WorldWideScience

Sample records for experimental sludge washing

  1. Enhanced sludge washing evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices.

  2. Enhanced sludge washing evaluation plan

    International Nuclear Information System (INIS)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices

  3. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  4. Counter current decantation washing of HLW sludge

    International Nuclear Information System (INIS)

    Brooke, J.N.; Peterson, R.A.

    1997-01-01

    The Savannah River Site (SRS) has 51 High Level Waste (HLW) tanks with typical dimensions 25.9 meters (85 feet) diameter and 10 meters (33 feet) high. Nearly 114 million liters (30 M gallons) of HLW waste is stored in these tanks in the form of insoluble solids called sludge, crystallized salt called salt cake, and salt solutions. This waste is being converted to waste forms stable for long term storage. In one of the processes, soluble salts are washed from HLW sludge in preparation for vitrification. At present, sludge is batch washed in a waste tank with one or no reuse of the wash water. Sodium hydroxide and sodium nitrite are added to the wash water for tank corrosion protection; the large volumes of spent wash water are recycled to the evaporator system; additional salt cake is produced; and sodium carbonate is formed in the washed sludge during storage by reaction with CO 2 from the air. High costs and operational concerns with the current washing process prompts DOE and WSRC to seek an improved washing method. A new method should take full advantage of the physical/chemical properties of sludge, experience from other technical disciplines, processing rate requirements, inherent process safety, and use of proven processes and equipment. Counter current solids washing is a common process in the minerals processing and chemical industries. Washing circuits can be designed using thickeners, filters or centrifuges. Realizing the special needs of nuclear work and the low processing rates required, a Counter Current Decantation (CCD) circuit is proposed using small thickeners and fluidic pumps

  5. Speciation of mercury in sludge solids: washed sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lourie, A. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-24

    The objective of this applied research task was to study the type and concentration of mercury compounds found within the contaminated Savannah River Site Liquid Waste System (SRS LWS). A method of selective sequential extraction (SSE), developed by Eurofins Frontier Global Sciences1,2 and adapted by SRNL, utilizes an extraction procedure divided into seven separate tests for different species of mercury. In the SRNL’s modified procedure four of these tests were applied to a washed sample of high level radioactive waste sludge.

  6. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    International Nuclear Information System (INIS)

    Hunt, R.D.; Collins, J.L.; Chase, C.W.

    1998-07-01

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both 137 Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report

  7. Documentation of a decision framework to support enhanced sludge washing

    International Nuclear Information System (INIS)

    Brothers, A.J.

    1995-01-01

    This document describes a proposed decision model that, if developed to its fullest, can provide a wide range of analysis options and insights to pretreatment/sludge washing alternatives. A recent decision has been made to terminate this work

  8. Laboratory testing in-tank sludge washing, summary letter report

    International Nuclear Information System (INIS)

    Norton, M.V.; Torres-Ayala, F.

    1994-09-01

    In-tank washing is being considered as a means of pretreating high-level radioactive waste sludges, such as neutralized current acid waste (NCAW) sludge. For this process, the contents of the tank will be allowed to settle, and the supernatant solution will be decanted and removed. A dilute sodium hydroxide/sodium nitrite wash solution will be added to the settled sludge and the tank contents will be mixed with a mixer pump system to facilitate washing of the sludge. After thorough mixing, the mixer pumps will be shut off and the solids will be allowed to re-settle. After settling, the supernatant solution will be withdrawn from the tank, and the wash cycle will be repeated several times with fresh wash solution. Core sample data of double shell tank 241-AZ-101 indicate that settling of NCAW solids may be very slow. A complicating factor is that strong thermal currents are expected to be generated from heat produced by radionuclides in the sludge layer at the bottom of the tank. Additionally, there are concerns that during the settling period (i.e., while mixing pumps and air-lift re-circulators are shut off), the radionuclides may heat the residual interstitial water in the sludge to the extent that violent steam discharges (steam bumping) could occur. Finally, there are concerns that during the washing steps sludge settling may be hindered as a result of the reduced ionic strength of the wash solution. To overcome the postulated reduced settling rates during the second and third washing steps, the use of flocculants is being considered. To address the above concerns and uncertainties associated with in-tank washing, PNL has conducted laboratory testing with simulant tank waste to investigate settling rates, steam bump potential, and the need for and use of flocculating agents

  9. Bench-scale enhanced sludge washing and gravity settling of Hanford Tank C-106 Sludge

    International Nuclear Information System (INIS)

    Brooks, K.P.; Myers, R.L.; Rappe, K.G.

    1997-01-01

    This report summarizes the results of a bench-scale sludge pretreatment demonstration of the Hanford baseline flowsheet using liter-quantities of sludge from Hanford Site single-shell tank 241-C-106 (tank C-106). The leached and washed sludge from these tests provided Envelope D material for the contractors supporting Tank Waste Remediation System (TWRS) Privatization. Pretreatment of the sludge included enhanced sludge washing and gravity settling tests and providing scale-up data for both these unit operations. Initial and final solids as well as decanted supernatants from each step of the process were analyzed chemically and radiochemically. The results of this work were compared to those of Lumetta et al. (1996a) who performed a similar experiment with 15 grams of C-106, sludge. A summary of the results are shown in Table S.1. Of the major nonradioactive components, those that were significantly removed with enhanced sludge washing included aluminum (31%), chromium (49%), sodium (57%), and phosphorus (35%). Of the radioactive components, a significant amount of 137 Cs (49%) were removed during the enhanced sludge wash. Only a very small fraction of the remaining radionuclides were removed, including 90 Sr (0.4%) and TRU elements (1.5%). These results are consistent with those of the screening test. All of the supernatants (both individually and as a blend) removed from these washing steps, once vitrified as LLW glasses (at 20 wt% Na 2 O), would be less than NRC Class C in TRU elements and less than NRC Class B in 90 Sr

  10. Microbiological evaluation of sludge during an improvement process applying the washing technique (selective pressure)

    International Nuclear Information System (INIS)

    Molina P, Francisco; Gonzalez, Maria Elena; Gonzalez, Luz Catalina

    2001-01-01

    In this investigation, the microbial consortiums were evaluated by using characterization by trophic groups and related groups by their sensibility to oxygen, as well as the specific methanogenic activity (SMA) of an acclimated sludge, starting from an aerobium sludge corning from a residual water treatment plant. Later, the technique of improvement by washing was applicated to this sludge, getting inoculum for the starting of an anaerobic reactor of the kind UASB (treatment reactor). At the same time, a control reactor was operated, inoculated with acclimated sludge. Both reactors were operated during 120 days, using brown sugar as substrate, the experimental phase included dates up to 70 operation days, characterizing the sludge at the end of this period. The SMA was analysed using acetic and formic acids as substrates. The results showed activities between 0,45 and 1,39 g DQO-CH 4 /SSV -d. for both substrates. At the end of the experimental phase of the UASB reactor, the sulphate reducer bacteria from the acetate and the lactate were observed as predominant group, followed by the methanogenic hydrogenophilic bacteria. It is important to notice that, with the application of the sludge washing technique, all the tropic groups were increased, with the exception of the lactate fermentative bacteria

  11. Washing and caustic leaching of Hanford tank sludges

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Rapko, B.M.; Colton, N.G.

    1994-01-01

    Methods are being developed to treat and dispose of large volumes of radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site. The wastes will be partitioned into high-level waste (HLW) and low-level waste (LLW) fractions. The HLW will be vitrified into borosilicate glass and disposed of in a geologic repository, while the LLW will be immobilized in a glass matrix and will likely be disposed of by shallow burial at the Hanford Site. The wastes must be pretreated to reduce the volume of the HLW fraction, so that vitrification and disposal costs can be minimized. The current baseline process for pretreating Hanford tank sludges is to leach the sludge under caustic conditions, then remove the solubilized components of the sludge by water washing. Tests of this method have been performed with samples taken from several different tanks at Hanford. The results of these tests are presented in terms of the composition of the sludge before and after leaching. X-ray diffraction and scanning electron microscopy coupled with electron dispersive x-ray techniques have been used to identify the phases in the untreated and treated sludges

  12. Status and progress in sludge washing: A pivotal pretreatment method

    International Nuclear Information System (INIS)

    Barton, W.B.; MacLean, G.T.; Meng, C.D.; Winkler, C.M.

    1995-01-01

    Separation of the bulk soluble chemical salts from the insoluble metal hydroxides and radionuclides is central to the strategy of disposing Hanford tank waste. Sludge washing and caustic leaching have been selected as the primary methods for processing the 230 million L (61,000,000 gal) of Hanford tank waste. These processes are very similar to those selected for processing waste at the West Valley Site in New York and the Savannah River Site in South Carolina. The purpose of sludge washing is to dissolve and remove the soluble salts in the waste. Leaching of the insoluble solids with caustic will be used to dissolve aluminum hydroxide and chromium hydroxide, and convert insoluble bismuth phosphate to soluble phosphate. The waste will be separated into a high-level solids fraction and a liquid fraction that can be disposed of as low-level waste after cesium removal. The washing and leaching operations involve batchwise mixing, settling, and decanting within the existing underground storage tanks

  13. Characterization, Washing, Leaching, and Filtration of C-104 Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KP Brooks; PR Bredt; GR Golcar; SA Hartley; LK Jagoda; KG Rappe; MW Urie

    2000-06-09

    Approximately 1,400 g of wet Hanford Tank C-104 Sludge was evaluated by Battelle for the high-level waste (HLW) pretreatment processes of ultrafiltration, dilute caustic washing, and elevated-temperature caustic leaching. The filterability of diluted C-104 sludge was measured with a 0.1-{micro}m sintered metal Mott filter using a 24-inch-long, single-element, crossflow filtration system (cells unit filter [CUF]). While the filtrate was being recirculated prior to washing and leaching, a 6.9 wt% solids slurry was evaluated with a matrix of seven 1-hour conditions of varying trans-membrane pressure (30 to 70 psid) and axial velocity (9 to 15 ft/s). The filtrate flux and backpulse efficiency were determined for each condition. The slurry was concentrated to 23 wt% solids, a second matrix of six 1-hour conditions was performed, and data analogous to that recorded in the first matrix were obtained. The low-solids-concentration matrix produced filtrate flux rates that ranged from 0.038 to 0.083 gpm/ft{sup 2}. The high-solids-concentration matrix produced filtrate flux rates that ranged from 0.0095 to 0.0172 gpm/ft{sup 2}. In both cases, the optimum filtrate flux was at the highest axial velocity (15 ft/s) and transmembrane pressure had little effect. Nearly all of the measured filtrate fluxes were more than an order of magnitude greater than the required plant flux for C-104 of 0.00126 gpm/ft{sup 2}. In both matrices, the filtrate flux appeared to be proportional to axial velocity, and the permeability appeared to be inversely proportional to the trans-membrane pressure. The first test condition was repeated as the last test condition for each matrix. In both cases, there was a significant decrease in filtrate flux, indicating some filter fouling during the test matrix that could not be removed by backpulsing alone, although the backpulse number and duration were not optimized. Following testing of these two matrices, the material was washed within the CUF by

  14. Safety evaluation of the ESP sludge washing baselines runs. Revision 2

    International Nuclear Information System (INIS)

    Gupta, M.K.

    1993-01-01

    Purpose is to provide the technical basis for evaluation of unreviewed safety question for the Extended Sludge Processing (ESP) Sludge Washing Baseline Runs, which are necessary to resolve technical questions associated with process control (sludge suspension, sludge settling, heat transfer, temperature control). The sludge is currently stored in below-ground tanks and will be prepared for processing at the Defense Waste Processing Facility as part of the Integrated Waste Removal Program for Savannah River Site

  15. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R

  16. Washing and Caustic Leaching of Hanford Tank Sludge: Results of FY 1998 Studies

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; BM Rapko; J Liu; DJ Temer; RD Hunt

    1998-12-11

    Sludge washing and parametric caustic leaching tests were performed on sludge samples tiom five Hanford tanks: B-101, BX-1 10, BX-112, C-102, and S-101. These studies examined the effects of both dilute hydroxide washing and caustic leaching on the composition of the residual sludge solids. ` Dilute hydroxide washing removed from <1 to 25% of the Al, -20 to 45% of the Cr, -25 to 97% of the P, and 63 to 99% of the Na from the Hdord tank sludge samples examined. The partial removal of these elements was likely due to the presence of water-soluble sodium salts of aluminate, chromate, hydroxide, nitrate, nitrite, and phosphate, either in the interstitial liquid or as dried salts.

  17. Safety Evaluation of the ESP Sludge Washing Baselines Runs. Revision 1

    International Nuclear Information System (INIS)

    Gupta, M.K.

    1994-08-01

    The purpose is to provide the technical basis for the evaluation of Unreviewed Safety Question for the Extended Sludge Processing (ESP) Sludge Washing Baseline Runs. The Baseline runs are necessary: to ascertain the mechanical fitness of the equipment and modifications not operated since 1988 and to resolve technical questions associated with process control; i.e., sludge suspension, sludge settling, heat transfer, and temperature control. These issues need to be resolved prior to resumption of normal ESP operations. The equipment used for the Baseline runs are Tanks 42H and 51H and their associated equipment

  18. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  19. Qualification testing and full-scale demonstration of titanium-treated zeolite for sludge wash processing

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, W.J.

    1997-06-30

    Titanium-treated zeolite is a new ion-exchange material that is a variation of UOP (formerly Union Carbide) IONSIV IE-96 zeolite (IE-96) that has been treated with an aqueous titanium solution in a proprietary process. IE-96 zeolite, without the titanium treatment, has been used since 1988 in the West Valley Demonstration Project`s (WVDP) Supernatant Treatment System (STS) ion-exchange columns to remove Cs-137 from the liquid supernatant solution. The titanium-treated zeolite (TIE-96) was developed by Battelle-Pacific Northwest Laboratory (PNL). Following successful lab-scale testing of the PNL-prepared TIE-96, UOP was selected as a commercial supplier of the TIE-96 zeolite. Extensive laboratory tests conducted by both the WVDP and PNL indicate that the TIE-96 will successfully remove comparable quantities of Cs-137 from Tank 8D-2 high-level radioactive liquid as was done previously with IE-96. In addition to removing Cs-137, TIE-96 also removes trace quantities of Pu, as well as Sr-90, from the liquid being processed over a wide range of operating conditions: temperature, pH, and dilution. The exact mechanism responsible for the Pu removal is not fully understood. However, the Pu that is removed by the TIE-96 remains on the ion-exchange column under anticipated sludge wash processing conditions. From May 1988 to November 1990, the WVDP processed 560,000 gallons of liquid high-level radioactive supernatant waste stored in Tank 8D-2. Supernatant is an aqueous salt solution comprised primarily of soluble sodium salts. The second stage of the high-level waste treatment process began November 1991 with the initiation of sludge washing. Sludge washing involves the mixing of Tank 8D-2 contents, both sludge and liquid, to dissolve the sulfate salts present in the sludge. Two sludge washes were required to remove sulfates from the sludge.

  20. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non

  1. Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1997-08-01

    The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na 3 PO 4 . Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111

  2. Investigation of Rheological Impacts on Sludge Batch 3 as Insoluble Solids and Wash Endpoints are Adjusted

    International Nuclear Information System (INIS)

    Fellinger, T. L.

    2005-01-01

    The Defense Waste Processing Facility (DWPF) is currently processing and immobilizing radioactive sludge slurry into a durable borosilicate glass. The DWPF has already processed three sludge batches (Sludge Batch 1A, Sludge Batch 1B, and Sludge Batch 2) and is currently processing the fourth sludge batch (Sludge Batch 3). A sludge batch is defined as a single tank of sludge slurry or a combination of sludge slurries from different tanks that has been or will be qualified before being transferred to DWPF. As a part of the Sludge Batch 3 (SB3) qualification task, rheology measurements of the sludge slurry were requested at different insoluble solids loadings. These measurements were requested in order to gain insight into potential processing problems that may occur as the insoluble solids are adjusted up or down (by concentration or dilution) during the process. As a part of this study, a portion of the ''as received'' SB3 sample was washed with inhibited water (0.015 M NaOH and 0.015 M NaNO2) to target 0.5M Na versus a measured 1M Na in the supernate. The purpose of the ''washing'' step was to allow a comparison of the SB3 rheological data to the rheological data collected for Sludge Batch 2 (SB2) and to determine if there was a dependence of the yield stress and consistency as a function of washing. The ''as received'' SB3 rheology data was also compared to SB3 simulants prepared by the Simulant Development Program in order to provide guidance for selecting a simulant that is more representative of the rheological properties of the radioactive sludge slurry. A summary of the observations, conclusions are: (1) The yield stress and plastic viscosity increased as the weight percent insoluble solids were increased for the ''as received'' and ''washed'' SB3 samples, at a fixed pH. (2) For the same insoluble solids loading, the yield stress for the SB2 sample is approximately a factor of three higher than the ''as received'' SB3 sample. There also appears to be small

  3. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01

    Prior to initiating a new sludge batch in the Defense Waste Processing Facility (DWPF), Savannah River National Laboratory (SRNL) is required to simulate this processing, including Chemical Process Cell (CPC) simulation, waste glass fabrication, and chemical durability testing. This report documents this simulation for the next sludge batch, Sludge Batch 6 (SB6). SB6 consists of Tank 12 material that has been transferred to Tank 51 and subjected to Low Temperature Aluminum Dissolution (LTAD), Tank 4 sludge, and H-Canyon Pu solutions. Following LTAD and the Tank 4 addition, Liquid Waste Operations (LWO) provided SRNL a 3 L sample of Tank 51 sludge for SB6 qualification. Pu solution from H Canyon was also received. SB6 qualification included washing the sample per LWO plans/projections (including the addition of Pu from H Canyon), DWPF CPC simulations, waste glass fabrication (vitrification), and waste glass characterization and chemical durability evaluation. The following are significant observations from this demonstration. Sludge settling improved slightly as the sludge was washed. SRNL recommended (and the Tank Farm implemented) one less wash based on evaluations of Tank 40 heel projections and projections of the glass composition following transfer of Tank 51 to Tank 40. Thorium was detected in significant quantities (>0.1 wt % of total solids) in the sludge. In past sludge batches, thorium has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), seen in small quantities, and reported with the radionuclides. As a result of the high thorium, SRNL-AD has added thorium to their suite of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) elements. The acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT) processing of 115%, or 1.3 mol acid per liter of SRAT receipt slurry, was adequate to accomplish some of the goals of SRAT processing: nitrite was destroyed to below 1,000 mg/kg and mercury was removed to

  4. Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste

    International Nuclear Information System (INIS)

    DeMuth, S.

    1998-01-01

    Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author's previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B ± $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author's engineering judgment

  5. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludgeSludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  6. A laboratory study of washing of SRS high-level waste radioactive sludge-evidence for insoluble sodium and cesium-137

    International Nuclear Information System (INIS)

    Hay, M.S.; Bibler, N.E.

    1994-01-01

    Experiments in the Shielded Cells at the Savannah River Technology Center were undertaken to simulate the full-scale sludge washing process and thereby identify potential problems, wash water requirements, sludge settling rates and the fate of various radioactive and non-radioactive species present in the sludge. The laboratory sludge washing experiments were conducted on a radioactive sludge sample taken from one of three processing tanks in Extended Sludge Processing. The sample of Tank 42H sludge was extensively characterized for both soluble and insoluble species (radioactive and non-radioactive) before beginning the washing study. The results of the washing experiments using inhibited water (0.01 M NaOH) indicate there is essentially no dissolution of species from the insoluble phase of the sludge during the washing. The addition of wash water to the sludge merely dilutes the salt dissolved in the interstitial supernate of the sludge. Another result from the experiments is that approximately 30% of the sodium and 86% of the Cs-137 in the original unwashed sludge is present in an insoluble form and does not wash out of the sludge

  7. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    Science.gov (United States)

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid < 0.1 M EDTA<0.3 M HCl, thus hydrochloric acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  8. Exploratory tests of washing radioactive sludge samples from the Melton Valley and evaporator facility storage tanks at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.; Botts, J.L.; Keller, J.M.

    1991-09-01

    Exploratory tests were initiated to wash radioactive sludge samples from the waste storage tanks at the Oak Ridge National Laboratory (ORNL). The purpose was to provide preliminary information about (1) the anions in the sludge phase that are soluble in water or dilute acid (e.g., the anions in the interstitial liquid) and (2) the solubilities of sludge constituents in water under process conditions. The experiments were terminated before completion due to changing priorities by the Department of Energy (DOE). This memorandum was prepared primarily for documentation purposes and presents the incomplete data. 3 refs., 13 tabs

  9. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations

  10. Production of lightweight aggregates from washing aggregate sludge and fly ash

    Science.gov (United States)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena

    2010-05-01

    Increasing generation of wastes is one of the main environmental problems in industrialised countries. Heat treatment at high temperatures can convert some types of wastes into ceramic products with a wide range of microstructural features and properties (Bethanis et al., 2004). A lightweight aggregate (LWA) is a granular material with a bulk density (bd) not exceeding 1.20 g/cm3 or with a particle density not exceeding 2.00 g/cm3 (UNE-EN-13055-1, 2003). They have become a focus of interest because the low particle density and the low bulk density entail a decrease in the load transmitted to the ground, and less work and effort are required to transport them (De' Gennaro et al., 2004). The benefits associated with these low densities, which are due to the formation of voids and pores, are very good thermal and acoustic insulation and materials with a good resistance to fire (Benbow, 1987; Fakhfakh et al., 2007). The objective was to recycle fly ash, used motor oil from cars and mineral wastes from washing aggregate sludge, in order to obtain a usable material such as lightweight aggregates, and also to ensure that they are of good quality for different applications. Raw materials have been physically, chemically and mineralogically characterized. On the basis of the results obtained, they were mixed, milled to a grain size of less than 200 μm (Yasuda, 1991), formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150°C, 1175°C, 1200°C and 1225°C for 10 and 15 min at each temperature (Theating). Effects of raw material characteristics, heating temperature and dwell time on the following LWAs properties were determined: loss on ignition (LOI), bloating index (BI), loose bulk density (bd), apparent and dry particle density (ad, dd), voids (H), water absorption (WA24h) and compressive strength (S). The products obtained were lightweight aggregates in accordance with norm UNE-EN-13055-1 (bd ≤1.20 g/cm3 or particle density ≤2.00 g/cm3). LWAs

  11. Experimental studies of relevance on zirconium nitrate raffinate sludge for its disposal as well as zirconium recovery

    International Nuclear Information System (INIS)

    Brahmananda Reddy, G.; Narasimha Murty, B.; Ravindra, H.R.

    2013-01-01

    One of the many routes of production of nuclear grade zirconium dioxide involve separation of zirconium and hafnium by solvent extraction of zirconium nitrate using tri-n-butyl phosphate followed by precipitation of zirconium with ammonia and finally calcination of the so obtained hydrated zirconia at elevated temperature. The zirconium feed solution as is generated from digestion of zirconium washed dried frit (produced by the caustic fusion of zircon sand which is one of the beach sand heavy minerals) in nitric acid contain considerable amount of sludge material and after solvent extraction this whole sludge material rests with raffinate. This sludge material has a scope to contain considerable amounts of zirconium along with other metal ions such as hafnium, aluminium, iron, etc. besides nitric acid and it constitutes one of the important solid wastes that needs to be disposed suitably. One of the disposal means of this sludge material is to use it as a land fill for which two important criteria are to be viz the pH of 10% solid waste solution should be near to neutral pH and the loss on ignition at 550℃ on dry basis of the sludge to be below 20%. In order to study the implications of presence of varying amounts of zirconium nitrate in the sludge on the pH of 10% solution of the sludge various synthetic zirconium nitrate solid waste were prepared using the sludge material generated at the laboratory during the analysis of zirconium washed dried frit. Presence of zirconium in the sludge is expected to decrease the overall pH of the 10% solution of the sludge because zirconium is prone to hydrolyze especially locally when zirconium ion comes into contact with water according to the chemical equation Zr 4+ H 2 O → ZrO 2+ + 2H + . From this equation, it is clear that for every one mole of zirconium ions two moles of hydrogen ions are produced. This is verified experimentally using the synthetically prepared sludge materials with varying amounts of zirconium

  12. Application of soil washing system to the volume reduction of radioactively contaminated soils and automated treatment of sludge cake

    International Nuclear Information System (INIS)

    Mouri, Mitsuo; Tsuchida, Mitsuru; Baba, Naoki; Nakajima, Takuma

    2013-01-01

    The pilot plant study was intended to evaluate; a) the removal efficiency of radioactive Cs, b) the volume reduction rate of feed soils, c) the volumetric rate and concentration rate of discharged sludge cake, and d) the effect of radiation exposure reduction by automated filter press unit and automated packing unit of sludge cake. As a result of this study, following observations were made; 1) the radioactive Cs content of clean sands ranged 882∼2,940 Bq/kg as compared to the feed soils of 8,790 to 26,270 Bq/kg, 2) the removal efficiency of radioactive Cs ranged 84∼92% of feed soils, 3) the volume reduction rate of feed soils ranged 70∼86% (ave. 82%), and 4) the automated filter press unit and the automated packing system of sludge cake were helpful for workers in reducing radiation exposure. It is concluded that soil washing system can effectively reduce volume of radioactively contaminated soils and can be practically used in Fukushima for remediation of soils. (author)

  13. Computer simulation of laboratory leaching and washing of tank waste sludges

    International Nuclear Information System (INIS)

    Meng, C.D.; MacLean, G.T.; Landeene, B.C.

    1994-01-01

    The process simulator ESP (Environmental Simulation Program) was used to simulate laboratory caustic leaching and washing of core samples from Tanks B-110, C-109, and C-112. The results of the laboratory tests and the computer simulations are compared. The results from both, agreed reasonably well for elements contained in solid phases included in the ESP Public data bank. The use of the GEOCHEM data bank and/or a custom Hanford Data bank should improve the agreement, making ESP a useful process simulator for aqueous based processing

  14. Use to titanium-treated zeolite for plutonium, strontium, and cesium removal from West Valley alkaline wastes and sludge wash wastes

    International Nuclear Information System (INIS)

    Bray, L.A.; Hara, F.T.

    1993-01-01

    Zeolite (IONSIV IE-96) treated with a titanium (Ti) solution will extract traces of plutonium (Pu), strontium (Sr), and cesium (Cs) found in the West Valley Nuclear Services Co., Inc. (WVNS) alkaline supernatant and alkaline sludge water washes. Small ion exchange columns containing Ti-treated zeolite have been successfully tested at WVNS and Pacific Northwest Laboratory (PNL) for the removal of Pu. Full-scale ion exchange processing of sludge wash solution is now being developed at WVNS for use in FY 1992. Commercial manufacturing options for the production of the Ti-treated zeolite were investigated. The Ti-treated zeolite may have application at Hanford and at other U.S. Department of Energy (DOE) sites for the removal of low-level concentrations of Cs, Sr, and Pu from alkaline waste streams

  15. Investigation of Rheological Impacts on the Defense Waste Processing Facility's Sludge Slurry Feed as Insoluble Solids and Wash Endpoints are Adjusted

    International Nuclear Information System (INIS)

    Fellinger, T. L.; Howard, S.J.; Lee, M.C.; Galloway, R.H.

    2006-01-01

    The Savannah River Site (SRS) is currently pursuing an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). To create a batch of feed for the DWPF, several tanks of radioactive sludge slurry are combined into one of the million gallon (i.e. 3.79 E06 liters) feed tanks for DWPF. Once these sludge slurries are combined, the soluble sodium and weight percent total solids are adjusted by a 'washing' process. The 'washing' process involves diluting the soluble sodium of the sludge slurry with inhibited water (0.015 M NaOH and 0.015 M NaNO 2 ) and allowing the sludge slurry to settle into two layers. The two layers in the tank consist of a clear supernate on top and a layer of settled sludge solids on the bottom. The clear supernate layer is then decanted to another hold tank. This 'washing' process is repeated until the desired wash endpoint (i.e. sodium concentration in the supernate) and weight percent total solids are achieved. A final washed batch of feed consists of approximately 500,000 gallons (i.e. 1.89 E06 liters). DWPF has already processed three batches of feed and is currently processing a fourth. Prior to processing a batch of feed in the DWPF, it must be well characterized. Samples of the prepared feed batch are sent to the Savannah River National Laboratory (SRNL) for this characterization. As a part of the SRNL characterization for the fourth batch, rheology measurements were performed. Measurements were performed at different weight percent insoluble solids loadings to mimic potential facility processing scenarios (i.e. mixing/pumping of concentrated sludge slurry). In order to determine the influence of the soluble Na on the rheological properties of the sample, the supernate of the 'as received' sample was adjusted from 1 M soluble Na to 0.5 M soluble Na by using a lab scale version of the 'washing' process. Rheology

  16. Nutritional Evaluation of Distillery Sludge and Its Effect as a Substitute of Canola Meal on Performance of Broiler Chickens

    Science.gov (United States)

    Sharif, M.; Shahzad, M. A.; Rehman, S.; Khan, S.; Ali, R.; Khan, M. L.; Khan, K.

    2012-01-01

    The study was conducted to investigate the chemical composition of distillery yeast sludge and its inclusion in broiler diets to replace canola meal. Raw distillery yeast sludge was washed with water using water and sludge in the ratio 6:1, respectively. Proximate analysis of raw distillery yeast sludge and washed distillery sludge was carried out for crude protein (CP), true protein (TP), ether extract (EE), ash, acid insoluble ash and nitrogen free extract (NFE) determination. Mineral contents and amino acid profile of raw distillery yeast sludge and washed distillery sludge were also determined. After chemical evaluation, four iso-caloric and iso-nitrogenous broiler starter and finisher diets were prepared in mash form using 0 (control), 4, 8 and 12% levels of washed distillery sludge replacing canola meal. One hundred and twenty day-old broiler chicks were randomly distributed into 12 experimental units in such a way that each diet was offered to three experimental units, each comprising of 10 chicks. It was observed that washing affected the nutrients either by decreasing or increasing their concentration. It decreased the total mineral contents whereas CP, TP, EE and NFE contents increased. Washing also increased amino acid profile. Average feed intake and weight gain were higher in birds fed diet containing 8% washed distillery sludge and lower in birds fed diet containing 0% washed distillery sludge. Feed cost per kg live weight gain decreased significantly as the level of washed distillery sludge was increased in the diet. Average heart, liver and pancreas weights decreased with increased level of washed distillery sludge in the diet. The study revealed that after washing, distillery yeast sludge can be used successfully in broiler diets up to the level of 8% without any adverse effect on broiler’s performance. PMID:25049579

  17. Nutritional Evaluation of Distillery Sludge and Its Effect as a Substitute of Canola Meal on Performance of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    M. Sharif

    2012-03-01

    Full Text Available The study was conducted to investigate the chemical composition of distillery yeast sludge and its inclusion in broiler diets to replace canola meal. Raw distillery yeast sludge was washed with water using water and sludge in the ratio 6:1, respectively. Proximate analysis of raw distillery yeast sludge and washed distillery sludge was carried out for crude protein (CP, true protein (TP, ether extract (EE, ash, acid insoluble ash and nitrogen free extract (NFE determination. Mineral contents and amino acid profile of raw distillery yeast sludge and washed distillery sludge were also determined. After chemical evaluation, four iso-caloric and iso-nitrogenous broiler starter and finisher diets were prepared in mash form using 0 (control, 4, 8 and 12% levels of washed distillery sludge replacing canola meal. One hundred and twenty day-old broiler chicks were randomly distributed into 12 experimental units in such a way that each diet was offered to three experimental units, each comprising of 10 chicks. It was observed that washing affected the nutrients either by decreasing or increasing their concentration. It decreased the total mineral contents whereas CP, TP, EE and NFE contents increased. Washing also increased amino acid profile. Average feed intake and weight gain were higher in birds fed diet containing 8% washed distillery sludge and lower in birds fed diet containing 0% washed distillery sludge. Feed cost per kg live weight gain decreased significantly as the level of washed distillery sludge was increased in the diet. Average heart, liver and pancreas weights decreased with increased level of washed distillery sludge in the diet. The study revealed that after washing, distillery yeast sludge can be used successfully in broiler diets up to the level of 8% without any adverse effect on broiler’s performance.

  18. Experimental plant for sludge composting. Plant experimental de compostaje de lodos

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, A.; Caellas, N.; Amengual, A.; Calafact, J.

    1993-01-01

    Results and expertise collected during the first year of exploitation of a compost experimental plant located in Mallorca (Spain): The plant is treating sludge from the biological treatment plant of water at the town of Felanitx and the compost produced is used in agriculture. (Author)

  19. Soil washing

    International Nuclear Information System (INIS)

    Neuman, R.S.; Diel, B.N.; Halpern, Y.

    1992-01-01

    Disposal of soils or sludges contaminated with organic and inorganic compounds is a major problem for environmental remedial activities, hazardous waste generators, and the disposal industry. This paper reports that many of these wastes can be effectively treated utilizing soil washing technology. CWM has been developing soil washing technology over the past few years, with extensive work being conducted on the bench scale. These studies have demonstrated consistently high removal efficiencies (95-99%) for a wide variety of PCB and petroleum hydrocarbon contaminated waste. Recently, a comprehensive study examining the removal of both organic and inorganic contraminants from two different types of surrogate soil matrices was completed. In addition to establishing the range of contaminants that can be removed from soil, a method for surfactant/water separation was evaluated. For example, using a thermal phase separation method, approximately 90% of the surfactant could be recovered from the water

  20. An experimental study of low concentration sludge settling velocity under turbulent condition.

    Science.gov (United States)

    Guo, Lisha; Zhang, Daijun; Xu, Danyu; Chen, Yuan

    2009-05-01

    Particle Image Velocimetry (PIV) was used to study the settling of activated sludge flocs under turbulent flow conditions. Experimental results showed that a larger particle diameter led to a higher settling velocity while the higher turbulence intensity led to lower settling velocity. Based on the measurements a mathematical relation has been derived which correlates the settling velocity for individual sludge flocs under turbulent conditions through a modified Vesilind equation. Settling velocity shows a power-type relation to sludge particle diameter and an exponential-type relation with turbulence intensity and sludge concentration.

  1. Experimental study on combustion and slagging characteristics of tannery sludge

    International Nuclear Information System (INIS)

    Li, Chunyu; Jiang, Xuguang; Fei, Zhenwei; Chi, Yong; Yan, Jianhua

    2010-01-01

    Incineration is the most reasonable technique for tannery sludge disposal. The combustion and gaseous products emission characteristics of tannery sludge were investigated in this study. Tendency of slagging for combustion residue was also investigated based on the composition and microscopic scanning analysis. The high content of volatile matters and ash in tannery sludge was discovered. It was shown that the thermal decomposition and combustion of tannery sludge mainly occurs in a temperature frame between 150 degree Celsius and 780 degree Celsius. Organic acid was determined as the most important gaseous pollutant at low temperature combustion. The combustion residue from a specially designed furnace was analyzed by X-ray diffractometer (XRD) and energy dispersion spectroscopy (EDS) microprobe coupled in a scanning electron micro-scope (SEM). There is large amount of Ca in the combustion residue, and CaO was the main inorganic composition in these residues. The tannery sludge studied in this paper has a strong tendency of slagging, and the fusion of the residue began at 900 degree Celsius in combustion. It was further discovered that almost all the zinc (Zn) in tannery sludge is volatilized at 900 degree Celsius. The degree of volatilization for heavy metals at 900 degree Celsius followed the order of Zn > Cd >Cu > Mn > Pb > Cr. Most of Cr in tannery sludge is enriched in the residue during combustion. The present study reveals that it is critical to control the combustion temperature for optimal combustion efficiency and minimization of pollutants emission. (author)

  2. Experimental continuous sludge microwave system to enhance dehydration ability and hydrogen production from anaerobic digestion of sludge.

    Science.gov (United States)

    Zhou, Cuihong; Huang, Xintong; Zeng, Meng

    2018-05-01

    Dehydrating large amounts of sludge produced by sewage treatment plants is difficult. Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300W and an exposure time of 60sec, and that in the continuous experiment was 77.56% under a microwave power of 400W and an exposure time of 60sec. The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600W and an exposure time of 180sec. The heat flux at the peak was 4.343W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500W, exposure time of 120sec, and water bath at 55°C. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system. Copyright © 2017. Published by Elsevier B.V.

  3. Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

    1994-03-01

    This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution

  4. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin

    International Nuclear Information System (INIS)

    Lee, I.H.; Kuan, Y.-C.; Chern, J.-M.

    2006-01-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 deg. C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results

  5. Experimental study of variations in background radiation and the effect on Nuclear Car Wash sensitivity

    International Nuclear Information System (INIS)

    Church, J; Slaughter, D; Norman, E; Asztalos, S; Biltoft, P

    2007-01-01

    Error rates in a cargo screening system such as the Nuclear Car Wash [1-7] depend on the standard deviation of the background radiation count rate. Because the Nuclear Car Wash is an active interrogation technique, the radiation signal for fissile material must be detected above a background count rate consisting of cosmic, ambient, and neutron-activated radiations. It was suggested previously [1,6] that the Corresponding negative repercussions for the sensitivity of the system were shown. Therefore, to assure the most accurate estimation of the variation, experiments have been performed to quantify components of the actual variance in the background count rate, including variations in generator power, irradiation time, and container contents. The background variance is determined by these experiments to be a factor of 2 smaller than values assumed in previous analyses, resulting in substantially improved projections of system performance for the Nuclear Car Wash

  6. Experimental evaluation of washing for treatment of combustible plutonium-contaminated materials

    International Nuclear Information System (INIS)

    Wilkins, J.D.; Wisbey, S.J.

    1983-03-01

    Laboratory scale experiments have been carried out in order to assess the potential of washing as a method for removing plutonium from contaminated combustible wastes. A wide range of aqueous (eg 1 M HNO 3 , 1 M NaOH) and organic (1,1,2-trichlorotrifluoroethane) reagents have been investigated. Both synthetically contaminated and real wastes have been investigated. The preferred wash reagent has been identified as 1 M sodium hydroxide solution; plutonium recoveries of ca.80 to 90% can be achieved. (author)

  7. Factors influencing sorption of ciprofloxacin onto activated sludge: Experimental assessment and modelling implications

    DEFF Research Database (Denmark)

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang

    2015-01-01

    was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used...

  8. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    Ash formation during the fluidized bed combustion (FBC) of pulp and paper mill sludges has been experimentally studied on an industrial and bench scale. The methods included aerosol measurements, chemical and crystalline composition analyses, thermogravimetry and electron microscopy. Fly ash mass and number size distributions and elemental enrichment in submicron particles and bottom ash were measured. Fly ash, bottom ash and ash deposits were characterized and their formation mechanisms are discussed. During combustion the fine paper-making additives in sludge, clay minerals and calcite, sintered fanning porous agglomerates. The fly ash mass mean size was 7.5 - 15 lam and the supermicron particles included 93.6 - 97.3 % of the fly ash. Condensation of the volatilized inorganic species formed spherical submicron particles in the fly ash. Their mass concentration was almost negligible when co-firing paper mill sludges and wood. This suggests that the fraction of the volatilized inorganic species in the paper mill sludges was low. Results from pulp mill sludge and bark co-firing were different. A clear mass mode below 0.3 pm, presenting 2.2 - 5.0 weight-% of the fly ash was detected. The condensed species included K, Na, S and Cl. Their mass fraction was higher in the pulp mill sludge than in the paper mill sludge. Evidently this resulted in increased volatilization and formation of condensed particles. The following trace elements were enriched in the submicron ash during pulp mill sludge and wood co-firing: As, Cd, Rb and Pb. The main part of the volatile species was, however, captured in the bulk ash. Presumably, this was due to the high surface area concentration in the bulk ash. Sludge moisture was observed to reduce the inorganic species volatilization. Probably steam vaporization from the wet sludge through the burning layer decreased combustion temperatures on char surface and less char was produced. Hence, the volatilization of ash forming species was

  9. Late Washing efficiency

    International Nuclear Information System (INIS)

    Morrissey, M.F.

    1992-01-01

    Interim Waste Technology has demonstrated the Late Washing concept on the Experimental Laboratory Filter (ELF) at TNX. In two tests, washing reduced the [NO 2 - ] from 0.08 M to approximately 0.01 M on slurries with 2 year equivalent radiation exposures and 9.5 wt. % solids. For both washes, the [NO 2 - ] decreased at rates near theoretical for a constant volume stirred vessel, indicating approximately l00% washing efficiency. Permeate flux was greater than 0.05 gpm/ft 2 for both washes at a transmembrane pressure of 50 psi and flow velocity of 9 ft/sec

  10. Monitoring and optimizing the co-composting of dewatered sludge: a mixture experimental design approach.

    Science.gov (United States)

    Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos

    2011-09-01

    The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Characterization of the insoluble sludge from the dissolution of irradiated fast breeder reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, Haruka; Arai, Yoichi; Shibata, Atsuhiro; Nomura, K.; Takeuchi, M. [Japan Atomic Energy Agency - JAEA, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1194 (Japan)

    2016-07-01

    Insoluble sludge is generated in the reprocessing of spent fuel. The sludge obtained from the dissolution of irradiated fuel from the Joyo experimental fast reactor was analyzed to evaluate its chemical form. The sludge was collected by the filtration of the dissolved fuel solution, and then washed in nitric acid. The yields of the sludge weight were less than 1% of the total fuel weight. The chemical composition of the sludge was analyzed after decomposition by alkaline fusion. Molybdenum, technetium, ruthenium, rhodium, and palladium were found to be the main constituent elements of the sludge. X-ray diffraction patterns of the sludge were attributable to Mo{sub 4}Ru{sub 4}RhPd, regardless of the experimental conditions. The concentrations of molybdenum and zirconium in the dissolved fast reactor fuel solutions were low, indicating that zirconium molybdate hydrate (ZMH) is produced in negligible amounts in the process. (authors)

  12. Studying oily sludge treatment by thermo chemistry

    Directory of Open Access Journals (Sweden)

    Jing Guolin

    2016-09-01

    Full Text Available Nowadays surfactants were used to wash oily sludge and reclaim oil. This paper presents the optimum conditions for washing oily sludge with surfactant solutions using the single factor experiment. The agents tested are AEO-9, Peregal O, TritonX-100, sodium metasilicate and sodium dodecylbenzene sulfonate (DBS. In the experiments, four factors affecting residual oil rate are investigated which include liquid/solid mass rate, reaction temperature, reaction time and eluent mass fraction. Results obtained through experimental runs were compared and used to select a kind of agent, in order to get the best cleaning effect. The optimum parameters of these agents are different from others, and under the optimum conditions their treatment effects are better. And the washing effect of Na2SiO3·9H2O is best and its residual oil rate is only about 1.6%.

  13. Mathematical experimental modeling for muffle furnace drying process of municipal sewage sludge in Beijing and Osaka

    International Nuclear Information System (INIS)

    Li, Xinyi; Takaoka, Masaki; Zhu, Fenfen; Oshita, Kazuyuki; Mizuno, Tadao; Morisawa, Shinsuke

    2010-01-01

    Over the past two decades, China has experienced rapid urbanization, which also leads to a lot of environmental problems including those of sewage sludge. As the amount of sewage sludge increases, conventional methods of treatment, such as compost and landfill, are facing the problems of limitations in demands or land. Considering that the demand of constructive materials in China keeps increasing, reusing municipal sewage sludge (MSS) in cement manufactory plant as fuels and raw materials is another practicable way to deal with it. The aim of this study is to describe the process of the heating of sewage sludge under different atmospheres of nitrogen and oxygen, and to find out some relation between the moisture of MSS and the heating time under different surrounding temperature by means of a mathematical model. In this study, we compared 4 kinds of MSS sampled in Beijing and Osaka. First of all, we defined the differences in those fundamental physical properties, such as concentration of various elements, calorific values and so on. Then the macroscopical thermal properties of the sludges were observed by means of thermogravimetric (TG) analysis. Both pyrolysis and combustion of 4 samples of MSS were studied by TG dynamic runs carried out at 10K/m. Visual observation of the heating profiles shows three stages in the heating process, which have been characterized. At last, we focused on batch processing drying tests using muffle furnace under temperature of 200, 250 and 300 degrees Celsius. The volatile matters loss besides moisture during heating process was evaluated and the experimental drying curves were matched with a mathematical model. (author)

  14. Hydrogen generation during melter feed preparation of Tank 42 sludge and salt washed loaded CST in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Daniel, W.E.

    1999-01-01

    The main objective of these scoping tests was to measure the rate of hydrogen generation in a series of experiments designed to duplicate the expected SRAT and SME processing conditions in laboratory scale vessels. This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, loaded CST [crystalline silicotitanate], and frit

  15. Soil decontamination at the Montevecchio-Levante mine site with experimental washing and leaching techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dessi, R. [Progemisa SpA, Cagliari (Italy); Fadda, S.; Peretti, R.; Zucca, A. [CSGM, Centro Studi Germinerari e Mineralurgici del CNR, Cagliari (Italy); Serci, A. [Digita, Dipt. di Geoingegneria e Tecnologie Ambientali, Cagliari (Italy)

    2000-12-01

    The soils in the neighbourhood of the Rio Montevecchio-Sitzerri, a stream that flows in the valley below the tailings pond of the Montevecchio-Levante mineral processing plant (SW Sardinia, Italy) are severely contaminated by heavy metals, to the extent that traditional land uses are compromised. Consequently urgent measures are needed both to abate the pollution at source and rehabilitate the contaminated land. This paper is concerned with the problem of soil decontamination using washing and leaching techniques. Laboratory experiments have been conducted in mechanically agitated reactors, using citric acid and acetic acid solutions and brine of hydrochloric acid and calcium chloride. The influence of both reagent concentration and solid-to-liquid ratio has been assessed, and in the most significant cases, the attack kinetics has been determined. The tests showed the brine to be the most effective for removing metals from the soils. Based on the findings of the investigations, the possibility of decontamination by heap leaching has been simulated in the laboratory using the column technique. [Italian] I suoi circostanti il Rio Montevecchio-Sitzerri, che scorre a valle del bacino di decantazione degli sterili dell'impianto di trattamento dei minerali di Montevecchio-Levante (Sardegna Centro-Occidentale), sono caratterizzati da un elevato contenuto di metalli pesanti, che ne pregiudicano gli usi tradizionali. Si rende percio' improrogabile sia la necessita' di intervenire sulle cause all'origine della contaminazione, sia di bonificare i suoli in questione al fine di recuperarli a nuovi usi. La memoria intende portare un contributo alle relative problematiche affrontando la possibilita' di decontaminazione mediante tecniche di lavaggio e lisciviazione. La sperimentazione di laboratorio e' stata condotta in reattori ad agitazione meccanica, utilizzando soluzioni con acido citrico, acido acetico ed una salamoia costituita da acido

  16. Oxidative-Alkaline Leaching of Washed 241-SY-102 and 241-SX-101 Tank Sludges and Its Impact on Immobilized High-Level Waste

    International Nuclear Information System (INIS)

    Rapko, Brian M.; Geeting, John GH; Sinkov, Sergei I.; Vienna, John D.

    2006-01-01

    This report describes work designed to evaluate the effectiveness of alkaline permanganate contacts at selectively removing chromium from the Hanford tank sludges 241-SY-102 and 241-SX-101. The key variables examined in this study, as compared to contact with the standard conditions of stoichiometric permanganate in 3 M hydroxide at elevated temperature, were: (a) excess permanganate and hydroxide at elevated temperature, (b) the separation of an elevated temperature 3 M hydroxide leach with either a room temperature permanganate contact or an elevated temperature permanganate contact at 0.25 M hydroxide. It was determined that sequential permanganate and caustic leaching can provide as effective removal of Cr as the combined high hydroxide permanganate contact at elevated temperature while minimizing concomitant Pu dissolution

  17. Chemical modeling of waste sludges

    International Nuclear Information System (INIS)

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety

  18. Wash-off of Sr-90 and Cs-137 from two experimental plots. Model testing using Chernobyl data

    International Nuclear Information System (INIS)

    Konoplev, A.; Bulgakov, A.; Hoffman, O.; Thiessen, K.

    1996-09-01

    Surface water runoff from contaminated land is one of the major processes responsible for the contamination of water bodies. For example, the large area of land contaminated after the Chernobyl accident has become a continuing source of radionuclide contamination for natural waters and the aquatic ecosystem. Based on data from the Chernobyl accident, the 'Wash-off' scenario was developed to provide an opportunity to test models concerned with the movement of trace contaminants from terrestrial sources to water bodies. In particular, this scenario provides an opportunity for (1) evaluation of the movement of contaminants from soil to water, (2) calculation of the alteration and migration of contaminants in soil over different time scales, (3) increased understanding of contaminant transport at the process level, and (4) development and use of methods for estimation of key parameters. Modelers were provided with descriptions of two experimental plots near the Chernobyl NPP, one using simulated heavy rain (plot HR) and one using snow melt (plot SM). Initial information for plot HR included soil properties; hydrographs of rainfall and runoff dynamics; the time of application of rainfall; rainfall amounts, duration, and intensities; soil moisture content before the application of rainfall; regional data on average monthly precipitation and temperature; recorded information on naturally occurring precipitation between May and October 1986; and chemical forms of radionuclides in the soil of the plots prior to the experiments. Information for plot SM included the soil description and properties, snow storage in the snow melt period of 1988, chemical composition of the snow water, a hydrograph of the runoff dynamics, chemical radionuclide forms in the soil at the end of the experiment, and air and soil temperatures for the plot during the snow melt period. For each experimental plot, modelers were requested to estimate the vertical distribution of radionuclides (137 Cs and

  19. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions.

    Science.gov (United States)

    Yang, Sheng-Fu; Lin, Cheng-Fang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy

    2011-05-01

    This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (K(d)) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Ultrasonic coal-wash for de-ashing and de-sulfurization. Experimental investigation and mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ambedkar, B. [Indian Institute of Technology Madras, Chennai (India). Dept. of Chemical Engineering

    2012-07-01

    This study focuses on the physical aspects of ultrasonic de-ashing and de-sulfurization, such as cavitation, streaming and their combined effects. Ambedkar Balraj proposes an ultrasound-assisted coal particle breakage mechanism and explores aqueous and solvent-based ultrasonic techniques for de-ashing and de-sulfurization. Ambedkar designs a Taguchi L-27 fractional-factorial matrix to assess the individual effects of key process variables. In this volume he also describes process optimization and scale-up strategies. The author provides a mechanism-based model for ultrasonic reagent-based coal de-sulfurization, proposes a flow diagram for ultrasonic methods of high-throughput coal-wash and discusses the benefits of ultrasonic coal-wash. Coal will continue to be a major fuel source for the foreseeable future and this study helps improve its use by minimising ash and sulfur impurities.

  1. Nitric acid flowsheet with late wash PHA testing

    International Nuclear Information System (INIS)

    Zamecnik, J.R.

    1993-01-01

    This Task Technical Plan outlines the activities to be conducted in the Integrated DWPF Melter System (IDMS) in ongoing support of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) utilizing the Nitric Acid Flowsheet in the Sludge Receipt and Adjustment Tank (SRAT) and Precipitate Hydrolysis Aqueous (PHA) produced by the Late Wash Flowsheet. The IDMS facility is to be operated over a series of runs (2 to 4) using the Nitric Acid Flowsheet. The PHA will be produced with the Late Wash Flowsheet in the Precipitate Hydrolysis Experimental Facility (PHEF). All operating conditions shall simulate the expected DWPF operating conditions as closely as possible. The task objectives are to perform at least two IDMS runs with as many operating conditions as possible at nominal DWPF conditions. The major purposes of these runs are twofold: verify that the combined Late Wash and Nitric Acid flowsheets produce glass of acceptable quality without additional changes to process equipment, and determine the reproducibility of data from run to run. These runs at nominal conditions will be compared to previous runs made with PHA produced from the Late Wash flowsheet and with the Nitric Acid flowsheet in the SRAT (Purex 4 and Purex 5)

  2. Removal of thorium(IV) from aqueous solution by biosorption onto modified powdered waste sludge. Experimental design approach

    International Nuclear Information System (INIS)

    Yunus Pamukoglu, M.; Mustafa Senyurt; Bulent Kirkan

    2017-01-01

    The biosorption of radioactive Th(IV) ions in the aqueous solutions onto the modified powdered waste sludge (MPWS) has been examined. In this context, the parameters affecting biosorption of Th(IV) from aqueous solutions has been examined by using MPWS biosorbent in Box Behnken statistical experimental design. The structure of MPWS biosorbent was characterized by using SEM and BET techniques. According to the experimental design results, MPWS and Th(IV) concentrations should be kept high to achieve the maximum efficiency in Th(IV) biosorption. On the other hand, MPWS, which is also used as a biosorbent, is an economical, effective and natural biosorbent. (author)

  3. Soil washing treatability study

    International Nuclear Information System (INIS)

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS

  4. Wash-oil problem

    Energy Technology Data Exchange (ETDEWEB)

    Chlosta, J

    1941-01-01

    Meier-Grolman and others have deduced from experimental studies of the vapor pressure of solutions of benzene in paraffin oil and Solway oil-paraffin oil mixtures that the higher the proportion of aliphatic compounds in a wash oil, the less suitable it is for benzene scrubbing. This generalization is not supported. Paraffin oils from brown-coal tar and low viscous oils from the Fischer-Tropsch hydrocarbon synthesis process are both being successfully used for benzene scrubbing.

  5. Experimental destruction of Ascarid ova in sewage sludge by accelerated electron irradiation

    International Nuclear Information System (INIS)

    Horak, Petr

    1994-01-01

    Aerobically-treated sewage sludge containing eggs of the nematode Ascaris suum was processed using accelerated electrons. After 8 weeks of incubation the morphological and developmental status of eggs was determined. Inhibition of development and the destruction of nematode embryos within eggs were observed at doses over 1.1 kGy. (author)

  6. Nasal Wash Treatment

    Science.gov (United States)

    ... Medications Alternative Therapies Nasal Wash Treatment Nasal Wash Treatment Make an Appointment Ask a Question Refer Patient The Centers for Disease Control (CDC) guidelines for preparing water used in a nasal wash are listed below. Many ...

  7. AN EXPERIMENTAL STUDY ON THE RHEOLOGICAL PROPERTIES OF CONDITIONED MUNICIPAL ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    SALAM K. AL-DAWERY

    2017-01-01

    Full Text Available This research work was focused on the rheological characteristics of conditioned fresh activated sludge using TA rheometer HR-2. The effect of cationic polyelectrolyte conditioner has been investigated for floc size, surface properties and yield stress at different pH values in a comparative fashion. Our approach was to reveal the effect of polymer on the municipal activated sludge with high organic contents up to 80%. The results indicated an improvement of 50% in settling properties by addition polyelectrolyte up to 4 mg/g solid/l. Rheological data analysis showed that responses of shear stress - shear rate were found to be closest to Bingham model and gave almost similar and smaller k values of average 6.2×10-3. The results of shear creep indicated that all sludge samples have less rigid structures with no reconstruction behavior. The optical analyses of the samples indicated that the floc sizes were increased with successive addition of polyelectrolyte. The increase of floc sizes caused large stresses especially for solution with pH=9. As the flocculation accorded despite the negative zeta potential, this phenomenon can be referred to that interparticles hydrogen bridging was governing flocculation rather than charge neutralization. Also, during the experiment, bacterial growth showed an adaption despite the conditioning with polyelectrolyte.

  8. Sampling and analyses of SRP high-level waste sludges

    International Nuclear Information System (INIS)

    Stone, J.A.; Kelley, J.A.; McMillan, T.S.

    1976-08-01

    Twelve 3-liter samples of high-heat waste sludges were collected from four Savannah River Plant waste tanks with a hydraulically operated sample collector of unique design. Ten of these samples were processed in Savannah River Laboratory shielded cell facilities, yielding 5.3 kg of washed, dried sludge products for waste solidification studies. After initial drying, each batch was washed by settling and decantation to remove the bulk of soluble salts and then was redried. Additional washes were by filtration, followed by final drying. Conclusions from analyses of samples taken during the processing steps were: (a) the raw sludges contained approximately 80 wt percent soluble salts, most of which were removed by the washes; (b) 90 Sr and 238 , 239 Pu remained in the sludges, but most of the 137 Cs was removed by washing; (c) small amounts of sodium, sulfate, and 137 Cs remained in the sludges after thorough washing; (d) no significant differences were found in sludge samples taken from different risers of one waste tank. Chemical and radiometric compositions of the sludge product from each tank were determined. The sludges had diverse compositions, but iron, manganese, aluminum, and uranium were principal elements in each sludge. 90 Sr was the predominant radionuclide in each sludge product

  9. NEPHELINE FORMATION STUDY FOR SLUDGE BATCH 4: PHASE 3 EXPERIMENTAL RESULTS

    International Nuclear Information System (INIS)

    Fox, K

    2006-01-01

    This Phase 3 study was undertaken to complement the previous phases of the nepheline formation studies1, 2 by continuing the investigation into the ability of the nepheline discriminator to predict the occurrence of nepheline crystallization in Sludge Batch 4 (SB4) glasses and into the impact of such phases on the durability of the SB4 glasses. The Phase 3 study had two primary objectives. The first was to continue to demonstrate the ability of the discriminator value to adequately predict the nepheline formation potential for specific glass systems of interest. The second was to generate additional data that have a high probability of supporting the SB4 variability study. To support these two objectives, sixteen glasses were selected based on the most recent SB4 compositional projection, Case 15C Blend 1.3 Four different frits were included, based on previous assessments of projected operating windows and melt rate,4, 5 with four WLs selected for each frit. Eight of these frit-sludge combinations covered WLs which tightly bound the nepheline discriminator value of 0.62, with the intent of refining this value to a level of confidence where it can be incorporated into offline administrative controls and/or the Process Composition Control System (PCCS) to support Slurry Mix Evaporator (SME) acceptability decisions. The remaining eight frit-sludge combinations targeted lower WLs (35 and 40%) and were prepared and analyzed to contribute needed data to the ComPro database6 to support a potential variability study for SB4

  10. Biogas Production Experimental Research by Using Sewage Sludge Loading with Biochar Additive

    Directory of Open Access Journals (Sweden)

    Vitalij Kolodynskij

    2017-09-01

    Full Text Available Biogas – ecological fuel, which is assigned to alternative energy sources. It should be noted, that biogas – renewable energy source, which does not require any specific climatic conditions or geographical position of a country. This power source is available and can be successfully produced and used in all countries of the world. The main components of biogas – methane CH4 and carbon monoxide CO2. This gas is formed under anaerobic conditions, when microorganisms decompose biodegradable biomass. In biological sciences biomass means a living matter content, expressed in grams per unit area. Meanwhile, in the energy sector, the definition of biomass is limited and biomass is characterized as fuel source, produced from plant materials and organic waste (food waste, wood, sludge, manure, vegetables, etc.. Currently, to produce biogas from biomass, bioreactors are used worldwide. However, in order to increase the quality and yield of biogas, in the world practice various bioload additives are used: vegetable waste, clay minerals, and a large amount of the protein-containing waste. The goal – to evaluate the impact of biochar on biogas quality and yield using sewage sludge load. It was found, that 10% biochar additive increased average CH4 concentration of 7.9%, reduced the CO2 concentration of 3–4% and totally removed H2S from biogas.

  11. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    International Nuclear Information System (INIS)

    Clemons, J.S.

    1993-01-01

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51

  12. Tank 4 Characterization, Settling, And Washing Studies

    International Nuclear Information System (INIS)

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-01-01

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na 2 SO 4 · Na 2 CO 3 ). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form

  13. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  14. Induction of compulsive-like washing by blocking the feeling of knowing: an experimental test of the security-motivation hypothesis of Obsessive-Compulsive Disorder

    Directory of Open Access Journals (Sweden)

    Kamath Markad

    2005-07-01

    Full Text Available Abstract Background H. Szechtman and E. Woody (2004 hypothesized that obsessive-compulsive disorder results from a deficit in the feeling of knowing that normally terminates thoughts or actions elicited by security motivation. To test the plausibility of this proposed mechanism, an experiment was conducted to produce an analog of washing in obsessive-compulsive disorder by eliciting a scenario of potential harm and using hypnosis to block changes in internally generated feelings that would normally occur during washing. Results Participants reacted with increased disgust, anxiety, and heart rate to their mental images of contamination and potential danger. As predicted, high but not low hypnotizable participants showed a significant prolongation of washing when change in feelings during washing was blocked hypnotically. Conclusion Results show that blocking the affective signal that is normally generated during security-related behaviors, such as washing, leads to prolonged performance of these behaviors. This finding lends support to the plausibility of the proposed model of obsessive-compulsive disorder.

  15. Separation of SRP waste sludge and supernate

    International Nuclear Information System (INIS)

    Stone, J.A.

    1976-01-01

    Sludges and supernates were separated from Savannah River Plant waste slurries by centrifugation and sand filtration. This separation, a portion of a conceptual process for solidification and long-term storage of high-level radioactive wastes, was tested in shielded cells with small-scale process equipment. Procedures for the separation were developed in tests with nonradioactive materials. Then, in 13 tests with actual sludges and supernates, solids removal ranged from 90 to 99.2 vol percent and averaged 96.4 vol percent after two passes through a basket-type centrifuge. Concentrates from the tests, containing 0.05 to 0.2 vol percent solids, were clarified by sand filter columns to produce solutions of the soluble salts with less than 0.01 vol percent solids. About 700 liters of salt solution and 8 kilograms of washed, dried sludges were separated in the tests. Effects of sludge type, flocculant, flow rates, and batch size were evaluated. Washing and drying of centrifuged sludges were studied, and two types of dryers were tested. Ruthenium volatility during drying was negligible. Washing efficiency was determined by analyses of wash solutions and sludge products

  16. Sludge Settling Rate Observations and Projections at the Savannah River Site - 13238

    Energy Technology Data Exchange (ETDEWEB)

    Gillam, Jeffrey M.; Shah, Hasmukh B.; Keefer, Mark T. [Savannah River Remediation LLC, Aiken SC 29808 (United States)

    2013-07-01

    Since 2004, sludge batches have included a high percentage of stored sludge generated from the H- modified (HM) process. The slow-settling nature of HM sludge means that the settling is often the major part of the washing tank quiescent period between required pump runs to maintain flammability control. Reasonable settling projections are needed to wash soluble salts from sludge in an efficient manner, to determine how much sludge can be washed in a batch within flammability limits, and to provide composition projections for batch qualification work done in parallel with field preparation. Challenges to providing reasonably accurate settling projections include (1) large variations in settling behavior from tank-to-tank, (2) accounting for changing initial concentrations, sludge masses, and combinations of different sludge types, (3) changing the settling behavior upon dissolving some sludge compounds, and (4) sludge preparation schedules that do not allow for much data collection for a particular sludge before washing begins. Scaling from laboratory settling tests has provided inconsistent results. Several techniques have been employed to improve settling projections and therefore the overall batch preparation efficiency. Before any observations can be made on a particular sludge mixture, projections can only be made based on historical experience with similar sludge types. However, scaling techniques can be applied to historical settling models to account for different sludge masses, concentrations, and even combinations of types of sludge. After sludge washing/settling cycles begin, the direct measurement of the sludge height, once generally limited to a single turbidity meter measurement per settle period, is now augmented by examining the temperature profile in the settling tank, to help determine the settled sludge height over time. Recently, a settling model examined at PNNL [1,2,3] has been applied to observed thermocouple and turbidity meter readings to

  17. Modeling, Experimentation, and Control of Autotrophic Nitrogen Removal in Granular Sludge Systems

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine

    is convenient for treating anaerobic digester liquor, landfill leachate, or special industrial wastewaters, because costs related to the need for aeration and carbon addition are lowered by 60% and 100%, respectively, compared to conventional nitrification denitrification treatment. Energy and capital costs can...... at the expense of slightly slower dynamic responses and additional complexity of the control structure. The functionality of this strategy was tested experimentally in a lab-scale reactor, where it showed the ability to reject disturbances in the incoming ammonium concentrations. However, during high ammonium...

  18. Wash-resistance of pirimiphos-methyl insecticide treatments of window screens and eave baffles for killing indoor-feeding malaria vector mosquitoes: an experimental hut trial, South East of Zambia.

    Science.gov (United States)

    Chinula, Dingani; Sikaala, Chadwick H; Chanda-Kapata, Pascalina; Hamainza, Busiku; Zulu, Reuben; Reimer, Lisa; Chizema, Elizabeth; Kiware, Samson; Okumu, Fredros O; Killeen, Gerry

    2018-04-13

    The effectiveness of long-lasting insecticidal-treated nets (LLINs) and indoor residual spraying (IRS) for malaria control is threatened by resistance to commonly used pyrethroid insecticides. Rotations, mosaics, combinations, or mixtures of insecticides from different complementary classes are recommended by the World Health Organization (WHO) for mitigating against resistance, but many of the alternatives to pyrethroids are prohibitively expensive to apply in large national IRS campaigns. Recent evaluations of window screens and eave baffles (WSEBs) treated with pirimiphos-methyl (PM), to selectively target insecticides inside houses, demonstrated malaria vector mortality rates equivalent or superior to IRS. However, the durability of efficacy when co-applied with polyacrylate-binding agents (BA) remains to be established. This study evaluated whether WSEBs, co-treated with PM and BA have comparable wash resistance to LLINs and might therefore remain insecticidal for years rather than months. WHO-recommended wire ball assays of insecticidal efficacy were applied to polyester netting treated with or without BA plus 1 or 2 g/sq m PM. They were then tested for insecticidal efficacy using fully susceptible insectary-reared Anopheles gambiae mosquitoes, following 0, 5, 10, 15, then 20 washes as per WHO-recommended protocols for accelerated ageing of LLINs. This was followed by a small-scale field trial in experimental huts to measure malaria vector mortality achieved by polyester netting WSEBs treated with BA and 2 g/sq m PM after 0, 10 and then 20 standardized washes, alongside recently applied IRS using PM. Co-treatment with BA and either dosage of PM remained insecticidal over 20 washes in the laboratory. In experimental huts, WSEBs treated with PM plus BA consistently killed similar proportions of Anopheles arabiensis mosquitoes to PM-IRS (both consistently ≥ 94%), even after 20 washes. Co-treating WSEBs with both PM and BA results in wash

  19. Washing method of filter

    International Nuclear Information System (INIS)

    Izumidani, Masakiyo; Tanno, Kazuo.

    1978-01-01

    Purpose: To enable automatic filter operation and facilitate back-washing operation by back-washing filters used in a bwr nuclear power plant utilizing an exhaust gas from a ventilator or air conditioner. Method: Exhaust gas from an exhaust pipe of an ventilator or air conditioner is pressurized in a compressor and then introduced in a back-washing gas tank. Then, the exhaust gas pressurized to a predetermined pressure is blown from the inside to the outside of a filter to thereby separate impurities collected on the filter elements and introduce them to a waste tank. (Furukawa, Y.)

  20. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    Science.gov (United States)

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  1. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  2. Experimental study on the use of spacer foils in two-step putty and wash impression procedures using silicone impression materials.

    Science.gov (United States)

    Mann, Karsten; Davids, Andreas; Range, Ursula; Richter, Gert; Boening, Klaus; Reitemeier, Bernd

    2015-04-01

    The 2-step putty and wash impression technique is commonly used in fixed prosthodontics. However, cutting sluiceways to allow the light-body material to drain is time-consuming. A solution might be the use of a spacer foil. The purpose of this study was to evaluate the influence of spacer foil on the margin reproduction and dimensional accuracy of 2-step putty and wash impressions. Two methods of creating space for the wash material in a 2-step putty and wash impression were compared: the traditional cutout technique and a spacer foil. Eleven commercially available combinations of silicone impression materials were included in the study. The impressions and the cast production were carried out under standardized conditions. All casts were measured with a 3-dimensional (3D) coordinate measuring machine. Preparation margin reproduction and the diameters and spacing of the stone cast dies were measured (α=.05). The 2 methods showed significant differences (P<.05) in the reproduction of the preparation margins (complete reproduction cutout, 90% to 98%; foil, 74% to 91%). The use of a foil resulted in greater dimensional accuracy of the cast dies compared to the cutout technique. Cast dies from the cutout technique were significantly smaller than the metallic original cast (cutout median, 4.55 mm to 4.61 mm; foil median, 4.61 to 4.64). Spacing between the dies revealed only a few additional significant differences between the techniques. When spacer foils were used, dies were obtained that better corresponded to the original tooth. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  4. Washing scaling of GeneChip microarray expression

    Directory of Open Access Journals (Sweden)

    Krohn Knut

    2010-05-01

    Full Text Available Abstract Background Post-hybridization washing is an essential part of microarray experiments. Both the quality of the experimental washing protocol and adequate consideration of washing in intensity calibration ultimately affect the quality of the expression estimates extracted from the microarray intensities. Results We conducted experiments on GeneChip microarrays with altered protocols for washing, scanning and staining to study the probe-level intensity changes as a function of the number of washing cycles. For calibration and analysis of the intensity data we make use of the 'hook' method which allows intensity contributions due to non-specific and specific hybridization of perfect match (PM and mismatch (MM probes to be disentangled in a sequence specific manner. On average, washing according to the standard protocol removes about 90% of the non-specific background and about 30-50% and less than 10% of the specific targets from the MM and PM, respectively. Analysis of the washing kinetics shows that the signal-to-noise ratio doubles roughly every ten stringent washing cycles. Washing can be characterized by time-dependent rate constants which reflect the heterogeneous character of target binding to microarray probes. We propose an empirical washing function which estimates the survival of probe bound targets. It depends on the intensity contribution due to specific and non-specific hybridization per probe which can be estimated for each probe using existing methods. The washing function allows probe intensities to be calibrated for the effect of washing. On a relative scale, proper calibration for washing markedly increases expression measures, especially in the limit of small and large values. Conclusions Washing is among the factors which potentially distort expression measures. The proposed first-order correction method allows direct implementation in existing calibration algorithms for microarray data. We provide an experimental

  5. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence.

    Science.gov (United States)

    Sánchez-Peña, Nazly E; Narváez-Semanate, José L; Pabón-Patiño, Daniela; Fernández-Mera, Javier E; Oliveira, Marcos L S; da Boit, Kátia; Tutikian, Bernardo F; Crissien, Tito J; Pinto, Diana C; Serrano, Iván D; Ayala, Claudia I; Duarte, Ana L; Ruiz, José D; Silva, Luis F O

    2018-01-01

    The present study is focused on the chemical and nano-mineralogical characterization of sludge from gold mine activities, in order to put forward diverse solution alternatives, where lack of knowledge has been found. The sample was collected from "La Estrella" mine of Suarez, located in Department of Cauca, south-west Colombia. The sludge micro-structure and chemical composition were analyzed using a high resolution transmission electron microscopy (HR-TEM) equipped with a dispersive X-ray detector (EDS). X-ray diffraction technique was employed to identify the mineralogical phases present in the sludge. Additional mineralogical characterization was done by using RAMAN spectroscopy. Main findings points to its potential to be used as a fertilizer, this is why, mine sludge contains macronutrients such as P, Ca and S, together with micronutrients like Cu. However, the presence of goethite could decrease the mobilization of nutrients to soils, thus additional alternatives, for instance, a mixture with humus or another material containing Humic Acids should be done, in order to minimizing its retention effect. Additionally, another possible uses to explore could be as construction and ceramic material or in the wastewater treatment for nutrient retention and organic material removal. Rutile (TiO 2 nanoparticles) particles have been also detected, what could cause health concern due to its nanoparticle toxic character, mainly during gold extraction process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Probabilistics since WASH-1400

    International Nuclear Information System (INIS)

    Whitehead, N.E.

    1980-01-01

    Literature since the issuing of WASH-1400 reactor safety study shows that although the methodology has been attacked, it stands criticism well. Contrary to the aim of the study, which was to give a realistic, rather than a conservative risk estimate, there are many conservatisms in it. The strongly attacked treatment of common mode failure involving the square bounding model is shown here to be very likely to give correct results - and the applications of it in WASH-1400 do not often give results different from using the mean instead of the median. The Three-Mile Island accident is not such as to change the conclusions of WASH-1400 regarding core melt probabilities

  7. Soil washing technology evaluation

    International Nuclear Information System (INIS)

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis

  8. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  9. Wash Your Hands

    Centers for Disease Control (CDC) Podcasts

    2010-03-08

    This video shows kids how to properly wash their hands, one of the most important steps we can take to avoid getting sick and spreading germs to others.  Created: 3/8/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 3/8/2010.

  10. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  11. Hydrogen Evolution and Sludge Suspension During the Preparation of the First Batch of Sludge at the Savannah River Site

    International Nuclear Information System (INIS)

    Hay, M.S.; Lee, E.D.

    1995-01-01

    The first batch of High Level Radioactive Sludge for the Defense Waste Processing Facility is being prepared in two 4.9 million liter waste tanks. The preparation involves removing water soluble salts by washing (water addition, sludge suspension, settling and decantation). Sludge suspension is accomplished using long shafted slurry pumps that are mounted on rotating turntables. During the sludge suspension runs in 1993 and 1994, the slurry pumps' cleaning radius was determined to be less than that expected from previous determinations using synthetic sludge in a full size waste tank mockup. Hydrogen concentrations in the tanks' vapor space were monitored during the sludge suspension activities. As expected, the initial agitation of the sludge increased the hydrogen concentration, however, with the controls in place the hydrogen concentration was maintained below seven percent of the lower flammability limit

  12. Anaerobic digestion of industrial activated aerobic sludge

    International Nuclear Information System (INIS)

    Goodloe, J.G.; Roberts, R.S.

    1990-04-01

    The Tennessee Eastman Company manufactures a variety of organic chemicals, plastics and fibers at their Kingsport Tennessee Facility. The wastewater generated during the manufacture of these compounds is currently treated using an activated sludge process. The objective of the project is to evaluate the economic potential of an anaerobic digestion process to convert industrial sludge at the Tennessee Eastman Company into biogas. The evaluation will require collection and analysis of experimental data on the anaerobic digestion of industrial sludge obtained from Kingsport. Although the experiments will be conducted using Tennessee Eastman sludge, these results should be also generally applicable to similar industrial sludge

  13. Experimental evaluation of the oxygen transfer in bubble aeration systems. Full scale experiences in lengthened activated sludge reactors

    International Nuclear Information System (INIS)

    Andreottola, G.; Ragazzi, M.; Tatano, F.

    1999-01-01

    The results of some full-scale oxygen transfer measurements conduced at the lengthened activate sludge tanks of two WWTPs of Trentino Region, are presented and discussed. As far at the tests in clean water are concerned, the non-liner regression method seems non accurate; important conclusion on the correlation between oxygen transfer process and typical parameters (i.e., fine-bubble diffusers, specific air flux) are derived. As far as the test in the wastewater is concerned, an increase of α-value from the inlet to the end of aeration tanks has been observed in the 'Andalo' WWTP [it

  14. Electrodialytic removal of cadmium from wastewater sludge

    DEFF Research Database (Denmark)

    Jakobsen, M. R.; Fritt-Rasmussen, Janne; Nielsen, S.

    2004-01-01

    This paper presents for the first time laboratory results demonstrating electrodialytic removal of Cd from wastewater sludge, which is a method originally developed for soil remediation. During the remediation a stirred suspension of wastewater sludge was exposed to an electric dc field. The liquid....../solid (ml/g fresh sludge) ratio was between 1.4 and 2. Three experiments were performed where the sludge was suspended in distilled water, citric acid or HNO"3. The experimental conditions were otherwise identical. The Cd removal in the three experiments was 69, 70 and 67%, respectively, thus the removal...... was approximately the same. Chemical extraction experiments with acidic solutions showed that 5-10 times more Cd could be extracted from decomposed sludge than from fresh sludge. It is likely that the mobilization of Cd during decomposition of the sludge contributes to the efficient removal of Cd...

  15. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this.......Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling......, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have...

  16. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    OpenAIRE

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment pl...

  17. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  18. Hydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations

    Directory of Open Access Journals (Sweden)

    Aïda Ben Hassen Trabelsi

    2017-01-01

    Full Text Available Solar dried sewage sludge (SS conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%. SS characterization reveals that these biosolids could be appropriate materials for gaseous products production. The released gases from SS pyrolysis and gasification present relatively high heating values (up to 9.96 MJ/kg for pyrolysis and 8.02  9.96 MJ/kg for gasification due to their high contents of H2 (up to 11 and 7 wt%, resp. and CH4 (up to 17 and 5 wt%, resp.. The yields of combustible gases (H2 and CH4 show further increase with pyrolysis. Stoichiometric models of both pyrolysis and gasification reactions were determined based on the global biomass formula, CαHβOγNδSε, in order to assist in the products yields optimization.

  19. Catalytic supercritical water gasification of primary paper sludge using a homogeneous and heterogeneous catalyst: Experimental vs thermodynamic equilibrium results.

    Science.gov (United States)

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-02-01

    H2, CH4, CO and CO2 yields were measured during supercritical water gasification (SCWG) of primary paper waste sludge (PWS) at 450°C. Comparing these yields with calculated thermodynamic equilibrium values offer an improved understanding of conditions required to produce near-equilibrium yields. Experiments were conducted at different catalyst loads (0-1g/gPWS) and different reaction times (15-120min) in a batch reactor, using either K2CO3 or Ni/Al2O3-SiO2 as catalyst. K2CO3 up to 1g/gPWS increased the H2 yield significantly to 7.5mol/kgPWS. However, these yields and composition were far from equilibrium values, with carbon efficiency (CE) and energy recovery (ER) of only 29% and 20%, respectively. Addition of 0.5-1g/gPWS Ni/Al2O3-SiO2 resulted in high H2 and CH4 yields (6.8 and 14.8mol/kgPWS), CE of 84-90%, ER of 83% and a gas composition relatively close to the equilibrium values (at hold times of 60-120min). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. K East basin sludge volume estimates for integrated water treatment system

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin

  1. Electrodialytic versus acid extraction of heavy metals from soil washing residue

    DEFF Research Database (Denmark)

    Jensen, Pernille E.; Ottosen, Lisbeth M.; Allard, Bert

    2012-01-01

    The feasibility of electrodialytic remediation (EDR) for treatment of suspended sludge after soil washing is in focus in the present paper. Five industrially contaminated soils were treated in laboratory scale remediation experiments, and the toxic elements of the investigation were: As, Cd, Cu, ...

  2. New biological deodrization device using dried activated sludge. Kanso odei wo mochiita shinki seibutsu dasshu sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, S.; Nagayasu, K.; Suwa, T.; Hayashitani, M.; Ito, H.; Habata, K.; Kitakaze, T. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1993-10-20

    The new biological deodorization device was developed using dried activated sludge as deodorant. Activated sludge obtained from a waste water treatment plant was dried at room temperature to protect from extinction of microorganisms in it before its charge into the device, and washed by water only as required. Offensive odor substances were oxidation-decomposed by microorganism after their adsorption into sludge surfaces, while microorganisms survived for a long time while getting such substances as nutritive sources. As basic deodorization characteristics were studied with the experimental device and artificial odor gases, more than 99% of 200 and 2,000 ppm H2S were removed at space velocities of 400/h and 33/h, respectively, together with nine typical offensive odor substances. As the result of demonstration tests with the small test device installed in a public waste water treatment plant, a high deodorizing efficiency was retained for 10 months or more, and its running cost was as low as 75% of that of current systems because of only one necessary washing every month. 3 refs., 14 figs., 12 tabs.

  3. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  4. Sludge busters

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Max

    2010-07-15

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  5. Hand Washing: Do's and Dont's

    Science.gov (United States)

    ... hands frequently can help limit the transfer of bacteria, viruses and other microbes. Always wash your hands before: Preparing food or eating Treating wounds or caring for a sick person Inserting or removing contact lenses Always wash your hands after: Preparing food Using ...

  6. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant...

  7. Mixing Envelope D Sludge with LAW Intermediate Products with and without Glass Formers

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.K.

    2001-09-21

    The Department of Energy (DOE) Office of River Protection is in the process of designing a waste treatment system to process the Hanford Reservation High Level Waste (HLW). Envelope D sludge slurries will be blended with the concentrated Cs/Ts eluates, and the Sr/TRU intermediates separated from Envelope A, B, and C feeds. This study produced two washed simulated sludges (representing tanks 241-AZ-101 and 241-AZ-102 sludge), a Sr/TRU washed precipitate produced from tank 241-AN-107 simulant, and a concentrated blended eluate simulant based upon eluates from processing 241-AZ-102 supernate.

  8. Experimental and CFD Simulation Studies of Wall Shear Stress for Different Impeller Configurations and MBR Activated Sludge

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Chan, C.C.V.; Bentzen, Thomas Ruby

    2012-01-01

    in an MBR. Nevertheless, proper experimental validation is required to validate CFD simulation. In this work experimental measurements of shear stress induced by impellers at a membrane surface were made with an electrochemical approach and the results were used to validate CFD simulations. As good results...... appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be improved by understanding the shear stress over the membrane surface. Modern tools such as Computational Fluid Dynamics (CFD) can be used to diagnose and understand the shear stress...

  9. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    Sludge recovery machine comprising a hollow centrifuge, a vertical pipe for feeding in a liquid containing sludge and a sliding rake pressing against the internal wall of the centrifuge to dislodge and move the sludge, a power drive for spinning the centrifuge at high speed and a rotating drying table to take the sludge and dry it [fr

  10. Apparatus for washing out halogens

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Hahn, J; Kroenig, W

    1941-03-26

    An apparatus is described for washing out of halogens and the like or liquid halogen compounds from the products, which are formed on pressure hydrogenation or splitting of carbon-containing material in the presence of halogens or halogen compounds, consisting of a washing apparatus installed between the reaction vessel and the hot separator, which is inclined in relatively small space for steam regulation and contains, with the steam, arranged baffles, especially spirals.

  11. Pentachlorophenol (PCP) sludge recycling unit

    International Nuclear Information System (INIS)

    1994-08-01

    The Guelph Utility Pole Company treats utility poles by immersion in pentachlorophenol (PCP) or by pressure treatment with chromated copper arsenate (CCA). The PCP treatment process involves a number of steps, each producing a certain amount of sludge and other wastes. In a plant upgrading program to improve processing and treatment of poles and to reduce and recycle waste, a PCP recovery unit was developed, first as an experimental pilot-scale unit and then as a full-scale unit. The PCP recovery unit is modular in design and can be modified to suit different requirements. In a recycling operation, the sludge is pumped through a preheat system (preheated by waste heat) and suspended solids are removed by a strainer. The sludge is then heated in a tank and at a predetermined temperature it begins to separate into its component parts: oil, steam, and solids. The steam condenses to water containing low amounts of light oil, and this water is pumped through an oil/water separator. The recovered oil is reused in the wood treatment process and the water is used in the CCA plant. The oil remaining in the tank is reused in PCP treatment and the solid waste, which includes small stones and wood particles, is removed and stored. By the third quarter of operation, the recovery unit was operating as designed, processing ca 10,000 gal of sludge. This sludge yielded 6,500 gal of water, 3,500 gal of oil, and ca 30 gal of solids. Introduction of the PCP sludge recycling system has eliminated long-term storage of PCP sludge and minimized costs of hazardous waste disposal. 4 figs

  12. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  13. Design and optimisation of purification procedure for biodiesel washing

    Directory of Open Access Journals (Sweden)

    S.B. Glišić

    2009-09-01

    Full Text Available Almost complete methanolysis of triglycerides is usually not enough to fulfil the strict standards of biodiesel quality. A key step in this process is neutralization of alkali (catalyst followed by the washing procedure necessary for removing different impurities such as traces of catalyst and methanol and removal of soaps and glycerol from esters phase. The washing with hot water is still widely used in many industrial units for the biodiesel production. In this study, different procedures of biodiesel washing using hot water were investigated. The orto-phosphoric acid was suggested as the best compound for alkali catalyst (sodium hydroxide neutralization. The main goal of the performed analysis was to minimize the water usage in the washing-neutralization step during the biodiesel production. Such solution would make the process of biodiesel synthesis more economical taking into account the decrease of energy consumed for evaporation of water during the final product purification, as well as more acceptable procedure related to the impact on environment (minimal waste water release. Results of the performed simulation of the washing process supported by original experimental data suggested that neutralization after the optimized washing process of the methyl ester layer could be the best solution. The proposed washing procedure significantly decreases the amount of waste water giving at the same time the desired purity of final products (biodiesel and glycerol. The simulation of the process was performed using ASPEN plus software supported by ELCANTREL and UNIQUAC procedure of required properties calculation

  14. Design of full scale debris washing system

    International Nuclear Information System (INIS)

    Taylor, M.L.; Dosani, M.A.; Wentz, J.A.; Patkar, A.N.; Barkley, N.P.

    1992-01-01

    Since 1987, IT Environmental Programs Inc. (ITEP, a subsidiary of International Technology Corporation) in conjunction with EPA/RREL in Cincinnati, Ohio, have been developing and conducting bench scale and pilot scale testing of a transportable debris washing system which can be used on-site for the decontamination of debris. During the initial phase of the debris decontamination project, a series of bench scale tests were performed in the laboratory to assess the ability of the system to remove contaminants from debris and to facilitate selection of the most efficient surfactant solution. Five nonionic, non-toxic, low foaming, surfactant solution (BG-5, MC-2000, LF-330, BB-100, and L-433) were selected for an experimental evaluation to determine their capacity to solubilize and remove contaminants from the surfaces of corroded steel places. The pieces of corroded steel were coated with a heavy grease mixture prepared in the laboratory and these pieces of debris were placed in a bench scale spray tank on a metal tray and subjected in a high-pressure spray for each surfactant solution for 15 minutes. At the end of the spray cycle, The tray was transferred to a second bench scale system, a high-turbulence wash tank, where the debris was washed for 30 minutes with the same surfactant solution as the used in the spray tank. After the was cycle was completed, the tray was removed from the wash tank and the debris was allowed to air-dry. Before and after treatment, surface-wipe samples were obtained from each of the six pieces of debris and were analyzed for oil and graese. Based on the results, BG-5 was selected as the solution best suited for cleaning grease-laden, metallic debris. 2 refs

  15. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability

    International Nuclear Information System (INIS)

    Li Huan; Jin Yiying; Mahar, Rasool Bux; Wang Zhiyu; Nie Yongfeng

    2009-01-01

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl 3 . It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration

  16. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability.

    Science.gov (United States)

    Huan, Li; Yiying, Jin; Mahar, Rasool Bux; Zhiyu, Wang; Yongfeng, Nie

    2009-01-30

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl(3). It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration.

  17. Technology for improving sludge concentration; Odei noshukusei kaizen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-10

    Sludge generating in a sewage treatment plant is disposed through the processes such as concentration, dehydration, and incineration in sludge disposal facilities. In recent years, there has been a trend that this sludge increases in volume as well as worsens in the concentration. A case is predictable where the sludge load to the dehydrating process is so large that the sludge can no longer be processed in sufficient quantity. In the meantime, if sludge is ozone-treated, viscous substance on the surface of sludge particles can be separated with a comparatively small amount of ozone, with sludge concentration enhanced. At Meidensha, an experimental plant was set up for the ozone treatment of sludge in a sludge intensive treatment plant of a metropolis, with a verification experiment carried out for a sludge concentration improving system by ozone. As a result of comparison of the treatment performance between an assessment system for performing ozone treatment and a reference system for not performing, the average value of the sludge concentration of a gravity concentration tank was 1.9% of the reference system against 1.7% of the assessment system in a continuous treatment experiment in the summer, while the solid collection ratio was 65.8% of the reference system against 95.5% of the assessment system, enabling a superior improving effect to be obtained. (NEDO)

  18. Characterization of the tank 51 alternate reductant sludge batch 9 slurry sample (HTF-51-15-130)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    Tank 51 slurry sample HTF-51-15-130 was collected following sludge washing at the Tank Farm. The sample was received at SRNL and then characterized in preparation for qualification of the alternate reductant Sludge Batch 9 (SB9) flowsheet. In this characterization, densities, solids distribution, elemental constituents, anionic constituents, carbon content, and select radioisotopes were quantified.

  19. 27 CFR 19.328 - Wash water.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wash water. 19.328 Section... THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production Chemical By-Products § 19.328 Wash water. Water used in washing chemicals to remove spirits therefrom may be run into a wash tank or a distilling...

  20. Process for washing electromagnetic filters

    International Nuclear Information System (INIS)

    Guittet, Maurice; Treille, Pierre.

    1980-01-01

    This process concerns the washing of an electro-magnetic filter used, inter alia, for filtering the drain-off waters of nuclear power station steam generators, by means of a washing water used in closed circuit and freed, after each cleaning, of the solids in suspension it contains, by settlement of these solids. This invention enables the volume of water to be evaporated to be divided by 50, thereby providing a solid assurance of better safety, apart from a very significant saving [fr

  1. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2015-01-01

    Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • Combined alkali-irradiation treatment achieved the highest solubilization of sludge. - Abstract: The biohydrogen production using the disintegrated and dissolved sludge by gamma irradiation was studied. The experimental results showed that gamma irradiation and irradiation combined with alkali pretreatment could disintegrate and dissolve waste activated sludge for biohydrogen production. The alkali-irradiation treatment of the sludge at pH = 12 and 20 kGy achieved the highest disintegration and dissolution, i.e., it could destroy the cell walls and release organic matters (such as soluble COD, polysaccharides and protein) into the solution. The disintegrated sludge could be used as a low-cost substrate for biohydrogen production

  2. Gravity Drainage of Activated Sludge on Reed Beds

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Dominiak, Dominik Marek; Keiding, Kristian

    and operation of reed beds and the efficiencies are often lower than predicted. One reason is that the sludge quality varies from plant to plant and even within plants from time to time. No good method exists for measuring the sludge quality with respect to drainage characteristics. A new experimental method...... has therefore been developed to measure relevant quality parameters: specific cake resistance, settling velocity and cake compressibility. It has been found that activated sludge form highly compressible cake even at the low compressive pressures obtained during drainage. Numerical simulation shows......Activated sludge is a by-product from waste water treatment plants, and the water content in the sludge is high (> 90%). Among several methods to remove the water, sludge drying reed beds are often used to dewater the sludge by drainage. There is, however, no well-defined criterion for design...

  3. Abdominopelvic washings: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Erika F Rodriguez

    2013-01-01

    Full Text Available Intraperitoneal spread may occur with gynecological epithelial neoplasms, as well as with non-gynecological malignancies, which may result in serosal involvement with or without concomitant effusion. Therefore, washings in patients with abdominopelvic tumors represent important specimens for cytologic examination. They are primarily utilized for staging ovarian cancers, although their role has decreased in staging of endometrial and cervical carcinoma. Abdominopelvic washings can be positive in a variety of pathologic conditions, including benign conditions, borderline neoplastic tumors, locally invasive tumors, or distant metastases. In a subset of cases, washings can be diagnostically challenging due to the presence of co-existing benign cells (e.g., mesothelial hyperplasia, endosalpingiosis, or endometriosis, lesions in which there is only minimal atypia (e.g., serous borderline tumors or scant atypical cells, and the rarity of specific tumor types (e.g., mesothelioma. Ancillary studies including immunocytochemistry and fluorescence in situ hybridization may be required in difficult cases to resolve the diagnosis. This article provides a comprehensive and contemporary review of abdominopelvic washings in the evaluation of gynecologic and non-gynecologic tumors, including primary peritoneal and mesothelial entities.

  4. WASH-1400: quantifying the uncertainties

    International Nuclear Information System (INIS)

    Erdmann, R.C.; Leverenz, F.L. Jr.; Lellouche, G.S.

    1981-01-01

    The purpose of this paper is to focus on the limitations of the WASH-1400 analysis in estimating the risk from light water reactors (LWRs). This assessment attempts to modify the quantification of the uncertainty in and estimate of risk as presented by the RSS (reactor safety study). 8 refs

  5. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  6. Design characteristics of the Sludge Mobilization System

    International Nuclear Information System (INIS)

    McMahon, C.L.

    1990-01-01

    Radioactive waste stored in underground tanks at the West Valley Demonstration Project is being processed into low-level waste and solidified in cement. High-level waste also stored underground will be vitrified and solidified into canistered glass logs. To move the waste from where it resides at the Waste Tank Farm to the Vitrification Facility requires equipment to prepare the storage tanks for low-level and high-level waste processing, equipment to mobilize and mix the radioactive sludge into a homogeneous slurry, and equipment to transfer the slurry for vitrification. The design of the Sludge Mobilization System has incorporated the necessary components to effect the preparation and transfer of waste in five operational phases. The first phase of the Sludge Mobilization System, which began in 1987, prepared the waste tanks to process radioactive liquid for delivery to the Cement Solidification System and to support the mobilization equipment. The second phase, beginning in 1991, will wash the sludge that remains after the liquid supernatant is decanted to prepare it for mobilization operations. The third phase will combine the contents of various waste tanks into one tank. The fourth phase will resuspend and mix the contents of the high-level waste tank. The fifth and final phase of the Sludge Mobilization System will entail transferring the waste mixture to the Vitrification Facility for processing into glass logs. Provisions for recycling the waste streams or slurries within the tank farm or for returning process streams to the Waste Tank Farm from the Vitrification Facility are also included in the final phase. This document addresses the Sludge Mobilization System equipment design characteristics in terms of its use in each of the five operational phases listed above

  7. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Leshikar, G.A.

    2011-01-01

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

  8. Soil washing for brine removal

    International Nuclear Information System (INIS)

    Ayyachamy, J.S.; Atalay, A.; Zaman, M.

    1992-01-01

    During the exploration for oil and thereafter, brine transfer lines get ruptured releasing the brine which contaminates the surrounding soil. The salinity level in brine is very high, sometimes approaching or exceeding that of sea water. Soils contaminated with brine are unproductive and unsuitable for plant growth. Several investigators have documented the pollution of surface water and groundwater due to brine disposal from oil and needed to clean up such sites. The objective of this study is to develop a soil washing technique that can be used to remove brine sites were collected and used in the study. This paper reports on results which indicate that soil washing using various surface active agents is effective in removing the brine

  9. Fixation of Hanford sludge by conversion to glass

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.

    1977-03-01

    Redox and Purex process sludges stored at Hanford can be converted to durable borosilicate glasses by melting at 1100--1400 0 C charges containing 30 to 40 weight percent washed, dried sludge, 45 to 60 weight percent SiO 2 , 5 to 15 weight percent B 2 O 3 , 0 to 10 weight percent Na 2 O, 0 to 5 weight percent Li 2 O, and 0 to 5 weight percent TiO 2 . Leach rates in deionized water (25 0 C) for the glasses range from about 10 -7 to 10 -5 g/cm 2 -day

  10. Environmental diagnosis of the washing machine motor

    DEFF Research Database (Denmark)

    Erichsen, Hanne K. Linnet

    1997-01-01

    An environmental diagnosis of the washing machine focusing on the motor is performed. The goal of the diagnosis is to designate environmental focus points in the product. The LCA of the washing machine showed impact potentials from the life cycle of the product (see: LCA of a washing machine). Th...... up 2%, Manually disassembling and recycling of metals, Reuse of motor in a new washing machine, aluminium wire instead of copper wire in the motor....

  11. Rheological characterisation of municipal sludge: a review.

    Science.gov (United States)

    Eshtiaghi, Nicky; Markis, Flora; Yap, Shao Dong; Baudez, Jean-Christophe; Slatter, Paul

    2013-10-01

    Sustainable sludge management is becoming a major issue for wastewater treatment plants due to increasing urban populations and tightening environmental regulations for conventional sludge disposal methods. To address this problem, a good understanding of sludge behaviour is vital to improve and optimize the current state of wastewater treatment operations. This paper provides a review of the recent experimental works in order for researchers to be able to develop a reliable characterization technique for measuring the important properties of sludge such as viscosity, yield stress, thixotropy, and viscoelasticity and to better understand the impact of solids concentrations, temperature, and water content on these properties. In this context, choosing the appropriate rheological model and rheometer is also important. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Synthetic fibers as an indicator of land application of sludge

    International Nuclear Information System (INIS)

    Zubris, Kimberly Ann V.; Richards, Brian K.

    2005-01-01

    Synthetic fabric fibers have been proposed as indicators of past spreading of wastewater sludge. Synthetic fiber detectability was examined in sludges (dewatered, pelletized, composted, alkaline-stabilized) and in soils from experimental columns and field sites applied with those sludge products. Fibers (isolated by water extraction and examined using polarized light microscopy) were detectable in sludge products and in soil columns over 5 years after application, retaining characteristics observed in the applied sludge. Concentrations mirrored (within a factor of 2) predictions based on soil dilution. Fibers were detectable in field site soils up to 15 years after application, again retaining the characteristics seen in sludge products. Concentrations correlated with residual sludge metal concentration gradients in a well-characterized field site. Fibers found along preferential flow paths and/or in horizons largely below the mixed layer suggest some potential for translocation. Synthetic fibers were shown to be rapid and semi-quantitative indicators of past sludge application. - Synthetic fabric fibers present in wastewater sludge are a semi-quantitative long-term indicator of past sludge application in soils

  13. Rheology of Savannah River site tank 42 and tank 51 HLW radioactive sludges

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1996-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. The high activity radioactive wastes stored as caustic slurries at SRS result from the neutralization of acid waste generated from production of nuclear defense materials. During storage, the wastes separate into a supernate layer and a sludge layer. In the Defense Waste Processing Facility (DWPF) at SRS, the radionuclides from the sludge and supernate will be immobilized into borosilicate glass for long term storage and eventual disposal. Before transferring the waste from a storage tank to the DWPF, a portion of the aluminum in the waste sludge will be dissolved and the sludge will be extensively washed to remove sodium. Tank 51 and Tank 42 radioactive sludges represent the first batch of HLW sludge to be processed in the DWPF. This paper presents results of rheology measurements of Tank 51 and Tank 42 at various solids concentrations. The rheologies of Tank 51 and Tank 42 radioactive slurries were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco RV-12 with an M150 measuring drive unit and TI sensor system. Rheological properties of the Tank 51 and Tank 42 radioactive sludges were measured as a function of weight percent solids. The weight percent solids of Tank 42 sludge was 27, as received. Tank 51 sludge had already been washed. The weight percent solids were adjusted by dilution with water or by concentration through drying. At 12, 15, and 18 weight percent solids, the yield stresses of Tank 51 sludge were 5, 11, and 14 dynes/cm2, respectively. The apparent viscosities were 6, 10, and 12 centipoises at 300 sec-1 shear rate, respectively

  14. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    The effect of ultrasonic specific energy on waste activated sludge (WAS) solubilization and enzyme activity was investigated in this study. Experimental results showed that the increase of ultrasonic specific energy in the range of 0 - 90000 kJ/kg dried sludge (DS) benefited WAS particle size reduction and the solubilization ...

  15. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  16. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  17. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    International Nuclear Information System (INIS)

    Sivasankari, R; Kumaran, P; Normanbhay, Saifuddin; Shamsuddin, Abd Halim

    2013-01-01

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  18. Characteristics and settling behaviour of particles from blast furnace flue gas washing.

    Science.gov (United States)

    Kiventerä, Jenni; Leiviskä, Tiina; Keski-Ruismäki, Kirsi; Tanskanen, Juha

    2016-05-01

    A lot of particles from iron-making are removed with blast furnace off-gas and routed to the gas cleaning system. As water is used for cleaning the gas, the produced wash water contains a large amount of particles such as valuable Fe and C. However, the presence of zinc prevents recycling. In addition, the high amount of calcium results in uncontrolled scaling. Therefore, the properties of the wash water from scrubber and sludge, from the Finnish metal industry (SSAB Raahe), were evaluated in this study. Size fractionation of wash water revealed that Fe, Zn, Al, Mn, V, Cr and Cd appeared mainly in the larger fractions (>1.2 μm) and Na, Mg, Si, Ni, K, Cu and As appeared mainly in the smaller fractions (<1.2 μm) or in dissolved form. Calcium was found both in the larger fractions and dissolved (∼60 mg/L). Most of the particles in wash water were included in the 1.2-10 μm particle size and were settled effectively. However, a clear benefit was observed when using a chemical to enhance particle settling. In comparison to 2.5 h of settling without chemical, the turbidity was further decreased by about 94%, iron 85% and zinc 50%. Coagulation-flocculation experiments indicated that both low and high molecular weight cationic polymers could provide excellent purification results in terms of turbidity. Calcium should be removed by other methods. The particles in sludge were mostly in the 2-4 μm or 10-20 μm fractions. Further sludge settling resulted in high solids removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sillica Gel-Amine from Geothermal Sludge

    Science.gov (United States)

    Muljani, S.; Pujiastuti, C.; Wicaksono, P.; Lutfianingrum, R.

    2018-01-01

    Silica Gel-Amine (SGA) has been made from geothermal sludge by grafting amine method. Sodium silicate solution is prepared by extracted geothermal sludge powder using sodium hidroxide solution then acidification in the range of pH 5 - 9 by using tartaric acid 1N. The grafting process uses 1 ml of ammonia solution and 10 ml of toluene at a rate of 0.1 ml min-1 accompanied by a reflux process. The amine grafting is done in two methods. The first method is grafting amine in silicate solution and the second method is grafting amine in washed gel. Product SGA was confirmed by FTIR, TGA-DTG and BET characterization. The results show that the pH affects the amount of amine that is grafted onto silica gel. Differences in grafting method affect the size of the pore and surface area. SGA product prepared by grafting washed gel at pH 8 have pore diameter of 12.06 nm, surface area of 173.44 m2g-1, and mass of decomposed amine compound 0.4 mg. In the presence of amine groups on the silica gel surface, these adsorbents may be able to selectively adsorb CO2 gas from natural gas.

  20. Removal of siloxanes in sewage sludge by thermal treatment with gas stripping

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Omori, Keigo; Takaoka, Masaki; Mizuno, Tadao

    2014-01-01

    Highlights: • A new treatment of sewage sludge were studied to reduce siloxanes in biogas. • D5 of cyclic siloxane concentrations were the highest in sewage sludge. • Under optimal conditions, most of siloxanes in the sludge were removed previously. • By this treatment, CH 4 was 1.6-fold larger and siloxane in biogas 95% lower. - Abstract: In this study, thermal treatment with gas stripping of sewage sludge before anaerobic digestion to reduce siloxanes in the sludge and accelerate the anaerobic digestion was studied experimentally. Regarding siloxanes in the sludge, D5 concentrations were the highest. Siloxane concentrations in the digested sludge were decreased, versus those in thickened sludge, because siloxanes in the sludge are moved to the biogas during the anaerobic digestion. Thermal treatment and gas stripping experiments were conducted. The optimum conditions for siloxane removal from sludge were found to be thermal treatment with gas stripping at 80 °C with 0.5 L/min of air flow for 48 h. Under these conditions, approximately 90% of all siloxanes in the sludge were removed. Next, anaerobic digestion experiments were conducted with the optimally treated sludge and untreated sludge. The biogas volume of the optimally treated sludge was 1.6-fold larger than that of the untreated sludge. Furthermore, D5 contents in biogas from the optimally treated sludge were 95% lower than in biogas from untreated sludge. Thus, thermal treatment with gas stripping of sludge before anaerobic digestion was effective in increasing biogas amounts, decreasing siloxane concentrations in the biogas, and reducing the need for a siloxane removal process from the biogas

  1. Rapid thermal conditioning of sewage sludge

    Science.gov (United States)

    Zheng, Jianhong

    shows the fundamental importance of rapid processing. Rapid thermal conditioning may be incorporated into a wastewater treatment plant where biological treatment is used. For purposes of a concrete example, flow-sheets for the incorporation of the RTC process into the New York City Wards Island WPCP were prepared, and experimental data from the laboratory scale RTC test facility were used to set design parameters. A design incorporating nitrogen removal into the RTC flow sheet was also examined. ASPEN software was used to design the proposed processes and perform economic analyses. Cost estimates for these alternatives show a substantial advantage to implement RTC in comparison to present plant operation. About one third of the current sludge processing cost can be saved by incorporation of RTC into the Wards Island Plant. With nitrogen removal, the economics are even more attractive.

  2. Full scale experimental assessment of reliability of steady state design criteria of activated sludge process with biological nitrogen removal and chemical phosphorus removal; Verifica sperimentale a scala reale di criteri di dimensionamento dei sistemi a fanghi attivi per la rimozione dei nutrienti

    Energy Technology Data Exchange (ETDEWEB)

    Tatano, F. [Politecnico di Milano, Milan (Italy). Dip. di Ingegneria Idraulica, Ambientale e del Rilevamento, Sez. Ambientale

    1996-06-01

    The biological phase of a wastewater treatment plant situated in the Ruhr River Region (Germany), has been monitored for about one year. The collected experimental data have been elaborated in this paper with the objective of an assessment of the reliability of some recent steady-state design criteria of the activated sludge process with biological nitrogen removal and chemical phosphorus removal.

  3. Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.

    Science.gov (United States)

    Gowda, C; Seth, R; Biswas, N

    2008-01-01

    The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.

  4. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  5. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  6. Detecting wash trade in the financial market

    OpenAIRE

    Cao, Yi; Li, Yuhua; Coleman, Sonya; Belatreche, Ammar; McGinnity, T. M.

    2014-01-01

    Wash trade refers to the activities of traders who utilise deliberately designed collusive transactions to increase the trading volumes for creating active market impression. Wash trade can be damaging to the proper functioning and integrity of capital markets. Existing work focuses on collusive clique detections based on certain assumptions of trading behaviours. Effective approaches for analysing and detecting wash trade in a real-life market have yet to be developed. T...

  7. 21 CFR 1250.87 - Wash water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...

  8. Study Effect of Salt Washing Process on Content and Iodium Stability of Salt

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Effect of Salt Washing Process on Content and Iodium Stability of Salt. Salt washing process should increase the saltquality. It should clean the salt from sludge or clay and also reduce the impurity compound such as Mg, Ca and the reductor content. The objective of these reseach is to assess the effect of washing process on the content og hygroscopic impurities compound (Ca and Mg, and reductor content of salt. The research also investigate the water absorbing, pH, KIO3 content as function of time to obtain effect of washing process on KIO3 stability in salt. The experiment result shows that the lowest content of Mg and reductor compound 0.016 % wt and 2.65 ppm respectively which is reached at the fi ne salt washing process using 27 % wt brine. The analysis of water content indicates an increase the Ca and Mg content, causing an water absorbtion in salt , However the effect on pH the is not clear.

  9. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  10. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage of org...

  11. Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108

    International Nuclear Information System (INIS)

    Rapko, Brian M.; Vienna, John D.

    2002-01-01

    This study evaluated the oxidants permanganate, MnO4-, and peroxynitrite, ONOO-, as selective chromium-leaching agents from washed 241-U-108 tank sludge under varying conditions of hydroxide concentration, temperature, and time. The mass changes and final sludge compositions were evaluated using glass-property models to ascertain the relative impacts of the various oxidative alkaline leach conditions on the amount of borosilicate glass required to immobilize a given amount of washed 241-U-108 Hanford tank sludge. Only permanganate leaching removes sufficient chromium to make the chromium concentration in the oxidatively alkaline leached solids non-limiting. In the absence of added oxidants, continued washing or caustic leaching have no beneficial effects. Peroxynitrite addition reduces the amount of glass required to immobilize a given amount of washed 241-U-108 tank sludge by approximately a factor of two. Depending on the leach conditions and the exact chromium concentration limits, contact with alkaline permanganate solutions reduces the amount of immobilized high-level waste glass by a factor of 10 to 30

  12. Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Vienna, John D.

    2002-09-09

    This study evaluated the oxidants permanganate, MnO4-, and peroxynitrite, ONOO-, as selective chromium-leaching agents from washed 241-U-108 tank sludge under varying conditions of hydroxide concentration, temperature, and time. The mass changes and final sludge compositions were evaluated using glass-property models to ascertain the relative impacts of the various oxidative alkaline leach conditions on the amount of borosilicate glass required to immobilize a given amount of washed 241-U-108 Hanford tank sludge. Only permanganate leaching removes sufficient chromium to make the chromium concentration in the oxidatively alkaline leached solids non-limiting. In the absence of added oxidants, continued washing or caustic leaching have no beneficial effects. Peroxynitrite addition reduces the amount of glass required to immobilize a given amount of washed 241-U-108 tank sludge by approximately a factor of two. Depending on the leach conditions and the exact chromium concentration limits, contact with alkaline permanganate solutions reduces the amount of immobilized high-level waste glass by a factor of 10 to 30.

  13. Soil washing and post-wash biological treatment of petroleum hydrocarbon contaminated soils

    OpenAIRE

    Bhandari, Alok

    1992-01-01

    A laboratory scale study was conducted to investigate the treatability of petroleum contaminated soils by soil washing and subsequent biological treatment of the different soil fractions. In addition to soils obtained from contaminated sites, studies were also performed on soils contaminated in the laboratory. Soil washing was performed using a bench-scale soil washing system. Washing was carried out with simultaneous fractionation of the bulk soil into sand, silt and clay fractions. Cl...

  14. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  15. Factors influencing the density of aerobic granular sludge.

    NARCIS (Netherlands)

    Winkler, M.K.; Kleerebezem, R.; Strous, M.; Chandran, K.; Loosdrecht, M.C. van

    2013-01-01

    In the present study, the factors influencing density of granular sludge particles were evaluated. Granules consist of microbes, precipitates and of extracellular polymeric substance. The volume fractions of the bacterial layers were experimentally estimated by fluorescent in situ hybridisation

  16. EFRT M-12 Issue Resolution: Solids Washing

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, David L.; Schonewill, Philip P.; Toth, James J.; Huckaby, James L.; Eslinger, Paul W.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. Two operating scenarios were evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-VSL-T01A/B ultrafiltration feed vessels, identified as Integrated Test A. The second scenario has caustic leaching conducted in the UFP-VSL-T02A ultrafiltration feed preparation vessel, identified as Integrated Test B. Washing operations in PEP Integrated Tests A and B were conducted successfully as per the approved run sheets. However, various minor instrumental problems occurred, and some of the process conditions specified in the run sheet were not met during the wash operations, such as filter-loop flow-rate targets not being met. Five analytes were selected based on full solubility and monitored in the post-caustic-leach wash as successful indicators of washing efficiency. These were aluminum, sulfate, nitrate, nitrite, and free hydroxide. Other analytes, including sodium, oxalate, phosphate, and total dissolved solids, showed indications of changing solubility; therefore, they were unsuitable for monitoring washing efficiency. In the post-oxidative-leach wash, two analytes with full solubility were selected as suitable indicators of washing

  17. Optimal Portfolio Choice with Wash Sale Constraints

    DEFF Research Database (Denmark)

    Astrup Jensen, Bjarne; Marekwica, Marcel

    2011-01-01

    We analytically solve the portfolio choice problem in the presence of wash sale constraints in a two-period model with one risky asset. Our results show that wash sale constraints can heavily affect portfolio choice of investors with unrealized losses. The trading behavior of such investors...

  18. Alternative Antimicrobial Commercial Egg Washing Procedures.

    Science.gov (United States)

    Hudson, Lauren K; Harrison, Mark A; Berrang, Mark E; Jones, Deana R

    2016-07-01

    Commercial table eggs are washed prior to packaging. Standard wash procedures use an alkaline pH and warm water. If a cool water method could be developed that would still provide a microbiologically safe egg, the industry may save energy costs associated with water heating. Four wash procedures were evaluated for Salmonella reduction: pH 11 at 48.9°C (industry standard), pH 11 at ambient temperature (∼20°C), pH 6 at 48.9°C, and pH 6 at ambient temperature. Alkaline washes contained potassium hydroxide-based detergent, while pH 6 washes contained approximately 200 ppm of chlorine and a proprietary chlorine stabilizer (T-128). When eggs were inoculated by immersion in a cell suspension of Salmonella Enteritidis and Salmonella Typhimurium, all treatments resulted in a slight and similar reduction of Salmonella numbers (approximately 0.77 log CFU/ml of shell emulsion reduction). When eggs were inoculated by droplet on the shell surface, Salmonella counts were reduced by approximately 5 log CFU when washed with chlorine plus the chlorine stabilizer at both temperatures and with the alkaline wash at the high temperature. The reductions in Salmonella by these treatments were not significantly (P > 0.05) different from each other but were significantly (P pH 11 warm water wash and may be a viable option to reduce cost, increase shelf life, and slow pathogen growth in and on shell eggs.

  19. Contaminant resorption during soil washing

    International Nuclear Information System (INIS)

    Gombert, D.

    1993-01-01

    To evaluate the applicability of soil washing to a specific site requires some basic research in how contaminants are bound. Much can be learned from sequential extraction methodology based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. This procedure uses a series of progressively more aggressive solvents to dissolve the principle phases that make up a soil, however, the published studies do not appear to consider the potential for a contaminant released from one type of site to resorb on another site during an extraction. This physical model assumes no ion exchange or adsorption at sites either previously occupied by other ions, or exposed by the dissolution. Therefore, to make engineering use of the sequential extraction data, the release of contamination must be evaluated relative to the effects of resorption. Time release studies were conducted to determine the optimum duration for extraction to maximize complete destruction of the target matrix fraction while minimizing contaminant resorption. Tests with and without a potassium brine present to inhibit cesium resorption indicated extraction efficiency could be enhanced by as much as a factor of ten using the brine

  20. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9 by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.

  1. Dewatering of sludges

    International Nuclear Information System (INIS)

    Bode, P.

    1984-01-01

    A filter rig has been designed and built. Simulated magnox and alumino ferric hydroxide sludges have been successfully filtered on this equipment and both types of sludge produced a clear filtrate and a cake. The flow rates were low. The cake often partially remained adhered to the filter membrane instead of dropping clear during the filter cleaning cycle. This filtration technique can only be used on sludges which form a non-binding cake. Permeability of the membrane can be altered by stretching. Irradiation of the membrane showed that it should withstand 20 to 50 M.rads. (author)

  2. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is

  3. Sludge Treatment Project Engineered Container Retrieval And Transfer System Prelminary Design Hazard And Operability Study

    International Nuclear Information System (INIS)

    Carro, C.A.

    2011-01-01

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m 3 of KW Basin floor and pit sludge, 18.4 m 3 of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m 3 of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand

  4. Sludge behavior in centrifugal contactor operation for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Sakamoto, Atsushi; Sano, Yuichi; Takeuchi, Masayuki; Okamura, Nobuo; Koizumi, Kenji

    2015-01-01

    The Japan Atomic Energy Agency (JAEA) has been developing the centrifugal contactor for spent fuel reprocessing. In this study, we investigated the sludge behavior in centrifugal contactors at three different scales. The operational conditions (the flow rate and rotor speed) were varied. Most insoluble particles such as sludge remained in the rotor via centrifugal force. The capture ratio of sludge in the contactor was measured as a function of particle size at various flow rates, rotor speeds, and contactor scales. The sludge adhered and accumulated inside the rotor as the operational time increased, and the operational conditions influenced the capture ratio of the sludge; a lower flow rate and higher rotor speed increased the capture ratio. The results confirmed that Stokes' law can be applied to estimate the experimental result on the behavior of the capture ratio for centrifugal contactors with different scales. (author)

  5. Electron beam treatment of wastewaters and sludges

    International Nuclear Information System (INIS)

    Osborn, D.W.

    1980-01-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900 000 per year at a dose rate of 4 000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material

  6. Electron beam treatment of wastewaters and sludges

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, D W [City Health Dept., Johannesburg (South Africa)

    1980-12-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900,000 per year at a dose rate of 4,000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material.

  7. Solar drying in sludge management in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Salihoglu, Nezih; Pinarli, Vedat; Salihoglu, Guray [Faculty of Engineering and Architecture, Environmental Engineering Department, Uludag University, 16059, Bursa (Turkey)

    2007-08-15

    Two main wastewater treatment plants in Bursa city in Turkey will start to operate and produce at least 27,000 tons of dry solids per year by the end of 2006. The purpose of this study was to investigate an economical solution to the sludge management problem that Bursa city would encounter. The general trend in Turkey is mechanical dewatering to obtain a dry solid (DS) content of 20%, and liming the mechanically dewatered sludge to reach the legal land filling requirement, 35% DS content. This study recommends limited liming and solar drying as an alternative to only-liming the mechanically dewatered sludge. Open and covered solar sludge drying plants were constructed in pilot scale for experimental purposes. Dry solids and climatic conditions were constantly measured. Faecal coliform reduction was also monitored. The specially designed covered solar drying plant proved to be more efficient than the open plant in terms of drying and faecal coliform reduction. It was found that, if the limited liming and solar drying method was applied after mechanical dewatering instead of only-liming method, the total amount of the sludge to be disposed would be reduced by approximately 40%. This would lead to a reduction in the transportation, handling, and land filling costs. The covered drying system would amortize itself in 4 years. (author)

  8. N Uptake From Irradiated Sludge Combined With N Fertilizer By Edible Nightshade Crop

    International Nuclear Information System (INIS)

    Mitrosuharjo, M.M.; Haryanto; S, Suwirma; Harsojo; Hilmy N

    2000-01-01

    A greenhouse pot experiment has been carried out to study the amount of N uptake from sludge by edible nightshade (solanum melongena) crop. Sludge used in this experiment was a municipal sludge that has been processed (to be a compost sludge so it was ready to be used) from pulo gebang, east jakarta, then sludge was irradiated in a dose rate between 3.6 to 4.4 kGy at P3TIR-BATAN, jakarta. The sludge was given in the amount equivalent to 60, 120, 180 and 240 kg N/ha. For control was used treatment without sludge, without sludge but with N fertilizer in a normal rate. Each of treatment was applied with 15N in the rate equivalent to 20 kg N/ha. For buffer of soil nutrient, fertilizer P and K were also applied in normal rate. As experimental crop hybrid edible nightshade of FORTUNA variety was used. Result of this experiment showed that application of sludge was able to increase yield, dry matter production, total N uptake and N uptake derived from sludge. The amount of N uptake derived from sludge was spread between 17.5 to 151.8 mg N/pot for application sludge in 1% N content at the rate equivalent 60 to 240 kg N/ha

  9. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.; Gevaudan, P.P.

    1977-01-01

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  10. Sewage sludge solubilization by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  11. Sludge technology assessment

    International Nuclear Information System (INIS)

    Krause, T.R.; Cunnane, J.C.; Helt, J.E.

    1994-12-01

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  12. Late washing filter cleaning cycle demonstration

    International Nuclear Information System (INIS)

    Meyer, M.L.; McCabe, D.J.

    1992-01-01

    The DWPF Late Washing Facility will filter cesium and potassium tetraphenyl borate (TPB) solids using a Mott sintered metal filter, identical to the filter now used in the In-tank Precipitation Facility. The purpose of the late wash step is primarily to remove the nitrite salts from the slurry prior to delivery to DWPF. Periodic chemical cleaning of the filter will be required, presumably after each batch although the actual required frequency could not be determined on the lab-scale. Minimization of chemical cleaning solution volumes is key to maximizing the attainment of the Late Wash facility. This report summarizes work completed in experiments designed to identify minimum cleaning solution requirements

  13. Wastewater sludge - the challenges. What are the potentials of utilising the resources in sludge?

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, Helmut

    2003-07-01

    The actual best practice of urban water management has developed during the last 200 years and consists of: safe and reliable drinking water supply, sewerage to prevent hygienic problems and flooding in the settlements, mechanical -biological waste water treatment for receiving water protection. The hygienic and environmental goals of the urban water system have to be attained with a minimum of costs. Most of the drinking water supplied is used for the transport of pollution originating from human metabolism, washing and cleaning. Waste water contains all the substances which enter human metabolism as food, beverages, pharmaceuticals, a great variety of household chemicals and the substances discharged from trade and industry to the sewer system. Rain water is already contaminated by air pollution when it reaches the soil or other surfaces. Whatever material the rainwater gets into contact can be found in the waste water. As a consequence the composition of the waste water is a mirror of our civilisation and of human and urban metabolism. Waste water treatment results in two products which are closely related in their chemical composition: (1) treated waste water to be discharged to the receiving water, (2) wastewater sludge to be treated and disposed or (re)used without creating new (environmental) problems. All the compounds entering the waste water which are not completely degraded can be found in both products. The transfer coefficients between water and sludge differ widely and depend on physical and chemical equilibriums. The potentially hazardous compounds in the effluent and in the sludge belong to these compounds. Source control therefore is necessary for water protection and at the same time for low concentrations of potentially hazardous compounds in the sludge. It is also clear that improved biological treatment efficiency (longer sludge age) also results in lower loads of organic pollutants in the sludge, while physical-chemical treatment steps result

  14. Use of Drinking Water Sludge as Adsorbent for H2S Gas Removal from Biogas

    Directory of Open Access Journals (Sweden)

    Sucheela Polruang

    2017-01-01

    Full Text Available This paper reports the results of a research project, which attempts to produce a low-cost adsorbent material from waste (drinking water sludge. The main objective of this work is to study the characteristics of drinking water sludge for its adsorptive properties including morphology, surface area, porosity and chemical composition. The effect of activation conditions on H2S gas adsorption efficiency of drinking water sludge was experimented. In this study, raw drinking water sludge was divided into 3 groups. In the first group, drinking water sludge was only oven dried at 105°C. For the other 2 groups, drinking water sludge was soaked in 2.5 M NaOH solution. After soaking, the sludge was divided into 2 groups (group 2 and 3. The second group was washed with distilled water until pH 7; while the third group was not. Biogas from a swine farm was used with an initial H2S gas concentration in the range of 2,000 - 4,000 ppm. The material analysis showed that more surface area and total volume of sludge can be obtained after activated with NaOH. From the adsorption experiments, it was found that the highest adsorption capacity (qe of 87.94 mg H2S/g adsorptive material can be achieved by using sludge from the third group. Moreover, by adding of 20 wt% iron filing into sludge of the third group the adsorption capacity increased to 105.22 mg H2S/g adsorptive material. Drinking water sludge can be considered as a high potential energy saving and low cost adsorbent for removal of H2S.

  15. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1994-01-01

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  16. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse.

    Science.gov (United States)

    Moazzem, Shamima; Wills, Jamie; Fan, Linhua; Roddick, Felicity; Jegatheesan, Veeriah

    2018-03-01

    Reusing treated effluents in industries is a great option to conserve freshwater resources. For example, car wash centres all over Australia are estimated to use 17.5 billion litres of water and discharge it as wastewater and spend $75 million a year for both purchasing fresh water and for treating and/or discharging the wastewater. Therefore, it is important to develop simple but reliable systems that can help to treat and reuse car wash wastewater. Significant savings could also be associated with the implementation of such systems. This study evaluates the performance of granular and membrane filtration systems with coagulation/flocculation and sedimentation in treating car wash wastewater for the purpose of reuse. Overall, 99.9% of turbidity, 100% of suspended solids and 96% of COD were removed from the car wash wastewater after treating by coagulation, flocculation, sedimentation, sand filtration, ceramic ultrafiltration and reverse osmosis and the treated water meets the standards required for class A recycled water in Australia and standards imposed in Belgium and China. The treated water can be reused. However, optimisation is required to reduce the sludge produced by this system.

  17. Weed seed spread and its prevention: The role of roadside wash down.

    Science.gov (United States)

    Bajwa, Ali Ahsan; Nguyen, Thi; Navie, Sheldon; O'Donnell, Chris; Adkins, Steve

    2018-02-15

    Vehicles are one of the major vectors of long-distance weed seed spread. Viable seed removed from vehicles at roadside wash down facilities was studied at five locations in central Queensland, Australia over a 3-year period. Seed from 145 plant species, belonging to 34 different families, were identified in the sludge samples obtained from the wet particulate matter collection pit of the wash down facilities. Most of the species were annual forbs (50%) with small or very small seed size (weed was observed in these samples. More parthenium weed seed were found in the Rolleston facility and in the spring, but its seed was present in all facilities and in all seasons. The average number of viable seed found within every ton of dry particulate matter removed from vehicles was ca. 68,000. Thus, a typical wash down facility was removing up to ca. 335,000 viable seed from vehicles per week, of which ca. 6700 were parthenium weed seed. Furthermore, 61% of these seed (ca. 200,000) were from introduced species, and about half of these (35% of total) were from species considered to be weeds. Therefore, the roadside wash down facilities found throughout Queensland can remove a substantial amount of viable weed seed from vehicles, including the invasive parthenium weed, and the use of such facilities should be strongly encouraged. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Test plan, sludge retrieval, sludge packaging

    International Nuclear Information System (INIS)

    Feigenbutz, L.V.

    1994-01-01

    This document provides direction for the cold testing of tools, equipment and systems which will be installed and operated in K-East (KE) Basin in support of the sludge retrieval and packaging project. The technical uncertainties related to the effectiveness of sludge retrieval procedures and equipment require that cold testing be completed before installation in KE Basin to identify and resolve existing problems, and to optimize the efficiency of all equipment and systems used. This plan establishes the responsibilities, test requirements, and documentation requirements necessary to complete cold tests of: (1) equipment with no potential for plant use; (2) prototype equipment and systems which may be upgraded for use in K-Basin; and (3) plant equipment and systems requiring cold acceptance testing prior to plant use. Some equipment and systems may have been subject to a formal design review and safety assessment; the results of which will be included as supporting documents to the operational readiness review (ORR)

  19. Wash water waste pretreatment system study

    Science.gov (United States)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  20. UO2 production process with methanol washing

    International Nuclear Information System (INIS)

    Sondermann, T.

    1978-01-01

    The invention refers to a process for the recovery of methanol used for washing the ammonium uranyl carbonate obtained during UO 2 production. The methanol contains about 50% H 2 O, about 10% (NH 4 ) 2 CO 3 , and is radioactive. According to the invention the methanol is purified at reduced pressure in a distillation unit and then led back to the washing unit. (UWI) 891 HP/UWI 892 MBE [de

  1. Pollutants Characterization of Car Wash Wastewater

    Directory of Open Access Journals (Sweden)

    Hashim Nor Haslina

    2016-01-01

    Full Text Available The huge quantity of water consumed per car during washing cars yields the untreated effluents discharged to the stormwater system. Wastewater samples from snow car wash and two full hand service car wash station were analyzed for pH and the presence of PO43-,TP, O&G, alkalinity, TSS, NO3-, NO2-, COD and surfactant in accordance Standard Method of Water and Wastewater 2012. Two full hand wash service stations and one station of snow foam service were investigated in this study. Amongst the stations, snow foam car wash station indicates the highest concentration of PO43-, TP, O&G, TSS, COD and surfactant with the average value of 10.18 ± 0.87 mg/L, 30.93 ± 0.31 mg/L , 85.00 ± 0.64 mg/L 325.0 ± 0.6 mg/L, 485.0 ± 0.3 mg/L and 54.00 ± 2.50 mg/L as MBAS, respectively. Whereas, in parameters characterization in different stages throughout the car wash process, O&G was found to be the highest in pre soak stage, PO43-, TP, TSS and COD in washing stage and NO3- and NO2- in rinse stage. All parameters were compared to Environmental Quality (Industrial Effluent Regulations, 2009. There is a strong need to study on the characterization of car wash water in order to suggest the suitable treatment need for this type of wastewater.

  2. Thermoradiation treatment of sewage sludge using reactor waste fission products

    International Nuclear Information System (INIS)

    Reynolds, M.C.; Hagengruber, R.L.; Zuppero, A.C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined

  3. Particle Size (Sieving) and Enthalpy (Acid Calorimetry) Analysis of Single-Pull K East Basin Floor and Pit Sludges

    International Nuclear Information System (INIS)

    Bredt, P.R.; Delegard, C.H.; Schmidt, A.J.; Silvers, K.L.; Thornton, B.M.; Gano, S.

    2000-01-01

    This report presents the results of particle size analyses and calorimetry testing performed on selected single-pull sludge samples collected from the Hanford K East Basin between December 1998 and June 1999. The samples were collected as isolated cores predominantly from areas that had not been previously sampled (e.g., North Loadout Pit, Dummy Elevator Pit, Tech View Pit), or from areas in which the sludge composition had been altered since the last sampling (e.g., Weasel Pit). Particle size analyses were performed by washing wet sludge samples through a series of four sieves with openings of 250, 500, 1410, and 4000 microm. The loaded sieves were weighed before and after drying to obtain wet and dry particle size distributions. Knowledge of the particle size distribution is needed to design and predict the performance of the systems that will be used to retrieve, transport, and recover sludge. Also, sieving provides an opportunity to observe the components in the sludge. For example, during sieving of the sludge sample from the North Loadout Pit, significant quantities of organic ion exchange beads were observed. The uranium metal content and the particle size of the uranium metal in the K Basin sludge will largely determine the chemical reactivity of the sludge. In turn, the designs for the sludge handling and storage systems must be compatible with the reactivity of the sludge. Therefore, acid calorimetry was performed to estimate the uranium metal content of the sludge. For this testing, sludge samples were dissolved in nitric acid within a calibrated adiabatic calorimeter. The resulting dissolution enthalpy data were then used to discriminate between metallic uranium (minus3750 J/g in nitric acid) and uranium oxide (minus394 J/g in nitric acid). Results from this testing showed that the single-pull sludge samples contained little or no uranium metal

  4. Radionuclide content of Las Vegas wash sediments

    International Nuclear Information System (INIS)

    Rudin, M.J.; Meyers, A.M.; Johnson, W.H.

    1996-01-01

    The Las Vegas Wash is an excavated waterway channel which drains all surface water and effluent discharge from sewage-treatment facilities from the greater Las Vegas Metropolitan Area to Lake Mead. Runoff and erosion processes are expected to transport man-made radioactivity that was deposited over the past several decades in the Las Vegas Valley. Additionally, radionuclides disposed of via the city's sanitary system are expected to accumulate in the Wash sediments. Fine and coarse sediment samples were collected at 100 m intervals and analyzed to determine the distribution of alpha- and gamma-emitting radionuclides in the lower 5,500 in of the Las Vegas Wash. Results indicate little accumulation of long-lived fission products in upstream Wash sediments. However, trace amounts of fission products measured in downstream sediments suggest the resuspension and transport of radioactive particulate matter within the Wash. Levels of naturally-occurring radionuclides found in Wash sediments were found to be consistent with levels typically found in southeast Nevada soils

  5. Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals

    OpenAIRE

    de Oliveira da Mota, Izabel; de Castro, José Adilson; de Góes Casqueira, Rui; de Oliveira Junior, Angelo Gomes

    2015-01-01

    Electroflotation method (EFM) for treatment of synthetic solutions simulating wastewater from washing soil contaminated by drilling fluids from oil wells was investigated in this paper. Experiments were carried out to examine the effects of the operating conditions on the removal of lead, barium and zinc from solutions containing 15 mg dm−3 for each metal representing a typical concentration of wastewater generated in the washing soil in this treatment. The experimental results showed that it...

  6. Kinetic model of excess activated sludge thermohydrolysis.

    Science.gov (United States)

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. TBT and TPhT persistence in a sludged soil.

    Science.gov (United States)

    Marcic, Christophe; Le Hecho, Isabelle; Denaix, Laurence; Lespes, Gaëtane

    2006-12-01

    The persistence of tributyltin (TBT) and triphenyltin (TPhT) in soils was studied, taking into consideration the quantity of sewage sludge, TBT and TPhT concentrations in soil as well as the soil pH. The organotin compounds (OTC) were introduced into the soil via a spiked urban sludge, simulating agricultural practise. OTC speciation was achieved after acidic extraction of soil samples followed by gas chromatography-pulsed flame photometric analysis (GC-PFPD). Leaching tests conducted on a spiked sludge showed that more than 98% of TBT are sorbed on the sludge. TBT persistence in soil appeared to depend on its initial concentration in sludge. Thus, it was more important when concentration is over 1000 microg(Sn) kg(-1) of sludge. More than 50% of the initial TBT added into the soil were still present after 2 months, whatever the experimental conditions. The main degradation product appeared to be dibutyltin. About 90% of TPhT were initially sorbed on sludge, whatever the spiking concentration in sludge was. However, TPhT seemed to be quantitatively exchangeable at the solid/liquid interface, according to the leaching tests. It was also significantly degraded in sludged soil as only about 20% of TPhT remain present after 2 months, the monophenyltin being the main degradation product. pH had a significant positive effect on TBT and particularly TPhT persistence, according to the initial amounts introduced into the soil. Thus, at pH over 7 and triorganotin concentration over 100 microg(Sn) kg(-1), less than 10% of TBT but about 60% of TPhT were degraded. When the sludge was moderately contaminated by triorganotins (typically 50 microg(Sn) kg(-1) in our conditions) the pH had no effect on TBT and TPhT persistence.

  8. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  9. RELATIONSHIP BETWEEN SLUDGE DEWATERABILITY NUMBER ...

    African Journals Online (AJOL)

    A representative of a sludge sample collected from the same source was filtered under the same environmental condition and the result analysed with two different concepts. One method of analysis uses Sludge Dewaterability Number, while the second employed the Carman's Specific resistance concept in sludge ...

  10. Road surface washing system for decontaminating radioactive substances. Experiment of radioactive decontamination

    International Nuclear Information System (INIS)

    Endo, Mitsuru; Endo, Mai; Kakizaki, Takao

    2015-01-01

    The Great East Japan Earthquake that occurred on March 11, 2011 resulted in the explosion of the TEPCO Fukushima 1st Nuclear Power Plant and the global dispersion of a large quantity of radioactive substances. A high radiation dose was particularly recorded in Fukushima prefecture several weeks after the accident, although the level is presently sufficiently low. However, considering that the adverse effects of low but extended exposure to radiation are yet to be negated, there is the urgent need for further decontamination. In our study, we focused on the efficient decontamination of radioactive substances in residential areas, for which we propose a high-pressure water jet system for washing road surfaces. The system differs from conventional systems of its type that were initially designed for use in the immediate environment of the nuclear reactors of the TEPCO Fukushima 1st Nuclear Power Plant. The proposed system consists of multiple washing, transporter, and server robots. The washing robots decontaminate the road surface using high-pressure water jets and are transported between washed and unwashed areas by the transporter robots. The server robots supply the water used for washing and absorb the polluted water together with ground dust. In this paper, we describe the concept of the system and present the results of decontamination experiments. Particular attention is given to the washing robot and its mechanism and control method. The results of the integration of the washing robot in an experimental system confirmed the feasibility of the proposed system. (author)

  11. Energy potential of the modified excess sludge

    Directory of Open Access Journals (Sweden)

    Zawieja Iwona

    2017-01-01

    Full Text Available On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4, it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  12. Energy potential of the modified excess sludge

    Science.gov (United States)

    Zawieja, Iwona

    2017-11-01

    On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  13. Radioactive sludge and wastewater analysis and treatment in the Hungarian VVER-440/213-type NPP

    International Nuclear Information System (INIS)

    Patzay, G.; Weiser, L.; Feil, F.; Schunk, J.; Patek, G.; Pinter, T.

    2010-01-01

    would be available to a water wash. The water wash would not account for the insoluble hydroxides, carbonates, and mixed oxides present. The insoluble species do not contribute to the charge balance, and the cation charge is not used in the calculation. Most of the nitrate reported for the sludge is due to the interstitial liquid. Considering the limitations of these calculations, the mass balance was within the analytical error (±20%) for the sludge samples. There were three sample preparation methods used to investigate the total anion content of the sludge samples, which included water leach, potassium-hydroxide and/or sodium peroxide/sodium hydroxide fusion and acidic dissolution. (author)

  14. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.

    1977-01-01

    There is an hygienic risk in using biological sewage sludges for agriculture. Systematic analysis carried out on sludges samples obtained from purification plants in East and South part of France, show the almost uniform presence of pathogenic microorganisms. Some of it survive more than 9 months after soil application. Conventional process for disinfection: liming and heat are not suitable for agricultural use. On the other hand, irradiation involves no modification in structure and composition of sludges. Radiation doses required for disinfection vary according to microorganisms. If some of them are eliminated with rather light doses (200 krad) mycobacteria, viruses and eggs of worms resist to more important doses. Security dose is estimated around 1000 krad

  15. Sludge Treatment Evaluation: 1992 Technical progress

    International Nuclear Information System (INIS)

    Silva, L.J.; Felmy, A.R.; Ding, E.R.

    1993-01-01

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO 3 , NO 2 , PO 4 , SO 4 , and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model

  16. Sludge Treatment Evaluation: 1992 Technical progress

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L J; Felmy, A R; Ding, E R

    1993-01-01

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO[sub 3], NO[sub 2], PO[sub 4], SO[sub 4], and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model.

  17. Treatment of real wastewater produced from Mobil car wash station using electrocoagulation technique.

    Science.gov (United States)

    El-Ashtoukhy, E-S Z; Amin, N K; Fouad, Y O

    2015-10-01

    This paper deals with the electrocoagulation of real wastewater produced from a car wash station using a new cell design featuring a horizontal spiral anode placed above a horizontal disc cathode. The study dealt with the chemical oxygen demand (COD) reduction and turbidity removal using electrodes in a batch mode. Various operating parameters such as current density, initial pH, NaCl concentration, temperature, and electrode material were examined to optimize the performance of the process. Also, characterization of sludge formed during electrocoagulation was carried out. The results indicated that the COD reduction and turbidity removal increase with increasing the current density and NaCl concentration; pH from 7 to 8 was found to be optimum for treating the wastewater. Temperature was found to have an insignificant effect on the process. Aluminum was superior to iron as a sacrificial electrode material in treating car wash wastewater. Energy consumption based on COD reduction ranged from 2.32 to 15.1 kWh/kg COD removed depending on the operating conditions. Finally, the sludge produced during electrocoagulation using aluminum electrodes was characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis.

  18. Hand washing promotion for preventing diarrhoea

    Science.gov (United States)

    Ejemot-Nwadiaro, Regina I; Ehiri, John E; Arikpo, Dachi; Meremikwu, Martin M; Critchley, Julia A

    2015-01-01

    Background Diarrhoea accounts for 1.8 million deaths in children in low- and middle-income countries (LMICs). One of the identified strategies to prevent diarrhoea is hand washing. Objectives To assess the effects of hand washing promotion interventions on diarrhoeal episodes in children and adults. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register (27 May 2015); CENTRAL (published in the Cochrane Library 2015, Issue 5); MEDLINE (1966 to 27 May 2015); EMBASE (1974 to 27 May 2015); LILACS (1982 to 27 May 2015); PsycINFO (1967 to 27 May 2015); Science Citation Index and Social Science Citation Index (1981 to 27 May 2015); ERIC (1966 to 27 May 2015); SPECTR (2000 to 27 May 2015); Bibliomap (1990 to 27 May 2015); RoRe, The Grey Literature (2002 to 27 May 2015); World Health Organization (WHO) International Clinical Trial Registry Platform (ICTRP), metaRegister of Controlled Trials (mRCT), and reference lists of articles up to 27 May 2015. We also contacted researchers and organizations in the field. Selection criteria Individually randomized controlled trials (RCTs) and cluster-RCTs that compared the effects of hand washing interventions on diarrhoea episodes in children and adults with no intervention. Data collection and analysis Three review authors independently assessed trial eligibility, extracted data, and assessed risk of bias. We stratified the analyses for child day-care centres or schools, community, and hospital-based settings. Where appropriate, incidence rate ratios (IRR) were pooled using the generic inverse variance method and random-effects model with 95% confidence intervals (CIs). We used the GRADE approach to assess the quality of evidence. Main results We included 22 RCTs: 12 trials from child day-care centres or schools in mainly high-income countries (54,006 participants), nine community-based trials in LMICs (15,303 participants), and one hospital-based trial among people with acquired immune deficiency

  19. Charcoal from paper sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M

    1980-03-06

    Paper sludge containing less than or equal to 50% water is mixed with coffee shells and greater than or equal to 1 almond shells, orange skin, walnut shells, or bean jam waste, compacted, and dry distilled at 300-600 degrees to prepare charcoal. Thus, 1 ton of paper sludge was mixed with 100 kg each of coffee shells, almond shells, orange skin, and walnut shells; compacted and dry distilled 24 hours at approximately 450 degrees. The calorific value of the charcoal produced was approximately 7300 kcal/kg.

  20. Municipal Sewage Sludge Drying Treatment by an Composite Modifier

    Directory of Open Access Journals (Sweden)

    Na Wei

    2012-01-01

    Full Text Available A sludge composite modifier (SCM which comprises a mixture of three cementitious components was proposed for sludge drying and stabilization. Effect of SCM components on sludge moisture content was analyzed using uniform design and the optimum composition of SCM was determined by computer-aided modeling and optimization. To compare the drying effect of SCM, quicklime, and Portland cement, the effects of material content and curing time on moisture content of sludge were also studied. The results showed that the optimum ratio of modifier component was slag/cement clinker/dihydrate gypsum = 0.64/0.292/0.068 and the moisture content of SCM-stabilized sludge decreased with the increasing material content and extending curing time. Besides, the experimental results showed that optimized SCM behaved better than quicklime and Portland cement in sludge semi-drying and XRD analysis revealed that the main hydrated product of stabilization was ettringite, which played an important role in the effective drying process. Sewage sludge stabilized using SCM could be used as an effective landfill cover.

  1. Separation of oil and grease from oil sludge using surfactant

    International Nuclear Information System (INIS)

    Ainon Abdul Aziz; Syed Hakimi Sakuma Syed Ahmad; Zalina Laili

    2005-01-01

    The objective of the experiments was to observe the efficiency of the surfactant to remove oil and grease from oil sludges using various surfactant concentration ranging from 10 %, 15 %, 20 % and 30 %. The surfactant solution consists of two mixtures of Aqua 2000 and D Bond. The oil sludge were subjected to heating and surfactant treatment process. Remaining oil and grease concentration were observed on the oil sludges after treatment. Small scale experiments were conducted by heating process, without heating process and heating process with addition of sodium chloride. Surfactant solution was added in each process. Results shows that there is separation of oil and grease from the oil sludges. There were formation of mini emulsions (oil in water). The higher the concentration of surfactant used, the higher the concentrations of mini emulsion formed as observed. Solid remains after the treatment process were found to contain lesser oil concentration with presence of bitumen, sediment, organic and inorganic materials. After a washing process using distilled water, the solid was still black but less oily than before the treatment. There is no separation of oil occurred in aqueous solution for the control experiment. (Author)

  2. Soil washing: From characterization to implementation

    International Nuclear Information System (INIS)

    Corden, F.L.; Groenendijk, E.

    1995-01-01

    Only recently has soil washing begun to be applied to remediation of contaminated soils in the US. The experience gained during full-scale and large pilot-scale projects points to the importance of soil and site characterization in correctly evaluating the applicability of soil washing to a site and determining accurate cost estimates for its implementation. This paper will discuss actual case studies of various treatability and pilot study approaches that led to successful evaluation and implementation of soil washing remedies. Soil washing is applicable to a broad variety of chemical contaminants. Target contaminants include metals, radionuclides, pesticides, polychlorinated biphenyls, polynuclear aromatic hydrocarbons and petroleum hydrocarbons, as well as combinations of these contaminants. Because the contaminants noted above are deposited in the soils in a variety of forms, the unit operations necessary to treat the soil vary. It is the diversity of the available treatment alternatives, and the ability to use the units in a variety of process flow configurations that result in a very broad definition of soil washing

  3. Washing of waste prior to landfilling.

    Science.gov (United States)

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Oxidation of oily sludge in supercritical water

    International Nuclear Information System (INIS)

    Cui Baochen; Cui Fuyi; Jing Guolin; Xu Shengli; Huo Weijing; Liu Shuzhi

    2009-01-01

    The oxidation of oily sludge in supercritical water is performed in a batch reactor at reaction temperatures between 663 and 723 K, the reaction times between 1 and 10 min and pressure between 23 and 27 MPa. Effect of reaction parameters such as reaction time, temperature, pressure, O 2 excess and initial COD on oxidation of oily sludge is investigated. The results indicate that chemical oxygen demand (COD) removal rate of 92% can be reached in 10 min. COD removal rate increases as the reaction time, temperature and initial COD increase. Pressure and O 2 excess have no remarkable affect on reaction. By taking into account the dependence of reaction rate on COD concentration, a global power-law rate expression was regressed from experimental data. The resulting pre-exponential factor was 8.99 x 10 14 (mol L -1 ) -0.405 s -1 ; the activation energy was 213.13 ± 1.33 kJ/mol; and the reaction order for oily sludge (based on COD) is 1.405. It was concluded that supercritical water oxidation (SCWO) is a rapidly emerging oily sludge processing technology.

  5. Precipitation-filtering technology for uranium waste solution generated on washing-electrokinetic decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam, E-mail: kimsum@kaeri.re.kr; Park, Uk-Ryang; Kim, Seung-Soo; Moon, Jei-Kwon

    2015-05-15

    Graphical abstract: A recycling process diagram for the volume reduction of waste solution generated from washing-electrokinetic decontamination. - Highlights: • A process for recycling a waste solution generated was developed. • The total metal precipitation rate by NaOH in a supernatant after precipitation was the highest at pH 9. • The uranium radioactivity in the treated solution upon injection of 0.2 g of alum was lower. • After drying, the volume of sludge was reduced to 35% of the initial sludge volume. - Abstract: Large volumes of uranium waste solution are generated during the operation of washing-electrokinetic decontamination equipment used to remove uranium from radioactive soil. A treatment technology for uranium waste solution generated upon washing-electrokinetic decontamination for soil contaminated with uranium has been developed. The results of laboratory-size precipitation experiments were as follows. The total amount of metal precipitation by NaOH for waste solution was highest at pH 11. Ca(II), K(I), and Al(III) ions in the supernatant partially remained after precipitation, whereas the concentration of uranium in the supernatant was below 0.2 ppm. Also, when NaOH was used as a precipitant, the majority of the K(I) ions in the treated solution remained. The problem of CaO is to need a long dissolution time in the precipitation tank, while Ca(OH){sub 2} can save a dissolution time. However, the volume of the waste solution generated when using Ca(OH){sub 2} increased by 8 mL/100 mL (waste solution) compared to that generated when using CaO. NaOH precipitant required lower an injection volume lower than that required for Ca(OH){sub 2} or CaO. When CaO was used as a precipitant, the uranium radioactivity in the treated solution at pH 11 reached its lowest value, compared to values of uranium radioactivity at pH 9 and pH 5. Also, the uranium radioactivity in the treated solution upon injection of 0.2 g of alum with CaO or Ca(OH){sub 2} was

  6. 30 CFR 206.459 - Allocation of washed coal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.459 Section 206... MANAGEMENT PRODUCT VALUATION Indian Coal § 206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the net...

  7. 30 CFR 206.260 - Allocation of washed coal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.260 Section 206... MANAGEMENT PRODUCT VALUATION Federal Coal § 206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the net...

  8. Washing of gel particles in wet chemical manufacture of reactor fuel particles

    International Nuclear Information System (INIS)

    Ringel, H.

    1980-07-01

    In the manufacture of HTR fuel particles and particles of fertile material by wet chemical methods, the ammonium nitrate formed during the precipitation reaction must be washed out of the gel particles. This washing process has been investigated theoretically and experimentally. A counter-current washer has been developed which in particular takes account of the aspects of refabrication - such as compact construction and minimum waste. A counter-current washing column of 17 mm internal diameter and 640 mm length gives to gel particle throughput of 0.65 1/h. The volume ratio of wash water to gel particles is 5, and the residual nitrate concentration in the particles is 7 x 10 -3 mols of NO - 3 /1. (orig.) [de

  9. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    Science.gov (United States)

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  10. Ultrafiltration to reuse laundering wash water

    DEFF Research Database (Denmark)

    Giagnorio, Mattia; Søtoft, Lene Fjerbæk; Tiraferri, Alberto

    2017-01-01

    Laundering industry consumes and discharges large amounts of water and surfactants, and the demand of surface active agents used for washing is increasing worldwide. Some of these substances are considered contaminants of emerging concern, as they persist in the environment. This work aimed...... at evaluating the feasibility of ultrafiltration as a method to treat the wash wastewater and possibly reuse the surfactant-rich permeate stream in laundry facilities. In particular, evaluation of surfactant recovery was performed through analysis of the permeate flux and properties obtained through polymeric...... and ceramic membranes. Wash water samples were collected at an industrial laundering facility for hospital linen and filtered through different ultrafiltration membranes with varying molecular weight cut-off. The critical micelle concentration of the detergent was quantified, and capillarity measurements were...

  11. Hydraulic conductivity and soil-sewage sludge interactions

    Directory of Open Access Journals (Sweden)

    Silvio Romero de Melo Ferreira

    2011-10-01

    Full Text Available One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

  12. Treatment of spent nuclear fuel L-basin sludge

    International Nuclear Information System (INIS)

    Westover, B.L.; Oji, L.N.; Martin, H.L.; Nichols, D.M.

    1997-01-01

    Each production reactor at the DOE Savannah River Site (SRS) has a disassembly basin whose primary purpose is to cool irradiated production fuel and target. The disassembly basins also provide a shielded environment for personnel. Material has historically resided in the basins for 6 to 12 months. Increases in basin storage time have occurred, and have caused the buildup of a sludge layer on the basin floors to be greater than historical levels. The sludge is composed primarily of inorganic oxide and hydroxide corrosion products. The sludge layer has increased the turbidity and conductivity of the basin water, contributed to fuel corrosion, and has impacted fuel handling operations. Initial characterization of the sludge indicates that it is a low-level radioactive aqueous waste. This evaluation looked at methods to separate the sludge into its liquid and solid phases. The experimental data obtained during this evaluation clearly shows that a filtration-based approach to dewatering using an Oberlin pressure filtration unit at SRS is possible. This research task was to identify and optimize filtration and settling parameters pursuant sludge processing. The research specifically addressed: choice of filter aid, filter aid to sludge ratio, choice and dosage of polymer flocculation and settling agents, and the determination of Kynch curve settling parameters. Two commercial perlite filter-aids were identified as the most suitable. Of 11 water soluble flocculating polymers evaluated, 3 cationic commercial types formed stable flocs in the screening tests. In low doses, the flocculating polymers also enhanced sludge particle settling and decreased filtrate turbidity. The filtration cake from the sludge can be solidified to meet waste acceptance and storage criteria. However, the conductivity of the remaining filtrate does not meet Reactor Area Return Water criteria and may require a secondary filtration process. 2 refs., 14 figs., 5 tabs

  13. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  14. Bacteriology of activated sludge

    NARCIS (Netherlands)

    Gils, van H.W.

    1964-01-01

    The bacteriology and biochemistry of activated sludge grown in domestic waste water or fed with synthetic media were studied. The nature of the flocs was investigated by determining morphological and physiological characteristics of many strains isolated.

    Predominant bacteria were

  15. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  16. Plutonium recovery from carbonate wash solutions

    International Nuclear Information System (INIS)

    Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

    1991-01-01

    540Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig

  17. Use of green washing fluids in a washing process for dioxin contaminated soils

    Directory of Open Access Journals (Sweden)

    Siwalee Yotapukdee

    2017-09-01

    Full Text Available High levels of dioxin contamination in soil have significant environmental challenges. Soil washing is a successful remediation process that is primarily used to treat coarse soils. Several literature studies have used various kinds of chemical washing liquids to remove dioxins from soils, though there are secondary environmental effects. This study intends to develop environmentally friendly soil washing methods that are effective in dioxin removal at an acceptable cost. Sugarcane wine, compost leachate, and ground fish broth were chosen as potential washing liquids. Each washing liquid was analyzed to determine its content of semivolatile organic compounds (SVOCs and volatile organic compounds (VOCs. These compounds are related to their bio-surfactant content. Several of the identified compounds had properties to help remove dioxins from contaminated soil. In the experiments, high removal efficiencies were observed, up to 70%~95% after five to six washes. Although effective removal was observed, a significant amount of wastewater was produced and the problems were not completely resolved. Thus, the optimal washing conditions are necessary to minimize the overall costs, while improving the process effectiveness. Moreover, an appropriate treatment method is required for wastewater containing dioxins.

  18. Impact of accelerated electrons on activating process and foaming potential of sludge

    International Nuclear Information System (INIS)

    Cuba, V.; Pospisil, M.; Mucka, V.; Silber, R.; Jenicek, P.; Dohanyos, M.; Zabranska, J.

    2002-01-01

    Complete text of publication follows. Presently, anaerobic and/or aerobic biological treatment is the cheapest and the most effective method of wastewater and sludge processing. However, due to some non-biodegradable substances present in wastewater and also due to limited capacity of wastewater treatment plants, it is necessary to find effective processes, that would be complementary to existing sludge treatment methods. Beside chemical and physical processes, radiation technology seems to offer improvement of effectivity of biological treatment. The paper describes possibilities of irradiation in activating process. Activated sludge can be affected in all its parameters, including physico chemical properties, such as sedimentation rate, or resulting volume of sludge. For the purpose of this research, laboratory experimental reactors simulating activating process were operated. According to previous results, accelerated electrons were used for irradiation, for e-beam seems to be more expedient than gamma irradiation. Reactor with irradiated sludge has been compared with the one without irradiation. It is shown, that pre-irradiation of sludge can positively affect following process of activation. Beside the activating process, another goal has been pursued. Radiation can strongly affect sludge foaming potential. Biological foaming caused by surfactant microorganisms, represents quite serious problem in many wastewater treatment plants, especially in digesters. It was proved that after irradiation foaming potential of sludge decreases. Pre-irradiation of activated sludge with relatively low doses also results in reduction of number of pathogenic microorganisms, presented in sludge

  19. SOIL-WASHING TECHNOLOGY AND PRACTICE

    Science.gov (United States)

    Soil washing in the United States has been studied and evaluated with increasing thoroughness during the last 15 to 20 years. It is now entering a phase of actual use and acceptance as its applicability and economics become clearer. This paper reviews the principles behind soil...

  20. 100 Area soil washing treatability test plan

    International Nuclear Information System (INIS)

    1993-03-01

    This test plan describes specifications, responsibilities, and general methodology for conducting a soil washing treatability study as applied to source unit contamination in the 100 Area. The objective ofthis treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. The purpose of separating these fractions is to minimize the volume of soil requiring permanent disposal. It is anticipated that this treatability study will be performed in two phases of testing, a remedy screening phase and a remedy selection phase. The remedy screening phase consists of laboratory- and bench-scale studies performed by Battelle Pacific Northwest laboratories (PNL) under a work order issued by Westinghouse Hanford Company (Westinghouse Hanford). This phase will be used to provide qualitative evaluation of the potential effectiveness of the soil washing technology. The remedy selection phase, consists of pilot-scale testing performed under a separate service contract to be competitively bid under Westinghouse Hanford direction. The remedy selection phase will provide data to support evaluation of the soil washing technology in future feasibility studies for Interim Remedial Measures (IRMs) or final operable unit (OU) remedies. Performance data from these tests will indicate whether applicable or relevant and appropriate requirements (ARARs) or cleanup goals can be met at the site(s) by application of soil washing. The remedy selection tests wig also allow estimation of costs associated with implementation to the accuracy required for the Feasibility Study

  1. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1993-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  2. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1994-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  3. What Happens at a Car Wash?

    Science.gov (United States)

    Gallick, Barbara; Lee, Lisa

    2010-01-01

    A class of 3- to 5-year-old children in a child care center in the midwestern United States chose to study a car wash as a group project. This article discusses how the project evolved, describes the three phases of the project, and provides the teachers' reflections on the project. Photos taken during the project and children's sketches are…

  4. A method for treating clayless wash fluids

    Energy Technology Data Exchange (ETDEWEB)

    Deykalo, T A; Dzhumagaliyev, T N; Skvortsov, D S

    1980-02-18

    To increase the heat and salt resistance of a wash fluid, monoethanolamine processed waste of licorice production - grist in a volume of 5-8% by weight, is introduced into it as the disperse phase. The processing of the grist is conducted for 1-2 hours at 20-100/sup 0/C and the volume of the monoethanolamine is 0.05-0.1% by weight. The properties of the washing fluids treated by the grist with the introduction of 20% CaC1/sub 2/ into them were not deteriorated, while complete coagulation was achieved with its introduction into washing fluids on the basis of KMTs. Grist washing liquids do not deteriorate their own properties to a temperature of 200/sup 0/C, do not cause equipment corrosion, are inert to swelling clay rocks and with the introduction of KMTs at a temperature above 130-140/sup 0/C cause insignificant destruction of the reagent which is accompanied by a change in the color of the solutions and a drop in the degree of polymerization and viscosity.

  5. Radioactivity in sludge: tank cleaning procedures and sludge disposal

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1995-01-01

    In the oil and gas industry management of alpha-active sludge is made more complex by the presence of hydrocarbons and heavy metals. This presentation discusses the origin of radioactivity in sludge, management of risk in terms of safe working procedures, storage and possible disposal options. The several options will generally involve aspects of dilution or of concentration; issues to be discussed will include sludge farming, bioremediation and incineration. (author)

  6. First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.

    Science.gov (United States)

    Shanableh, A; Imteaz, M

    2008-09-01

    This article presents an assessment of the first-order hydrothermal oxidation kinetics of a selected digested sludge at subcritical ( 374 degrees C) temperatures in the range of 250-460 degrees C. Furthermore, the results were compared with reported oxidation kinetics of raw sludge treated under identical experimental conditions. In the assessment, oxidation was considered to proceed in two steps: (1) decomposition of the particulate, or non-filterable, chemical oxygen demand (PCOD); followed by (2) ultimate oxidation and removal of the total, particulate and soluble, COD. The accumulation and removal of soluble COD (SCOD) was determined from the difference between the rates of sludge decomposition and ultimate oxidation. Using results from batch and continuous-flow hydrothermal treatment experiments, the reacting organic ingredients were separated into groups according to the ease or difficulty at which they were decomposed or removed, with Arrhenius-type activation energy levels assigned to the different groups. The analysis confirmed that within the treatment range of 75% to more than 97% COD removal, the oxidation kinetics of the digested and raw sludges were nearly identical despite differences in the proportions of their original organic ingredients. The original organic ingredients were mostly removed above 75% COD removal, and the oxidation kinetics appeared to be dominated by the removal of acetic acid, an intermediate by-product which constituted 50% to more than 80% of the remaining COD. Furthermore, the oxidation kinetics of both sludge types were consistent with reported first-order oxidation kinetics of pure acetic acid solutions. The resulting kinetic models adequately represented hydrothermal oxidation of digested sludge, in terms of COD and PCOD removals, as well as accumulation and removal of the soluble SCOD.

  7. Evaluation of sludge pile formation in a U-tube steam generator using a scale model

    International Nuclear Information System (INIS)

    Padmanabhan, M.; LeClair, M.L.; Chandra, S.; Grondahl, E.E.

    1989-01-01

    An experimental study was conducted to investigate sludge deposition in steam generators using a semicircular model to a geometric scale of 1:3 simulating the bottom region of a U-Tube steam generator. The vertical and horizontal velocity distributions and turbulence intensities at different elevations in the bottom region were measured using a Laser Doppler Anemometry (LDA) system. The sludge deposition tests were conducted using a sludge material selected after several trial tests with different materials. The deposition patterns showed good agreement with prototype sludge patterns, available from field data. A good correlation of the sludge deposition patterns with the measured flow patterns was established. Deposition of sludge was found to be initiated within the wakes behind the tubes. (orig./DG)

  8. Minimization of Excess Sludge in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Sayed Ali Reza Momeni

    2006-01-01

    Full Text Available The disposal of excess sludge from wastewater treatment plant represents a rising challenge in activated sludge processes. Hence, the minimization of excess sludge production was investigated by increasing the dissolved oxygen in aeration basin. Units of the pilot include: Primary sedimentation tank, aeration basin, secondary sedimentation tank, and return sludge tank. Volume of aeration basin is 360 l and influent flow rate is 90 L/h. Influent of pilot is taken from effluent of grit chamber of Isfahan's North Wastewater treatment plant. The experiments were done on different parts of pilot during the 5 month of study. Results show that increase of dissolved oxygen in aeration tank affect on decrease of excess sludge. Increase of dissolved oxygen from 0.5 to 4.5 mg/L resulted in 25% decrease of excess sludge. Variation of dissolved oxygen affect on settleability of sludge too. By increase of dissolved oxygen, SVI decreased and then increased. Value of 1-3 mg/L was the adequate range of dissolved oxygen by settleability of sludge and optimum range was 2-2.5 mg/L. It could be concluded by increasing of dissolved oxygen up to of 3 mg/L, sludge settleability significant decreased.

  9. Agricultural yields of irradiated sewage sludge

    International Nuclear Information System (INIS)

    Magnavacca, Cecilia; Miranda, E.; Sanchez, M.

    1999-01-01

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  10. Identification and quantification of nitrogen nutrient deficiency in the activated sludge process using respirometry

    NARCIS (Netherlands)

    Ning, Z.; Patry, G.G.; Spanjers, H.

    2000-01-01

    Experimental protocols to identify and quantify nitrogen nutrient deficiency in the activated sludge process were developed and tested using respirometry. Respirometric experiments showed that when a nitrogen nutrient deficient sludge is exposed to ammonia nitrogen, the oxygen uptake rate (OUR) of

  11. Frit Development Efforts for Sludge Batch 4 (SB4): Operating Window Assessments of Scenarios Leading Up to the Selected Preparation Plan for SB4

    International Nuclear Information System (INIS)

    Peeler, D

    2006-01-01

    The objective of this report is to document technical information that has been provided to Defense Waste Processing Facility (DWPF) and Closure Business Unit (CBU) personnel as part of the frit development support for Sludge Batch 4 (SB4). The information presented in this report includes projected operating windows (expressed in terms of waste loading) for various sludge blending and/or washing options coupled with candidate frits of interest. Although the Nominal Stage assessment serves as the primary tool for these evaluations, select systems were also evaluated using a Variation Stage assessment in which compositional variations were introduced. In addition, assessments of the impacts of nepheline formation potential and the SO 4 - solubility limit on the projected operating windows are also provided. Although this information was used as part of the technical basis leading to CBU's development of the preferred SB4 preparation plan, none of the options presented in this report was selected as the preferred plan. Therefore, the information is presented without significant interpretation of the resulting operating windows, but the projected windows are provided so additional insight can be explored if desired. Detailed assessments of the projected operating windows (using both Nominal and Variation Stage assessments) of the preferred sludge preparation plan with candidate frits are to be documented elsewhere. The information provided in this report is focused solely on model-based projections of the operating windows for various SB4 blending strategies of interest. Although nepheline formation potential is monitored via model predictions as a part of this assessment, experimental work investigating the impact of nepheline on glass quality is also being addressed in a parallel study. The results of this paper study and the experimental assessments of melt rate, SO 4 solubility, and/or nepheline formation potential are all critical components of the inputs into

  12. Sewage sludge irradiation with electrons

    International Nuclear Information System (INIS)

    Tauber, M.

    1976-01-01

    The disinfection of sewage sludge by irradiation has been discussed very intensively in the last few months. Powerful electron accelerators are now available and the main features of the irradiation of sewage sludge with fast electrons are discussed and the design parameters of such installations described. AEG-Telefunken is building an irradiation plant with a 1.5 MeV, 25 mA electron accelerator, to study the main features of electron irradiation of sewage sludge. (author)

  13. Sewage sludge additive

    Science.gov (United States)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  14. Hand washing promotion for preventing diarrhoea.

    Science.gov (United States)

    Ejemot-Nwadiaro, Regina I; Ehiri, John E; Arikpo, Dachi; Meremikwu, Martin M; Critchley, Julia A

    2015-09-03

    Diarrhoea accounts for 1.8 million deaths in children in low- and middle-income countries (LMICs). One of the identified strategies to prevent diarrhoea is hand washing. To assess the effects of hand washing promotion interventions on diarrhoeal episodes in children and adults. We searched the Cochrane Infectious Diseases Group Specialized Register (27 May 2015); CENTRAL (published in the Cochrane Library 2015, Issue 5); MEDLINE (1966 to 27 May 2015); EMBASE (1974 to 27 May 2015); LILACS (1982 to 27 May 2015); PsycINFO (1967 to 27 May 2015); Science Citation Index and Social Science Citation Index (1981 to 27 May 2015); ERIC (1966 to 27 May 2015); SPECTR (2000 to 27 May 2015); Bibliomap (1990 to 27 May 2015); RoRe, The Grey Literature (2002 to 27 May 2015); World Health Organization (WHO) International Clinical Trial Registry Platform (ICTRP), metaRegister of Controlled Trials (mRCT), and reference lists of articles up to 27 May 2015. We also contacted researchers and organizations in the field. Individually randomized controlled trials (RCTs) and cluster-RCTs that compared the effects of hand washing interventions on diarrhoea episodes in children and adults with no intervention. Three review authors independently assessed trial eligibility, extracted data, and assessed risk of bias. We stratified the analyses for child day-care centres or schools, community, and hospital-based settings. Where appropriate, incidence rate ratios (IRR) were pooled using the generic inverse variance method and random-effects model with 95% confidence intervals (CIs). We used the GRADE approach to assess the quality of evidence. We included 22 RCTs: 12 trials from child day-care centres or schools in mainly high-income countries (54,006 participants), nine community-based trials in LMICs (15,303 participants), and one hospital-based trial among people with acquired immune deficiency syndrome (AIDS) (148 participants).Hand washing promotion (education activities, sometimes with

  15. Process Development for Permanganate Addition During Oxidative Leaching of Hanford Tanks Sludges

    International Nuclear Information System (INIS)

    Rapko, Brian M.; Lumetta, Gregg J.; Deschane, Jaquetta R.; Peterson, Reid A.; Blanchard, David L.

    2007-01-01

    Previous Bechtel National, Incorporated (BNI)-sponsored studies have targeted optimizing sodium permanganate for the selective oxidation of chromium from washed Hanford tank sludges (Rapko et al. 2004; Rapko et al. 2005). The recommendation from previous work was that contact with sodium permanganate in a minimally caustic solution, i.e., 0.1 to 0.25 M [OH-] initially, provided maximum Cr dissolution while minimizing concomitant Pu dissolution. At the request of BNI, further work on oxidative alkaline leaching was performed

  16. Radioactive contamination of sewage sludge

    International Nuclear Information System (INIS)

    Soeder, C.J.; Zanders, E.; Raphael, T.

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required. (orig.) [de

  17. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Koch, F.

    1997-01-01

    Sewage systems serve about 70% of the Austrian population, producing 6 million m 3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  18. Dewatering properties of differently treated sewage sludge

    International Nuclear Information System (INIS)

    Zehnder, H.J.

    1977-01-01

    A study on dewatering properties of radiosterilized sewage sludge of different type and origin was carried out. For comparison, also heat-treated (pasteurized) sludge was investigated. The specific filtration resistance of irradiated sewage sludge was lowered in all types of sludge examined. In general, pasteurization increased this parameter. The settling properties of irradiated digested sewage sludge was slightly improved, mainly in the first hours after treatment. Microbial effects may mask the real sedimentation relations especcially in aerobically stabilized sludges. A pasteurization treatment of sewage sludge caused an increased content of soluble substances and suspended particles in the supernatant water. The supernatant water from irradiated sludge showed a smaller increase

  19. Heavy metals speciation in soils treated with sewage sludges

    International Nuclear Information System (INIS)

    Forero Hernandez, Adriana; Ballesteros Gonzalez, Maria Ines

    2004-01-01

    The chemical speciation in soils that had been treated with sewage sludge was determined to find out what had occurred to the heavy metals present. This was done nine weeks after sludge application. An incubation assay was realized using 2.5 % w/w sludge level; this is equivalent to 81.5 ton of sludge per hectare. Pots filled with sludge-soil mixture were placed in a greenhouse at temperature between 17 and 25 Celsius degrade, humidity at field capacity distributed in accordance with a random experimental design with four replicates and seven treatments. It was found that the concentration of Cd, Cu, Mn, Pb, and Zn was lower than the limits established by the environmental protection agency (EPA) for soil usage. Also, the organic carbon content, the available nitrogen and phosphorus were in the normal concentration range reported for organic fertilizers. The sludge addition to the soil gave significant increase of the fraction of Cd bounded to organic material as compared with the exchangeable fraction and the fraction bounded to iron-manganese oxides. Cooper showed more affinity for the fraction of iron-manganese oxides. Lead gave a fraction bounded to organic material that was absent in the witness samples. Zinc had a bigger proportion in the fraction associated with iron manganese oxides. Manganese as compared with the other metals showed the biggest unchangeable fraction

  20. Moisture distribution in sludges based on different testing methods

    Institute of Scientific and Technical Information of China (English)

    Wenyi Deng; Xiaodong Li; Jianhua Yan; Fei Wang; Yong Chi; Kefa Cen

    2011-01-01

    Moisture distributions in municipal sewage sludge, printing and dyeing sludge and paper mill sludge were experimentally studied based on four different methods, i.e., drying test, thermogravimetric-differential thermal analysis (TG-DTA) test, thermogravimetricdifferential scanning calorimetry (TG-DSC) test and water activity test. The results indicated that the moistures in the mechanically dewatered sludges were interstitial water, surface water and bound water. The interstitial water accounted for more than 50% wet basis (wb) of the total moisture content. The bond strength of sludge moisture increased with decreasing moisture content, especially when the moisture content was lower than 50% wb. Furthermore, the comparison among the four different testing methods was presented.The drying test was advantaged by its ability to quantify free water, interstitial water, surface water and bound water; while TG-DSC test, TG-DTA test and water activity test were capable of determining the bond strength of moisture in sludge. It was found that the results from TG-DSC and TG-DTA test are more persuasive than water activity test.

  1. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  2. COMPARISON BETWEEN DIFFERENT MODELS FOR RHEOLOGICAL CHARACTERIZATION OF ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    A. H. Khalili Garakani

    2011-09-01

    Full Text Available Activated sludge flow rheology is a very complicated phenomenon. Studies related to activated sludge tend to classify sludge as non-Newtonian fluid. Until now, several theories have been built to describe the complex behavior of activated sludge with varying degrees of success. In this article, seven different models for viscosity of non-Newtonian fluids (i.e., Power law, Bingham plastic, Herschel-Bulkley, Casson, Sisko, Carreau and Cross were considered to evaluate their predictive capability of apparent viscosity of activated sludge. Results showed that although evaluating the constants in the four-parameter models is difficult, they provide the best prediction of viscosity in the whole range of shear rates for activated sludge. For easier prediction of viscosity at different mixed liquor suspended solids (2.74-31g/L, temperature (15-25°C and shear rate (1-1000/s, simple correlations were proposed. Comparing the results with the experimental data revealed that the proposed correlations are in good agreement with real apparent viscosities.

  3. Comparison of the laboratory standard washing using CIPAC washing agent and the domestic washing on three recommended types of long-lasting insecticidal mosquito nets.

    Science.gov (United States)

    Ouattara, Jean Pierre Nabléni; Louwagie, Johanna; Pigeon, Olivier; Spanoghe, Pieter

    2013-01-01

    One of the best ways to prevent malaria is the use of insecticide-treated bed nets. Manufacturers pursue easier, safer and more efficient nets. Hence, many studies on the efficacy and wash resistance using World Health Organization standards have been reported. The commonly used detergent is "Savon de Marseille", because it closely resembles actually used soaps. At the 54(th) Collaborative International Pesticides Analytical Council (CIPAC) Technical Meeting in 2010, it was suggested to replace it by a standardized "CIPAC washing agent". The aim of this study was to investigate the difference between a laboratory hand washing simulation using the CIPAC washing agent (method-1) and a domestic washing (method-2) on different bed nets, as well as the effect of the drying process on the release of active ingredient. Interceptor®, Permanet®2.0 and Netprotect® nets were used in three treatments, each repeated 20 times. The first treatment included method-1 washing and indoor drying. The second treatment included method-2 washing and indoor drying. The third treatment used method-2 washing and UV-drying. The residual insecticide contents were determined using gas chromatography. The washing procedure and the number of washes have a significant effect on the release of active ingredient. Statistically, the two washing methods have the same effect on removing the active ingredient from the Interceptor® and Permanet®2.0 net, but a significantly different influence on the Netprotect® nets. The drying process has no significant effect on the insecticide. Both washing procedures affected the amount of insecticide remaining on nets independently of the impregnation technology. The active ingredient decreases with the number of washing cycles following an exponential or logarithmic model for coated nets. The laboratory hand washing simulation had more impact on the decrease of active ingredient content of the Netprotect® nets. All net types seemed to be effectively

  4. Comparison of the laboratory standard washing using CIPAC washing agent and the domestic washing on three recommended types of long-lasting insecticidal mosquito nets.

    Directory of Open Access Journals (Sweden)

    Jean Pierre Nabléni Ouattara

    Full Text Available One of the best ways to prevent malaria is the use of insecticide-treated bed nets. Manufacturers pursue easier, safer and more efficient nets. Hence, many studies on the efficacy and wash resistance using World Health Organization standards have been reported. The commonly used detergent is "Savon de Marseille", because it closely resembles actually used soaps. At the 54(th Collaborative International Pesticides Analytical Council (CIPAC Technical Meeting in 2010, it was suggested to replace it by a standardized "CIPAC washing agent". The aim of this study was to investigate the difference between a laboratory hand washing simulation using the CIPAC washing agent (method-1 and a domestic washing (method-2 on different bed nets, as well as the effect of the drying process on the release of active ingredient.Interceptor®, Permanet®2.0 and Netprotect® nets were used in three treatments, each repeated 20 times. The first treatment included method-1 washing and indoor drying. The second treatment included method-2 washing and indoor drying. The third treatment used method-2 washing and UV-drying. The residual insecticide contents were determined using gas chromatography.The washing procedure and the number of washes have a significant effect on the release of active ingredient. Statistically, the two washing methods have the same effect on removing the active ingredient from the Interceptor® and Permanet®2.0 net, but a significantly different influence on the Netprotect® nets. The drying process has no significant effect on the insecticide.Both washing procedures affected the amount of insecticide remaining on nets independently of the impregnation technology. The active ingredient decreases with the number of washing cycles following an exponential or logarithmic model for coated nets. The laboratory hand washing simulation had more impact on the decrease of active ingredient content of the Netprotect® nets. All net types seemed to be

  5. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition

  6. An assessment of water, sanitation and hygiene (wash) practices ...

    African Journals Online (AJOL)

    An assessment of water, sanitation and hygiene (wash) practices and quality of routinely ... East African Medical Journal ... There was a high uptake of households with treated drinking water (92%), availability of hand washing facilities in ...

  7. Hand washing practices amongst medical students in Port Harcourt ...

    African Journals Online (AJOL)

    Nigerian Health Journal ... Rates of hand washing are low world wide even amongst health care workers who are should know about its importance. The aim of ... The greatest motivation for hand washing was fear of contracting disease, whilst ...

  8. Ceramic wash-coat for catalyst support

    Science.gov (United States)

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  9. Evaluation of Ion Exchange Materials in K Basin Floor Sludge and Potential Solvents for PCB Extraction from Ion Exchange Materials

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Klinger, G.S.; Bredt, P.R.

    1998-01-01

    Approximately 73 m 3 of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. These small amounts are significant from a regulatory standpoint. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). Chemical pretreatment is required to address criticality issues and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Eleven technologies have been evaluated (Papp 1997) as potential pretreatment methods. Based on the evaluations and engineering studies and limited testing, Fluor Daniel Hanford recommended solvent washing of the K Basin sludge, followed by nitric acid dissolution and, potentially, peroxide addition (FDH 1997). The solvent washing (extraction) and peroxide addition would be used to facilitate PCB removal and destruction. Following solvent extraction, the PCBs could be distilled and concentrated for disposal as a low-level waste. The purpose of the work reported here was to continue investigating solvent extraction, first by better identifying the ion exchange materials in the actual sludge samples and then evaluating various solvents for removing the PCBs or possibly dissolving the resins. This report documents some of the process knowledge on ion exchange materials used and spilled in the K Basins and describes the materials identified from wet sieving KE Basin floor and canister sludge and the results of other analyses. Several photographs are included to compare materials and illustrate material behavior. A summary of previous tests on solvent

  10. Overall effect of carbon production and nutrient release in sludge holding tank on mainstream biological nutrient removal efficiency.

    Science.gov (United States)

    Jabari, Pouria; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2017-09-11

    The potential of hydrolysis/fermentation of activated sludge in sludge holding tank (SHT) to produce additional carbon for the biological nutrient removal (BNR) process was investigated. The study was conducted in anaerobic batch tests using the BNR sludge (from a full-scale Westside process) and the mixture of BNR sludge with conventional non-BNR activated sludge (to have higher biodegradable particulate chemical oxygen demand (bpCOD) in sludge). The BioWin 4.1 was used to simulate the anaerobic batch test of the BNR sludge. Also, the overall effect of FCOD production and nutrient release on BNR efficiency of the Westside process was estimated. The experimental results showed that the phosphorous uptake of sludge increased during hydrolysis/ fermentation condition up to the point when poly-P was completely utilized; afterwards, it decreased significantly. The BioWin simulation could not predict the loss of aerobic phosphorous uptake after poly-P was depleted. The results showed that in the case of activated sludge with relatively higher bpCOD (originating from plants with short sludge retention time or without primary sedimentation), beneficial effect of SHT on BNR performance is feasible. In order to increase the potential of SHT to enhance BNR efficiency, a relatively low retention time and high sludge load is recommended.

  11. Evaluation of a microwave based reactor for the treatment of blackwater sludge

    Energy Technology Data Exchange (ETDEWEB)

    Mawioo, Peter M., E-mail: p.mawioo@unesco-ihe.org [Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Rweyemamu, Audax; Garcia, Hector A.; Hooijmans, Christine M. [Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Brdjanovic, Damir [Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2016-04-01

    A laboratory-scale microwave (MW) unit was applied to treat fresh blackwater sludge that represented fecal sludge (FS) produced at heavily used toilet facilities. The sludge was exposed to MW irradiation at different power levels and for various durations. Variables such as sludge volume and pathogen reduction were observed. The results demonstrated that the MW is a rapid and efficient technology that can reduce the sludge volume by over 70% in these experimental conditions. The concentration of bacterial pathogenic indicator E. coli also decreased to below the analytical detection levels. Furthermore, the results indicated that the MW operational conditions including radiation power and contact time can be varied to achieve the desired sludge volume and pathogen reduction. MW technology can be further explored for the potential scaling-up as an option for rapid treatment of FS from intensively used sanitation facilities such as in emergency situations. - Highlights: • There is lack of fast and efficient fecal sludge treatment options in emergencies. • Microwave treatment is rapid and efficient in sludge volume and pathogen reduction. • Power and contact time can be varied to reach diverse levels of sludge treatment.

  12. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    International Nuclear Information System (INIS)

    Da Silva, P.H.M.; Poggiani, F.; Laclau, J.P.

    2011-01-01

    In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha - '1) and 86 % higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  13. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Müller da Silva

    2011-01-01

    Full Text Available In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha−1 and 86% higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  14. Evaluation of a microwave based reactor for the treatment of blackwater sludge

    International Nuclear Information System (INIS)

    Mawioo, Peter M.; Rweyemamu, Audax; Garcia, Hector A.; Hooijmans, Christine M.; Brdjanovic, Damir

    2016-01-01

    A laboratory-scale microwave (MW) unit was applied to treat fresh blackwater sludge that represented fecal sludge (FS) produced at heavily used toilet facilities. The sludge was exposed to MW irradiation at different power levels and for various durations. Variables such as sludge volume and pathogen reduction were observed. The results demonstrated that the MW is a rapid and efficient technology that can reduce the sludge volume by over 70% in these experimental conditions. The concentration of bacterial pathogenic indicator E. coli also decreased to below the analytical detection levels. Furthermore, the results indicated that the MW operational conditions including radiation power and contact time can be varied to achieve the desired sludge volume and pathogen reduction. MW technology can be further explored for the potential scaling-up as an option for rapid treatment of FS from intensively used sanitation facilities such as in emergency situations. - Highlights: • There is lack of fast and efficient fecal sludge treatment options in emergencies. • Microwave treatment is rapid and efficient in sludge volume and pathogen reduction. • Power and contact time can be varied to reach diverse levels of sludge treatment.

  15. Sludge Digestion Manual; Handboek Slibgisting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    This manual offers a guideline for developing, designing, optimizing and operating sludge digestion installations based on sewage sludge. It also offers tools for solving operation problems [Dutch] Het Handboek is een leidraad voor het ontwikkelen, ontwerpen, optimaliseren en bedrijven van slibgistingsinstallaties voor zuiveringsslib. Ook geeft het handvatten voor het oplossen van operationele problemen.

  16. 33 CFR 157.124 - COW tank washing machines.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW tank washing machines. 157... OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b...

  17. Irreversible Wash Aid Additive for Cesium Mitigation: WARRP Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    This activity demonstrated, on a practical scale, the primary unit operations for building a containment structure for radioactive wash waters, washing down a hypothetically radioactively contaminated vehicle, collecting the hypothetically radioactive slurry waste water, filtering the hypothetically radioactive wash waters, disassembling the containment, and transporting the materials for final disposition.

  18. The effect of silica in washing with geothermal water, Iceland

    International Nuclear Information System (INIS)

    Lindal, B.

    1992-01-01

    Industrial washing operation using geothermal water in Iceland are reported and testing designed to explain the beneficial effect of geothermal water for washing described. The findings indicate, that the silica content of the water may be the principal component for a superior washing quality

  19. On the rheological characteristics of sewage sludge

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2010-01-01

    Full Text Available The work is focused on characterization of rheological behavior of sewage sludges sampled at different stages of waste water treatment. The main attention was focused on dynamic viscosity dependence on temperature, and shear rate. The sludge samples were examined under temperature ranging from 1 °C to 25 °C and under shear rate ranging from 0.34 s−1 to 68 s−1. Rotary digital viscometer (concentric cylinders geometry was used to perform the reological measurements. The solids content of the sludge samples ranged from 0.43 % to 21.45 % (A and C samples, respectively and ash free dry mass from 56.21 % to 67.80 % (A and B samples, respectively. The tested materials were found to be of non–Newtoninan nature and temperature dependent. Measured data were successfully cha­ra­cte­ri­zed by several mathematical models (Arrhenius, Bingham Plastic, Casson Law, Exponential, Gaussian, and IPC Paste in MATLAB® software with satisfying correlations between experimental and computed results. The best match (R2 = 0.999 was received with use of Gaussian model, in both cases, shear rate and temperature dependence. The results are quite useful e.g. for the purpose of technological equipment design.

  20. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals

    International Nuclear Information System (INIS)

    Makino, Tomoyuki; Sugahara, Kazuo; Sakurai, Yasuhiro; Takano, Hiroyuki; Kamiya, Takashi; Sasaki, Kouta; Itou, Tadashi; Sekiya, Naoki

    2006-01-01

    The efficiencies of neutral salts, strong acids, and chelates were tested for extracting cadmium (Cd) from three paddy soils. The higher the selectivity of the cations of the added neutral salts toward soil adsorption sites, the lower the pH in the extracts and the more soil Cd could be extracted. In addition, soil carbon and nitrogen contents and mineral composition were closely associated with the amount of Cd extracted. Calcium chloride and iron(III) chloride were selected as wash chemicals to restore Cd-contaminated paddy soils in situ. Washing with calcium chloride led to the formation of Cd chloride complexes, enhancing Cd extraction from the soils. The washing also substantially decreased soil levels of exchangeable and acid-soluble Cd, which are the major forms of bioavailable Cd for rice (Oryza sativa L.). The optimum conditions for in situ soil washing were also determined for calcium chloride. - Calcium chloride and iron(III) chloride were useful for the in situ washing of Cd-contaminated paddy soils

  1. Leaching and accumulation of trace elements in sulfate reducing granular sludge under concomitant thermophilic and low pH conditions

    KAUST Repository

    Gonzalez-Gil, Graciela; Lopes, Sí lvia I C; Saikaly, Pascal; Lens, Piet Nl L

    2012-01-01

    The leaching and/or accumulation of trace elements in sulfate reducing granular sludge systems was investigated. Two thermophilic up-flow anaerobic sludge bed (UASB) reactors operated at pH 5 were fed with sucrose (4gCODl reactor -1d -1) and sulfate at different COD/SO 4 2- ratios. During the start-up of such acidogenic systems, an initial leaching of trace elements from the inoculum sludge occurred regardless of trace elements supplementation in the reactor influent. The granular sludge maintained the physical structure despite high Fe leaching. After start-up and nonetheless the acidic conditions, Co, Ni, Cu, Zn, Mo and Se were retained or accumulated by the sludge when added. Particularly, Ni and Co accumulated in the carbonates and exchangeable fractions ensuring potential bioavailability. Otherwise, the initial stock in the inoculum sludge sufficed to operate the process for nearly 1year without supplementation of trace elements and no significant sludge wash-out occurred. © 2012 Elsevier Ltd.

  2. Leaching and accumulation of trace elements in sulfate reducing granular sludge under concomitant thermophilic and low pH conditions

    KAUST Repository

    Gonzalez-Gil, Graciela

    2012-12-01

    The leaching and/or accumulation of trace elements in sulfate reducing granular sludge systems was investigated. Two thermophilic up-flow anaerobic sludge bed (UASB) reactors operated at pH 5 were fed with sucrose (4gCODl reactor -1d -1) and sulfate at different COD/SO 4 2- ratios. During the start-up of such acidogenic systems, an initial leaching of trace elements from the inoculum sludge occurred regardless of trace elements supplementation in the reactor influent. The granular sludge maintained the physical structure despite high Fe leaching. After start-up and nonetheless the acidic conditions, Co, Ni, Cu, Zn, Mo and Se were retained or accumulated by the sludge when added. Particularly, Ni and Co accumulated in the carbonates and exchangeable fractions ensuring potential bioavailability. Otherwise, the initial stock in the inoculum sludge sufficed to operate the process for nearly 1year without supplementation of trace elements and no significant sludge wash-out occurred. © 2012 Elsevier Ltd.

  3. Radiotracer study of wash load movement in a drum-type fabric washing machine using a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Balt, A.P.; Brekel, L.D.M. van den; Vandecasteele, C.; Kolar, Z.

    1987-01-01

    A study was made of the movement of the wash loads in a drum-type washing machine. For this purpose a sup(99m)Tc source was attached to one or two separate textile pieces and the subsequent source positions were determined by means of a gamma-camera. The wash load movement pattern appears to depend on the type of textile material and its amount, as well as on the volume of water present in the washing machine.

  4. Radiotracer study of wash load movement in a drum-type fabric washing machine using a gamma camera

    International Nuclear Information System (INIS)

    Balt, A.P.; Brekel, L.D.M. van den; Vandecasteele, C.; Kolar, Z.

    1987-01-01

    A study was made of the movement of the wash loads in a drum-type washing machine. For this purpose a sup(99m)Tc source was attached to one or two separate textile pieces and the subsequent source positions were determined by means of a gamma-camera. The wash load movement pattern appears to depend on the type of textile material and its amount, as well as on the volume of water present in the washing machine. (author)

  5. Status report: Pretreatment chemistry evaluation FY1997 -- Wash and leach factors for the single-shell tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Colton, N.G.

    1997-08-01

    The wash factors will be used to partition the single-shell tank (SST) inventory into soluble and insoluble portions. The leach factors will be used to estimate the further removal of bulk analytes, such as chromium, aluminum, and phosphate, as well as minor components. Wash and leach factors are given here for 18 analytes, elements expected to drive the volume of material disposed of as high-level waste (HLW). These factors are determined by a weighting methodology developed earlier by this task. Tank-specific analyte inventory values depicted in Tank Waste Data Summary Worksheets, are calculated from concentrations obtained from characterization reports; the waste density; and the tank waste volume. The experimentally determined percentage of analytes removed by washing and leaching in a particular tank waste are translated into a mass (metric tons) in Experimental Washing and Leaching Data Summary Worksheets.

  6. Status report: Pretreatment chemistry evaluation FY1997 - Wash and leach factors for the single-shell tank waste inventory

    International Nuclear Information System (INIS)

    Colton, N.G.

    1997-08-01

    The wash factors will be used to partition the single-shell tank (SST) inventory into soluble and insoluble portions. The leach factors will be used to estimate the further removal of bulk analytes, such as chromium, aluminum, and phosphate, as well as minor components. Wash and leach factors are given here for 18 analytes, elements expected to drive the volume of material disposed of as high-level waste (HLW). These factors are determined by a weighting methodology developed earlier by this task. Tank-specific analyte inventory values depicted in Tank Waste Data Summary Worksheets, are calculated from concentrations obtained from characterization reports; the waste density; and the tank waste volume. The experimentally determined percentage of analytes removed by washing and leaching in a particular tank waste are translated into a mass (metric tons) in Experimental Washing and Leaching Data Summary Worksheets

  7. Ultrasonic sludge pretreatment under pressure.

    Science.gov (United States)

    Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri

    2013-09-01

    The objective of this work was to optimize the ultrasound (US) pretreatment of sludge. Three types of sewage sludge were examined: mixed, secondary and secondary after partial methanisation ("digested" sludge). Thereby, several main process parameters were varied separately or simultaneously: stirrer speed, total solid content of sludge (TS), thermal operating conditions (adiabatic vs. isothermal), ultrasonic power input (PUS), specific energy input (ES), and for the first time external pressure. This parametric study was mainly performed for the mixed sludge. Five different TS concentrations of sludge (12-36 g/L) were tested for different values of ES (7000-75,000 kJ/kgTS) and 28 g/L was found as the optimum value according to the solubilized chemical oxygen demand in the liquid phase (SCOD). PUS of 75-150 W was investigated under controlled temperature and the "high power input - short duration" procedure was the most effective at a given ES. The temperature increase in adiabatic US application significantly improved SCOD compared to isothermal conditions. With PUS of 150 W, the effect of external pressure was investigated in the range of 1-16 bar under isothermal and adiabatic conditions for two types of sludge: an optimum pressure of about 2 bar was found regardless of temperature conditions and ES values. Under isothermal conditions, the resulting improvement of sludge disintegration efficacy as compared to atmospheric pressure was by 22-67% and 26-37% for mixed and secondary sludge, respectively. Besides, mean particle diameter (D[4,3]) of the three sludge types decreased respectively from 408, 117, and 110 μm to about 94-97, 37-42, and 36-40 μm regardless of sonication conditions, and the size reduction process was much faster than COD extraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  10. Hydrogen generation in SRAT with nitric acid and late washing flowsheets

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    Recently, SRTC recommended two process changes: (1) a final wash of the tetraphenylborate precipitate feed slurry and (2) the use of nitric acid to neutralize the sludge in the SRAT. The first change produced an aqueous hydrolysis product (PHA) with higher formic acid/formate and copper concentration, and reduced the nitrate content in the PHA by an order of magnitude. The second change is to substitute part of formic acid added to the SRAT with nitric acid, and therefore may reduce the hydrogen generated in the SRAT as well as provide nitrate as an oxidant to balance the redox state of the melter feed. The purpose of this report is to determine the pertinent variables that could affect the hydrogen generation rate with these process changes

  11. Treatment of radioactive sludge

    International Nuclear Information System (INIS)

    Allison, W.; Payne, B.J.; Pegler, G.E.

    1979-01-01

    Radioactive sludge e.g. that which may accumulate in irradiated nuclear fuel element storage ponds, is treated by pumping it from a settling tank to a particle separator, conveniently a hydrocyclone and a sloping plate separator, the liquid being returned to the settling tank and the solids being metered into a drum pre-lined with dry cement. The drums are in a containment box in which they are transferred to a mixing station where the particles and cement are mixed and thence to a curing station. After curing the drums are embedded in cement in outer containers for transport to a long-term storage site. (author)

  12. THE HYDROTHERMAL REACTIONS OF MONOSODIUM TITANATE, CRYSTALLINE SILICOTITANATE AND SLUDGE IN THE MODULAR SALT PROCESS: A LITERATURE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Pennebaker, F.; Fink, S.

    2010-11-11

    The use of crystalline silicotitanate (CST) is proposed for an at-tank process to treat High Level Waste at the Savannah River Site. The proposed configuration includes deployment of ion exchange columns suspended in the risers of existing tanks to process salt waste without building a new facility. The CST is available in an engineered form, designated as IE-911-CW, from UOP. Prior data indicates CST has a proclivity to agglomerate from deposits of silica rich compounds present in the alkaline waste solutions. This report documents the prior literature and provides guidance for the design and operations that include CST to mitigate that risk. The proposed operation will also add monosodium titanate (MST) to the supernate of the tank prior to the ion exchange operation to remove strontium and select alpha-emitting actinides. The cesium loaded CST is ground and then passed forward to the sludge washing tank as feed to the Defense Waste Processing Facility (DWPF). Similarly, the MST will be transferred to the sludge washing tank. Sludge processing includes the potential to leach aluminum from the solids at elevated temperature (e.g., 65 C) using concentrated (3M) sodium hydroxide solutions. Prior literature indicates that both CST and MST will agglomerate and form higher yield stress slurries with exposure to elevated temperatures. This report assessed that data and provides guidance on minimizing the impact of CST and MST on sludge transfer and aluminum leaching sludge.

  13. Use of pulsed neutron logging to evaluate perforation washing

    International Nuclear Information System (INIS)

    Dimon, C.A.

    1986-01-01

    This invention relates to the use of pulsed neutron logging techniques before and after perforation washing operations are performed to evaluate the degree of success of the perforation washing operations. Well logging operations of a type designed to respond to the difference between a formation immediately behind the well sheath and voids in the formation are performed both before and after the perforation washing operation. differences between the two resulting logs are then indicative of voids created by perforation washing. In a preferred embodiment, pulsed neutron logging is used as the logging technique, while a weighted brine having a high absorption cross section to pulsed neutrons is used as the perforation washing fluid

  14. Physical and chemical factors affecting sludge consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Blimkie, M.E.; Lavoie, P.A

    1997-09-01

    Chemical reactions between sludge components and precipitation reactions within the pores of the existing sludge are shown to contribute to the consolidation of sludge under steam generator operating conditions. Simulations of sludge representative of plants with a mixed iron/copper feedtrain suggest that as the conditions in the feedtrain become more oxidizing the sludge will become harder with a higher nickel ferrite content. The precipitation of feedwater impurities introduced by condenser leaks and of zinc silicate, which is produced in plants with brass condenser tubes and silica in the makeup water, contribute significantly to sludge consolidation. Sodium phosphate is also shown to be an agent of sludge consolidation. (author)

  15. A novel study on UV protection and antibacterial properties of washed denim garment

    Directory of Open Access Journals (Sweden)

    Pervez Md. Nahid

    2017-01-01

    Full Text Available On this planet, many investigations are applied to switch conventional chemical cloth techniques via eco-pleasant and economically attractive bioprocesses using enzymes. The present study offers an enzymatic washing system using enzyme (Cellzyme SPL H/C for boosting the ultraviolet and antimicrobial undertaking of denim garments. Experimental results showed that the 4.0% o.w.f enzyme awareness furnished a greater UPF than the other concentrations and before washed. Results divulge that enzyme (Cellzyme SPL H/C not handiest preserve the fabric surface from UV degradation but also performed extended degree of antibacterial endeavour in opposition to some species of bacteria that leading to act as a nice antibacterial agent on the denim materials. The enzyme washing healing diminished the skin hairiness and accelerated the skin evenness of the denim fibres as shown by means of SEM measurements.

  16. Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water

    Science.gov (United States)

    Banach, Jennifer L.; Sampers, Imca; Van Haute, Sam; van der Fels-Klerx, H.J. (Ine)

    2015-01-01

    The potential cross-contamination of pathogens between clean and contaminated produce in the washing tank is highly dependent on the water quality. Process wash water disinfectants are applied to maintain the water quality during processing. The review examines the efficacy of process wash water disinfectants during produce processing with the aim to prevent cross-contamination of pathogens. Process wash water disinfection requires short contact times so microorganisms are rapidly inactivated. Free chlorine, chlorine dioxide, ozone, and peracetic acid were considered suitable disinfectants. A disinfectant’s reactivity with the organic matter will determine the disinfectant residual, which is of paramount importance for microbial inactivation and should be monitored in situ. Furthermore, the chemical and worker safety, and the legislative framework will determine the suitability of a disinfection technique. Current research often focuses on produce decontamination and to a lesser extent on preventing cross-contamination. Further research on a sanitizer’s efficacy in the washing water is recommended at the laboratory scale, in particular with experimental designs reflecting industrial conditions. Validation on the industrial scale is warranted to better understand the overall effects of a sanitizer. PMID:26213953

  17. Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water

    Directory of Open Access Journals (Sweden)

    Jennifer L. Banach

    2015-07-01

    Full Text Available The potential cross-contamination of pathogens between clean and contaminated produce in the washing tank is highly dependent on the water quality. Process wash water disinfectants are applied to maintain the water quality during processing. The review examines the efficacy of process wash water disinfectants during produce processing with the aim to prevent cross-contamination of pathogens. Process wash water disinfection requires short contact times so microorganisms are rapidly inactivated. Free chlorine, chlorine dioxide, ozone, and peracetic acid were considered suitable disinfectants. A disinfectant’s reactivity with the organic matter will determine the disinfectant residual, which is of paramount importance for microbial inactivation and should be monitored in situ. Furthermore, the chemical and worker safety, and the legislative framework will determine the suitability of a disinfection technique. Current research often focuses on produce decontamination and to a lesser extent on preventing cross-contamination. Further research on a sanitizer’s efficacy in the washing water is recommended at the laboratory scale, in particular with experimental designs reflecting industrial conditions. Validation on the industrial scale is warranted to better understand the overall effects of a sanitizer.

  18. Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste.

    Science.gov (United States)

    Mahto, Ashesh; Gupta, Rajeev; Ghara, Krishna Kanta; Srivastava, Divesh N; Maiti, Pratyush; D, Kalpana; Rivera, Paul-Zavala; Meena, R; Nataraj, S K

    2017-10-15

    This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl 2 in inert atmosphere resulting in high surface area (730-900m 2 g -1 ) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg -1 , whereas all solid supercapacitor devised using PVA/H 3 PO 4 polyelectrolyte showed stable capacitance of 105Fg -1 at 0.2Ag -1 . The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable. Copyright © 2017. Published by Elsevier B.V.

  19. Hydrogen generation in SRAT with nitric acid and late washing flowsheets

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    Melter feed preparation processes, incorporating a final wash of the precipitate slurry feed to Defense Waste Processing Facility (DWPF) and a partial substitution of the SRAT formic acid requirement with nitric acid, should not produce peak hydrogen generation rates during Cold Chemical Runs (CCR's) and radioactive operation greater than their current, respective hydrogen design bases of 0.024 lb/hr and 1.5 lb/hr. A single SRAT bench-scale process simulation for CCR-s produced a DWPF equivalent peak hydrogen generation rate of 0.004 lb/hr. During radioactive operation, the peak hydrogen generation rate will be dependent on the extent DWPF deviates from the nominal precipitate hydrolysis and melter feed preparation process operating parameters. Two actual radioactive sludges were treated according to the new flowsheets. The peak hydrogen evolution rates were equivalent to 0.038 and 0.20 lb/hr (DWPF scale) respectively. Compared to the formic acid -- HAN hydrolysis flowsheets, these peak rates were reduced by a factor of 2.5 and 3.4 for Tank 15 and Tank 11 sludges, respectively

  20. Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char

    International Nuclear Information System (INIS)

    Gil-Lalaguna, N.; Sánchez, J.L.; Murillo, M.B.; Atienza-Martínez, M.; Gea, G.

    2014-01-01

    Thermo-chemical treatment of sewage sludge is an interesting option for recovering energy and/or valuable products from this waste. This work presents an energetic assessment of pyrolysis and gasification of sewage sludge, also considering the prior sewage sludge thermal drying and the gasification of the char derived from the pyrolysis stage. Experimental data obtained from pyrolysis of sewage sludge, gasification of sewage sludge and gasification of char (all of these performed in a lab-scale fluidized reactor) were used for the energetic calculations. The results show that the energy contained in the product gases from pyrolysis and char gasification is not enough to cover the high energy consumption for thermal drying of sewage sludge. Additional energy could be obtained from the calorific value of the pyrolysis liquid, but some of its properties must be improved facing towards its use as fuel. On the other hand, the energy contained in the product gas of sewage sludge gasification is enough to cover the energy demand for both the sewage sludge thermal drying and the gasification process itself. Furthermore, a theoretical study included in this work shows that the gasification efficiency is improved when the chemical equilibrium is reached in the process. - Highlights: • 4 MJ kg −1 for thermal drying of sewage sludge (SS) from 65 to 6.5 wt.% of moisture. • 0.15 MJ kg −1 for thermal decomposition of sewage sludge during fast pyrolysis. • Not enough energy in gases from SS pyrolysis and char gasification for thermal drying. • Enough energy in SS gasification gas for thermal drying and gasification process. • Gasification efficiency improves when equilibrium is reached in the process

  1. Axial Dispersion during Hanford Saltcake Washing

    International Nuclear Information System (INIS)

    Josephson, Gary B.; Geeting, John GH; Lessor, Delbert L.; Barton, William B.

    2006-01-01

    Clean up of Hanford salt cake wastes begins with dissolution retrieval of the sodium rich salts that make up the dominant majority of mass in the tanks. Water moving through the porous salt cake dissolves the soluble components and also displaces the soluble radionuclides (e.g. 137Cs and 99TcO4- ). The separation that occurs from this displacement, known as Selective dissolution, is an important component in Hanford?s pretreatment of low activity wastes for subsequent Supplemental treatment. This paper describes lab scale testing conducted to evaluate Selective dissolution of cesium from non-radioactive Hanford tank 241-S-112 salt cake simulant containing the primary chemicals found the actual tank. An modified axial dispersion model with increasing axial dispersion was developed to predict cesium removal. The model recognizes that water dissolves the salt cake during washing, which causes an increase in the axial dispersion during the wash. This model was subsequently compared with on-line cesium measurements from the retrieval of tank 241-S-112. The model had remarkably good agreement with both the lab scale and full scale data

  2. Wasting Away: To Sludge or Not to Sludge?

    Directory of Open Access Journals (Sweden)

    L Nicolle

    2001-01-01

    Full Text Available Following a century of high standards of sanitation, food and water safety in North America are often taken for granted. Recent outbreaks of illness attributed to food and water contamination, however, have challenged this complacency. Now, sludge is added to the list of concerns. Sewage sludge is the muddy substance that remains after the treatment of municipal sewage. This material includes not only human waste, but also household and industrial toxic wastes disposed of in local sewers. Federal and provincial Canadian regulations support the use of this material as fertilizer, within acceptable guidelines, as does the Environmental Protection Agency in the United States. The safety of sludge, however, is questioned by some individuals and groups. Specifically, the risk of infectious agents and toxins to workers or other exposed individuals, and the potential for heavy metals and organic chemicals to be transferred from sludge-treated fields into crops are concerns.

  3. Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.

    Science.gov (United States)

    Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine

    2015-05-01

    Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge.

  4. Micropollutant removal from black water and grey water sludge in a UASB-GAC reactor.

    Science.gov (United States)

    Butkovskyi, A; Sevenou, L; Meulepas, R J W; Hernandez Leal, L; Zeeman, G; Rijnaarts, H H M

    2018-02-01

    The effect of granular activated carbon (GAC) addition on the removal of diclofenac, ibuprofen, metoprolol, galaxolide and triclosan in a up-flow anaerobic sludge blanket (UASB) reactor was studied. Prior to the reactor studies, batch experiments indicated that addition of activated carbon to UASB sludge can decrease micropollutant concentrations in both liquid phase and sludge. In continuous experiments, two UASB reactors were operated for 260 days at an HRT of 20 days, using a mixture of source separated black water and sludge from aerobic grey water treatment as influent. GAC (5.7 g per liter of reactor volume) was added to one of the reactors on day 138. No significant difference in COD removal and biogas production between reactors with and without GAC addition was observed. In the presence of GAC, fewer micropollutants were washed out with the effluent and a lower accumulation of micropollutants in sludge and particulate organic matter occurred, which is an advantage in micropollutant emission reduction from wastewater. However, the removal of micropollutants by adding GAC to a UASB reactor would require more activated carbon compared to effluent post-treatment. Additional research is needed to estimate the effect of bioregeneration on the lifetime of activated carbon in a UASB-GAC reactor.

  5. Bacterial selection during the formation of early-stage aerobic granules in wastewater treatment systems operated under wash-out dynamics

    Directory of Open Access Journals (Sweden)

    David Gregory Weissbrodt

    2012-09-01

    Full Text Available Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s-1 was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s-1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in

  6. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics.

    Science.gov (United States)

    Weissbrodt, David G; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  7. Development of a model describing virus removal process in an activated sludge basin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.; Shiragami, N. Unno, H. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-06-20

    The virus removal process from the liquid phase in an activated sludge basin possibly consists of physicochemical processes, such as adsorption onto sludge flocs, biological processes such as microbial predating and inactivation by virucidal components excreted by microbes. To describe properly the virus behavior in an activated sludge basin, a simple model is proposed based on the experimental data obtained using a poliovirus type 1. A three-compartments model, which include the virus in the liquid phase and in the peripheral and inner regions of sludge flocs is employed. By using the model, the Virus removal process was successfully simulated to highlight the implication of its distribution in the activated sludge basin. 17 refs., 8 figs.

  8. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    Science.gov (United States)

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  9. Application of automotive paint sludge in the production of white ceramic

    International Nuclear Information System (INIS)

    Praxedes, P.B.; Ponte, H.A.; Mymrine, V.

    2016-01-01

    Full text: Paint wastes of an automotive industry were evaluated in terms of their chemical and mineralogical characteristics in order to analyse its potential use as a reinforcing agent in white ceramic. Both kaolin and sludge paint were analysed using the techniques of XRF, XRD, SEM, EDS. In order to understand the behaviour of the sludge during firing, TGA and DTA analysis were done. Samples containing kaolin and 0, 1, 2, 4 and 8 (wt.%) sludge paint were prepared. The ceramics were compacted at 10MPa and sintered at 1000 °C, 1200 °C, 1250 °C and 1300 °C. Water absorption, linear shrinkage and flexural strength were the mechanical properties evaluated in the samples. The experimental results showed that the samples with lagers amounts of sludge performed better or similar to the samples that only contained kaolin. The insertion of 8 (wt.%) of sludge in the specimen increased flexural strength in 63%. (author)

  10. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  11. Aqueous treatment of water-sensitive paper objects: capillary unit, blotter wash or paraprint wash?

    NARCIS (Netherlands)

    Schalkx, H.; Iedema, P.; Reissland, B.; van Velzen, B.

    2011-01-01

    Blotter washing andwashing with the capillary unit are both methods used for aqueoustreatment of water-sensitive paper objects. The challenge of thistreatment is to remove water-soluble products while keeping thewater-sensitive medium in its place. In this article the two methodsare compared, along

  12. Enhanced salmonella reduction on tomatoes washed in chlorinated water with wash aid T-128

    Science.gov (United States)

    Chlorine is widely used by the fresh and fresh-cut produce industries to reduce microbial populations and to prevent potential pathogen cross contamination during produce washing. However, the organic materials released from produce quickly react with chlorine and degrade its efficacy for pathogen i...

  13. Ferrocyanide safety program: An assessment of the possibility of ferrocyanide sludge dryout

    International Nuclear Information System (INIS)

    Epstein, M.; Fauske, H.K.; Dickinson, D.R.; Crippen, M.D.; McCormack, J.D.; Cash, R.J.; Meacham, J.E.; Simmons, C.S.

    1994-09-01

    Much attention has been focused on the Hanford Site radioactive waste storage tanks as a results of problems that have been envisioned for them. One problem is the potential chemical reaction between ferrocyanide precipitate particles and nitrates in the absence of water. This report addresses the question of whether dryout of a portion of ferrocyanide sludge would render it potentially reactive. Various sludge dryout mechanisms were examined to determine if any of them could occur. The mechanisms are: (1) bulk heating of the entire sludge inventory to its boiling point; (2) loss of liquid to the atmosphere via sludge surface evaporation; (3) local drying by boiling in a hot spot region; (4) sludge drainage through a leak in the tank wall; and (5) local drying by evaporation from a warm segment of surface sludge. From the simple analyses presented in this report and more detailed published analyses, it is evident that global loss of water from bulk heating of the sludge to its boiling point or from surface evaporation and vapor transport to the outside air is not credible. Also, from the analyses presented in this report and experimental and analytical work presented elsewhere, it is evident that formation of a dry local or global region of sludge as a result of tank leakage (draining of interstitial liquid) is not possible. Finally, and most importantly, it is concluded that formation of dry local regions in the ferrocyanide sludge by local hot spots or warm surface regions is not possible. The conclusion that local or global dryout is incredible is consistent with four decades of waste storage history, during which sludge temperature have gradually decreased or remained constant and the sludge moisture content has been retained. 54 refs

  14. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-03-23

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  15. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    International Nuclear Information System (INIS)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-01-01

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste (HLW)) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  16. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry

    International Nuclear Information System (INIS)

    Mousset, Emmanuel; Huguenot, David; Hullebusch, Eric D. van; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A.

    2016-01-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween"® 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween"® 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R"2 > 0.975). More HPCD was recovered (89%) than Tween"® 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween"® 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  17. Effects of irradiation of sewage sludge on heavy metal bioavailability

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Mayoh, K.R.

    1986-10-01

    Sewage sludges are a valuable resource to agriculture, but their use is limited by the hazards of pathogens, toxic chemicals and heavy metals. Irradiation can control the pathogens and deactivate some of the toxic chemicals. The relative cost of industrial-scale irradiation using accelerators has decreased progressively. This, coupled with the increasing necessity to recycle wastes, has led to renewed interest in irradiation of sludges. In response to this renewed interest, this report examines what is known about the effects of irradiation on the bioavailability of heavy metals. Very few studies have addressed this topic, although workers in the U.S. have claimed decreased solubility of metals in irradiated sludges. We have also briefly reviewed the general literature on sludge to gain indirect evidence on the likely effects. The scant data, often based on less than ideal experimental methodologies, show no major consistent effects of irradiation on the availability of heavy metals from sludge. The data are not sufficient to rule out such effects entirely, but the effects appear to be fairly subtle and not likely to persist beyond one growth season. 85 refs

  18. Enhanced sludge reduction in septic tanks by increasing temperature.

    Science.gov (United States)

    Pussayanavin, Tatchai; Koottatep, Thammarat; Eamrat, Rawintra; Polprasert, Chongrak

    2015-01-01

    Septic tanks in most developing countries are constructed without drainage trenches or leaching fields to treat toilet wastewater and /or grey water. Due to the short hydraulic retention time, effluents of these septic tanks are still highly polluted, and there is usually high accumulation of septic tank sludge or septage containing high levels of organics and pathogens that requires frequent desludging and subsequent treatment. This study aimed to reduce sludge accumulation in septic tanks by increasing temperatures of the septic tank content. An experimental study employing two laboratory-scale septic tanks fed with diluted septage and operating at temperatures of 40 and 30°C was conducted. At steady-state conditions, there were more methanogenic activities occurring in the sludge layer of the septic tank operating at the temperature of 40°C, resulting in less total volatile solids (TVS) or sludge accumulation and more methane (CH4) production than in the unit operating at 30°C. Molecular analysis found more abundance and diversity of methanogenic microorganisms in the septic tank sludge operating at 40°C than at 30°C. The reduced TVS accumulation in the 40°C septic tank would lengthen the period of septage removal, resulting in a cost-saving in desluging and septage treatment. Cost-benefit analysis of increasing temperatures in septic tanks was discussed.

  19. Research on Treatment Technology and Device of Oily Sludge

    Science.gov (United States)

    Wang, J. Q.; Shui, F. S.; Li, Q. F.

    2017-12-01

    Oily sludge is a solid oily waste, which is produced during the process of oil exploitation, transportation, refining and treatment of oily sewage. It contains a great number of hazardous substance, and is difficult to handle with. To solve the problem of waste resources of oil sludge with high oil content and usually not easy to aggregate during the preparation of profile control agent, a new oily sludge treatment device was developed. This device consists of heat supply unit, flush and filter unit, oil removal unit and dehydration unit. It can effectively clean and filter out the waste from oily sludge, recycle the oil resources and reduce the water content of the residue. In the process of operation, the water and chemical agent are recycled in the device, eventually producing little sewage. The device is small, easy to move and has high degree of automation control. The experimental application shows that the oil removal rate of the oily sludge is up to 70%, and the higher the oil content rate the better the treatment.

  20. Assessment of nutritional value of single-cell protein from waste-activated sludge as a protein supplement in poultry feed.

    Science.gov (United States)

    Nkhalambayausi-Chirwa, Evans M; Lebitso, Moses T

    2012-12-01

    The amount of protein wasted through sludge in Gauteng, South Africa, amounts to 95 000 metric tonne/yr, with the order of magnitude of the national protein requirement of approximately 145 000 metric tonne/yr. Waste-activated sludge (WAS) from wastewater treatment plants (WWTPs) that treat domestic wastewater contains protein in a ratio of 2:1 against fishmeal. This protein source has not been utilized because of the high content of toxic heavy metals and other potential carcinogenic pollutants in the sludge. In this study, a pretreatment method of modified aqua regia dilute acid wash was used to lower the metal content by approximately 60%. However, this resulted in a 33% loss of amino acids in the acid-washed WAS. A feed substitution test in poultry with different fishmeal-sludge ratios (0%, 25%, 50%, 75%, and 100% WAS as percent substitution of fishmeal) showed no impact of sludge single-cell protein (SCP) on mortality rate. However, sludge substitution in the feed yielded weight gains and cost savings up to 46%.

  1. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    International Nuclear Information System (INIS)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-01

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH) 2 , and Mg(OH) 2 to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg −1 ) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L −1 DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH 4 ) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively

  2. Steam generator sludge removal apparatus

    International Nuclear Information System (INIS)

    Schafer, B.W.; Werner, C.E.; Klahn, F.C.

    1992-01-01

    The present invention relates to equipment for cleaning steam generators and in particular to a high pressure fluid lance for cleaning sludge off the steam generator tubes away from an open tube lane. 6 figs

  3. Processing method for radioactive sludge

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Kaneko, Masaaki.

    1993-01-01

    The concentration of radioactive sludges contained in a storage tank is controlled, thereafter, a filter is charged into a processing vessel to continuously conduct dewatering. Then, the radioactive sludges and an oxidizer are mixed by stirring using a stirring impeller and by vibrations using a vibrator. At the same time, thermic rays are irradiated by using infrared ray lamps to heat and decompose them. Since thermic rays reach the center of the radioactive sludges by the infrared ray lamps, ion exchange resins are sufficiently decomposed and carbonized into inorganic material. Then, a filling hardener such as mortar cement having a good flowability is charged to solidify the wastes. With such procedures, radioactive sludges can be stored under a stable condition for a long period of time by decomposing organic materials into inorganic materials and solidifying them. Further, an operator's radiation exposure dose can remarkably be reduced by applying a predetermined and a stabilization treatment in an identical processing vessel. (N.H.)

  4. Municipal sludge disposal economics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [SRI International, Menlo Park, CA; Bomberger, Jr, D C; Lewis, F M

    1977-10-01

    Costs for disposal of sludges from a municipal wastewater treatment plant normally represents greater than or equal to 25% of the total plant operating cost. The following 5 sludge handling options are considered: chemical conditioning followed by vacuum filtration, and incineration; high-pressure wet-air oxidation and vacuum filtration or filter press prior to incineration; thermal conditioning, vacuum filtraton, and incineration; high-pressure wet-air oxidation and vacuum filtration, with ash to landfill; aerobic or anaerobic digestion, followed by chemical conditioning, vacuum filtration, and disposal on land; and chemical conditioning, followed by a filter press, flash dryer, and sale as fertilizer. The 1st 2 options result in the ultimate disposal of small amounts of ash in a landfill; the digestion options require a significant landfill; the fertilizer option requires a successful marketing and sales effort. To compare the economies of scale for the options, analyses were performed for 3 plant capacities - 10, 100, and 500 mgd; as plant size increases, the economies of scale for incineration system are quite favorable. The anaerobic digestion system has a poorer capital cost-scaling factor. The incinerator options which start with chemical conditioning consume much less electrical power at all treatment plant sizes; incinerator after thermal conditioning uses more electricity but less fuel. Digestion requires no direct external fossil fuel input. The relative use of fuel is constant at all plant sizes for other options. The incinerator options can produce a significant amount of steam which may be used. The anaerobic digestion process can be a significant net producer of fuel gas.

  5. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCOD consumed . It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production. - Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • The hydrogen yield was 10.5±0.7 mL/g SCOD consumed .

  6. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    Science.gov (United States)

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.

  8. Wastewater Sludge Stabilization Using Lime A Case Study of West Ahwaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mehdi Farzadkia

    2009-01-01

    Full Text Available Lime stabilization is a chemical method used for wastewater sludge stabilization. It is capable of decreasing large quantities of pathogens and of preventing microbial degradation of sludge organic materials. The main objective of the present experimental research was to investigate stabilization of the sludge from west Ahwaz wastewater treatment plant by lime addition and to control if the microbial quality of this sludge conforms to the USEPA standards for sludge reuse and safe disposal. The study was carried out on a pilot scale in 5 stages over a period of 12 months (July 2005 to June 2006 at west Ahwaz wastewater treatment plant laboratory using raw sludge. For the purposes of this study, a 30-liter reactor was commissioned and loaded with sludge and appropriate quantities of hydrated lime were added based on the solid waste percent. The parameters used to determine stabilization efficiency were pH, Total Coliform, Fecal Coliform, and parasite eggs. The results showed that lime addition at a ratio of 265g Ca(OH2/kg. ds was the optimum level for sludge stabilization in westAhwazwastewater treatment plant, which is acceptable from both economic and technical viewpoints. The method is capable of achieving class B but never satisfied class A of USEPA standards.

  9. Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil

    International Nuclear Information System (INIS)

    Giannis, Apostolos; Gidarakos, Evangelos

    2005-01-01

    The main objective of this study is to evaluate the combination of electrokinetic remediation and soil washing technology in order to remove cadmium from contaminated soil. This paper presents the results of an experimental research undertaken to evaluate different washing and purging solutions to enhance the removal of cadmium from a real contaminated soil during electrokinetic remediation. Two different experimental modules were applied in the laboratory. Soil was saturated with tap water, while acetic and hydrochloric acids, as well as ethylenediaminetetraacetic acid (EDTA) were used as purging solutions in the first module. Results show that there was a decrease of cadmium concentration near anode, but a significant increase in the middle of the cell, due to the increasing pH. Citric, nitric and acetic acids were used for soil washing and purging solutions in the second module. In this case, an 85% reduction of cadmium concentration was achieved. Therefore, results indicate that soil pH and washing solutions are the most important factors in governing the dissolution and/or desorption of Cd in a soil system under electrical fields

  10. Co-combustion of sewage sludge and energy-rich waste fuels or forest fuels; Sameldning av roetslam och energirika avfallsbraenslen eller skogsbraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Kristina [TPS Termiska Processer AB, Nykoeping (Sweden)

    2003-10-01

    In this report literature on incineration of sewage sludge is summarises. In Sweden there is a yearly production of about 0,24 million-ton dry sewage sludge of which 50% is deposited. Recent changes in legislation will restrict and later prohibit the dumping of sewage sludge. Alternative methods for handling the material have not yet been found. In other parts of Europe the problem has been solved by incineration. Sludge incineration can be performed in several ways depending of the pretreatment. The sludge can be raw or digested, dewatered or dried. The sludge can be burnt as single fuel or in mixtures with other fuels. Focus in this work has been on co-combustion with biofuel or waste, as it will make use of existing plants. Digested sludge is also of major interest as 70% of the Swedish sludge is digested. The report describes the situation both in Sweden and in the rest of Europe. Sludge has a varying quality depending on origin and treatment, which affects the combustion properties. Ash and moisture contents differ from other fuels. The heating value of sewage sludge is approximately 20 MJ/kg per dry combustible matter and the amount of organic is around 70%. Compared to forest residue and demolition wood, sludge contains high levels of nitrogen and sulphur, which will cause emissions. The nitrogen level is about 10 times higher and the sulphur level 25 to 50 times higher. Sulphur, in combination with alkali metals, can cause deposit problems in boilers. However, sludge contains low levels of alkali. In the experimental investigation leaching of digested sludge showed low values on water conductivity which indicates a low concentration of sintering ash species in the sludge. A comparison of the aerodynamic properties of dried digested sludge and wood chips from energy coppice showed that sludge has a lower fraction of fines. This indicates that the sewage sludge is not likely to be carried over in the furnace but rather to stay in the fuel and ash bed on the

  11. Research on vitrification technology to immobilize radioactive sludge generated from Fukushima Daiichi power plant. Enhanced glass medium

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Kobayashi, Hidekazu; Kitamura, Naoto; Takebe, Hiromichi; Mitamura, Naoki; Tsuzuki, Tatsuya; Fukayama, Daigen; Nagano, Yuichi; Jantzen, Tatjana; Hack, Klaus

    2016-01-01

    The search for an enhanced glass medium to immobilize the sludge at the Fukushima Daiichi Nuclear Power Plant is our main purpose. The iron phosphate glass (IPG) is a potential candidate as we set about assessing it by means of theoretical and experimental investigation. Based on the results of this study, the IPG showed favorable characteristics as a vitrification medium for the sludge. (author)

  12. EFRT M-12 Issue Resolution: Solids Washing

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, David L.; Schonewill, Philip P.; Toth, James J.; Huckaby, James L.; Eslinger, Paul W.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  13. 100 Areas soil washing tradeoff study

    International Nuclear Information System (INIS)

    Belden, R.D.

    1995-11-01

    The complex nature of cost analysis and systems work demands a level of effort to ensure that decisions made support the best interests of all parties. This tradeoff study will act as a formal decision analysis method for the evaluation of many variables. The documentation of the decision rationale and system design is essential for successful planning and implementation of any system. The Hanford Site offers unique problems for economic analysis of remediation alternatives. The variations in the size of sites, geographic locations, and possible cleanup scenarios all add to the complexity of the tradeoff analysis. A thorough examination of all alternatives must be held to a level of detail appropriate to current regulatory and budgetary considerations. This study will compare the economics of two specific alternatives for remediation of soils at the Hanford Site. Remove and dispose is compared to remove, treat, and dispose. The treatment analyzed in this study is volume reduction through soil washing

  14. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    International Nuclear Information System (INIS)

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-01-01

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH 4 /h g VSS) and aerobic activity (SOUR: 2.21 mMO 2 /h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and

  15. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yuancai, E-mail: donkey1204@hotmail.com [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Chen, Yuancai, E-mail: chenyc@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Song, Wenzhe, E-mail: songwenzhe007@126.com [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Hu, Yongyou, E-mail: ppyyhu@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China)

    2014-09-15

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH{sub 4}/h g VSS) and aerobic activity (SOUR: 2.21 mMO{sub 2}/h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro

  16. Innovative Technology for Preparing Washing Liquid During Well Drilling

    Directory of Open Access Journals (Sweden)

    Davydenko A.N.

    2015-09-01

    Full Text Available Technology of washings liquid preparation is worked out. Prospects of the hydrodynamic supercavitation use for preparation of washing liquids during well drilling are substantiated. Theoretical research make it possible to set parameters and work out the construction of cavitational dispergator. The results of theoretical research found their confirmation during practical examinations and became the basis for creation of the technique of washing liquid preparation and construction of cavitational dispergator tested in production conditions.

  17. WASH and gender in health care facilities: The uncharted territory.

    Science.gov (United States)

    Kohler, Petra; Renggli, Samuel; Lüthi, Christoph

    2017-11-08

    Health care facilities in low- and middle-income countries are high-risk settings, and face special challenges to achieving sustainable water, sanitation, and hygiene (WASH) services. Our applied interdisciplinary research conducted in India and Uganda analyzed six dimensions of WASH services in selected health care facilities, including menstrual hygiene management. To be effective, WASH monitoring strategies in health care facilities must include gender sensitive measures. We present a novel strategy, showing that applied gender sensitive multitool assessments are highly productive in assessments of WASH services and facilities from user and provider perspectives. We discuss its potential for applications at scale and as an area of future research.

  18. Eye wash water flow direction study: an evaluation of the effectiveness of eye wash devices with opposite directional water flow.

    Science.gov (United States)

    Fogt, Jennifer S; Jones-Jordan, Lisa A; Barr, Joseph T

    2018-01-01

    New designs of eye wash stations have been developed in which the direction of water flow from the fountain has been reversed, with two water streams originating nasally in both eyes and flowing toward the temporal side of each eye. No study has been done to determine the ideal direction of water flow coming from the eye wash in relation to the eye. Ophthalmic eye examinations were conducted before and after the use of two eye wash stations with opposite water flow directionality. Fluorescein was instilled in both eyes before using an eye wash to measure the effectiveness of the water flow. Subjects were surveyed upon their experiences using the eye washes. Ophthalmic examination found no significant difference in the efficacy of the eye washes with nasal-to-temporal water flow when compared to temporal-to-nasal water flow direction.

  19. Nutrient content in maize fertilized with tannery sludge vermicompost and irrigated with domestic wastewater

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2016-11-01

    Full Text Available This study analyzed the macro and micronutrient content of maize leaves (Zea mays L. grown in soil containing tannery sludge vermicomposting and irrigated with wastewater. The arrangement of the treatments consisted of a factorial 2x6 (two types of irrigation and six kinds of fertilizer in a completely randomized design, with five repetitions, totaling sixty experimental units. The following experimental units, irrigated with supply water (A and household wastewater (R, were established: (T1 Control Soil, with no chemical fertilization and no vermicomposting; (T2 Soil + NPK; (T3 Soil + primary sludge vermicompost; (T4 Soil + P + primary sludge vermicompost; (T5 Soil + P + liming sludge vermicompost; and (T6 Soil + liming sludge vermicompost. For the leaf-tissue analysis, the opposite whole leaf below the first (upper ear was collected from each plant, excluding the midrib at the onset of the female inflorescence. The results showed that both wastewater and the tannery sludge vermicomposts can be a good source of nutrients for maize plants, since the macro and micronutrients in the leaves of plants were satisfactory and no signs or symptoms of toxicity were observed. While leaf analysis alone is insufficient to assess the nutritional status of plants, this study innovatively suggests the potential beneficial use of a combination of wastewater and tannery sludge vermicompost in the cultivation of corn, motivating new research.

  20. Rapid washing of filter paper discs in a solid-phase radioimmunoassay with a constant flow washing device

    International Nuclear Information System (INIS)

    Kemeny, D.M.; West, F.B.

    1982-01-01

    A machine has been developed for the rapid washing of the cellulose filter paper discs that are used in a number of radioimmunoassays. The machine is simple in design, easy to use, and is capable of washing 96 filter paper discs simultaneously. The efficiency of the machine is demonstrated by a RAST assay for measuring IgE antibodies to the venom. Time taken to wash the discs was reduced 3-fold without loss of sensitivity or reproducibility. (Auth.)

  1. Heating value characteristics of sewage sludge: a comparative study of different sludge types

    International Nuclear Information System (INIS)

    Kim, Young-JU.; Kang, Hae-Ok.; Qureshi, T.I.

    2005-01-01

    Heating value characteristics of three different types of sludge, i.e. domestic sewage sludge, industrial sludge, and industrial + domestic sewage sludge were investigated. Industrial + domestic sewage sludge (thickened) showed the highest heating value (5040 kcal/kg) than other sludge types. This may be due to increased amount of organic matter presents in thickened sludge than de-watered sludge. A gradual increase in organic matter of the sludge was observed with the increase of the moisture contents. Heating value of the sludge having 60% moisture contents was found in the range between 924-1656 kcal/kg and this amount was higher than the minimum heating value (800 kcal/kg) required sustaining auto thermal combustion in sludge incineration process. Energy consumption requirement for pre drying sludge operations revealed that industrial sludge (de-watered) required the minimum cost (13 $/ton of sludge) to make it a sludge of fuel grade (60% W), while mixed sludge cost the highest amount for its pre-drying operations. (author)

  2. Increasing the effectiveness of purification of wash water discharge during placer mining. Povyshenie effekitivnosti ochistki promstokov pri razrabotke rossypei

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, V M; Matveev, A A

    1981-01-01

    In the book research results are generalized for processes of water supply and purification of wash water discharges from dredge mining of placer deposits. Aspects of the geological and mineralogical structure of the solid phase of dredge waste waters and regularities in its influence on the sedimentation capacity of the suspended matter are examined. On the basis of a study of distinctive features in the hydrodynamic processes occurring in dredge sludge-settling tanks, a method is proposed for calculation of the settling tank parameters, allowing their areas of application for wash water discharge clarification to be determined reliably. Results are reported for a study of methods of intensification of the deposition of suspended clay particles in dredge waste waters, (methods) based on the use of both a series of coagulants and flocculants producible by industry and various production wastes. Aspects of the theory and practice of organizing circulating water supply for dredges are examined. The influence of wash water discharges forming during placer mining on the environment is assessed.

  3. Aged refuse enhances anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The hydraulic transportation of thickened sludges

    African Journals Online (AJOL)

    driniev

    non-Newtonian sludges (Xu et al., 1993; Spinosa and Lotita, 2001; .... [11]. Analysis and typical applications. Laminar/turbulent transition. For most sewage sludges the ... on Transport and Sedimentation of Solid Particles - Ghent, September.

  5. Microbiological aspects of granular methanogenic sludge

    NARCIS (Netherlands)

    Dolfing, J.

    1987-01-01

    The settling characteristics of anaerobic sludge are enhanced by the formation of microbial conglomerates. Various types of conglomerates having different structures, were distinguished in the present study, viz. granules, pellets and flocs (chapter 1). Granular methanogenic sludge, often

  6. Radiation hygienization of raw sewage sludge

    International Nuclear Information System (INIS)

    Shah, M.R.; Lavale, D.S.; Rawat, P.; Benny, P.G.; Sharma, A.K.; Dey, G.R.; Bhave, V.

    2001-01-01

    'Radiation treatment of municipal sewage sludge can achieve resource conservation and recovery objectives. The liquid sludge irradiator of Sludge Hygienization Research Irradiator at Baroda (India) was operated for generating data on treatment of raw sludge containing 3-4 % solids. The plant system was modified for irradiating raw sludge without affecting basic irradiator initially designed to treat digested sludge. Hourly samples were analysed for estimation of disinfection dose requirement. Sand separated from the sludge was used as in-situ dosimeter by making use of its thermoluminescence property. Investigations are being carried out for regrowth of Total Coliforms in the sludge samples from this irradiator. Possibility of inadequate treatment due to geometric configuration of irradiator is being checked. (author)

  7. Comparison between different models for rheological characterization of sludge from settling tank

    Directory of Open Access Journals (Sweden)

    Malczewska Beata

    2017-09-01

    Full Text Available The municipal sludge characterized non-Newtonian behaviour, therefore the viscosity of the sewage sludge is not a constant value. The laboratory investigation was made using coaxial cylinder with rotating torque and gravimetric concentration of the investigated sludge ranged from 4.40% to 2.09%. This paper presents the investigation on the effect of concentration of rheological sludge behaviour. The three different rheological models: Bingham (plastic model, Ostwald-de Waele (power-law, Hershel-Bulkley’s were calculated by fitting the experimental data of shear stress as a function of shear rate to these models. In this study, the 3-parameter Herschel- Bulkley’s model fits the experimental data best.

  8. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  9. Integral study of sewage sludges

    International Nuclear Information System (INIS)

    1994-01-01

    Sewage sludges are the by-product generated during the treatment process of waste water, and they are conformed by a solid phase which origin is the accumulation of pollutant materials which has been added to water during natural and anthropogenic activities. Its handling is one of the most serious problems faced by water treatment plants which involve the production, gathering, transportation, re utilization and final disposal of sewage sludges. The main purpose of this project is to perform a technical evaluation of the process of sewage sludge irradiation for its possible application as a choice for treatment and final disposal. Irradiation with gammas from Cobalt-60 shows effectiveness in disinfestation of sewage sludges, since they reduce six times the microbial population with a 7 KGy dose. In like manners with doses of 10 KGy is possible to bring down in 70 % the concentration of organic compounds, as well as to eliminate the presence of 6 to 22 organic compounds on samples of sewage sludges. The whole content of this work is presented in six sections: Introduction, Antecedents, Methodology, Conclusions, Suggestions and Bibliography. (Author)

  10. Excess sludge reduction in activated sludge processes by integrating ultrasound treatment

    International Nuclear Information System (INIS)

    Perez-Elvira, S.; Fdz-Polanco, M.; Plaza, F. I.; Garralon, G.; Fdz-Polanco, F.

    2009-01-01

    Biological sludge produced in the activated sludge process can be minimised modifying the water line, the sludge line or the final disposal strategy. Selecting the water line the general idea is to reduce the sludge producing the yield coefficient by means of the called lysis cryptic growth process. The main techniques referenced in literature are onization, chlorination and chemical and heat treatment. Ultrasounds are widely used to increase anaerobic biodegradability but are not reported as system to control excess sludge production. (Author)

  11. Road dust emission sources and assessment of street washing effect

    NARCIS (Netherlands)

    Karanasiou, A.; Amato, F.; Moreno, T.; Lumbreras, J.; Borge, R.; Linares, C.; Boldo, E.; Alastuey, A.; Querol, X.

    2014-01-01

    Although previous studies report on the effect of street washing on ambient particulate matter levels, there is a lack of studies investigating the results of street washing on the emission strength of road dust. A sampling campaign was conducted in Madrid urban area during July 2009 where road dust

  12. Hand Washing Practices and Compliance among Health Care ...

    African Journals Online (AJOL)

    Hand washing is the simplest, most inexpensive and most effective method of reducing the incidence of hospital-acquired infections in the Intensive Care Unit. Several reports have shown a relationship between improved hand washing practices and reduced infection rates. We conducted a prospective, ...

  13. Evaluation of washing machine load potential for smart grid integration

    NARCIS (Netherlands)

    Klaassen, E.A.M.; Kobus, C.B.A.; Huijkelom, M.; Frunt, J.; Slootweg, J.G.

    2013-01-01

    This paper presents the lessons learned from a smart wash pilot, conducted with 24 employees of distribution system operator Enexis, who were equipped with an energy computer, smart washing machine, photovoltaic panels and smart meter. The pilot goal was to gain experience and knowledge about the

  14. Effects of shampoo and water washing on hair cortisol concentrations.

    Science.gov (United States)

    Hamel, Amanda F; Meyer, Jerrold S; Henchey, Elizabeth; Dettmer, Amanda M; Suomi, Stephen J; Novak, Melinda A

    2011-01-30

    Measurement of cortisol in hair is an emerging biomarker for chronic stress in human and nonhuman primates. Currently unknown, however, is the extent of potential cortisol loss from hair that has been repeatedly exposed to shampoo and/or water. Pooled hair samples from 20 rhesus monkeys were subjected to five treatment conditions: 10, 20, or 30 shampoo washes, 20 water-only washes, or a no-wash control. For each wash, hair was exposed to a dilute shampoo solution or tap water for 45 s, rinsed 4 times with tap water, and rapidly dried. Samples were then processed for cortisol extraction and analysis using previously published methods. Hair cortisol levels were significantly reduced by washing, with an inverse relationship between number of shampoo washes and the cortisol concentration. This effect was mainly due to water exposure, as cortisol levels following 20 water-only washes were similar to those following 20 shampoo treatments. Repeated exposure to water with or without shampoo appears to leach cortisol from hair, yielding values that underestimate the amount of chronic hormone deposition within the shaft. Collecting samples proximal to the scalp and obtaining hair washing frequency data may be valuable when conducting human hair cortisol studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Copper Recovery from Polluted Soils Using Acidic Washing and Bioelectrochemical Systems

    Directory of Open Access Journals (Sweden)

    Karin Karlfeldt Fedje

    2015-07-01

    Full Text Available Excavation followed by landfilling is the most common method for treating soils contaminated by metals. However, as this solution is not sustainable, alternative techniques are required. Chemical soil washing is one such alternative. The aim of this experimental lab-scale study is to develop a remediation and metal recovery method for Cu contaminated sites. The method is based on the washing of soil or ash (combusted soil/bark with acidic waste liquids followed by electrolytic Cu recovery by means of bioelectrochemical systems (BES. The results demonstrate that a one- or two-step acidic leaching process followed by water washing removes >80 wt. % of the Cu. Copper with 99.7–99.9 wt. % purity was recovered from the acidic leachates using BES. In all experiments, electrical power was generated during the reduction of Cu. This clearly indicates that Cu can also be recovered from dilute solutions. Additionally, the method has the potential to wash co-pollutants such as polycyclic aromatic hydrocarbons (PAHs and oxy-PAHs.

  16. Effect of acid washing on pyrolysis of Cladophora socialis alga in microtubing reactor

    International Nuclear Information System (INIS)

    Ly, Hoang Vu; Kim, Seung-Soo; Kim, Jinsoo; Choi, Jae Hyung; Woo, Hee Chul

    2015-01-01

    Highlights: • Pyrolysis of macroalgae Cladophora socialis was conducted in micro tubular reactor. • Acid washing affected the pyrolysis behavior of Cladophora socialis. • Pyrolysis of raw and acid washed C. socialis produced bio-oils with different compositions. • Pyrolysis reaction pathway was from C. socialis to liquid and then to gas (C_1–C_4). - Abstract: Cladophora socialis is a unique macroalga that is widely grown in the coastal regions of Vietnam. In this work, the pyrolysis characteristics of C. socialis were evaluated using thermogravimetric analysis (TGA) and pyrolysis in a tubing reactor. Macroalgae have a high content of inorganic compounds. These compounds result in high char content during pyrolysis of the macroalgae, which degrades the quality of the product bio-oil. In order to study this effect, C. socialis was demineralized by acid washing to remove the inorganic compounds. The effect of acid washing on the pyrolysis product distribution and the selectivity of composition in pyrolysis oil was carefully investigated. The kinetic parameters and the primary reaction pathways were also determined based on experimental data using nonlinear least-squares regression assuming a first-order kinetics model.

  17. Fenton oxidation treatment of spent wash-off liquor for reuse in reactive dying

    International Nuclear Information System (INIS)

    Mangat, A.; Shaikh, I.A.; Ahmed, F.; Baqar, M

    2014-01-01

    The use of clean and high quality water in textile dyeing process is very expensive. In this study, the potential of reusing Fenton treated wash-off wastewater generated at the end of reactive dyeing was investigated. The treated wastewater was used in several dyeings employing three widely used reactive dyes, C. I. Reactive Yellow 145, C. I. Reactive Red 194, and C. I. Reactive Blue 221. Experimental results showed that at acidic pH (3.5) using optimized quantities of FeSO/sub 4/ and H/sub 2/O/sub 2/, Fenton process yielded a significant reduction (80-99%) of colour and COD in 30 minutes of treatment time. New dyeings were then carried out in Fenton decolourized wash-off wastewater, and dyed fabric samples were subjected to quality evaluations in terms of wash fastness, crock fastness, and colour difference properties (delta L*, delta c*, delta h*, and delta E*). This study concluded that Fenton oxidation was an efficient method for the treatment of textile wash-off wastewater, and treated liquor can be effectively recycled in next dyeing, without compromising quality parameters. This method proved to be an eco-friendly process owing to the fact that it did not use any fresh water. (author)

  18. ''Spray'' drying unit for spent ion-exchange resins sludges and radioactive concentrates

    International Nuclear Information System (INIS)

    Raibaud, J.

    1985-01-01

    The procedure consisting in drying radwaste either in liquid form or in aqueous suspension is a very attractive solution for volume Reduction. Technicatome presents an experimental spray drying station for 50 kg/hr, using the LEAFLASH process, developed by Rhone Poulenc Recherches. This process, used at full scale in a large number of branches in industry, is applicable to the drying of various materials: bead type ion-echange resins, powered ion exchange resins, centrifuge sludges, filter sludges, evaporator bottoms [fr

  19. Supplementary information on K-Basin sludges

    International Nuclear Information System (INIS)

    MAKENAS, B.J.

    1999-01-01

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period

  20. 40 CFR 61.54 - Sludge sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Sludge sampling. 61.54 Section 61.54... sampling. (a) As an alternative means for demonstrating compliance with § 61.52(b), an owner or operator... days prior to a sludge sampling test, so that he may at his option observe the test. (c) Sludge shall...

  1. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  2. Genesis Eco Systems, Inc. soil washing process

    International Nuclear Information System (INIS)

    Cena, R.J.

    1994-01-01

    The Genesis soil washing system is an integrated system of modular design allowing for maximum material handling capabilities, with optimized use of space for site mobility. The Surfactant Activated Bio-enhanced Remediation Equipment-Generation 1 (SABRE-1, Patent Applied For) modification was developed specifically for removing petroleum byproducts from contaminated soils. Scientifically formulated surfactants, introduced by high pressure spray nozzles, displace the contaminant from the surface of the soil particles into the process solution. Once the contaminant is dispersed into the liquid fraction of the process, it is either mechanically removed, chemically oxidized, or biologically oxidized. The contaminated process water is pumped through the Genesis Biosep (Patent Applied For) filtration system where the fines portion is flocculated, and the contaminant-rich liquid portion is combined with an activated mixture of nutrients and carefully selected bacteria to decompose the hydrocarbon fraction. The treated soil and dewatered fines are transferred to a bermed stockpile where bioremediation continues during drying. The process water is reclaimed, filtered, and recycled within the system

  3. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P. [Gas Turbine Efficiency, Jarfalla (Sweden)

    1998-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  4. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P [Gas Turbine Efficiency, Jarfalla (Sweden)

    1999-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  5. Wash-off effects in urban areas

    International Nuclear Information System (INIS)

    Mueck, K.; Steger, F.

    1991-01-01

    The reduction of the activity distributed in urban areas in three Austrian cities after a radioactive fall-out, by run-off and wash-off effects from stabilised surfaces and the resulting dose reduction to the population were investigated four years after the Chernobyl fall-out to predict the long term external exposure of the population. The measurements were performed in cities with different fractions of dry and wet deposition after the Chernobyl accident in order to determine whether any differences in radionuclide removal with regard to wet and dry fall-out was observable. High resolution in situ gamma spectroscopy was employed to measure the gamma flux from 137 Cs and 134 Cs at points over stabilised surfaces, which was then compared with undisturbed grass surfaces. The average reduction of the place activity on stabilised surfaces amounted to a factor of 10±5 compared to the original deposition after the fall-out. Asphalt showed the highest reduction factor (11.4), concrete less (8.1), stone slabs and cobblestone only about 4.5 and gravel virtually no reduction (1.1). Only very little variation of this reduction with dry or wet deposition was observed. (author)

  6. Car wash wastewater treatment and water reuse - a case study.

    Science.gov (United States)

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  7. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge.

    Science.gov (United States)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-15

    Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg(-1)) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L(-1) DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (NNH(4)) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Grout performance in support of in situ stabilization/solidification of the GAAT tank sludges

    International Nuclear Information System (INIS)

    Spence, R.D.; Kauschinger, J.L.

    1997-05-01

    The Gunite trademark and associated tanks (GAATs) were constructed at ORNL between 1943 and 1951 and were used for many years to collect radioactive and chemical wastes. These tanks are currently inactive. Varying amounts of the sludge were removed and disposed of through the Hydrofracture Program. Thus, some tanks are virtually empty, while others still contain significant amounts of sludge and supernatant. In situ grouting of the sludges in the tanks using multi-point injection (MPI trademark), a patented, proprietary technique, is being investigated as a low-cost alternative to (1) moving the sludges to the Melton Valley Storage Tanks (MVSTs) for later solidification and disposal, (2) ex situ grouting of the sludges followed by either disposal back in the tanks or containerizing and disposal elsewhere, and (3) vitrification of the sludges. The paper discusses the chemical characteristics of the GAATs and the type of chemical surrogate that was used during the leachability tests. This is followed by the experimental work, which, consisted of scope testing and sensitivity testing. The scope testing explored the rheology of the proposed jetting slurries and the settling properties of the proposed grouts using sand-water mixes for the wet sludge. After establishing a jetting slurry and grout with an acceptable rheology and settling properties, the proposed in situ grout formulation was subjected to sensitivity testing for variations in the formulation

  9. Effects of gamma irradiation on physical-chemical properties and dewatering characteristics of sludges

    International Nuclear Information System (INIS)

    Groneman, A.F.

    1976-01-01

    Separation of solids from liquids is a paramount operation in the processes applied in treating sewage and waste waters. Therfore, studies were undertaken to investigate effects of gamma irradiation on the physical-chemical properties of sludges and the de-watering characteristics of anaerobically digested sludge and aerobically activated sludge. A dose of 300 krad reduced the specific resistance of anaerobically digested sludges from 33 x 10 sec 2 /g to approximately 10 x 10 9 sec 2 /g. This conditioning effect was little influenced by the presence of oxygen or nitrogen. Pasteurization increased the specific resistance to filtration up to 48 x 10 9 sec 2 /g. Dewatering characteristics of raw sludge were not affected by irradiation in the presence of oxygen but a slight conditioning effect was noticed when the sludge was irradiated under deaerated conditions. Experimental evidence indicated that gamma irradiation detached organic substances from the sludge flocks resulting in a decrease of the specific resistance and an increase in the Total Organic Carbon (TOC) and the Chemical Oxygen Demand (COD) in the filtrates. Elutriation reduced but did not eliminate the conditioning effect of gamma irradiation. (author)

  10. Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance.

    Science.gov (United States)

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2012-11-01

    Enzyme additives are believed to improve septic tank performance by increasing the hydrolysis and digestion rates and maintaining a healthy microbial population. Previous studies reported mixed results on the effectiveness of enzymes on mesophilic and thermophilic digestion, and it is not clear whether enzymes would be effective under septic tank conditions where there is no heating or mixing, quantities of enzymes added are small, and they can be washed out quickly. In this study, batch reactors and continuous-flow reactors designed and operated as septic tanks were used to evaluate whether enzymatic treatment would increase the hydrolysis and digestion rates in primary sludge. Total solids, volatile solids, total suspended solids, total and soluble chemical oxygen demand, concentrations of protein, carbohydrate, ammonia and volatile acids in sludge and effluent samples were measured to determine the differences in digestion rates in the presence and absence of enzymes. Overall, no significant improvement was observed in enzyme-treated reactors compared with the control reactors.

  11. Sewage sludge as a sensitive indicator for airborne radionuclides from nuclear power plants

    International Nuclear Information System (INIS)

    Ingemansson, T.

    1982-01-01

    Sewage sludge collected at waste water treatment plants located in the vicinity of nuclear power stations, has been shown to be a sensitive and convenient indicator for airborne locally released activation products, 60 Co, 65 Zn, 58 Co and 54 Mn. We have therefore been able to study the distribution and behaviour of these radionuclides in the terrestrial environment of three Swedish nuclear power stations. Comparative measurements on ground level air and on samples of lichen (Cladonia alpestris) and soil have also been performed. The variation by distance from the power station of 60 Co measured in sludge as well as on air-filters could be described by the same power function. The temporal variation of the activity concentration in sludge samples well reflects the variation of the reported release rate of airborne radionuclides from the power stations if the prevalent wind direction is taken into consideration. The relation between the activity ratio 60 Co/ 7 Be in air and in sludge was investigated and indicated that most of the detected 60 Co and part of 58 Co and 54 Mn activity is released from a local source and is dry deposited on the ground before it is washed off by rain. (Author)

  12. Development of technology for washed minced fish production from low-profit objects of fishing in the Volga-Caspian Basin

    Directory of Open Access Journals (Sweden)

    Mukatova M. D.

    2016-09-01

    Full Text Available The objects of the study are as follows: rudd and goldfish, samples of food minced made of them without washing, after single and double washings. To study the organoleptic and physico-chemical parameters the conventional methods of the fishing industry have been used. At the LLC "Astrakhan fisheries" two experimental batches of minced rudd and goldfish with double washing by water using a food additive "Omfresh plus" have been made in the amount of 1.0 % by weight of the meat. The yield of washed minced food from rudd is 41.4 %, from silver carp – 41.0 %. Some decrease in water content, water-holding capacity and formalin-titratable nitrogen in minced fish after each washing step has been established. Studying the organoleptic characteristics has shown that the frozen minced briquettes are cuboids, have clean surface with the presence of minor irregularities, colour – light gray, dense texture. On physical and chemical parameters the food washed mince correspond to GOST R 55505–2013 "Frozen food fish forcemeat. Specifications". Water content is 79–82 %, sodium chloride – 0,17–0,35 %, and water-holding capacity – at over 50 %. The proven technology of manufacturing washed minced from goldfish and rudd can be put into production for the purpose of deep processing of unprofitable species of the Volga-Caspian Basin and getting washed minced food and culinary products based on it.

  13. Sludge cleaning in the steam generators: sludge Lancing e IBL

    International Nuclear Information System (INIS)

    Montoro, E.; Gonzalez, S.; Calderon, N.

    2013-01-01

    IBERDROLA Engineering and Construction has echoed the need for plants to remove oxide deposits (sludge) located on the secondary side, on the bottom plate and into the tube bundle steam steam generators. Therefore, and with its partner SAVAC SRA has developed a specific system consisting of applying a capillary water at very high pressure applied directly to the location of these oxides. (Author)

  14. Improved waste-activated sludge dewatering using sludge/oil ...

    African Journals Online (AJOL)

    2014-10-07

    Oct 7, 2014 ... 2Dept. of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, ... conventional heating methods in chemical reactions is becom- ... the dewaterability of sludge and reduces the organic matter ..... It is unlikely that this technique will be applied in.

  15. The Use of Biochemical Processes in Sludge Treatment

    Directory of Open Access Journals (Sweden)

    Mohammed S. Shahaab

    2012-03-01

    Full Text Available The feasibility of using combination of effective microorganism (EM1 and conventional chemical conditioner was evaluated in this study to assess and discern the dewatering properties of the secondary sludge that produced from wastewater treatment plant of the medical assembly in Mosul city. Conventional coagulants such as lime, Alum, and ferrous sulfate, six doses for each coagulant type i.e5- 30(10 - 60 (and (25 -150mg/l(  respectively, were used in the sludge conditioning processes for enhancement of the sludge dewatering capacity. The characteristics of conditioned sludge, such as specific resistance of filtration (SRF (were determined at each dose.Experimental results indicated that effective microorganism seeds have a passive effect on SRF value which was about   % 71.4(and (%75(in lime and ferrous sulfate respectively.While in Alum conditioning process a significant effect on SRF reduction was accomplished which was about %-47.9( and (- %32.8( for effective microorganism and Alum dose increments respectively. The best Alum dosage, for minimum SRF 0.98348×10 12 m /kg, was 60 mg/l at 1 % of effective microorganism.

  16. Hydrothermal processing of inorganic components of Hanford tank sludge

    International Nuclear Information System (INIS)

    Oldenborg, R.; Buelow, S.J.; Dyer, R.B.; Anderson, G.; Dell'Orco, P.C.; Funk, K.; Wilmanns, E.; Knutsen, K.

    1994-09-01

    Hydrothermal Processing (HTP) is an attractive approach for the treatment of Hanford tank sludge. Hydrothermal Processing refers to a waste treatment technique in which an aqueous waste stream is fed through a chemical reactor at elevated temperatures and pressures to effect desired chemical transformations and separations. Transformations such as organic and nitrate destruction and sludge reformulation have been demonstrated at pilot scale using simulants of Hanford tank wastes. At sufficiently high temperatures and pressures organics and nitrates are destroyed in seconds, producing primarily simple products such as CO 3 2- , H 2 O, N 2 , N 2 O and OH - , and sludges are reduced in volume and reformulated as rapid settling oxides amenable to downstream separation, or in some cases reformulated as soluble products. This report describes the hydrothermal dissolution of chromium and chromium oxide; the hydrothermal oxidation of chromium with nitrate; hydrothermal dissolution of aluminum-bearing sludges; the solubility of aluminum compounds in caustic hydrothermal media; experimental techniques for the study of solubility and phase behavior; optical cell studies of basic aluminate solution solubilities; and high temperature, low density salt solubility in the packed-bed flow apparatus

  17. The prospect of hazardous sludge reduction through gasification process

    Science.gov (United States)

    Hakiki, R.; Wikaningrum, T.; Kurniawan, T.

    2018-01-01

    Biological sludge generated from centralized industrial WWTP is classified as toxic and hazardous waste based on the Indonesian’s Government Regulation No. 101/2014. The amount of mass and volume of sludge produced have an impact in the cost to manage or to dispose. The main objective of this study is to identify the opportunity of gasification technology which can be applied to reduce hazardous sludge quantity before sending to the final disposal. This preliminary study covers the technical and economic assessment of the application of gasification process, which was a combination of lab-scale experimental results and assumptions based on prior research. The results showed that the process was quite effective in reducing the amount and volume of hazardous sludge which results in reducing the disposal costs without causing negative impact on the environment. The reduced mass are moisture and volatile carbon which are decomposed, while residues are fix carbon and other minerals which are not decomposed by thermal process. The economical simulation showed that the project will achieve payback period in 2.5 years, IRR value of 53 % and BC Ratio of 2.3. The further study in the pilot scale to obtain the more accurate design and calculations is recommended.

  18. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    Science.gov (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  20. Hand washing frequencies and procedures used in retail food services.

    Science.gov (United States)

    Strohbehn, Catherine; Sneed, Jeannie; Paez, Paola; Meyer, Janell

    2008-08-01

    Transmission of viruses, bacteria, and parasites to food by way of improperly washed hands is a major contributing factor in the spread of foodborne illnesses. Field observers have assessed compliance with hand washing regulations, yet few studies have included consideration of frequency and methods used by sectors of the food service industry or have included benchmarks for hand washing. Five 3-h observation periods of employee (n = 80) hand washing behaviors during menu production, service, and cleaning were conducted in 16 food service operations for a total of 240 h of direct observation. Four operations from each of four sectors of the retail food service industry participated in the study: assisted living for the elderly, childcare, restaurants, and schools. A validated observation form, based on 2005 Food Code guidelines, was used by two trained researchers. Researchers noted when hands should have been washed, when hands were washed, and how hands were washed. Overall compliance with Food Code recommendations for frequency during production, service, and cleaning phases ranged from 5% in restaurants to 33% in assisted living facilities. Procedural compliance rates also were low. Proposed benchmarks for the number of times hand washing should occur by each employee for each sector of food service during each phase of operation are seven times per hour for assisted living, nine times per hour for childcare, 29 times per hour for restaurants, and 11 times per hour for schools. These benchmarks are high, especially for restaurant employees. Implementation would mean lost productivity and potential for dermatitis; thus, active managerial control over work assignments is needed. These benchmarks can be used for training and to guide employee hand washing behaviors.

  1. Soil washing results for mixed waste pond soils at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.; Freeman, H.D.; Baker, E.G.; Riemath, W.F.

    1991-01-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples

  2. The impact of WASH-1400 on reactor safety evaluation

    International Nuclear Information System (INIS)

    Tanguy, P.Y.

    1976-01-01

    Trends in reactor safety evaluation in France following the publication of WASH-1400 (the Rasmussen Report) are presented. What is called 'the meteorite case' is first schematically presented as follows: WASH-1400 shows nuclear risk equivalent to meteorite risk and reasonable corrections cannot make many orders of magnitude, consequently present safety rules are adequate. The very impact of WASH-1400 on safety approach is then discussed as for: assistance to deterministic safety analysis, introduction of probabilistic safety criteria, acceptable level of risk, and the use of results in research and reactor operating experience

  3. Effects of soap-water wash on human epidermal penetration.

    Science.gov (United States)

    Zhu, Hanjiang; Jung, Eui-Chang; Phuong, Christina; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Skin decontamination is a primary interventional method used to decrease dermal absorption of hazardous contaminants, including chemical warfare agents, pesticides and industrial pollutants. Soap and water wash, the most common and readily available decontamination system, may enhance percutaneous absorption through the "wash-in effect." To understand better the effect of soap-water wash on percutaneous penetration, and provide insight to improving skin decontamination methods, in vitro human epidermal penetration rates of four C(14) -labeled model chemicals (hydroquinone, clonidine, benzoic acid and paraoxon) were assayed using flow-through diffusion cells. Stratum corneum (SC) absorption rates of these chemicals at various hydration levels (0-295% of the dry SC weights) were determined and compared with the results of the epidermal penetration study to clarify the effect of SC hydration on skin permeability. Results showed accelerated penetration curves of benzoic acid and paraoxon after surface wash at 30 min postdosing. Thirty minutes after washing (60 min postdosing), penetration rates of hydroquinone and benzoic acid decreased due to reduced amounts of chemical on the skin surface and in the SC. At the end of the experiment (90 min postdosing), a soap-water wash resulted in lower hydroquinone penetration, greater paraoxon penetration and similar levels of benzoic acid and clonidine penetration compared to penetration levels in the non-wash groups. The observed wash-in effect agrees with the enhancement effect of SC hydration on the SC chemical absorption rate. These results suggest SC hydration derived from surface wash to be one cause of the wash-in effect. Further, the occurrence of a wash-in effect is dependent on chemical identity and elapsed time between exposure and onset of decontamination. By reducing chemical residue quantity on skin surface and in the SC reservoir, the soap-water wash may decrease the total quantity of chemical absorbed in the

  4. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    Science.gov (United States)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are

  5. Experience with a pilot plant for sewage sludge: Experiments on the inactivation of viruses in sewage sludge after a radiation treatment

    International Nuclear Information System (INIS)

    Epp, C.

    1975-01-01

    Investigations examining the virus inactivating effect of a Cobalt-60-plant were, till now, limited to the attempts to isolate virus from the sludge samples taken from sewage sludge before and after irradiation with 300 krad. As in those sludge samples virus presence could be proven only on a rather irregular basis, an experiment was devised in which defined virus quantities were packed into capsules and mixed with the digested sludge. At the end of the hygienization process these capsules were removed from the sludge and examined for virus content. Furthermore one radiation volume (5.6 m 3 ) was infected with attenuated polio virus type I and the virus content was determined before and after the radiation treatment. In 33 sludge samples examined before hygienization, presence of one or several viruses occurred in 8 samples. With the 33 capsules examined after hygienization with 300 krad, only 2 showed presence of virus. Suspensions of attenuated polio virus type I packed into synthetic capsules with a medium virus dosis of 10sup(6.92) JD 50/0.1 were immersed into sludge. In 6 experiments it was found that after hygienization, virus dosis was reduced to an average value of 10sup(5.4) JD 50/0.1 ml. Accordingly, the experimental results showed that after the radiation treatment the reduction of the exposed virus was more than 90%. Under natural conditions the investigation of the sewage sludge samples showed presence of virus 4 times less after hygienization than in the samples examined before hygienization. (orig./AK) [de

  6. Development of a process for radiation disinfection and composting of sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, Waichiro; Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Watanabe, Hiroshi

    1985-05-01

    Radiation disinfection of sewage sludge and composting of the irradiated sludge were studied for a purpose of their safe land application from a viewpoint of environment protection and beneficial utilization of resources. Seasonal changes of total bacterial number and coliform number in sludge cake, those of the dose required for disinfection and the regrowth of bacteria after disinfection were examined. Determination of residual bacteria werealso carried out. The dose for disinfection of coliform was 0.3-0.5 Mrad(3-5 kGy). Fermentation conditions such as temperature, pH, pressure, buking agent and seeds, were studied in addition to continuation and scale-up of the process for aerobic fermentation of irradiated sludge for a purpose of shortening the period for primary fermentation. And conditions for maintaining high oxygen permeability of sludge and deordorization were also investigated. The optimum conditions for composting were shown to be near 7 for pH, 50 0 C for temperature. Composting in a continuous process was studied based on microbiological rate expressions, and it was shown that the composting rate could be estimated from batch-experimental data. Composting in a large scale was investigated by using a small scale fermentor and a computer, and was estimated to have the same rate as in a small scale, when the fermentation conditions were maintained at the optimum. It was also shown that the diameter of sludge grain should be less than about 5 mm to obtain high oxygen permeability of sludge and maintain the fast rate in isothermal composting, and that the evolution of anmonia which is an index of ill-smell would also cease within 3 days under the optimum conditions. The products obtained in the isothermal composting of irradiated sludge were shown to be almost the same as those by usual composting processes using nonirradiated sludges. (J.P.N.)

  7. Effect of heavy metals on nitrification performance in different activated sludge processes

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Tsai, Yung-Pin; Huang, Ru-Yi

    2009-01-01

    To understand the toxic effect of heavy metals on the nitrification mechanisms of activated sludge, this study identified the specific ammonia utilization rate (SAUR) inhibited by Pb, Ni and/or Cd shock loadings. Seven different heavy metal combinations (Pb, Ni, Cd, Pb + Ni, Ni + Cd, Pb + Cd, and Pb + Ni + Cd) with seven different heavy metal concentrations (0, 2, 5, 10, 15, 25, and 40 ppm, respectively) were examined by batch experiments, where the activated sludge was taken from either sequencing batch reactor (SBR) or anaerobic-anoxic-oxic (A 2 O) processes. The experimental results showed the SAUR inhibition rate was Ni > Cd > Pb. No significant inhibition in the nitrification reaction of the activated sludge was observed even when as much as 40 ppm Pb was added. In addition, no synergistic effect was found when different heavy metals were simultaneously added in different concentrations, and the overall inhibition effect depended on the heavy metal with the highest toxicity. Further, first order kinetic reaction could model the behavior of SAUR inhibition on activated sludge when adding heavy metals, and the SAUR inhibition formula was derived as SAUR=(SAUR max -SAUR min )xe -r i c +SAUR min . On the other hand, the heavy metal adsorption ability in both the activated sludge system was Pb = Cd > Ni. The specific adsorption capacity of activated sludge on heavy metal increased as the heavy metal concentration increased or the mixed liquid volatile suspended solid (MLVSS) decreased. The batch experiments also showed the heavy metal adsorption capacity of the SBR sludge was larger than the A 2 O sludge. Finally, the most predominant bacteria in the phylogenetic trees of SBR and A 2 O activated sludges were proteobacteria, which contributed to 42.1% and 42.8% of the total clones.

  8. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  9. Sludge stabilization operability test report

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    Document provides the results of the Operability Test Procedure performed to test the operability of the HC-21C thermal stabilization process for sludge. The OTP assured all equipment functioned properly and established the baseline temperature profile for glovebox HC-21C

  10. Thermal analysis of kieselguhr sludge

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2013-01-01

    Full Text Available It’s currently necessary to clarify the mechanisms of thermodynamic and mass transfer processes in capillary porous media. In this paper we obtain the thermogravimetric curves of evaporation drying kieselguhr sludge. It is also an analysis of the curves, allowing to choose the optimum conditions of drying.

  11. Fluidization of Dried Wastewater Sludge.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2007-01-01

    Roč. 178, 3 (2007) , s. 166-172 ISSN 0032-5910 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization characteristics * multiphase reactors * dried stabilized wastewater sludge Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.130, year: 2007

  12. Fermentation and chemical treatment of pulp and paper mill sludge

    Science.gov (United States)

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  13. Radiation disinfection of sewage sludge and composting of the irradiated sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Kawakami, Waichiro

    1985-01-01

    In the radiation disinfected sewage sludge, its stabilization is necessary with the composting. In this disinfected sludge, there is no need of keeping it at high temperature at the cost of fermentation velocity. The fermentation velocity can thus be set to obtain its maximum value. In sewage sludge utilization of farm land, to prevent the contamination with pathogenic bacteria and the secondary pollution, the radiation disinfection of dehydrated sludge and the composting of the disinfected sludge have been studied. The disinfection effect when an electron accelerator is used for the radiation source is described. Then, the composting of the disinfected sludge is described in chemical kinetics of the microorganisms. (Mori, K.)

  14. Effects of Sludge-amendment on Mineralization of Pyrene and Microorganisms in Sludge and Soil

    DEFF Research Database (Denmark)

    Klinge, C; Gejlsbjerg, B; Ekelund, Flemming

    2001-01-01

    . Sludge-amendment enhanced the mineralization of pyrene in the soil compared to soil without sludge, and the most extensive mineralization was observed when the sludge was kept in a lump. The number of protozoa, heterotrophic bacteria and pyrene-mineralizing bacteria was much higher in the sludge compared...... to the soil. The amendment of sludge did not affect the number of protozoa and bacteria in the surrounding soil, which indicated that organic contaminants in the sludge had a little effect on the number of protozoa and bacteria in the surrounding soil...

  15. Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: Verification of on-site washing

    International Nuclear Information System (INIS)

    Makino, Tomoyuki; Kamiya, Takashi; Takano, Hiroyuki; Itou, Tadashi; Sekiya, Naoki; Sasaki, Kouta; Maejima, Yuji; Sugahara, Kazuo

    2007-01-01

    We developed a new, three-step soil-wash method to remediate Cd-contaminated paddy fields. The method comprises (1) chemically washing the field soil with a CaCl 2 solution; (2) washing the treated soil with water to eliminate residual Cd and CaCl 2 ; and (3) on-site treatment of wastewater using a portable wastewater treatment system. Cd concentrations in the treated water were below Japan's environmental quality standard (0.01 mg Cd L -1 ), and the removal of Cd from the exchangeable fraction was 55% and from the acid-soluble fraction 15%. While soil fertility properties were affected by the soil washing, adverse effects were not crucial and could be corrected. The washing had no affect on rice growth, and reduced the average Cd concentration in rice grains by about two-thirds compared to a control plot. These results confirmed the effectiveness of the soil-wash method in remediating Cd-contaminated paddy fields. - In situ soil washing in a paddy field using an on-site wastewater treatment system resulted in an effective decrease of Cd in soil and rice grains without affecting rice yield

  16. Cross contamination of Escherichia coli O157:H7 between lettuce and wash water during home-scale washing.

    Science.gov (United States)

    Jensen, Dane A; Friedrich, Loretta M; Harris, Linda J; Danyluk, Michelle D; Schaffner, Donald W

    2015-04-01

    Lettuce and leafy greens have been implicated in multiple foodborne disease outbreaks. This study quantifies cross contamination between lettuce pieces in a small-scale home environment. A five-strain cocktail of relevant Escherichia coli O157:H7 strains was used. Bacterial transfer between single inoculated lettuce leaf pieces to 10 non-inoculated lettuce leaf pieces that were washed in a stainless steel bowl of water for 30 s, 1 min, 2 min, and 5 min was quantified. Regardless of washing time, the wash water became contaminated with 90-99% of bacteria originally present on the inoculated lettuce leaf piece. The E. coli O157:H7 concentration on initially inoculated leaf pieces was reduced ∼ 2 log CFU. Each initially uncontaminated lettuce leaf piece had ∼ 1% of the E. coli O157:H7 from the inoculated lettuce piece transferred to it after washing, with more transfer occurring during the shortest (30 s) and longest (5 min) wash times. In all cases the log percent transfer rates were essentially normally distributed. In all scenarios, most of the E. coli O157:H7 (90-99%) transferred from the inoculated lettuce pieces to the wash water. Washing with plain tap water reduces levels of E. coli O157:H7 on the inoculated lettuce leaf pieces, but also spreads contamination to previously uncontaminated leaf pieces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Impacts of Sewage Sludge in Tropical Soil: A Case Study in Brazil

    International Nuclear Information System (INIS)

    Bettiol, W.; Ghini, R.

    2011-01-01

    A long-term assay was conducted to evaluate the environmental impacts of agriculture use of sewage sludge on a tropical soil. This paper describes and discusses the results obtained by applying a interdisciplinary approach and the valuable insights gained. Experimental site was located in Jaguariuna (SP, Brazil). Multiyear comparison was developed with the application of sewage sludge obtained from wastewater treatment plants at Barueri (domestic and industrial sewage) and Franca (domestic sewage), Sao Paulo State. The treatments were control, mineral fertilization, and sewage sludge applied based on the N concentration that provides the same amount of N as in the mineral fertilization recommended for corn crop, two, four, and eight times the N recommended dosage. The results obtained indicated that the amount of sewage sludge used in agricultural areas must be calculated based on the N crop needs, and annual application must be avoided to prevent over applications.

  18. Hexavalent chromium removal using aerobic activated sludge batch ...

    African Journals Online (AJOL)

    The following Cr(VI) removal systems were tested: activated sludge alone; activated sludge with an external electron donor (5 g/. of lactose); activated sludge with PAC addition (4 g/.); activated sludge with both PAC and lactose; and PAC alone. The results reported here showed that activated sludges are capable of ...

  19. Candidate reagents and procedures for the dissolution of Hanford Site single-shell tank sludges

    International Nuclear Information System (INIS)

    Schulz, W.W.; Kupfer, M.J.

    1991-10-01

    At least some of the waste in the 149 single-shell tanks (SST) at the US Department of Energy (DOE) Hanford Site will be retrieved, treated, and disposed of. Although the importance of devising efficient and cost-effective sludge dissolution procedures has long been recognized, a concerted bench-scale effort to devise and test such procedures with actual solids representative of those in Hanford Site SSTs has not been performed. Reagents that might be used, either individually or serially, to dissolve sludges include HNO 3 , HNO 3 -oxalic acid, and HNO 3 -HF. This report consolidates and updates perspectives and recommendations concerning reagents and procedures for dissolving Hanford Site SST and selected double-shell tank (DST) sludges. The principal objectives of this report are as follows: (1) Compile and review existing experimental data on dissolution of actual Hanford Site SST and DST sludges. (2) Further inform Hanford Site engineers and scientists concerning the utility of combinations of thermally unstable complexants (TUCS) reagents and various reducing agents for dissolving SST and DST sludges. (This latter technology has recently been explored at the Argonne National Laboratory.) (3) Provide guidance in laying out a comprehensive experimental program to develop technology for dissolving all types of Hanford Site SST and DST sludges. 6 refs., 1 fig., 4 tabs

  20. Studies on land application of sewage sludge and its limiting factors

    International Nuclear Information System (INIS)

    Wang Xin; Chen Tao; Ge Yinghua; Jia Yongfeng

    2008-01-01

    Field experiments were conducted to study the effect of sewage sludge application on the heavy metal content in soils and grasses. The sewage sludge was obtained from Northern Shenyang Wastewater Treatment Plant, China, and applied at 0, 15, 30, 60, 120 and 150 t ha -1 . Native grasses Zoysia japonica and Poa annua were chosen as experimental plants. The experimental results showed that nutrient content of the soil, especially organic matter, was increased after sewage sludge application. The grass biomass was increased and the grass growing season was longer. Heavy metal concentrations in the soil also increased; however, the Zn content did not exceed the stringent Chinese environmental quality standard for soil. Pb and Cu did not exceed the standard for B grade soil, but Cd concentration in soil amended by sewage sludge has exceeded the B grade standard. Therefore, it is suggested that the sewage sludge produced from the wastewater treatment plant should not be applied to farmland, for which B grade soil or better is required. The sludge is suitable for application to forestry and grasslands or nurseries where food chain contamination with cadmium is not a concern

  1. Evaluation of the influence of mechanical activation on physical and chemical properties of municipal solid waste incineration sludge.

    Science.gov (United States)

    Caprai, V; Florea, M V A; Brouwers, H J H

    2018-06-15

    Despite numerous studies concerning the application of by-products in the construction field, municipal solid waste incineration (MSWI) residues are not widely used as secondary building materials. In some European countries, washing treatment to the full bottom ash (BA) fraction (0-32 mm) is applied, isolating more contaminated particles, smaller than 0.063 mm. Therefore, a MWSI sludge is produced, having a high moisture content, and thus a limited presence of soluble species. In order to enhance its performance as building material, here, dry mechanical activation is applied on MSWI sludge. Thereafter, a reactivity comparison between reference BA and untreated and treated MSWI sludge is provided, evaluating their behaviour in the presence of cement and their pozzolanic activity. Moreover, the mechanical performances, as 25% substitution of Portland cement (PC) are assessed, based on the EN 450. Mechanical activation enhances MSWI sludge physically due to the improved particle morphology and packing. Chemically, the hydration degree of PC is enhanced by the MSWI sludge by ≈25%. The milling treatment proved to be beneficial to the residues performances in the presence of PC, providing 32% higher strength than untreated sample. Environmentally, the compliance with the unshaped material legislation is successfully verified, according to the Soil Quality Decree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Particle Separation of Non-Decontamination Soil using Attrition and Washing

    International Nuclear Information System (INIS)

    Koo, Daeseo; Sung, Hyun-Hee; Kim, Seung-Soo; Hong, Sang Bum; Seo, Bum Kyoung; Choi, Jong-Won

    2017-01-01

    In this study, to improve the decontamination efficiency of uranium soil, a preliminary experiment on the particle separation of non-decontamination soil was carried out using attrition and washing. The characteristics of the attrition and washing system are investigated. A conditional experiment on particle separation of non-decontamination soil will be performed. A preliminary experiment on the particle separation of non-decontamination soil was carried out to improve the decontamination efficiency of uranium soil. This experiment was performed with the ratio of soil to water (1:4) for the particle separation of non-decontamination soil. The operations of all equipment such as attrition scrubber, ultrasonic reaction, vibrating screen, and hydro-cyclone were conducted and confirmed. In the future, the additional experiments will be conducted for optimal experimental condition.

  3. Hygienic status assessment of dish washing waters, utensils, hands ...

    African Journals Online (AJOL)

    Hygienic status assessment of dish washing waters, utensils, hands and pieces of money from street food processing sites in Ouagadougou (Burkina Faso). N Barro, AR Bello, A Savadogo, CAT Ouattara, AJ Iiboudo, AS Traoré ...

  4. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    Science.gov (United States)

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  5. Overview of JGC soil washing and site stabilization (SWSS) concept

    International Nuclear Information System (INIS)

    Goetsch, S.; Fujimura, Y.; Sauda, K.; Yagi, T.; Suzuki, K.

    1991-01-01

    The JGC Soil Washing and Site Stabilization (SWSS) concept is to wash heavy metal and uranium-contaminated soils using well demonstrated techniques, and to follow that process with its innovative stabilization process, to fix the remaining contaminates within a stable matrix. In addition, the solution used to wash the soil is stripped of contaminates, so that it can be reused. This process reduces the total amount of wastes generated from washing the soil, since not only can the solution be reused, but often the extracted contaminates can be recovered for industrial use. The stabilization portion of the concept is based on a family of proprietary fixing agents which can render the remaining contaminates insoluble. These agents are significantly different from other (generally silicate) agents used for stabilizing contaminated soils in that they appear to bond more strongly to heavy metal contaminants than the silicate-based reagents, resulting in improved leach-rate performance when combined with bentonite or portland cement stabilization

  6. Why Is Hand Washing So Important? (For Parents)

    Science.gov (United States)

    ... hand washing a rule for everyone, especially: before eating and cooking after using the bathroom after cleaning around the house after touching animals, including family pets before and after visiting or ...

  7. Little Puerco Wash-Catalpa Canyon Floodplain Management Study

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The City of Gallup requested the Soil Conservation Service, through the McKinley Soil and Water Conservation District, to conduct a study of the Little Puerco Wash...

  8. Selected Hydrologic Data for Sand Cove Wash, Washington County, Utah

    National Research Council Canada - National Science Library

    Norton, Aaron; Susong, David D

    2004-01-01

    .... Hydrologic data collected in this study are described and listed in this report. Six boreholes were drilled in Sand Cove Wash to determine the vertical and spatial distribution of the alluvial deposits and their hydrologic...

  9. Influence of selected washing treatments and drying temperatures ...

    African Journals Online (AJOL)

    Influence of selected washing treatments and drying temperatures on ... with regard to the optimal retention of the crude protein and fat levels of the dried dagaa. ... are accessible to most of the households involved in dried fish processing.

  10. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  11. Recommendation of ruthenium source for sludge batch flowsheet studies

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-13

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate, conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.

  12. 40 CFR Appendix A to Part 503 - Procedure To Determine the Annual Whole Sludge Application Rate for a Sewage Sludge

    Science.gov (United States)

    2010-07-01

    ... Whole Sludge Application Rate for a Sewage Sludge A Appendix A to Part 503 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Pt... a Sewage Sludge Section 503.13(a)(4)(ii) requires that the product of the concentration for each...

  13. Membrane processes for the reuse of car washing wastewater

    OpenAIRE

    Deniz Uçar

    2018-01-01

    This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD) and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD...

  14. Purification of crude biodiesel using dry washing and membrane technologies

    OpenAIRE

    Atadashi, I.M.

    2015-01-01

    Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quali...

  15. Chlorides behavior in raw fly ash washing experiments

    International Nuclear Information System (INIS)

    Zhu Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Kitajima, Yoshinori; Inada, Yasuhiro; Morisawa, Shinsuke; Tsuno, Hiroshi

    2010-01-01

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl 2 , and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl 2 decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al 2 O 3 .CaCl 2 ) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl 2 . Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl 2 .

  16. A wash fluid for drilling into a field

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, V M; Badzhurak, R F; Koptelova, Ye K; Rogovoy, V K; Sapozhnikov, N G

    1979-01-18

    A wash fluid is proposed, used in drilling wells in water and a content of 3-5% by weight starch products. To speed up destruction of the starch products, to the fluid are added amylolytic enzymes in the amount of 0.01-0.1 percent by weight of the starch products' weight. To lower the use of starch products, up to 3% clay can be added to the fluid. The wash fluid is prepared directly at the work site. Dry powder of modified starch is mixed with cold water until a colloidal solution is obtained. Such a wash fluid preserves the required structural-mechanical properties for 3-5 days, which ensures prompt drilling into the waterbearing layer and installation of the filter. Then, during the work process, 5-6 hours before the moment required for lowering the viscosity, to the wash fluid is added the amylolytic enzyme; under its influence, the starch molecules split up, and the viscosity drops sharply. Using this wash fluid enables a reduction in well construction times from the beginning of drilling to the end of development of the water-bearing layer, and a rise in outputs and well service lives by reducing sedimentation of the water-bearing formation and elimination of down times during work required while waiting for destruction of the starch wash fluid under natural conditions.

  17. A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: three washes with sterile liquid nitrogen (SLN2).

    Science.gov (United States)

    Parmegiani, Lodovico; Accorsi, Antonio; Bernardi, Silvia; Arnone, Alessandra; Cognigni, Graciela Estela; Filicori, Marco

    2012-10-01

    To report a washing procedure, to be performed as frozen specimens are taken out of cryobanks, to minimize the risk of hypothetical culture contamination during thawing. Basic research. Private assisted reproduction center. Two batches of liquid nitrogen (LN(2)) were experimentally contaminated, one with bacteria (Pseudomonas aeruginosa, Escherichia coli, Stenotrophomonas maltophilia) and the other with fungi (Aspergillus niger). Two hundred thirty-two of the most common human gamete/embryo vitrification carriers (Cryotop, Cryoleaf, Cryopette) were immersed in the contaminated LN(2) (117 in the bacteria and 25 in the fungi-contaminated LN(2)). The carriers were tested microbiologically, one group without washing (control) and the other after three subsequent washings in certified ultraviolet sterile liquid nitrogen (SLN(2)). The carriers were randomly allocated to the "three-wash procedure" (three-wash group, 142 carriers) or "no-wash" (control group, 90 carriers) using a specific software tool. Assessment of microorganism growth. In the no-wash control group, 78.6% of the carriers were contaminated by the bacteria and 100% by the fungi. No carriers were found to be contaminated, either by bacteria or fungi, after the three-wash procedure. The three-wash procedure with SLN(2) produced an efficient decontamination of carriers in extreme experimental conditions. For this reason, this procedure could be routinely performed in IVF laboratories for safe thawing of human specimens that are cryostored in nonhermetical cryocontainers, particularly in the case of open or single-straw closed vitrification systems. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cold or hot wash: Technological choices, cultural change, and their impact on clothes-washing energy use in China

    International Nuclear Information System (INIS)

    Lin, Jiang; Iyer, Maithili

    2007-01-01

    Usage pattern of clothes washing (and clothes washers) are strongly related to local cultural practices. Such practices have led to the development of distinctive clothes-washing technologies in the US, Europe, and Japan. In emerging markets such as China, several types of technologies often co-exist. Some use less energy but more water (the impeller type), and some use more energy but less water (the horizontal axis type). The competition between different technologies is thought to lead to better consumer choices. However, it could also lead to changes in clothes-washing habits-from cold to hot wash, and therefore to much higher energy use. This paper examines the standard development process in China to illustrate that adoption of foreign technologies and technical standards, if not carefully calibrated to the local cultural practices, could have unintended consequences for energy use and environment

  20. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  1. Beryllium-7 in Rainfall, River Sediment and Sewage Sludge - Beryllium-7 in rainwater, river sediment and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Helmut W.; Igbinosa, Aimuamwosa; Souti, Maria Evangelia [University of Bremen, Institute of Environmental Physics, Otto-Hahn-Allee 1, D-28359 Bremen (Germany)

    2014-07-01

    Introduction: The cosmogenic radioisotope {sup 7}Be is one of the major contributors to natural airborne radioactivity, with fairly constant concentrations of some mBq/m{sup 3} near the Earth's surface. The isotope is assumed to be bound to aerosols. It is deposited onto the Earth's surface mainly by wet deposition. In environmental surveillance it is detected regularly in air by aerosol sampling, and in topsoil and on plant leaves after rainfall. In previous studies of this laboratory it had also been detected regularly in freshwater sediments and in wastewater treatment primary sludge. River sediment samples from an estuary showed concentrations influenced by dilution with sea water. Thus it appeared interesting to investigate the usefulness of {sup 7}Be as tracer for rainfall contribution in environmental samples. Experimental: In order to investigate possible correlations and interrelations between {sup 7}Be activity in rainfall, sediment and primary sludge, a measurement campaign was planned and conducted covering a time span of 6 months. {sup 7}Be concentrations were determined in weekly samples of rainwater and primary sludge and in monthly samples of river sediment by high resolution gamma spectroscopy. Besides, rainfall amount and intensity were recorded and weekly primary sludge production volume data were obtained from the treatment plant operators. From these numbers, total atmospheric deposition per surface area could be calculated. Results and discussion: The data show a clear correlation between weekly rainfall amount and {sup 7}Be surface deposition. This is more than plausible as wet deposition is known to be the most effective deposition process. Although washout effectivity is assumed to decrease with rainfall intensity, no correlation could be seen in the data, probably due to averaging within the weekly sampling intervals. The time series of {sup 7}Be deposition with rain and its concentration in primary sludge exhibit very similar

  2. Role of urban surface roughness in road-deposited sediment build-up and wash-off

    Science.gov (United States)

    Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing

    2018-05-01

    Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.

  3. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  5. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    treatment for municipal waste water. A special focus area in Neptune is sludge handling because the sludge amount is expected to increase due to advanced waste water treatment. The main sludge processing methods assessed in Neptune can be divided into two categories: disintegration processes before...... anaerobic digestion (thermal hydrolysis and ultrasound disintegration) and inertisation processes performed at high temperatures (incineration, pyrolysis, gasification, wet oxidation) but they all aim at volume reduction and removal of biodegradable compounds before safe sludge disposal or reuse of its...... resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...

  6. F-Canyon Sludge Physical Properties

    International Nuclear Information System (INIS)

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-01-01

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, DandD requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution

  7. Sewage sludge and how to sell it

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, I M

    1977-10-01

    Largo, Florida dries its sludge and sells it as fertilizer for $80 to $169/T. The sludge processing plant capable of turning common sludge into a dry, pelletized soil conditioner was only slightly more expensive than the previously proposed concrete drying beds which would have required disposal of the dried residue. The city's experience in setting up the plant and marketing the finished product is discussed. The true advantage of selling heat-dried sludge is that residents of the surrounding area, knowing the value of the product to their lawns and shrubs, will provide the transportation for the product and the physical labor to spread it over an area wider than most municipalities could afford to own or operate. The current production cost of $140/T is high, but the addition of a sludge prethickener-conditioner process and expected future economies of scale as the volume of sludge treated increases should lower per ton costs.

  8. Washing technology development for gravel contaminated with uranium

    Energy Technology Data Exchange (ETDEWEB)

    Park, Uk Ryang; Kim, Gye Nam; Kim, Seung Soo; Kim, Wan Suk; Moon, Jai Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The soil washing method has a short decontamination time and is economical. In addition, methods including phytoremediation, solidification/stabilization and bioremediation exist. Phytoremediation and bioremediation are economical, but have low remedial efficiency. In addition, bioremediation causes washing wastewater because it requires a washing process for the separation of microorganisms from the soils. In addition, solidification/stabilization is a commonly used methods, but eventually increases the volume of wastes. As mentioned above, many researches involved in the decontamination of radioactively contaminated soils have been actively processed. On the other hand, researches for decontaminating radioactively contaminated gravels are not being currently processed. In this study, we performed basic experiments using decontamination methods to decontaminate radioactively contaminated gravel. First, we measured the concentration of uranium in gravel included in uranium-contaminated soils and performed a washing experiment to monitor the tendency of uranium removal. In addition, when managing gravel with a low uranium-decontamination rate, we tried to satisfy the radioactivity concentration criteria for self-disposal in the wastes (0.4Bq/g or less) by performing a washing experiment after only a physical crushing process. We performed washing experiments to satisfy the radioactivity concentration criteria for self-disposal (0.4 Bq/g or less) in gravel included in radioactively contaminated soil. We performed washing experiments for gravel whose initial average concentration of uranium was 1.3Bq/g. In addition, the average concentration of uranium was 0.8Bq/g. Too increase the decontamination rate, we crushed the gravel with a jaw crusher and performed the washing experiments. The results were similar to the results without crushing. In addition, it was determined that the smaller the size of the gravel particles, the more efficient the uranium decontamination

  9. Hand washing in operating room: a procedural comparison

    Directory of Open Access Journals (Sweden)

    Alessia Stilo

    2016-09-01

    Full Text Available BACKGROUND Hand washing has been considered a measure of personal hygiene for centuries and it is known that an improper hand hygiene by healthcare workers is responsible for about 40% of nosocomial infections. Therefore, surgical hand preparation is a critical element for healthcare safety in order to reduce microbial contamination of  surgical wound in case of non detected break of the gloves. The aim of our study is to evaluate the efficacy three antiseptics: Povi-iodine scrub; EPG (Ethanol, Hydrogen Peroxide, Glycerol, recommended by WHO, and common marseille soap type in a liquid formulation. METHODS It was designed a randomized, double-blind, single-center study conducted in the University Hospital of Messina, from January to June 2013. We asked operators to put the fingertips of their right hand (if not left-handed for one minute on the PCA medium, before washing with the three types of antiseptics, and after washing and drying. Drying was made using sterile gauzes or disposable wipes. Then, we measured the number of colony forming units per mL (CFU/mL and calculated the percentage of microbial load reduction. RESULTS 211 samples have been considered for statistical analysis: in 42 samples, in fact, initial microbial load was lower than after washing. Washing with EPG reduced CFU/ml from  a mean of 38,9 to 4,1 (86,5% reduction, washing with povi-iodine scrub from 59,55 to 12,9 (75,9% reduction and washing with Marseille soap from 47,26 to 12,7 (64,3% reduction. CONCLUSIONS Our study shows that washing with EPG has superior efficacy in CFU reduction. Antiseptic hand washing, however, cannot be considered the only measure to reduce infections: the anomaly of some results (initial microbial load lower than after washing  demonstrates that drying is an essential phase in the presurgical preparation. Therefore, hand hygiene must be part of a more complex strategy of surveillance and control of nosocomial infections

  10. Method of treating the waste liquid of a washing containing a radioactive substance

    International Nuclear Information System (INIS)

    Sawaguchi, Yusuke; Tsuyuki, Takashi; Kaneko, Masato; Sato, Yasuhiko; Yamaguchi, Takashi.

    1975-01-01

    Object: To separate waste liquid resulting from washing and which contains a radioactive substance and surface active agent into high purity water and a solid waste substance containing a small quantity of surface active agent. Structure: To waste liquid from a waste liquid tank is added a pH adjusting agent for adjusting the pH to 5.5, and the resultant liquid is sent to an agglomeration reaction tank, in which an inorganic agglomerating agent is added to the waste liquid to cause a major proportion of the radioactive substance and surface active agent to form flocks produced through agglomeration. Then, the waste liquid is sent from the agglomeration reaction tank to a froth separation tank, to which air is supplied through a perforated plate to cause frothing. The over-flowing liquid is de-frothed, and then the insoluble matter is separated as sludge, followed by hydroextraction and drying for solidification. The treated liquid extracted from a froth separation tank is sent to an agglomerating agent recovery tank for separation of the agglomeration agent, and then the residual surface active agent is removed by adsorption in an active carbon adsorption tower, followed by concentration by evaporation in an evaporating can. The concentrated liquid is extracted and then solidified with cement or asphalt. (Kamimura, M.)

  11. Reconfirmation of frit 803 based on the January 2016 sludge batch 9 reprojection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-10

    On January 11, 2016, Savannah River Remediation (SRR) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 9 (SB9) reprojection that was developed from the analyzed composition of a Tank 51 sample. This sample was collected after field washing had been completed in Tank 51 to support the alternate reductant task. Based on this reprojection, Frit 803 is still a viable option for the processing of SB9 under sludge-only operations and coupled (Actinide Removal Process (ARP) product with and without monosodium titanate (MST)) operations. The maximum projected volumes of ARP product that can be transferred from the Precipitate Reactor Feed Tank (PRFT) per Sludge Receipt and Adjustment Tank (SRAT) batch and the resulting Na2O concentrations in the SRAT for coupled operations were determined. The Na2O concentrations in the SRAT resulting from the maximum projected ARP product transfer volumes are consistent with those from the previous assessments that were based on the August 2015 projections. Regardless of the presence or absence of MST in the ARP product, the contribution of Na2O to the resulting glass will be similar at the same waste loading (WL). These projected volumes of ARP product are not anticipated to be an issue for SB9. The actual transfer volumes from the PRFT to the SRAT are determined based upon the analyzed Na2O concentrations in the PRFT samples, which has resulted in larger transfer volumes than those allowed by the projections for Sludge Batch 8 (SB8). An operating window of 32-40% WL around the nominal WL of 36% is achievable for both sludge-only and coupled operations; however, each of the glass systems studied does become limited by waste form affecting constraints (durability) at higher volumes of ARP product and WLs of 41-42%.

  12. Composting of gamma-radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.; Watanabe, H.; Nishimura, K.; Watanabe, H.; Ito, H.; Takehisa, M.

    1981-01-01

    The composting of radiation disinfected sewage sludge has been studied since 1978, aiming to present a new process of sludge composting for agricultural uses. This process is composed of two steps: irradiation step to disinfect sludge, and composting step to remove odor and easily decomposable organics in sludge. In this paper, the gamma-irradiation effect on sludge cake and composting condition of irradiated sludge are discussed. (author)

  13. Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined

  14. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  15. An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.

  16. Late Wash/Nitric Acid flowsheet hydrogen generation bases for simulation of a deflagration/detonation in the DWPF CPC

    International Nuclear Information System (INIS)

    Ritter, J.A.

    1993-01-01

    Hydrogen generation data obtained from IDMS runs PX4 and PX5 will be used to determine a bases for a deflagration/detonation simulation in the DWPF CPC. This simulation is necessary due to the new chemistry associated with the Late Wash/ Nitric Acid flowsheet and process modifications associated with the presence of H 2 in the offgas. The simulation will be performed by Professor Van Brunt from the University of South Carolina. The scenario which leads up to the deflagration/detonation simulation will be chosen such that the following conditions apply. The SRAT is filled to its maximum operating level with 9,600 gal of sludge, which corresponds to the minimum vapor space above the sludge. The SRAT is at the boiling point, producing H 2 at a very low rate (about 10 % of the peak) and 15 scfm of air inleakage is entering the SRAT. Then, the H 2 generation rate will be allowed to increase exponentially (catalyst activation) until it readies the peak H 2 generation rate of the IDMS run, after which the H 2 generation rate will be allowed to decay exponentially (catalyst deactivation) until the total amount of H2 produced is between 85 and 100% of that produced during the IDMS run

  17. Simulation of substrate degradation in composting of sewage sludge

    International Nuclear Information System (INIS)

    Zhang Jun; Gao Ding; Chen Tongbin; Zheng Guodi; Chen Jun; Ma Chuang; Guo Songlin; Du Wei

    2010-01-01

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k 20 (the first-order rate constant at 20 o C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k 20 , k 20s (first-order rate coefficient of slow fraction of BVS at 20 o C) of the sewage sludge were estimated as 0.082 and 0.015 d -1 , respectively.

  18. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    Science.gov (United States)

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  19. Investigation of heterogeneous ice nucleation in pollen suspensions and washing water

    Science.gov (United States)

    Dreischmeier, Katharina; Budke, Carsten; Koop, Thomas

    2014-05-01

    Biological particles such as pollen often show ice nucleation activity at temperatures higher than -20 °C. Immersion freezing experiments of pollen washing water demonstrate comparable ice nucleation behaviour as water containing the whole pollen bodies (Pummer et al., 2012). It was suggested that polysaccharide molecules leached from the grains are responsible for the ice nucleation. Here, heterogeneous ice nucleation in birch pollen suspensions and their washing water was investigated by two different experimental methods. The optical freezing array BINARY (Bielefeld Ice Nucleation ARraY) allows the direct observation of freezing of microliter-sized droplets. The IN spectra obtained from such experiments with birch pollen suspensions over a large concentration range indicate several different ice nucleation active species, two of which are present also in the washing water. The latter was probed also in differential scanning calorimeter (DSC) experiments of emulsified sub-picoliter droplets. Due to the small droplet size in the emulsion samples and at small concentration of IN in the washing water, such DSC experiments can exhibit the ice nucleation behaviour of a single nucleus. The two heterogeneous freezing signals observed in the DSC thermograms can be assigned to two different kinds of ice nuclei, confirming the observation from the BINARY measurements, and also previous studies on Swedish birch pollen washing water (Augustin et al., 2012). The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples. S. Augustin, H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius, and F. Stratmann, Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989

  20. Solidifying power station resins and sludges

    International Nuclear Information System (INIS)

    Willis, A.S.D.; Haigh, C.P.

    1984-01-01

    Radioactive ion exchange resins and sludges arise at nuclear power stations from various operations associated with effluent treatment and liquid waste management. As the result of an intensive development programme, the Central Electricity Generating Board (CEGB) has designed a process to convert power station resins and sludges into a shielded, packaged solid monolithic form suitable for final disposal. Research and development, the generic CEGB sludge/resin conditioning plant and the CEGB Active Waste Project are described. (U.K.)

  1. Land application of sewage sludge: Pathogen issues

    International Nuclear Information System (INIS)

    Chang, A.C.

    1997-01-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author)

  2. Where to dispose of the sewage sludge?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2001-01-01

    The 'proper' course for the disposal of sewage sludge is a topic that has continually sparked intense discussion for years. New legal regulations have developed which have significantly changed the disposal structure. Nevertheless, the consumer market of agriculture products has an increasing influence on sewage sludge recycling possibilities. In this report, the changes in sewage sludge disposal within the last ten years and the expected development is pointed out. On account of legal guidelines and of political market influences, the thermal recycling of sewage sludge is considered as the future solution, which should, however, be adapted according to marginal situations. (author)

  3. Rheological properties of disintegrated sewage sludge

    Science.gov (United States)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  4. Radioactive contamination of sewage sludge. Preliminary data

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C J; Zanders, E; Raphael, T

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required.

  5. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  6. A review of modeling approaches in activated sludge systems

    African Journals Online (AJOL)

    use

    Key words: Mathematical modeling, water, wastewater, wastewater treatment plants, activated sludge systems. INTRODUCTION ... sedimentation processes which take place in the aeration ...... activated sludge waste water treatment systems.

  7. Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients

    International Nuclear Information System (INIS)

    Garcia-Sanchez, L.; Konoplev, A.V.

    2009-01-01

    Radionuclide wash-off is the transport of activity by flowing water over the soil surface (runoff). To complete existing reviews on long-term removal rates, this paper focuses on short-term wash-off fluxes, quantified in the literature by soil-runoff transfer factors called normalized liquid and solid entrainment coefficients (noted K l *, K s *). Compiled data concerned essentially 137 Cs and 90 Sr wash-off measured under simulated rainfalls on small experimental plots after Chernobyl fallout in the exclusion zone. K l * and K s * values span approximately one order of magnitude. Their validity is limited to a season, and their representativeness is limited by restricted studied situations, notably dominant unsoluble forms in fallout, light soils and intense rainfalls. Formulas based on a simplified representation of the soil-runoff system were proposed to generalize the existing values for other conditions. However, their implementation requires a more systematic compilation of the available information, including decisive influence factors such as the fraction of exchangeable form, distribution coefficient, suspended matter enrichment ratio. Entrainment coefficients K l * and K s * were mathematically related to the transfer function approach. The proposed relationships proved their complementarity in terms of time support and captured fluctuations. Both approaches should be used in assessments to estimate average fluxes and their variability.

  8. Beneficial use of waste nuclear isotopes - 137Cs radiation treatment of municipal sludge and compost

    International Nuclear Information System (INIS)

    Remini, W.C.; Wahlquist, B.J.; Sivinsky, H.D.

    1977-01-01

    For the past several years, the Nuclear Research and Applications Division has been sponsoring, in cooperation with EPA, a program to develop the technology and investigate the potential of using gamma radiation to reduce pathogen levels in sewage sludge. The irradiation source would be cesium-137 which has been extracted from the reactor wastes and diverted to this use. It would be used in this irradiation process until its source strength had decayed to the point that it was no longer effective. At that point, it would be transferred for disposal. This sludge irradiation program is a part of a larger effort to develop beneficial uses of individual isotopes or combinations of isotopes contained in the reactor wastes. Such potential applications include strontium-90 for power generation in remote applications, extraction of platinum family metals to help alleviate demands on foreign supplies, and use of krypton-85 in self-luminous light sources. Sludge irradiation offers what appears to be near-term benefits and has received the major focus in this program. This summary report reviews the progress and current status in the sludge irradiation program. It reviews the background of the national sludge problem and describes how the irradiation process may be applied to this problem. The two major approaches, wet and dry irradiation, are described and their technical and economic potential is discussed. Finally, the status of on-going efforts to experimentally apply irradiation to sludges are summarized and a projected development plan is outlined. (Auth.)

  9. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng-Zhe; Deng, Rui; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China); Zhang, Xian; Wang, Hui-Zhong [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Jin, Ren-Cun, E-mail: jrczju@aliyun.com [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China)

    2015-12-30

    Highlights: • The Cu partition in an anammox UASB reactor was predicted by models. • The distribution and form dynamics of Cu in anammox reactors were tracked. • The response of the EPS to Cu(II) was characterized by 3D-EEM spectra. • The mechanism of Cu inhibition on anammox granules was updated. • The feasibilities of two novel remediation strategies were investigated. - Abstract: In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L{sup −1} d{sup −1}) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg{sup −1}SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.

  10. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation

    International Nuclear Information System (INIS)

    Zhang, Zheng-Zhe; Deng, Rui; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli; Zhang, Xian; Wang, Hui-Zhong; Jin, Ren-Cun

    2015-01-01

    Highlights: • The Cu partition in an anammox UASB reactor was predicted by models. • The distribution and form dynamics of Cu in anammox reactors were tracked. • The response of the EPS to Cu(II) was characterized by 3D-EEM spectra. • The mechanism of Cu inhibition on anammox granules was updated. • The feasibilities of two novel remediation strategies were investigated. - Abstract: In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L −1 d −1 ) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg −1 SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.

  11. Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion.

    Science.gov (United States)

    Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo

    2018-03-01

    Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Soil washing treatability testing for rad-waste material

    International Nuclear Information System (INIS)

    Leis, K.S.; Lear, P.R.

    1997-01-01

    Soil washing treatability testing was successfully completed on soil contaminated with Ra-226 and Th-232. The objective of the soil washing study was to determine if the radiologically contaminated fraction of the soil could be separated from the bulk of the soil material. The cleanup criteria was 38 microm) fraction was allowed to settle and was washed to separate it from the highly contaminated fine (< 38 microm) fraction. The clean coarse fraction comprised 85.7% of the total solids and had less than 15 pCi/g of Ra-226 and Th-232. This material was to be disposed at a RCRA Subtitle D disposal facility. The suspended fines were flocculated and dewatered to minimize the amount of highly contaminated material produced by the soil washing. The dewatered fines would require disposal at a low-level radiological disposal facility. Mass balance calculations were made to determine production rates and chemical and equipment requirements for the full-scale soil washing treatment

  13. Towards a durability test for washing-machines.

    Science.gov (United States)

    Stamminger, Rainer; Tecchio, Paolo; Ardente, Fulvio; Mathieux, Fabrice; Niestrath, Phoebe

    2018-04-01

    Durability plays a key role in enhancing resource conservation and contributing to waste minimization. The washing-machine product group represents a relevant case study for the development of a durability test and as a potential trigger to systematically address durability in the design of products. We developed a procedure to test the durability performance of washing-machines as a main objective of this research. The research method consisted of an analysis of available durability standards and procedures to test products and components, followed by an analysis of relevant references related to frequent failures. Finally, we defined the criteria and the conditions for a repeatable, relatively fast and relevant endurance test. The durability test considered the whole product tested under conditions of stress. A series of spinning cycles with fixed imbalanced loads was run on two washing-machines to observe failures and performance changes during the test. Even though no hard failures occurred, results clearly showed that not all washing-machines can sustain such a test without abrasion or performance deterioration. However, the attempt to reproduce the stress induced on a washing-machine by carrying out a high number of pure spinning cycles with fixed loads did not allow equal testing conditions: the actions of the control procedure regarding imbalanced loads differ from machine to machine. The outcomes of this research can be used as grounds to develop standardised durability tests and to, hence, contribute to the development of future product policy measures.

  14. Treatment of car wash wastewater by UF membranes

    Science.gov (United States)

    Istirokhatun, Titik; Destianti, Puti; Hargianintya, Adenira; Oktiawan, Wiharyanto; Susanto, Heru

    2015-12-01

    The existence of car wash service facilitates car owners to remove dirt and grime from their vehicles. However, the dirt washed off vehicles as well as the cleaning materials themselves may be harmful to the environment if they are not properly managed and discharged. Many technologies have been proposed to treat car wash wastewater such as coagulation flocculation, tricking filter and flocculation-flotation. Nevertheless, these technologies have low efficiency to eliminate oil and small organic compounds. Ultrafiltration (UF) membranes were used in this study to treat car wash wastewater. This study investigated the performance of UF membranes under various pressures to remove COD, oil and grease, and also turbidity from car wash waste water. The membrane performance was examined by investigation of permeate flux and membrane rejection. The results meet the standard of environmental regulation and it is possible to be reused. The highest rejection was shown by PES10 (polyethersulfone 10 kDa) in 1 bar operation with complete rejection for both turbidity and oil and grace and 95% rejection for COD.

  15. A novel washing algorithm for underarm stain removal

    Science.gov (United States)

    Acikgoz Tufan, H.; Gocek, I.; Sahin, U. K.; Erdem, I.

    2017-10-01

    After contacting with human sweat which comprise around 27% sebum, anti-perspirants comprising aluminium chloride or its compounds form a jel-like structure whose solubility in water is very poor. In daily use, this jel-like structure closes sweat pores and hinders wetting of skin by sweat. However, when in contact with garments, they form yellowish stains at the underarm of the garments. These stains are very hard to remove with regular machine washing. In this study, first of all, we focused on understanding and simulating such stain formation on the garments. Two alternative procedures are offered to form jel-like structures. On both procedures, commercially available spray or deo-stick type anti-perspirants, standard acidic and basic sweat solutions and artificial sebum are used to form jel-like structures, and they are applied on fabric in order to get hard stains. Secondly, after simulation of the stain on the fabric, we put our efforts on developing a washing algorithm specifically designed for removal of underarm stains. Eight alternative washing algorithms are offered with varying washing temperature, amounts of detergent, and pre-stain removal procedures. Better algorithm is selected by comparison of Tristimulus Y values after washing.

  16. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...

  17. Assessment of the potential for biogas production from wheat straw leachate in upflow anaerobic sludge blanket digesters.

    Science.gov (United States)

    Idrus, S; Banks, C J; Heaven, S

    2012-01-01

    Wheat straw is a major potential source of waste biomass for renewable energy production, but its high salt content causes problems in combustion. The salts can be removed by washing, but this process also removes a proportion of the organic material which could potentially be recovered by anaerobic digestion of the washwater leachate. This approach would maximise the overall energy yield in an integrated process in which washwater could be recycled after further desalting. Leachate from cold water washing with a chemical oxygen demand (COD) of 1.2 g l⁻¹ was fed to mesophilic upflow anaerobic sludge blanket (UASB) digesters at a loading rate of 1 g COD l⁻¹ day⁻¹ to determine the energy yield and any detrimental effects of the leached salts on the process. The specific methane production was 0.29 l CH₄ g⁻¹ COD(added), corresponding to a COD removal rate of 84%. Light metal cations in the leachate, especially potassium, were found to accumulate in the digesters and appeared to have a synergistic effect up to a concentration of ∼6.5 mg K g⁻¹ wet weight of the granular sludge, but further accumulation caused inhibition of methanogenesis. It was shown that gas production in the inhibited digesters could be restored within 12 days by switching the feed to a synthetic sewage, which washed the accumulated K out of the digesters.

  18. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  19. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Science.gov (United States)

    2010-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent wash ink...-base ink where the tank washing system uses solvents. When a plant is subject to effluent limitations...

  20. Computer Simulation of Bound Component Washing To Minimize Processing Costs

    Directory of Open Access Journals (Sweden)

    Dagmar Janáčová

    2011-11-01

    Full Text Available In this paper we focused on the optimization of the washing processes because many technological processes are characterizedby large consumption of water, electrical energy and auxiliary chemicals mainly. For this reason it is very important to deal withthem. For the optimization of process of washing it is possible to set up an access of the indirect modeling that is based on make-up ofmathematical models coming out of study of the physical operation mechanism. The process is diffusion character it is characterizedby the value of diffusion effective coefficient and so called structure power of the removing item to the solid phase. The mentionedparameters belong to input data that are appropriate for the automatic control of washing process.

  1. Soil washing results for mixed waste pond soils at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1991-09-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples. 7 refs., 2 figs., 4 tabs

  2. Gravity and magnetic study of Yucca Wash, southwest Nevada

    International Nuclear Information System (INIS)

    Langenheim, V.E.; Ponce, D.A.; Oliver, H.W.; Sikora, R.F.

    1993-01-01

    Gravity and ground magnetic data were collected along five traverses across and one traverse along Yucca Wash in the southwest quadrant of the Nevada Test Site. Two additional ground magnetic profiles were collected approximately 100 m to either side of the longitudinal profile. These data do not indicate major vertical offsets greater than 100 m using a density contrast of 0.2 to 0.3 g/cm 3 along the proposed Yucca Wash fault. A broad magnetic high coincides with the location of the hydrologic gradient. Density profiling, a technique used to determine the average density of small topographic features, suggests that the density of near-surface material in the vicinity of Yucca Wash is about 2.0 g/cm 3

  3. Dry washing: the solution for contaminated liquid effluent releases

    International Nuclear Information System (INIS)

    L'homme, D.; Trambouze, P.

    1998-01-01

    The release of wash water used for contaminated garments poses an ever-increasing problem on nuclear sites. Even though the radioactivity is low, it mixes with organic compounds, thus polluting a large quantity of liquid effluents. In many cases, several thousands of m 3 /year per nuclear site are produced, which at times represents more than 30% of the volume of total releases. The conventional dry cleaning process is not a viable option, given that repeated washing cause clothes to fade and the odors are rot removed completely. In order to eliminate releases, STMI has developed, after several years of research with the Technological University of Compiegne, France, a solvent dry washing process for garments used in the nuclear industry. (author)

  4. Sludge Batch Variability Study With Frit 418

    International Nuclear Information System (INIS)

    Johnson, F.; Edwards, T.

    2010-01-01

    The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO 2 resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass regardless of

  5. Micropollutant degradation via extracted native enzymes from activated sludge.

    Science.gov (United States)

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  6. Chlorides behavior in raw fly ash washing experiments.

    Science.gov (United States)

    Zhu, Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Kitajima, Yoshinori; Inada, Yasuhiro; Morisawa, Shinsuke; Tsuno, Hiroshi

    2010-06-15

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl(2), and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl(2) decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al(2)O(3).CaCl(2)) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl(2). Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl(2). Copyright 2010 Elsevier B.V. All rights reserved.

  7. Characterization of wastewaters from vehicle washing companies and environmental impacts

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2011-12-01

    Full Text Available The car wash business has developed rapidly in recent years due to the increased number of cars, thus, it can cause serious environmental problems considering its potential source of pollution. The aim of this study was to characterize the wastewater from car washing companies in the city of Campina Grande, in Paraiba state, and to analyze the environmental impacts generated. A survey was conducted from November 2009 to July 2010. The first step we present a survey of car wash businesses in the city, and identified 20 licensed companies in which we evaluated the number of vehicles washed per week, the existence of a system of pre-treatment of wastewater generated and infrastructure that would allow the realization of the collection of samples of the effluent, the second step was carried out chemical and physical characterization of wastewater from five 20 companies surveyed in the previous step, and third stage were measured pollution loads of wastewater from washing of vehicles in the city, from the results obtained in previous steps. The characterization parameters were analyzed: oil and grease, COD, heavy metals, TS, TSS, turbidity, TKN, total P, pH and color. The results demonstrated that the wastewater from the car wash establishments shows high concentrations of organic matter, oils and grease, heavy metals and solids, and as such did not conform with the specific environmental legislation. Evaluation of pollutant loads demonstrated that if releases without proper treatment, it can cause serious environmental problems. It is therefore essential that these establishments are properly monitored.

  8. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    Science.gov (United States)

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  9. Nuclear Car Wash sensitivity in varying thicknesses of wood and steel cargo

    International Nuclear Information System (INIS)

    Church, J; Slaughter, D; Asztalos, S; Biltoft, P; Descalle, M; Hall, J; Manatt, D; Mauger, J; Norman, E; Petersen, D; Prussin, S

    2006-01-01

    The influence of incident neutron attenuation on signal strengths in the Nuclear Car Wash has been observed experimentally for both wood and steel-pipe mock cargos. Measured decay curves are presented for β-delayed high-energy γ-rays and thermalized neutrons following neutron-induced fission of HEU through varying irradiation lengths. Error rates are extracted for delayed-γ and delayed-n signals integrated to 30 seconds, assuming Gaussian distributions for the active background. The extrapolation to a field system of 1 mA deuterium current and to a 5 kg sample size is discussed

  10. Adsorption of acid red from dye wastewater by Zn{sub 2}Al-NO{sub 3} LDHs and the resource of adsorbent sludge as nanofiller for polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Tianshan; Gao, Yanshan; Zhang, Zhang [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China); Umar, Ahmad, E-mail: ahmadumar786@gmail.com [Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Yan, Xingru; Zhang, Xi; Guo, Zhanhu [Integrated Composites Laboratory, Dan F Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710 (United States); Wang, Qiang, E-mail: qiang.wang.ox@gmail.com [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China)

    2014-02-25

    Highlights: • High removal efficiency of acid red 97 from dye wastewater was achieved by using Zn{sub 2}Al-NO{sub 3} LDHs adsorbent. • The resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) was proposed for the first time. • The thermal stability of PP was significantly improved by introducing only small amount of LDH adsorbent sludge. • The resource the dye adsorbent sludge as multifunctional nanofiller for polymers is a very promising option. -- Abstract: In this contribution, we report the removal of acid red 97 (AC97) from simulated dye wastewater by using Zn{sub 2}Al-NO{sub 3} layered double hydroxides (LDHs) adsorbent, and the resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) for the first time. The obtained Zn{sub 2}Al-NO{sub 3} LDH was analyzed using X-ray diffraction and scanning electron microscopy analysis, confirming the formation of pure and platelike LDH nanoparticles. The effects of adsorption time and initial dye concentration on the removal of AC97 from wastewater were systematically investigated, showing that the Zn{sub 2}Al-NO{sub 3} LDHs is very efficient in removing AC97. The saturated adsorption capacity of water washed and acetone washed Zn{sub 2}Al-LDHs is 204.4 and 299.5 mg/g, respectively. Finally, the LDH adsorbent sludge was added into PP using a modified solvent mixing method. Thermal gravimetric analysis and ultraviolet (UV) absorption analysis of PP/Zn{sub 2}Al-AC97 LDHs nanocomposites suggested that the Zn{sub 2}Al-AC97 LDH can significantly improve the thermal stability and UV shielding ability of PP. This data demonstrated that it is very promising to resource the dye adsorbent sludge as multifunctional nanofiller for polymers.

  11. Pathogen reduction in sludges by irradiation

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1979-01-01

    There is international interest in the use of ionizing radiation in waste water and sludge treatment. Results of programs to study effects of radiation on disease-causing microbes commonly found in wastewater sludges will be discussed. Although emphasis will be on the work conducted at Sandia Laboratories, the discussion will include work in progress in West Germany, France, South Africa, and other countries

  12. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  13. Electron beam disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1992-01-01

    Electron beam treatment of dehydrated sewage sludge for safe reutilization was performed. Ranges of total bacterial counts and total coliforms in the sludge were from 1.5 x 10 8 to 1.6 x 10 9 and from 2.2 x 10 7 to 1.5 x 10 8 per wet gram, respectively. Total bacterial counts decreased about 5 log cycles after irradiating 5 kGy and irradiation with 2 kGy was enough to kill all coliforms in sewage sludge. The survival curves of total bacteria, obtained by irradiation in oxygen atmosphere, approached to that in nitrogen atmosphere with the increase of sludge thickness. No effects of dose rate and electron energy were found when the sludge layers were thin enough. Continuous disinfection of sewage sludge cake, with the maximum feed rate of 300 kg-sludge/hr, was successfully performed with a Cockcroft-Walton type electron accelerator, a sludge pump and a flat nozzle. (J.P.N.)

  14. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  15. Filterability and Sludge Concentration in Membrane Bioreactors

    NARCIS (Netherlands)

    Lousada-Ferreira, M.

    2011-01-01

    The Thesis entitled “Filterability and Sludge Concentration in Membrane Bioreactors” aims at explaining the relation between Mixed Liquid Suspended Solids (MLSS) concentration, the amount of solids in the wastewater being treated, also designated as sludge, and filterability, being the ability of

  16. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  17. Gravitational sedimentation of flocculated waste activated sludge.

    Science.gov (United States)

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  18. 100 Area soil washing bench-scale test procedures

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gerber, M.A.; Mattigod, S.V.; Serne, R.J.

    1993-03-01

    This document describes methodologies and procedures for conducting soil washing treatability tests in accordance with the 100 Area Soil Washing Treatability Test Plan (DOE-RL 1992, Draft A). The objective of this treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. These data will be primarily used for determining feasibility of the individual unit operations and defining the requirements for a system, or systems, for pilot-scale testing

  19. Effectiveness of a nonrinse, alcohol-free antiseptic hand wash.

    Science.gov (United States)

    Moadab, A; Rupley, K F; Wadhams, P

    2001-06-01

    This study evaluated the efficacy of a novel surfactant, allantoin, and benzalkonium chloride hand sanitizer using the US Food and Drug Administration's method for testing antiseptic hand washes that podiatric physicians and other health-care personnel use. The alcohol-free product, HandClens, was compared with an alcohol-based product, Purell. Independent researchers from the California College of Podiatric Medicine conducted the study using 40 volunteer students from the class of 2001. The results show that HandClens outperformed Purell and met the regulatory requirements for a hand sanitizer. Purell failed as an antimicrobial hand wash and was less effective than a control soap used in the study.

  20. Washing the patient: dignity and aesthetic values in nursing care.

    Science.gov (United States)

    Pols, Jeannette

    2013-07-01

    Dignity is a fundamental concept, but its meaning is not clear. This paper attempts to clarify the term by analysing and reconnecting two meanings of dignity: humanitas and dignitas. Humanitas refers to citizen values that protect individuals as equal to one another. Dignitas refers to aesthetic values embedded in genres of sociality that relate to differences between people. The paper explores these values by way of an empirical ethical analysis of practices of washing psychiatric patients in nursing care. Nurses legitimate the washing of reluctant patients with reference to dignity. The analysis shows the intertwinement of humanitas and dignitas that gives dignity its fundamental meaning. © 2013 John Wiley & Sons Ltd.

  1. Washing effects of limonene on pesticide residues in green peppers.

    Science.gov (United States)

    Lu, Hai-Yan; Shen, Yan; Sun, Xing; Zhu, Hong; Liu, Xian-Jin

    2013-09-01

    The presence of pesticide residues in food has caused much concern. The low health risks and environmental impacts of limonene make it a very interesting solvent for use in green chemistry. Washing effects of limonene on pesticide residues of methyl chlorpyrifos, chlorothalonil, chlorpyrifos, fenpropathrin and deltamethrin were investigated in green pepper. Results showed that washing with a low concentration of limonene for 5 min (where LOQ is limit of quantitation) caused 53.67%, limonene for 10 min produced 55.90%, limonene for 5 min was the optimal treatment for elimination of pesticide residues in green pepper, considering effect and treatment time as well as cost. © 2013 Society of Chemical Industry.

  2. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  3. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China); Chen, Guan-Bu [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China)

    2013-01-15

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH){sub 2}, and Mg(OH){sub 2} to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg{sup −1}) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L{sup −1} DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH{sub 4}) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively.

  4. Waste sludge resuspension and transfer: development program

    International Nuclear Information System (INIS)

    Weeren, H.O.; Mackey, T.S.

    1980-02-01

    The six Gunite waste tanks at Oak Ridge National Laboratory (ORNL) contain about 400,000 gal of sludge that has precipitated from solution and settled during the 35 years these tanks have been in service. Eventual decommissioning of the tanks has been proposed. The first part of this program is to resuspend the accumulated sludge, to transfer it to new storage tanks in Melton Valley, and to dispose of it by the shale-fracturing process. On the basis of preliminary information, a tentative operational concept was adopted. The sludge in each tank would be resuspended by hydraulic sluicing and pumped from the tank. This resuspended sludge would be treated as necessary to keep the particles in suspension and would be pumped to the new waste-storage tanks. Subsequently the sludge would be pumped from the tanks, combined with a cement-base mix, and disposed of by the shale-fracturing facility. Verification of the feasibility of this concept required development effort on characterization of the sludge and development of techniques for resuspending the sludge and for keeping it in suspension. These development efforts are described in this report. Sections of the report describe both the known properties of the sludge and the tests of grinding methods investigated, discuss tests of various suspenders, describe tests with cement-base mixes, summarize hot-cell tests on actual sludge samples, and describe tests that were made at a mockup of a Gunite tank installation. On the basis of the tests made, it was concluded that reslurrying and resuspension of the sludge is quite feasible and that the suspensions can be made compatible with cement mixes

  5. Physical property characterization of 183-H Basin sludge

    International Nuclear Information System (INIS)

    Biyani, R.K.; Delegard, C.H.

    1995-01-01

    This document describes the characterization of 183-H Basin sludge physical properties, e.g. bulk density of sludge and absorbent, and determination of free liquids. Calcination of crucible-size samples of sludge was also done and the resulting 'loss-on-ignition' was compared to the theoretical weight loss based on sludge analysis obtained from Weston Labs

  6. Dewaterability of sludge digested in extended aeration plants using ...

    African Journals Online (AJOL)

    Dewaterability of unconditioned sludge digested in full scale and lab scale experiments using either extended aeration (EA) or anaerobic digestion were compared on full and lab scale sand drying beds. Sludge digested in EA plants resulted in improvement in sludge dewaterability compared to sludge digested ...

  7. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    International Nuclear Information System (INIS)

    Swinwood, J.F.; Kotler, J.

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author)

  8. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swinwood, J.F.; Kotler, J. (Nordion International Inc., Kanata, Ontario (Canada))

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author).

  9. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    Science.gov (United States)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  10. The beneficial usage of water treatment sludge as pottery product ...

    African Journals Online (AJOL)

    The disposal of sludge from water treatment operations has become a major problem in Malaysia. The problem becomes acute because of scarcity of space for installation of sludge treatment facilities and disposal of treated sludge. Traditionally, treated sludge from water treatment plant will be sent to landfill for disposal.

  11. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    Science.gov (United States)

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  12. Effects of Sludge Dry Solid Content and Residual Bulking Agents on Volatile Solids Reduction Using Eisenia foetida

    Directory of Open Access Journals (Sweden)

    Mohammad ali Abdoli

    2009-06-01

    Full Text Available In the first stage of this study, the compound effects of sludge dry solid content and residual bulking agent type (paper, saw dust, straw mixed with activated sludge (10, 15, and 20% dry solids on volatile solids (V.S. reduction were investigated using Eisenia foetida in pilot scale experiments with batches of fifty earthworms in each of the 10 experimental treatments over a period of 10 weeks. The maximum V.S. reduction was attained in the mixture of sludge and paper, with a D.S. of 15% (0.42 ± 0.03 % day-1 while the minimum V.S. reduction was achieved in the mixture of sludge and straw, with a D.S. of 10% (0.26 ± 0.01 % day-1. In the second stage, the survival of Eisenia foetida in the anaerobic sewage sludge was investigated. In the unmixed raw anaerobic sludge, all the earthworms died during the first 9 weeks of the study period due to acute toxicity. From week 10, however, their survival rate improved so that by week 12 when toxicity reduced to 25.40%, they completely survived. This is while in the mixture of anaerobic sludge with paper (D.S. 15%, 100% of the earthworms survived from week 8 after the volatile solids reduced to 20.42% and 17.40%.

  13. EFFECT OF FLY ASHES AND SEWAGE SLUDGE ON Fe, Mn, Al, Si AND Co UPTAKE BY GRASS MIXTURE

    Directory of Open Access Journals (Sweden)

    Jacek Antonkiewicz

    2014-07-01

    Full Text Available Application of sewage sludge for environmental management of fly ashes landfill site affects chemical composition of plants. The aim of the present investigations was learning the effect of growing doses of municipal sewage sludge on the yield and uptake of Fe, Mn, Al, Si and Co by grass mixture used for environmental management of fly ashes landfill. The experimental design comprised of 5 objects differing by a dose of municipal sewage sludge supplied per 1 hectare: I. control, II. 25 t d.m., III. 50 t d.m., IV. 75 t d.m. and V. 100 t d.m. Application of sewage sludge resulted in the increase in yield. The content of analyzed elements in the grass mixture depended significantly on sewage sludge dose. Increasing doses of sewage sludge caused marked increase in Mn and Co contents, while they decreased Fe, Al and Si contents in the grass mixture. It was found that growing doses of sewage sludge caused an improvement of Fe to Mn ratio value in the grass mixture. Assessing the element content in the grass mixture in the view of forage value, it was found that Fe and Mn content did not meet the optimal value. Si content in plants was below the optimal value.

  14. Eye wash water flow direction study: an evaluation of the effectiveness of eye wash devices with opposite directional water flow

    OpenAIRE

    Fogt JS; Jones-Jordan LA; Barr JT

    2018-01-01

    Jennifer S Fogt, Lisa A Jones-Jordan, Joseph T Barr The Ohio State University College of Optometry, Columbus, OH, USA Introduction: New designs of eye wash stations have been developed in which the direction of water flow from the fountain has been reversed, with two water streams originating nasally in both eyes and flowing toward the temporal side of each eye. No study has been done to determine the ideal direction of water flow coming from the eye wash in relation to the eye. Materials ...

  15. Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors.

    Science.gov (United States)

    Rico, Carlos; Montes, Jesús A; Rico, José Luis

    2017-08-01

    Three different types of anaerobic sludge (granular, thickened digestate and anaerobic sewage) were evaluated as seed inoculum sources for the high rate anaerobic digestion of pig slurry in UASB reactors. Granular sludge performance was optimal, allowing a high efficiency process yielding a volumetric methane production rate of 4.1LCH 4 L -1 d -1 at 1.5days HRT (0.248LCH 4 g -1 COD) at an organic loading rate of 16.4gCODL -1 d -1 . The thickened digestate sludge experimented flotation problems, thus resulting inappropriate for the UASB process. The anaerobic sewage sludge reactor experimented biomass wash-out, but allowed high process efficiency operation at 3days HRT, yielding a volumetric methane production rate of 1.7LCH 4 L -1 d -1 (0.236LCH 4 g -1 COD) at an organic loading rate of 7.2gCODL -1 d -1 . To guarantee the success of the UASB process, the settleable solids of the slurry must be previously removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Wash fastness improvement of malachite green-dyed cotton fabrics ...

    Indian Academy of Sciences (India)

    Administrator

    Nano-size features of both silica and titania nanosols are predicted to enhance the wash fastness of ... The cotton fabric was obtained from traditional market and was previously tested to contain fully cellulose ..... The authors acknowledge financial support of DP2M,. Directorate General of Higher Education, Indonesia,.

  17. Hand washing practices amongst medical students in Port Harcourt ...

    African Journals Online (AJOL)

    Alasia Datonye

    Background: Hand washing with soap and water is one of ... Method: This was a descriptive cross sectional survey ... simple questionnaire exploring perceptions, attitudes and ... Many studies have shown that doctors decontaminating their hands between seeing patients ..... countries: a systematic review and meta analysis.

  18. WASH activities at two Ebola treatment units in Sierra Leone.

    Directory of Open Access Journals (Sweden)

    Michaela Mallow

    Full Text Available The 2014 outbreak of Ebola virus disease (EVD in West Africa was the largest in history. Starting in September 2014, International Medical Corps (IMC operated five Ebola treatment units (ETUs in Sierra Leone and Liberia. This paper explores how future infectious disease outbreak facilities in resource-limited settings can be planned, organized, and managed by analyzing data collected on water, sanitation, and hygiene (WASH and infection prevention control (IPC protocols.We conducted a retrospective cohort study by analyzing WASH/IPC activity data routinely recorded on paper forms or white boards at ETUs during the outbreak and later merged into a database from two IMC-run ETUs in Sierra Leone between December 2014 and December 2015.The IMC WASH/IPC database contains data from over 369 days. Our results highlight parameters key to designing and maintaining an ETU. High concentration chlorine solution usage was highly correlated with both daily patient occupancy and high-risk zone staff entries; low concentration chlorine usage was less well explained by these measures. There is high demand for laundering and disinfecting of personal protective equipment (PPE on a daily basis and approximately 1 (0-4 piece of PPE is damaged each day.Lack of standardization in the type and format of data collected at ETUs made constructing the WASH/IPC database difficult. However, the data presented here may help inform humanitarian response operations in future epidemics.

  19. Effect of washing on pesticide residues in olives.

    Science.gov (United States)

    Guardia-Rubio, M; Ayora-Cañada, M J; Ruiz-Medina, A

    2007-03-01

    The present work aims at contributing to the knowledge of the fate of 5 pesticides in olives in order to evaluate how washing may affect the presence of these residues in this fruit (and consequently in olive oil). For this purpose, olives were sprayed with commercial formulations containing the active ingredients and a series of analyses were performed for 64 d by using gas chromatography with mass spectrometric detection. Selected pesticides, ranked by their importance, were diuron, terbuthylazine, simazine, alpha-endosulfan, and beta-endosulfan. The pesticide fraction, which was not removable from olives by washing, increased with time after treatment until their degradation started at week 6. Washing performed 1 d after treatment was the most effective in reducing residues, especially for simazine. Consequently, the washing step performed in olive mills could be effective in removing those herbicide residues present in olives as a consequence of contact with contaminated soil for a short time. This happens when olives are dropped and harvested off the ground by means of brushes or suction equipment.

  20. Removal of uranium from gravel using soil washing method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ilgook; Kim, Kye-Nam; Kim, Seung-Soo; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The development of nuclear technology has led to increasing radioactive waste containing uranium being released and disposed in the nuclear sites. Fine grained soils with a size of less than 4 mm are normally decontaminated using soil washing and electro-kinetic technologies. However, there have been few studies on the decontamination of gravels with a size of more than 4 mm. Therefore, it is necessary to study the decontamination of gravel contaminated with radionuclides. The main objective of the present study on soil washing was to define the optimal condition for acid treatment of uranium-polluted gravel. In this study, soil washing method was applied to remove uranium from gravel. The gravel was crushed and classified as particle sizes. The gravel particles were treated with sulfuric acid in a shaking incubator at 60 .deg. C and 150 rpm for 3 h. The optimal particle size of gravel for soil washing in removal of uranium was between 0.45 and 2.0 mm.

  1. FOCUS ON HAND WASHING Yakubu Tahir Maigari Departm

    African Journals Online (AJOL)

    HP

    2014-10-24

    Oct 24, 2014 ... Management and Social Sciences, Federal University Kashere,. Gombe State ... Peace can also be maintained with fellow human beings through ... talent and skill to build a mighty ship with which he and his people took .... One important aspect of Islamic rituals where washing of hands is prominent is ...

  2. Radioactive demonstration of the ''late wash'' Precipitate Hydrolysis Process

    International Nuclear Information System (INIS)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-01-01

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ''late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests

  3. All You Have to Do is Wash Your Hands

    Centers for Disease Control (CDC) Podcasts

    2009-03-26

    This CDC Kidtastics podcast teaches children how and when to wash their hands properly.  Created: 3/26/2009 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 3/26/2009.

  4. Effectiveness Of Different House-Hold Hand Washing Agents On ...

    African Journals Online (AJOL)

    Hand hygiene is a very important procedure in infection control. Washing agents commonly in use were investigated for their effectiveness in reducing hand floral and cotton towel was used as drying agent. Agents studied include; water alone, carex soap, dettol, and imperial leather. The hands were inoculated (deliberate ...

  5. An overview of the Department of Energy's soil washing workshop

    International Nuclear Information System (INIS)

    1991-09-01

    The Soil Washing Workshop was convened in Las Vegas, Nevada, on August 28--29, 1990 at the request of C.W. Frank, Associate Director, Office of Technology Development, US Department of Energy (DOE). The purpose of the workshop was to determine the status of existing soil washing technologies and their applicability to specific soil contamination problems at DOE sites and at Superfund sites of the US Environmental Protection Agency (EPA). From the workshop deliberations, a course of action would be recommended in developing soil washing technologies. Presentations were given describing the soil contamination problems at various DOE sites. The factors addressed for each site included: type of contamination (organic, heavy metals, radionuclides, etc.), sources of contamination (leaking tanks, ponds, soil columns, pipes, etc.), types of soils that are contaminated, magnitude of the problem, current site activities (remediation), other considerations that impact the use of soil washing technology (e.g., environmental, site policies, etc.), and regulations and standards the sites are required to meet. Major findings and presentations of the workshop are presented

  6. Comparative studies on dyeing rate migration and wash fastness ...

    African Journals Online (AJOL)

    Migration and diffusion properties of synthesized azo dyes from 2-aminothiazole derivatives applied on commercial grade undyed cellulose acetate (CA) and cellulose triacetate (CTA) were investigated using dyeing conditions of 2% on weight of fabric (owf), 50:1 liquor ratio and subjected to ISO3 and ISO4 standard wash ...

  7. Design and Construction of a Computer Controlled Clothes Washing ...

    African Journals Online (AJOL)

    MICHAEL

    The search for easier and highly efficient ways of washing clothes ... This would help to reduce the running cost. .... It was only necessary to connect to the 8 data lines and the ... is actually a step further into complete automation of the clothes ...

  8. Distillery spent wash: Treatment technologies and potential applications

    International Nuclear Information System (INIS)

    Mohana, Sarayu; Acharya, Bhavik K.; Madamwar, Datta

    2009-01-01

    Distillery spent wash is the unwanted residual liquid waste generated during alcohol production and pollution caused by it is one of the most critical environmental issue. Despite standards imposed on effluent quality, untreated or partially treated effluent very often finds access to watercourses. The distillery wastewater with its characteristic unpleasant odor poses a serious threat to the water quality in several regions around the globe. The ever-increasing generation of distillery spent wash on the one hand and stringent legislative regulations of its disposal on the other has stimulated the need for developing new technologies to process this effluent efficiently and economically. A number of clean up technologies have been put into practice and novel bioremediation approaches for treatment of distillery spent wash are being worked out. Potential microbial (anaerobic and aerobic) as well as physicochemical processes as feasible remediation technologies to combat environmental pollution are being explored. An emerging field in distillery waste management is exploiting its nutritive potential for production of various high value compounds. This review presents an overview of the pollution problems caused by distillery spent wash, the technologies employed globally for its treatment and its alternative use in various biotechnological sectors

  9. Ink and Wash Painting for Children with Visual Impairment

    Science.gov (United States)

    Shih, Chih-Ming; Chao, Hsin-Yi

    2010-01-01

    Five children with visual impairments received instruction in drawing, using ink and wash painting and calligraphy techniques. A special system developed by a blind Taiwanese Chinese calligrapher, Tsann-Cherng Liaw, was used to help the children orient and refine their work. Children's performance on simple drawing tasks was compared before and…

  10. Hand washing practices and the occurrence of enteropathogenic ...

    African Journals Online (AJOL)

    ... levels of compliance to hand washing and related this to the occurrence of infectious bacteria in the test population. A questionnaire which contained information on bio-demographic characteristics and hand hygiene practices was applied to 100 individuals in the study population. Microbiological samples were obtained, ...

  11. Assessment of washing procedure for determination some of ...

    African Journals Online (AJOL)

    This study was proposed to assess the suitability of washing technique to distinguish between airborne and soil borne several metal contaminants. For this reason, six plant species which grew under Mobarakeh Steel Company emissions were selected. Aluminum, iron, nickel, manganese, zinc, copper and lead ...

  12. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    was with the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor......An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow...... for frequent measurements, and thereby the possibility for detailed determination of the denitrification biokinetics. An internal nitrate electrode calibration is implemented in the experiments to avoid the often-encountered electrode drift problem. It was observed that the best experimental design...

  13. Environmental Impacts Of Zirab Coal Washing Plant, Mazandaran, Iran

    Science.gov (United States)

    Moore, F.; Esmaeili, A.

    2009-04-01

    Extraction and beneficiation operations associated with coal mining increase the rate of chemical reaction of waste material to air and water media. Zirab coal washing plant is located on the bank of the Cherat stream in Mazandaran province, Iran. coal Mined from central Alborz coalfield mines is not suitable for use in Iranian Steel Corporation. Hence, coal ash content is reduced by physical and chemical processes in this plant. These processes leave a large quantity of liquid and solid wastes that accumulate in waste dump and tailing dam. sediment and water samples taken from Sheshrudbar and Cherat streams and also from Talar river show high concentration of Cd, Mo and As in water samples of coal washing plant and the associated drainage. Eh-pH diagrams revealed the chemical species of elements in water. The enrichment factor and geoaccumulation index show that Cd, Hg, Mo and V are enriched in bottom sediments of the coal washing plant and decrease with increasing distance from the plant. Sequential extraction analysis Results of three sediment samples of Cherat stream show that silicate bound is the major phase in samples taken before and after the plant, but adjacent to the plant, organic bound is dominant. The high concentration of Cd and Mo in the water soluble phase, is noticeable and may result in high mobility and bioavailability of these elements. Mann-Whitney and Wilcoxon tests on six samples, before and after the coal washing plant support the obtained results. Keywords: Zirab; coal washing plant; Sequential extraction analysis; Mann-whitney; Wilcoxon; Enrichment factor; Geoaccumulation index.

  14. 'If an Eye Is Washed Properly, It Means It Would See Clearly': A Mixed Methods Study of Face Washing Knowledge, Attitudes, and Behaviors in Rural Ethiopia.

    Directory of Open Access Journals (Sweden)

    Kristen Aiemjoy

    2016-10-01

    Full Text Available Face cleanliness is a core component of the SAFE (Surgery, Antibiotics, Facial cleanliness, and Environmental improvements strategy for trachoma control. Understanding knowledge, attitudes, and behaviors related to face washing may be helpful for designing effective interventions for improving facial cleanliness.In April 2014, a mixed methods study including focus groups and a quantitative cross-sectional study was conducted in the East Gojjam zone of the Amhara region of Ethiopia. Participants were asked about face washing practices, motivations for face washing, use of soap (which may reduce bacterial load, and fly control strategies.Overall, both knowledge and reported practice of face washing was high. Participants reported they knew that washing their own face and their children's faces daily was important for hygiene and infection control. Although participants reported high knowledge of the importance of soap for face washing, quantitative data revealed strong variations by community in the use of soap for face washing, ranging from 4.4% to 82.2% of households reporting using soap for face washing. Cost and forgetfulness were cited as barriers to the use of soap for face washing. Keeping flies from landing on children was a commonly cited motivator for regular face washing, as was trachoma prevention.Interventions aiming to improve facial cleanliness for trachoma prevention should focus on habit formation (to address forgetfulness and address barriers to the use of soap, such as reducing cost. Interventions that focus solely on improving knowledge may not be effective for changing face-washing behaviors.

  15. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    OpenAIRE

    Beata Janowska

    2016-01-01

    The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal metho...

  16. Factors affecting the consolidation of steam generator sludge

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C. W.; Shamsuzzaman, K.; Tapping, R. L.

    1993-02-15

    It is hypothesized that sludge consolidation is promoted by chemical reactions involving the various sludge constituents, although the hardness of the final product will also depend on the total porosity. Oxidizing conditions and higher temperatures produce a harder sludge. The precipitation of Zn{sub 2}SiO{sub 4}, a potential binding agent, may also promote sludge consolidation. Several solutions to prevent sludge consolidation are suggested. (Author) 3 figs., 4 tabs., 3 refs.

  17. Aquatic worm reactor for improved sludge processing and resource recovery

    OpenAIRE

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste sludge would be both environmentally and economically attractive. Aquatic worms can be used to reduce the amount of waste sludge. After predation by the worms, the amount of final sludge is lower....

  18. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge

    DEFF Research Database (Denmark)

    Hansen, H.K.; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2003-01-01

    . Casagrande's coefficients were determined for the four materials at different water contents. The experiments in this work showed that chalk could be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM by electroosmosis....... The process was not optimised indicating that higher dry matter contents could be achieved by electroosmosis. It was possible to relate Casagrande's coefficient directly to the electroosmotic coefficient obtained by dewatering experiments....

  19. Water Utility Lime Sludge Reuse – An Environmental Sorbent for Power Utilities

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up ...

  20. Protective activity of geranium oil and its component, geraniol, in combination with vaginal washing against vaginal candidiasis in mice.

    Science.gov (United States)

    Maruyama, Naho; Takizawa, Toshio; Ishibashi, Hiroko; Hisajima, Tatsuya; Inouye, Shigeharu; Yamaguchi, Hideyo; Abe, Shigeru

    2008-08-01

    In order to evaluate an effective administration method of essential oils for vaginal candidiasis, efficacy of vaginal application of essential oils against murine experimental candidiasis was investigated. The effect on vaginal inflammation and Candida growth form was also studied. Vaginal candidiasis was established by intravaginal infection of C. albicans to estradiol-treated mice. These mice intravaginally received essential oils such as geranium and tea tree singly or in combination with vaginal washing. Vaginal administration of clotrimazole significantly decreased the number of viable C. albicans cells in the vaginal cavity by itself. In contrast, these essential oils did not lower the cell number. When application of geranium oil or geraniol was combined with vaginal washing, the cell number was decreased significantly. The myeloperoxidase activity assay exhibited the possibility that essential oils worked not only to reduce the viable cell number of C. albicans, but also to improve vaginal inflammation. The smear of vaginal washing suspension suggested that more yeast-form cells appeared in vaginal smears of these oil-treated mice than in control mice. In vitro study showed that a very low concentration (25 microg/ml) of geranium oil and geraniol inhibited mycelial growth, but not yeast growth. Based on these findings, it is estimated that vaginal application of geranium oil or its main component, geraniol, suppressed Candida cell growth in the vagina and its local inflammation when combined with vaginal washing.