaluate the alteration rate and the mechanism of cesium release/retention. The results showed that the glass alteration proceeds slowly in proportion to square root of time under smectite forming conditions, which indicates that the alteration rate can be controlled by a diffusion process. It was suggested that the alteration rate under smectite forming conditions is independent of the pH, alkaline metal species/concentration in the solution and whether smectite actually forms or not. The results also indicated that most of cesium dissolved from the glass can be retained in the alteration-phases by reversible sorption onto smectite or irreversible incorporation into analcime, pollucite or solid solutions of them

  16. Micropatterning on glass with deep UV

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Nicolas CARPI, Matthieu PIEL, Ammar Azioune & Jenny Fink ### Abstract This protocol describes a method to print micropatterns on glass with extra-cellular matrix proteins to promote cell adhesion. The non-adhesive part is made with polylysine grafted polyethyleneglycol (PLL-g-PEG). This technique is reproducible, cheap, fast and can achieve high resolution (~1 µm). ### Introduction This protocol explains how to make high resolution adhesive micropattens of protein...

  17. Preparation and investigation of Ge-S-I glasses for infrared fiber optics

    Science.gov (United States)

    Velmuzhov, A. P.; Sukhanov, M. V.; Plekhovich, A. D.; Snopatin, G. E.; Churbanov, M. F.; Iskhakova, L. D.; Ermakov, R. P.; Kotereva, T. V.; Shiryaev, V. S.

    2016-02-01

    Glass samples of [GeSx]90I10 (x = 1.5, 1.7, 2.0, 2.3, 2.45, 2.6) compositions were prepared, and some their thermal, optical properties as well as tendency to crystallization were investigated. The compositional dependences of glass transition temperature, volume fraction of crystallized phase and activation energy of glass formation (Eg) have nonmonotonic character with a maximum for [GeS2.0]90I10 glass. Glasses of 85.8GeS2-14.2GeI4 and [GeS1.5]90I10 compositions are identified as promising for preparation of optical fiber. For the first time, Ge-S-I glass fibers were produced. Minimum optical losses in 85.8GeS2-14.2GeI4 glass fiber were 2.7 dB/m at a wavelength of 5.1 μm, and that in [GeS1.5]90I10 glass fiber were 14.5 dB/m at 5.5 μm.

  18. Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, M; Golovchak, R; Kozdras, A; Shpotyuk, O, E-mail: shpotyuk@novas.lviv.ua

    2010-11-15

    Effect of radiation-induced physical ageing is investigated by differential scanning calorimetry method in As{sub x}Se{sub 100-x} (10 {<=} x {<=} 42) and As{sub x}S{sub 100-x} (30 {<=} x {<=} 42) glasses. Obtained results are compared with conventional physical ageing at normal conditions. Significant radiation-induced physical ageing is recorded for glassy As{sub x}S{sub 100-x} within 30 {<=} x < 40 range, while As{sub x}Se{sub 100-x} glasses from the same compositional interval do not show any measurable changes in DSC curves after {gamma}-irradiation. Observed difference in radiation-induced physical ageing in arsenic-sulfide/selenide glasses is explained by a greater lifetime of {gamma}-induced excitations within sulfur-based network in comparison with selenium-based one.

  19. Effect of Ga substitution on the crystallization behaviour and glass forming ability of Zr-Al-Cu-Ni alloys

    International Nuclear Information System (INIS)

    Singh, Devinder; Yadav, T.P.; Mandal, R.K.; Tiwari, R.S.; Srivastava, O.N.

    2010-01-01

    The crystallization behaviour of melt spun Zr 69.5 Al 7.5-x Ga x Cu 12 Ni 11 (x = 0-7.5; in at.%) metallic glasses has been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC traces showed changes in crystallization behaviour with substitution of Ga. Formation of single nano-quasicrystalline phase by controlled crystallization of glasses has been found only for 0 ≤ x ≤ 1.5. Further increase of Ga content gives rise to formation of the quasicrystals together with Zr 2 Cu type crystalline phase. In addition to this, the substitution of Ga influences the size and shape of nano-quasicrystals. The glass forming abilities (GFAs) of these metallic glasses were assessed by the recognition of glass forming ability indicators, i.e. reduced glass transition temperature (T rg ) and supercooled liquid region (ΔT x ). The glass transition temperature (T g ) has been observed for all the melt spun ribbons.

  20. Formation of apatite layers on modified canasite glass-ceramics in simulated body fluid.

    Science.gov (United States)

    Miller, C A; Kokubo, T; Reaney, I M; Hatton, P V; James, P F

    2002-03-05

    Canasite glass-ceramics were modified by either increasing the concentration of calcium in the glass, or by the addition of P2O5. Samples of these novel materials were placed in simulated body fluid (SBF), along with a control material (commercial canasite), for periods ranging from 12 h to 28 days. After immersion, surface analysis was performed using thin film X-ray diffraction, Fourier transform infrared reflection spectroscopy, and scanning electron microscopy equipped with energy dispersive X-ray detectors. The concentrations of sodium, potassium, calcium, silicon, and phosphorus in the SBF solution were measured using inductively coupled plasma emission spectroscopy. No apatite was detected on the surface of commercial canasite, even after 28 days of immersion in SBF. A crystalline apatite layer was formed on the surface of a P2O5-containing canasite after 5 days, and after 3 days for calcium-enriched canasite. Ion release data suggested that the mechanism for apatite deposition was different for P2O5 and non-P2O5-containing glass-ceramics. Copyright 2001 John Wiley & Sons, Inc.

  1. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  2. Preparation and characterization of VB metal group glass for optical fiber communication devices

    International Nuclear Information System (INIS)

    Aranha, N.; Barbosa, L.C.; Garrido, F.M.S.; Alves, O.L.

    1990-01-01

    In this work was prepared the glass of composition Nb 2 O 5 (25.04%) - PbO (23.91%) - P 2 O 5 (34.25%) - K 2 O (16.80%) using a RF induction furnace at temperature of 1400 C for two hours under ambient atmosphere. The obtained glass are annealed at 300 C. The samples (powder and thin plates) was characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy and by determination of the thermal coefficient of expansion (dilatometry). Results shown the formation of a very homogeneous glass with a thermal coefficient of expansion (α) of 22.7.10 -6 C -1 . The ir bands suggest the formation of a phosphate glass with a good transmission in the region of 2.0-2.9 microns (5000-3400 cm -1 ). The transmission spectrum shows that the material is transparent in the region of 400-1000 nm with a cut-off at near 350nm. (author) [pt

  3. Use of glass-ceramic materials for the fixation of radioactive wastes

    International Nuclear Information System (INIS)

    Minaev, A.A.; Oziraner, S.N.; Prokhorova, N.P.

    1979-01-01

    This paper is concerned with the study of the crystallization of phosphate and silicate glasses. It was shown that temperature and time of storage influence considerably the crystallization of glasses and that crystallization very often increases their rates of leaching to a great extent. However, there are glasses in which crystallization does not result in leaching rate increase. It seems reasonable to use these materials for the fixation of radioactive wastes. The main reasons for the increase in the leaching rate during crystallization are the formation of porosity and soluble crystal phases

  4. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca; Thorpe, Steven John [Department of Materials Science and Engineering, University of Toronto, Room 140, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  5. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  6. Thermal studies of Se85-xTe15Inx (x = 3,6,9,12) glasses

    International Nuclear Information System (INIS)

    Sushama, D.; George, Achamma; Asokan, S.

    2011-01-01

    Bulk glasses of compositions Se 85-x Te 15 In x (x = 3,6,9,12) are prepared by melt quenching technique and Differential scanning calorimetry (DSC) is employed to study the thermal stability, crystallization mechanism as well as specific heat of these glasses. It is found that the addition of indium increases the glass transition temperature. From the heating rate dependence of the glass transition temperature the activation energy of glass transition is determined using Kissinger's equation for non-isothermal crystallization of materials. An attempt has been made to explain the variation in the value of T c , T p and ΔC p for the composition Se 73 Te 15 In 12 using rigidity percolation threshold (RPT). From the values of (T c -T g ) the stable glass system is determined.

  7. The Color Glass Condensate: An Intuitive Physical Description

    International Nuclear Information System (INIS)

    McLerran, Larry

    2006-01-01

    I argue that the scattering of very high energy strongly interacting particles is controlled by a new, universal form of matter, the Color Glass Condensate. This matter is predicted by QCD and explains the saturation of gluon densites at small x. I motivate the existence of this matter and describe some of its properties

  8. The anomalous yield behavior of fused silica glass

    Science.gov (United States)

    Schill, W.; Heyden, S.; Conti, S.; Ortiz, M.

    2018-04-01

    We develop a critical-state model of fused silica plasticity on the basis of data mined from molecular dynamics (MD) calculations. The MD data is suggestive of an irreversible densification transition in volumetric compression resulting in permanent, or plastic, densification upon unloading. The MD data also reveals an evolution towards a critical state of constant volume under pressure-shear deformation. The trend towards constant volume is from above, when the glass is overconsolidated, or from below, when it is underconsolidated. We show that these characteristic behaviors are well-captured by a critical state model of plasticity, where the densification law for glass takes the place of the classical consolidation law of granular media and the locus of constant-volume states defines the critical-state line. A salient feature of the critical-state line of fused silica, as identified from the MD data, that renders its yield behavior anomalous is that it is strongly non-convex, owing to the existence of two well-differentiated phases at low and high pressures. We argue that this strong non-convexity of yield explains the patterning that is observed in molecular dynamics calculations of amorphous solids deforming in shear. We employ an explicit and exact rank-2 envelope construction to upscale the microscopic critical-state model to the macroscale. Remarkably, owing to the equilibrium constraint the resulting effective macroscopic behavior is still characterized by a non-convex critical-state line. Despite this lack of convexity, the effective macroscopic model is stable against microstructure formation and defines well-posed boundary-value problems.

  9. Transport properties of Pb-doped Bi4Sr3Ca3Cu4Ox semiconducting glasses and glass-ceramic superconductors

    International Nuclear Information System (INIS)

    Chatterjee, S.; Banerjee, S.; Mollah, S.; Chaudhuri, B.K.

    1996-01-01

    Electrical conductivity and thermoelectric power (TEP) of the as-quenched and annealed (at 500 degree C for 10 h and 840 degree C for 24 h) Bi 4-n Pb n Sr 3 Ca 3 Cu 4 O x (x = 0 endash 1.0) glasses have been measured. The dc conductivity data of the as-quenched and the partially annealed (at 500 degree C) glasses can be explained by considering the small-polaron hopping conduction mechanism which is found to change from the nonadiabatic to the adiabatic regime with annealing the glasses at 500 degree C. This change over is due to the presence of microcrystals in the partially annealed glasses as observed from x-ray-diffraction and scanning electron microscopic studies. This adiabatic behavior is also visualized even for some as-quenched glasses having a very small amount of the more conducting microcrystalline phase. All the 840 degree C annealed glasses are superconductors with T c between 110 and 115 K. The Seebeck coefficient (S) of the partially annealed glass system is found to be positive and increases linearly with temperature. The S values of the corresponding glass-ceramic superconductors showing broad peaks around T c . A change over in the values of S from positive (below ∼290 K) to negative (above ∼290 K) indicates the coexistence of both electrons and holes in these superconductors. The TEP data can be fitted with both the two-band model of Forro et al. [Solid State Commun. 73, 501 (1990)] and the Nagaosa-Lee model [Phys. Rev. Lett. 64, 2450 (1990)]. Therefore, the bosonic contribution in the transport properties of these superconductors, as suggested by the Nagaosa-Lee model, is supported. copyright 1996 The American Physical Society

  10. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    OpenAIRE

    Edelman , Irina; Ivanova , Oxana; Ivantsov , Ruslan; Velikanov , D.; Zabluda , V.; Zubavichus , Y.; Veligzhanin , A.; Zaikovskiy , V.; Stepanov , S.; Artemenko , Alla; Curély , Jacques; Kliava , Janis

    2012-01-01

    International audience; A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge struct...

  11. Leach behavior of high-level borosilicate glasses under deep geological environment

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Chun, Kwan Sik; Park, Hyun Soo

    1998-02-01

    This report presents an overview of the activities in high-level radioactive waste glass which is considered as the most practicable form of waste, and also is intended to be used in the disposal of national high-level radioactive waste in future. Leach theory of waste glass and the leach effects of ground water, metal barrier, buffer materials and rocks on the waste glass were reviewed. The leach of waste glass was affected by various factors such as composition, pH and Eh of ground water, temperature, pressure, radiation and humic acid. The crystallization, crack, weathering and the formation of altered phases of waste glass which is expected to occur in real disposal site were reviewed. The results of leaching in laboratory and in-situ were compared. The behaviors of radioactive elements leached from waste glass and the use of basalt glass for the long-term natural analogue of waste glass were also written in this report. The appraisal of durability of borosilicate waste glass as a waste media was performed from the known results of leach test and international in-situ tests were introduced. (author). 134 refs., 15 tabs., 24 figs

  12. Preparation of mica/apatite glass-ceramics biomaterials

    International Nuclear Information System (INIS)

    Liu Yong; Sheng Xiaoxian; Dan Xiaohong; Xiang Qijun

    2006-01-01

    Glass-ceramics have become more and more important biomaterials. In this work mica glass/apatite composites with various compositions were prepared by casting and subsequent heat treatments. The effects of composition, phase constitution and crystallinity on mechanical properties, including elastic modulus and transverse rupture strength (TRS), were investigated by using X-ray diffraction analyses (XRD), scanning electron microscopy (SEM) and mechanical tests. Results show that addition of apatite composition in mica glass accelerates the crystallization process and induces the formation of fluoroapatite phase, and the nucleation of apatite crystals occurs before that of mica crystals. The fuoroapatite in this work is needle-like, which is almost the same to that in human bone. The transverse rupture strength increases with the content of fluoroapatite and the crystallinity increasing, except that at a low apatite content the mechanical properties are lower than those of mica glass under the same processing conditions. The transverse rupture strength and elastic modulus obtained in this work fall in the range of those of human bone. SBF immersion test demonstrates good bioactivity of this biomaterial

  13. Effect of lead species on the durability of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Kuchinski, F.A.

    1987-01-01

    It has been shown that the incorporation of lead metal into the corrosion environment reduces the leaching rate of nuclear waste glasses. The present study evaluated the effects of lead metal, oxides, alloys, glasses and soluble species on the corrosion rate of a waste glass. The inherent durability of nuclear waste glasses comes from the about due to the insoluble surface film developed during corrosion. This surface film, enriched with iron, aluminum and calcium acts as a diffusion barrier to further corrosion. Except for PbO 2 , all lead species inhibited glass corrosion due to the formation of a surface film enriched in lead. No corroded glass layer was observed below the lead surface layer. Also, no glass corrosion products were found on the lead surface, except for small amounts of silicon. The transport and deposition of lead on the glass surface appears to be the key factors in preventing glass corrosion. At high glass surface area to volume ratios, the glass corroded considerably at short times since the dissolved lead source could not coat the entire glass surface rapidly enough to prevent continued corrosion. Also, experimental solution values did not agree with thermodynamics model predictions. This suggests that kinetic factors, namely diffusion barriers, are controlling the glass corrosion rate

  14. Thermodynamics Far from Equilibrium: from Glasses to Black Holes

    OpenAIRE

    Nieuwenhuizen, Th. M.

    2001-01-01

    A framework for the non-equilibrium thermodynamics of glasses is discussed. It also explains the non-equilibrium thermodynamics of a black hole isolated from matter. The first and second laws of black dynamics and black hole thermodynamics are shown to coincide, while the third laws deal with different issues.

  15. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO₂.

    Science.gov (United States)

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T; Sun, Luyi

    2017-02-28

    Yb 3+ -doped phosphate glasses containing different amounts of SiO₂ were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO₂ on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO₂ possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm²), the maximum Stark splitting manifold of ²F 7/2 level (781 cm -1 ), and the largest scalar crystal-field N J and Yb 3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO₂ promoted the formation of P=O linkages, but broke the P=O linkages when the SiO₂ content was greater than 26.7 mol %. Based on the previous 29 Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO₆] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb 3+ -doped gain medium for solid-state lasers and optical fiber amplifiers.

  16. Structure and properties of MoO.sub.3./sub.-containing zinc borophosphate glasses

    Czech Academy of Sciences Publication Activity Database

    Šubčík, J.; Koudelka, L.; Mošner, P.; Montagne, L.; Revel, B.; Gregora, Ivan

    2009-01-01

    Roč. 355, 16-17 (2009), 970-975 ISSN 0022-3093 R&D Projects: GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100520 Keywords : glass formation * glass es * phosphates * structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.252, year: 2009

  17. Platinoids and molybdenum in nuclear waste containment glasses: a structural study; Les platinoides et le molybdene dans des verres d'interet nucleaires: etude structurale

    Energy Technology Data Exchange (ETDEWEB)

    Le Grand, M. [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification (DRRV), 30 - Marcoule (France)]|[Paris-7 Univ., 75 (France)

    2000-07-01

    This work deals with the structure of borosilicate nuclear glasses and with some relationships between structure and macroscopic properties. Two types of elements which may disturb the industrial process - platinoids (Ru and Pd) and molybdenum - are central to this work. Platinoids induce weak modifications on the structure of the glass, causing a depolymerization of the glassy network, an increase of the {sup [3]}B/{sup [4]}B ratio and a modification of the medium range order around Si between 3.3 and 4.5 angstrom. The modifications of viscosity and density induced by platinoids in the glass are not due to the structural effect of the platinoids. The increase of viscosity is attributed to needle shaped RuO{sub 2}. It can be moderated by imposing reducing conditions during the elaboration of the glass. The slight difference between experimental and calculated densities is due to the increase of the volume percentage of bubbles in the glass with increasing platinoid content. Mo is either present in the glass as molybdic groupings, or mobilized in chemically complex molybdic crystalline phases. The chemical composition and mineralogy of these phases has been obtained using electronic microprobe data and XRD with Rietveld analysis. The distribution of the different elements between the crystalline phases and the glass is strongly influenced by the structural role of the various cations in the glass. The Mo present in the glass appears as MoO{sub 4} tetrahedra, independent of the borosilicate network. The formation of the crystalline phases can be explained by the existence of a precursor in which the MoO{sub 4} tetrahedra are concentrated in rich alkali and earth-alkali bearing areas of the glass. (author)

  18. Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.M. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chang, C.T. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Chang, Z.Y.; Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Shen, B.L.; Inoue, A. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Jiang, J.Z. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: jiangjz@zju.edu.cn

    2008-07-28

    In this work, quaternary Fe{sub 72-x}M{sub x}Y{sub 6}B{sub 22} (M = Ni, Co and Mo) bulk metallic glasses (BMGs) have been developed. It is found that a fully amorphous Fe{sub 68}Mo{sub 4}Y{sub 6}B{sub 22} cylindrical rod with 6.5 mm in diameter can be prepared by copper mold injection. These alloys have a high glass transition temperature of about 900 K with high fracture strengths up to about 3 GPa although they are still brittle. Magnetic measurements reveal that they are ferromagnetic at ambient temperature with low coercive force of about 2 A/m, saturation magnetization of about 0.7 T and effective permeability of about 7000 at 100 kHz. The newly developed Fe-based quaternary alloys exhibit excellent combination properties: superior glass forming ability (GFA), high glass transition temperature, and soft magnetic properties, which could have potential applications in electronic industries. Furthermore, the effect of Mo addition on GFA in the Fe-Y-B BMG system has been discussed compared with those of Ni and Co additions.

  19. Fluctuations in an Inorganic Glass Forming System Capable of Liquid-Liquid Phase Separation

    Science.gov (United States)

    Bogdanov, V.; Maksimov, L.; Anan'ev, A.; Nemilov, S.; Rusan, V.

    2012-08-01

    Rayleigh and Mandel'shtam-Brillouin scattering (RMBS) spectroscopy and high temperature ultrasonic study (HTUS) are applied to PbO-Al2O3-B2O3 glass forming system characterized by over liquidus miscibility gap. Temperature dependences of ultrasonic velocity of glass melts were measured in 600-1200°C range. "Frozen-in" density fluctuations in two phase glasses were estimated from HTUS data by Macedo-Shroeder formulation. Landau-Placzek ratios were found from RMBS spectra of single phase glasses at room temperature. Results of RMBS and HTUS were compared with well-known SAXS data. It was found that contribution of "frozen-in" density fluctuations into light scattering by two-phase glasses is much smaller than the scattering on particles of the second glassy phase causing opalescence of the glasses. Abnormal "water-like" growth of ultrasonic velocity with melt temperature can be explained by coexistence of two types of packaging of structural elements.

  20. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass

    International Nuclear Information System (INIS)

    Shin, Hyunho; Shin, Hee-Kyun; Jung, Hyun Suk; Cho, Seo-Yong; Hong, Kug Sun

    2005-01-01

    Phase evolution, densification, and dielectric properties of MgTi 2 O 5 dielectric ceramic, sintered with lithium borosilicate (LBS) glass, were studied. Reaction between LBS glass and MgTi 2 O 5 was significant in forming secondary phases such as TiO 2 and (Mg,Ti) 2 (BO 3 )O. The glass addition was not necessarily deleterious to the dielectric properties due to the formation of TiO 2 : permittivity increased and temperature coefficient of resonance frequency could be tuned to zero with the addition of LBS glass, although the inevitable glass-induced decrease of quality factor was not retarded by the formation of TiO 2 . The sintered specimen with 10 wt% LBS fired at 950 deg. C for 2 h showed permittivity of 19.3, quality factor of 6800 GHz, and τ f of -16 ppm/ deg. C

  1. Glass produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10 12 calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 μm scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity

  2. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses.

    Science.gov (United States)

    Kapoor, Saurabh; Goel, Ashutosh; Tilocca, Antonio; Dhuna, Vikram; Bhatia, Gaurav; Dhuna, Kshitija; Ferreira, José M F

    2014-07-01

    We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    provide models and parameter values that can be used to calculate the dissolution rates for the different modes of water contact. The analyses were conducted to identify key aspects of the mechanistic model for glass dissolution to be included in the abstracted models used for PA calculations, evaluate how the models can be used to calculate bounding values of the glass dissolution rates under anticipated water contact modes in the disposal. system, and determine model parameter values for the range of potential waste glass compositions and anticipated environmental conditions. The analysis of a bounding rate also considered the effects of the buildup of glass corrosion products in the solution contacting the glass and potential effects of alteration phase formation. Note that application of the models and model parameter values is constrained to the anticipated range of HLW glass compositions and environmental conditions. The effects of processes inherent to exposure to humid air and dripping water were not modeled explicitly. Instead, the impacts of these processes on the degradation rate were taken into account by using empirically measured parameter values. These include the rates at which water sorbs onto the glass, drips onto the glass, and drips off of the glass. The dissolution rates of glasses that were exposed to humid air and dripping water measured in laboratory tests are used to estimate model parameter values for contact by humid air and dripping water in the disposal system

  4. IR thermographic observation and shear bands plasticity analysis in Fe-based metallic glass

    International Nuclear Information System (INIS)

    Bouzakher, B.; Benameur, T.; Sidhom, H.

    2009-01-01

    Infrared thermography observation and in situ atomic force microscopy characterization were carried out to investigate the mechanical damage processes at the edge-notch region of large ribbons of Fe 78 Si 10 B 12 metallic glass. An obvious thermoelastic and inelastic degradation phenomenon was observed ahead at the notched region of the specimens, which probably result from free volume accumulation process and shear band activity during plane stress solicitations. Moreover, AFM topographic and frictional analysis of changes in the crack path during stable crack propagation regime revealed a periodic morphology evolution, formation of nanoscale damage cavity in the range of 20-140 nm and a maximum temperature rise ahead of the pre-crack tip was found in the order of 1.5 deg. C. The nanometer scaled shear offset, discreteness and shear bands density were determined. While these key parameters play a role in observing a large plastic zone in front of the crack, however they are unable to explain the distinct intrinsic ductility of some monolithic metallic glasses. A general Mohr-Coulomb-type constitutive description was used to deduce analytic expressions for prediction of the variation of hydrostatic component of the applied stress to the shear stress ratio as function of Poisson's ratio.

  5. Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis.

    Science.gov (United States)

    Farzana, Rifat; Rajarao, Ravindra; Sahajwalla, Veena

    2016-02-01

    This fundamental research on end-of-life automotive glasses, which are difficult to recycle, is aimed at understanding the chemical and physical characteristics of waste glasses as a resource of silica to produce ferrosilicon. Laboratory experiments at 1550°C were carried out using different automotive glasses and the results compared with those obtained with pure silica. In situ images of slag-metal separation showed similar behaviour for waste glasses and silica-bearing pellets. Though X-ray diffraction (XRD) showed different slag compositions for glass and silica-bearing pellets, formation of ferrosilicon was confirmed. Synthesized ferrosilicon alloy from waste glasses and silica were compared by Raman, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM) analysis. Silicon concentration in the synthesized alloys showed almost 92% silicon recovery from the silica-bearing pellet and 74-92% silicon recoveries from various waste glass pellets. The polyvinyl butyral (PVB) plastic layer in the windshield glass decomposed at low temperature and did not show any detrimental effect on ferrosilicon synthesis. This innovative approach of using waste automotive glasses as a silica source for ferrosilicon production has the potential to create sustainable pathways, which will reduce specialty glass waste in landfill. © The Author(s) 2015.

  6. Radiation induced coloring of glasses measured during and after electron irradiation

    International Nuclear Information System (INIS)

    Swyler, K.J.; Hardy, W.H. II; Levy, P.W.

    1975-01-01

    The growth of color centers during irradiation, and the decay after irradiation, were studied in two glasses using recently developed equipment for making optical absorption and luminescence measurements during and after electron irradiation. The glasses studied were NBS 710, a soda-lime silicate glass, and NBS 711, a lead silicate glass. Both glasses exhibit similar coloring characteristics. The radiation-induced absorption spectra consists of a weak gaussian shaped band in the visible, a stronger gaussian band in the ultraviolet, and a band edge ''shift'' which may be accurately approximated by a third gaussian band. For all absorption bands, the color center vs dose (or irradiation time) curves can be accurately resolved into two saturating exponential and one linear component. The decay curves obtained after the irradiation is terminated can be accurately expressed by three exponential components. Coloring and decay curves made at different dose rates indicate that the processes responsible for decay after irradiation and electron hole recombination during irradiation play important roles in determining the rate and extent of coloring. Results are qualitatively in agreement with some very simple kinetic treatments for color center formation. In some, but not all, respects the quantitative agreement is also good. Lastly, the results indicate that it is necessary to make measurements during irradiation to establish the formation kinetics of color centers that are unstable at the bombardment temperature. (U.S.)

  7. Experimental evidence of spin glass and exchange bias behavior in sputtered grown α-MnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani; Sanger, Amit; Singh, Amit Kumar; Kumar, Arvind [Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kumar, Mohit [Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Chandra, Ramesh [Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2017-07-01

    Highlights: • We have synthesized the α-MnO{sub 2} nanorods by using DC reactive sputtering. • We observed Spin glass and exchange bias behavior at low temperature in sputtered grown α-MnO{sub 2} nanorods. • Exchange bias arises due to exchange coupling of uncompensated FM spins and AFM spins at FM/AFM interface. - Abstract: Here, we present a single-step process to synthesize the α-MnO{sub 2} nanorods forest using reactive DC magnetron sputtering for the application of magnetic memories. The structural and morphological properties of the α-MnO{sub 2} nanorods were systematically studied using numerous analytical techniques, including X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy and transmission electron microscopy. The magnetic measurements suggest that the α-MnO{sub 2} nanorods exhibit spin glass and exchange bias behaviour at low temperature. Such low temperature behaviour is explained by the core-shell type structure of nanorods. Antiferromagnetic core and shell of uncompensated ferromagnetic spins leads to the formation of antiferromagnetic/ferromagnetic (AFM/FM) interfaces, which originates exchange bias in the sample.

  8. Titanophosphate glasses as lithium-free nonsilicate pH-responsive glasses—Compatibility between pH responsivity and self-cleaning properties

    International Nuclear Information System (INIS)

    Hashimoto, Tadanori; Wagu, Moe; Kimura, Kentaro; Nasu, Hiroyuki; Ishihara, Atsushi; Nishio, Yuji; Iwamoto, Yasukazu

    2012-01-01

    Highlights: ► Ti 3+ -containing TP glasses are lithium-free nonsilicate pH-responsive ones. ► TP glasses with a large amount of Ti 3+ ions show good pH responsivity. ► TP glasses with pH responsivity and self-cleaning properties are obtained. ► pH response of TP glasses is explained by phase boundary potential model. -- Abstract: Lithium silicate-based glasses have been widely used as commercially available pH glass electrodes. It was revealed that Ti 3+ -containing titanophosphate (TiO 2 –P 2 O 5 , TP) glasses are pH-responsive as lithium-free nonsilicate glasses for the first time. The absorption coefficient at 532 nm, α 532 as a measure of Ti 3+ content in TP glasses increased with increasing melting temperature. TP glasses with large α 532 tended to give low electrical resistivity, high pH sensitivity and the short pH response time. The first post-annealing (oxidation of Ti 3+ ) of TP glasses at 600–620 °C for 60–240 h resulted in the occurrence of the photo-induced hydrophilicity along with the disappearance of pH responsivity and the increase of electrical resistivity. The second post-annealing (reduction of Ti 4+ ) of the first post-annealed TP glasses at 600–620 °C for 48 h under vacuum recovered both pH responsivity and electrical resistivity to the level of the as-prepared TP glasses with maintaining the photo-induced hydrophilicity. Moreover, the second post-annealed TP glasses had photocatalytic activity for methylene blue (MB) comparable to commercially available self-cleaning glass. Thus, TP glasses with the compatibility between pH responsivity and self-cleaning properties were obtained by the sequential post-annealing (oxidation and reduction) of as-prepared glasses. From some circumstantial evidences, pH response of TP glasses was explained in terms of phase boundary potential model related to hopping conduction of electron from Ti 3+ to Ti 4+ via O 2− ion in TP glasses rather than diffusion potential model.

  9. Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer-plasticizer systems.

    Science.gov (United States)

    Kawai, Kiyoshi; Hagura, Yoshio

    2012-07-01

    In order to understand the glass transition properties of carbohydrate polymer-plasticizer systems, glass transition temperatures of dextrin-glucose and dextrin-maltose systems were investigated systematically using differential scanning calorimetry. The onset (Tg(on)) and offset (Tg(off)) of the glass transition decreased with increasing plasticizer (glucose or maltose) content, and showed an abrupt depression at certain plasticizer content. The abrupt depression of Tg(off) occurred at higher plasticizer content than that of Tg(on). The glass transition was much broader for intermediate plasticizer content. From the enthalpy relaxation behavior of samples aged at various temperatures, it was found that two different glass transitions occurred contentiously in the broad glass transition. These results suggested that carbohydrate polymer-plasticizer systems can be classified into three regions: the entrapment of the plasticizer by the polymer, the formations of the polymer-plasticizer and plasticizer-rich domains, and the embedment of polymer into the plasticizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Canonical correlation of waste glass compositions and durability, including pH

    International Nuclear Information System (INIS)

    Oeksoy, D.; Pye, L.D.; Bickford, D.F.; Ramsey, W.G.

    1993-01-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses

  11. Synthesis and characterization of barium fluoride substituted zinc tellurite glasses

    Science.gov (United States)

    Aishwarya, K.; Vinitha, G.; Varma, G. Sreevidya; Asokan, S.; Manikandan, N.

    2017-12-01

    Glasses in the TeO2-ZnO-BaF2 system were prepared by standard melt quenching technique and were characterized for their thermal, optical and structural properties. Samples were found to show good thermal stability with values ranging above 100 °C for all the compositions. Optical bandgap and refractive index values were calculated from linear optical measurements using UV-Vis spectroscopy. Infrared spectra showed the presence of hydroxyl groups in the glasses indicating that the effect of fluorine was negligible in removing the hydroxyl impurities for the experimental conditions and compositions used. Raman measurements showed the modification occurring in the glass network due to addition of barium fluoride in terms of increase in the formation of non-bridging oxygen atoms compared to strong Te-O-Te linkages in the glass matrix.

  12. UV-VUV laser induced phenomena in SiO2 glass

    International Nuclear Information System (INIS)

    Kajihara, Koichi; Ikuta, Yoshiaki; Oto, Masanori; Hirano, Masahiro; Skuja, Linards; Hosono, Hideo

    2004-01-01

    Creation and annihilation of point defects were studied for SiO 2 glass exposed to ultraviolet (UV) and vacuum UV (VUV) lights to improve transparency and radiation toughness of SiO 2 glass to UV-VUV laser light. Topologically disordered structure of SiO 2 glass featured by the distribution of Si-O-Si angle is a critical factor degrading transmittance near the fundamental absorption edge. Doping with terminal functional groups enhances the structural relaxation and reduces the number of strained Si-O-Si bonds by breaking up the glass network without creating the color centers. Transmittance and laser toughness of SiO 2 glass for F 2 laser is greatly improved in fluorine-doped SiO 2 glass, often referred as 'modified silica glass'. Interstitial hydrogenous species are mobile and reactive at ambient temperature, and play an important role in photochemical reactions induced by exposure to UV-VUV laser light. They terminate the dangling-bond type color centers, while enhancing the formation of the oxygen vacancies. These findings are utilized to develop a deep-UV optical fiber transmitting ArF laser photons with low radiation damage

  13. Microstructure and magnetic properties of yttrium alumina silicate glass microspheres containing iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Basak, C.B.; Prajapat, C.L.; Singh, M.R.

    2015-01-01

    Yttrium alumino-silicate glass microspheres have been used for localized delivery of high radiation dose to tissues in the treatment of hepatocellular carcinoma (BCC) and synovitis. 90 Y is a pure beta emitter with beta emission energy of 0.9367 MeV, average penetration range in tissue 2.5 mm, physical half-life of 64.2 h, thus an effective radioisotope for delivering high radiation dose to the tumor. The efficacy of radiotherapy can further be improved if the glass microspheres are doped with magnetic particles for targeted delivery of high radiation dose. Magnetic glass microspheres can also be utilized for cancer treatment using the magnetic heating of tumor cell. The magnetic glass microspheres are obtained from the glasses with nominal composition (64-x) SiO 2 -17Y 2 O 3 -19 Al 2 O 3 -xFe 2 O 3 (x=4-16 mol %). Density of glasses increases from 3.5g/cc to 3.8g/cc as iron oxide content is increased from 4 to 16 mol %. The glass transition temperature and peak crystallization temperature decreases as the iron oxide content increases. T g values of glass samples decreases with increase of Fe 2 O 3 , while SiO 2 content is decreased. SiO 2 is a network forming oxide and a decrease in the network former in glass lead to decrease in thermo-physical properties like T g . The development of ferrimagnetic crystallites in glasses arise from the conversion of iron oxide into magnetite, magnemite and hematite, which is influenced by the structural and ordering of magnetic particles. The microstructure of glass-ceramic exhibited the formation of 50-100 nm size particles. The magnetite and hematite are formed as major crystalline phases. The magnetization values increased with an increase of iron oxide content and attributed to formation of magnetite phase. Results have shown that the glass microspheres with magnetic properties can be used as potential materials for cancer treatment. (author)

  14. Geochemical modelling of the long-term dissolution behaviour of the French nuclear glass R7T7

    International Nuclear Information System (INIS)

    Michaux, L.; Mouche, E.; Petit, J.-C.; Fritz, B.

    1992-01-01

    The long-term dissolution behaviour of the French nuclear reference glass R7T7 was studied by means of the geochemical code DISSOL. New experimental data which support some of the assumptions of DISSOL are presented: namely, that the dissolution is congruent and that the altered layer can be considered as an assemblage of secondary phases. At 100 o C the main results of modelling are that the altered layer is essentially formed of a pure siliceous phase (amorphous silica or chalcedony) associated with smectites and zeolites. This sequence of secondary minerals is closely linked to the chemical composition of the glass. For high degrees of reaction, corresponding to high B concentration, the ionic strength reaches 1 and the pH varies from 9 to 10 depending on the CO 2 fugacity; B,Li and Na are essentially found in solution and their concentrations depend on the amount of dissolved glass. By contrast Fe,Al and Zn have low solution concentrations which are controlled by solubility products of secondary minerals. Silicon and Ca have an intermediate behaviour which depends on the choice of selected secondary minerals. The total volume of the secondary phases is always lower than that of the corresponding dissolved glass. The results of modelling compared to static leaching experimental results show only minor differences which can be explained by kinetic control or colloid formation. It is concluded that the altered layer is not a barrier to diffusion. The consequences of this work for actinide solubility are also discussed. (author)

  15. Alteration of basaltic glasses from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    Textural, mineralogical and compositional characteristics of basaltic glasses from the Central Indian Ocean show them to be altered to varying extents through their interaction with the seawater, resulting in the formation of palagonite. The major...

  16. Benefits and drawbacks of zinc in glass ionomer bone cements

    International Nuclear Information System (INIS)

    Brauer, Delia S; Hill, Robert G; Gentleman, Eileen; Stevens, Molly M; Farrar, David F

    2011-01-01

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements ( 2+ or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  17. Glass forming ability and mechanical properties of Zr50Cu42Al8 bulk metallic glass

    International Nuclear Information System (INIS)

    Xia, L; Chan, K C; Wang, G; Liu, L

    2008-01-01

    In this work, we report that Zr 50 Cu 42 Al 8 bulk metallic glass (BMG) exhibits excellent glass forming ability and mechanical properties. Zr 50 Cu 42 Al 8 glassy rods with a diameter of 3 mm were prepared using conventional copper mould suction casting. The glassy rod exhibits a modulus of about 115 GPa and a fracture strength of about 2 GPa, and, as compared with other large-scale BMGs, it has excellent room-temperature plasticity of up to 20% under compression. The fracture mechanism of the rod was investigated by microstructural investigations, and it was found that the large plasticity of the as-cast rod is closely related to the in situ formation of nano-crystalline particles embedded in the amorphous matrix.

  18. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass

    Directory of Open Access Journals (Sweden)

    Mona A. Ouis

    2012-09-01

    Full Text Available Bioactive borate glasses (from the system Na2O-CaO-B2O3-P2O5 and corresponding glass-ceramics as a new class of scaffold material were prepared by full replacement of SiO2 with B2O3 in Hench patented bioactive glass. The prepared samples were investigated by differential thermal analysis (DTA, Fourier transform infrared (FTIR spectroscopy and X-ray diffraction (XRD analysis. The DTA data were used to find out the proper heat treatment temperatures for preparation of the appropriate glass-ceramics with high crystallinity. The prepared crystalline glass-ceramics derivatives were examined by XRD to identify the crystalline phases that were precipitated during controlled thermal treatment. The FTIR spectroscopy was used to justify the formation of hydroxyapatite as an indication of the bioactivity potential or activity of the studied ternary borate glasses or corresponding glass-ceramics after immersion in aqueous phosphate solution. The corrosion results are interpreted on the basis of suggested recent views on the corrosion mechanism of such modified borate glasses in relation to their composition and constitution.

  19. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  20. Radiation effects on lead silicate glass surfaces

    International Nuclear Information System (INIS)

    Wang, P.W.; Zhang, L.P.; Borgen, N.; Pannell, K.

    1996-01-01

    Radiation-induced changes in the microstructure of lead silicate glass were investigated in situ under Mg K α irradiation in an ultra-high vacuum (UHV) environment by X-ray photoelectron spectroscopy (XPS). Lead-oxygen bond breaking resulting in the formation of pure lead was observed. The segregation, growth kinetics and the structural relaxation of the lead, with corresponding changes in the oxygen and silicon on the glass surfaces were studied by measuring the time-dependent changes in concentration, binding energy shifts, and the full width at half maximum. A bimodal distribution of the oxygen XPS signal, caused by bridging and non-bridging oxygens, was found during the relaxation process. All experimental data indicate a reduction of the oxygen concentration, a phase separation of the lead from the glass matrix, and the metallization of the lead occurred during and after the X-ray irradiation. (author)

  1. Laser Machining and In Vitro Assessment of Wollastonite-Tricalcium Phosphate Eutectic Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2018-01-01

    Full Text Available Bioactivity and ingrowth of ceramic implants is commonly enhanced by a suitable interconnected porous network. In this work, the laser machining of CaSiO3‒Ca3(PO42 biocompatible eutectic glass-ceramics and glasses was studied. For this purpose, 300 µm diameter craters were machined by using pulsed laser radiation at 532 nm with a pulsewidth in the nanosecond range. Machined samples were soaked in simulated body fluid for 2 months to assess the formation of a hydroxyapatite layer on the surface of the laser machined areas. The samples were manufactured by the laser floating zone technique using a CO2 laser. Morphology, composition and microstructure of the machined samples were described by Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and micro-Raman Spectroscopy.

  2. Composition design and mechanical properties of ternary Cu–Zr–Ti bulk metallic glasses

    International Nuclear Information System (INIS)

    Pan, Ye; Zeng, Yuqiao; Jing, Lijun; Zhang, Lu; Pi, Jinhong

    2014-01-01

    Highlights: • Newly designed monolithic bulk metallic glasses are of good glass-forming ability. • Cu 50 Zr 44 Ti 6 exhibits excellent plastic deformation up to ∼7.4%. • Copious and intersected shear bans are observed in the fractography of Cu 50 Zr 44 Ti 6 . • Cu 50 Zr 44 Ti 6 has the best plasticity in the ternary Cu–Zr–Ti bulk metallic glasses. - Abstract: The new compositions of ternary Cu–Zr–Ti bulk metallic glasses are predicted by integrating calculation of vacancy formation energy, mixing enthalpy and configuration entropy of the alloys based on thermodynamics of glass formers. The monolithic amorphous rods of 3 mm diameter have been successfully fabricated, and characterized by X-ray diffractometry, differential scanning calorimetry, scanning electronic microscopy, transmission electronic microscopy and compression tests. The results show that the designed alloys possess good glass forming ability and excellent mechanical properties. The mechanical properties of the samples can be effectively improved by regulating their composition. The monolithic amorphous rod of Cu 50 Zr 44 Ti 6 exhibits a high fracture strength of 1855 MPa and excellent plastic deformation up to ∼7.4%. The formation and propagation of shear bands in samples are also investigated. The enhancement of plastic deformation is mainly contributed to multiplication and intersection of shear bands

  3. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids.

    Science.gov (United States)

    Wang, Lijin; Xu, Ning; Wang, W H; Guan, Pengfei

    2018-03-23

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  4. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids

    Science.gov (United States)

    Wang, Lijin; Xu, Ning; Wang, W. H.; Guan, Pengfei

    2018-03-01

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  5. Superexchange and spin-glass formation in semimagnetic semiconductors

    Science.gov (United States)

    Rusin, Tomasz M.

    1996-05-01

    The Mn-Mn superexchange interaction in semimagnetic semiconductors A1-xMnxB (where A=Zn, Cd and B=S, Se, Te) is studied within the three-level model of the band structure. We focus on the dependence of the interaction on the interion distance Jdd(r)=J0f(r). In the present work, the function f(r) is obtained analytically. This, only weakly material-dependent function is found to decrease with Mn-Mn distance much slower than its Gaussian approximation derived previously. The exact form of the decay of the superexchange can be approximated by a power law J0r-8.5. This is close to an experimental result, J0r-6.8, determined on the basis of the spin-glass transition temperature on the composition.

  6. Influence of SrO substitution for CaO on the properties of bioactive glass S53P4.

    Science.gov (United States)

    Massera, Jonathan; Hupa, Leena

    2014-03-01

    Commercial melt-quenched bioactive glasses consist of the oxides of silicon, phosphorus, calcium and sodium. Doping of the glasses with oxides of some other elements is known to affect their capability to support hydroxyapatite formation and thus bone tissue healing but also to modify their high temperature processing parameters. In the present study, the influence of gradual substitution of SrO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis and hot stage microscopy were utilized to measure the thermal properties of the glasses. The in vitro bioactivity and solubility was measured by immersing the glasses in simulated body fluid for 6 h to 1 week. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glass surface. Increasing substitution of SrO for CaO decreased all characteristic temperatures and led to a slightly stronger glass network. The initial glass dissolution rate increased with SrO content. Hydroxyapatite layer was formed on all glasses but on the SrO containing glasses the layer was thinner and contained also strontium. The results suggest that substituting SrO for CaO in S53P4 glass retards the bioactivity. However, substitution greater than 10 mol% allow for precipitation of a strontium substituted hydroxyapatite layer.

  7. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  8. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    OpenAIRE

    Perim, Eric; Lee, Dongwoo; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W. Neal; Levy, Ohad; Vlassak, Joost J.; Schroers, Jan; Curtarolo, Stefano

    2016-01-01

    Metallic glasses have attracted considerable interest in recent years due to their unique combination of superb properties and processability. Predicting bulk metallic glass formers from known parameters remains a challenge and the search for new systems is still performed by trial and error. It has been speculated that some sort of "confusion" during crystallization of the crystalline phases competing with glass formation could play a key role. Here, we propose a heuristic descriptor quantif...

  9. Electrochromic Glasses.

    Science.gov (United States)

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  10. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    International Nuclear Information System (INIS)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; Singh, S.P.

    2016-01-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 system. This work demonstrates that the substitution of SrO for SiO 2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO 2 . The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  11. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Tripathi, Himanshu [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Hira, Sumit Kumar; Manna, Partha Pratim [Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India); Pyare, Ram; Singh, S.P. [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} system. This work demonstrates that the substitution of SrO for SiO{sub 2} has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO{sub 2}. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  12. Revealing flow behaviors of metallic glass based on activation of flow units

    Energy Technology Data Exchange (ETDEWEB)

    Ge, T. P.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-05-28

    Atomic level flow plays a critical role in the mechanical behavior of metallic glass (MG) while the connection between the flow and the heterogeneous microstructure of the glass remains unclear. We describe the heterogeneity of MGs as the elastic matrix with “inclusions” of nano-scale liquid-like flow units, and the plastic flow behavior of MGs is considered to be accommodated by the flow units. We show that the model can explain the various deformation behaviors, the transformation from inhomogeneous deformation to homogeneous flow upon strain rate or temperature, and the deformation map in MGs, which might provide insights into the flow mechanisms in glasses and inspiration for improving the plasticity of MGs.

  13. Monitoring of Miit glass solution interactions by brine analysis

    International Nuclear Information System (INIS)

    Sassoon, R.E.; Gong, M.; Adel-Hadadi, M.; Brandys, M.; Barkatt, A.; Macedo, P.B.

    1989-01-01

    Analyses of brine samples taken from borehole MIIT=8 at the WIPP site were carried out in order to study the leaching behavior of the brine in this system. The standard addition method was used with the analytical techniques of AA, DCP and ICP-MS to determine the concentration of the components in the brine. The changes in the concentration of the major components, Na, Mg and K can be explained by reactions of the brine with the rock salt walls of the borehole. From the data obtained for the other components no leaching of the SRL-Y glass discs in the test could be observed. It was however possible to determine an upper limit for leaching of the glass from isotope ratio studies made on Li which yielded a value for the leach rate of lithium from the glass of 0.117 g m -2 d -1

  14. Mechanisms of postradiation transformations in alkaline-phosphate glasses activated by copper

    International Nuclear Information System (INIS)

    Vil'chinskaya, N.N.; Dmitryuk, A.V.; Ignat'ev, E.G.; Karapetyan, G.O.; Petrovskij, G.T.

    1984-01-01

    Lithium aluminophosphate glasses activated by copper served as the object under investigation. Copper content varied from 0 up to 0.13 mass.%. It is shown that pole redistribution among PO 4 2- and Cu(2) centers takes place in alkaline -phosphate glasses activated by Cu(1). This process prevails for copper content of above 0.1%. Therefore the possibility appears to evaluate the quantum yield of colour center formation

  15. Mechanisms of postradiation transformations in alkaline-phosphate glasses activated by copper

    Energy Technology Data Exchange (ETDEWEB)

    Vil' chinskaya, N.N.; Dmitryuk, A.V.; Ignat' ev, E.G.; Karapetyan, G.O.; Petrovskij, G.T. (Gosudarstvennyj Opticheskij Inst., Leningrad (USSR))

    1984-01-01

    Lithium aluminophosphate glasses activated by copper served as the object under investigation. Copper content varied from 0 up to 0.13 mass.%. It is shown that pole redistribution among PO/sub 4//sup 2 -/ and Cu(2) centers takes place in alkaline -phosphate glasses activated by Cu(1). This process prevails for copper content of above 0.1%. Therefore the possibility appears to evaluate the quantum yield of colour center formation.

  16. Pressure-controlled nucleation and growth in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass close to and beyond glass transition temperature

    International Nuclear Information System (INIS)

    Pan Mingxiang; Yao Yushu; Zhao Deqian; Zhuang Yanxin; Wang Weihua

    2002-01-01

    By high-pressure annealing close to and beyond glass transition temperature, the behavior of nucleation and growth of crystals in Zr 41 Ti 14 Cu 12.5 Ni 10 Be 22.5 bulk metallic glass (BMG) is investigated. The experimental results indicate that exerting a high pressure during annealing can markedly decrease the nucleation temperature of the BMG. The growth rate of crystals first increases and then decreases with increase of annealing pressure. The effect of pressure on nucleation and growth of crystals is phenomenologically explained

  17. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Octav P., E-mail: octav.ciuca@manchester.ac.uk [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Carter, Richard M. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom); Prangnell, Philip B. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Hand, Duncan P. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom)

    2016-10-15

    Precision welded joints, produced between fused silica glass and aluminium by a newly-developed picosecond-pulse laser technique, have been analysed for the first time using a full range of electron microscopy methods. The welds were produced as lap joints by focusing a 1.2 μm diameter laser beam through the transparent glass top sheet, slightly below the surface of the metal bottom sheet. Despite the extremely short interaction time, extensive reaction was observed in the weld zone, which involved the formation of nanocrystalline silicon and at least two transitional alumina phases, γ- and δ-Al{sub 2}O{sub 3}. The weld formation process was found to be complex and involved: the formation of a constrained plasma cavity at the joint interface, non-linear absorption in the glass, and the creation of multiple secondary keyholes in the metal substrate by beam scattering. The joint area was found to expand outside of the main interaction volume, as the energy absorbed into the low conductivity and higher melting point silica glass sheet melted the aluminium surface across a wider contact area. The reasons for the appearance of nanocrystalline Si and transitional alumina reaction products within the welds are discussed. - Highlights: •Pulsed laser welding of dissimilar materials causes extensive chemical reactivity. •Metastable Al{sub 2}O{sub 3} phases form due to laser-induced highly-transient thermal regime. •Fused silica is reduced by Al to form nanocrystalline Si. •Mechanism of joint formation is discussed.

  18. Aqueous corrosion of borosilicate glasses. Nature and properties of alteration layers

    International Nuclear Information System (INIS)

    Trotignon, Laurent

    1990-01-01

    This research thesis addresses physical and chemical processes which occur during aqueous corrosion of silicates, and the study of the properties of their interfaces with solutions, and thus issues related to the fate of high activity nuclear wastes which are embedded in a vitreous matrix as the potential release of radionuclides towards the environment then depends on the glass parcel behaviour submitted to chemical attacks which could alter it, notably by aqueous corrosion. The objective is then to model the dissolution of nuclear glass over long periods of time, and to predict the behaviour of radionuclides. The author compared the corrosion and alteration layers of gradually more complex borosilicate glasses, from a ternary sodium borosilicate glass to a simulated nuclear glass (the French reference glass R7T7). Complexity is increased by adding oxides. After some theoretical recalls on the structure and corrosion of borosilicate glasses, the author presents the studied materials, the corrosion experiments, and analytical techniques used to study alteration layers. The mechanism of formation of altered layers is studied based on corrosion experiments performed at 90 C on the whole set of glasses. Alteration layers formed on corroded glasses are studied and compared by using various techniques: electronic microscopy, high energy ion beams, spectroscopy, infrared, photo-electron spectroscopy. Implications for underground storage of nuclear glasses are discussed

  19. Infrared spectroscopy study of structural changes in glass-forming salol.

    Science.gov (United States)

    Baran, J; Davydova, N A

    2010-03-01

    We report the investigation of glass-forming salol upon different courses of the temperature changes from liquid to glass state and back using FT-IR spectroscopy measurements in the wide spectral and temperature ranges. The formation of the ordered clusters in supercooled liquid salol has been observed at 250 K. When the temperature is decreased further to 11 K these ordered clusters become an element of the glass structure. With increasing temperature to 270 K through the glass transition noticeable evolutions of the IR spectrum occurs up till the ordered clusters are developed into crystal. So produced crystal melts in the temperature range 300-310 K, that corresponds to the melting temperature of the metastable phase (Tmelt=302 K) . Thus, the crystalline structure of the ordered clusters corresponds to the structure of metastable phase and is monoclinic.

  20. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  1. Novel resorbable glass-ceramic scaffolds for hard tissue engineering: from the parent phosphate glass to its bone-like macroporous derivatives.

    Science.gov (United States)

    Bretcanu, Oana; Baino, Francesco; Verné, Enrica; Vitale-Brovarone, Chiara

    2014-05-01

    One of the major challenges of hard tissue engineering research focuses on the development of scaffolds that can match the mechanical properties of the host bone and resorb at the same rate as the bone is repaired. The aim of this work was the synthesis and characterization of a resorbable phosphate glass, as well as its application for the fabrication of three dimensional (3-D) scaffolds for bone regeneration. The glass microstructure and behaviour upon heating were analysed by X-ray diffraction, differential scanning calorimetry and hot stage microscopy. The glass solubility was investigated according to relevant ISO standards using distilled water, simulated body fluid (SBF) and Tris-HCl as testing media. The glass underwent progressive dissolution over time in all three media but the formation of a hydroxyapatite-like layer was also observed on the samples soaked in SBF and Tris-HCl, which demonstrated the bioactivity of the material. The glass powder was used to fabricate 3-D macroporous bone-like glass-ceramic scaffolds by adopting polyethylene particles as pore formers: during thermal treatment, the polymer additive was removed and the sintering of glass particles was allowed. The obtained scaffolds exhibited high porosity (87 vol.%) and compressive strength around 1.5 MPa. After soaking for 4 months in SBF, the scaffolds mass loss was 76 wt.% and the pH of the solution did not exceed the 7.55 value, thereby remaining in a physiological range. The produced scaffolds, being resorbable, bioactive, architecturally similar to trabecular bone and exhibiting interesting mechanical properties, can be proposed as promising candidates for bone repair applications.

  2. Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2.

    Science.gov (United States)

    Tulyaganov, D U; Agathopoulos, S; Valerio, P; Balamurugan, A; Saranti, A; Karakassides, M A; Ferreira, J M F

    2011-02-01

    New compositions of bioactive glasses are proposed in the CaO-MgO-SiO(2)-Na(2)O-P(2)O(5)-CaF(2) system. Mineralization tests with immersion of the investigated glasses in simulated body fluid (SBF) at 37°C showed that the glasses favour the surface formation of hydroxyapatite (HA) from the early stages of the experiments. In the case of daily renewable SBF, monetite (CaHPO(4)) formation competed with the formation of HA. The influence of structural features of the glasses on their mineralization (bioactivity) performance is discussed. Preliminary in vitro experiments with osteoblasts' cell-cultures showed that the glasses are biocompatible and there is no evidence of toxicity. Sintering and devitrification studies of glass powder compacts were also performed. Glass-ceramics with attractive properties were obtained after heat treatment of the glasses at relatively low temperatures (up to 850°C).

  3. Depression of Glass Transition Temperatures of Polymer Networks by Diluents

    NARCIS (Netherlands)

    Brinke, Gerrit ten; Karasz, Frank E.; Ellis, Thomas S.

    1983-01-01

    A classical thermodynamic theory is used to derive expressions for the depression of the glass transition temperature Tg of a polymer network by a diluent. The enhanced sensitivity of Tg in cross-linked systems to small amounts of diluent is explained. Predictions of the theory are in satisfactory

  4. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    Science.gov (United States)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  5. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  6. Surface analysis of Borkron glass for neutron optics applications

    International Nuclear Information System (INIS)

    Farnoux, B.; Maaza, M.; Maaza, M.; Samuel, F.; Sella, C.

    1991-01-01

    Grazing Angle Neutron Reflectometry, Optical and Mechanical Roughness Profilometry techniques have been used to study the effects of the polishing operations on the surface of Borkron Schott glass (special borosilicate glass for neutron optics applications) as the polishing tool pressure P and the mean grain size of the polishing powder Φ. The neutron reflectivity investigations have shown that there is formation of a layer at the surface glass substrate. This layer is less dense than the bulk substrate and its thickness is around 60A. The optical and mechanical profilometry measurements have shown that both roughness and waviness decrease with P and Φ. All the experimental results show a good correlation between the neutron refractive index, the thickness and the roughness of the surface layer and the waviness of the glass surface with the two mechanical polishing parameters. The previous techniques have been completed by Secondary Ion Mass Spectroscopy and Atomic Force Microscopy measurements

  7. Improvement of the thermoplastic formability of Zr65Cu17.5Ni10Al7.5 bulk metallic glass by minor addition of Erbium

    International Nuclear Information System (INIS)

    Hu, Q.; Zeng, X.R.; Fu, M.W.; Chen, S.S.; Jiang, J.

    2016-01-01

    The softness of Zr 65 Cu 17.5 Ni 10 Al 7.5 bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr 65 Cu 17.5 Ni 10 Al 7.5 ) 98 Er 2 (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  8. Glass of monatomic Lennard-Jones system at nanoscale

    International Nuclear Information System (INIS)

    Vo Van Hoang

    2010-01-01

    Structure and stability of glass of monatomic Lennard-Jones (LJ) system at nanoscale compared with those of the bulk counterparts have been studied using the classical molecular dynamics (MD) method. Models have been obtained by cooling from the melts. Structure of the systems was analyzed via radial distribution function (RDF), interatomic distances, the Honeycutt-Andersen analysis and coordination number distributions. Surface and core structures of LJ nanoparticles have been analyzed in details. Density dependence and cooling rate effects on structure of the systems have been found and discussed. In addition, size dependence of structure and properties of nanoparticles has been analyzed in detail. Indeed, we found glass formation in monatomic LJ systems; however, their stability is not high. Evolution of structure and thermodynamics of the systems upon cooling from the melts was found. We also discussed annealing-induced crystallization of LJ glass.

  9. Competing indentation deformation mechanisms in glass using different strengthening methods

    Directory of Open Access Journals (Sweden)

    Jian Luo

    2016-11-01

    Full Text Available Chemical strengthening via ion exchange, thermal tempering, and lamination are proven techniques for strengthening of oxide glasses. For each of these techniques, the strengthening mechanism is conventionally ascribed to the linear superposition of the compressive stress profile on the glass surface. However, in this work we use molecular dynamics simulations to reveal the underlying indentation deformation mechanism beyond the simple linear superposition of compressive and indentation stresses. In particular, the plastic zone can be dramatically different from the commonly assumed hemispherical shape, which leads to a completely different stress field and resulting crack system. We show that the indentation-induced fracture is controlled by two competing mechanisms: the compressive stress itself and a potential reduction in free volume that can increase the driving force for crack formation. Chemical strengthening via ion exchange tends to escalate the competition between these two effects, while thermal tempering tends to reduce it. Lamination of glasses with differential thermal expansion falls in between. The crack system also depends on the indenter geometry and the loading stage, i.e., loading vs. after unloading. It is observed that combining thermal tempering or high free volume content with ion exchange or lamination can impart a relatively high compressive stress and reduce the driving force for crack formation. Therefore, such a combined approach might offer the best overall crack resistance for oxide glasses.

  10. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  11. Cooling rate dependence of simulated Cu{sub 64.5}Zr{sub 35.5} metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Ryltsev, R. E. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Klumov, B. A. [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20 (France); High Temperature Institute, Russian Academy of Sciences, 13/2 Izhorskaya Str., 125412 Moscow (Russian Federation); Chtchelkatchev, N. M. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, 141700 Moscow Region (Russian Federation); All-Russia Research Institute of Automatics, 22 Sushchevskaya, 127055 Moscow (Russian Federation); Shunyaev, K. Yu. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation)

    2016-07-21

    Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of Cu{sub 64.5}Zr{sub 35.5} alloy during the cooling in a wide range of cooling rates γ ∈ (1.5 ⋅ 10{sup 9}, 10{sup 13}) K/s. Investigating short- and medium-range orders, we show that the structure of Cu{sub 64.5}Zr{sub 35.5} metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to an increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the γ{sub min} = 1.5 ⋅ 10{sup 9} K/s. Analysing the structure of the glass at γ{sub min}, we observe the formation of nano-sized crystalline grain of Cu{sub 2}Zr intermetallic compound with the structure of Cu{sub 2}Mg Laves phase. The structure of this compound is isomorphous with that for Cu{sub 5}Zr intermetallic compound. Both crystal lattices consist of two types of clusters: Cu-centered 13-atom icosahedral-like cluster and Zr-centered 17-atom Frank-Kasper polyhedron Z16. That suggests the same structural motifs for the metallic glass and intermetallic compounds of Cu–Zr system and explains the drastic increase of the abundances of these clusters observed at γ{sub min}.

  12. Glass formability of high T(sub c) Bi-Sr-Ca-Cu-O superconductors

    Science.gov (United States)

    Kaukler, William F.

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were evaluated for their glass formation ability by means of rapid thermal analysis during quenching, optical and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass, then with subsequent devitrification it was formed into bulk crystalline superconductor by a series of processing methods.

  13. Undercooling Limits and Thermophysical Properties in Glass Forming Alloys

    Science.gov (United States)

    Rhim, Won-Kyu; Ohsaka, Kenichi; Spjut, R. Erik

    1999-01-01

    The primary objective of this program is to produce deeply undercooled metallic liquids and to identify factors that limit undercooling and glass formation. The main research objectives are: (1) Investigating undercooling limits in glass-forming alloys and identifying factors that affect undercooling; (2) Measuring thermophysical properties and investigating the validity of the classical nucleation theory and other existing theories in the extreme undercooled states; and (3) To investigate the limits of electrostatic levitation technology in the ground base and to identify thermophysical parameters that might require reduced-g environment.

  14. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  15. Plutonium Solubility In High-Level Waste Alkali Borosilicate Glass

    International Nuclear Information System (INIS)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-01

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to ∼18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m 3 of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m 3 3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt

  16. Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Xiaoliang Han

    2016-09-01

    Full Text Available In recent years, CuZr-based bulk metallic glass (BMG composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. % and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr2 and Cu10Zr7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites.

  17. Pressure effect on crystallization temperature in Zr70Pd30 metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Jeppesen, S; Saida, J.

    2004-01-01

    The pressure effect on amorphous-to-quasicrystalline-to-intermetallic phase transformations in a Zr70Pd30 metallic glass has been investigated by in situ x-ray diffraction measurements using synchrotron radiation. It is found that the glass crystallizes in two steps: (1) amorphous...... temperature for the formation of quasicrystals has been further discussed with the nucleation theory. ©2004 American Institute of Physics....

  18. Laboratory testing of glasses for Lockheed Idaho Technology Company: Final report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Luo, J.S.; Wolf, S.F.; Bates, J.K.

    1997-06-01

    Tests have been conducted at Argonne National Laboratory (ANL) in support of the efforts of Lockheed Idaho Technology Company (LITCO) to vitrify high-level waste calcines. Tests were conducted with three classes of LITCO glass formulations: Formula 127 (fluorine-bearing), Formula 532 (fluorine-free), and 630 series (both single- and mixed-alkali) glasses. The test matrices included, as appropriate, the Product Consistency Test Method B (PCT-B), the Materials Characterization Center Test 1 (MCC-1), and the Argonne vapor hydration test (VHT). Test durations ranged from 7 to 183 d. In 7-d PCT-Bs, normalized mass losses of major glass-forming elements for the LITCO glasses are similar to, or lower than, normalized mass losses obtained for other domestic candidate waste glasses. Formula 532 glasses form zeolite alteration phases relatively early in their reaction with water. The formation of those phases increased the dissolution rate. In contrast, the Formula 127 glass is highly durable and forms alteration phases only after prolonged exposure to water in tests with very high surface area to volume ratios; these alteration phases have a relatively small effect on the rate of glass corrosion. No alteration phases formed within the maximum test duration of 183 d in PCT-Bs with the 630 series glasses. The corrosion behavior of the mixed-alkali 630 series glasses is similar to that of 630 series glasses containing sodium alone. In VHTs, both single- and mixed-alkali glasses form zeolite phases that increase the rate of glass reaction. The original 630 series glasses and those based on a revised surrogate calcine formulation react at the same rate in PCT-Bs and form the same major alteration phases in VHTs

  19. Intense upconversion luminescence in ytterbium-sensitized thulium-doped oxychloride germanate glass

    International Nuclear Information System (INIS)

    Sun Hongtao; Zhanga Liyan; Zhang Junjie; Wen Lei; Yu Chunlei; Duan Zhongchao; Dai Shixun; Hu Lili; Jiang Zhonghong

    2005-01-01

    Structural and upconversion fluorescence properties in ytterbium-sensitized thulium-doped oxychloride germanate glass have been studied. The structure of oxychloride germanate glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. The Raman spectrum investigation indicates that PbCl 2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1 G 4 → 3 H 6 and 1 G 4 → 3 H 4 , respectively, were observed at room temperature. The possible upconversion mechanisms are discussed and estimated. Intense upconversion luminescence indicates that oxychloride germanate glass can be used as potential host material for upconversion lasers

  20. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.