WorldWideScience

Sample records for experimental mouse model

  1. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Science.gov (United States)

    Tjalsma, Harold; Laarakkers, Coby M M; van Swelm, Rachel P L; Theurl, Milan; Theurl, Igor; Kemna, Erwin H; van der Burgt, Yuri E M; Venselaar, Hanka; Dutilh, Bas E; Russel, Frans G M; Weiss, Günter; Masereeuw, Rosalinde; Fleming, Robert E; Swinkels, Dorine W

    2011-03-08

    The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1) and its paralogue Hepcidin-2 (Hep-2) at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR) and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF) MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i) 3 mouse strains (C57Bl/6; DBA/2 and BABL/c) upon stimulation with intravenous iron and LPS, ii) homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X) mutated mice and double affected mice, and iii) mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  2. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  3. Mass Spectrometry Analysis of Hepcidin Peptides in Experimental Mouse Models

    Science.gov (United States)

    van Swelm, Rachel P. L.; Theurl, Milan; Theurl, Igor; Kemna, Erwin H.; van der Burgt, Yuri E. M.; Venselaar, Hanka; Dutilh, Bas E.; Russel, Frans G. M.; Weiss, Günter; Masereeuw, Rosalinde; Fleming, Robert E.; Swinkels, Dorine W.

    2011-01-01

    The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1) and its paralogue Hepcidin-2 (Hep-2) at the peptide level. To this purpose, fourier transform ion cyclotron resonance (FTICR) and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF) MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i) 3 mouse strains (C57Bl/6; DBA/2 and BABL/c) upon stimulation with intravenous iron and LPS, ii) homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X) mutated mice and double affected mice, and iii) mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics. PMID:21408141

  4. [Establishment and evaluation of experimental sepsis mouse model].

    Science.gov (United States)

    Wang, Li-Yan; Xu, Ruo-Nan; Han, Gen-Cheng; Wang, Ren-Xi; Chen, Guo-Jiang; Xiao, He; Hou, Chun-Mei; Shen, Bei-Fen; Li, Yan

    2010-06-01

    After treating with chemotherapy or immunosuppressant, malignant diseases of hematopoietic system such as leukemia, malignant lymphoma and aplastic anemia usually induced severe infection such as sepsis. Sepsis which is hard to be diagnosed causes high death rate. This study was purposed to establish an experimental sepsis mouse model so as to provide a basis for pathogenesis and intervention study. A classic caecal ligation and puncture (CLP) was used to establish experimental sepsis model. ELISA was used to detect levels of C5a, IL-6, TNFalpha, and IFN-gamma. Flow Cytometry was applied to measure apoptosis of lymphocytes in thymus and mesentery. The pathologic changes of thymus and spleen were confirmed by HE staining. The results showed that almost 70%-80% mice died at 72 hours after CLP. Only approximate 20% animal survived during finite time, mice in CLP group had significant weight lose. Meanwhile large release of different inflammatory mediators which are related with sepsis (C5a, IL-6, TNF-alpha, and IFN-gamma) was observed after CLP. Apoptosis of lymphocytes in thymus and mesentery lymphonodus was enhanced markedly after CLP. Significantly pathologic injury was also observed in thymus and spleen. It is concluded that a mouse model of experimental sepsis was successfully established by caecal ligation and puncture which can well mimic the clinical symptom of sepsis. The experimental sepsis mouse model provides an excellent tool for exploring the pathogenesis and intervention ways for sepsis accompanied with complicated malignant hematological diseases in vivo.

  5. Mass spectrometry analysis of hepcidin peptides in experimental mouse models

    NARCIS (Netherlands)

    Tjalsma, H.; Laarakkers, C.M.; Swelm, R.P. van; Theurl, M.; Theurl, I.; Kemna, E.H.J.M.; Burgt, Y.E. van der; Venselaar, H.; Dutilh, B.E.; Russel, F.G.M.; Weiss, G.; Masereeuw, R.; Fleming, R.E.; Swinkels, D.W.

    2011-01-01

    The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse

  6. Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy.

    Science.gov (United States)

    Saito, Takeyuki; Yokota, Kazuya; Kobayakawa, Kazu; Hara, Masamitsu; Kubota, Kensuke; Harimaya, Katsumi; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Matsumoto, Yoshihiro; Doi, Toshio; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji

    2017-01-01

    Lumbar spinal canal stenosis (LSCS) is one of the most common spinal disorders in elderly people, with the number of LSCS patients increasing due to the aging of the population. The ligamentum flavum (LF) is a spinal ligament located in the interior of the vertebral canal, and hypertrophy of the LF, which causes the direct compression of the nerve roots and/or cauda equine, is a major cause of LSCS. Although there have been previous studies on LF hypertrophy, its pathomechanism remains unclear. The purpose of this study is to establish a relevant mouse model of LF hypertrophy and to examine disease-related factors. First, we focused on mechanical stress and developed a loading device for applying consecutive mechanical flexion-extension stress to the mouse LF. After 12 weeks of mechanical stress loading, we found that the LF thickness in the stress group was significantly increased in comparison to the control group. In addition, there were significant increases in the area of collagen fibers, the number of LF cells, and the gene expression of several fibrosis-related factors. However, in this mecnanical stress model, there was no macrophage infiltration, angiogenesis, or increase in the expression of transforming growth factor-β1 (TGF-β1), which are characteristic features of LF hypertrophy in LSCS patients. We therefore examined the influence of infiltrating macrophages on LF hypertrophy. After inducing macrophage infiltration by micro-injury to the mouse LF, we found excessive collagen synthesis in the injured site with the increased TGF-β1 expression at 2 weeks after injury, and further confirmed LF hypertrophy at 6 weeks after injury. Our findings demonstrate that mechanical stress is a causative factor for LF hypertrophy and strongly suggest the importance of macrophage infiltration in the progression of LF hypertrophy via the stimulation of collagen production.

  7. Experimental model of occlusal trauma in mouse periodontal tissues.

    OpenAIRE

    Fujii, T; Takaya, T; Mimura, H; Osuga, N; Matsuda, S; Nakano, K

    2014-01-01

    The aim of this study was to establish a model, which can be used to investigate the response of periodontal tissues to excessive occlusal loading in mice by observing histopathological changes. The experiment was performed on ten 7-week-old ddY male mice. Under general anesthesia by intraperitoneal injectionpentobarbital sodium, a micro-plus-screwpin (head part, 1.7mm in diameter, thickness 0.5mm thickness) was screwed into the pulp cavity of the upper-left-first molar. R_mCT images of the e...

  8. Inflammatory Cytokine Pattern Is Sex-Dependent in Mouse Cutaneous Melanoma Experimental Model

    Directory of Open Access Journals (Sweden)

    Mihaela Surcel

    2017-01-01

    Full Text Available We present the evaluation of inflammatory cytokines in mouse cutaneous melanoma experimental model, as markers of disease evolution. Moreover, to test our experimental model, we have used low doses of dacarbazine (DTIC. C57 BL/6J mouse of both sexes were subjected to experimental cutaneous melanoma and treated with low doses of DTIC. Clinical parameters and serum cytokines were followed during tumor evolution and during DTIC therapy. Cytokine/chemokine pattern was assessed using xMAP technology and the following molecules were quantified: interleukins (IL-1-beta, IL-6, IL-10, IL-12 (p70, interferon (IFN-gamma, granulocyte macrophage colony-stimulating factor (GM-CSF, tumor necrosis factor (TNF-alpha, macrophage inflammatory protein (MIP-1alpha, monocyte chemoattractant protein (MCP-1, and keratinocyte-derived chemokine (KC. Significant differences were found between normal females and males mice, female mice having a statistically higher serum concentration of IL-1-beta compared to male mice, while males have a significantly higher concentration of MIP-1-alpha. During melanoma evolution in the female group, IL-1-beta, MIP-1-alpha, and KC circulatory levels were found 10-fold increased, while other cytokines doubled their values. In the male mice group, only circulatory KC increased 4 times, while IL-1-beta and TNF-alpha doubled their circulatory values. Various serum cytokines correlated with the disease evolution in cutaneous melanoma mouse model.

  9. Different Therapeutic Outcomes of Benznidazole and VNI Treatments in Different Genders in Mouse Experimental Models of Trypanosoma cruzi Infection

    National Research Council Canada - National Science Library

    Guedes-da-Silva, F H; Batista, D G J; da Silva, C F; Meuser, M B; Simões-Silva, M R; de Araújo, J S; Ferreira, C G; Moreira, O C; Britto, C; Lepesheva, G I; Soeiro, Maria de Nazaré C

    2015-01-01

    ...) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes...

  10. Allergenicity of two Anisakis simplex allergens evaluated in vivo using an experimental mouse model.

    Science.gov (United States)

    Cho, Min Kyoung; Park, Mi Kyung; Kang, Shin Ae; Caballero, Maria Luisa; Perez-Pinar, Teresa; Rodriguez-Perez, Rosa; Ock, Mee Sun; Cha, Hee Jae; Hong, Yeon Chul; Yu, Hak Sun

    2014-11-01

    Anisakis (Anisakidae) is one of the most important causes of helminth-induced allergic reactions and elicits clinical responses that include urticaria, rhinitis, bronco-constriction, cough, and/or gastrointestinal symptoms. More than 13 reactive allergens have been identified in the serum of Anisakis allergy patients, but the allergenicity of only a few of these have been evaluated in vivo using a mouse model. To evaluate the allergenicity of two important allergens, Ani s 1 and Ani s 9, we induced experimental allergic airway inflammation in a mouse model by repeated intranasal administration of the allergens. Both recombinant proteins (rAni s 1 and rAni s 9) elicited increased airway hyperresponsivity, airway infiltration by inflammatory cells (especially eosinophils), bronchial epithelial cell hyperplasia, all of which are characteristic of allergic airway inflammation. These allergens significantly increased the levels of Th2-related cytokines (IL-4, IL-5, IL-13, and IL-25) and Th17 related cytokines (IL-6 and IL-17) in both splenocytes and airway (except IL-17 in airway by rAni s 9). OVA-specific IgE and total IgE were increased in rAni s 1 and rAni s 9 treated mice as compared with controls treated with OVA alone. In addition, these two allergens induced gene expression of thymic stromal lymphopoietin (TSLP) and IL-25 (initiators of the Th2 response), as well as CXCL1 (initiator of the Th17 response) in mouse lung epithelial cells. In conclusion, repeated intranasal treatments with rAni s 1 and rAni s 9 induced airway inflammation in mice by elevating of Th2 and Th17 responses in the lung. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler's virus-induced demyelinating disease.

    Science.gov (United States)

    McCarthy, Derrick P; Richards, Maureen H; Miller, Stephen D

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) and Theiler's Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD) are two clinically relevant murine models of multiple sclerosis (MS). Like MS, both are characterized by mononuclear cell infiltration into the CNS and demyelination. EAE is induced by either the administration of myelin protein or peptide in adjuvant or by the adoptive transfer of encephalitogenic T cell blasts into naïve recipients. The relative merits of each of these protocols are compared. Depending on the type of question being asked, different mouse strains and peptides are used. Different disease courses are observed with different strains and different peptides in active EAE. These variations are also addressed. Additionally, issues relevant to clinical grading of EAE in mice are discussed. In addition to EAE induction, useful references for other disease indicators such as DTH, in vitro proliferation, and immunohistochemistry are provided. TMEV-IDD is a useful model for understanding the possible viral etiology of MS. This section provides detailed information on the preparation of viral stocks and subsequent intracerebral infection of mice. Additionally, virus plaque assay and clinical disease assessment are discussed. Recently, recombinant TMEV strains have been created for the study of molecular mimicry which incorporate various 30 amino acid myelin epitopes within the leader region of TMEV.

  12. A meta-analysis of experimental studies of attenuated Schistosoma mansoni vaccines in the mouse model

    Directory of Open Access Journals (Sweden)

    Mizuho eFukushige

    2015-02-01

    Full Text Available Schistosomiasis is a water-borne, parasitic disease of major public health importance. There has been considerable effort for several decades towards the development of a vaccine against the disease. Numerous mouse experimental studies using attenuated Schistosoma mansoni parasites for vaccination have been published since the 1960s. However, to date, there has been no systematic review or meta-analysis of these data. The aim of this study is to identify measurable experimental conditions that affect the level of protection against re-infection with S. mansoni in mice vaccinated with radiation attenuated cercariae. Following a systematic review, a total of 755 observations were extracted from 105 articles (published 1963-2007 meeting the searching criteria. Random effects meta-regression models were used to identify the influential predictors.Three predictors were found to have statistically significant effects on the level of protection from vaccination: increasing numbers of immunizing parasites had a positive effect on fraction of protection whereas increasing radiation dose and time to challenge infection had negative effects. Models showed that the irradiated cercariae vaccine has the potential to achieve protection as high as 78% with a single dose vaccination. This declines slowly over time but remains high for at least 8 months after the last immunization. These findings provide insights into the optimal delivery of attenuated parasite vaccination and into the nature and development of protective vaccine induced immunity against schistosomiasis which may inform the formulation of human vaccines and the predicted duration of protection and thus frequency of booster vaccines.

  13. Lactobacillus paracasei Reduces Intestinal Inflammation in Adoptive Transfer Mouse Model of Experimental Colitis

    Directory of Open Access Journals (Sweden)

    Manuel Oliveira

    2011-01-01

    Full Text Available Studies showed that specific probiotics provide therapeutic benefits in inflammatory bowel disease. In vitro evidence suggested that Lactobacillus paracasei also called ST11 (CNCM I-2116 is a potent strain with immune modulation properties. However, little is known about its capacity to alleviate inflammatory symptoms in vivo In this context, the main objective of this study was to investigate the role of ST11 on intestinal inflammation using the adoptive transfer mouse model of experimental colitis. Rag2-/- recipient mice were fed with ST11 (109 CFU/daya month prior toinduce colitis by adoptive transfer of naive T cells. One month later, in clear contrast to nonfed mice, weight loss was significantly reduced by 50% in ST11-fed mice. Further analysis of colon specimens revealed a significant reduction neutrophil infiltration and mucosal expression of IL1β, IL-6, and IL12 proinflammatory cytokines, whereas no consistent differences in expression of antibacterial peptides or tight junction proteins were observed between PBS and ST11-fed mice. All together, our results demonstrate that oral administration of ST11 was safe and had a significant preventive effect on colitis. We conclude that probiotics such as Lactobacillus paracasei harbor worthwhile in vivo immunomodulatory properties to prevent intestinal inflammation by nutritional approaches.

  14. Experimental scleral cross-linking increases glaucoma damage in a mouse model.

    Science.gov (United States)

    Kimball, Elizabeth C; Nguyen, Cathy; Steinhart, Matthew R; Nguyen, Thao D; Pease, Mary E; Oglesby, Ericka N; Oveson, Brian C; Quigley, Harry A

    2014-11-01

    The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model.CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure-strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Oral administration of ginseng ameliorates cyclosporine-induced pancreatic injury in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Sun Woo Lim

    Full Text Available BACKGROUND: This study was performed to investigate whether ginseng has a protective effect in an experimental mouse model of cyclosporine-induced pancreatic injury. METHODS: Mice were treated with cyclosporine (30 mg/kg/day, subcutaneously and Korean red ginseng extract (0.2 or 0.4 g/kg/day, oral gavage for 4 weeks while on a 0.01% salt diet. The effect of ginseng on cyclosporine-induced pancreatic islet dysfunction was investigated by an intraperitoneal glucose tolerance test and measurements of serum insulin level, β cell area, macrophage infiltration, and apoptosis. Using an in vitro model, we further examined the effect of ginseng on a cyclosporine-treated insulin-secreting cell line. Oxidative stress was measured by the concentration of 8-hydroxy-2'-deoxyguanosine in serum, tissue sections, and culture media. RESULTS: Four weeks of cyclosporine treatment increased blood glucose levels and decreased insulin levels, but cotreatment with ginseng ameliorated the cyclosporine-induced glucose intolerance and hyperglycemia. Pancreatic β cell area was also greater with ginseng cotreatment compared with cyclosporine monotherapy. The production of proinflammatory molecules, such as induced nitric oxide synthase and cytokines, and the level of apoptotic cell death also decreased in pancreatic β cell with ginseng treatment. Consistent with the in vivo results, the in vitro study showed that the addition of ginseng protected against cyclosporine-induced cytotoxicity, inflammation, and apoptotic cell death. These in vivo and in vitro changes were accompanied by decreases in the levels of 8-hydroxy-2'-deoxyguanosine in pancreatic β cell in tissue section, serum, and culture media during cotreatment of ginseng with cyclosporine. CONCLUSIONS: The results of our in vivo and in vitro studies demonstrate that ginseng has a protective effect against cyclosporine-induced pancreatic β cell injury via reducing oxidative stress.

  16. Mouse Models of Arteriosclerosis

    Science.gov (United States)

    Xu, Qingbo

    2004-01-01

    Animal models are designed to be preliminary tools for better understanding of the pathogenesis, improvement in diagnosis, prevention, and therapy of arteriosclerosis in humans. Attracted by the well-defined genetic systems, a number of investigators have begun to use the mouse as an experimental system for arteriosclerosis research. Hundreds of inbred lines have been established, and the genetic map is relatively well defined, and both congenic strains and recombinant strains are available to facilitate genetic experimentation. Because arteriosclerosis is a complicated disease, which includes spontaneous (native) atherosclerosis, transplant arteriosclerosis, vein graft atherosclerosis, and angioplasty-induced restenosis, several mouse models for studying all types of arteriosclerosis have recently been established. Using these mouse models, much knowledge concerning the pathogenesis of the disease and therapeutic intervention has been gained, eg, origins of endothelial and smooth muscle cells in lesions of transplant and vein graft atherosclerosis. This review will not attempt to cover all aspects of mouse models, rather focus on models of arterial injuries, vein grafts, and transplant arteriosclerosis, by which the major progress in understanding the mechanisms of the disease has been made. This article will also point out (dis)advantages of a variety of models, and how the models can be appropriately chosen for different purposes of study. PMID:15215157

  17. THE MOUSE AS AN EXPERIMENTAL MODEL FOR TITYUS SERRULATUS SCORPION ENVENOMING

    Directory of Open Access Journals (Sweden)

    Mônica de Mônico Magalhães

    1998-10-01

    Full Text Available The scorpion toxin induces a number of physiological parameters alterations, as disturbance of cardiac rhythm, heart failure, shock, pancreatic hypersecretion, abortion, respiratory arrhytmias and pulmonary edema. As the purification of the venom fractions is a laborious process, one alternative for this would be the utilization of small animals. We utilized in the present study thity-six mice that received progressive doses of scorpion toxin TsTX, i.p. or i.v., and were observed for three hours or sacrificed, and the pulmonary alterations were determined by the lung-body index and by histological analysis of the lungs in order to determine if the mouse can be an esperimental model for scorpion envenomation. The data were analyzed by One Way analysis of variance with pA toxina do escorpião induz a várias alterações fisiológicas, como disturbio do ritmo cardíaco, insuficiência cardíaca, choque, hipersecreção pancreática, aborto, arritmias respiratórias e edema pulmonar. A purificação de frações do veneno é um processo trabalhoso. Como alternativa utilizam-se animais pequenos. No presente estudo utilizou-se 36 camundongos que receberam doses progressivas de toxinas do escorpião (TsTX, intraperitoneal ou intravenosa e foram observados por tres horas ou sacrificados. As alteraçòes pulmonares foram determinadas pela fórmula peso do pulmão x 100/ peso corporal e pela análise hitológica dos pulmões a fim de determinar que o camundongo pode ser um modelo experimental do envenenamento pelo escorpião. Os dados foram analizados pela análise de variância considerando-se p<0,05 indicando significancia. Os experimentos não mostraram diferença nos sinais clínicos do envenenamento comparando-se o camundongo com outros mamíferos. Os efeitos foram dose-dependente e que pela via venosa necessita-se menos quantidade para produzir as mesmas alterações. Nos aspectos histológicos pulmonares observou-se edema septal e não alveolar

  18. An in-vivo experimental model for studying wound-healing after laser irradiation in the mouse foetus.

    Science.gov (United States)

    Suzuki, Shoichi; Itoh, Kouichi; Ohyama, Kimie

    2004-08-01

    The purpose of this study was to develop an experimental model to study wound-healing in the mouse foetus by inducing an injury with an argon laser. ICR strain mouse dams were used in this study at day 14 of gestation. Laparotomy was performed on the dams under sodium pentobarbital anaesthesia, and foetuses were exposed from the uterus while wrapped in the amnion. Laser radiation was conducted through the amniotic membrane, and the beam was focused on to the naso-labial region. After laser irradiation, the foetus was returned to the abdominal cavity of the dam. Then the abdominal wall was closed, and an extrauterine pregnancy was maintained. Foetuses were sacrificed at intervals and wound healing was examined histologically. Immediately after laser irradiation, the foetal epithelium was detached and degeneration of the epithelium and subepithelial mesenchymal tissue were observed. Twenty-four hours after laser irradiation, normal epithelial cells surrounding the wound began to migrate along the margin of the degenerate tissue mass. By seventy-two hours after laser irradiation, the laser-induced wound had recovered, and scar formation was not observed. The application of an argon laser allowed to inflict a wound on a mouse foetus without damaging the amnion, and this experimental model appeared to be useful for studying the mechanism of foetal wound-healing.

  19. Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus Syrian hamster model.

    Science.gov (United States)

    Nieto, Ana; Domínguez-Bernal, Gustavo; Orden, José A; De La Fuente, Ricardo; Madrid-Elena, Nadia; Carrión, Javier

    2011-02-23

    Several animal models have been established to study visceral leishmaniosis (VL), a worldwide vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem. BALB/c mice and Syrian hamsters are the most widely used experimental models. In this paper, we summarize the advantages and disadvantages of these two experimental models and discuss the results obtained using these models in different studies of VL. Studies using the BALB/c mouse model have underscored differences between the liver and spleen in the course of VL, indicating that pathological evaluation of the visceral organs is essential for understanding the immune mechanisms induced by Leishmania infantum infection. The main goal of this review is to collate the relevant literature on Leishmania pathogenesis into a sequence of events, providing a schematic view of the main components of adaptive and innate immunity in the liver and spleen after experimental infection with L. infantum or L. donovani. This review also presents several viewpoints and reflections about some controversial aspects of Leishmania research, including the choice of experimental model, route of administration, inoculum size and the relevance of pathology (intimately linked to parasite persistence): a thorough understanding of which is essential for future VL research and the successful development of efficient control strategies for Leishmania spp.

  20. Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus syrian hamster model

    Directory of Open Access Journals (Sweden)

    Nieto Ana

    2011-02-01

    Full Text Available Abstract Several animal models have been established to study visceral leishmaniosis (VL, a worldwide vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem. BALB/c mice and Syrian hamsters are the most widely used experimental models. In this paper, we summarize the advantages and disadvantages of these two experimental models and discuss the results obtained using these models in different studies of VL. Studies using the BALB/c mouse model have underscored differences between the liver and spleen in the course of VL, indicating that pathological evaluation of the visceral organs is essential for understanding the immune mechanisms induced by Leishmania infantum infection. The main goal of this review is to collate the relevant literature on Leishmania pathogenesis into a sequence of events, providing a schematic view of the main components of adaptive and innate immunity in the liver and spleen after experimental infection with L. infantum or L. donovani. This review also presents several viewpoints and reflections about some controversial aspects of Leishmania research, including the choice of experimental model, route of administration, inoculum size and the relevance of pathology (intimately linked to parasite persistence: a thorough understanding of which is essential for future VL research and the successful development of efficient control strategies for Leishmania spp.

  1. Different Therapeutic Outcomes of Benznidazole and VNI Treatments in Different Genders in Mouse Experimental Models of Trypanosoma cruzi Infection.

    Science.gov (United States)

    Guedes-da-Silva, F H; Batista, D G J; da Silva, C F; Meuser, M B; Simões-Silva, M R; de Araújo, J S; Ferreira, C G; Moreira, O C; Britto, C; Lepesheva, G I; Soeiro, Maria de Nazaré C

    2015-12-01

    The lack of translation between preclinical assays and clinical trials for novel therapies for Chagas disease (CD) indicates a need for more feasible and standardized protocols and experimental models. Here, we investigated the effects of treatment with benznidazole (Bz) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes. Our findings confirm that female mice are less vulnerable to the infection than males, show that male models are less susceptible to treatment with both Bz and VNI, and thus suggest that male models are much more suitable for selection of the most promising antichagasic agents. Additionally, we have found that preventive protocols (compound given at 1 dpi) result in higher treatment success rates, which also should be avoided during advanced steps of in vivo trials of novel anti-T. cruzi drug candidates. Another consideration is the relevance of immunosuppression methods in order to verify the therapeutic profile of novel compounds, besides the usefulness of molecular diagnostic tools (quantitative PCR) to ascertain compound efficacy in experimental animals. Our study aims to contribute to the development of more reliable methods and decision gates for in vivo assays of novel antiparasitic compounds in order to move them from preclinical to clinical trials for CD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Noninvasive Monitoring of Pneumococcal Meningitis and Evaluation of Treatment Efficacy in an Experimental Mouse Model*

    Directory of Open Access Journals (Sweden)

    Jagath L. Kadurugamuwa

    2005-04-01

    Full Text Available Noninvasive real-time in vivo bioluminescent imaging was used to assess the spread of Streptococcus pneumoniae throughout the spinal cord and brain during the acute stages of bacterial meningitis. A mouse model was established by lumbar (LP or intracisternal (IC injection of bioluminescent S. pneumoniae into the subarachnoid space. Bacteria replicated initially at the site of inoculation and spread progressively from the spinal cord to the brain or from the brain down to the cervical part of the spinal column and to the lower vertebral levels. After 24 hr, animals showed strong bioluminescent signals throughout the spinal canal, indicating acute meningitis of the intracranial and intraspinal meninges. A decline in bacterial cell viability, as judged by a reduction in the bioluminescent signal, was observed over time in animals treated with ceftriaxone, but not in untreated groups. Mice treated with the antibiotic survived infection, whereas all mice in untreated groups became moribund, first in the IC group then in the LP group. No untreated animal survived beyond 48 hr after induction of infection. Colony counts of infected cerebrospinal fluid (CSF correlated positively with bioluminescent signals. This methodology is especially appealing because it allows detecting infected mice as early as 3 hr after inoculation, provide temporal, sequential, and spatial distribution of bacteria within the brain and spinal cord throughout the entire disease process and the rapid monitoring of treatment efficacy in a nondestructive manner. Moreover, it avoids the need to sacrifice the animals for CSF sampling and the potential manipulative damage that can occur with other conventional methods.

  3. Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models.

    Science.gov (United States)

    Ishioka, Mitsuaki; Miura, Kouichi; Minami, Shinichiro; Shimura, Yoichiro; Ohnishi, Hirohide

    2017-02-01

    Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed. We attempted to clarify the difference in the gut environment between mice administrated several experimental diets. Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator. Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the Firmicutes phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of Clostridiales, while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium Parabacteroides goldsteinii in the phylum Bacteroidetes. In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17. The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.

  4. Noninvasive magnetic resonance imaging of vessels affected by transplant arteriosclerosis in an experimental mouse aortic allograft model.

    Science.gov (United States)

    Gebhardt, J; Budinsky, L; Reulbach, U; Weyand, M; Hess, A; Ensminger, S M

    2011-03-01

    Transplant arteriosclerosis is still the leading cause of late mortality after heart transplantation despite advances in immunosuppression regimes. Experimental mouse models have substantially contributed to a better understanding of the multifactorial pathogenesis, but the major limitation of these studies is the difficulty in monitoring progression of transplant arteriosclerosis over time. Therefore, the aim of this study was to investigate whether MR measurements are sensitive enough to detect characteristic vascular lesions in a small animal transplantation model. For this purpose we investigated 22 iso- and allogeneic aortic graft transplanted mice in vivo with a 4.7 T MR scanner using a 2D-RARE technique, 3D time-of-flight angiography and 3D phase contrast angiography as well as a special snake-based reconstruction algorithm. The MR lumen values of patency from native images and from 3D vessel reconstructions of the respective methods were correlated with conventional histological analysis. A comparison of the different techniques showed that angiographic MR modalities correlated well with histological measurements. 2D-RARE sequences were inferior to the sequences obtained by other ones. Superior correlations and the most accurate results were found for vessel reconstruction based on 3D angiographic time-of-flight data. These data demonstrate that mouse in vivo MR imaging is sensitive enough to detect and quantify vascular changes caused by transplant arteriosclerosis. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Pain in experimental autoimmune encephalitis: a comparative study between different mouse models

    Directory of Open Access Journals (Sweden)

    Lu Jianning

    2012-10-01

    Full Text Available Abstract Background Pain can be one of the most severe symptoms associated with multiple sclerosis (MS and develops with varying levels and time courses. MS-related pain is difficult to treat, since very little is known about the mechanisms underlying its development. Animal models of experimental autoimmune encephalomyelitis (EAE mimic many aspects of MS and are well-suited to study underlying pathophysiological mechanisms. Yet, to date very little is known about the sensory abnormalities in different EAE models. We therefore aimed to thoroughly characterize pain behavior of the hindpaw in SJL and C57BL/6 mice immunized with PLP139-151 peptide or MOG35-55 peptide respectively. Moreover, we studied the activity of pain-related molecules and plasticity-related genes in the spinal cord and investigated functional changes in the peripheral nerves using electrophysiology. Methods We analyzed thermal and mechanical sensitivity of the hindpaw in both EAE models during the whole disease course. Qualitative and quantitative immunohistochemical analysis of pain-related molecules and plasticity-related genes was performed on spinal cord sections at different timepoints during the disease course. Moreover, we investigated functional changes in the peripheral nerves using electrophysiology. Results Mice in both EAE models developed thermal hyperalgesia during the chronic phase of the disease. However, whereas SJL mice developed marked mechanical allodynia over the chronic phase of the disease, C57BL/6 mice developed only minor mechanical allodynia over the onset and peak phase of the disease. Interestingly, the magnitude of glial changes in the spinal cord was stronger in SJL mice than in C57BL/6 mice and their time course matched the temporal profile of mechanical hypersensitivity. Conclusions Diverse EAE models bearing genetic, clinical and histopathological heterogeneity, show different profiles of sensory and pathological changes and thereby enable

  6. Alpha-Amanitin Poisoning, Nephrotoxicity and Oxidative Stress: An Experimental Mouse Model

    Science.gov (United States)

    Ergin, Mehmet; Dundar, Zerrin Defne; Kilinc, Ibrahim; Colak, Tamer; Oltulu, Pembe; Girisgin, Abdullah Sadik

    2015-01-01

    Background: Alpha-amanitin (α-AMA) plays a major role in Amanita phalloides poisoning, showing toxic effects on multi-organs, particularly on the liver and kidneys. Studies have shown a relationship between α-AMA-related injuries and reactive oxygen species. Objectives: We aimed to investigate whether there is renal injury and its relationship with oxidative stress after intraperitoneal injection of α-AMA in mice experimental poisoning models. Materials and Methods: There were 37 male BALB/c laboratory mice treated with α-AMA, according to the study groups: control group (n = 7); low dose (0.2 mg/kg) (n = 10); moderate dose (0.6 mg/kg) (n = 10), and high dose (1 mg/kg) (n = 10). The sample size was detected according to the ethical committee’s decision as well as similar studies in the literature. After a 48-hour follow-up period, all the subjects were sacrificed for pathological and biochemical assays. The study was held in Turkey. Results: α-AMA poisoning in mice results in inflammatory changes and necrosis in renal structures. There were statistically significant differences between the study groups regarding measured levels of catalase, superoxide dismutase, glutathione peroxidase, total antioxidant status (TAS), total oxidant status (TOS) and malonyl dialdehyde in renal homogenates of mice (P poisoning in mice led to inflammatory changes and necrosis in renal structures. Biochemical analysis showed a shift in the oxidative/anti-oxidative balance towards the oxidative status. PMID:26430527

  7. Histochemical and cellular changes accompanying the appearance of lung fibrosis in an experimental mouse model for Hermansky Pudlak syndrome

    Science.gov (United States)

    Lyerla, Timothy

    2010-01-01

    Hermansky Pudlak syndrome (HPS) is a heterogeneous recessive genetic disease with a tendency to develop lung fibrosis with aging. A mouse strain with two mutant HPS genes affecting separate vesicle trafficking pathways, C57BL/6-Hps1ep-Ap3b1pe, exhibits severe lung abnormalities at young ages, including enlarged alveolar type II (ATII) cells with giant lamellar bodies and foamy alveolar macrophages (AMs), which are readily identified histologically. In this study, the appearance of lung fibrosis in older animals was studied using classical histological and biochemical methods. The HPS double mutant mice, but not Chediak Higashi syndrome (C57BL/6-Lystbg-J-J, CHS) or C57BL/6J black control (WT) mice, were found to develop lung fibrosis at about 17 months of age using Masson trichrome staining, which was confirmed by hydroxyproline analysis. TGF β1 levels were elevated in bronchial alveolar lavage samples at all ages tested in the double mutant, but not WT or CHS mice, indicative of a prefibrotic condition in this experimental strain; and AMs were highly positive for this cytokine using immunohistochemistry staining. Prosurfactant protein C staining for ATII cells showed redistribution and dysmorphism of these cells with aging, but there was no evidence for epithelial-mesenchymal transition of ATII cells by dual staining for prosurfactant C protein and α-smooth muscle actin. This investigation showed that the HPS double mutant mouse strain develops interstitial pneumonia (HPSIP) past 1 year of age, which may be initiated by abnormal ATII cells and exacerbated by AM activation. With prominent prefibrotic abnormalities, this double mutant may serve as a model for interventive therapy in HPS. PMID:20603711

  8. Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye

    Science.gov (United States)

    Lee, Jee Bum; Li, Ying; Choi, Ji Suk; Lee, Hyo Seok

    2016-01-01

    Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P extracts improved clinical signs, decreased inflammation, and ameliorated oxidative stress marker and ROS production on the ocular surface of the EDE model mice. PMID:27313829

  9. Mouse Models of Multiple Sclerosis: Experimental Autoimmune Encephalomyelitis and Theiler’s Virus-Induced Demyelinating Disease

    Science.gov (United States)

    McCarthy, Derrick P.; Richards, Maureen H.; Miller, Stephen D.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) and Theiler’s Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD) are two clinically relevant murine models of multiple sclerosis (MS). Like MS, both are characterized by mononuclear cell infiltration into the CNS and demyelination. EAE is induced by either the administration of myelin protein or peptide in adjuvant or by the adoptive transfer of encephalitogenic T cell blasts into naïve recipients. The relative merits of each of these protocols are compared. Depending on the type of question being asked, different mouse strains and peptides are used. Different disease courses are observed with different strains and different peptides in active EAE. These variations are also addressed. Additionally, issues relevant to clinical grading of EAE in mice are discussed. In addition to EAE induction, useful references for other disease indicators such as DTH, in vitro proliferation, and immunohistochemistry are provided. TMEV-IDD is a useful model for understanding the possible viral etiology of MS. This section provides detailed information on the preparation of viral stocks and subsequent intracerebral infection of mice. Additionally, virus plaque assay and clinical disease assessment are discussed. Recently, recombinant TMEV strains have been created for the study of molecular mimicry which incorporate various 30 amino acid myelin epitopes within the leader region of TMEV. PMID:22933080

  10. Effect of tomato intake on striatal monoamine level in a mouse model of experimental Parkinson's disease.

    Science.gov (United States)

    Suganuma, Hiroyuki; Hirano, Takaaki; Arimoto, Yasushi; Inakuma, Takahiro

    2002-06-01

    An ingestion of tomato powder rich in lycopene was examined for its effect on mice with Parkinson's disease-like syndrome induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To assess the preventive effect of tomato against the MPTP-induced selective destruction of dopaminergic nigrostrie, we determined striatal dopamine (DA). A 4-wk ingestion of the experimental diet containing 20% (w/w) lyophilized tomato powders before MPTP treatment prevented a decrease in the DA level. This suggests that the tomato ingestion might serve as a preventive against neurodegenerative diseases such as Parkinson's disease caused by MPTP and other environmental toxins.

  11. Benefits of Zataria multiflora Boiss in Experimental Model of Mouse Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Leila Ashtaral Nakhai

    2007-01-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic condition of the intestine with unknown etiology involving multiple immune, genetic and environmental factors. We were interested to examine the effect of total extract from Zataria multiflora Boiss, a folk medicinal plant on prevention and treatment of experimental IBD. Z. multiflora was administered (400, 600, 900 p.p.m. through drinking water to IBD mice induced by intrarectal administration of acetic acid. Prednisolone was used as the standard drug for comparison. Biochemical, macroscopic and microscopic examinations of colon were performed. Biochemical evaluation of inflamed colon was done using assay of myeloperoxidase (MPO activity and thiobarbituric acid reactive substances (TBARS concentration as indicators of free radical activity and cell lipid peroxidation. The activity of MPO and lipid peroxidation products (TBARS increased in acetic acid-treated groups while recovered by pretreatment of animals with Z. multiflora (400–900 p.p.m. and prednisolone. Z. multiflora (600 and 900 p.p.m. and prednisolone-treated groups showed significantly lower score values of macroscopic and microscopic characters when compared with the acetic acid-treated group. The beneficial effect of Z. multiflora (900 p.p.m. was comparable with that of prednisolone. The antioxidant, antimicrobial and anti-inflammatory potentials of Z. multiflora might be the mechanisms by which this herbal extract protects animals against experimentally induced IBD. Proper clinical investigation should be carried out to confirm the activity in human.

  12. Metabolomic profiling of faecal extracts from Cryptosporidium parvum infection in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Josephine S Y Ng Hublin

    Full Text Available Cryptosporidiosis is a gastrointestinal disease in humans and animals caused by infection with the protozoan parasite Cryptosporidium. In healthy individuals, the disease manifests mainly as acute self-limiting diarrhoea, but may be chronic and life threatening for those with compromised immune systems. Control and treatment of the disease is challenged by the lack of sensitive diagnostic tools and broad-spectrum chemotherapy. Metabolomics, or metabolite profiling, is an emerging field of study, which enables characterisation of the end products of regulatory processes in a biological system. Analysis of changes in metabolite patterns reflects changes in biochemical regulation, production and control, and may contribute to understanding the effects of Cryptosporidium infection in the host environment. In the present study, metabolomic analysis of faecal samples from experimentally infected mice was carried out to assess metabolite profiles pertaining to the infection. Gas-chromatography mass spectrometry (GC-MS carried out on faecal samples from a group of C. parvum infected mice and a group of uninfected control mice detected a mean total of 220 compounds. Multivariate analyses showed distinct differences between the profiles of C. parvum infected mice and uninfected control mice,identifying a total of 40 compounds, or metabolites that contributed most to the variance between the two groups. These metabolites consisted of amino acids (n = 17, carbohydrates (n = 8, lipids (n = 7, organic acids (n = 3 and other various metabolites (n = 5, which showed significant differences in levels of metabolite abundance between the infected and uninfected mice groups (p < 0.05. The metabolites detected in this study as well as the differences in abundance between the C. parvum infected and the uninfected control mice, highlights the effects of the infection on intestinal permeability and the fate of the metabolites as a result of nutrient scavenging by the

  13. Rivaroxaban attenuates leukocyte adhesion in the microvasculature and thrombus formation in an experimental mouse model of type 2 diabetes mellitus

    National Research Council Canada - National Science Library

    Iba, Toshiaki; Aihara, Koichiro; Yamada, Atushi; Nagayama, Masataka; Tabe, Yoko; Ohsaka, Akimichi

    2014-01-01

    ... the similar effects of rivaroxaban in a mouse model of type 2 diabetes mellitus. In the treatment groups, either 5 or 10mg/kg of rivaroxaban dissolved in DMSO was orally given to KK-A(y) mice for 7 weeks (n=6 in each group). KK-A(y...

  14. Lifetime-dependent effects of bisphenol A on asthma development in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Susanne Petzold

    Full Text Available BACKGROUND: Environmental factors are thought to contribute significantly to the increase of asthma prevalence in the last two decades. Bisphenol A (BPA is a xenoestrogen commonly used in consumer products and the plastic industry. There is evidence and an ongoing discussion that endocrine disruptors like BPA may affect human health and also exert alterations on in the immune system. The aim of this study was to investigate age-dependent effects of BPA on the asthma risk using a murine model to explain the controversial results reported till date. METHODS: BALB/c mice were exposed to BPA via the drinking water for different time periods including pregnancy and breastfeeding. To induce an asthma phenotype, mice were sensitized to ovalbumin (OVA, followed by an intrapulmonary allergen challenge. RESULTS: BPA exposure during pregnancy and breastfeeding had no significant effect on asthma development in the offspring. In contrast, lifelong exposure from birth until the last antigen challenge clearly increased eosinophilic inflammation in the lung, airway hyperreactivity and antigen-specific serum IgE levels in OVA-sensitized adult mice compared to mice without BPA exposure. Surprisingly, BPA intake during the sensitization period significantly reduced the development of allergic asthma. This effect was reversed in the presence of a glucocorticoid receptor antagonist. CONCLUSIONS: Our results demonstrate that the impact of BPA on asthma risk is strongly age-dependent and ranges from asthma-promoting to asthma-reducing effects. This could explain the diversity of results from previous studies regarding the observed health impact of BPA.

  15. Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Ulrike Bönisch

    Full Text Available Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear.To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC flooring, sensitized with ovalbumin (OVA and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs.Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB. Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation.Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases.

  16. Expression of Toll-like receptors (TLRs in the lungs of an experimental sepsis mouse model.

    Directory of Open Access Journals (Sweden)

    Anargyros Bakopoulos

    Full Text Available Sepsis is a condition characterized by high mortality rates and often accompanied by multiple-organ dysfunction. During sepsis, respiratory system may be affected and possibly result in acute respiratory distress syndrome (ARDS. Toll-like receptors (TLRs, as a first line defense against invading pathogens, seem to be highly expressed in septic states. Therefore, expression of TLRs in the lungs of a sepsis animal model could indicate the involvement of the respiratory system and appear as a severity index of the clinical course.A total of 72 C57BL/6J mice, aged 12-14 weeks, were studied. The animals were divided into 3 sepsis (S groups (24h, 48h and 72h and 3 control (C groups (24h, 48h and 72h, each consisting of 12 mice. The S-groups were subjected to cecal ligation and puncture (CLP while the C-groups had a sham operation performed. Blood samples were drawn from all groups. Total blood count analysis was performed along with the measurement of certain biochemical markers. Additionally, lung tissues were harvested and the expression of TLRs, namely TLR 2, TLR 3, TLR 4 and TLR 7 were evaluated by means of immunofluorescence (IF and qRT-PCR (quantitative-Polymerase Chain Reaction. Statistical analysis was performed by using one-way ANOVA followed by student t-test. Results were considered statistically significant when p<0.05.WBCs and lymphocytes were decreased in all S-groups compared to the corresponding C-groups (p<0.05, while RBCs showed a gradual decline in S-groups with the lowest levels appearing in the S72 group. Only, monocytes were higher in S-groups, especially between S48-C48 (p<0.05 and S72-C72 (p<0.05. Creatinine, IL-10 and IL-6 levels were significantly increased in the S-groups compared to the corresponding C-groups (S24 vs C24, S48 vs C48 and S72 vs C72, p<0.05. IF showed that expression of TLRs 2, 3, 4 and 7 was increased in all S-groups compared to the time-adjusted C-groups (p<0.05. Similarly, qRT-PCR revealed that expression

  17. Dynamic changes of mononuclear phagocytes in circulating, pulmonary alveolar and interstitial compartments in a mouse model of experimental silicosis.

    Science.gov (United States)

    Xiang, Guo-An; Zhang, Yi-Dan; Su, Cheng-Cheng; Ma, Yong-Qiang; Li, Yu-Ming; Zhou, Xin; Wei, Lu-Qing; Ji, Wen-Jie

    2016-08-01

    Silicosis is a devastating, irreversible lung fibrosis condition exposed to crystalline silica. The mononuclear phagocyte system plays an important role in the pathogenesis of silicosis. The present study was aimed to explore the dynamic changes of mononuclear phagocytes in circulating, pulmonary alveolar and interstitial compartments in experimental silicosis model. A mouse model of lung fibrosis was developed with crystalline silica particles (2 mg/40 μL via oropharyngeal instillation) using male C57BL/6 mice, and were killed on days 1, 3, 7, 14, and 28. The lung inflammation and fibrosis was investigated using hematoxylin-eosin staining and bronchoalveolar lavage fluid (BALF) analysis, Masson's trichrome staining, and immunofluorescence. Circulating monocyte subsets (Ly6C(hi) and Ly6C(lo)), polarization state of BALF-derived alveolar macrophages (AMϕ) and lung interstitial macrophages (IMϕ, derived from enzymatically digested lung tissue) were analyzed by flow cytometry. The percentage of Ly6C(hi) monocytes significantly increased on day 1 after silica exposure, which reached the peak level from day 7 till day 28. Moreover, M2 (alternative activation) AMϕ (PI - CD64 + CD206+) was dramatically and progressively increased from day 1 to day 28. A parallel increase in IMϕ with M2 polarization (PI-CD64 + CD11b + CD206+) was also observed from day 1 to day 28. Our data demonstrate a dynamic view of mononuclear phagocyte change in three compartments after silica challenge, which highlights the remodeling of mononuclear phagocyte system as a potential therapeutic target for silicosis.

  18. Drug discovery in prostate cancer mouse models.

    Science.gov (United States)

    Valkenburg, Kenneth C; Pienta, Kenneth J

    2015-01-01

    The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.

  19. Mouse Models of Tumor Immunotherapy.

    Science.gov (United States)

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients. © 2016 Elsevier Inc. All rights reserved.

  20. Radionuclide therapy with tissue factor targeting Lu-177-FVIIai inhibits growth in an experimental mouse model of human pancreatic cancer

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Jensen, Mette; Fonslet, Jesper

    2017-01-01

    of pancreatic cancer. Methods: p-SCN-Bn-CHX-A’’-DTPA was conjugated to FVIIai followed by radiolabeling with 177Lu (177Lu-CHX-A’’-DTPA-FVIIai). A pancreas xenograft mouse model (BxPC3) was used to assess the therapeutic potential of 177Lu-FVIIai. NMRI nude mice with subcutaneous BxPC3 tumors were used. The mice...... uptake of 99mTc-DMSA was significantly decreased in all the treatment groups compared to the vehicle group when measured by SPECT imaging. Conclusion: FVIIai was successfully radiolabeled with 177Lu. 177Lu-FVIIai showed anti-tumor activity in a mouse model of human pancreatic cancer. Treatment with 177Lu......Objectives: Tissue factor (TF) is related to aggressiveness and invasiveness of cancer and there is a correlation between tumor TF expression, metastatic potential, and patient outcome. The aim of the study was to test the therapeutic potential and toxicity of a novel compound for localized TF...

  1. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion.

    Science.gov (United States)

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml.

  2. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third......-degree burn injury was induced with a hot-air blower. The third-degree burn was confirmed histologically. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear...... neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization of the skin showed an increased polymorphonuclear neutrophil granulocytes dominated inflammation in the group of mice...

  3. Rivaroxaban attenuates leukocyte adhesion in the microvasculature and thrombus formation in an experimental mouse model of type 2 diabetes mellitus.

    Science.gov (United States)

    Iba, Toshiaki; Aihara, Koichiro; Yamada, Atushi; Nagayama, Masataka; Tabe, Yoko; Ohsaka, Akimichi

    2014-02-01

    Thrombosis is a major complication in diabetes mellitus. Since Factor Xa inhibitors are not only inhibit the coagulation system but also attenuate the leukocyte-endothelial interaction in acute inflammation models, the purpose of this study is to confirm the similar effects of rivaroxaban in a mouse model of type 2 diabetes mellitus. In the treatment groups, either 5 or 10mg/kg of rivaroxaban dissolved in DMSO was orally given to KK-A(y) mice for 7 weeks (n=6 in each group). KK-A(y) mice fed by chow containing DMSO without rivaroxaban for 7 weeks were served for the control group (n=6). Following clamping of the mesenteric vein for 20 minutes, intravital microscopic observation of the intestinal microcirculation and the measurement of bleeding time after the needle puncture were carried-out. In another series, the calculation for blood cell counts and the measurement of blood fluidity using micro channel array flow analyzer (MC-FAN) were performed. The initial event in the microvasculature is the leukocyte adhesion on endothelium. Then, the leukocytes make clusters and the platelets are involved in. These leukocyte-platelet conjugates aggregate and form thrombus. The leukocyte adherence and the microthrombus formation was significantly suppressed with the treatment of 10 mg/kg of rivaroxaban compared to the control group (Ptreatment with 10mg/kg of rivaroxaban (Ptreatment of 10 mg/kg rivaroxaban. Rivaroxaban attenuates the leukocyte-platelet-endothelial interaction, which leads to the attenuation of microthrombus formation in a mouse model of diabetes mellitus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Mouse models for cancer research

    OpenAIRE

    Zhang, Wei; Moore, Lynette; Ji, Ping

    2011-01-01

    Mouse models of cancer enable researchers to learn about tumor biology in complicated and dynamic physiological systems. Since the development of gene targeting in mice, cancer biologists have been among the most frequent users of transgenic mouse models, which have dramatically increased knowledge about how cancers form and grow. The Chinese Journal of Cancer will publish a series of papers reporting the use of mouse models in studying genetic events in cancer cases. This editorial is an ove...

  5. Short time effects of radiotherapy on lymphatic vessels and restorative lymphatic pathways: experimental approaches ina mouse model.

    Science.gov (United States)

    Pastouret, F; Lievens, P; Leduc, O; Bourgeois, P; Tournel, K; Lamote, J; Zirak, C; Leduc, A

    2014-06-01

    Radiotherapy (RT) is an important component in the therapeutic approach to oncologic conditions. This study presents the investigative results on the impact of RT on lymphatic vessels and on the regenerative response of the lymphatic system in a mouse model. We first irradiated 3 groups of ten mice using brachytherapy in a single treatment of 20 Gy. We then performed morphological examination of the irradiated lymphatic vessels using an in vivo microscopic transillumination technique at 2, 4, and 6 weeks. Next we evaluated lymphatic flow using lymphoscintigraphy and in vivo microscopy at 6 to 11 weeks in: 10 additional mice following irradiation as above (IR), in 10 mice following incision of a lymphatic vessel (I), and in a non-treated control group of 10 mice (N). Intact lymphatic vessels were observed in all mice at 2, 4, and 8 weeks following the single dose of radiotherapy in the first group of mice and normal lymphatic flow was fully restored in the irradiated (IR) and incised (I) mice indicating that the reparative substitution lymphatic pathways are functioning normally. We found that following irradiation with one dose of 20 Gy, lymphatic vessels were not visibly damaged and also that lymphatic flow was consistently restored and substitutive lymphatic pathways formed.

  6. Drastic Attenuation of Pseudomonas aeruginosa Pathogenicity in a Holoxenic Mouse Experimental Model Induced by Subinhibitory Concentrations of Phenyllactic acid (PLA

    Directory of Open Access Journals (Sweden)

    Elena Sasarman

    2007-07-01

    Full Text Available The discovery of communication systems regulating bacterial virulence hasafforded a novel opportunity to control infectious bacteria without interfering withgrowth. In this paper we describe the effect of subinhibitory concentrations of phenyl-lactic acid (PLA on the pathogenicity of Pseudomonas aeruginosa in mice. The animalswere inoculated by oral (p.o., intranasal (i.n., intravenous (i.v. and intraperitoneal (i.p.routes with P. aeruginoasa wild and PLA-treated cultures. The mice were followed upduring 16 days after infection and the body weight, mortality and morbidity rate weremeasured every day. The microbial charge was studied by viable cell counts in lungs,spleen, intestinal mucosa and blood. The mice batches infected with wild P. aeruginosabacterial cultures exhibited high mortality rates (100 % after i.v. and i.p. route and veryhigh cell counts in blood, lungs, intestine and spleen. In contrast, the animal batchesinfected with PLA treated bacterial cultures exhibited good survival rates (0 % mortality and the viable cell counts in the internal organs revealed with one exception the complete abolition of the invasive capacity of the tested strains. In this study, using a mouse infection model we show that D-3-phenyllactic acid (PLA can act as a potent antagonist of Pseudomonas (P. aeruginosa pathogenicity, without interfering with the bacterial growth, as demonstrated by the improvement of the survival rates as well as the clearance of bacterial strains from the body.

  7. Mouse models of cataract

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... Much of our knowledge about the function of genes in cataracts has been derived from the molecular analysis of spontaneous or induced mutations in the mouse. Mutations affecting the mouse lens can be identified easily by visual inspection, and a remarkable number of mutant lines have been ...

  8. Immunization with lipopolysaccharide-deficient whole cells provides protective immunity in an experimental mouse model of Acinetobacter baumannii infection.

    Directory of Open Access Journals (Sweden)

    Meritxell García-Quintanilla

    Full Text Available The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010, one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (<1.0 endotoxin unit/106 cells compared to wild type cells. Immunization with formalin inactivated IB010 produced a robust antibody response consisting of both IgG1 and IgG2c subtypes. Mice immunized with IB010 had significantly lower post-infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii.

  9. A new formulation of cannabidiol in cream shows therapeutic effects in a mouse model of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Giacoppo, Sabrina; Galuppo, Maria; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela

    2015-10-21

    The present study was designed to investigate the efficacy of a new formulation of alone, purified cannabidiol (CBD) (>98 %), the main non-psychotropic cannabinoid of Cannabis sativa, as a topical treatment in an experimental model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS). Particularly, we evaluated whether administration of a topical 1 % CBD-cream, given at the time of symptomatic disease onset, could affect the EAE progression and if this treatment could also recover paralysis of hind limbs, qualifying topical-CBD for the symptomatic treatment of MS. In order to have a preparation of 1 % of CBD-cream, pure CBD have been solubilized in propylene glycoland basic dense cream O/A. EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG35-55) in C57BL/6 mice. After EAE onset, mice were allocated into several experimental groups (Naïve, EAE, EAE-1 % CBD-cream, EAE-vehicle cream, CTRL-1 % CBD-cream, CTRL-vehicle cream). Mice were observed daily for signs of EAE and weight loss. At the sacrifice of the animals, which occurred at the 28(th) day from EAE-induction, spinal cord and spleen tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results surprisingly show that daily treatment with topical 1 % CBD-cream may exert neuroprotective effects against EAE, diminishing clinical disease score (mean of 5.0 in EAE mice vs 1.5 in EAE + CBD-cream), by recovering of paralysis of hind limbs and by ameliorating histological score typical of disease (lymphocytic infiltration and demyelination) in spinal cord tissues. Also, 1 % CBD-cream is able to counteract the EAE-induced damage reducing release of CD4 and CD8α T cells (spleen tissue localization was quantified about 10,69 % and 35,96 % of positive staining respectively in EAE mice) and expression of the main pro-inflammatory cytokines as well as several other

  10. Genetically Engineered Mouse Models in Cancer Research

    Science.gov (United States)

    Walrath, Jessica C.; Hawes, Jessica J.; Van Dyke, Terry; Reilly, Karlyne M.

    2012-01-01

    Mouse models of human cancer have played a vital role in understanding tumorigenesis and answering experimental questions that other systems cannot address. Advances continue to be made that allow better understanding of the mechanisms of tumor development, and therefore the identification of better therapeutic and diagnostic strategies. We review major advances that have been made in modeling cancer in the mouse and specific areas of research that have been explored with mouse models. For example, although there are differences between mice and humans, new models are able to more accurately model sporadic human cancers by specifically controlling timing and location of mutations, even within single cells. As hypotheses are developed in human and cell culture systems, engineered mice provide the most tractable and accurate test of their validity in vivo. For example, largely through the use of these models, the microenvironment has been established to play a critical role in tumorigenesis, since tumor development and the interaction with surrounding stroma can be studied as both evolve. These mouse models have specifically fueled our understanding of cancer initiation, immune system roles, tumor angiogenesis, invasion, and metastasis, and the relevance of molecular diversity observed among human cancers. Currently, these models are being designed to facilitate in vivo imaging to track both primary and metastatic tumor development from much earlier stages than previously possible. Finally, the approaches developed in this field to achieve basic understanding are emerging as effective tools to guide much needed development of treatment strategies, diagnostic strategies, and patient stratification strategies in clinical research. PMID:20399958

  11. Mouse Models of Rheumatoid Arthritis.

    Science.gov (United States)

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients. © The Author(s) 2015.

  12. Mouse Models of Diabetic Neuropathy

    Science.gov (United States)

    O'Brien, Phillipe D.; Sakowski, Stacey A.; Feldman, Eva L.

    2014-01-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and is associated with significant morbidity and mortality. DPN is characterized by progressive, distal-to-proximal degeneration of peripheral nerves that leads to pain, weakness, and eventual loss of sensation. The mechanisms underlying DPN pathogenesis are uncertain, and other than tight glycemic control in type 1 patients, there is no effective treatment. Mouse models of type 1 (T1DM) and type 2 diabetes (T2DM) are critical to improving our understanding of DPN pathophysiology and developing novel treatment strategies. In this review, we discuss the most widely used T1DM and T2DM mouse models for DPN research, with emphasis on the main neurologic phenotype of each model. We also discuss important considerations for selecting appropriate models for T1DM and T2DM DPN studies and describe the promise of novel emerging diabetic mouse models for DPN research. The development, characterization, and comprehensive neurologic phenotyping of clinically relevant mouse models for T1DM and T2DM will provide valuable resources for future studies examining DPN pathogenesis and novel therapeutic strategies. PMID:24615439

  13. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  14. Development of a nested PCR assay for the detection of Fusarium solani DNA and its evaluation in the diagnosis of invasive fusariosis using an experimental mouse model.

    Science.gov (United States)

    Ahmad, Suhail; Khan, Zia U; Theyyathel, Ajmal M

    2010-01-01

    Fusarium infections are increasingly being encountered in immunocompromised patients. Fusarium solani accounts for nearly half of these infections. A specific nested PCR (nPCR) assay has been developed by using DNA isolated from several Fusarium species and other common fungi. Furthermore, DNA samples isolated from bronchoalveolar lavage (BAL) and serum samples from mice infected intravenously with F. solani conidia and sacrificed on every third day post infection were used for the evaluation of the established nPCR protocol. The lung homogenate, BAL and blood from infected animals were also cultured. The nPCR assay was specific for F. solani and detected 450 fg of DNA corresponding roughly to 11 F. solani cells. Cultures of lung homogenate of infected animals up to day 16 yielded F. solani with decreasing fungal load and were negative thereafter. The nPCR positivity in BAL was 100% concordant with lung tissue culture results. Although detection of F. solani DNA in serum was less sensitive than in BAL, it remained positive for longer duration. Our data from an experimental mouse model show that detection of DNA in BAL and to a lesser extent in serum by nPCR offers a sensitive and specific diagnostic approach to invasive F. solani infection.

  15. miR-451 deficiency is associated with altered endometrial fibrinogen alpha chain expression and reduced endometriotic implant establishment in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Warren B Nothnick

    development in an experimental mouse model suggesting that this approach may prove useful in the prevention of endometriosis establishment and survival.

  16. Effects of aqueous extracts from Panax ginseng and Hippophae rhamnoides on acute alcohol intoxication: An experimental study using mouse model.

    Science.gov (United States)

    Wen, Da-Chao; Hu, Xiao-Yu; Wang, Yan-Yan; Luo, Jian-Xing; Lin, Wu; Jia, Ling-Yan; Gong, Xin-Yue

    2016-11-04

    Acute alcohol intoxication (AAI) is a frequent emergency, but therapeutic drugs with superior efficacy and safety are lacking. Panax ginseng (PG) and Hippophae rhamnoides (HR) respectively has a wide application as a complementary therapeutic agent in China for the treatment of AAI and liver injury induced by alcohol. We investigated the effects of aqueous extracts from PG and HR (AEPH) on AAI mice and identified its underlying mechanisms. Models of AAI were induced by intragastric administration of ethanol (8g/kg). Seventy-two Specific pathogen-free (SPF) male Kunming mice were randomly divided into six groups: normal group, positive control group, AEPH of low dosage (100mg/kg) group, AEPH of medium dose (200mg/kg) group, AEPH of high dosage (400mg/kg) group and model group. The mice were treated with metadoxine (MTD, 500mg/kg) and AEPH. Thirty minutes later, the normal group was given normal saline, while the other groups were given ethanol (i.g., 8g/kg). The impact of AEPH was observed. In the same way, another seventy-two Kunming mice were randomly divided into six groups equally. The blood ethanol concentration at 0.5, 1, 1.5, 2, 3 and 6h after ethanol intake was determined by way of gas chromatography. The activity of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and microsomal ethanol oxidase (EO) in liver, and the concentration of β-endorphin (β-EP), leucine-enkephalin (LENK) in the brain were determined by enzyme-linked-immunosorbent serologic assay (ELISA). AEPH markedly prolonged alcohol tolerance time and shortened sober-up time after acute ethanol administration. AEPH decreased blood ethanol levels in six tests after ethanol intake. The 7-day survival rate of AEPH group was obviously superior to model group. AEPH increased the activities of ADH, ALDH, and decreased EO activity in liver. The crucial find was that AEPH markedly decreased β-EP and LENK concentration in the brain. AEPH can markedly increase the levels of ADH, ALDH, decrease

  17. Mouse Models of Gastric Cancer

    Science.gov (United States)

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  18. Mouse models for methylmalonic aciduria.

    Directory of Open Access Journals (Sweden)

    Heidi L Peters

    Full Text Available Methylmalonic aciduria (MMA is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM. MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene. Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation.

  19. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. 3D strain map of axially loaded mouse tibia: a numerical analysis validated by experimental measurements.

    Science.gov (United States)

    Stadelmann, Vincent A; Hocke, Jean; Verhelle, Jensen; Forster, Vincent; Merlini, Francesco; Terrier, Alexandre; Pioletti, Dominique P

    2009-02-01

    A combined experimental/numerical study was performed to calculate the 3D octahedral shear strain map in a mouse tibia loaded axially. This study is motivated by the fact that the bone remodelling analysis, in this in vivo mouse model should be performed at the zone of highest mechanical stimulus to maximise the measured effects. Accordingly, it is proposed that quantification of bone remodelling should be performed at the tibial crest and at the distal diaphysis. The numerical model could also be used to furnish a more subtle analysis as a precise correlation between local strain and local biological response can be obtained with the experimentally validated numerical model.

  1. Mouse models to study dengue virus immunology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Raphaël M. Zellweger

    2014-04-01

    Full Text Available The development of a compelling murine model of dengue virus (DENV infection has been challenging, because dengue virus clinical isolates do not readily replicate or cause pathology in immunocompetent mice. However, research using immunocompromised mice and/or mouse-adapted viruses allows to investigate questions that may be impossible to address in human studies. In this review, we discuss the potential strengths and limitations of existing mouse models of dengue disease. Human studies are descriptive by nature; moreover, the strain, time, and sequence of infection are often unknown. In contrast, in mice, the conditions of infection are well defined and a large number of experimental parameters can be varied at will. Therefore, mouse models offer an opportunity to experimentally test hypotheses that are based on epidemiological observations. In particular, gain-of-function or loss-of-function models can be established to assess how different components of the immune system (either alone or in combination contribute to protection or pathogenesis during secondary infections or after vaccination. In addition, mouse models have been used for pre-clinical testing of antiviral drug or for vaccine development studies. Conclusions based on mouse experiments must be extrapolated to DENV infection in humans with caution due to the inherent limitations of animal models. However, research in mouse models is a useful complement to in vitro and epidemiological data, and may delineate new areas that deserve attention during future human studies.

  2. A humanized mouse model of tuberculosis.

    Directory of Open Access Journals (Sweden)

    Veronica E Calderon

    Full Text Available Mycobacterium tuberculosis (M.tb is the second leading infectious cause of death worldwide and the primary cause of death in people living with HIV/AIDS. There are several excellent animal models employed to study tuberculosis (TB, but many have limitations for reproducing human pathology and none are amenable to the direct study of HIV/M.tb co-infection. The humanized mouse has been increasingly employed to explore HIV infection and other pathogens where animal models are limiting. Our goal was to develop a small animal model of M.tb infection using the bone marrow, liver, thymus (BLT humanized mouse. NOD-SCID/γc(null mice were engrafted with human fetal liver and thymus tissue, and supplemented with CD34(+ fetal liver cells. Excellent reconstitution, as measured by expression of the human CD45 pan leukocyte marker by peripheral blood populations, was observed at 12 weeks after engraftment. Human T cells (CD3, CD4, CD8, as well as natural killer cells and monocyte/macrophages were all observed within the human leukocyte (CD45(+ population. Importantly, human T cells were functionally competent as determined by proliferative capacity and effector molecule (e.g. IFN-γ, granulysin, perforin expression in response to positive stimuli. Animals infected intranasally with M.tb had progressive bacterial infection in the lung and dissemination to spleen and liver from 2-8 weeks post infection. Sites of infection in the lung were characterized by the formation of organized granulomatous lesions, caseous necrosis, bronchial obstruction, and crystallization of cholesterol deposits. Human T cells were distributed throughout the lung, liver, and spleen at sites of inflammation and bacterial growth and were organized to the periphery of granulomas. These preliminary results demonstrate the potential to use the humanized mouse as a model of experimental TB.

  3. Efficacy of a new topical cationic emulsion of cyclosporine A on dry eye clinical signs in an experimental mouse model of dry eye.

    Science.gov (United States)

    Daull, Philippe; Feraille, Laurence; Barabino, Stefano; Cimbolini, Nicolas; Antonelli, Sophie; Mauro, Virgine; Garrigue, Jean-Sébastien

    2016-12-01

    Dry eye disease (DED) is a complex, multifactorial pathology characterized by corneal epithelium lesions and inflammation. The aim of the present study was to evaluate the efficacy of a cationic emulsion of cyclosporine A (CsA) in a mouse model that mimics severe dry eye. Eight to 12-week-old female C57BL/6N mice with tail patches of scopolamine were housed in controlled environment chambers to induce dry eye. At day three, following dry eye confirmation by corneal fluorescein staining (CFS, score 0-15) and phenol red thread (PRT) lacrimation test, the mice (n = 10/gp) were either treated 3 times a day in both eyes with drug-free cationic emulsion, a 0.1% CsA cationic emulsion, or 1% methylprednisolone (positive control), or non-treated. Aqueous tear production and CFS scores were evaluated at baseline and throughout the treatment period. The lacrimation test confirmed the scopolamine-induced decrease in aqueous production by the lacrimal gland. A reduction of 59% in induced-CFS was observed following topical treatment with 0.1% CsA. The beneficial effect of the cationic emulsion vehicle itself on keratitis was also clearly evidenced by its better performance over 1% methylprednisolone, -36%, vs. -28% on the CFS scores, respectively. This study indicates that the cationic emulsion of CsA (0.1%) was a very effective formulation for the management of corneal epithelium lesions in a severe DED mouse model. In addition, it performed better than a potent glucocorticosteroid (1% methylprednisolone). This cationic emulsion of CsA (0.1%), combining CsA and a tear film oriented therapy (TFOT), i.e. with vehicle properties that mechanically stabilize the tear film, represents a promising new treatment strategy for the management of the signs of dry eye. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Involvement of platelets in experimental mouse trypanosomiasis: evidence of mouse platelet cytotoxicity against Trypanosoma equiperdum.

    Science.gov (United States)

    Momi, S; Perito, S; Mezzasoma, A M; Bistoni, F; Gresele, P

    2000-06-01

    Platelets play an important role in the human response to parasites. Trypanosoma equiperdum, a parasite that has the horse as its natural host, is able to induce infection in mice and thus it may represent a simple model for studying the role of platelets in the development of a parasitosis. Although several aspects of the murine response to T. equiperdum infection have been clarified, the precise mechanism of killing of the parasite is still unclear. We have studied the involvement of blood platelets in experimental murine infection with T. equiperdum. Infected mice show a progressive decrease of the number of circulating platelets. The production of thromboxane A2 (TxA2) by platelets stimulated with collagen decreases progressively with the progression of T. equiperdum infection, compatible with in vivo platelet activation or with a possible antagonistic effect by trypanosomes on the production of TxA2. Finally, mouse platelets exert in vitro a direct parasitocidal activity on T. equiperdum at ratios >/=20:1. Complement fractions do not enhance platelet trypanocidal activity, whereas IgM fractions do, at least in short-term coincubation experiments. Our data show that platelets are involved in experimental murine T. equiperdum infection and confirm that platelet parasitocidal activity is a generalized phenomenon in mammals. Copyright 2000 Academic Press.

  5. Mouse models for filovirus infections.

    Science.gov (United States)

    Bradfute, Steven B; Warfield, Kelly L; Bray, Mike

    2012-09-01

    The filoviruses marburg- and ebolaviruses can cause severe hemorrhagic fever (HF) in humans and nonhuman primates. Because many cases have occurred in geographical areas lacking a medical research infrastructure, most studies of the pathogenesis of filoviral HF, and all efforts to develop drugs and vaccines, have been carried out in biocontainment laboratories in non-endemic countries, using nonhuman primates (NHPs), guinea pigs and mice as animal models. NHPs appear to closely mirror filoviral HF in humans (based on limited clinical data), but only small numbers may be used in carefully regulated experiments; much research is therefore done in rodents. Because of their availability in large numbers and the existence of a wealth of reagents for biochemical and immunological testing, mice have become the preferred small animal model for filovirus research. Since the first experiments following the initial 1967 marburgvirus outbreak, wild-type or mouse-adapted viruses have been tested in immunocompetent or immunodeficient mice. In this paper, we review how these types of studies have been used to investigate the pathogenesis of filoviral disease, identify immune responses to infection and evaluate antiviral drugs and vaccines. We also discuss the strengths and weaknesses of murine models for filovirus research, and identify important questions for further study.

  6. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR. ©2017 American Association for Cancer Research.

  7. Gene expression of IQGAPs and Ras families in an experimental mouse model for hepatocellular carcinoma: a mechanistic study of cancer progression.

    Science.gov (United States)

    Zoheir, Khairy M A; Abd-Rabou, Ahmed A; Harisa, Gamaleldin I; Ashour, Abdelkader E; Ahmad, Sheikh Fayaz; Attia, Sabry M; Bakheet, Saleh A; Abdel-Hamied, Hala E; Abd-Allah, Adel R; Kumar, Ashok

    2015-01-01

    IQGAPs genes play critical role in either induction or suppression of cancer and its progression, however the relationship between Ras genes and these genes are still unclear. In this study, we tried to understand the mechanistic action of IQGAPs genes and its correlation with Ras genes in mouse hepatic cancer model. The genetic expressions of IQGAP1, IQGAP2, IQGAP3, Hras, Kras, Nras, Mras, Caspase3, and BAX were followed in both hepatocellular carcinoma and normal liver cells of Balbc mice. Genotoxic agent diethylnitrosamine (DEN)-induced hepatic cancer model was induced in male mice and recorded the occurrence of hepatocellular carcinoma by morphological and histological changes in the liver. It was observed that mRNA expressions of IQGAP1, Hras, Kras, Nras, Mras, Caspase3, and BAX genes were highly elevated in hepatocellular carcinoma cells when compared with normal liver cells, additionally their expressions increased by concentrating the dose of DEN. While, the expressions of IQGAP2 and IQGAP3 were significantly decreased in hepatocellular carcinoma cells when compared with normal liver cells, as well as their expressions decreased more with increasing the dose of DEN. It was concluded from this study that IQGAP1 has a strong signaling relationship with Ras genes in induction of cancer and it is considered as a key gene for induction or suppression of the hepatocellular carcinoma.

  8. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  9. Efficacy of an oral and tropically stable lipid-based formulation of Amphotericin B (iCo-010) in an experimental mouse model of systemic candidiasis.

    Science.gov (United States)

    Ibrahim, Fady; Sivak, Olena; Wasan, Ellen K; Bartlett, Karen; Wasan, Kishor M

    2013-10-29

    An oral lipid based formulation that exhibits tropical stability (iCo-010) was developed to enhance the absorption of orally administered amphotericin B (AmB). iCo-010 has previously shown high efficacy in an acute model of systemic candidiasis in rats, directing the focus of this study to be its efficacy in a chronic model of systemic candidiasis in mice. Mice were infected with 0.6 to 1×108 CFUs of Candida albicans ATCC 18804 strain by tail vein injection and were left for three days to develop the infection after which time treatment was initiated. The infected animals were assigned to the following treatment groups: no treatment (control) or iCo-010 at 5, 10 and 20 mg/kg administered by oral gavage once daily (QD) for 5 consecutive days. The animals were sacrificed 7 days after the last dose and the concentration of AmB and the fungal burden were assessed within the liver, kidneys, heart, lungs, spleen and brain. Although the infection was relatively low (~ 60-100 CFUs/ 1 ml tissue homogenate) in the liver, lungs and heart, the infection level was very high (70 000 CFUs / 1 ml tissue homogenate) in the kidney tissues for the control group. The highest concentrations of AmB were recovered in the kidneys and the spleen. The fungal burden in the tissues was lowered by 69-96% in the treatment groups when compared to the control group. Oral iCo-010 is an effective treatment of systemic candidiasis in the mouse model.

  10. Mouse Model Resources for Vision Research

    Directory of Open Access Journals (Sweden)

    Jungyeon Won

    2011-01-01

    Full Text Available The need for mouse models, with their well-developed genetics and similarity to human physiology and anatomy, is clear and their central role in furthering our understanding of human disease is readily apparent in the literature. Mice carrying mutations that alter developmental pathways or cellular function provide model systems for analyzing defects in comparable human disorders and for testing therapeutic strategies. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Two programs, the Eye Mutant Resource and the Translational Vision Research Models, focused on providing such models to the vision research community are described herein. Over 100 mutant lines from the Eye Mutant Resource and 60 mutant lines from the Translational Vision Research Models have been developed. The ocular diseases of the mutant lines include a wide range of phenotypes, including cataracts, retinal dysplasia and degeneration, and abnormal blood vessel formation. The mutations in disease genes have been mapped and in some cases identified by direct sequencing. Here, we report 3 novel alleles of Crxtvrm65, Rp1tvrm64, and Rpe65tvrm148 as successful examples of the TVRM program, that closely resemble previously reported knockout models.

  11. Optimizing mouse models for precision cancer prevention.

    Science.gov (United States)

    Le Magnen, Clémentine; Dutta, Aditya; Abate-Shen, Cory

    2016-03-01

    As cancer has become increasingly prevalent, cancer prevention research has evolved towards placing a greater emphasis on reducing cancer deaths and minimizing the adverse consequences of having cancer. 'Precision cancer prevention' takes into account the collaboration of intrinsic and extrinsic factors in influencing cancer incidence and aggressiveness in the context of the individual, as well as recognizing that such knowledge can improve early detection and enable more accurate discrimination of cancerous lesions. However, mouse models, and particularly genetically engineered mouse (GEM) models, have yet to be fully integrated into prevention research. In this Opinion article, we discuss opportunities and challenges for precision mouse modelling, including the essential criteria of mouse models for prevention research, representative success stories and opportunities for more refined analyses in future studies.

  12. A Single B-Repeat of Staphylococcus epidermidis Accumulation-Associated Protein Induces Protective Immune Responses in an Experimental Biomaterial-Associated Infection Mouse Model

    Science.gov (United States)

    Yan, Lin; Zhang, Lei; Ma, Hongyan; Chiu, David

    2014-01-01

    Nosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device. Staphylococcus epidermidis is a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature. S. epidermidis antibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein of S. epidermidis, is considered one of the most important proteins involved in the formation of S. epidermidis biofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) of S. epidermidis RP62A Aap was developed, and the vaccine's efficacy was evaluated in vitro with a biofilm inhibition assay and in vivo in a murine model of biomaterial-associated infection. A high IgG antibody response against S. epidermidis RP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibited in vitro S. epidermidis RP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 106 CFU of S. epidermidis RP62A. Weight changes, inflammatory markers, and histological assay results after challenge with S. epidermidis indicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance to S. epidermidis RP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova

  13. Melatonin receptors: latest insights from mouse models

    Science.gov (United States)

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  14. Mouse Hepatic Tumor Vascular Imaging by Experimental Selective Angiography.

    Directory of Open Access Journals (Sweden)

    Sang Kyum Kim

    Full Text Available Human hepatocellular carcinoma (HCC has unique vascular features, which require selective imaging of hepatic arterial perfusion and portal venous perfusion with vascular catheterization for sufficient evaluation. Unlike in humans, vessels in mice are too small to catheterize, and the importance of separately imaging the feeding vessels of tumors is frequently overlooked in hepatic tumor models. The purpose of this study was to perform selective latex angiography in several mouse liver tumor models and assess their suitability.In several ectopic (Lewis lung carcinoma, B16/F10 melanoma cell lines and spontaneous liver tumor (Albumin-Cre/MST1fl/fl/MST2fl/fl, Albumin-Cre/WW45fl/fl, and H-ras12V genetically modified mouse models, the heart left ventricle and/or main portal vein of mice was punctured, and latex dye was infused to achieve selective latex arteriography and/or portography.H-ras12V transgenic mice (a HCC and hepatic adenoma model developed multiple liver nodules that displayed three different perfusion patterns (portal venous or hepatic artery perfusion predominant, mixed perfusion, indicating intra-tumoral vascular heterogeneity. Selective latex angiography revealed that the Lewis lung carcinoma implant model and the Albumin-Cre/WW45fl/fl model reproduced conventional angiography findings of human HCC. Specifically, these mice developed tumors with abundant feeding arteries but no portal venous perfusion.Different hepatic tumor models showed different tumor vessel characteristics that influence the suitability of the model and that should be considered when designing translational experiments. Selective latex angiography applied to certain mouse tumor models (both ectopic and spontaneous closely simulated typical characteristics of human HCC vascular imaging.

  15. Dose-dependent effects of experimental infection with the virulent Neospora caninum Nc-Spain7 isolate in a pregnant mouse model.

    Science.gov (United States)

    Arranz-Solís, David; Aguado-Martínez, Adriana; Müller, Joachim; Regidor-Cerrillo, Javier; Ortega-Mora, Luis Miguel; Hemphill, Andrew

    2015-07-30

    Pregnant BALB/c mice have been widely used as an in vivo model to study Neospora caninum infection biology and to provide proof-of-concept for assessments of drugs and vaccines against neosporosis. The fact that this model has been used with different isolates of variable virulence, varying infection routes and differing methods to prepare the parasites for infection, has rendered the comparison of results from different laboratories impossible. In most studies, mice were infected with similar number of parasites (2 × 10(6)) as employed in ruminant models (10(7) for cows and 10(6) for sheep), which seems inappropriate considering the enormous differences in the weight of these species. Thus, for achieving meaningful results in vaccination and drug efficacy experiments, a refinement and standardization of this experimental model is necessary. Thus, 2 × 10(6), 10(5), 10(4), 10(3) and 10(2) tachyzoites of the highly virulent and well-characterised Nc-Spain7 isolate were subcutaneously inoculated into mice at day 7 of pregnancy, and clinical outcome, vertical transmission, parasite burden and antibody responses were compared. Dams from all infected groups presented nervous signs and the percentage of surviving pups at day 30 postpartum was surprisingly low (24%) in mice infected with only 10(2) tachyzoites. Importantly, infection with 10(5) tachyzoites resulted in antibody levels, cerebral parasite burden in dams and 100% mortality rate in pups, which was identical to infection with 2 × 10(6) tachyzoites. Considering these results, it is reasonable to lower the challenge dose to 10(5) tachyzoites in further experiments when assessing drugs or vaccine candidates. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Pathology of Mouse Models of Accelerated Aging.

    Science.gov (United States)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. © The Author(s) 2016.

  17. Epithelial Ovarian Cancer Experimental Models

    Science.gov (United States)

    Lengyel, E; Burdette, JE; Kenny, HA; Matei, D; Pilrose, J; Haluska, P.; Nephew, KP; Hales, DB; Stack, MS

    2014-01-01

    Epithelial ovarian cancer (OvCa) is associated with high mortality and, as the majority (>75%) of women with OvCa have metastatic disease at the time of diagnosis, rates of survival have not changed appreciably over 30 years. A mechanistic understanding of OvCa initiation and progression is hindered by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell(s) or tissue(s) of origin. Metastasis of OvCa involves direct extension or exfoliation of cells and cellular aggregates into the peritoneal cavity, survival of matrix-detached cells in a complex ascites fluid phase, and subsequent adhesion to the mesothelium lining covering abdominal organs to establish secondary lesions containing host stromal and inflammatory components. Development of experimental models to recapitulate this unique mechanism of metastasis presents a remarkable scientific challenge and many approaches used to study other solid tumors (lung, colon, and breast, for example) are not transferable to OvCa research given the distinct metastasis pattern and unique tumor microenvironment. This review will discuss recent progress in the development and refinement of experimental models to study OvCa. Novel cellular, three-dimensional organotypic, and ex vivo models are considered and the current in vivo models summarized. The review critically evaluates currently available genetic mouse models of OvCa, the emergence of xenopatients, and the utility of the hen model to study OvCa prevention, tumorigenesis, metastasis, and chemoresistance. As these new approaches more accurately recapitulate the complex tumor microenvironment, it is predicted that new opportunities for enhanced understanding of disease progression, metastasis and therapeutic response will emerge. PMID:23934194

  18. Models of experimental epilepsy

    Directory of Open Access Journals (Sweden)

    Fatih Ekici

    2011-03-01

    Full Text Available Epilepsy is the most common serious neurological conditionin the world, with an estimated prevalence of 1% ofthe population. A large number of experimental modelsof seizure and epilepsy have been developed. These experimentalmodels are elicited by chemical convulsants,electrical stimulation, genetic models, structural lesions,physical stimuli (cold, pressure, hyperthermia, electricalin animals. Well-characterized animal models may allowthe understanding of the basic mechanisms underlyingepileptogenesis (it refers to the alteration of a normalneuronal network into a hyperexcitable network in whichrecurrent, spontaneous seizures occur. Moreover, thesemodels might also prove useful in identifying novel therapeuticapproaches to treatment of epilepsy. J Clin ExpInvest 2011; 2(1: 118-123

  19. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-01-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience,"

  20. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L.; Youssef, S. A.; de Bruin, A.

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of geroscience,

  1. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  2. Curcuma longa extract exerts a myorelaxant effect on the ileum and colon in a mouse experimental colitis model, independent of the anti-inflammatory effect.

    Science.gov (United States)

    Aldini, Rita; Budriesi, Roberta; Roda, Giulia; Micucci, Matteo; Ioan, Pierfranco; D'Errico-Grigioni, Antonia; Sartini, Alessandro; Guidetti, Elena; Marocchi, Margherita; Cevenini, Monica; Rosini, Francesca; Montagnani, Marco; Chiarini, Alberto; Mazzella, Giuseppe

    2012-01-01

    Curcuma has long been used as an anti-inflammatory agent in inflammatory bowel disease. Since gastrointestinal motility is impaired in inflammatory states, the aim of this work was to evaluate if Curcuma Longa had any effect on intestinal motility. The biological activity of Curcuma extract was evaluated against Carbachol induced contraction in isolated mice intestine. Acute and chronic colitis were induced in Balb/c mice by Dextran Sulphate Sodium administration (5% and 2.5% respectively) and either Curcuma extract (200 mg/kg/day) or placebo was thereafter administered for 7 and 21 days respectively. Spontaneous contractions and the response to Carbachol and Atropine of ileum and colon were studied after colitis induction and Curcuma administration. Curcuma extract reduced the spontaneous contractions in the ileum and colon; the maximal response to Carbachol was inhibited in a non-competitive and reversible manner. Similar results were obtained in ileum and colon from Curcuma fed mice. DSS administration decreased the motility, mainly in the colon and Curcuma almost restored both the spontaneous contractions and the response to Carbachol after 14 days assumption, compared to standard diet, but a prolonged assumption of Curcuma decreased the spontaneous and Carbachol-induced contractions. Curcuma extract has a direct and indirect myorelaxant effect on mouse ileum and colon, independent of the anti-inflammatory effect. The indirect effect is reversible and non-competitive with the cholinergic agent. These results suggest the use of curcuma extract as a spasmolytic agent.

  3. Using the mouse to model human disease: increasing validity and reproducibility

    Directory of Open Access Journals (Sweden)

    Monica J. Justice

    2016-02-01

    Full Text Available Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings.

  4. Rapid genetic algorithm optimization of a mouse computational model: benefits for anthropomorphization of neonatal mouse cardiomyocytes.

    Science.gov (United States)

    Bot, Corina T; Kherlopian, Armen R; Ortega, Francis A; Christini, David J; Krogh-Madsen, Trine

    2012-01-01

    While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs). As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC) to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real-time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine) and the desired species (e.g., human). For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA) approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  5. Preclinical Mouse Models of Neurofibromatosis

    Science.gov (United States)

    2005-11-01

    Recent studies indicate that brain tumors, including glioblastoma multiforme, contain a subpopulation of cancer cells that display stem cell ...point to multinucleated giant cells ; and arrows in E and F indicate re- active astrocytes. J: Survival curves of Mut1, Mut2, Mut3, and p53 null (p53...in myelinating oligodendro- cytes (Figure 8J, arrows). These data support the model that, in vivo, glioblastoma cells have the stem cell capacity to

  6. Digenic Inheritance in Cystinuria Mouse Model.

    Directory of Open Access Journals (Sweden)

    Meritxell Espino

    Full Text Available Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months and late stage (8-months of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/- present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/- and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients.

  7. Digenic Inheritance in Cystinuria Mouse Model

    Science.gov (United States)

    Espino, Meritxell; Font-Llitjós, Mariona; Vilches, Clara; Salido, Eduardo; Prat, Esther; López de Heredia, Miguel; Palacín, Manuel; Nunes, Virginia

    2015-01-01

    Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months) and late stage (8-months) of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/-) present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/-) and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients. PMID:26359869

  8. Atmosphere stabilization and element recycle in an experimental mouse-algal system

    Science.gov (United States)

    Smernoff, David T.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.

  9. Experimental Optic Neuritis Induced by a Demyelinating Strain of Mouse Hepatitis Virus▿

    Science.gov (United States)

    Shindler, Kenneth S.; Kenyon, Lawrence C.; Dutt, Mahasweta; Hingley, Susan T.; Sarma, Jayasri Das

    2008-01-01

    Optic neuritis (ON), an inflammatory demyelinating optic nerve disease, occurs in multiple sclerosis (MS). Pathological mechanisms and potential treatments for ON have been studied via experimental autoimmune MS models. However, evidence suggests that virus-induced inflammation is a likely etiology triggering MS and ON; experimental virus-induced ON models are therefore required. We demonstrate that MHV-A59, a mouse hepatitis virus (MHV) strain that causes brain and spinal cord inflammation and demyelination, induces ON by promoting mixed inflammatory cell infiltration. In contrast, MHV-2, a nondemyelinating MHV strain, does not induce ON. Results reveal a reproducible virus-induced ON model important for the evaluation of novel therapies. PMID:18579591

  10. Investigation of oxidative stress in blood, brain, kidney, and liver after oxime antidote HI-6 application in a mouse experimental model.

    Science.gov (United States)

    Pohanka, Miroslav; Sobotka, Jakub; Svobodova, Hana; Stetina, Rudolf

    2011-07-01

    Oxime reactivator HI-6 (asoxime, in some sources) is a potent antidote suitable for treatment of intoxication by nerve agents. Despite the fact that HI-6 is considered for practical application in emergency situations, the impact of HI-6 on patients' bodies has not been established yet. The present experiment was carried out in order to estimate whether HI-6 would be able to trigger or protect from oxidative stress in a BALB/c mice model. HI-6 was applied in doses ranging from 0.2 to 20% of LD₅₀. Ferric-reducing antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and glutathione reductase (GR) were assayed in the blood, liver, kidney, and brain of treated animals. It was found that HI-6 does not increase GR or TBARS. On the contrary, TBARS levels in the brain and liver were found to be significantly decreased in HI-6-treated animals. Pertinent antioxidant properties of HI-6 were excluded by the FRAP method. Endogenous antioxidants were unchanged, with the exception of the kidney. Low-molecular-weight antioxidants assayed by the FRAP method were significantly decreased in kidneys of animals treated with HI-6. However, GSH partially recovered the loss of the other low-molecular-weight antioxidants and was significantly increased in the kidney of HI-6-exposed mice. HI-6 potential to produce nephropathy is hypothesized. The achieved conclusions were quite surprising and showed a complex impact of HI-6 on the body.

  11. Recent mouse and rat methods for the study of experimental oral candidiasis

    Science.gov (United States)

    Costa, Anna CBP; Pereira, Cristiane A; Junqueira, Juliana C; Jorge, Antonio OC

    2013-01-01

    The Candida genus expresses virulence factors that, when combined with immunosuppression and other risk factors, can cause different manifestations of oral candidiasis. The treatment of mucosal infections caused by Candida and the elucidation of the disease process have proven challenging. Therefore, the study of experimentally induced oral candidiasis in rats and mice is useful to clarify the etiopathology of this condition, improve diagnosis, and search for new therapeutic options because the disease process in these animals is similar to that of human candidiasis lesions. Here, we describe and discuss new studies involving rat and mouse models of oral candidiasis with respect to methods for inducing experimental infection, methods for evaluating the development of experimental candidiasis, and new treatment strategies for oral candidiasis. PMID:23715031

  12. Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains.

    Science.gov (United States)

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-11-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials.

  13. Comparative Evaluation of Two Vaccine Candidates against Experimental Leishmaniasis Due to Leishmania major Infection in Four Inbred Mouse Strains▿

    Science.gov (United States)

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-01-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials. PMID:19726616

  14. Genetically-defined ovarian cancer mouse models.

    Science.gov (United States)

    Morin, Patrice J; Weeraratna, Ashani T

    2016-01-01

    Epithelial ovarian cancer (EOC), the deadliest of gynaecological cancers, is a disease that remains difficult to detect early and treat efficiently. A significant challenge for researchers in the field is that the aetiology of EOC and the molecular pathways important for its development are poorly understood. Moreover, precursor lesions have not been readily identifiable, making the mechanisms of EOC progression difficult to delineate. In order to address these issues, several genetically-defined ovarian mouse models have been generated in the past 15 years. However, because of the recent suggestion that most EOCs may not originate from the ovarian surface 'epithelium', but from other tissues of the female genital tract, some models may need to be re-evaluated within this new paradigm. In this review, we examine several genetically-defined EOC models and discuss how the new paradigm may explain some of the features of these models. A better understanding of the strengths and limitations of the current EOC mouse models will undoubtedly allow us to utilize these tools to better understand the biology of the disease and develop new approaches for EOC prevention, detection, and treatment. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. Mouse Model of Burn Wound and Infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2017-01-01

    The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr) a depres......The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr......) a depression of leukocytes in the peripheral blood was found of the burned mice. This depression was due to a reduction in the polymorphonuclear cells. The burned mice were not able to clear a Pseudomonas aeruginosa wound infection, since the infection spread to the blood as compared to mice only infected...... with P. aeruginosa subcutaneously. The burn model offers an opportunity to study infections under these conditions. The present model can also be used to examine new antibiotics and immune therapy. Our animal model resembling the clinical situation is useful in developing new treatments of burn wound...

  16. Practical use of advanced mouse models for lung cancer.

    Science.gov (United States)

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.

  17. Experimental Object-Oriented Modelling

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    and discuss techniques for handling and representing uncertainty when modelling in experimental system development. These techniques are centred on patterns and styles for handling uncertainty in object-oriented software architectures. Tools We present the Knight tool designed for collaborative modelling......This thesis examines object-oriented modelling in experimental system development. Object-oriented modelling aims at representing concepts and phenomena of a problem domain in terms of classes and objects. Experimental system development seeks active experimentation in a system development project...... through, e.g., technical prototyping and active user involvement. We introduce and examine “experimental object-oriented modelling” as the intersection of these practices. The contributions of this thesis are expected to be within three perspectives on models and modelling in experimental system...

  18. Development of Mouse Lung Deposition Models

    Science.gov (United States)

    2015-07-01

    deposition calculations in each strain of mouse: first by 3/1)TLC/FRC( , where FRC is the functional residual capacity or lung volume at rest and TLC is the...total lung capacity , to adjust airway dimensions to rest conditions, and second by 3/1T )2/V1( + , where TV is the tidal volume , to account for...geometry that was previously developed for humans, rats, and rhesus monkeys [6], [7]. Inputs to the model included lung geometry and volumes , and

  19. Mouse Genetic Models of Human Brain Disorders

    Directory of Open Access Journals (Sweden)

    Celeste eLeung

    2016-03-01

    Full Text Available Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioural phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases.

  20. Cytogenetics and experimental models.

    Science.gov (United States)

    Toretsky, J A; Helman, L J

    1997-07-01

    The use of cytogenetics has led to significant improvement in the diagnoses and classification of sarcomas. Many of the major sarcomas have been to have characteristic tumor-specific chromosomal translocations that are currently used in the diagnosis of these tumors. In the past year, a subset of Ewing's family of tumors and myxoid liposarcomas, which lack one of the characteristic translocations, were found to carry related translocations. New technologies such as a spectral karyotyping will likely increase out ability to identify additional tumor-specific translocations. The emergence of genetic alterations as prognostic factors, as illustrated by Ewing's family of tumors, osteosarcoma, and p53 expression in soft tissue sarcomas in general, is discussed. The review concludes with laboratory applications derived from either tumor cytogenetic or gene function abnormalities that are related to tumor-specific translocations. It is anticipated that advances in diagnosis, prognosis, and modeling will translate into future therapeutic advances.

  1. A Mouse Model of Hypospadias Induced by Estradiol Benzoate.

    Science.gov (United States)

    He, Hou-Guang; Han, Cong-Hui; Zhang, Wei

    2015-12-01

    We wished to establish a mouse model of hypospadias using injections of estradiol benzoate for investigating the molecular mechanisms of hypospadias. Fifty timed pregnant mice were randomly divided into five study groups: A, B, C, D, and E. These groups were injected subcutaneously with estradiol benzoate mixed with sesame oil at, respectively, the doses of 0, 0.1, 0.5, 2.5, or 12.5 mg kg(-1) days(-1) from gestation day (GD) 12 to GD 16. The pups' mortality was recorded on the day of delivery. Urethras and positions of testes were examined on postnatal day 28. The numbers of live pups were significantly lower in the study groups D and E compared to study group A (p Hypospadias was seen in groups C (3.3 %; 1/30), D (18.2 %; 4/22), and E (21.4 %; 3/14), while cryptorchidism was observed in groups C (10 %; 3/30), D (31.8 %; 7/22), and E (57.1 %; 8/14) on postnatal day 28. The experimental model of hypospadias induced by estradiol benzoate in the group D (2.5 mg kg(-1) days(-1)) was more reliable considering high mortality of the study group E. The dose of estradiol benzoate used in the group D is suitable for establishing mouse model of hypospadias.

  2. Transgenic Mouse Models of SV40-Induced Cancer.

    Science.gov (United States)

    Hudson, Amanda L; Colvin, Emily K

    2016-01-01

    The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Mouse models of colorectal cancer as preclinical models

    Science.gov (United States)

    Buczacki, Simon J.A.; Arends, Mark J.; Adams, David J.

    2015-01-01

    In this review, we discuss the application of mouse models to the identification and pre‐clinical validation of novel therapeutic targets in colorectal cancer, and to the search for early disease biomarkers. Large‐scale genomic, transcriptomic and epigenomic profiling of colorectal carcinomas has led to the identification of many candidate genes whose direct contribution to tumourigenesis is yet to be defined; we discuss the utility of cross‐species comparative ‘omics‐based approaches to this problem. We highlight recent progress in modelling late‐stage disease using mice, and discuss ways in which mouse models could better recapitulate the complexity of human cancers to tackle the problem of therapeutic resistance and recurrence after surgical resection. PMID:26115037

  4. [Establishment of a mutant Lumican transgenic mouse model].

    Science.gov (United States)

    Song, Yanzheng; Zhao, Yanyan; Zhang, Fengju; Yu, Yanqiu; Ma, Ling

    2014-01-01

    Pathological myopia (PM) is a hereditary ocular disease leading to severe loss of visual acuity and blindness. Lumican gene (LUM) is one of those candidate genes of PM. The purpose of this study was to establish a mutant Lumican transgenic mouse model, and to prepare for the further study of the pathogenesis of PM. Experimental study. Mutation of LUM gene was created by site-directed mutagenesis. Recombinant DNA techniques were used for the construction of the pRP. EX3d-EF1A>LUM/flag>IRES/hrGFP transgene. The gene fragments were microinjected into the zygote male pronuclei of BDF1 mice, and then the zygote cells alive were transplanted into the oviduct of acceptor pregnant female ICR mice. The F0 generation transgenic mice obtained were named C57-TgN (LUM)CCMU. Genome DNA from mice tail was detected by PCR and Western blotting. Six of 31 F0 generation mice were positive transgenic mice. The western blotting study showed that the flag-tag was expressed in the mouse tail tissue. Sixty-eight of 128 mice (F1 to F3 generation) were positive transgenic mice, the positive rate is 53.13%. The mutant Lumican (cDNA 596T>C) transgenic mouse model has been established. This model will provide fundamental conditions for studies of the pathogenesis of PM. Also it will be the basis of further studies about the effect of Lumican mutation on the development of PM and structure and function of the extra cellular matrix.

  5. Cockayne syndrome pathogenesis: lessons from mouse models.

    Science.gov (United States)

    Jaarsma, Dick; van der Pluijm, Ingrid; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J

    2013-01-01

    Cockayne syndrome (CS) is a rare multisystem disorder characterized by cachectic dwarfism, nervous system abnormalities and features of premature aging. CS symptoms are associated with mutations in 5 genes, CSA, CSB, XPB, XPD and XPG encoding for proteins involved in the transcription-coupled subpathway of nucleotide excision DNA repair (NER). Mutant mice have been generated for all CS-associated genes and provide tools to examine how the cellular defects translate into CS symptoms. Mice deficient for Csa or Csb genetically mimic CS in man, and develop mild CS symptoms including reduced fat tissue, photoreceptor cell loss, and mild, but characteristic, nervous system pathology. These mild CS models are converted into severe CS models with short life span, progressive nervous system degeneration and cachectic dwarfism after simultaneous complete inactivation of global genome NER. A spectrum of mild-to-severe CS-like symptoms occurs in Xpb, Xpd, and Xpg mice that genetically mimic patients with a disorder that combines CS symptoms with another NER syndrome, xeroderma pigmentosum. In conclusion, CS mouse models mice develop a range of CS phenotypes and open promising perspectives for testing interventional approaches. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Transgenic Mouse Model of Chronic Beryllium Disease

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  7. Modeling Phenotypes of Tuberous Scerosis in the Mouse

    National Research Council Canada - National Science Library

    Shipley, James M

    2007-01-01

    The overall goal of this project is to generate a mouse model of the smooth muscle-related facets of tuberous sclerosis, specifically in an attempt to model the lung phenotype seen in a subset of TS...

  8. Modeling Phenotypes of Tuberous Sclerosis in the Mouse

    National Research Council Canada - National Science Library

    Shipley, James M

    2006-01-01

    The overall goal of this project is to generate a mouse model of the smooth muscle-related facets of tuberous sclerosis specifically in an attempt to model the lung phenotype seen in a subset of TS...

  9. Mouse models for gastric cancer: Matching models to biological questions

    Science.gov (United States)

    Poh, Ashleigh R; O'Donoghue, Robert J J

    2016-01-01

    Abstract Gastric cancer is the third leading cause of cancer‐related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late‐stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new‐targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre‐clinical development of new therapeutics. PMID:26809278

  10. Mouse models for human intestinal microbiota research: a critical evaluation

    NARCIS (Netherlands)

    Hugenholtz, Floor; de Vos, Willem M.

    2018-01-01

    Since the early days of the intestinal microbiota research, mouse models have been used frequently to study the interaction of microbes with their host. However, to translate the knowledge gained from mouse studies to a human situation, the major spatio-temporal similarities and differences between

  11. Mig-6 Mouse Model of Endometrial Cancer.

    Science.gov (United States)

    Kim, Tae Hoon; Yoo, Jung-Yoon; Jeong, Jae-Wook

    2017-01-01

    Endometrial cancer is a frequently occurring gynecological disorder. Estrogen-dependent endometrioid carcinoma is the most common type of gynecological cancer. One of the major pathologic phenomena of endometrial cancer is the loss of estrogen (E2) and progesterone (P4) control over uterine epithelial cell proliferation. P4 antagonizes the growth-promoting properties of E2 in the uterus. P4 prevents the development of endometrial cancer associated with unopposed E2 by blocking E2 actions. Mitogen inducible gene 6 (Mig-6, Errfi1, RALT, or gene 33) is an immediate early response gene that can be induced by various mitogens and common chronic stress stimuli. Mig-6 has been identified as an important component of P4-mediated inhibition of E2 signaling in the uterus. Decreased expression of MIG-6 is observed in human endometrial carcinomas. Transgenic mice with Mig-6 ablation in the uterus develop endometrial hyperplasia and E2-dependent endometrial cancer. Thus, MIG-6 has a tumor suppressor function in endometrial tumorigenesis. The following discussion summarizes our current knowledge of Mig-6 mouse models and their role in understanding the molecular mechanisms of endometrial tumorigenesis and in the development of therapeutic approaches for endometrial cancer.

  12. Mouse models for studying the formation and propagation of prions.

    Science.gov (United States)

    Watts, Joel C; Prusiner, Stanley B

    2014-07-18

    Prions are self-propagating protein conformers that cause a variety of neurodegenerative disorders in humans and animals. Mouse models have played key roles in deciphering the biology of prions and in assessing candidate therapeutics. The development of transgenic mice that form prions spontaneously in the brain has advanced our understanding of sporadic and genetic prion diseases. Furthermore, the realization that many proteins can become prions has necessitated the development of mouse models for assessing the potential transmissibility of common neurodegenerative diseases. As the universe of prion diseases continues to expand, mouse models will remain crucial for interrogating these devastating illnesses. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Mouse Models for Down Syndrome-Associated Developmental Cognitive Disabilities

    Science.gov (United States)

    Liu, Chunhong; Belichenko, Pavel V.; Zhang, Li; Fu, Dawei; Kleschevnikov, Alexander M.; Baldini, Antonio; Antonarakis, Stylianos E.; Mobley, William C.; Yu, Y. Eugene

    2011-01-01

    Down syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. With the advance of chromosomal manipulation technologies, new mouse mutants have been generated to mimic DS at both the genotypic and phenotypic levels. Further mouse-based molecular genetic studies in the future may lead to the unraveling of the mechanisms underlying DS-associated developmental cognitive disabilities, which would lay the groundwork for developing effective treatments for this phenotypic manifestation. In this review, we will discuss recent progress and future challenges in modeling DS-associated developmental cognitive disability in mice with an emphasis on hippocampus-related phenotypes. PMID:21865664

  14. Characterization of a pneumococcal meningitis mouse model

    Directory of Open Access Journals (Sweden)

    Mook-Kanamori Barry

    2012-03-01

    Full Text Available Abstract Background S. pneumoniae is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation. Methods Adult mice (C57BL/6 were inoculated in the cisterna magna with increasing doses of S. pneumoniae serotype 3 colony forming units (CFU; n = 24, 104, 105, 106 and 107 CFU and survival studies were performed. Cerebrospinal fluid (CSF, brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 104 CFU S. pneumoniae serotype 3 and sacrificed at 6 (n = 6 and 30 hours (n = 6. Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex® in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies. Results Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 104, 56 hrs; 105, 38 hrs, 106, 28 hrs. 107, 24 hrs. Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 104 CFU of S. pneumoniae, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively. Conclusion We have developed and validated a murine model of pneumococcal meningitis.

  15. Modeling of Experimental Atherosclerotic Plaque Delamination.

    Science.gov (United States)

    Leng, Xiaochang; Chen, Xin; Deng, Xiaomin; Sutton, Michael A; Lessner, Susan M

    2015-12-01

    A cohesive zone model (CZM) approach is applied to simulate atherosclerotic plaque delamination experiments in mouse abdominal aorta specimens. A three-dimensional finite element model is developed for the experiments. The aortic wall is treated as a fiber-reinforced, highly deformable, incompressible material, and the Holzapfel-Gasser-Ogden (HGO) model is adopted for the aortic bulk material behavior. Cohesive elements are placed along the plaque-media interface along which delamination occurs. The 3D specimen geometry is created based on images from the experiments and certain simplifying approximations. A set of HGO and CZM parameter values is determined based on values suggested in the literature and through matching simulation predictions of the load vs. load-point displacement curve with experimental measurements for one loading-delamination-unloading cycle. Using this set of parameter values, simulation predictions for four other loading-delamination-unloading cycles are obtained, which show good agreement with experimental measurements. The findings of the current study demonstrate the applicability of the CZM approach in arterial tissue failure simulations.

  16. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  17. Experimental Modeling of Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten Haack

    2006-01-01

    An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...

  18. Chlamydia pneumoniae infections in mouse models: relevance for atherosclerosis research

    NARCIS (Netherlands)

    de Kruif, Martijn D.; van Gorp, Eric C. M.; Keller, Tymen T.; Ossewaarde, Jacobus M.; ten Cate, Hugo

    2005-01-01

    Mouse models have been frequently used in the study of Chlamydia pneumoniae (also known as Chlamydophila pneumoniae) infections. This gram-negative obligate intracellular bacterium causes respiratory infections, followed by dissemination of the bacterium to various organs throughout the body,

  19. A Mouse Kindling Model of Perimenstrual Catamenial Epilepsy

    OpenAIRE

    Reddy, Doodipala Samba; Gould, Jordan; Gangisetty, O.

    2012-01-01

    Catamenial epilepsy is caused by fluctuations in progesterone-derived GABAA receptor-modulating anticonvulsant neurosteroids, such as allopregnanolone, that play a significant role in the pathophysiology of epilepsy. However, there is no specific mouse model of catamenial epilepsy. In this study, we developed and characterized a mouse model of catamenial epilepsy by using the neurosteroid-withdrawal paradigm. It is hypothesized that seizure susceptibility decreases when neurosteroid levels ar...

  20. Neuroprotection in a novel mouse model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Katie Lidster

    Full Text Available Multiple sclerosis is an immune-mediated, demyelinating and neurodegenerative disease that currently lacks any neuroprotective treatments. Innovative neuroprotective trial designs are required to hasten the translational process of drug development. An ideal target to monitor the efficacy of strategies aimed at treating multiple sclerosis is the visual system, which is the most accessible part of the human central nervous system. A novel C57BL/6 mouse line was generated that expressed transgenes for a myelin oligodendrocyte glycoprotein-specific T cell receptor and a retinal ganglion cell restricted-Thy1 promoter-controlled cyan fluorescent protein. This model develops spontaneous or induced optic neuritis, in the absence of paralytic disease normally associated with most rodent autoimmune models of multiple sclerosis. Demyelination and neurodegeneration could be monitored longitudinally in the living animal using electrophysiology, visual sensitivity, confocal scanning laser ophthalmoscopy and optical coherence tomography all of which are relevant to human trials. This model offers many advantages, from a 3Rs, economic and scientific perspective, over classical experimental autoimmune encephalomyelitis models that are associated with substantial suffering of animals. Optic neuritis in this model led to inflammatory damage of axons in the optic nerve and subsequent loss of retinal ganglion cells in the retina. This was inhibited by the systemic administration of a sodium channel blocker (oxcarbazepine or intraocular treatment with siRNA targeting caspase-2. These novel approaches have relevance to the future treatment of neurodegeneration of MS, which has so far evaded treatment.

  1. Histopathological characteristics of a novel knock-in mouse prostate cancer model

    Directory of Open Access Journals (Sweden)

    G. Wu

    2006-06-01

    Full Text Available Prostate cancer is relatively unique to man. There is no naturally occurring prostate cancer in the mouse. Pre-clinical studies involve the establishment of a genetically engineered mouse prostate cancer model with features close to those of the human situation. A new knock-in mouse adenocarcinoma prostate (KIMAP model was established, which showed close-to-human kinetics of tumor development. In order to determine if the similar kinetics is associated with heterogeneous tumor architecture similar to the human situation, we utilized a new mouse histological grading system (Gleason analogous grading system similar to the Gleason human grading system and flow cytometry DNA analysis to measure and compare the adenocarcinoma of the KIMAP model with human prostate cancer. Sixty KIMAP prostate cancer samples from 60 mice were measured and compared with human prostate cancer. Flow cytometry DNA analysis was performed on malignant prostate tissues obtained from KIMAP models. Mice with prostate cancer from KIMAP models showed a 53.3% compound histological score rate, which was close to the human clinical average (50% and showed a significant correlation with age (P = 0.001. Flow cytometry analyses demonstrated that most KIMAP tumor tissues were diploid, analogous to the human situation. The similarities of the KIMAP mouse model with tumors of the human prostate suggest the use of this experimental model to complement studies of human prostate cancer.

  2. A Mouse Model of Chronic West Nile Virus Disease.

    Directory of Open Access Journals (Sweden)

    Jessica B Graham

    2016-11-01

    Full Text Available Infection with West Nile virus (WNV leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.

  3. Mouse mast cell protease-6 and MHC are involved in the development of experimental asthma.

    Science.gov (United States)

    Cui, Yue; Dahlin, Joakim S; Feinstein, Ricardo; Bankova, Lora G; Xing, Wei; Shin, Kichul; Gurish, Michael F; Hallgren, Jenny

    2014-11-15

    Allergic asthma is a complex disease with a strong genetic component where mast cells play a major role by the release of proinflammatory mediators. In the mouse, mast cell protease-6 (mMCP-6) closely resembles the human version of mast cell tryptase, β-tryptase. The gene that encodes mMCP-6, Tpsb2, resides close by the H-2 complex (MHC gene) on chromosome 17. Thus, when the original mMCP-6 knockout mice were backcrossed to the BALB/c strain, these mice were carrying the 129/Sv haplotype of MHC (mMCP-6(-/-)/H-2bc). Further backcrossing yielded mMCP-6(-/-) mice with the BALB/c MHC locus. BALB/c mice were compared with mMCP-6(-/-) and mMCP-6(-/-)/H-2bc mice in a mouse model of experimental asthma. Although OVA-sensitized and challenged wild type mice displayed a striking airway hyperresponsiveness (AHR), mMCP-6(-/-) mice had less AHR that was comparable with that of mMCP-6(-/-)/H-2bc mice, suggesting that mMCP-6 is required for a full-blown AHR. The mMCP-6(-/-)/H-2bc mice had strikingly reduced lung inflammation, IgE responses, and Th2 cell responses upon sensitization and challenge, whereas the mMCP-6(-/-) mice responded similarly to the wild type mice but with a minor decrease in bronchoalveolar lavage eosinophils. These findings suggest that inflammatory Th2 responses are highly dependent on the MHC-haplotype and that they can develop essentially independently of mMCP-6, whereas mMCP-6 plays a key role in the development of AHR. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Mouse mast cell protease -6 and MHC are involved in the development of experimental asthma1

    Science.gov (United States)

    Feinstein, Ricardo; Bankova, Lora G.; Xing, Wei; Shin, Kichul; Gurish, Michael F.; Hallgren, Jenny

    2014-01-01

    Allergic asthma is a complex disease with a strong genetic component where mast cells play a major role by the release of pro-inflammatory mediators. In the mouse, mast cell protease-6 (mMCP-6) closely resembles the human version of mast cell tryptase, β-tryptase. The gene that encodes mMCP-6, Tpsb2, resides close by the H-2 complex (MHC gene) on chromosome 17. Thus, when the original mMCP-6 knockout mice were backcrossed to the BALB/c strain, these mice were carrying the 129/Sv haplotype of MHC (mMCP-6−/−/H-2bc). Further backcrossing yielded mMCP-6−/− mice with the BALB/c MHC locus. BALB/c mice were compared with mMCP-6−/− and mMCP-6−/−/H-2bc mice in a mouse model of experimental asthma. While OVA-sensitized and challenged wild type mice displayed a striking airway hyperresponsiveness (AHR), mMCP-6−/− mice had less AHR that was comparable to that of mMCP-6−/−/H-2bc mice, suggesting that mMCP-6 is required for a full-blown AHR. The mMCP-6−/−/H-2bc mice had strikingly reduced lung inflammation, IgE-responses and Th2 cell-responses upon sensitization and challenge, whereas the mMCP-6−/− mice responded similarly to the wild type mice but with a minor decrease in bronchoalveolar lavage (BAL) eosinophils. These findings suggest that inflammatory Th2-responses are highly dependent on the MHC-haplotype and that they can develop essentially independently of mMCP-6 while mMCP-6 plays a key role in the development of AHR. PMID:25320274

  5. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    Energy Technology Data Exchange (ETDEWEB)

    Salek, Reza M.; Pears, Michael R. [University of Cambridge, Department of Biochemistry and Cambridge Systems Biology Centre (United Kingdom); Cooper, Jonathan D. [King' s College London, Pediatric Storage Disorders Laboratory, Department of Neuroscience, Institute of Psychiatry (United Kingdom); Mitchison, Hannah M. [Royal Free and University College Medical School, Department of Paediatrics and Child Health (United Kingdom); Pearce, David A. [Sanford School of Medicine of the University of South Dakota, Department of Pediatrics (United States); Mortishire-Smith, Russell J. [Johnson and Johnson PR and D (Belgium); Griffin, Julian L., E-mail: jlg40@mole.bio.cam.ac.uk [University of Cambridge, Department of Biochemistry and the Cambridge Systems Biology Centre (United Kingdom)

    2011-04-15

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in {gamma}-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  6. THE EXPERIMENTAL MODEL OF OSTEONECROSIS

    Directory of Open Access Journals (Sweden)

    G. I. Netylko

    2010-01-01

    Full Text Available The experimental investigation for the purpose of modeling of knee osteonecrosis were performed in 36 rats. The chronic renal insufficiency by means of left nephrectomy and electrocoagulation in 25% cortical substance of right kidney was induced before 6 months till experiment with subsequent introduction of 0,1% adrenalin solution and methylprednisolone in paraarticular structures. The results of experiment showed the polyetiologic feature of disease.

  7. Transgenic mouse models for cardiac dysfunction by a specific gene manipulation.

    Science.gov (United States)

    Babu, Gopal J; Periasamy, Muthu

    2005-01-01

    The sarcoplasmic reticulum Ca2+ ATPase (SERCA) plays a pivotal role in calcium cycling and the beat-to-beat function of the heart. Recent studies have shown that decreased expression and activity of SERCA are associated with end-stage heart failure in humans and in experimental animal models of heart failure. There has been considerable controversy over whether a decrease in SERCA level is a cause or effect of hypertrophy. To address directly whether alterations in SERCA levels modify calcium homeostasis and heart function, we have chosen to alter the SERCA protein expression genetically using transgenic and gene-targeted knockout mouse technology. This chapter describes the methodology for generation of mouse models that overexpress different SERCA isoforms and a SERCA2 knockout mouse model with decreased SERCA levels.

  8. The updated experimental proteinoid model

    Science.gov (United States)

    Fox, S. W.; Nakashima, T.; Przybylski, A.; Syren, R. M.

    1982-01-01

    The experimental proteinoid model includes new results indicating that polymers sufficiently rich in basic amino acid catalyze the synthesis of peptides from ATP and amino acids and of oligonucleotides from ATP. The need for simulation syntheses of amino acids yielding significant proportions of basic amino acids is now in focus. The modeled simultaneous protocellular synthesis of peptides and polynucleotides is part of a more comprehensive proposal for the origin of the coded genetic mechanism. The finding of membrane and action potentials in proteinoid microspheres, with or without added lecithin, is reported. The crucial nature of a nonrandom matrix for protocells is developed.

  9. Transgenic mouse models of metabolic bone disease.

    Science.gov (United States)

    McCauley, L K

    2001-07-01

    The approach of gene-targeted animal models is likely the most important experimental tool contributing to recent advances in skeletal biology. Modifying the expression of a gene in vivo, and the analysis of the consequences of the mutation, are central to the understanding of gene function during development and physiology, and therefore to our understanding of the gene's role in disease states. Researchers had been limited to animal models primarily involving pharmaceutical manipulations and spontaneous mutations. With the advent of gene targeting, however, animal models that impact our understanding of metabolic bone disease have evolved dramatically. Interestingly, some genes that were expected to yield dramatic phenotypes in bone, such as estrogen receptor-alpha or osteopontin, proved to have subtle phenotypes, whereas other genes, such as interleukin-5 or osteoprotegerin, were initially identified as having a role in bone metabolism via the analysis of their phenotype after gene ablation or overexpression. Particularly important has been the advance in knowledge of osteoblast and osteoclast independent and dependent roles via the selective targeting of genes and the consequent disruption of bone formation, bone resorption, or both. Our understanding of interactions of the skeletal system with other systems, ie, the vascular system and homeostatic controls of adipogenesis, has evolved via animal models such as the matrix gla protein, knock-out, and the targeted overexpression of Delta FosB. Challenging transgenic models such as the osteopontin-deficient mice with mediators of bone remodeling like parathyroid hormone and mechanical stimuli and extending phenotype characterization to mechanistic in vitro studies of primary bone cells is providing additional insight into the mechanisms involved in pathologic states and their potentials for therapeutic strategies. This review segregates characterization of transgenic models based on the category of gene altered

  10. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap

    OpenAIRE

    Morton, J. Jason; Bird, Gregory; Refaeli, Yosef; Jimeno, Antonio

    2016-01-01

    Cancer research has long been hampered by the limitations of the current model systems. Both cultured cells and mouse xenografts grow in an environment highly dissimilar to that of their originating tumor, frequently resulting in promising treatments that are ultimately clinically ineffective. The development of highly immunodeficient mouse strains into which human immune systems can be engrafted can help bridge this gap. Humanized mice (HM) allow researchers to examine xenograft growth in th...

  11. No audible wheezing: nuggets and conundrums from mouse asthma models.

    Science.gov (United States)

    Boyce, Joshua A; Austen, K Frank

    2005-06-20

    Mouse models of T helper type 2 (Th2) cell-biased pulmonary inflammation have elucidated mechanisms of sensitization, cell traffic, and induced airway hyperresponsiveness (AHR). Nonetheless, most mice lack intrinsic AHR, a central property of human asthma, and disparities persist regarding the contributions of eosinophils and mast cells and the sensitivity to induced AHR in the commonly used mouse strains. We suggest that these discordances, reflecting methodological and genetic differences, may be informative for understanding heterogeneity of human asthma.

  12. Mouse Model of Human Hereditary Pancreatitis

    Science.gov (United States)

    2016-09-01

    trypsin-dependent pathway in pancreatitis and to begin testing therapeutic and preventive approaches. Mutations in the digestive enzyme trypsinogen...expression of mutant trypsinogens at the protein level, we will perform chromatographic analysis of the total trypsinogen fraction isolated from mouse...pancreata (Subtask 4a). This subtask has been delayed until homozygous animals could be generated. Homozygous animals are now available and chromatographic

  13. Novel Transgenic Mouse Model of Polycystic Kidney Disease.

    Science.gov (United States)

    Kito, Yusuke; Saigo, Chiemi; Takeuchi, Tamotsu

    2017-09-01

    Transmembrane protein 207 (TMEM207) is characterized as an important molecule for invasiveness of gastric signet-ring cell carcinoma cells. To clarify the pathobiological effects of TMEM207, we generated 13 transgenic mouse strains, designated C57BL/6-transgenic (Tg) (ITF-TMEM207), where the mouse Tmem207 is ectopically expressed under the proximal promoter of the murine intestinal trefoil factor gene. A C57BL/6-Tg (ITF-TMEM207) mouse strain unexpectedly exhibited a high incidence of spontaneous kidney cysts with histopathological features resembling human polycystic kidney disease, which were found in approximately all mice within 1 year. TMEM207 immunoreactivity was found in noncystic kidney tubules and in renal cysts of the transgenic mice. The ITF-TMEM207 construct was inserted into Mitf at chromosome 6. Cystic kidney was not observed in other C57BL/6-Tg (ITF-TMEM207) transgenic mouse strains. Although several genetically manipulated animal models exist, this mouse strain harboring a genetic mutation in Mitf and overexpression of Tmem207 protein was not reported as a model of polycystic kidney disease until now. This study demonstrates that the C57BL/6-Tg (ITF-TMEM207) mouse may be a suitable model for understanding human polycystic kidney disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Genomic responses in mouse models poorly mimic human inflammatory diseases

    Science.gov (United States)

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  15. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin

    2017-01-01

    . The protocol also describes an example application for the protocol: the evocation of spontaneous and actively driven stepping, including optimization of these behaviors in decerebrate mice. The time taken to prepare the animal and perform a decerebration takes ∼2 h, and the mice are viable for up to 3-8 h......The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor...... behavior using intracellular recording approaches, which would not be possible using current anesthetized preparations. This protocol describes the steps required to achieve a low-blood-loss decerebration in the mouse and approaches for recording signals from spinal cord neurons with a focus on motoneurons...

  16. Non-Transgenic Mouse Models of Kidney Disease.

    Science.gov (United States)

    Rabe, Michael; Schaefer, Franz

    2016-01-01

    Animal models are essential tools to understand the mechanisms underlying the development and progression of renal disease and to study potential therapeutic approaches. Recently, interventional models suitable to induce acute and chronic kidney disease in the mouse have become a focus of interest due to the wide availability of genetically engineered mouse lines. These models differ by their damaging mechanism (cell toxicity, immune mechanisms, surgical renal mass reduction, ischemia, hypertension, ureter obstruction etc.), functional and histomorphological phenotype and disease evolution. The susceptibility to a damaging mechanism often depends on strain and gender. The C57BL/6 strain, the most commonly used genetic background of transgenic mice, appears to be relatively resistant against developing glomerulosclerosis, proteinuria and hypertension. This review serves to provide a comprehensive overview of interventional mouse models of acute and chronic kidney disease. © 2016 S. Karger AG, Basel.

  17. Mouse Models for Campylobacter jejuni Colonization and Infection.

    Science.gov (United States)

    Stahl, Martin; Graef, Franziska A; Vallance, Bruce A

    2017-01-01

    Relevant animal models for Campylobacter jejuni infection have been difficult to establish due to C. jejuni's inability to cause disease in many common animal research models. Fortunately, recent work has proven successful in developing several new and relevant mouse models of C. jejuni infection, including the SIGIRR-deficient mouse strain that develops acute enterocolitis in response to C. jejuni. Here we describe how to properly infect mice with C. jejuni, as well as a number of accompanying histological techniques to aid in studying C. jejuni colonization and infection in mice.

  18. Mouse Models as Predictors of Human Responses: Evolutionary Medicine.

    Science.gov (United States)

    Uhl, Elizabeth W; Warner, Natalie J

    Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.

  19. A preclinical mouse model of invasive lobular breast cancer metastasis

    NARCIS (Netherlands)

    Doornebal, Chris W.; Klarenbeek, Sjoerd; Braumuller, Tanya M.; Klijn, Christiaan N.; Ciampricotti, Metamia; Hau, Cheei-Sing; Hollmann, Markus W.; Jonkers, Jos; de Visser, Karin E.

    2013-01-01

    Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous

  20. Animal models of bronchopulmonary dysplasia. The term mouse models

    Science.gov (United States)

    Berger, Jessica

    2014-01-01

    The etiology of bronchopulmonary dysplasia (BPD) is multifactorial, with genetics, ante- and postnatal sepsis, invasive mechanical ventilation, and exposure to hyperoxia being well described as contributing factors. Much of what is known about the pathogenesis of BPD is derived from animal models being exposed to the environmental factors noted above. This review will briefly cover the various mouse models of BPD, focusing mainly on the hyperoxia-induced lung injury models. We will also include hypoxia, hypoxia/hyperoxia, inflammation-induced, and transgenic models in room air. Attention to the stage of lung development at the timing of the initiation of the environmental insult and the duration of lung injury is critical to attempt to mimic the human disease pulmonary phenotype, both in the short term and in outcomes extending into childhood, adolescence, and adulthood. The various indexes of alveolar and vascular development as well as pulmonary function including pulmonary hypertension will be highlighted. The advantages (and limitations) of using such approaches will be discussed in the context of understanding the pathogenesis of and targeting therapeutic interventions to ameliorate human BPD. PMID:25305249

  1. Experimental animal models of osteonecrosis.

    Science.gov (United States)

    Fan, Meng; Peng, Jiang; Qin, Ling; Lu, Shibi

    2011-08-01

    Osteonecrosis (ON) or avascular necrosis (AVN) is a common bone metabolic disorder, mostly affecting femoral head. Although many biological, biophysical, and surgical methods have been tested to preserve the femoral head with ON, none has been proven fully satisfactory. It lacks consensus on an optimal approach for treatment. This is due, at least in part, to the lack of ability to systematically compare treatment efficacy using an ideal animal model that mimics full-range osteonecrosis of femoral head (ONFH) in humans with high incidence of joint collapse accompanied by reparative reaction adjacent to the necrotic bone in a reproducible and accessible way. A number of preclinical animal ON models have been established for testing potential efficacy of various modalities developed for prevention and treatment of ON before introduction into clinics for potential applications. This paper describes a number of different methods for creating animal experimental ON models. Advantages and disadvantages of such models are also discussed as reference for future research in battle against this important medical condition.

  2. Mouse models for Down syndrome-associated developmental cognitive disabilities.

    Science.gov (United States)

    Liu, Chunhong; Belichenko, Pavel V; Zhang, Li; Fu, Dawei; Kleschevnikov, Alexander M; Baldini, Antonio; Antonarakis, Stylianos E; Mobley, William C; Yu, Y Eugene

    2011-01-01

    Down syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. With the advance of chromosomal manipulation technologies, new mouse mutants have been generated to mimic DS at both the genotypic and phenotypic levels. Further mouse-based molecular genetic studies in the future may lead to the unraveling of the mechanisms underlying DS-associated developmental cognitive disabilities, which would lay the groundwork for developing effective treatments for this phenotypic manifestation. In this review, we will discuss recent progress and future challenges in modeling DS-associated developmental cognitive disability in mice with an emphasis on hippocampus-related phenotypes. Copyright © 2011 S. Karger AG, Basel.

  3. Depletion of regulatory T cells in a mouse experimental glioma model through anti-CD25 treatment results in the infiltration of non-immunosuppressive myeloid cells in the brain.

    Science.gov (United States)

    Maes, Wim; Verschuere, Tina; Van Hoylandt, Anaïs; Boon, Louis; Van Gool, Stefaan

    2013-01-01

    The recruitment and activation of regulatory T cells (Tregs) in the micro-environment of malignant brain tumors has detrimental effects on antitumoral immune responses. Hence, local elimination of Tregs within the tumor micro-environment represents a highly valuable tool from both a fundamental and clinical perspective. In the syngeneic experimental GL261 murine glioma model, Tregs were prophylactically eliminated through treatment with PC61, an anti-CD25 mAb. This resulted in specific elimination of CD4+CD25hiFoxp3+ Treg within brain-infiltrating lymphocytes and complete protection against subsequent orthotopic GL261 tumor challenge. Interestingly, PC61-treated mice also showed a pronounced infiltration of CD11b+ myeloid cells in the brain. Phenotypically, these cells could not be considered as Gr-1+ myeloid-derived suppressor cells (MDSC) but were identified as F4/80+ macrophages and granulocytes.

  4. Depletion of Regulatory T Cells in a Mouse Experimental Glioma Model through Anti-CD25 Treatment Results in the Infiltration of Non-Immunosuppressive Myeloid Cells in the Brain

    Directory of Open Access Journals (Sweden)

    Wim Maes

    2013-01-01

    Full Text Available The recruitment and activation of regulatory T cells (Tregs in the micro-environment of malignant brain tumors has detrimental effects on antitumoral immune responses. Hence, local elimination of Tregs within the tumor micro-environment represents a highly valuable tool from both a fundamental and clinical perspective. In the syngeneic experimental GL261 murine glioma model, Tregs were prophylactically eliminated through treatment with PC61, an anti-CD25 mAb. This resulted in specific elimination of CD4+CD25hiFoxp3+ Treg within brain-infiltrating lymphocytes and complete protection against subsequent orthotopic GL261 tumor challenge. Interestingly, PC61-treated mice also showed a pronounced infiltration of CD11b+ myeloid cells in the brain. Phenotypically, these cells could not be considered as Gr-1+ myeloid-derived suppressor cells (MDSC but were identified as F4/80+ macrophages and granulocytes.

  5. [Genetically engineered mice: mouse models for cancer research].

    Science.gov (United States)

    Szymańska, Hanna

    2007-10-26

    Genetically engineered mice (GEM) have been extensively used to model human cancer. Mouse models mimic the morphology, histopathology, phenotype, and genotype of the corresponding cancer in humans. GEM mice are created by random integration of a transgene into the genome, which results in gene overexpression (transgenic mice); gene deletion (knock-out mice); or targeted insertion of the transgene in a selected locus (knock-in mice). Knock-out may be constitutive, i.e. total inactivation of the gene of interest in any cell, or conditional, i.e. tissue-specific inactivation of the gene. Gene knock-down (RNAi) and humanization of the mouse are more sophisticated models of GEM mice. RNA interference (RNAi) is a mechanism in which double-stranded RNAs inhibits the respective gene expression by inducing degradation of its mRNA. Humanization is based on replacing a mouse gene by its human counterpart. The alterations in genes in GEM have to be heritable. The opportunities provided by employing GEM cancer models are: analysis of the role of specific cancer genes and modifier genes, evaluation of conventional cancer therapies and new drugs, identification of cancer markers of tumor growth, analysis of the influence of the tumor's microenvironment on tumor formation, and the definition of the pre-clinical, discrete steps of tumorigenesis. The validation of mouse models of human cancer is the task of the MMHCC (Mouse Models of Human Cancer Consortium). The GEM models of breast, pancreatic, intestinal and colon, and prostate cancer are the most actively explored. In contrast, the models of brain tumors and ovary, cervical, and skin cancer are in the early stage of investigation.

  6. High-Throughput Automated Phenotyping of Two Genetic Mouse Models of Huntington's Disease.

    Science.gov (United States)

    Balci, Fuat; Oakeshott, Stephen; Shamy, Jul Lea; El-Khodor, Bassem F; Filippov, Igor; Mushlin, Richard; Port, Russell; Connor, David; Paintdakhi, Ahmad; Menalled, Liliana; Ramboz, Sylvie; Howland, David; Kwak, Seung; Brunner, Dani

    2013-07-11

    Phenotyping with traditional behavioral assays constitutes a major bottleneck in the primary screening, characterization, and validation of genetic mouse models of disease, leading to downstream delays in drug discovery efforts. We present a novel and comprehensive one-stop approach to phenotyping, the PhenoCube™. This system simultaneously captures the cognitive performance, motor activity, and circadian patterns of group-housed mice by use of home-cage operant conditioning modules (IntelliCage) and custom-built computer vision software. We evaluated two different mouse models of Huntington's Disease (HD), the R6/2 and the BACHD in the PhenoCube™ system. Our results demonstrated that this system can efficiently capture and track alterations in both cognitive performance and locomotor activity patterns associated with these disease models. This work extends our prior demonstration that PhenoCube™ can characterize circadian dysfunction in BACHD mice and shows that this system, with the experimental protocols used, is a sensitive and efficient tool for a first pass high-throughput screening of mouse disease models in general and mouse models of neurodegeneration in particular.

  7. Towards a mouse model of depression : a psychoneuroendocrine approach

    NARCIS (Netherlands)

    Dalm, Sergiu

    2012-01-01

    Chronic stress is considered a vulnerability factor for depression. A key symptom is anhedonia; a reduced response to positive stimuli. Drugs are effective for only 20-40% of the patients and new drugs are urgently needed. The objective of the research was to develop a mouse model of depression that

  8. Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model

    Directory of Open Access Journals (Sweden)

    Nagarjuna R. Cheemarla

    2015-09-01

    Full Text Available Human Metapneumovirus (hMPV is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection.

  9. Modeling fragile X syndrome in the Fmr1 knockout mouse

    Science.gov (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.

    2014-01-01

    Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362

  10. A fully humanized transgenic mouse model of Huntington disease.

    Science.gov (United States)

    Southwell, Amber L; Warby, Simon C; Carroll, Jeffrey B; Doty, Crystal N; Skotte, Niels H; Zhang, Weining; Villanueva, Erika B; Kovalik, Vlad; Xie, Yuanyun; Pouladi, Mahmoud A; Collins, Jennifer A; Yang, X William; Franciosi, Sonia; Hayden, Michael R

    2013-01-01

    Silencing the mutant huntingtin gene (muHTT) is a direct and simple therapeutic strategy for the treatment of Huntington disease (HD) in principle. However, targeting the HD mutation presents challenges because it is an expansion of a common genetic element (a CAG tract) that is found throughout the genome. Moreover, the HTT protein is important for neuronal health throughout life, and silencing strategies that also reduce the wild-type HTT allele may not be well tolerated during the long-term treatment of HD. Several HTT silencing strategies are in development that target genetic sites in HTT that are outside of the CAG expansion, including HD mutation-linked single-nucleotide polymorphisms and the HTT promoter. Preclinical testing of these genetic therapies has required the development of a new mouse model of HD that carries these human-specific genetic targets. To generate a fully humanized mouse model of HD, we have cross-bred BACHD and YAC18 on the Hdh(-/-) background. The resulting line, Hu97/18, is the first murine model of HD that fully genetically recapitulates human HD having two human HTT genes, no mouse Hdh genes and heterozygosity of the HD mutation. We find that Hu97/18 mice display many of the behavioral changes associated with HD including motor, psychiatric and cognitive deficits, as well as canonical neuropathological abnormalities. This mouse line will be useful for gaining additional insights into the disease mechanisms of HD as well as for testing genetic therapies targeting human HTT.

  11. [Establishment and evaluation of a novel mouse model of orthotopic colon cancer in the mesenteric triangle of the cecum].

    Science.gov (United States)

    He, Xiangfeng; Shi, Wen; Wen, Song; Sun, Yongqiang; Ling, Guojie; Shen, Kang; Peng, Chunlei; Chen, Baoan; Wang, Jianhong

    2015-06-01

    To explore the feasibility of preparation of a mouse model of orthotopic colon cancer by injecting tumor cell suspension into mesenteric triangle of the cecum. Twenty SPF 8-week old BALB/c mice (male:female = 1:1) were used in this study. The mouse caecum was exposed by laparostomy, and suspension of mouse colon adenocarcinoma CT26. WT cells was injected into the mesenteric triangle of cecum for preparation of a mouse model of orthotopic colon cancer. Mouse orthotopic colon cancer was developed by injection of tumor cell suspension into mesenteric triangle of the cecum showing a successful rate of 100%, without intestinal obstruction, and the liver, spleen, diaphragm and mesenteric lymph nodes metastasis rates were high in all the 20 experimental mice. The establishment of mouse models of orthotopic colon cancer by injection of tumor cell suspension into the mesenteric triangle is a simple, rapid, and easy to master procedure, causing less damage to the colon wall, safe and with less trauma to the mice. This method may provide an ideal mouse model of orthotopic colon cancer for the study of pathogenesis as well as liver metastasis mechanisms of colon cancer.

  12. Humanized chimeric mouse models of hepatitis B virus infection

    Directory of Open Access Journals (Sweden)

    Suwan Sun

    2017-06-01

    Full Text Available Hepatitis B virus (HBV infection is associated with an increased risk of hepatic cirrhosis, hepatocellular carcinoma, fulminant hepatitis and end-stage hepatic failure. Despite the availability of anti-HBV therapies, HBV infection remains a major global public health problem. Developing an ideal animal model of HBV infection to clarify the details of the HBV replication process, the viral life cycle, the resulting immunoresponse and the precise pathogenesis of HBV is difficult because HBV has an extremely narrow host range and almost exclusively infects humans. In this review, we summarize and evaluate animal models available for studying HBV infection, especially focusing on humanized chimeric mouse models, and we discuss future development trends regarding immunocompetent humanized mouse models that can delineate the natural history and immunopathophysiology of HBV infection.

  13. Optimization of experimental human leukemia models (review

    Directory of Open Access Journals (Sweden)

    D. D. Pankov

    2012-01-01

    Full Text Available Actual problem of assessing immunotherapy prospects including antigenpecific cell therapy using animal models was covered in this review.Describe the various groups of currently existing animal models and methods of their creating – from different immunodeficient mice to severalvariants of tumor cells engraftment in them. The review addresses the possibility of tumor stem cells studying using mouse models for the leukemia treatment with adoptive cell therapy including WT1. Also issues of human leukemia cells migration and proliferation in a mice withdifferent immunodeficiency degree are discussed. To assess the potential immunotherapy efficacy comparison of immunodeficient mouse model with clinical situation in oncology patients after chemotherapy is proposed.

  14. A STAT-1 Knockout Mouse Model for Machupo Virus Pathogenesis

    Science.gov (United States)

    2011-06-14

    Machupo virus (strain Carvallo) which had been passaged 3-4 times in suckling hamster brain and subsequently twice in Vero cell culture. For...values for clinical chemistry parameters across various species of animal models , as well as human infections, is needed. Total white blood cell ...available soon. A STAT-1 knockout mouse model for Machupo virus pathogenesis Virology Journal 2011, 8:300 doi:10.1186/1743-422X-8-300 Steven B Bradfute

  15. Uterine disorders and pregnancy complications: insights from mouse models

    OpenAIRE

    Lim, Hyunjung Jade; Wang, Haibin

    2010-01-01

    Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction be...

  16. Manipulation of DNA Repair Proficiency in Mouse Models of Colorectal Cancer

    Science.gov (United States)

    Boivin, Gregory P.

    2016-01-01

    Technical and biological innovations have enabled the development of more sophisticated and focused murine models that increasingly recapitulate the complex pathologies of human diseases, in particular cancer. Mouse models provide excellent in vivo systems for deciphering the intricacies of cancer biology within the context of precise experimental settings. They present biologically relevant, adaptable platforms that are amenable to continual improvement and refinement. We discuss how recent advances in our understanding of tumorigenesis and the underlying deficiencies of DNA repair mechanisms that drive it have been informed by using genetically engineered mice to create defined, well-characterized models of human colorectal cancer. In particular, we focus on how mechanisms of DNA repair can be manipulated precisely to create in vivo models whereby the underlying processes of tumorigenesis are accelerated or attenuated, dependent on the composite alleles carried by the mouse model. Such models have evolved to the stage where they now reflect the initiation and progression of sporadic cancers. The review is focused on mouse models of colorectal cancer and how insights from these models have been instrumental in shaping our understanding of the processes and potential therapies for this disease. PMID:27413734

  17. Humanized mouse models for HIV-1 infection of the CNS.

    Science.gov (United States)

    Honeycutt, Jenna B; Sheridan, Patricia A; Matsushima, Glenn K; Garcia, J Victor

    2015-06-01

    Since the onset of the HIV epidemic, there has been a shift from a deadly diagnosis to the management of a chronic disease. This shift is the result of the development of highly effective drugs that are able to suppress viral replication for years. The availability of these regimens has also shifted the neurocognitive pathology associated with infection from potentially devastating to a much milder phenotype. As the disease outcome has changed significantly with the availability of antiretroviral therapy, there is an opportunity to re-evaluate the currently available models to address the neurocognitive pathology seen in suppressed patients. In the following, we seek to summarize the current literature on humanized mouse models and their utility in understanding how HIV infection leads to changes in the central nervous system (CNS). Also, we identify some of the unanswered questions regarding HIV infection of the CNS as well as the opportunities and limitations of currently existing models to address those questions. Finally, our conclusions indicate that the earlier humanized models used to study HIV infection in the CNS provided an excellent foundation for the type of work currently being performed using novel humanized mouse models. We also indicate the potential of some humanized mouse models that have not been used as of this time for the analysis of HIV infection in the brain.

  18. Mouse-based genetic modeling and analysis of Down syndrome

    Science.gov (United States)

    Xing, Zhuo; Li, Yichen; Pao, Annie; Bennett, Abigail S.; Tycko, Benjamin; Mobley, William C.; Yu, Y. Eugene

    2016-01-01

    Introduction Down syndrome (DS), caused by human trisomy 21 (Ts21), can be considered as a prototypical model for understanding the effects of chromosomal aneuploidies in other diseases. Human chromosome 21 (Hsa21) is syntenically conserved with three regions in the mouse genome. Sources of data A review of recent advances in genetic modeling and analysis of DS. Using Cre/loxP-mediated chromosome engineering, a substantial number of new mouse models of DS have recently been generated, which facilitates better understanding of disease mechanisms in DS. Areas of agreement Based on evolutionary conservation, Ts21 can be modeled by engineered triplication of Hsa21 syntenic regions in mice. The validity of the models is supported by the exhibition of DS-related phenotypes. Areas of controversy Although substantial progress has been made, it remains a challenge to unravel the relative importance of specific candidate genes and molecular mechanisms underlying the various clinical phenotypes. Growing points Further understanding of mechanisms based on data from mouse models, in parallel with human studies, may lead to novel therapies for clinical manifestations of Ts21 and insights to the roles of aneuploidies in other developmental disorders and cancers. PMID:27789459

  19. Rate equation model of phototransduction into the membranous disks of mouse rod cells

    CERN Document Server

    Takamoto, Rei; Awazu, Akinori

    2015-01-01

    A theoretical model was developed to investigate the rod phototransduction process in the mouse. In particular, we explored the biochemical reactions of several chemical components that contribute to the signaling process into/around the membranous disks in the outer segments of the rod cells. We constructed a rate equation model incorporating the molecular crowding effects of rhodopsin according to experimental results, which may hinder the diffusion of molecules on the disk mem- brane. The present model could effectively reproduce and explain the mechanisms of the following phenomena observed in experiments. First, the activations and relaxation of the wild-type mouse rod cell progressed more slowly than those of mutant cells containing half the amount of rhodopsin on the disk membrane. Second, the strong photoactivated state of the cell was sustained for a longer period when the light stimuli were strong. Finally, the lifetime of photoactivation exhibited a logarithmic increase with increasing light streng...

  20. Magnetic Nanoparticle-Based Hyperthermia for Head & Neck Cancer in Mouse Models

    Science.gov (United States)

    Zhao, Qun; Wang, Luning; Cheng, Rui; Mao, Leidong; Arnold, Robert D.; Howerth, Elizabeth W.; Chen, Zhuo G.; Platt, Simon

    2012-01-01

    In this study, magnetic iron oxide nanoparticle induced hyperthermia is applied for treatment of head and neck cancer using a mouse xenograft model of human head and neck cancer (Tu212 cell line). A hyperthermia system for heating iron oxide nanoparticles was developed by using alternating magnetic fields. Both theoretical simulation and experimental studies were performed to verify the thermotherapy effect. Experimental results showed that the temperature of the tumor center has dramatically elevated from around the room temperature to about 40oC within the first 5-10 minutes. Pathological studies demonstrate epithelial tumor cell destruction associated with the hyperthermia treatment. PMID:22287991

  1. Chemically induced mouse models of intestinal inflammation.

    Science.gov (United States)

    Wirtz, Stefan; Neufert, Clemens; Weigmann, Benno; Neurath, Markus F

    2007-01-01

    Animal models of intestinal inflammation are indispensable for our understanding of the pathogenesis of Crohn disease and ulcerative colitis, the two major forms of inflammatory bowel disease in humans. Here, we provide protocols for establishing murine 2,4,6-trinitro benzene sulfonic acid (TNBS)-, oxazolone- and both acute and chronic dextran sodium sulfate (DSS) colitis, the most widely used chemically induced models of intestinal inflammation. In the former two models, colitis is induced by intrarectal administration of the covalently reactive reagents TNBS/oxazolone, which are believed to induce a T-cell-mediated response against hapten-modified autologous proteins/luminal antigens. In the DSS model, mice are subjected several days to drinking water supplemented with DSS, which seems to be directly toxic to colonic epithelial cells of the basal crypts. The procedures for the hapten models of colitis and acute DSS colitis can be accomplished in about 2 weeks but the protocol for chronic DSS colitis takes about 2 months.

  2. Mouse models of myeloproliferative neoplasms: JAK of all grades

    Directory of Open Access Journals (Sweden)

    Juan Li

    2011-05-01

    Full Text Available In 2005, several groups identified a single gain-of-function point mutation in the JAK2 kinase that was present in the majority of patients with myeloproliferative neoplasms (MPNs. Since this discovery, much effort has been dedicated to understanding the molecular consequences of the JAK2V617F mutation in the haematopoietic system. Three waves of mouse models have been produced recently (bone marrow transplantation, transgenic and targeted knock-in, which have facilitated the understanding of the molecular pathogenesis of JAK2V617F-positive MPNs, providing potential platforms for designing and validating novel therapies in humans. This Commentary briefly summarises the first two types of mouse models and then focuses on the more recently generated knock-in models.

  3. Mouse models of ciliopathies: the state of the art

    Directory of Open Access Journals (Sweden)

    Dominic P. Norris

    2012-05-01

    Full Text Available The ciliopathies are an apparently disparate group of human diseases that all result from defects in the formation and/or function of cilia. They include disorders such as Meckel-Grüber syndrome (MKS, Joubert syndrome (JBTS, Bardet-Biedl syndrome (BBS and Alström syndrome (ALS. Reflecting the manifold requirements for cilia in signalling, sensation and motility, different ciliopathies exhibit common elements. The mouse has been used widely as a model organism for the study of ciliopathies. Although many mutant alleles have proved lethal, continued investigations have led to the development of better models. Here, we review current mouse models of a core set of ciliopathies, their utility and future prospects.

  4. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Francis Richard W

    2010-04-01

    Full Text Available Abstract Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL. However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo.

  5. A transgenic mouse model for trilateral retinoblastoma

    NARCIS (Netherlands)

    O'Brien, J.M.; Marcus, D.M.; Bernards, R.A.; Carpenter, J.L.; Windle, J.J.; Mellon, P.; Albert, D.M.

    1990-01-01

    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically

  6. Therapy of experimental staphylococcal mastitis in the mouse with cloxacillin and rifampicin, alone and in combination.

    Science.gov (United States)

    Craven, N; Anderson, J C

    1981-11-01

    Cloxacillin effectively killed Staphylococcus aureus in vitro and in experimental acute mastitis in the mouse, but was ineffective in reducing bacterial counts in those with experimental chronic mastitis. Rifampicin was similarly bactericidal for staphylococci in vitro and in acute mastitis but it also significantly reduced numbers of viable bacteria in chronic mastitis. Exposure of multiplying staphylococci in vitro and in vivo to rifampicin alone led to the emergence of resistant bacteria, but this was prevented by the use of a combination of rifampicin with cloxacillin. This combination showed neither antagonism nor synergy in vitro, was more effective than either antibiotic alone in acute mastitis and killed S aureus in the chronic infection as effectively as rifampicin alone.

  7. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.

    Science.gov (United States)

    Bhhatarai, Barun; Gramatica, Paola

    2011-05-01

    Quantitative structure-activity relationship (QSAR) analyses were performed using the LD(50) oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD(50) oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC(50) rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.

  8. Decerebrate mouse model for studies of the spinal cord circuits.

    Science.gov (United States)

    Meehan, Claire F; Mayr, Kyle A; Manuel, Marin; Nakanishi, Stan T; Whelan, Patrick J

    2017-04-01

    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor behavior using intracellular recording approaches, which would not be possible using current anesthetized preparations. This protocol describes the steps required to achieve a low-blood-loss decerebration in the mouse and approaches for recording signals from spinal cord neurons with a focus on motoneurons. The protocol also describes an example application for the protocol: the evocation of spontaneous and actively driven stepping, including optimization of these behaviors in decerebrate mice. The time taken to prepare the animal and perform a decerebration takes ∼2 h, and the mice are viable for up to 3-8 h, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery.

  9. A Progressive Translational Mouse Model of Human VCP Disease: The VCP R155H/+ Mouse

    Science.gov (United States)

    Nalbandian, Angèle; Llewellyn, Katrina J.; Badadani, Mallikarjun; Yin, Hong Z.; Nguyen, Christopher; Katheria, Veeral; Watts, Giles; Mukherjee, Jogeshwar; Vesa, Jouni; Caiozzo, Vincent; Mozaffar, Tahseen; Weiss, John H.; Kimonis, Virginia E.

    2012-01-01

    Introduction Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion Body Myopathy (hIBM) associated with Paget disease of bone (PDB), and frontotemporal dementia (FTD). More recently they have been linked to 2% of familial ALS cases. A knock-in mouse model offers the opportunity to study VCP-associated pathogenesis. Methods The VCPR155H/+ knock-in mouse model was assessed for muscle strength, immunohistochemical, Western, apoptosis, autophagy and MicroPET/CT imaging analyses. Results VCPR155H/+ mice developed significant progressive muscle weakness, and the quadriceps and brain developed progressive cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-II staining. MicroCT analyses revealed Paget-like lesions at the ends of long bones. Spinal cord demonstrated neurodegenerative changes, ubiquitin, and TDP-43 pathology of motor neurons. Discussion VCPR155H/+ knock-in mice represent an excellent pre-clinical model for understanding VCP-associated disease mechanisms and future treatments. PMID:23169451

  10. An Orthotopic Mouse Model of Spontaneous Breast Cancer Metastasis.

    Science.gov (United States)

    Paschall, Amy V; Liu, Kebin

    2016-08-14

    Metastasis is the primary cause of mortality of breast cancer patients. The mechanism underlying cancer cell metastasis, including breast cancer metastasis, is largely unknown and is a focus in cancer research. Various breast cancer spontaneous metastasis mouse models have been established. Here, we report a simplified procedure to establish orthotopic transplanted breast cancer primary tumor and resultant spontaneous metastasis that mimic human breast cancer metastasis. Combined with the bioluminescence live tumor imaging, this mouse model allows tumor growth and progression kinetics to be monitored and quantified. In this model, a low dose (1 x 10(4) cells) of 4T1-Luc breast cancer cells was injected into BALB/c mouse mammary fat pad using a tuberculin syringe. Mice were injected with luciferin and imaged at various time points using a bioluminescent imaging system. When the primary tumors grew to the size limit as in the IACUC-approved protocol (approximately 30 days), mice were anesthetized under constant flow of 2% isoflurane and oxygen. The tumor area was sterilized with 70% ethanol. The mouse skin around the tumor was excised to expose the tumor which was removed with a pair of sterile scissors. Removal of the primary tumor extends the survival of the 4T-1 tumor-bearing mice for one month. The mice were then repeatedly imaged for metastatic tumor spreading to distant organs. Therapeutic agents can be administered to suppress tumor metastasis at this point. This model is simple and yet sensitive in quantifying breast cancer cell growth in the primary site and progression kinetics to distant organs, and thus is an excellent model for studying breast cancer growth and progression, and for testing anti-metastasis therapeutic and immunotherapeutic agents in vivo.

  11. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap.

    Science.gov (United States)

    Morton, J Jason; Bird, Gregory; Refaeli, Yosef; Jimeno, Antonio

    2016-11-01

    Cancer research has long been hampered by the limitations of the current model systems. Both cultured cells and mouse xenografts grow in an environment highly dissimilar to that of their originating tumor, frequently resulting in promising treatments that are ultimately clinically ineffective. The development of highly immunodeficient mouse strains into which human immune systems can be engrafted can help bridge this gap. Humanized mice (HM) allow researchers to examine xenograft growth in the context of a human immune system and resultant tumor microenvironment, and recent studies have highlighted the increased similarities in attendant tumor structure, metastasis, and signaling to those features in cancer patients. This setting also facilitates the examination of investigational cancer therapies, including new immunotherapies. This review discusses recent advancements in the generation and application of HM models, their promise in cancer research, and their potential in generating clinically relevant treatments. This review also focuses on current efforts to improve HM models by engineering mouse strains expressing human cytokines or HLA proteins and implanting human bone, liver, and thymus tissue to facilitate immune cell maturation and trafficking. Finally, we discuss how these improvements may help direct future HM model cancer studies. Cancer Res; 76(21); 6153-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. A consensus definition of cataplexy in mouse models of narcolepsy.

    Science.gov (United States)

    Scammell, Thomas E; Willie, Jon T; Guilleminault, Christian; Siegel, Jerome M

    2009-01-01

    People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.

  13. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  14. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model.

    Science.gov (United States)

    Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang

    2015-02-01

    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

  15. A transgenic mouse model for trilateral retinoblastoma.

    Science.gov (United States)

    O'Brien, J M; Marcus, D M; Bernards, R; Carpenter, J L; Windle, J J; Mellon, P; Albert, D M

    1990-08-01

    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically expressed within retinal cells in this model. All animals that carry this genetic alteration develop multifocal retinal tumors. Midbrain tumors are observed in 15% of ocular tumor-bearing animals, and these arise ventral to the cerebral aqueduct at the level of the pineal gland. Both ocular and central nervous system neoplasms are heritable in heterozygous offspring through 10 sequential generations of breeding. Retinal tumors display the gross appearance, invasive properties, light and electron microscopic features, and immunohistochemical staining characteristics of human retinoblastoma. The light and electron microscopic characteristics as well as immunocytochemical features of undifferentiated midline central nervous system neoplasms further correlate with human trilateral retinoblastoma. We postulate an alternative mechanism of retinoblastoma tumorigenesis that involves functional inactivation of retinoblastoma protein locally in the face of an intact retinoblastoma gene locus.

  16. Establishing the colitis-associated cancer progression mouse models.

    Science.gov (United States)

    Zheng, Haiming; Lu, Zhanjun; Wang, Ruhua; Chen, Niwei; Zheng, Ping

    2016-12-01

    Inflammatory bowel disease (IBD) has been reported as an important inducer of colorectal cancer (CRC). The most malignant IBD-associated CRC type has been highlighted as colitis-associated cancer (CAC). However, lack of CAC cases and difficulties of the long follow-up research have challenged researchers in molecular mechanism probing. Here, we established pre-CAC mouse models (dextran sulfate sodium [DSS] group and azoxymethane [AOM] group) and CAC mouse model (DSS/AOM group) to mimic human CAC development through singly or combinational treatment with DSS and AOM followed by disease activity index analysis. We found that these CAC mice showed much more severe disease phenotype, including serious diarrhea, body weight loss, rectal prolapse and bleeding, bloody stool, tumor burden, and bad survival. By detecting expression patterns of several therapeutic targets-Apc, p53, Kras, and TNF-α-in these mouse models through western blot, histology analysis, qRT-PCR, and ELISA methods, we found that the oncogene Kras expression remained unchanged, while the tumor suppressors-Apc and p53 expression were both significantly downregulated with malignancy progression from pre-CAC to CAC, and TNF-α level was elevated the most in CAC mice blood which is of potential clinical use. These data indicated the successful establishment of CAC development mouse models, which mimics human CAC well both in disease phenotype and molecular level, and highlighted the promoting role of inflammation in CAC progression. This useful tool will facilitate the further study in CAC molecular mechanism. © The Author(s) 2016.

  17. Spontaneous rescue from cystic fibrosis in a mouse model

    NARCIS (Netherlands)

    N. Charizopoulou (Nikoletta); M. Wilke (Martina); M. Dorsch (Martina); A.G. Bot (Alice); H. Jorna (Huub); S. Jansen (Silke); F. Stanke (Frauke); H.J. Hedrich; H.R. de Jonge (Hugo); B. Tümmler (Burkhard)

    2006-01-01

    textabstractBackground: From the original CftrTgH(neoim)Hgu mutant mouse model with a divergent genetic background (I29P2, C57BL/6, MFI) we have generated two inbred CftrTgH(neoim)Hgu mutant strains named CF/1 -CftrTgH(neoim)Hgu and CF/3-CftrTgH(neoim)Hgu, which are fertile and show normal growth

  18. Genetically engineered mucin mouse models for inflammation and cancer

    Science.gov (United States)

    Joshi, Suhasini; Kumar, Sushil; Bafna, Sangeeta; Rachagani, Satyanarayana; Wagner, Kay-Uwe; Jain, Maneesh

    2015-01-01

    Mucins are heavily O-glycosylated proteins primarily produced by glandular and ductal epithelial cells, either in membrane-tethered or secretory forms, for providing lubrication and protection from various exogenous and endogenous insults. However, recent studies have linked their aberrant overexpression with infection, inflammation, and cancer that underscores their importance in tissue homeostasis. In this review, we present current status of the existing mouse models that have been developed to gain insights into the functional role(s) of mucins under physiological and pathological conditions. Knockout mouse models for membrane-associated (Muc1 and Muc16) and secretory mucins (Muc2) have helped us to elucidate the role of mucins in providing effective and protective barrier functions against pathological threats, participation in disease progression, and improved our understanding of mucin interaction with biotic and abiotic environmental components. Emphasis is also given to available transgenic mouse models (MUC1 and MUC7), which has been exploited to understand the context-dependent regulation and therapeutic potential of human mucins during inflammation and cancer. PMID:25634251

  19. Mouse models of DNA mismatch repair in cancer research.

    Science.gov (United States)

    Lee, Kyeryoung; Tosti, Elena; Edelmann, Winfried

    2016-02-01

    Germline mutations in DNA mismatch repair (MMR) genes are the cause of hereditary non-polyposis colorectal cancer/Lynch syndrome (HNPCC/LS) one of the most common cancer predisposition syndromes, and defects in MMR are also prevalent in sporadic colorectal cancers. In the past, the generation and analysis of mouse lines with knockout mutations in all of the known MMR genes has provided insight into how loss of individual MMR genes affects genome stability and contributes to cancer susceptibility. These studies also revealed essential functions for some of the MMR genes in B cell maturation and fertility. In this review, we will provide a brief overview of the cancer predisposition phenotypes of recently developed mouse models with targeted mutations in MutS and MutL homologs (Msh and Mlh, respectively) and their utility as preclinical models. The focus will be on mouse lines with conditional MMR mutations that have allowed more accurate modeling of human cancer syndromes in mice and that together with new technologies in gene targeting, hold great promise for the analysis of MMR-deficient intestinal tumors and other cancers which will drive the development of preventive and therapeutic treatment strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A genomic analysis of mouse models of breast cancer reveals molecular features of mouse models and relationships to human breast cancer.

    Science.gov (United States)

    Hollern, Daniel P; Andrechek, Eran R

    2014-06-05

    Genomic variability limits the efficacy of breast cancer therapy. To simplify the study of the molecular complexity of breast cancer, researchers have used mouse mammary tumor models. However, the degree to which mouse models model human breast cancer and are reflective of the human heterogeneity has yet to be demonstrated with gene expression studies on a large scale. To this end, we have built a database consisting of 1,172 mouse mammary tumor samples from 26 different major oncogenic mouse mammary tumor models. In this dataset we identified heterogeneity within mouse models and noted a surprising amount of interrelatedness between models, despite differences in the tumor initiating oncogene. Making comparisons between models, we identified differentially expressed genes with alteration correlating with initiating events in each model. Using annotation tools, we identified transcription factors with a high likelihood of activity within these models. Gene signatures predicted activation of major cell signaling pathways in each model, predictions that correlated with previous genetic studies. Finally, we noted relationships between mouse models and human breast cancer at both the level of gene expression and predicted signal pathway activity. Importantly, we identified individual mouse models that recapitulate human breast cancer heterogeneity at the level of gene expression. This work underscores the importance of fully characterizing mouse tumor biology at molecular, histological and genomic levels before a valid comparison to human breast cancer may be drawn and provides an important bioinformatic resource.

  1. Hypersociability in the Angelman syndrome mouse model.

    Science.gov (United States)

    Stoppel, David C; Anderson, Matthew P

    2017-07-01

    Deletions and reciprocal triplications of the human chromosomal 15q11-13 region cause two distinct neurodevelopmental disorders. Maternally-derived deletions or inactivating mutations of UBE3A, a 15q11-13 gene expressed exclusively from the maternal allele in neurons, cause Angelman syndrome, characterized by intellectual disability, motor deficits, seizures, and a characteristic increased social smiling, laughing, and eye contact. Conversely, maternally-derived triplications of 15q11-13 cause a behavioral disorder on the autism spectrum with clinical features that include decreased sociability that we recently reconstituted in mice with Ube3a alone. Based on the unique sociability features reported in Angelman syndrome and the repressed sociability observed when Ube3a gene dosage is increased, we hypothesized that mice with neuronal UBE3A loss that models Angelman syndrome would display evidence of hypersocial behavior. We report that mice with maternally-inherited Ube3a gene deletion (Ube3a mKO ) have a prolonged preference for, and interaction with, social stimuli in the three chamber social approach task. By contrast, interactions with a novel object are reduced. Further, ultrasonic vocalizations and physical contacts are increased in male and female Ube3a mKO mice paired with an unfamiliar genotype-matched female. Single housing wild type mice increased these same social behavior parameters to levels observed in Ube3a mKO mice where this effect was partially occluded. These results indicate sociability is repressed by social experience and the endogenous levels of UBE3A protein and suggest some social behavioral features observed in Angelman syndrome may reflect an increased social motivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mouse model of proximal tubule endocytic dysfunction.

    Science.gov (United States)

    Weyer, Kathrin; Storm, Tina; Shan, Jingdong; Vainio, Seppo; Kozyraki, Renata; Verroust, Pierre J; Christensen, Erik I; Nielsen, Rikke

    2011-11-01

    Several studies have indicated the central role of the megalin/cubilin multiligand endocytic receptor complex in protein reabsorption in the kidney proximal tubule. However, the poor viability of the existing megalin-deficient mice precludes further studies and comparison of homogeneous groups of mice. Megalin- and/or cubilin-deficient mice were generated using a conditional Cre-loxP system, where the Cre gene is driven by the Wnt4 promoter. Kidney tissues from the mice were analysed for megalin and cubilin expression by quantitative reverse transcription-polymerase chain reaction, western blotting and immunohistochemistry. Renal albumin uptake was visualized by immunohistochemistry. Twenty-four-hour urine samples were collected in metabolic cages and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Urinary albumin/creatinine ratios were measured by ELISA and the alkaline picrate method. The Meg(lox/lox);Cre(+), Cubn(lox/lox);Cre(+) and Meg(lox/lox), Cubn(lox/lox);Cre(+) mice were all viable, fertile and developed normal kidneys. Megalin and/or cubilin expression, assessed by immunohistology and western blotting, was reduced by >89%. Consistent with this observation, the mice excreted megalin and cubilin ligands such as transferrin and albumin in addition to low-molecular weight proteins. We further show that megalin/cubilin double-deficient mice excrete albumin with an average of 1.45 ± 0.54 mg/day, suggesting a very low albumin concentration in the glomerular ultrafiltrate. We report here the efficient genetic ablation of megalin, cubilin or both, using a Cre transgene driven by the Wnt4 promoter. The viable megalin/cubilin double-deficient mice now allow for detailed large-scale group analysis, and we anticipate that the mice will be of great value as an animal model for proximal tubulopathies with disrupted endocytosis.

  3. Glycine receptor mouse mutants: model systems for human hyperekplexia.

    Science.gov (United States)

    Schaefer, Natascha; Langlhofer, Georg; Kluck, Christoph J; Villmann, Carmen

    2013-11-01

    Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations. © 2013 The British Pharmacological Society.

  4. Differential effects of B7-1 blockade in the rat experimental autoimmune encephalomyelitis model

    DEFF Research Database (Denmark)

    Gallon, L; Chandraker, A; Issazadeh-Navikas, Shohreh

    1997-01-01

    Blocking the CD28-B7 T cell costimulatory activation pathway protects animals from developing experimental autoimmune encephalomyelitis (EAE). In the mouse EAE model, selective blockade of B7-1 by specific mAbs has been shown to protect animals from EAE. In the Lewis rat model, we have shown that...

  5. Enhanced operant extinction and prefrontal excitability in a mouse model of Angelman syndrome.

    Science.gov (United States)

    Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin; Rougie, Marie; Ferrer, Alejandra I; Nikolova, Viktoriya D; Riddick, Natallia V; Moy, Sheryl S; Philpot, Benjamin D

    2018-02-05

    Angelman syndrome (AS), a neurodevelopmental disorder associated with intellectual disability, is caused by loss of maternal allele expression of UBE3A in neurons. Mouse models of AS faithfully recapitulate disease phenotypes across multiple domains, including behavior. Yet in AS, there has been only limited study of behaviors encoded by the prefrontal cortex, a region broadly involved in executive function and cognition. Because cognitive impairment is a core feature of AS, it is critical to develop behavioral readouts of prefrontal circuit function in AS mouse models. One such readout is behavioral extinction, which has been well-described mechanistically and relies upon prefrontal circuits in rodents. Here we report exaggerated operant extinction in male AS model mice, concomitant with enhanced excitability in medial prefrontal neurons from male and female AS model mice. Abnormal behavior was specific to operant extinction, as two other prefrontally-dependent tasks (cued fear extinction and visuospatial discrimination) were largely normal in AS model mice. Inducible deletion of Ube3a during adulthood was not sufficient to drive abnormal extinction, supporting the hypothesis that there is an early critical period for development of cognitive phenotypes in AS. This work represents the first formal experimental analysis of prefrontal circuit function in AS, and identifies operant extinction as a useful experimental paradigm for modeling cognitive aspects of AS in mice. SIGNIFICANCE STATEMENT Prefrontal cortex encodes "high-level" cognitive processes. Thus, understanding prefrontal function is critical in neurodevelopmental disorders where cognitive impairment is highly penetrant. Angelman syndrome is a neurodevelopmental disorder associated with speech and motor impairments, an outwardly happy demeanor, and intellectual disability. We describe a behavioral phenotype in a mouse model of Angelman syndrome and related abnormalities in prefrontal cortex function. We

  6. Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes.

    Directory of Open Access Journals (Sweden)

    Qiaoli Li

    Full Text Available Pseudoxanthoma elasticum (PXE, a heritable ectopic mineralization disorder, is caused by mutations in the ABCC6 gene. Null mice (Abcc6(-/- recapitulate the genetic, histopathologic and ultrastructural features of PXE, and they demonstrate early and progressive mineralization of vibrissae dermal sheath, which serves as a biomarker of the overall mineralization process. Recently, as part of a mouse aging study at The Jackson Laboratory, 31 inbred mouse strains were necropsied, and two of them, KK/HlJ and 129S1/SvImJ, were noted to have vibrissae dermal mineralization similar to Abcc6(-/- mice. These two strains were shown to harbor a single nucleotide polymorphism (rs32756904 in the Abcc6 gene, which resulted in out-of-frame splicing and marked reduction in ABCC6 protein expression in the liver of these mice. The same polymorphism is present in two additional mouse strains, DBA/2J and C3H/HeJ, with similar reduction in Abcc6 protein levels, yet these mice did not demonstrate tissue mineralization when kept on standard rodent diet. However, all four mouse strains, when placed on experimental diet enriched in phosphate and low in magnesium, developed extensive ectopic mineralization. These results indicate that the genetic background of mice and the mineral composition of their diet can profoundly modulate the ectopic mineralization process predicated on mutations in the Abcc6 gene. These mice provide novel model systems to study the pathomechanisms and the reasons for strain background on phenotypic variability of PXE.

  7. The EL mouse: a natural model of autism and epilepsy.

    Science.gov (United States)

    Meidenbauer, Joshua J; Mantis, John G; Seyfried, Thomas N

    2011-02-01

    Autism is a multifactorial disorder that involves impairments in social interactions and communication, as well as restricted and repetitive behaviors. About 30% of individuals with autism develop epilepsy by adulthood. The EL mouse has long been studied as a natural model of multifactorial idiopathic generalized epilepsy with complex partial seizures. Because epilepsy is a comorbid trait of autism, we evaluated the EL mouse for behaviors associated with autism. We compared the behavior of EL mice to age-matched control DDY mice, a genetically related nonepileptic strain. The mice were compared in the open field and in the light-dark compartment tests to measure activity, exploratory behavior, and restricted and repetitive behaviors. The social transmission of food preference test was employed to evaluate social communication. Home-cage behavior was also evaluated in EL and DDY mice as a measure of repetitive activity. We found that EL mice displayed several behavioral abnormalities characteristic of autism. Impairments in social interaction and restricted patterns of interest were evident in EL mice. Activity, exploratory behavior, and restricted behavior were significantly greater in EL mice than in DDY mice. EL mice exhibited impairment in the social transmission of food preference assay. In addition, a stereotypic myoclonic jumping behavior was observed in EL mice, but was not seen in DDY mice. It is of interest to note that seizure activity within 24 h of testing exacerbated the autistic behavioral abnormalities found in EL mice. These findings suggest that the EL mouse expresses behavioral abnormalities similar to those seen in persons with autism. We propose that the EL mouse can be utilized as a natural model of autism and epilepsy. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  8. Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges

    Science.gov (United States)

    Day, Chi-Ping; Merlino, Glenn; Van Dyke, Terry

    2015-01-01

    Significant advances have been made in developing novel therapeutics for cancer treatment, and targeted therapies have revolutionized the treatment of some cancers. Despite the promise, only about five percent of new cancer drugs are approved, and most fail due to lack of efficacy. The indication is that current preclinical methods are limited in predicting successful outcomes. Such failure exacts enormous cost, both financial and in the quality of human life. This primer explores the current status, promise and challenges of preclinical evaluation in advanced mouse cancer models and briefly addresses emerging models for early-stage preclinical development. PMID:26406370

  9. Transgenic Mouse Models of Alzheimer Disease: Developing a Better Model as a Tool for Therapeutic Interventions

    Science.gov (United States)

    Kitazawa, Masashi; Medeiros, Rodrigo; LaFerla, Frank M.

    2015-01-01

    Alzheimer disease (AD) is the leading cause of dementia among elderly. Currently, no effective treatment is available for AD. Analysis of transgenic mouse models of AD has facilitated our understanding of disease mechanisms and provided valuable tools for evaluating potential therapeutic strategies. In this review, we will discuss the strengths and weaknesses of current mouse models of AD and the contribution towards understanding the pathological mechanisms and developing effective therapies. PMID:22288400

  10. Vertical transmission of bovine spongiform encephalopathy prions evaluated in a transgenic mouse model.

    Science.gov (United States)

    Castilla, J; Brun, A; Díaz-San Segundo, F; Salguero, F J; Gutiérrez-Adán, A; Pintado, B; Ramírez, M A; del Riego, L; Torres, J M

    2005-07-01

    In this work we show evidence of mother-to-offspring transmission in a transgenic mouse line expressing bovine PrP (boTg) experimentally infected by intracerebral administration of bovine spongiform encephalopathy (BSE) prions. PrP(res) was detected in brains of newborns from infected mothers only when mating was allowed near to the clinical stage of disease, when brain PrP(res) deposition could be detected by Western blot analysis. Attempts to detect infectivity in milk after intracerebral inoculation in boTg mice were unsuccessful, suggesting the involvement of other tissues as carriers of prion dissemination. The results shown here prove the ability of BSE prions to spread centrifugally from the central nervous system to peripheral tissues and to offspring in a mouse model. Also, these results may complement previous epidemiological data supporting the occurrence of vertical BSE transmission in cattle.

  11. Modeling motivational deficits in mouse models of schizophrenia: behavior analysis as a guide for neuroscience.

    Science.gov (United States)

    Ward, Ryan D; Simpson, Eleanor H; Kandel, Eric R; Balsam, Peter D

    2011-05-01

    In recent years it has become possible to develop animal models of psychiatric disease in genetically modified mice. While great strides have been made in the development of genetic and neurobiological tools with which to model psychiatric disease, elucidation of neural and molecular mechanisms thought to underlie behavioral phenotypes has been hindered by an inadequate analysis of behavior. This is unfortunate given the fact that the experimental analysis of behavior has created powerful methods for isolating and describing the functional properties of behavioral mechanisms that are capable of providing deep understanding of behavioral phenotypes. A better understanding of the biological basis of normal behavior and its disturbance in psychiatric disease will require the application of these rigorous behavior analytic tools to animal models. In this review we provide an example of a merging of genetic and behavioral methods and illustrate its utility in the analysis of a mouse model of the motivational deficits in schizophrenia. The synergy between basic behavior analysis, neuroscience, and animal models of psychiatric disease has great potential for achieving a deeper understanding of behavior and its neurobiological mechanisms as well as for leading to improvements in diagnosis and treatment in clinical settings. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. An Anisotropic Fluid-Solid Model of the Mouse Heart

    Energy Technology Data Exchange (ETDEWEB)

    Carson, James P.; Kuprat, Andrew P.; Jiao, Xiangmin; del Pin, Facundo; Einstein, Daniel R.

    2010-01-01

    A critical challenge in biomechanical simulations is the spatial discretization of complex fluid-solid geometries created from imaging. This is especially important when dealing with Lagrangian interfaces, as there must be at a minimum both geometric and topological compatibility between fluid and solid phases, with exact matching of the interfacial nodes being highly desirable. We have developed a solution to this problem and applied the approach to the creation of a 3D fluidsolid mesh of the mouse heart. First, a 50 micron isotropic MRI dataset of a perfusion-fixed mouse heart was segmented into blood, tissue, and background using a customized multimaterial connected fuzzy thresholding algorithm. Then, a multimaterial marching cubes algorithm was applied to produce two compatible isosurfaces, one for the blood-tissue boundary and one for the tissue-background boundary. A multimaterial smoothing algorithm that rigorously conserves volume for each phase simultaneously smoothed the isosurfaces. Next we applied novel automated meshing algorithms to generate anisotropic hybrid meshes with the number of layers and the desired element anisotropy for each material as the only input parameters. As the meshes are scale-invariant within a material and include boundary layer prisms, fluid-structure interaction computations would have a relative error equilibrated over the entire mesh. The resulting model is highly detailed mesh representation of the mouse heart, including features such as chordae and coronary vasculature, that is also maximally efficient to produce the best simulation results for the computational resources available

  13. Original Research: Different imiquimod creams resulting in differential effects for imiquimod-induced psoriatic mouse models.

    Science.gov (United States)

    Luo, Di-Qing; Wu, Hui-Hui; Zhao, Yu-Kun; Liu, Juan-Hua; Wang, Fang

    2016-10-01

    Imiquimod (IMQ)-induced mouse psoriatic model is one of the useful models displaying most of psoriatic features. To compare the modeling efficacy of different IMQ creams, we induced the psoriatic models by topically applying two different brands of IMQ 5% creams to the shaved Balb/c mice skin and assessed the results. Balb/c female mice (n = 24) 8-12 weeks of age were randomly divided into experimental groups A (Likejie), B (Aldara), and control group C (Vaseline); Likejie, Aldara, or Vaseline was topically applied to the back skin for mice in groups A, B, and C, respectively, for six consecutive days. The total psoriasis area and severity index scores of groups A, B, and C were 3.25 ± 1.56, 9.81 ± 0.84, and 0, respectively; the Baker's scores were 2.93 ± 1.07, 6.47 ± 1.50, and 0, respectively; and the epidermis thickness was 49.79 ± 14.16, 85.62 ± 17.55, and 20.04 ± 3.68 µm, respectively. The differences between the three groups in dual were statistically significant (P creams may result in differential efficacy when performing the IMQ-induced psoriasis mouse models. © 2016 by the Society for Experimental Biology and Medicine.

  14. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-12-01

    The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems

  15. A mouse kindling model of perimenstrual catamenial epilepsy.

    Science.gov (United States)

    Reddy, Doodipala Samba; Gould, Jordan; Gangisetty, O

    2012-06-01

    Catamenial epilepsy is caused by fluctuations in progesterone-derived GABA(A) receptor-modulating anticonvulsant neurosteroids, such as allopregnanolone, that play a significant role in the pathophysiology of epilepsy. However, there is no specific mouse model of catamenial epilepsy. In this study, we developed and characterized a mouse model of catamenial epilepsy by using the neurosteroid-withdrawal paradigm. It is hypothesized that seizure susceptibility decreases when neurosteroid levels are high (midluteal phase) and increases during their withdrawal (perimenstrual periods) in close association with GABA(A) receptor plasticity. A chronic seizure condition was created by using the hippocampus kindling model in female mice. Elevated neurosteroid levels were induced by sequential gonadotropin treatment, and withdrawal was induced by the neurosteroid synthesis inhibitor finasteride. Elevated neurosteroid exposure reduced seizure expression in fully kindled mice. Fully kindled mice subjected to neurosteroid withdrawal showed increased generalized seizure frequency and intensity and enhanced seizure susceptibility. They also showed reduced benzodiazepine sensitivity and enhanced neurosteroid potency, similar to the clinical catamenial seizure phenotype. The increased susceptibility to seizures and alterations in antiseizure drug responses are associated with increased abundance of the α4 and δ subunits of GABA(A) receptors in the hippocampus. These findings demonstrate that endogenous neurosteroids protect against seizure susceptibility and their withdrawal, such as that which occurs during menstruation, leads to exacerbation of seizure activity. This is possibly caused by specific changes in GABA(A) receptor-subunit plasticity and function, therefore providing a novel mouse model of human perimenstrual catamenial epilepsy that can be used for the investigation of disease mechanisms and new therapeutic approaches.

  16. New model systems for experimental evolution.

    Science.gov (United States)

    Collins, Sinéad

    2013-07-01

    Microbial experimental evolution uses a few well-characterized model systems to answer fundamental questions about how evolution works. This special section highlights novel model systems for experimental evolution, with a focus on marine model systems that can be used to understand evolutionary responses to global change in the oceans. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  17. [LINGO-1 expression of brain tissue in experimental autoimmune encephalomyelitis mouse].

    Science.gov (United States)

    Wang, Chunjuan; Guo, Shougang; Qu, Chuanqiang; Zhang, Jie; Fu, Peicai; Tang, Ronghua

    2014-04-22

    To observe the changes of LINGO-1 expression with time after onset in EAE mouse. C57/BL6 mice were completely randomly divided into EAE model group (n = 15) , adjuvant group (n = 15) and control group (n = 15) .LINGO-1 expression of brain tissue was detected on day 1, 7, 14, 21 and 30 after onset by RT-PCR and Western blot.RhoA and p-RhoA expression of brain tissue was analysed by Western blot. The LINGO-1mRNA levels in EAE model group were markedly higher than control group on day 1, 7and 14 after onset (4.63 ± 0.25, 2.72 ± 0.12, 1.98 ± 0.16, P Lingo-1 mRNA was close to control group.Expression levels of Lingo-1 protein on day 1, 7, 14, 21, 30 were higher than control group (2.11 ± 0.15, 3.15 ± 0.09, 2.45 ± 0.12, 1.89 ± 0.17, 1.21 ± 0.05, P LINGO-1 expression of brain tissue of EAE mouse upregulates and changes with time after onset, which may inhibit myelination by RhoA activation.In clinic, the antagonist of LINGO-1 for MS should be applied as soon as possible.

  18. An in vivo mouse model of metastatic human thyroid cancer.

    Science.gov (United States)

    Zhang, Lisa; Gaskins, Kelli; Yu, Zhiya; Xiong, Yin; Merino, Maria J; Kebebew, Electron

    2014-04-01

    Mouse models of metastatic human cancers are important tools in preclinical studies for testing new systematic therapies and studying effectors of cancer metastasis. The major drawbacks of current mouse models for metastatic thyroid cancer are that they have low metastasis rates and do not allow in vivo tumor detection. Here, we report and characterize an in vivo detectable metastasis mouse model of human thyroid cancer using multiple thyroid cancer cell lines. Human anaplastic thyroid cancer cell lines 8505C, C-643, SW-1736, and THJ-16T; follicular thyroid cancer cell lines FTC-133, FTC-236, and FTC-238; and Hürthle cell carcinoma cell line XTC-1 were transfected with a linearized pGL4.51[luc2/CMV/Neo] vector or transduced with lentivirus containing Luc2-eGFP reporter genes. The stably transfected cells were injected intravenously into NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice. Tumors were detected with an in vivo imaging system-Xenogen IVIS. Vemurafenib, a BRAF inhibitor, was used to treat lung metastases generated from 8505C-Luc2 cells with a BRAF(V600E) mutation to test the accuracy of the model to evaluate response to therapy. Intravenous injection of as few as 30,000 8505C-Luc2 cells produced lung metastases in 100% of the injected mice, and many of these mice also developed bone metastases at a later stage of the disease. Similarly, metastatic tumors also developed in all mice injected with C-643-Luc2, THJ-16T-Luc2, FTC-133-Luc2, FTC-236-Luc2, FTC-238-Luc2, and XTC-1-Luc2 cells. The metastases were easily detectable in vivo, and tumor progression could be dynamically and accurately followed and correlated with the actual tumor burden. Furthermore, disease progression could be easily controlled by adjusting the number of injected cells. The in vivo treatment of 8505C xenograft lung metastases with vemurafenib dramatically reduced the growth and signal intensity with good correlation with actual tumor burden. Herein we report an in vivo detectable mouse model

  19. Mouse models of SCN5A-related cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Flavien eCharpentier

    2012-06-01

    Full Text Available Mutations of SCN5A gene, which encodes the α-subunit of the voltage-gated Na+ channel NaV1.5, underlie hereditary cardiac arrhythmic syndromes such as the type 3 long QT syndrome, cardiac conduction diseases, the Brugada syndrome, the sick sinus syndrome, atrial standstill and numerous overlap syndromes. Patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases. However, they could not clarify how SCN5A mutations can be responsible for such a large spectrum of diseases, for the late age of onset or the progressiveness of some of these diseases and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological mechanisms of cardiac SCN5A-related arrhythmic syndromes and several mouse models have been established. This paper reviews some of the results obtained on these models that, for most of them, recapitulate the clinical phenotypes of the patients. It also points out that these models also have their own limitations. Overall, mouse models appear as powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the secondary cellular consequences of SCN5A mutations such as the expression remodelling of other genes that might participate to the overall phenotype. Finally, they constitute useful tools for addressing the role of genetic and environmental modifiers on cardiac electrical activity.

  20. Venous Thrombosis and Cancer: from Mouse Models to Clinical Trials

    Science.gov (United States)

    Hisada, Y.; Geddings, J. E.; Ay, C.; Mackman, N.

    2015-01-01

    Cancer patients have a ~4 fold increased risk of venous thromboembolism (VTE) compared with the general population and this is associated with significant morbidity and mortality. This review summarizes our current knowledge of VTE and cancer from mouse models to clinical studies. Notably, risk of VTE varies depending on the type and stage of cancer. For instance, pancreatic and brain cancer patients have a higher risk of VTE than breast and prostate cancer patients. Moreover, patients with metastatic disease have a higher risk than those with localized tumors. Tumor-derived procoagulant factors and growth factors may directly and indirectly enhance VTE. For example, increased levels of circulating tumor-derived, tissue factor-positive microvesicles may trigger VTE. In a mouse model of ovarian cancer, tumor-derived IL-6 and hepatic thrombopoietin has been linked to increased platelet production and thrombosis. In addition, mouse models of mammary and lung cancer showed that tumor-derived granulocyte colony-stimulating factor causes neutrophilia and activation of neutrophils. Activated neutrophils can release neutrophil extracellular traps (NETs) that enhance thrombosis. Cell-free DNA in the blood derived from cancer cells, NETs and treatment with cytotoxic drugs can activate the clotting cascade. These studies suggest that there are multiple mechanisms for VTE in patients with different types of cancer. Preventing and treating VTE in cancer patients is challenging; the current recommendations are to use low molecular weight heparin. Understanding the underlying mechanisms may allow the development of new therapies to safely prevent VTE in cancer patients. PMID:25988873

  1. Venous thrombosis and cancer: from mouse models to clinical trials.

    Science.gov (United States)

    Hisada, Y; Geddings, J E; Ay, C; Mackman, N

    2015-08-01

    Cancer patients have a ~4 fold increased risk of venous thromboembolism (VTE) compared with the general population and this is associated with significant morbidity and mortality. This review summarizes our current knowledge of VTE and cancer, from mouse models to clinical studies. Notably, the risk of VTE varies depending on the type and stage of cancer. For instance, pancreatic and brain cancer patients have a higher risk of VTE than breast and prostate cancer patients. Moreover, patients with metastatic disease have a higher risk than those with localized tumors. Tumor-derived procoagulant factors and growth factors may directly and indirectly enhance VTE. For example, increased levels of circulating tumor-derived, tissue factor-positive microvesicles may trigger VTE. In a mouse model of ovarian cancer, tumor-derived IL-6 and hepatic thrombopoietin have been linked to increased platelet production and thrombosis. In addition, mouse models of mammary and lung cancer showed that tumor-derived granulocyte colony-stimulating factor causes neutrophilia and activation of neutrophils. Activated neutrophils can release neutrophil extracellular traps (NETs) that enhance thrombosis. Cell-free DNA in the blood derived from cancer cells, NETs and treatment with cytotoxic drugs can activate the clotting cascade. These studies suggest that there are multiple mechanisms for VTE in patients with different types of cancer. Preventing and treating VTE in cancer patients is challenging; the current recommendations are to use low-molecular-weight heparin. Understanding the underlying mechanisms may allow the development of new therapies to safely prevent VTE in cancer patients. © 2015 International Society on Thrombosis and Haemostasis.

  2. Humanized mouse model to study bacterial infections targeting the microvasculature.

    Science.gov (United States)

    Melican, Keira; Aubey, Flore; Duménil, Guillaume

    2014-04-01

    Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream.

  3. Mouse genetic models for temporomandibular joint development and disorders.

    Science.gov (United States)

    Suzuki, A; Iwata, J

    2016-01-01

    The temporomandibular joint (TMJ) is a synovial joint essential for hinge and sliding movements of the mammalian jaw. Temporomandibular joint disorders (TMD) are dysregulations of the muscles or the TMJ in structure, function, and physiology, and result in pain, limited mandibular mobility, and TMJ noise and clicking. Although approximately 40-70% adults in the USA have at least one sign of TMD, the etiology of TMD remains largely unknown. Here, we highlight recent advances in our understanding of TMD in mouse models. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2011-11-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  5. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance......A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  6. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance......A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  7. Mouse Models of Prostate Cancer: Picking the Best Model for the Question

    Science.gov (United States)

    Grabowska, Magdalena M.; DeGraff, David J.; Yu, Xiuping; Jin, Ren Jie; Chen, Zhenbang; Borowsky, Alexander D.; Matusik, Robert J.

    2014-01-01

    When the NIH Mouse Models of Human Cancer Consortium (MMCC) initiated the Prostate Steering Committee 15 years ago, there were no genetically engineered mouse (GEM) models of prostate cancer (PCa). Today, a PubMed search for “prostate cancer mouse model” yields 3,200 publications and this list continues to grow. The first generation of GEM utilized the newly discovered and characterized probasin (PB) promoter driving viral oncogenes such as SV40 large T antigen to yield the LADY and TRAMP models. As the PCa research field has matured, the second generation of models has incorporated the single and multiple molecular changes observed in human disease, such as loss of PTEN and over-expression of Myc. Application of these models has revealed that mice are particularly resistant to developing invasive PCa, and once they achieve invasive disease, the PCa rarely resembles human disease. Nevertheless, these models and their application have provided vital information on human PCa progression. The aim of this review is to provide a brief primer on mouse and human prostate histology and pathology, provide descriptions of mouse models, as well as attempt to answer the age old question: Which GEM model of PCa is the best for my research question? PMID:24452759

  8. The calm mouse: an animal model of stress reduction.

    Science.gov (United States)

    Gurfein, Blake T; Stamm, Andrew W; Bacchetti, Peter; Dallman, Mary F; Nadkarni, Nachiket A; Milush, Jeffrey M; Touma, Chadi; Palme, Rupert; Di Borgo, Charles Pozzo; Fromentin, Gilles; Lown-Hecht, Rachel; Konsman, Jan Pieter; Acree, Michael; Premenko-Lanier, Mary; Darcel, Nicolas; Hecht, Frederick M; Nixon, Douglas F

    2012-05-09

    Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a "calm mouse model" with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models.

  9. Model refinement for offshore platforms: Experimental study

    Science.gov (United States)

    Zhang, Min; Chen, Zongli; Wu, Yanjian

    2017-08-01

    Offshore jacket platforms are widely used in offshore oil and gas exploitation. Finite element models of such structures need to have many degrees of freedom (DOFs) to represent the geometrical detail of complex structures, thereby leading to incompatibility in the number of DOFs of experimental models. To bring them both to the same order while ensuring that the essential eigen- properties of the refined model match those of experimental models, an extended model refinement procedure is presented in this paper. Vibration testing of an offshore jacket platform model is performed to validate the applicability of the proposed approach. A full-order finite element model of the platform is established and then tuned to meet the measured modal properties identified from the acceleration signals. Both model reduction and modal expansion methods are investigated, as well as various scenarios of sensor arrangements. Upon completion of the refinement, the updated jacket platform model matches the natural frequencies of the measured model well.

  10. Experimental models of demyelination and remyelination.

    Science.gov (United States)

    Torre-Fuentes, L; Moreno-Jiménez, L; Pytel, V; Matías-Guiu, J A; Gómez-Pinedo, U; Matías-Guiu, J

    2017-08-29

    Experimental animal models constitute a useful tool to deepen our knowledge of central nervous system disorders. In the case of multiple sclerosis, however, there is no such specific model able to provide an overview of the disease; multiple models covering the different pathophysiological features of the disease are therefore necessary. We reviewed the different in vitro and in vivo experimental models used in multiple sclerosis research. Concerning in vitro models, we analysed cell cultures and slice models. As for in vivo models, we examined such models of autoimmunity and inflammation as experimental allergic encephalitis in different animals and virus-induced demyelinating diseases. Furthermore, we analysed models of demyelination and remyelination, including chemical lesions caused by cuprizone, lysolecithin, and ethidium bromide; zebrafish; and transgenic models. Experimental models provide a deeper understanding of the different pathogenic mechanisms involved in multiple sclerosis. Choosing one model or another depends on the specific aims of the study. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. CONGESTIVE HEART FAILURE: EXPERIMENTAL MODEL

    Directory of Open Access Journals (Sweden)

    Antonio Francesco Corno

    2013-10-01

    Full Text Available INTRODUCTION.Surgically induced, combined volume and pressure overload has been used in rabbits to create a simplified and reproducible model of acute left ventricular (LV failure.MATERIALS AND METHODS.New Zealand white male rabbits (n=24, mean weight 3.1±0.2kg were randomly assigned to either the Control group (n=10 or to the Heart Failure group (HF, n=14. Animals in the Control group underwent sham procedures. Animals in the HF group underwent procedures to induce LV volume overload by inducing severe aortic valve regurgitation with aortic cusp disruption and pressure overload using an occlusive silver clip positioned around the pre-renal abdominal aorta.RESULTS.Following Procedure-1 (volume overload echocardiography confirmed severe aortic regurgitation in all animals in the HF group, with increased mean pulse pressure difference from 18±3mmHg to 38±3mmHg (P

  12. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Genetically Engineered ERα positive breast cancer mouse models

    Science.gov (United States)

    Dabydeen, Sarah A.; Furth, Priscilla A.

    2014-01-01

    The majority of human breast cancers are ER+ but this has proven challenging to model in genetically engineered mice. This review summarizes information on twenty-one mouse models that develop ER+ mammary cancer. Where available, information on cancer pathology and gene expression profiles is referenced to assist in understanding which histological subtype of ER+ human cancer each model might represent. Esr1, Ccdn1, prolactin, TGFα, AIB1, Espl1, and Wnt1 over-expression, Pik3ca gain of function, as well as loss of p53 or loss of Stat1 are associated with ER+ mammary cancer. Treatment with the PPARγ agonist efatutazone in a mouse with Brca1 and p53 deficiency and DMBA exposure in combination with an activated myristoylated form of AKT1 also induce ER+ mammary cancer. A spontaneous mutant in nude mice that develops metastatic ER+ mammary cancer is included. Age of cancer development ranges from three to 26 months and the percentages of cancers that are ER+ vary from 21% to 100%. Not all models are characterized as to their estrogen dependency and/or response to anti-hormonal therapy. Strain backgrounds include C57Bl/6, FVB, BALB/c, 129S6/SvEv, CB6F1 and NIH nude. Most models have only been studied on one strain background. In summary while a range of models is available for studies of pathogenesis and therapy of ER+ breast cancers, many could benefit from further characterization and opportunity for development of new models remains. PMID:24481326

  14. Revisiting the mouse model of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Kim CB

    2016-05-01

    Full Text Available Clifford B Kim,1,2 Patricia A D’Amore,2–4 Kip M Connor1,2 1Angiogenesis Laboratory, Massachusetts Eye and Ear, 2Department of Ophthalmology, Harvard Medical School, 3Schepens Eye Research Institute, Massachusetts Eye and Ear, 4Department of Pathology, Harvard Medical School, Boston, MA, USA Abstract: Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP, proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress. Keywords: ROP, OIR, angiogenesis

  15. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics.

    Science.gov (United States)

    Kazdoba, Tatiana M; Leach, Prescott T; Yang, Mu; Silverman, Jill L; Solomon, Marjorie; Crawley, Jacqueline N

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism.

  16. A new mouse model to explore therapies for preeclampsia.

    Directory of Open Access Journals (Sweden)

    Abdulwahab Ahmed

    Full Text Available BACKGROUND: Pre-eclampsia, a pregnancy-specific multisystemic disorder is a leading cause of maternal and perinatal mortality and morbidity. This syndrome has been known to medical science since ancient times. However, despite considerable research, the cause/s of preeclampsia remain unclear, and there is no effective treatment. Development of an animal model that recapitulates this complex pregnancy-related disorder may help to expand our understanding and may hold great potential for the design and implementation of effective treatment. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the CBA/J x DBA/2 mouse model of recurrent miscarriage is also a model of immunologically-mediated preeclampsia (PE. DBA/J mated CBA/J females spontaneously develop many features of human PE (primigravidity, albuminuria, endotheliosis, increased sensitivity to angiotensin II and increased plasma leptin levels that correlates with bad pregnancy outcomes. We previously reported that antagonism of vascular endothelial growth factor (VEGF signaling by soluble VEGF receptor 1 (sFlt-1 is involved in placental and fetal injury in CBA/J x DBA/2 mice. Using this animal model that recapitulates many of the features of preeclampsia in women, we found that pravastatin restores angiogenic balance, ameliorates glomerular injury, diminishes hypersensitivity to angiotensin II and protects pregnancies. CONCLUSIONS/SIGNIFICANCE: We described a new mouse model of PE, were the relevant key features of human preeclampsia develop spontaneously. The CBA/J x DBA/2 model, that recapitulates this complex disorder, helped us identify pravastatin as a candidate therapy to prevent preeclampsia and its related complications. We recognize that these studies were conducted in mice and that clinical trials are needed to confirm its application to humans.

  17. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression.

    Science.gov (United States)

    Neufert, Clemens; Becker, Christoph; Neurath, Markus F

    2007-01-01

    Colorectal cancer is a life-threatening disease that can develop spontaneously or as a complication of inflammatory bowel diseases. Mouse models are essential tools for the preclinical testing of novel therapeutic options in vivo. Here, we provide a highly reliable protocol for an experimental mouse model to study the development of colon cancers. It is based on the mutagenic agent azoxymethane (AOM), which exerts colonotropic carcinogenicity. Repeated intraperitoneal administration of AOM results in the development of spontaneous tumors within 30 weeks. As an alternative option, inflammation-dependent tumor growth can be investigated by combining the administration of AOM with the inflammatory agent dextran sodium sulfate in drinking water, which causes rapid growth of multiple colon tumors per mouse within 10 weeks. Different scoring systems including number of tumors and tumor size identify factors promoting or inhibiting tumor initiation and/or tumor progression, respectively.

  18. A mouse model for Meckel syndrome type 3.

    Science.gov (United States)

    Cook, Susan A; Collin, Gayle B; Bronson, Roderick T; Naggert, Jürgen K; Liu, Dong P; Akeson, Ellen C; Davisson, Muriel T

    2009-04-01

    Meckel-Gruber syndrome type 3 (MKS3; OMIM 607361) is a severe autosomal recessive disorder characterized by bilateral polycystic kidney disease. Other malformations associated with MKS3 include cystic changes in the liver, polydactyly, and brain abnormalities (occipital encephalocele, hydrocephalus, and Dandy Walker-type cerebellar anomalies). The disorder is hypothesized to be caused by defects in primary cilia. In humans, the underlying mutated gene, TMEM67, encodes transmembrane protein 67, also called meckelin (OMIM 609884), which is an integral protein of the renal epithelial cell and membrane of the primary cilium. Here, we describe a spontaneous deletion of the mouse ortholog, Tmem67, which results in polycystic kidney disease and death by 3 wk after birth. Hydrocephalus also occurs in some mutants. We verified the mutated gene by transgenic rescue and characterized the phenotype with microcomputed tomography, histology, scanning electron microscopy, and immunohistochemistry. This mutant provides a mouse model for MKS3 and adds to the growing set of mammalian models essential for studying the role of the primary cilium in kidney function.

  19. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure.

    Science.gov (United States)

    Merchant, Samer S; Gomez, Arnold David; Morgan, James L; Hsu, Edward W

    2016-09-01

    Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.

  20. Mouse models of cognitive disorders in trisomy 21: a review.

    Science.gov (United States)

    Sérégaza, Zohra; Roubertoux, Pierre L; Jamon, Marc; Soumireu-Mourat, Bernard

    2006-05-01

    Trisomy 21 (TRS21) is the most frequent genetic cause of mental retardation. Although the presence of an extra copy of HSA21 is known to be at the origin of the syndrome, we do not know which 225 HSA21 genes have an effect on cognitive processes. Mouse models of TRS21 have been developed using syntenies between HSA21 and MMU16, MMU10 and MMU17. Available mouse models carry extra fragments of MMU16 or of HSA21 that cover all of HSA21 (chimeric HSA21) or MMU16 (Ts16); some carry large parts of MMU16 (Ts65Dn, Ts1Cje, Ms1Cje), while others have reduced contiguous fragments covering the D21S17-ETS2 region or single transfected genes. This offers a nest design strategy for deciphering cognitive (learning, memory and exploration) and associated brain abnormalities involving each of these chromosomal regions. This review confirms the crucial but not exclusive contribution of the D21S17-ETS2 region encompassing 16 genes to cognitive disorders.

  1. Ghrelin modulates testicular damage in a cryptorchid mouse model

    Science.gov (United States)

    Boekelheide, Kim; Sigman, Mark; Hall, Susan J.; Hwang, Kathleen

    2017-01-01

    Cryptorchidism or undescended testis (UDT) is a common congenital abnormality associated with increased risk for developing male infertility and testicular cancer. This study elucidated the effects of endogenous ghrelin or growth hormone secretagogue receptor (GHSR) deletion on mouse reproductive performance and evaluated the ability of ghrelin to prevent testicular damage in a surgical cryptorchid mouse model. Reciprocal matings with heterozygous/homozygous ghrelin and GHSR knockout mice were performed. Litter size and germ cell apoptosis were recorded and testicular histological evaluations were performed. Wild type and GHSR knockout adult mice were subjected to creation of unilateral surgical cryptorchidism that is a model of heat-induced germ cell death. All mice were randomly separated into two groups: treatment with ghrelin or with saline. To assess testicular damage, the following endpoints were evaluated: testis weight, seminiferous tubule diameter, percentage of seminiferous tubules with spermatids and with multinucleated giant cells. Our findings indicated that endogenous ghrelin deletion altered male fertility. Moreover, ghrelin treatment ameliorated the testicular weight changes caused by surgically induced cryptorchidism. Testicular histopathology revealed a significant preservation of spermatogenesis and seminiferous tubule diameter in the ghrelin-treated cryptorchid testes of GHSR KO mice, suggesting that this protective effect of ghrelin was mediated by an unknown mechanism. In conclusion, ghrelin therapy could be useful to suppress testicular damage induced by hyperthermia, and future investigations will focus on the underlying mechanisms by which ghrelin mitigates testicular damage. PMID:28542403

  2. Improving the physiological realism of experimental models.

    Science.gov (United States)

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  3. Development of a Mouse Model of Menopausal Ovarian Cancer

    Science.gov (United States)

    Smith, Elizabeth R.; Wang, Ying; Xu, Xiang-Xi

    2014-01-01

    Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology. A potentially useful model is the germ cell-deficient Wv (white spotting variant) mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1–5% (it is not a null mutation). Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer. Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention. PMID:24616881

  4. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  5. Gait analysis in a mouse model resembling Leigh disease.

    Science.gov (United States)

    de Haas, Ria; Russel, Frans G; Smeitink, Jan A

    2016-01-01

    Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    Science.gov (United States)

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  7. The German Mouse Clinic: a platform for systemic phenotype analysis of mouse models.

    Science.gov (United States)

    Fuchs, H; Gailus-Durner, V; Adler, T; Pimentel, J A Aguilar; Becker, L; Bolle, I; Brielmeier, M; Calzada-Wack, J; Dalke, C; Ehrhardt, N; Fasnacht, N; Ferwagner, B; Frischmann, U; Hans, W; Hölter, S M; Hölzlwimmer, G; Horsch, M; Javaheri, A; Kallnik, M; Kling, E; Lengger, C; Maier, H; Mossbrugger, I; Mörth, C; Naton, B; Nöth, U; Pasche, B; Prehn, C; Przemeck, G; Puk, O; Racz, I; Rathkolb, B; Rozman, J; Schäble, K; Schreiner, R; Schrewe, A; Sina, C; Steinkamp, R; Thiele, F; Willershäuser, M; Zeh, R; Adamski, J; Busch, D H; Beckers, J; Behrendt, H; Daniel, H; Esposito, I; Favor, J; Graw, J; Heldmaier, G; Höfler, H; Ivandic, B; Katus, H; Klingenspor, M; Klopstock, T; Lengeling, A; Mempel, M; Müller, W; Neschen, S; Ollert, M; Quintanilla-Martinez, L; Rosenstiel, P; Schmidt, J; Schreiber, S; Schughart, K; Schulz, H; Wolf, E; Wurst, W; Zimmer, A; Hrabé de Angelis, M

    2009-02-01

    The German Mouse Clinic (GMC) is a large scale phenotyping center where mouse mutant lines are analyzed in a standardized and comprehensive way. The result is an almost complete picture of the phenotype of a mouse mutant line--a systemic view. At the GMC, expert scientists from various fields of mouse research work in close cooperation with clinicians side by side at one location. The phenotype screens comprise the following areas: allergy, behavior, clinical chemistry, cardiovascular analyses, dysmorphology, bone and cartilage, energy metabolism, eye and vision, host-pathogen interactions, immunology, lung function, molecular phenotyping, neurology, nociception, steroid metabolism, and pathology. The German Mouse Clinic is an open access platform that offers a collaboration-based phenotyping to the scientific community (www.mouseclinic.de). More than 80 mutant lines have been analyzed in a primary screen for 320 parameters, and for 95% of the mutant lines we have found new or additional phenotypes that were not associated with the mouse line before. Our data contributed to the association of mutant mouse lines to the corresponding human disease. In addition, the systemic phenotype analysis accounts for pleiotropic gene functions and refines previous phenotypic characterizations. This is an important basis for the analysis of underlying disease mechanisms. We are currently setting up a platform that will include environmental challenge tests to decipher genome-environmental interactions in the areas nutrition, exercise, air, stress and infection with different standardized experiments. This will help us to identify genetic predispositions as susceptibility factors for environmental influences.

  8. PET/CT Imaging in Mouse Models of Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Sara Gargiulo

    2012-01-01

    Full Text Available Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT, high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing.

  9. Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies.

    Science.gov (United States)

    Kramnik, Igor; Beamer, Gillian

    2016-03-01

    A key aspect of TB pathogenesis that maintains Mycobacterium tuberculosis in the human population is the ability to cause necrosis in pulmonary lesions. As co-evolution shaped M . tuberculosis (M.tb) and human responses, the complete TB disease profile and lesion manifestation are not fully reproduced by any animal model. However, animal models are absolutely critical to understand how infection with virulent M.tb generates outcomes necessary for the pathogen transmission and evolutionary success. In humans, a wide spectrum of TB outcomes has been recognized based on clinical and epidemiological data. In mice, there is clear genetic basis for susceptibility. Although the spectra of human and mouse TB do not completely overlap, comparison of human TB with mouse lesions across genetically diverse strains firmly establishes points of convergence. By embracing the genetic heterogeneity of the mouse population, we gain tremendous advantage in the quest for suitable in vivo models. Below, we review genetically defined mouse models that recapitulate a key element of M.tb pathogenesis-induction of necrotic TB lesions in the lungs-and discuss how these models may reflect TB stratification and pathogenesis in humans. The approach ensures that roles that mouse models play in basic and translational TB research will continue to increase allowing researchers to address fundamental questions of TB pathogenesis and bacterial physiology in vivo using this well-defined, reproducible, and cost-efficient system. Combination of the new generation mouse models with advanced imaging technologies will also allow rapid and inexpensive assessment of experimental vaccines and therapies prior to testing in larger animals and clinical trials.

  10. Analyses of homologous rotavirus infection in the mouse model.

    Science.gov (United States)

    Burns, J W; Krishnaney, A A; Vo, P T; Rouse, R V; Anderson, L J; Greenberg, H B

    1995-02-20

    The group A rotaviruses are significant human and veterinary pathogens in terms of morbidity, mortality, and economic loss. Despite its importance, an effective vaccine remains elusive due at least in part to our incomplete understanding of rotavirus immunity and protection. Both large and small animal model systems have been established to address these issues. One significant drawback of these models is the lack of well-characterized wild-type homologous viruses and their cell culture-adapted variants. We have characterized four strains of murine rotaviruses, EC, EHP, EL, and EW, in the infant and adult mouse model using wild-type isolates and cell culture-adapted variants of each strain. Wild-type murine rotaviruses appear to be equally infectious in infant and adult mice in terms of the intensity and duration of virus shedding following primary infection. Spread of infection to naive cagemates is seen in both age groups. Clearance of shedding following primary infection appears to correlate with the development of virus-specific intestinal IgA. Protective immunity is developed in both infant and adult mice following oral infection as demonstrated by a lack of shedding after subsequent wild-type virus challenge. Cell culture-adapted murine rotaviruses appear to be highly attenuated when administered to naive animals and do not spread efficiently to nonimmune cagemates. The availability of these wild-type and cell culture-adapted virus preparations should allow a more systematic evaluation of rotavirus infection and immunity. Furthermore, future vaccine strategies can be evaluated in the mouse model using several fully virulent homologous viruses for challenge.

  11. Establishment of a Novel Mouse Model of Coronary Microembolization

    Science.gov (United States)

    Cao, Yuan-Yuan; Chen, Zhang-Wei; Jia, Jian-Guo; Chen, Ao; Zhou, You; Ye, Yong; Gao, Yan-Hua; Xia, Yan; Chang, Shu-Fu; Ma, Jian-Ying; Qian, Ju-Ying; Ge, Jun-Bo

    2016-01-01

    Background: Coronary microembolization (CME) has been frequently seen in acute coronary syndromes and percutaneous coronary intervention. Small animal models are required for further studies of CME related to severe prognosis. This study aimed to explore a new mouse model of CME. Methods: The mouse model of CME was established by injecting polystyrene microspheres into the left ventricular chamber during 15-s occlusion of the ascending aorta. Based on the average diameter and dosage used, 30 C57BL/6 male mice were randomly divided into five groups (n = 6 in each): 9 μm/500,000, 9 μm/800,000, 17 μm/200,000, 17 μm/500,000, and sham groups. The postoperative survival and performance of the mice were recorded. The mice were sacrificed 3 or 10 days after the surgery. The heart tissues were harvested for hematoxylin and eosin staining and Masson trichrome staining to compare the extent of inflammatory cellular infiltration and fibrin deposition among groups and for scanning transmission electron microscopic examinations to see the ultrastructural changes after CME. Results: Survival analysis demonstrated that the cumulative survival rate of the 17 μm/500,000 group was significantly lower than that of the sham group (0/6 vs. 6/6, P = 0.001). The cumulative survival rate of the 17 μm/200,000 group was lower than those of the sham and 9 μm groups with no statistical difference (cumulative survival rate of the 17 μm/200,000, 9 μm/800,000, 9 μm/500,000, and sham groups was 4/6, 5/6, 6/6, and 6/6, respectively). The pathological alterations were similar between the 9 μm/500,000 and 9 μm/800,000 groups. The extent of inflammatory cellular infiltration and fibrin deposition was more severe in the 17 μm/200,000 group than in the 9 μm/500,000 and 9 μm/800,000 groups 3 and 10 days after the surgery. Scanning transmission electron microscopic examinations revealed platelet aggregation and adhesion, microthrombi formation, and changes in cardiomyocytes. Conclusion: The

  12. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis

    NARCIS (Netherlands)

    W.R. Swindell (William R.); A. Johnston (Andrew); S. Carbajal (Steve); G. Han (Gangwen); C.T. Wohn (Christopher); J. Lu (Jun); X. Xing (Xianying); R.P. Nair (Rajan P.); J.J. Voorhees (John); J.T. Elder (James); X.J. Wang (Xian Jiang); S. Sano (Shigetoshi); E.P. Prens (Errol); J. DiGiovanni (John); M.R. Pittelkow (Mark R.); N.L. Ward (Nicole); J.E. Gudjonsson (Johann Eli)

    2011-01-01

    textabstractDevelopment of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features

  13. Human tissue models in cancer research: looking beyond the mouse

    Directory of Open Access Journals (Sweden)

    Samuel J. Jackson

    2017-08-01

    Full Text Available Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of ‘non-animal human tissue’ models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models.

  14. Understanding Leadership: An Experimental-Experiential Model

    Science.gov (United States)

    Hole, George T.

    2014-01-01

    Books about leadership are dangerous to readers who fantasize about being leaders or apply leadership ideas as if they were proven formulas. As an antidote, I offer an experimental framework in which any leadership-management model can be tested to gain experiential understanding of the model. As a result one can gain reality-based insights about…

  15. Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research

    Science.gov (United States)

    Rai, Vikrant; Sharma, Poonam; Agrawal, Swati

    2016-01-01

    Heart disease causing cardiac cell death due to ischemia–reperfusion injury is a major cause of morbidity and mortality in the United States. Coronary heart disease and cardiomyopathies are the major cause for congestive heart failure, and thrombosis of the coronary arteries is the most common cause of myocardial infarction. Cardiac injury is followed by post-injury cardiac remodeling or fibrosis. Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac inter-stitium and results in both systolic and diastolic dysfunctions. It has been suggested by both experimental and clinical evidence that fibrotic changes in the heart are reversible. Hence, it is vital to understand the mechanism involved in the initiation, progression, and resolution of cardiac fibrosis to design anti-fibrotic treatment modalities. Animal models are of great importance for cardiovascular research studies. With the developing research field, the choice of selecting an animal model for the proposed research study is crucial for its outcome and translational purpose. Compared to large animal models for cardiac research, the mouse model is preferred by many investigators because of genetic manipulations and easier handling. This critical review is focused to provide insight to young researchers about the various mouse models, advantages and disadvantages, and their use in research pertaining to cardiac fibrosis and hypertrophy. PMID:27766529

  16. The first knockin mouse model of episodic ataxia type 2.

    Science.gov (United States)

    Rose, Samuel J; Kriener, Lisa H; Heinzer, Ann K; Fan, Xueliang; Raike, Robert S; van den Maagdenberg, Arn M J M; Hess, Ellen J

    2014-11-01

    Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Pathogenicity of Conidiobolus coronatus and Fusarium solani in mouse models.

    Science.gov (United States)

    Li, Yadi; Fang, Xiangang; Zhou, Xiaoqian; Geng, Suying; Wang, Yuxin; Yang, Xiumin

    2017-06-01

    To study the pathogenicity of Conidiobolus coronatus (C. coronatus) and Fusarium solani (F. solani) in animal models. Immunocompromised mice were treated with cyclophosphamide and prednisolone via intraperitoneal injection before and after inoculation. According to pathogenic characteristics of different fungi, C. coronatus was used to infect mice via intravenous inoculation, intraperitoneal inoculation, gastrointestinal infusion and intradermal inoculation methods. And F. solani was used to infect mice by inoculation via the abraded or normal skin. In the group of immunocompromised mice, C. coronatus was isolated from the lung tissues of one mouse on day 7 and another on day 10 respectively. The corresponding histopathology revealed infiltration of local inflammatory cells in the lung tissue. Pathogenic lesions were observed in all normal and immunocompromised mice infected with F. solani via abraded skin. The lesions in the immunocompromised mice were more severe and persisted longer than those in the normal mice. Moreover, hyphae were mostly observed in the histopathological examination and fungal culture from the immunocompromised mouse. The pathogenicity of C. coronatus was relatively weak as it did not induce local infections and did not disseminate the disease in immunocompetent and immunocompromised mice. Therefore, F. solani is a type of opportunistic pathogenic fungus, and abraded skin is one of the causative routes of infection. © 2017 Blackwell Verlag GmbH.

  18. Physiological and biochemical changes associated with acute experimental dehydration in the desert adapted mouse, Peromyscus eremicus.

    Science.gov (United States)

    Kordonowy, Lauren; Lombardo, Kaelina D; Green, Hannah L; Dawson, Molly D; Bolton, Evice A; LaCourse, Sarah; MacManes, Matthew D

    2017-03-01

    Characterizing traits critical for adaptation to a given environment is an important first step in understanding how phenotypes evolve. How animals adapt to the extreme heat and aridity commonplace to deserts is an exceptionally interesting example of these processes, and has been the focus of study for decades. In contrast to those studies, where experiments are conducted on either wild animals or captive animals held in non-desert conditions, the study described here leverages a unique environmental chamber that replicates desert conditions for captive Peromyscus eremicus (cactus mouse). Here, we establish baseline values for daily water intake and for serum electrolytes, as well as the response of these variables to acute experimental dehydration. In brief, P eremicus daily water intake is very low. Its serum electrolytes are distinct from many previously studied animals, and its response to acute dehydration is profound, though not suggestive of renal impairment, which is atypical of mammals. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Experimental Diabetes Mellitus in Different Animal Models

    Directory of Open Access Journals (Sweden)

    Amin Al-awar

    2016-01-01

    Full Text Available Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans.

  20. Learning delays in a mouse model of Autism Spectrum Disorder.

    Science.gov (United States)

    Rendall, Amanda R; Truong, Dongnhu T; Fitch, R Holly

    2016-04-15

    Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with core symptoms of atypical social interactions and repetitive behaviors. It has also been reported that individuals with ASD have difficulty with multisensory integration, and this may disrupt higher-order cognitive abilities such as learning and social communication. Impairments in the integration of sensory information could in turn reflect diminished cross-modal white matter connectivity. Moreover, the genetic contribution in ASD appears to be strong, with heritability estimates as high as 90%. However, no single gene has been identified, and over 1000 risk genes have been reported. One of these genes - contactin-associated-like-protein 2 (CNTNAP2) - was first associated with Specific Language Impairment, and more recently has been linked to ASD. CNTNAP2 encodes a cell adhesion protein regulating synaptic signal transmission. To better understand the behavioral and biological underlying mechanisms of ASD, a transgenic mouse model was created with a genetic knockout (KO) of the rodent homolog Cntnap2. Initial studies on this mouse revealed poor social interactions, behavioral perseveration, and reduced vocalizations-all strongly resembling human ASD symptoms. Cntnap2 KO mice also show abnormalities in myelin formation, consistent with a hypo-connectivity model of ASD. The current study was designed to further assess the behavioral phenotype of this mouse model, with a focus on learning and memory. Cntnap2 KO and wild-type mice were tested on a 4/8 radial arm water maze for 14 consecutive days. Error scores (total, working memory, reference memory, initial and repeated reference memory), latency and average turn angle were independently assessed using a 2×14 repeated measures ANOVA. Results showed that Cntnap2 KO mice exhibited significant deficits in working and reference memory during the acquisition period of the task. During the retention period (i.e., after asymptote in errors

  1. Development of a syngeneic mouse model of epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Quinn Bridget A

    2010-10-01

    Full Text Available Abstract Background Most cases of ovarian cancer are epithelial in origin and diagnosed at advanced stage when the cancer is widely disseminated in the peritoneal cavity. The objective of this study was to establish an immunocompetent syngeneic mouse model of disseminated epithelial ovarian cancer (EOC to facilitate laboratory-based studies of ovarian tumor biology and preclinical therapeutic strategies. Methods Individual lines of TgMISIIR-TAg transgenic mice were phenotypically characterized and backcrossed to inbred C57BL/6 mice. In addition to a previously described line of EOC-prone mice, two lines (TgMISIIR-TAg-Low were isolated that express the oncogenic transgene, but have little or no susceptibility to tumor development. Independent murine ovarian carcinoma (MOVCAR cell lines were established from the ascites of tumor-bearing C57BL/6 TgMISIIR-TAg transgenic mice, characterized and tested for engraftment in the following recipient mice: 1 severe immunocompromised immunodeficient (SCID, 2 wild type C57BL/6, 3 oophorectomized tumor-prone C57BL/6 TgMISIIR-TAg transgenic and 4 non-tumor prone C57BL/6 TgMISIIR-TAg-Low transgenic. Lastly, MOVCAR cells transduced with a luciferase reporter were implanted in TgMISIIR-TAg-Low mice and in vivo tumor growth monitored by non-invasive optical imaging. Results Engraftment of MOVCAR cells by i.p. injection resulted in the development of disseminated peritoneal carcinomatosis in SCID, but not wild type C57BL/6 mice. Oophorectomized tumor-prone TgMISIIR-TAg mice developed peritoneal carcinomas with high frequency, rendering them unsuitable as allograft recipients. Orthotopic or pseudo-orthotopic implantation of MOVCAR cells in TgMISIIR-TAg-Low mice resulted in the development of disseminated peritoneal tumors, frequently accompanied by the production of malignant ascites. Tumors arising in the engrafted mice bore histopathological resemblance to human high-grade serous EOC and exhibited a similar pattern

  2. Hydroxycitric acid ameliorates inflammation and oxidative stress in mouse models of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Mahdi Goudarzvand

    2016-01-01

    Full Text Available Hydroxycitric acid (HCA is derived primarily from the Garcinia plant and is widely used for its anti-inflammatory effects. Multiple sclerosis can cause an inflammatory demyelination and axonal damage. In this study, to validate the hypothesis that HCA exhibits therapeutic effects on multiple sclerosis, we established female C57BL/6 mouse models of multiple sclerosis, i.e., experimental autoimmune encephalomyelitis, using Complete Freund′s Adjuvant (CFA emulsion containing myelin oligodendrocyte glycoprotein (35-55. Treatment with HCA at 2 g/kg/d for 3 weeks obviously improved the symptoms of nerve injury of experimental autoimmune encephalomyelitis mice, decreased serum interleulin-6, tumor necrosis factor alpha, nitric oxide, and malondialdehyde levels, and increased superoxide dismutase and glutathione reductase activities. These findings suggest that HCA exhibits neuroprotective effects on multiple sclerosis-caused nerve injury through ameliorating inflammation and oxidative stress.

  3. Hydroxycitric acid ameliorates inflammation and oxidative stress in mouse models of multiple sclerosis

    Science.gov (United States)

    Goudarzvand, Mahdi; Afraei, Sanaz; Yaslianifard, Somaye; Ghiasy, Saleh; Sadri, Ghazal; Kalvandi, Mustafa; Alinia, Tina; Mohebbi, Ali; Yazdani, Reza; Azarian, Shahin Khadem; Mirshafiey, Abbas; Azizi, Gholamreza

    2016-01-01

    Hydroxycitric acid (HCA) is derived primarily from the Garcinia plant and is widely used for its anti-inflammatory effects. Multiple sclerosis can cause an inflammatory demyelination and axonal damage. In this study, to validate the hypothesis that HCA exhibits therapeutic effects on multiple sclerosis, we established female C57BL/6 mouse models of multiple sclerosis, i.e., experimental autoimmune encephalomyelitis, using Complete Freund's Adjuvant (CFA) emulsion containing myelin oligodendrocyte glycoprotein (35–55). Treatment with HCA at 2 g/kg/d for 3 weeks obviously improved the symptoms of nerve injury of experimental autoimmune encephalomyelitis mice, decreased serum interleulin-6, tumor necrosis factor alpha, nitric oxide, and malondialdehyde levels, and increased superoxide dismutase and glutathione reductase activities. These findings suggest that HCA exhibits neuroprotective effects on multiple sclerosis-caused nerve injury through ameliorating inflammation and oxidative stress. PMID:27904492

  4. Quantification of Brain Access of Exendin-4 in the C57BL Mouse Model by SPIM Fluorescence Imaging and the Allen Mouse Brain Reference Model

    DEFF Research Database (Denmark)

    Jensen, Casper Bo; Secher, Anna; Hecksher-Sørensen, Jacob

    2015-01-01

    construct a SPIM brain atlas based on the Allen mouse brain 3D reference model and use it to analyze the access of peripherally injected Exendin-4 into the brain compared to a negative control group. The constructed atlas consists of an average SPIM volume obtained from eight C57BL mouse brains using group......-wise registration. A cross-modality registration is performed between the constructed average volume and the Allen mouse brain reference model to allow propagation of annotations to the SPIM average brain. Finally, manual corrections of the annotations are performed and validated by visual inspection. The study...

  5. Nutritional factors in a mouse model of Rett syndrome.

    Science.gov (United States)

    Nag, Nupur; Ward, Bonnie; Berger-Sweeney, Joanne E

    2009-04-01

    Environmental factors such as nutrition and housing can influence behavioral and anatomical characteristics of several neurological disorders, including Rett syndrome (RTT). RTT is associated with mutations in the X-linked gene encoding MeCP2, a transcriptional repressor that binds methylated DNA. While direct genetic intervention in humans is impossible at this time, motor and cognitive deficits in RTT may be ameliorated through manipulations of epigenetic/environmental factors. For example, studies in rodents suggest that choline nutrient supplementation during critical periods of brain development enhances cholinergic neurotransmission, alters neuronal size and distribution, and facilitates performance of memory and motoric tasks. Recent work in a mouse model of RTT shows that enhancing maternal nutrition through choline supplementation improves both anatomical and behavioral symptoms in the mutant offspring. We describe here cellular and molecular mechanisms that may underlie this specific enhancement and may provide more general insights into mechanisms underlying gene-environment interactions in neurological disorders.

  6. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-01-01

    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.

  7. Experimental Concepts for Testing Seismic Hazard Models

    Science.gov (United States)

    Marzocchi, W.; Jordan, T. H.

    2015-12-01

    Seismic hazard analysis is the primary interface through which useful information about earthquake rupture and wave propagation is delivered to society. To account for the randomness (aleatory variability) and limited knowledge (epistemic uncertainty) of these natural processes, seismologists must formulate and test hazard models using the concepts of probability. In this presentation, we will address the scientific objections that have been raised over the years against probabilistic seismic hazard analysis (PSHA). Owing to the paucity of observations, we must rely on expert opinion to quantify the epistemic uncertainties of PSHA models (e.g., in the weighting of individual models from logic-tree ensembles of plausible models). The main theoretical issue is a frequentist critique: subjectivity is immeasurable; ergo, PSHA models cannot be objectively tested against data; ergo, they are fundamentally unscientific. We have argued (PNAS, 111, 11973-11978) that the Bayesian subjectivity required for casting epistemic uncertainties can be bridged with the frequentist objectivity needed for pure significance testing through "experimental concepts." An experimental concept specifies collections of data, observed and not yet observed, that are judged to be exchangeable (i.e., with a joint distribution independent of the data ordering) when conditioned on a set of explanatory variables. We illustrate, through concrete examples, experimental concepts useful in the testing of PSHA models for ontological errors in the presence of aleatory variability and epistemic uncertainty. In particular, we describe experimental concepts that lead to exchangeable binary sequences that are statistically independent but not identically distributed, showing how the Bayesian concept of exchangeability generalizes the frequentist concept of experimental repeatability. We also address the issue of testing PSHA models using spatially correlated data.

  8. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations

    NARCIS (Netherlands)

    Hruban, Ralph H.; Adsay, N. Volkan; Albores-Saavedra, Jorge; Anver, Miriam R.; Biankin, Andrew V.; Boivin, Gregory P.; Furth, Emma E.; Furukawa, Toru; Klein, Alison; Klimstra, David S.; Kloppel, Gunter; Lauwers, Gregory Y.; Longnecker, Daniel S.; Luttges, Jutta; Maitra, Anirban; Offerhaus, G. Johan A.; Pérez-Gallego, Lucía; Redston, Mark; Tuveson, David A.

    2006-01-01

    Several diverse genetically engineered mouse models of pancreatic exocrine neoplasia have been developed. These mouse models have a spectrum of pathologic changes; however, until now, there has been no uniform nomenclature to characterize these changes. An international workshop, sponsored by The

  9. Generation and characterization of an inducible transgenic model for studying mouse esophageal biology

    NARCIS (Netherlands)

    S.G. Roth (Sabrina); P.F. Franken (Patrick); K. Monkhorst (Kim); J. Kong-a-San (John); R. Fodde (Riccardo)

    2012-01-01

    textabstractBackground: To facilitate the in vivo study of esophageal (stem) cell biology in homeostasis and cancer, novel mouse models are necessary to elicit expression of candidate genes in a tissue-specific and inducible fashion. To this aim, we developed and studied a mouse model to allow

  10. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C

    2011-06-01

    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  11. Genetically engineered mouse models in oncology research and cancer medicine.

    Science.gov (United States)

    Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos

    2017-02-01

    Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  12. A new model for Hendra virus encephalitis in the mouse.

    Directory of Open Access Journals (Sweden)

    Johanna Dups

    Full Text Available Hendra virus (HeV infection in humans is characterized by an influenza like illness, which may progress to pneumonia or encephalitis and lead to death. The pathogenesis of HeV infection is poorly understood, and the lack of a mouse model has limited the opportunities for pathogenetic research. In this project we reassessed the role of mice as an animal model for HeV infection and found that mice are susceptible to HeV infection after intranasal exposure, with aged mice reliably developing encephalitic disease. We propose an anterograde route of neuroinvasion to the brain, possibly along olfactory nerves. This is supported by evidence for the development of encephalitis in the absence of viremia and the sequential distribution of viral antigen along pathways of olfaction in the brain of intranasally challenged animals. In our studies mice developed transient lower respiratory tract infection without progressing to viremia and systemic vasculitis that is common to other animal models. These studies report a new animal model of HeV encephalitis that will allow more detailed studies of the neuropathogenesis of HeV infection, particularly the mode of viral spread and possible sequestration within the central nervous system; investigation of mechanisms that moderate the development of viremia and systemic disease; and inform the development of improved treatment options for human patients.

  13. Stochastic model of Tsc1 lesions in mouse brain.

    Directory of Open Access Journals (Sweden)

    Shilpa Prabhakar

    Full Text Available Tuberous sclerosis complex (TSC is an autosomal dominant disorder due to mutations in either TSC1 or TSC2 that affects many organs with hamartomas and tumors. TSC-associated brain lesions include subependymal nodules, subependymal giant cell astrocytomas and tubers. Neurologic manifestations in TSC comprise a high frequency of mental retardation and developmental disorders including autism, as well as epilepsy. Here, we describe a new mouse model of TSC brain lesions in which complete loss of Tsc1 is achieved in multiple brain cell types in a stochastic pattern. Injection of an adeno-associated virus vector encoding Cre recombinase into the cerebral ventricles of mice homozygous for a Tsc1 conditional allele on the day of birth led to reduced survival, and pathologic findings of enlarged neurons, cortical heterotopias, subependymal nodules, and hydrocephalus. The severity of clinical and pathologic findings as well as survival was shown to be dependent upon the dose and serotype of Cre virus injected. Although several other models of TSC brain disease exist, this model is unique in that the pathology reflects a variety of TSC-associated lesions involving different numbers and types of cells. This model provides a valuable and unique addition for therapeutic assessment.

  14. Mathematical model of network dynamics governing mouse sleep-wake behavior.

    Science.gov (United States)

    Behn, Cecilia G Diniz; Brown, Emery N; Scammell, Thomas E; Kopell, Nancy J

    2007-06-01

    Recent work in experimental neurophysiology has identified distinct neuronal populations in the rodent brain stem and hypothalamus that selectively promote wake and sleep. Mutual inhibition between these cell groups has suggested the conceptual model of a sleep-wake switch that controls transitions between wake and sleep while minimizing time spent in intermediate states. By combining wake- and sleep-active populations with populations governing transitions between different stages of sleep, a "sleep-wake network" of neuronal populations may be defined. To better understand the dynamics inherent in this network, we created a model sleep-wake network composed of coupled relaxation oscillation equations. Mathematical analysis of the deterministic model provides insight into the dynamics underlying state transitions and predicts mechanisms for each transition type. With the addition of noise, the simulated sleep-wake behavior generated by the model reproduces many qualitative and quantitative features of mouse sleep-wake behavior. In particular, the existence of simulated brief awakenings is a unique feature of the model. In addition to capturing the experimentally observed qualitative difference between brief and sustained wake bouts, the model suggests distinct network mechanisms for the two types of wakefulness. Because circadian and other factors alter the fine architecture of sleep-wake behavior, this model provides a novel framework to explore dynamical principles that may underlie normal and pathologic sleep-wake physiology.

  15. Experimental deep brain stimulation in animal models.

    Science.gov (United States)

    Tan, Sonny Kh; Vlamings, Rinske; Lim, Leewei; Sesia, Thibault; Janssen, Marcus Lf; Steinbusch, Harry Wm; Visser-Vandewalle, Veerle; Temel, Yasin

    2010-10-01

    DEEP BRAIN STIMULATION (DBS) as a therapy in neurological and psychiatric disorders is widely applied in the field of functional and stereotactic neurosurgery. In this respect, experimental DBS in animal models is performed to evaluate new indications and new technology. In this article, we review our experience with the concept of experimental DBS, including its development and validation. An electrode construction was developed using clinical principles to perform DBS unilaterally or bilaterally in freely moving rats. The stimulation parameters were adjusted for the rat using current density calculations. We performed validation studies in 2 animal models: a rat model of Parkinson's disease (bilateral 6-hydroxydopamine infusion in the striatum) and a rat model of Huntington's disease (transgenic rats). The effects of DBS were evaluated in different behavioral tasks measuring motor and cognitive functions. The electrode construction developed allows experimental DBS to be performed in freely moving rats. With the current setup, electrodes are placed in the target in 70% to 95% of the cases. Using a rat model, we showed that bilateral DBS of the subthalamic nucleus improves parkinsonian motor disability, but can induce behavioral side effects, similar to the clinical situation. In addition, we showed that DBS of the globus pallidus can improve motor and cognitive symptoms in a rat model of Huntington's disease. Nevertheless, during the process of the development and validation of experimental DBS, we encountered specific problems. These are discussed in detail. Experimental DBS in freely moving animals is an adequate tool to explore new indications for DBS and to refine DBS technology.

  16. Prospects of experimentally reachable beyond Standard Model ...

    Indian Academy of Sciences (India)

    2016-01-06

    Jan 6, 2016 ... Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 2. Prospects of experimentally reachable beyond Standard Model physics in inverse see-saw motivated SO(10) GUT. Ram Lal Awasthi. Special: Supersymmetric Unified Theories and Higgs Physics Volume 86 Issue 2 February 2016 pp 223- ...

  17. Prospects of experimentally reachable beyond Standard Model ...

    Indian Academy of Sciences (India)

    2016-01-06

    Jan 6, 2016 ... also fit perfectly in the model framework. Despite the fact that SM has unravelled the gauge origin of fundamental forces and the structure of Universe while successfully confronting numerous experimental tests, it has various limitations. For a good summary on its excellencies and compulsions see [1], and.

  18. Mouse model of Timothy syndrome recapitulates triad of autistic traits.

    Science.gov (United States)

    Bader, Patrick L; Faizi, Mehrdad; Kim, Leo H; Owen, Scott F; Tadross, Michael R; Alfa, Ronald W; Bett, Glenna C L; Tsien, Richard W; Rasmusson, Randall L; Shamloo, Mehrdad

    2011-09-13

    Autism and autism spectrum disorder (ASD) typically arise from a mixture of environmental influences and multiple genetic alterations. In some rare cases, such as Timothy syndrome (TS), a specific mutation in a single gene can be sufficient to generate autism or ASD in most patients, potentially offering insights into the etiology of autism in general. Both variants of TS (the milder TS1 and the more severe TS2) arise from missense mutations in alternatively spliced exons that cause the same G406R replacement in the Ca(V)1.2 L-type calcium channel. We generated a TS2-like mouse but found that heterozygous (and homozygous) animals were not viable. However, heterozygous TS2 mice that were allowed to keep an inverted neomycin cassette (TS2-neo) survived through adulthood. We attribute the survival to lowering of expression of the G406R L-type channel via transcriptional interference, blunting deleterious effects of mutant L-type channel overactivity, and addressed potential effects of altered gene dosage by studying Ca(V)1.2 knockout heterozygotes. Here we present a thorough behavioral phenotyping of the TS2-neo mouse, capitalizing on this unique opportunity to use the TS mutation to model ASD in mice. Along with normal general health, activity, and anxiety level, TS2-neo mice showed markedly restricted, repetitive, and perseverative behavior, altered social behavior, altered ultrasonic vocalization, and enhanced tone-cued and contextual memory following fear conditioning. Our results suggest that when TS mutant channels are expressed at levels low enough to avoid fatality, they are sufficient to cause multiple, distinct behavioral abnormalities, in line with the core aspects of ASD.

  19. Sleep phenotyping in a mouse model of extreme trait anxiety.

    Directory of Open Access Journals (Sweden)

    Vladimira Jakubcakova

    Full Text Available BACKGROUND: There is accumulating evidence that anxiety impairs sleep. However, due to high sleep variability in anxiety disorders, it has been difficult to state particular changes in sleep parameters caused by anxiety. Sleep profiling in an animal model with extremely high vs. low levels of trait anxiety might serve to further define sleep patterns associated with this psychopathology. METHODOLOGY/PRINCIPAL FINDINGS: Sleep-wake behavior in mouse lines with high (HAB, low (LAB and normal (NAB anxiety-related behaviors was monitored for 24 h during baseline and recovery after 6 h sleep deprivation (SD. The amounts of each vigilance state, sleep architecture, and EEG spectral variations were compared between the mouse lines. In comparison to NAB mice, HAB mice slept more and exhibited consistently increased delta power during non-rapid eye movement (NREM sleep. Their sleep patterns were characterized by heavy fragmentation, reduced maintenance of wakefulness, and frequent intrusions of rapid eye movement (REM sleep. In contrast, LAB mice showed a robust sleep-wake rhythm with remarkably prolonged sleep latency and a long, persistent period of wakefulness. In addition, the accumulation of delta power after SD was impaired in the LAB line, as compared to HAB mice. CONCLUSIONS/SIGNIFICANCE: Sleep-wake patterns were significantly different between HAB and LAB mice, indicating that the genetic predisposition to extremes in trait anxiety leaves a biological scar on sleep quality. The enhanced sleep demand observed in HAB mice, with a strong drive toward REM sleep, may resemble a unique phenotype reflecting not only elevated anxiety but also a depression-like attribute.

  20. Iodine uptake and prostate cancer in the TRAMP mouse model.

    Science.gov (United States)

    Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda

    2013-11-08

    Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I₂) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²⁵I⁻ and ¹²⁵I₂ uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I₂/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I₂ uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.

  1. A new mouse model for female genital schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Monica L Richardson

    2014-05-01

    Full Text Available Over 112 million people worldwide are infected with Schistosoma haematobium, one of the most prevalent schistosome species affecting humans. Female genital schistosomiasis (FGS occurs when S. haematobium eggs are deposited into the female reproductive tract by adult worms, which can lead to pelvic pain, vaginal bleeding, genital disfigurement and infertility. Recent evidence suggests co-infection with S. haematobium increases the risks of contracting sexually transmitted diseases such as HIV. The associated mechanisms remain unclear due to the lack of a tractable animal model. We sought to create a mouse model conducive to the study of immune modulation and genitourinary changes that occur with FGS.To model FGS in mice, we injected S. haematobium eggs into the posterior vaginal walls of 30 female BALB/c mice. A control group of 20 female BALB/c mice were injected with uninfected LVG hamster tissue extract. Histology, flow cytometry and serum cytokine levels were assessed at 2, 4, 6, and 8 weeks post egg injection. Voiding studies were performed at 1 week post egg injection.Vaginal wall injection with S. haematobium eggs resulted in synchronous vaginal granuloma development within 2 weeks post-egg injection that persisted for at least 6 additional weeks. Flow cytometric analysis of vaginal granulomata revealed infiltration by CD4+ T cells with variable expression of the HIV co-receptors CXCR4 and CCR5. Granulomata also contained CD11b+F4/80+ cells (macrophages and eosinophils as well as CXCR4+MerTK+ macrophages. Strikingly, vaginal wall-injected mice featured significant urinary frequency despite the posterior vagina being anatomically distant from the bladder. This may represent a previously unrecognized overactive bladder response to deposition of schistosome eggs in the vagina.We have established a new mouse model that could potentially enable novel studies of genital schistosomiasis in females. Ongoing studies will further explore the

  2. Altered Cortical Ensembles in Mouse Models of Schizophrenia.

    Science.gov (United States)

    Hamm, Jordan P; Peterka, Darcy S; Gogos, Joseph A; Yuste, Rafael

    2017-04-05

    In schizophrenia, brain-wide alterations have been identified at the molecular and cellular levels, yet how these phenomena affect cortical circuit activity remains unclear. We studied two mouse models of schizophrenia-relevant disease processes: chronic ketamine (KET) administration and Df(16)A +/- , modeling 22q11.2 microdeletions, a genetic variant highly penetrant for schizophrenia. Local field potential recordings in visual cortex confirmed gamma-band abnormalities similar to patient studies. Two-photon calcium imaging of local cortical populations revealed in both models a deficit in the reliability of neuronal coactivity patterns (ensembles), which was not a simple consequence of altered single-neuron activity. This effect was present in ongoing and sensory-evoked activity and was not replicated by acute ketamine administration or pharmacogenetic parvalbumin-interneuron suppression. These results are consistent with the hypothesis that schizophrenia is an "attractor" disease and demonstrate that degraded neuronal ensembles are a common consequence of diverse genetic, cellular, and synaptic alterations seen in chronic schizophrenia. Published by Elsevier Inc.

  3. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma.

    Directory of Open Access Journals (Sweden)

    Maria Kärrlander

    Full Text Available Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG, a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B, in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma.

  4. Isolation of mouse respiratory epithelial cells and exposure to experimental cigarette smoke at air liquid interface.

    Science.gov (United States)

    Lam, Hilaire C; Choi, Augustine M K; Ryter, Stefan W

    2011-02-21

    Pulmonary epithelial cells can be isolated from the respiratory tract of mice and cultured at air-liquid interface (ALI) as a model of differentiated respiratory epithelium. A protocol is described for isolating and exposing these cells to mainstream cigarette smoke (CS), in order to study epithelial cell responses to CS exposure. The protocol consists of three parts: the isolation of airway epithelial cells from mouse trachea, the culturing of these cells at air-liquid interface (ALI) as fully differentiated epithelial cells, and the delivery of calibrated mainstream CS to these cells in culture. The ALI culture system allows the culture of respiratory epithelia under conditions that more closely resemble their physiological setting than ordinary liquid culture systems. The study of molecular and lung cellular responses to CS exposure is a critical component of understanding the impact of environmental air pollution on human health. Research findings in this area may ultimately contribute towards understanding the etiology of chronic obstructive pulmonary disease (COPD), and other tobacco-related diseases, which represent major global health problems.

  5. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells.

    Science.gov (United States)

    Lai, Jin-Lun; Liu, Yu-Hui; Peng, Yong-Chong; Ge, Pan; He, Chen-Fei; Liu, Chang; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min

    2017-01-01

    Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF- κ B) P65 protein and inhibitor of kappa B. In addition to its effect on the NF- κ B signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF- κ B and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.

  6. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    Science.gov (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  7. A comparison of the mouse and human lipoproteome: suitability of the mouse model for studies of human lipoproteins.

    Science.gov (United States)

    Gordon, Scott M; Li, Hailong; Zhu, Xiaoting; Shah, Amy S; Lu, L Jason; Davidson, W Sean

    2015-06-05

    Plasma levels of low density lipoproteins (LDL) and high density lipoproteins (HDL) exhibit opposing associations with cardiovascular disease in human populations and mouse models have been heavily used to derive a mechanistic understanding of these relationships. In humans, recent mass spectrometry studies have revealed that the plasma lipoproteome is significantly more complex than originally appreciated. This is particularly true for HDL which contains some 90 distinct proteins, a majority of which play functional roles that go beyond those expected for simple lipid transport. Unfortunately, the mouse lipoproteome remains largely uncharacterized-a significant gap given the heavy reliance on the model. Using a gel filtration chromatography and mass spectrometry analysis that targets phospholipid-bound plasma proteins, we compared the mouse lipoproteome and its size distribution to a previous, identical human analysis. We identified 113 lipid associated proteins in the mouse. In general, the protein diversity in the LDL and HDL size ranges was similar in mice versus humans, though some distinct differences were noted. For the majority of proteins, the size distributions, that is, whether a given protein was associated with large versus small HDL particles, for example, were also similar between species. Again, however, there were clear differences exhibited by a minority of proteins that may reflect metabolic differences between species. Finally, by correlating the lipid and protein size profiles, we identified five proteins that closely track with the major HDL protein, apolipoprotein A-I across both species. Thus, mice have most of the minor proteins identified in human lipoproteins that play key roles in inflammation, innate immunity, proteolysis and its inhibition, and vitamin transport. This provides support for the continued use of the mouse as a model for many aspects of human lipoprotein metabolism.

  8. Single and Multiple Gene Manipulations in Mouse Models of Human Cancer

    Directory of Open Access Journals (Sweden)

    Heather L. Lehman

    2015-01-01

    Full Text Available Mouse models of human cancer play a critical role in understanding the molecular and cellular mechanisms of tumorigenesis. Advances continue to be made in modeling human disease in a mouse, though the relevance of a mouse model often relies on how closely it is able to mimic the histologic, molecular, and physiologic characteristics of the respective human cancer. A classic use of a genetically engineered mouse in studying cancer is through the overexpression or deletion of a gene. However, the manipulation of a single gene often falls short of mimicking all the characteristics of the carcinoma in humans; thus a multiple gene approach is needed. Here we review genetic mouse models of cancers and their abilities to recapitulate human carcinoma with single versus combinatorial approaches with genes commonly involved in cancer.

  9. The mouse gut microbiome revisited: From complex diversity to model ecosystems.

    Science.gov (United States)

    Clavel, Thomas; Lagkouvardos, Ilias; Blaut, Michael; Stecher, Bärbel

    2016-08-01

    Laboratory mice are the most commonly used animal model in translational medical research. In recent years, the impact of the gut microbiota (i.e. communities of microorganisms in the intestine) on host physiology and the onset of diseases, including metabolic and neuronal disorders, cancers, gastrointestinal infections and chronic inflammation, became a focal point of interest. There is abundant evidence that mouse phenotypes in disease models vary greatly between animal facilities or commercial providers, and that this variation is associated with differences in the microbiota. Hence, there is a clear discrepancy between the widespread use of mouse models in research and the patchwork knowledge on the mouse gut microbiome. In the present manuscript, we summarize data pertaining to the diversity and functions of the mouse gut microbiota, review existing work on gnotobiotic mouse models, and discuss challenges and opportunities for current and future research in the field. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Electrochemical desalination of bricks - Experimental and modeling

    DEFF Research Database (Denmark)

    Skibsted, Gry; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Chlorides, nitrates and sulfates play an important role in the salt-decay of porous materials in buildings and monuments. Electrochemical desalination is a technology able to remove salts from such porous materials in order to stop or prevent the decay. In this paper, experimental and numerical......-contaminated bricks with respect to the monovalent ions is discussed. Comparison between the experimental and the simulation results showed that the proposed numerical model is able to predict electrochemical desalination treatments with remarkable accuracy, and it can be used as a predictive tool...

  11. Mechanistically distinct mouse models for CRX-associated retinopathy.

    Directory of Open Access Journals (Sweden)

    Nicholas M Tran

    2014-02-01

    Full Text Available Cone-rod homeobox (CRX protein is a "paired-like" homeodomain transcription factor that is essential for regulating rod and cone photoreceptor transcription. Mutations in human CRX are associated with the dominant retinopathies Retinitis Pigmentosa (RP, Cone-Rod Dystrophy (CoRD and Leber Congenital Amaurosis (LCA, with variable severity. Heterozygous Crx Knock-Out (KO mice ("+/-" have normal vision as adults and fail to model the dominant human disease. To investigate how different mutant CRX proteins produce distinct disease pathologies, we generated two Crx Knock-IN (K-IN mouse models: Crx(E168d2 ("E168d2" and Crx(R90W ("R90W". E168d2 mice carry a frameshift mutation in the CRX activation domain, Glu168del2, which is associated with severe dominant CoRD or LCA in humans. R90W mice carry a substitution mutation in the CRX homeodomain, Arg90Trp, which is associated with dominant mild late-onset CoRD and recessive LCA. As seen in human patients, heterozygous E168d2 ("E168d2/+" but not R90W ("R90W/+" mice show severely impaired retinal function, while mice homozygous for either mutation are blind and undergo rapid photoreceptor degeneration. E168d2/+ mice also display abnormal rod/cone morphology, greater impairment of CRX target gene expression than R90W/+ or +/- mice, and undergo progressive photoreceptor degeneration. Surprisingly, E168d2/+ mice express more mutant CRX protein than wild-type CRX. E168d2neo/+, a subline of E168d2 with reduced mutant allele expression, displays a much milder retinal phenotype, demonstrating the impact of Crx expression level on disease severity. Both CRX([E168d2] and CRX([R90W] proteins fail to activate transcription in vitro, but CRX([E168d2] interferes more strongly with the function of wild type (WT CRX, supporting an antimorphic mechanism. E168d2 and R90W are mechanistically distinct mouse models for CRX-associated disease that will allow the elucidation of molecular mechanisms and testing of novel

  12. Mechanistically Distinct Mouse Models for CRX-Associated Retinopathy

    Science.gov (United States)

    Tran, Nicholas M.; Zhang, Alan; Zhang, Xiaodong; Huecker, Julie B.; Hennig, Anne K.; Chen, Shiming

    2014-01-01

    Cone-rod homeobox (CRX) protein is a “paired-like” homeodomain transcription factor that is essential for regulating rod and cone photoreceptor transcription. Mutations in human CRX are associated with the dominant retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD) and Leber Congenital Amaurosis (LCA), with variable severity. Heterozygous Crx Knock-Out (KO) mice (“+/−”) have normal vision as adults and fail to model the dominant human disease. To investigate how different mutant CRX proteins produce distinct disease pathologies, we generated two Crx Knock-IN (K-IN) mouse models: CrxE168d2 (“E168d2”) and CrxR90W (“R90W”). E168d2 mice carry a frameshift mutation in the CRX activation domain, Glu168del2, which is associated with severe dominant CoRD or LCA in humans. R90W mice carry a substitution mutation in the CRX homeodomain, Arg90Trp, which is associated with dominant mild late-onset CoRD and recessive LCA. As seen in human patients, heterozygous E168d2 (“E168d2/+”) but not R90W (“R90W/+”) mice show severely impaired retinal function, while mice homozygous for either mutation are blind and undergo rapid photoreceptor degeneration. E168d2/+ mice also display abnormal rod/cone morphology, greater impairment of CRX target gene expression than R90W/+ or +/− mice, and undergo progressive photoreceptor degeneration. Surprisingly, E168d2/+ mice express more mutant CRX protein than wild-type CRX. E168d2neo/+, a subline of E168d2 with reduced mutant allele expression, displays a much milder retinal phenotype, demonstrating the impact of Crx expression level on disease severity. Both CRX[E168d2] and CRX[R90W] proteins fail to activate transcription in vitro, but CRX[E168d2] interferes more strongly with the function of wild type (WT) CRX, supporting an antimorphic mechanism. E168d2 and R90W are mechanistically distinct mouse models for CRX-associated disease that will allow the elucidation of molecular mechanisms and testing of

  13. Spontaneous rescue from cystic fibrosis in a mouse model

    Directory of Open Access Journals (Sweden)

    Stanke Frauke

    2006-03-01

    Full Text Available Abstract Background From the original CftrTgH(neoimHgu mutant mouse model with a divergent genetic background (129P2, C57BL/6, MF1 we have generated two inbred CftrTgH(neoimHgu mutant strains named CF/1-CftrTgH(neoimHgu and CF/3-CftrTgH(neoimHgu, which are fertile and show normal growth and lifespan. Initial genome wide scan analysis with microsatellite markers indicated that the two inbred strains differed on the genetic level. In order to further investigate whether these genetic differences have an impact on the disease phenotype of cystic fibrosis we characterised the phenotype of the two inbred strains. Results Reduced amounts, compared to wild type control animals, of correctly spliced Cftr mRNA were detected in the nasal epithelia, lungs and the intestine of both inbred CftrTgH(neoimHgu strains, with higher residual amount observed for CF/1-CftrTgH(neoimHgu than CF/3-CftrTgH(neoimHgu for every investigated tissue. Accordingly the amounts of wild type Cftr protein in the intestine were 9% for CF/1-CftrTgH(neoimHgu and 4% for CF/3-CftrTgH(neoimHgu. Unlike the apparent strain and/or tissue specific regulation of Cftr mRNA splicing, short circuit current measurements in the respiratory and intestinal epithelium revealed that both strains have ameliorated the basic defect of cystic fibrosis with a presentation of a normal electrophysiology in both tissues. Conclusion Unlike the outbred CftrTgH(neoimHgu insertional mouse model, which displayed the electrophysiological defect in the gastrointestinal and respiratory tracts characteristic of cystic fibrosis, both inbred CftrTgH(neoimHgu strains have ameliorated the electrophysiological defect. On the basis of these findings both CF/1-CftrTgH(neoimHgu and CF/3-CftrTgH(neoimHgu offer an excellent model whereby determination of the minimal levels of protein required for the restoration of the basic defect of cystic fibrosis can be studied, along with the modulating factors which may affect this

  14. Rapid target gene validation in complex cancer mouse models using re‐derived embryonic stem cells

    National Research Council Canada - National Science Library

    Huijbers, Ivo J; Bin Ali, Rahmen; Pritchard, Colin; Cozijnsen, Miranda; Kwon, Min‐Chul; Proost, Natalie; Song, Ji‐Ying; Vries, Hilda; Badhai, Jitendra; Sutherland, Kate; Krimpenfort, Paul; Michalak, Ewa M; Jonkers, Jos; Berns, Anton

    2014-01-01

    Human cancers modeled in Genetically Engineered Mouse Models ( GEMM s) can provide important mechanistic insights into the molecular basis of tumor development and enable testing of new intervention strategies...

  15. Deficient Sleep in Mouse Models of Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    R. Michelle Saré

    2017-09-01

    Full Text Available In patients with fragile X syndrome (FXS, sleep problems are commonly observed but are not well characterized. In animal models of FXS (dfmr1 and Fmr1 knockout (KO/Fxr2 heterozygote circadian rhythmicity is affected, but sleep per se has not been examined. We used a home-cage monitoring system to assess total sleep time in both light and dark phases in Fmr1 KO mice at different developmental stages. Fmr1 KOs at P21 do not differ from controls, but genotype × phase interactions in both adult (P70 and P180 groups are statistically significant indicating that sleep in Fmr1 KOs is reduced selectively in the light phase compared to controls. Our results show the emergence of abnormal sleep in Fmr1 KOs during the later stages of brain maturation. Treatment of adult Fmr1 KO mice with a GABAB agonist, R-baclofen, did not restore sleep duration in the light phase. In adult (P70 Fmr1 KO/Fxr2 heterozygote animals, total sleep time was further reduced, once again in the light phase. Our data highlight the importance of the fragile X genes (Fmr1 and Fxr2 in sleep physiology and confirm the utility of these mouse models in enhancing our understanding of sleep disorders in FXS.

  16. Dermal lymphatic dilation in a mouse model of alopecia areata

    Science.gov (United States)

    Sundberg, John P.; Pratt, C. Herbert; Silva, Kathleen A.; Kennedy, Victoria E.; Stearns, Timothy; Sundberg, Beth A.; King, Lloyd E.; HogenEsch, Harm

    2016-01-01

    Mouse models of various types of inflammatory skin disease are often accompanied by increased dermal angiogenesis. The C3H/HeJ inbred strain spontaneously develops alopecia areata (AA), a cell mediated autoimmune disorder that can be controllably expanded using full thickness skin grafts to young unaffected mice. This provides a reproducible and progressive model for AA in which the vascularization of the skin can be examined. Mice receiving skin grafts from AA or normal mice were evaluated at 5, 10, 15, and 20 weeks after engraftment. Lymphatics are often overlooked as they are small slit-like structures above the hair follicle that resemble artifact-like separation of collagen bundles with some fixatives. Lymphatics are easily detected using lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) by immunohistochemistry to label their endothelial cells. Using LYVE1, there were no changes in distribution or numbers of lymphatics although they were more prominent (dilated) in the mice with AA. Lyve1 transcripts were not significantly upregulated except at 10 weeks after skin grafting when clinical signs of AA first become apparent. Other genes involved with vascular growth and dilation or movement of immune cells were dysregulated, mostly upregulated. These findings emphasize aspects of AA not commonly considered and provide potential targets for therapeutic intervention. PMID:26960166

  17. The gut microbiota in mouse models of inflammatory bowel disease.

    Science.gov (United States)

    Gkouskou, Kalliopi K; Deligianni, Chrysoula; Tsatsanis, Christos; Eliopoulos, Aristides G

    2014-01-01

    The intestine and the intestinal immune system have evolved through a symbiotic homeostasis under which a highly diverse microbial flora is maintained in the gastrointestinal tract while pathogenic bacteria are recognized and eliminated. Disruption of the balance between the immune system and the gut microbiota results in the development of multiple pathologies in humans. Inflammatory bowel diseases (IBD) have been associated with alterations in the composition of intestinal flora but whether these changes are causal or result of inflammation is still under dispute. Various chemical and genetic models of IBD have been developed and utilized to elucidate the complex relationship between intestinal epithelium, immune system and the gut microbiota. In this review we describe some of the most commonly used mouse models of colitis and Crohn's disease (CD) and summarize the current knowledge of how changes in microbiota composition may affect intestinal disease pathogenesis. The pursuit of gut-microbiota interactions will no doubt continue to provide invaluable insight into the complex biology of IBD.

  18. The gut microbiota in mouse models of inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Kalliopi eGkouskou

    2014-02-01

    Full Text Available The intestine and the intestinal immune system have evolved through a symbiotic homeostasis under which a highly diverse microbial flora is maintained in the gastrointestinal tract while pathogenic bacteria are recognized and eliminated. Disruption of the balance between the immune system and the gut microbiota results in the development of multiple pathologies in humans. Inflammatory bowel diseases have been associated with alterations in the composition of intestinal flora but whether these changes are causal or result of inflammation is still under dispute. Various chemical and genetic models of inflammatory bowel diseases have been developed and utilized to elucidate the complex relationship between intestinal epithelium, immune system and the gut microbiota. In this review we describe some of the most commonly used mouse models of colitis and Crohn’s disease and summarize the current knowledge of how changes in microbiota composition may affect intestinal disease pathogenesis. The pursuit of gut-microbiota interactions will no doubt continue to provide invaluable insight into the complex biology of inflammatory bowel diseases.

  19. NADPH Oxidase-Related Pathophysiology in Experimental Models of Stroke

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2017-10-01

    Full Text Available Several experimental studies have indicated that nicotinamide adenine dinucleotide phosphate (NADPH oxidases (Nox exert detrimental effects on ischemic brain tissue; Nox-knockout mice generally exhibit resistance to damage due to experimental stroke following middle cerebral artery occlusion (MCAO. Furthermore, our previous MCAO study indicated that infarct size and blood-brain barrier breakdown are enhanced in mice with pericyte-specific overexpression of Nox4, relative to levels observed in controls. However, it remains unclear whether Nox affects the stroke outcome directly by increasing oxidative stress at the site of ischemia, or indirectly by modifying physiological variables such as blood pressure or cerebral blood flow (CBF. Because of technical problems in the measurement of physiological variables and CBF, it is often difficult to address this issue in mouse models due to their small body size; in our previous study, we examined the effects of Nox activity on focal ischemic injury in a novel congenic rat strain: stroke-prone spontaneously hypertensive rats with loss-of-function in Nox. In this review, we summarize the current literature regarding the role of Nox in focal ischemic injury and discuss critical issues that should be considered when investigating Nox-related pathophysiology in animal models of stroke.

  20. Establishment of Orthotopic Lewis Lung Cancer Model in Mouse

    Directory of Open Access Journals (Sweden)

    Xicai WANG

    2010-01-01

    Full Text Available Background and objective The mouse lung cancer orthotopic model includes spontaneous lung cancer model and endotracheal transplanted model, and etc. The spontaneous lung cancer needs longer time and does not ensure the rate of the generation of the tumor; as for endotracheal transplanted model, the position and size of the tumor are instable. In this study, the 3LL cell line was orthotopically transplanted into the lung of the C57BL/6 mice, compare to the heterotopic model, to discuss their stability and transfer-characteristics. And this study was also to optimize the method of establishing lung cancer orthotopic animal model. Methods Different quantity of 3LL cells were inoculated into the left oxter of C57BL/6 mice to establish the heterotopic model; or suspended with Matrigel then inoculated into the left lung of C57BL/6 mice to establish orthotopic model. The survival-time of the mice was examined. The tissue was collected for the subsequent histology assay after euthanizing the mice. Microvessels density (MVD was observed and counted by immunohistological chemistry. CD44v was detected by flow cytometry. Results TTumor-form-rate of the heterotopic group were 100%, 66.7%, 16.7%, respectively, and had no macroscopic transfer. Tumor-form-rate of the orthotopic group were 100%, 100%, 83.3%, respectively, and had widespread transfer in contralateral chest and the lung. The median survival time of the orthotopic group ( 38, 35, 23 days were less than the heterotopic group (82, 72, 50 days. MVD of the orthotopic group (120.2±9.73 was higher than the heterotopic group (92.6±7.12. The expression of CD44v of orthotopic (26.46± 1.56% was higher than the heterotopic group (23.13±1.02%. Conclusion The lung cancer orthotopic model which established by 3LL cells transplanted into the lung of the mice is simple, dependable, repeatable and has stronger transfer characteristics than the heterotopic model.

  1. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  2. Probenecid prevents acute tubular necrosis in a mouse model of aristolochic acid nephropathy.

    Science.gov (United States)

    Baudoux, Thomas E R; Pozdzik, Agnieszka A; Arlt, Volker M; De Prez, Eric G; Antoine, Marie-Hélène; Quellard, Nathalie; Goujon, Jean-Michel; Nortier, Joëlle L

    2012-11-01

    Experimental aristolochic acid nephropathy is characterized by early tubulointerstitial injury followed by fibrosis, reproducing chronic lesions seen in humans. In vitro, probenecid inhibits aristolochic acid entry through organic anion transporters, reduces specific aristolochic acid-DNA adduct formation, and preserves cellular viability. To test this in vivo, we used a mouse model of aristolochic acid nephropathy displaying severe tubulointerstitial injuries consisting of proximal tubular epithelial cell necrosis associated to transient acute kidney injury followed by mononuclear cell infiltration, tubular atrophy, and interstitial fibrosis. Treatment with probenecid prevented increased plasma creatinine and tubulointerstitial injuries, and reduced both the extent and the severity of ultrastructural lesions induced by aristolochic acid, such as the loss of brush border, mitochondrial edema, and the disappearance of mitochondrial crests. Further, the number of proliferating cell nuclear antigen-positive cells and total aristolochic acid-DNA adducts were significantly reduced in mice receiving aristolochic acid plus probenecid compared with mice treated with aristolochic acid alone. Thus, we establish the nephroprotective effect of probenecid, an inhibitor of organic acid transporters, in vivo toward acute proximal tubular epithelial cell toxicity in a mouse model of aristolochic acid nephropathy.

  3. Influence of Stimulant-Induced Hyperactivity on Social Approach in the BTBR Mouse Model of Autism

    Science.gov (United States)

    Silverman, JL; Babineau, BA; Oliver, CF; Karras, MN; Crawley, JN

    2012-01-01

    Translational research is needed to discover pharmacological targets and treatments for the diagnostic behavioral domains of autism spectrum disorders. Animal models with phenotypic relevance to diagnostic criteria offer clear experimental strategies to test the efficacy and safety of novel treatments. Antagonists of mGluR5 receptors are in clinical trials for Fragile X syndrome and under investigation for the treatment of autism spectrum disorders. However, in preclinical studies of mGluR5 compounds tested in our laboratory and others, increased locomotion following mGluR5 modulation has been observed. Understanding the influence of general activity on sociability and repetitive behaviors will increase the accuracy of interpretations of positive outcomes measured from pharmacological treatment that produces locomotor activating or sedating effects. In the present studies, dose-response curves for d-amphetamine (AMPH)-induced hyperlocomotion were similar in standard B6 mice and in the BTBR mouse model of autism. AMPH produced significant, robust reductions in the high level of repetitive self-grooming that characterizes BTBR, and also reduced the low baseline grooming in B6, indicating that AMPH-induced hyperlocomotion competes with time spent engaged in self-grooming. We then tested AMPH in B6 and BTBR on the 3-chambered social approach task. One component of sociability, the time spent in the chamber with the novel mouse, in B6 mice was reduced, while the sniffing time component of sociability in BTBR mice was enhanced. This finding replicated across multiple cohorts treated with AMPH and saline vehicle. In-depth analysis revealed that AMPH increased the number and decreased the duration of sniffing bouts in BTBR, suggesting BTBR treated with AMPH mostly engaged in brief sniffs rather than true social interactions with the novel mouse during the social approach task. Our data suggest that compounds with stimulant properties may have some direct benefits on

  4. Structure guided homology model based design and engineering of mouse antibodies for humanization.

    Science.gov (United States)

    Kurella, Vinodh B; Gali, Reddy

    2014-01-01

    No universal strategy exists for humanizing mouse antibodies, and most approaches are based on primary sequence alignment and grafting. Although this strategy theoretically decreases the immunogenicity of mouse antibodies, it neither addresses conformational changes nor steric clashes that arise due to grafting of human germline frameworks to accommodate mouse CDR regions. To address these issues, we created and tested a structure-based biologic design approach using a de novo homology model to aid in the humanization of 17 unique mouse antibodies. Our approach included building a structure-based de novo homology model from the primary mouse antibody sequence, mutation of the mouse framework residues to the closest human germline sequence and energy minimization by simulated annealing on the humanized homology model. Certain residues displayed force field errors and revealed steric clashes upon closer examination. Therefore, further mutations were introduced to rationally correct these errors. In conclusion, use of de novo antibody homology modeling together with simulated annealing improved the ability to predict conformational and steric clashes that may arise due to conversion of a mouse antibody into the humanized form and would prevent its neutralization when administered in vivo. This design provides a robust path towards the development of a universal strategy for humanization of mouse antibodies using computationally derived antibody homologous structures.

  5. Sparse Statistical Deformation Model for the Analysis of Craniofacial Malformations in the Crouzon Mouse

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Hansen, Michael Sass; Sjöstrand, Karl

    2007-01-01

    Crouzon syndrome is characterised by the premature fusion of cranial sutures. Recently the first genetic Crouzon mouse model was generated. In this study, Micro CT skull scannings of wild-type mice and Crouzon mice were investigated. Using nonrigid registration, a wild-type mouse atlas was built....

  6. Experimental Animal Models in Periodontology: A Review

    Science.gov (United States)

    Struillou, Xavier; Boutigny, Hervé; Soueidan, Assem; Layrolle, Pierre

    2010-01-01

    In periodontal research, animal studies are complementary to in vitro experiments prior to testing new treatments. Animal models should make possible the validation of hypotheses and prove the safety and efficacy of new regenerating approaches using biomaterials, growth factors or stem cells. A review of the literature was carried out by using electronic databases (PubMed, ISI Web of Science). Numerous animal models in different species such as rats, hamsters, rabbits, ferrets, canines and primates have been used for modeling human periodontal diseases and treatments. However, both the anatomy and physiopathology of animals are different from those of humans, making difficult the evaluation of new therapies. Experimental models have been developed in order to reproduce major periodontal diseases (gingivitis, periodontitis), their pathogenesis and to investigate new surgical techniques. The aim of this review is to define the most pertinent animal models for periodontal research depending on the hypothesis and expected results. PMID:20556202

  7. Modeling transcranial electric stimulation in mouse: a high resolution finite element study.

    Science.gov (United States)

    Bernabei, John M; Lee, Won Hee; Peterchev, Angel V

    2014-01-01

    Mouse models are widely used in studies of various forms of transcranial electric stimulation (TES). However, there is limited knowledge of the electric field distribution induced by TES in mice, and computational models to estimate this distribution are lacking. This study examines the electric field and current density distribution in the mouse brain induced by TES. We created a high-resolution finite element mouse model incorporating ear clip electrodes commonly used in mouse TES to study, for example, electroconvulsive therapy (ECT). The electric field strength and current density induced by an ear clip electrode configuration were computed in the anatomically realistic, inhomogenous mouse model. The results show that the median electric field strength induced in the brain at 1 mA of stimulus current is 5.57 V/m, and the strongest field of 20.19 V/m was observed in the cerebellum. Therefore, to match the median electric field in human ECT at 800 mA current, the electrode current in mouse should be set to approximately 15 mA. However, the location of the strongest electric field in posterior brain regions in the mouse does not model well human ECT which targets more frontal regions. Therefore, the ear clip electrode configuration may not be a good model of human ECT. Using high-resolution realistic models for simulating TES in mice may guide the establishment of appropriate stimulation parameters for future in vivo studies.

  8. Innovations in phenotyping of mouse models in the German Mouse Clinic.

    Science.gov (United States)

    Fuchs, Helmut; Gailus-Durner, Valérie; Neschen, Susanne; Adler, Thure; Afonso, Luciana Caminha; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Bohla, Alexander; Calzada-Wack, Julia; Cohrs, Christian; Dewert, Anna; Fridrich, Barbara; Garrett, Lillian; Glasl, Lisa; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Hurt, Anja; Janas, Eva; Janik, Dirk; Kahle, Melanie; Kistler, Martin; Klein-Rodewald, Tanja; Lengger, Christoph; Ludwig, Tonia; Maier, Holger; Marschall, Susan; Micklich, Kateryna; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Räss, Michael; Rathkolb, Birgit; Rozman, Jan; Scheerer, Markus; Schiller, Evelyn; Schrewe, Anja; Steinkamp, Ralph; Stöger, Claudia; Sun, Minxuan; Szymczak, Wilfried; Treise, Irina; Vargas Panesso, Ingrid Liliana; Vernaleken, Alexandra M; Willershäuser, Monja; Wolff-Muscate, Annemarie; Zeh, Ramona; Adamski, Jerzy; Beckers, Johannes; Bekeredjian, Raffi; Busch, Dirk H; Eickelberg, Oliver; Favor, Jack; Graw, Jochen; Höfler, Heinz; Höschen, Christoph; Katus, Hugo; Klingenspor, Martin; Klopstock, Thomas; Neff, Frauke; Ollert, Markus; Schulz, Holger; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Hrabě de Angelis, Martin

    2012-10-01

    Under the label of the German Mouse Clinic (GMC), a concept has been developed and implemented that allows the better understanding of human diseases on the pathophysiological and molecular level. This includes better understanding of the crosstalk between different organs, pleiotropy of genes, and the systemic impact of envirotypes and drugs. In the GMC, experts from various fields of mouse genetics and physiology, in close collaboration with clinicians, work side by side under one roof. The GMC is an open-access platform for the scientific community by providing phenotypic analysis in bilateral collaborations ("bottom-up projects") and as a partner and driver in international large-scale biology projects ("top-down projects"). Furthermore, technology development is a major topic in the GMC. Innovative techniques for primary and secondary screens are developed and implemented into the phenotyping pipelines (e.g., detection of volatile organic compounds, VOCs).

  9. Experimental superficial candidiasis on tissue models.

    Science.gov (United States)

    Jayatilake, J A M S; Samaranayake, L P

    2010-07-01

    Candida species are common pathogens causing superficial mycoses primarily affecting the mucosa and the skin in humans. Crucial steps during pathogenesis of superficial candidiasis comprise fungal adhesion, colonisation and subsequent penetration of the respective tissues. Exploring these pathological events and perhaps fungal and tissue responses towards drug treatment is imperative in the management of this infection. Unfortunately, pathological biopsies of superficial candidiasis do not exhibit the early changes in the host-pathogen interaction as the tissues are already invaded by the fungi. In vivo experimental assessments of pathological processes of superficial candidiasis are also limited because of the difficulties in providing reproducible and comparable conditions in the host environment. Conversely, in vitro models have helped studying fungal-host interactions under more defined and controlled conditions. Some common in vitro models used to simulate superficial candidiasis are chick chorioallantoic membrane, mucosal explants and single layer or multiple layer cell cultures. Interestingly, these experimental approaches share advantages as well as disadvantages when compared with in vivo conditions. Hence, this review intends to discuss about the experimental superficial candidiasis produced in various tissue models and their advantages as well as disadvantages with a particular reference to further improvement of validity and reliability of such experiments.

  10. Impaired peripheral nerve regeneration in type-2 diabetic mouse model.

    Science.gov (United States)

    Pham, Vuong M; Tu, Nguyen Huu; Katano, Tayo; Matsumura, Shinji; Saito, Akira; Yamada, Akihiro; Furue, Hidemasa; Ito, Seiji

    2018-01-01

    Peripheral neuropathy is one of the most common and serious complications of type-2 diabetes. Diabetic neuropathy is characterized by a distal symmetrical sensorimotor polyneuropathy, and its incidence increases in patients 40 years of age or older. In spite of extensive research over decades, there are few effective treatments for diabetic neuropathy besides glucose control and improved lifestyle. The earliest changes in diabetic neuropathy occur in sensory nerve fibers, with initial degeneration and regeneration resulting in pain. To seek its effective treatment, here we prepared a type-2 diabetic mouse model by giving mice 2 injections of streptozotocin and nicotinamide and examining the ability for nerve regeneration by using a sciatic nerve transection-regeneration model previously established by us. Seventeen weeks after the last injection, the mice exhibited symptoms of type-2 diabetes, that is, impaired glucose tolerance, decreased insulin level, mechanical hyperalgesia, and impaired sensory nerve fibers in the plantar skin. These mice showed delayed functional recovery and nerve regeneration by 2 weeks compared with young healthy mice and by 1 week compared with age-matched non-diabetic mice after axotomy. Furthermore, type-2 diabetic mice displayed increased expression of PTEN in their DRG neurons. Administration of a PTEN inhibitor at the cutting site of the nerve for 4 weeks promoted the axonal transport and functional recovery remarkably. This study demonstrates that peripheral nerve regeneration was impaired in type-2 diabetic model and that its combination with sciatic nerve transection is suitable for the study of the pathogenesis and treatment of early diabetic neuropathy. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. [Protective effect of nicotinamide in a mouse Parkinson's disease model].

    Science.gov (United States)

    Xu, Jing; Xu, Sheng-quan; Liang, Jie; Lu, Yuan; Luo, Jian-hong; Jin, Jing-hua

    2012-03-01

    To examine the protective effect of nicotinamide on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) in mouse model and its mechanisms. Parkinson's disease was induced by injection of MPTP in adult male C57BL/6 mice, nicotinamide (500 mg/kg,i.p.) was given prior to subacute (30 mg/kg/d × 5 d,i.p.) MPTP administration. Locomotor activities, striatal dopamine levels, lactate dehydrogenase (LDH) and NO synthase (NOS) activities of whole brains and striatum were analyzed at d5 after last MPTP injections. Pretreatment with nicotinamide significantly improved the locomotor activity in the open-field test (Pclimbing test. Nicotinamide administration resulted in sparing striatal dopamine levels from MPTP-induced dopamine depletion. There was no significant difference in LDH and NOS activities in the whole brains among the groups; but the activities in the striatum were drastically elevated after MPTP treatment. Nicotinamide pretreatment markedly inhibited MPTP-induced LDH and NOS activities (P0.05). Nicotinamide protects dopaminergic neurons against MPTP-induced neurodegeneration,which suggests that the neuroprotective effects be associated with the inhibition of cell injuries and NOS activities.

  12. Increased opioid dependence in a mouse model of panic disorder.

    Science.gov (United States)

    Gallego, Xavier; Murtra, Patricia; Zamalloa, Teresa; Canals, Josep Maria; Pineda, Joseba; Amador-Arjona, Alejandro; Maldonado, Rafael; Dierssen, Mara

    2010-01-01

    Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high-affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3). Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus (LC) neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 LC neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met(5)-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in LC and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.

  13. Increased opioid dependence in a mouse model of panic disorder

    Directory of Open Access Journals (Sweden)

    Xavier Gallego

    2010-02-01

    Full Text Available Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3. Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 locus coeruleus neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in locus coeruleus and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.

  14. The Sound of Silence: Mouse Models for Hearing Loss

    Directory of Open Access Journals (Sweden)

    Sumantra Chatterjee

    2011-01-01

    Full Text Available Sensorineural hearing loss is one of the most common disabilities in humans. It is estimated that about 278 million people worldwide have slight to extreme hearing loss in both ears, which results in an economic loss for the country and personal loss for the individual. It is thus critical to have a deeper understanding of the causes for hearing loss to better manage and treat the affected individuals. The mouse serves as an excellent model to study and recapitulate some of these phenotypes, identify new genes which cause deafness, and to study their roles in vivo and in detail. Mutant mice have been instrumental in elucidating the function and mechanisms of the inner ear. The development and morphogenesis of the inner ear from an ectodermal layer into distinct auditory and vestibular components depends on well-coordinated gene expression and well-orchestrated signaling cascades within the otic vesicle and interactions with surrounding layers of tissues. Any disruption in these pathways can lead to hearing impairment. This review takes a look at some of the genes and their corresponding mice mutants that have shed light on the mechanism governing hearing impairment (HI in humans.

  15. Cannabinoids attenuate cancer pain and proliferation in a mouse model.

    Science.gov (United States)

    Saghafi, Negin; Lam, David K; Schmidt, Brian L

    2011-01-25

    We investigated the effects of cannabinoid receptor agonists on (1) oral cancer cell viability in vitro and (2) oral cancer pain and tumor growth in a mouse cancer model. We utilized immunohistochemistry and Western blot to show that human oral cancer cells express CBr1 and CBr2. When treated with WIN55,212-2 (non-selective), ACEA (CBr1-selective) or AM1241 (CBr2-selective) agonists in vitro, oral cancer cell proliferation was significantly attenuated in a dose-dependent manner. In vivo, systemic administration (0.013M) of WIN55,212-2, ACEA, or AM1241 significantly attenuated cancer-induced mechanical allodynia. Tumor growth was also significantly attenuated with systemic AM1241 administration. Our findings suggest a direct role for cannabinoid mechanisms in oral cancer pain and proliferation. The systemic administration of cannabinoid receptor agonists may have important therapeutic implications wherein cannabinoid receptor agonists may reduce morbidity and mortality of oral cancer. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Multimodal nonlinear optical imaging of cartilage development in mouse model

    Science.gov (United States)

    He, Sicong; Xue, Wenqian; Sun, Qiqi; Li, Xuesong; Huang, Jiandong; Qu, Jianan Y.

    2017-02-01

    Kinesin-1 is a kind of motor protein responsible for intracellular transportation and has been studied in a variety of tissues. However, its roles in cartilage development are not clear. In this study, a kinesin-1 heavy chain (Kif5b) knockout mouse model is used to study the functions of kinesin-1 in the cartilage development. We developed a multimodal nonlinear optical (NLO) microscope system integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) to investigate the morphological and biomedical characteristics of fresh tibial cartilage from normal and mutant mice at different developmental stages. The combined forward and backward SHG imaging resolved the fine structure of collagen fibrils in the extracellular matrix of cartilage. Meanwhile, the chondrocyte morphology in different zones of cartilage was visualized by label-free SRS and TPEF images. The results show that the fibrillar collagen in the superficial zone of cartilage in postnatal day 10 and 15 (P10 and P15) knockout mice was significantly less than that of control mice. Moreover, we observed distorted morphology and disorganization of columnar arrangement of chondrocytes in the growth plate cartilage of mutant mice. This study reveals the significant roles of kinesin-1 in collagen formation and chondrocyte morphogenesis.

  17. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H. (UIC)

    2009-10-21

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  18. Seclazone Reactor Modeling And Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Osinga, T. [ETH-Zuerich (Switzerland); Olalde, G. [CNRS Odeillo (France); Steinfeld, A. [PSI and ETHZ (Switzerland)

    2005-03-01

    A numerical model is formulated for the SOLZINC solar chemical reactor for the production of Zn by carbothermal reduction of ZnO. The model involves solving, by the finite-volume technique, a 1D unsteady state energy equation that couples heat transfer to the chemical kinetics for a shrinking packed bed exposed to thermal radiation. Validation is accomplished by comparison with experimentally measured temperature profiles and Zn production rates as a function of time, obtained for a 5-kW solar reactor tested at PSI's solar furnace. (author)

  19. Beyond the standard model, experimental summary

    CERN Document Server

    McPherson, R A

    2003-01-01

    An overview of experimental results in searches for physics beyond the Standard Model is presented. It is impossible to cover all topics in this field, so a set of examples is used to highlight the scope and breadth of the results. Selected topics include searches for compositeness, flavour changing neutral currents, SUSY, exotic Higgs particles, low scale gravity in extra dimensions, and non commutative geometry. Current results are presented from the LEP, Tevatron Run I, and HERA I experiments. No convincing evidence for physics beyond the Standard Model has been observed. Prospects for ongoing and upcoming experiments are discussed. (40 refs).

  20. Mouse ES cell culture system as a model of development.

    Science.gov (United States)

    Niwa, Hitoshi

    2010-04-01

    Mouse embryonic stem (mES) cells are pluripotent stem cells derived from pre-implantation embryos. They are regarded as an essential tool for studying mouse development, as they provide a means for generating knock-out mouse lines. This, however, is not the sole utility of the mES cell system. They undergo differentiation in culture, mimicking the morphological differentiation of peri-implantation embryos from epiblast to egg-cylinder stage. Moreover, they retain the capacity to respond to triggers of differentiation toward trophectoderm and primitive endoderm by forced activation. For these reasons, mES cells can be regarded as a useful tool for analyzing molecular mechanisms underlying early mouse development.

  1. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling

    Science.gov (United States)

    Koivumäki, Jussi T; Korhonen, Topi; Takalo, Jouni; Weckström, Matti; Tavi, Pasi

    2009-01-01

    Background The cardiomyocyte is a prime example of inherently complex biological system with inter- and cross-connected feedback loops in signalling, forming the basic properties of intracellular homeostasis. Functional properties of cells and tissues have been studied e.g. with powerful tools of genetic engineering, combined with extensive experimentation. While this approach provides accurate information about the physiology at the endpoint, complementary methods, such as mathematical modelling, can provide more detailed information about the processes that have lead to the endpoint phenotype. Results In order to gain novel mechanistic information of the excitation-contraction coupling in normal myocytes and to analyze sophisticated genetically engineered heart models, we have built a mathematical model of a mouse ventricular myocyte. In addition to the fundamental components of membrane excitation, calcium signalling and contraction, our integrated model includes the calcium-calmodulin-dependent enzyme cascade and the regulation it imposes on the proteins involved in excitation-contraction coupling. With the model, we investigate the effects of three genetic modifications that interfere with calcium signalling: 1) ablation of phospholamban, 2) disruption of the regulation of L-type calcium channels by calcium-calmodulin-dependent kinase II (CaMK) and 3) overexpression of CaMK. We show that the key features of the experimental phenotypes involve physiological compensatory and autoregulatory mechanisms that bring the system to a state closer to the original wild-type phenotype in all transgenic models. A drastic phenotype was found when the genetic modification disrupts the regulatory signalling system itself, i.e. the CaMK overexpression model. Conclusion The novel features of the presented cardiomyocyte model enable accurate description of excitation-contraction coupling. The model is thus an applicable tool for further studies of both normal and defective

  2. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling

    Directory of Open Access Journals (Sweden)

    Weckström Matti

    2009-08-01

    Full Text Available Abstract Background The cardiomyocyte is a prime example of inherently complex biological system with inter- and cross-connected feedback loops in signalling, forming the basic properties of intracellular homeostasis. Functional properties of cells and tissues have been studied e.g. with powerful tools of genetic engineering, combined with extensive experimentation. While this approach provides accurate information about the physiology at the endpoint, complementary methods, such as mathematical modelling, can provide more detailed information about the processes that have lead to the endpoint phenotype. Results In order to gain novel mechanistic information of the excitation-contraction coupling in normal myocytes and to analyze sophisticated genetically engineered heart models, we have built a mathematical model of a mouse ventricular myocyte. In addition to the fundamental components of membrane excitation, calcium signalling and contraction, our integrated model includes the calcium-calmodulin-dependent enzyme cascade and the regulation it imposes on the proteins involved in excitation-contraction coupling. With the model, we investigate the effects of three genetic modifications that interfere with calcium signalling: 1 ablation of phospholamban, 2 disruption of the regulation of L-type calcium channels by calcium-calmodulin-dependent kinase II (CaMK and 3 overexpression of CaMK. We show that the key features of the experimental phenotypes involve physiological compensatory and autoregulatory mechanisms that bring the system to a state closer to the original wild-type phenotype in all transgenic models. A drastic phenotype was found when the genetic modification disrupts the regulatory signalling system itself, i.e. the CaMK overexpression model. Conclusion The novel features of the presented cardiomyocyte model enable accurate description of excitation-contraction coupling. The model is thus an applicable tool for further studies of both

  3. Experimental in Vivo Models of Candidiasis

    Directory of Open Access Journals (Sweden)

    Esther Segal

    2018-02-01

    Full Text Available Candidiasis is a multifaceted fungal disease including mucosal-cutaneous, visceral, and disseminated infections caused by yeast species of the genus Candida. Candida infections are among the most common human mycoses. Candida species are the third to fourth most common isolates from bloodstream infections in neutropenic or immunocompromised hospitalized patients. The mucosal-cutaneous forms—particularly vaginal infections—have a high prevalence. Vaginitis caused by Candida species is the second most common vaginal infection. Hence, candidiasis is a major subject for research, including experimental in vivo models to study pathogenesis, prevention, or therapy of the disease. The following review article will focus on various experimental in vivo models in different laboratory animals, such as mammals (mice, rats, rabbits, the fruit fly–Drosophila melanogaster, the larvae of the moth Galleria mellonella, or the free-living nematode Caenorhabditis elegans. The review will describe the induction of the different clinical forms of candidiasis in the various models and the validity of such models in mimicking the human clinical situations. The use of such models for the assessment of antifungal drugs, evaluation of potential vaccines to protect before candidiasis, exploration of Candida virulence factors, and comparison of pathogenicity of different Candida species will be included in the review. All of the above will be reported as based on published studies of numerous investigators as well as on the research of the author and his group.

  4. [Effect of Shouwu Shudi Yin on dopaminegic neurons in MPTP induced Parkinson's disease mouse model].

    Science.gov (United States)

    Tunje, Reginachizi; Ye, Yang-Lie; Sonauddin, Ahmed; Hansraj, Bhugun; Ngawang, Sangye; Shivani, Sharma; Zhang, Xiong; Zhu, Jian-Hong; Liu, Rong-Pei

    2016-09-01

    In order to investigate the effect of Shouwu Shudi Yin on dopaminegic neurons in MPTP induced Parkinson's disease mouse model and the possible mechamism, the experimental mice were randomly divided into 4 groups: control, Shouwu Shudi Yin, MPTP and the treatment (MPTP+Shouwu Shudi Yin) groups. The number of tyrosine hydroxylase (TH) positive cells in the substantia nigra was measured by immunohistochemistry, and mRNA expression of TH and glutathione peroxidase (GPX) were detected by PCR. The results showed that the number of TH positive cells and mRNA expression of TH were significantly reduced in MPTP group compared with the control (PParkinson' s disease induced by MPTP, but it may enhance the antioxidant capacity through increasing the expression of GPX. Copyright© by the Chinese Pharmaceutical Association.

  5. A mouse model of cytogenetic analysis to evaluate caesium137 radiation dose exposure and contamination level in lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roch-Lefevre, Sandrine; Martin-Bodiot, Cecile; Gregoire, Eric; Roy, Laurence [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Dosimetrie Biologique (PRP-HOM/SRBE/LDB), Fontenay aux Roses Cedex (France); Desbree, Aurelie [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-HOM/SDI, Laboratoire d' Evaluation de la Dose Interne, Fontenay aux Roses Cedex (France); Barquinero, Joan Francesc [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Dosimetrie Biologique (PRP-HOM/SRBE/LDB), Fontenay aux Roses Cedex (France); Universitat Autonoma de Barcelona, Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Bellaterra (Spain)

    2016-03-15

    In case of external overexposure to ionizing radiation, an estimation of its genotoxic effects on exposed individuals can be made retrospectively by the measurement of radiation-induced chromosome aberrations on circulating lymphocytes. Compared with external irradiation, intakes of radionuclides may, however, lead to specific features influencing dose distribution at the scale of body, of tissue or even of cell. Therefore, in case of internal contamination by radionuclides, experimental studies, particularly using animal models, are required to better understand mechanisms of their genotoxic effects and to better estimate the absorbed dose. The present study was designed to evaluate a cytogenetic method in mouse peripheral blood lymphocytes that would allow determination of yields and complexities of chromosome aberrations after low-dose rate exposure to {sup 137}Cs delivered in vitro either by irradiation or by contamination. By using M-FISH analysis, we compared the low-dose rate responses observed in mouse to the high-dose rate responses observed both in mouse and in human. Promising similarities between the two species in the relative biological effect evaluation show that our cytogenetic model established in mouse might be useful to evaluate various radiation exposures, particularly relevant in case of intakes of radionuclides. (orig.)

  6. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Vladimir E Bondarenko

    Full Text Available The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca(2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol. The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca(2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca(2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca(2+]i transients; changes in intracellular and transmembrane Ca(2+ fluxes; and [Na(+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca(2+]i transients. In particular, the model includes two subpopulations of the L-type Ca(2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca(2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of

  7. Endometriose: modelo experimental em ratas Endometriosis: experimental model in rats

    Directory of Open Access Journals (Sweden)

    Eduardo Schor

    1999-06-01

    Full Text Available Objetivo: divulgar a metodologia da indução de endometriose experimental em animais de laboratório. Método: utilizamos ratas albinas, virgens, adultas de aproximadamente três meses de idade, que foram inicialmente anestesiadas pelo éter etílico. Aberta a cavidade abdominal, identificamos os cornos uterinos e retiramos um fragmento de aproximadamente 4 cm do corno uterino direito. Esse fragmento foi mergulhado em solução fisiológica e sob lupa estereoscópica foi separado o endométrio do miométrio e feitos retângulos de aproximadamente 4 por 5 mm. Esses foram fixados por meio de fio de sutura, sobre vasos sangüíneos visíveis a olho nu, na parede lateral do abdômen, tomando-se sempre o cuidado de manter a porção do endométrio livre voltada para a luz da cavidade abdominal. Após 21 dias os animais foram novamente operados para verificarmos o tamanho dos implantes e para retirada do endométrio ectópico para análise histológica. Resultados: macroscopicamente observamos crescimento significativo dos implantes endometriais. Ao exame microscópico pudemos observar a presença de epitélio glandular e estroma semelhantes ao do endométrio tópico. Conclusões: o modelo utilizado reproduz a doença, em ratas, sendo método auxiliar de valia para estudar esta afecção, principalmente a ação de medicamentos sobre esses implantes.Purpose: to demonstrate the experimental endometriosis induction in animals. Method: we used adult female Wistar rats weighing 200 - 250 g anesthetized with ethyl ether to open the abdominal cavity. After identifying the uterine horns, we removed an approximately 4 cm fragment from the right uterine horn. This fragment was placed in physiological saline and, with the aid of a stereoscopic magnifying glass, the endometrium was separated from the myometrium and cut into rectangles of approximately 4 x 5 mm. These rectangles were fastened to the lateral abdominal wall near great blood vessels, taking care

  8. A gastrointestinal rotavirus infection mouse model for immune modulation studies

    Directory of Open Access Journals (Sweden)

    van Amerongen Geert

    2011-03-01

    Full Text Available Abstract Background Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The current study was conducted to assess whether colostrum containing rotavirus-specific antibodies (Gastrogard-R® could protect against rotavirus infection. In addition, this illness model was used to study modulatory effects of intervention on several immune parameters after re-infection. Methods BALB/c mice were treated by gavage once daily with Gastrogard-R® from the age of 4 to 10 days, and were inoculated with rhesus rotavirus (RRV at 7 days of age. A secondary inoculation with epizootic-diarrhea infant-mouse (EDIM virus was administered at 17 days of age. Disease symptoms were scored daily and viral shedding was measured in fecal samples during the post-inoculation periods. Rotavirus-specific IgM, IgG and IgG subclasses in serum, T cell proliferation and rotavirus-specific delayed-type hypersensitivity (DTH responses were also measured. Results Primary inoculation with RRV induced a mild but consistent level of diarrhea during 3-4 days post-inoculation. All mice receiving Gastrogard-R® were 100% protected against rotavirus-induced diarrhea. Mice receiving both RRV and EDIM inoculation had a lower faecal-viral load following EDIM inoculation then mice receiving EDIM alone or Gastrogard-R®. Mice receiving Gastrogard-R® however displayed an enhanced rotavirus-specific T-cell proliferation whereas rotavirus-specific antibody subtypes were not affected. Conclusions Preventing RRV-induced diarrhea by Gastrogard-R® early in life showed a diminished protection against EDIM re-infection, but a rotavirus-specific immune response was developed including both B cell and T cell responses. In general, this intervention model can be used for studying clinical symptoms as well as the immune responses required for protection against viral re-infection.

  9. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  10. Nonlinear hierarchical modeling of experimental infection data.

    Science.gov (United States)

    Singleton, Michael D; Breheny, Patrick J

    2016-08-01

    In this paper, we propose a nonlinear hierarchical model (NLHM) for analyzing longitudinal experimental infection (EI) data. The NLHM offers several improvements over commonly used alternatives such as repeated measures analysis of variance (RM-ANOVA) and the linear mixed model (LMM). It enables comparison of relevant biological properties of the course of infection including peak intensity, duration and time to peak, rather than simply comparing mean responses at each observation time. We illustrate the practical benefits of this model and the insights it yields using data from experimental infection studies on equine arteritis virus. Finally, we demonstrate via simulation studies that the NLHM substantially reduces bias and improves the power to detect differences in relevant features of the infection response between two populations. For example, to detect a 20% difference in response duration between two groups (n=15) in which the peak time and peak intensity were identical, the RM-ANOVA test had a power of just 11%, and LMM a power of just 12%. By comparison, the nonlinear model we propose had a power of 58% in the same scenario, while controlling the Type I error rate better than the other two methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Models for Experimental High Density Housing

    Science.gov (United States)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  12. Wound Healing Effects of Rose Placenta in a Mouse Model of Full-Thickness Wounds

    Directory of Open Access Journals (Sweden)

    Yang Woo Kim

    2015-11-01

    Full Text Available BackgroundRosa damascena, a type of herb, has been used for wound healing in Eastern folk medicine. The goal of this study was to evaluate the effectiveness of rose placenta from R. damascena in a full-thickness wound model in mice.MethodsSixty six-week-old C57BL/6N mice were used. Full-thickness wounds were made with an 8-mm diameter punch. Two wounds were made on each side of the back, and wounds were assigned randomly to the control and experimental groups. Rose placenta (250 µg was injected in the experimental group, and normal saline was injected in the control group. Wound sizes were measured with digital photography, and specimens were harvested. Immunohistochemical staining was performed to assess the expression of epidermal growth factor (EGF, vascular endothelial growth factor (VEGF, transforming growth factor-β1 (TGF-β1, and CD31. Vessel density was measured. Quantitative analysis using an enzyme-linked immunosorbent assay (ELISA for EGF was performed. All evaluations were performed on postoperative days 0, 2, 4, 7, and 10. Statistical analyses were performed using the paired t-test.Results On days 4, 7, and 10, the wounds treated with rose placenta were significantly smaller. On day 2, VEGF and EGF expression increased in the experimental group. On days 7 and 10, TGF-β1 expression decreased in the experimental group. On day 10, vessel density increased in the experimental group. The increase in EGF on day 2 was confirmed with ELISA.ConclusionsRose placenta was found to be associated with improved wound healing in a mouse full-thickness wound model via increased EGF release. Rose placenta may potentially be a novel drug candidate for enhancing wound healing.

  13. Modelling human regulatory variation in mouse: finding the function in genome-wide association studies and whole-genome sequencing.

    Directory of Open Access Journals (Sweden)

    Jean-François Schmouth

    Full Text Available An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs, in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX. This method can be applied to most human genes for which a bacterial artificial chromosome (BAC construct can be derived and a mouse-null allele exists. This strategy comprises (1 the use of recombineering technology to create a human variant-harbouring BAC, (2 knock-in of this BAC into the mouse genome using Hprt docking technology, and (3 allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation.

  14. Clock gene expression in human and mouse hepatic models shows similar periodicity but different dynamics of variation.

    Science.gov (United States)

    Mazzoccoli, Gianluigi; Rubino, Rosa; Tiberio, Cristiana; Giuliani, Francesco; Vinciguerra, Manlio; Oben, Jude; De Cata, Angelo; Tarquini, Roberto; De Cosmo, Salvatore; Liu, Shu; Cai, Yanning

    2016-01-01

    The biological hard-wiring of 24-hour rhythmicity relies on the circadian clock circuitry, made of peripheral oscillators operated by molecular clockworks and synchronized through humoral and neural outputs by central oscillators located in the hypothalamic suprachiasmatic nuclei. Metabolically active tissues, such as the liver, are entrained also by local cues represented by metabolic flux related to feeding. The mechanics of the molecular clockwork have been explored by studies using cell lines and wild type or genetically engineered mouse models. There is a compelling need to reduce the use of animals in experimental settings. The aim of our study was to evaluate the periodicity and dynamics of functioning of the hepatic clock gene machinery in human and mouse hepatic models. We compared the results obtained in human hepatoma cells (HepG2 cells) and in mouse liver, and a significant 24-hour rhythmic component was found for five clock genes in the HepG2 cells (Bmal1, Cry1, Per1, Per2, NR1D1) and for six clock genes in the mouse liver (Bmal1, Clock, Cry1, Per1, Per2, NR1D1). The amplitude of oscillation rendered by the cosine curve and the dynamics of expression rendered by the rate of change (the derivative of gene expression level with respect to time) were greater in the mouse liver than in the HepG2 cells for Bmal1, Per1, Per2 and NR1D1, and the cosine curve phase was different for many of them. In conclusion, the periodicity of expression of the clock genes showed similar patterns when the two experimental models were compared, whereas the dynamics of transcription in human hepatoma cells cultured in vitro were less vigorous and phased in a different way when compared to mouse hepatic tissue. The results support the reliability of the human hepatic in vitro model as an alternative to animal models only to study the periodicity of function of the molecular clockwork, but not to evaluate the dynamics of clock gene expression.

  15. CSF transthyretin neuroprotection in a mouse model of brain ischemia

    DEFF Research Database (Denmark)

    Santos, Sofia Duque; Lambertsen, Kate Lykke; Clausen, Bettina Hjelm

    2010-01-01

    Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke....... However, TTR null mice, heterozygous for the heat-shock transcription factor 1 (TTR(-/-) HSF1(+/-) mice), which compromised the stress response, showed a significant increase in cortical infarction, cerebral edema and the microglial-leukocyte response compared with TTR(+/+) HSF1(+/-) mice. Unexpectedly...

  16. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome

    National Research Council Canada - National Science Library

    Osterweil, Emily K; Chuang, Shih-Chieh; Chubykin, Alexander A; Sidorov, Michael; Bianchi, Riccardo; Wong, Robert K S; Bear, Mark F

    2013-01-01

    .... We discovered that lovastatin, a drug that is widely prescribed for the treatment of high cholesterol, can correct excess hippocampal protein synthesis in the mouse model of FXS and can prevent one...

  17. A new conditional Apc-mutant mouse model for colorectal cancer

    NARCIS (Netherlands)

    E.C. Robanus-Maandag (Els); P.J. Koelink (Pim); C. Breukel (Cor); D.C.F. Salvatori (Daniela); S.C. Jagmohan-Changur (Shantie); C.A.J. Bosch (Cathy); H.W. Verspaget; P. Devilee (Peter); R. Fodde (Riccardo); M.J.M. Smits (Ron)

    2010-01-01

    textabstractMutations of the adenomatous polyposis coli (APC) gene predispose individuals to familial adenomatous polyposis (FAP), characterized by multiple tumours in the large intestine. Most mouse models heterozygous for truncating mutant Apc alleles mimic FAP, however, the intestinal tumours

  18. Inhibition of Dermatophilus congolensis infection in a mouse model by antibiotic-producing staphylococci.

    OpenAIRE

    Noble, W. C.; Lloyd, D. H.; Appiah, S. N.

    1980-01-01

    In an acute model of skin infection with Dermatophilus congolensis in the mouse, lesions can be prevented by simultaneous application of staphylococci which produce antibiotics; non-producer staphylococci fail to inhibit lesion formation.

  19. Inhibition of Dermatophilus congolensis infection in a mouse model by antibiotic-producing staphylococci.

    Science.gov (United States)

    Noble, W C; Lloyd, D H; Appiah, S N

    1980-12-01

    In an acute model of skin infection with Dermatophilus congolensis in the mouse, lesions can be prevented by simultaneous application of staphylococci which produce antibiotics; non-producer staphylococci fail to inhibit lesion formation.

  20. Rifalazil and derivative compounds show potent efficacy in a mouse model of H. pylori colonization.

    Science.gov (United States)

    Rothstein, David M; Mullin, Steve; Sirokman, Klari; Söndergaard, Karen L; Johnson, Starrla; Gwathmey, Judith K; van Duzer, John; Murphy, Christopher K

    2008-08-01

    The rifamycin rifalazil (RFZ), and derivatives (NCEs) were efficacious in a mouse model of Helicobacter pylori colonization. Select NCEs were more active in vitro and showed greater efficacy than RFZ. A systemic component contributes to efficacy.

  1. Mouse Model of Human Breast Cancer Initiated by a Fusion Oncogene

    National Research Council Canada - National Science Library

    Orkin, Stuart H

    2006-01-01

    In this study, we generated a novel mouse model of human breast cancer based on a recurrent chromosomal translocation that produces the TEL-NTRK3 fusion oncogene, as the initiating mutation in human...

  2. Alterations in nuclear structure promote lupus autoimmunity in a mouse model

    National Research Council Canada - National Science Library

    Singh, Namrata; Johnstone, Duncan B; Martin, Kayla A; Tempera, Italo; Kaplan, Mariana J; Denny, Michael F

    2016-01-01

    ... the nuclear membrane protein lamin B receptor (LBR), consistent with their Pelger-Huet-like nuclear morphology, we used a novel mouse model system to test the hypothesis that a disruption in the structure of the nucleus itself also contributes...

  3. Novel autoimmune response in a tauopathy mouse model

    Directory of Open Access Journals (Sweden)

    Carlos J Nogueras-Ortiz

    2014-01-01

    Full Text Available Molecular diagnostic tools with non-invasive properties that allow detection of pathological events in Alzheimer’s disease (AD and other neurodegenerative tauopathies are essential for the development of therapeutics. Several diagnostic strategies based on the identification of biomarkers have been proposed. However, its specificity among neurodegenerative disorders is disputable as the association with pathological events remains elusive. Recently, we showed that Amphiphysin-1 (AMPH1 protein’s abundance is reduced in the central nervous system (CNS of the tauopathy mouse model JNPL3 and AD brains. AMPH1 is a synaptic protein that plays an important role in clathrin-mediated endocytosis and associates with BIN1, one of the most important risk loci for AD. Also, it has been associated with a rare neurological disease known as Stiff-Person Syndrome (SPS. Auto-antibodies against AMPH1 are used as diagnostic biomarkers for a paraneoplastic variant of SPS. Therefore, we set up to evaluate the presence and abundance of auto-AMPH1 antibodies in tau-mediated neurodegeneration. Immunoblots and enzyme-linked immunosorbent assays (ELISA were conducted to detect the presence of auto-AMPH1 antibodies in sera from euthanized mice that developed neurodegeneration (JNPL3 and healthy control mice (NTg. Results showed increased levels of auto-AMPH1 antibodies in JNPL3 sera compared to NTg controls. The abundance of auto-AMPH1 antibodies correlated with motor impairment and AMPH1 protein level decrease in the CNS. The results suggest that auto-AMPH1 antibodies could serve as a biomarker for the progression of tau-mediated neurodegeneration in JNPL3 mice.

  4. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  5. Superficial tension: experimental model with simple materials

    Directory of Open Access Journals (Sweden)

    Tintori Ferreira, María Alejandra

    2012-09-01

    Full Text Available In this work appears a didactic offer based on an experimental activity using materials of very low cost, orientated to achieving that the student understand and interpret the phenomenon of superficial tension together with the importance of the modeling in sciences. It has as principal aim of education bring the student over to the mechanics of the static fluids and the intermolecular forces, combining scientific contents with questions near to the student what provides an additional motivation to the reflection of the scientific investigation.

  6. A Mouse Model to Investigate Postmenopausal Biology as an Etiology of Ovarian Cancer Risk

    Science.gov (United States)

    2009-11-01

    We investigated the potential use of genetically engineered Vesicular Stomatitis Virus ( VSV ) to treat ovarian cancer using the Wv mouse models. We...l e i n f oArticle history: Received 2 September 2009 Available online x Keywords: Ovarian Cancer Therapy Oncolytic virus VSV Tumor mouse models...cancer is an urgent agenda. We investigated the potential use of genetically engineered Vesicular Stomatitis Virus ( VSV ) to treat ovarian cancer patients

  7. Disease Heterogeneity and Immune Biomarkers in Preclinical Mouse Models of Ovarian Carcinogenesis

    Science.gov (United States)

    2015-10-01

    1 Award Number: W81XWH-10-1-0525 TITLE: Disease Heterogeneity and Immune Biomarkers in Preclinical Mouse Models of Ovarian Carcinogenesis...Disease Heterogeneity and Immune Biomarkers in Preclinical Mouse Models of Ovarian Carcinogenesis Magee Womens Research Institute 204 Craft Ave...KrasPten mice Aim 2: To profile disease heterogeneity and to identify immune biomarkers of natural and vaccine-induced immune responses in mice with

  8. Per- and polyfluoro toxicity (LC(50) inhalation) study in rat and mouse using QSAR modeling.

    Science.gov (United States)

    Bhhatarai, Barun; Gramatica, Paola

    2010-03-15

    Fully or partially fluorinated compounds, known as per- and polyfluorinated chemicals are widely distributed in the environment and released because of their use in different household and industrial products. Few of these long chain per- and polyfluorinated chemicals are classified as emerging pollutants, and their environmental and toxicological effects are unveiled in the literature. This has diverted the production of long chain compounds, considered as more toxic, to short chains, but concerns regarding the toxicity of both types of per- and polyfluorinated chemicals are alarming. There are few experimental data available on the environmental behavior and toxicity of these compounds, and moreover, toxicity profiles are found to be different for the types of animals and species used. Quantitative structure-activity relationship (QSAR) is applied to a combination of short and long chain per- and polyfluorinated chemicals, for the first time, to model and predict the toxicity on two species of rodents, rat (Rattus) and mouse (Mus), by modeling inhalation (LC(50)) data. Multiple linear regression (MLR) models using the ordinary-least-squares (OLS) method, based on theoretical molecular descriptors selected by genetic algorithm (GA), were used for QSAR studies. Training and prediction sets were prepared a priori, and these sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the model was verified on a larger set of per- and polyfluorinated chemicals retrieved from different databases and journals. The descriptors involved, the similarities, and the differences observed between models pertaining to the toxicity related to the two species are discussed. Chemometric methods such as principal component analysis (PCA) and multidimensional scaling (MDS) were used to select most toxic compounds from those within the AD of both models, which will be subjected to experimental tests

  9. Regulatory Forum commentary: alternative mouse models for future cancer risk assessment.

    Science.gov (United States)

    Morton, Daniel; Sistare, Frank D; Nambiar, Prashant R; Turner, Oliver C; Radi, Zaher; Bower, Nancy

    2014-07-01

    International regulatory and pharmaceutical industry scientists are discussing revision of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S1 guidance on rodent carcinogenicity assessment of small molecule pharmaceuticals. A weight-of-evidence approach is proposed to determine the need for rodent carcinogenicity studies. For compounds with high human cancer risk, the product may be labeled appropriately without conducting rodent carcinogenicity studies. For compounds with minimal cancer risk, only a 6-month transgenic mouse study (rasH2 mouse or p53+/- mouse) or a 2-year mouse study would be needed. If rodent carcinogenicity testing may add significant value to cancer risk assessment, a 2-year rat study and either a 6-month transgenic mouse or a 2-year mouse study is appropriate. In many cases, therefore, one rodent carcinogenicity study could be sufficient. The rasH2 model predicts neoplastic findings relevant to human cancer risk assessment as well as 2-year rodent models, produces fewer irrelevant neoplastic outcomes, and often will be preferable to a 2-year rodent study. Before revising ICH S1 guidance, a prospective evaluation will be conducted to test the proposed weight-of-evidence approach. This evaluation offers an opportunity for a secondary analysis comparing the value of alternative mouse models and 2-year rodent studies in the proposed ICH S1 weight-of-evidence approach for human cancer risk assessment. © 2014 by The Author(s).

  10. Exogenous glycosaminoglycans coat damaged bladder surfaces in experimentally damaged mouse bladder

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2005-03-01

    Full Text Available Abstract Background Interstital cystitis is often treated with exogenous glycosaminoglycans such as heparin, chondroitin sulphate (Uracyst, hyaluronate (Cystistat or the semi-synthetic pentosan polysulphate (Elmiron. The mechanism of action is presumed to be due to a coating of the bladder surface to replace the normally present chondroitin sulphate and heparan sulphate lost as a result of the disease. This study used fluorescent labelled chondroitin sulphate to track the distribution of glycosaminoglycans administered intravesically to mouse bladder that had been damaged on the surface. Methods The surfaces of mouse bladders were damaged by 3 mechanisms – trypsin, 10 mM HCl, and protamine sulphate. Texas Red-labeled chondroitin sulphate was instilled into the bladders of animals with damaged bladders and controls instilled only with saline. Bladders were harvested, frozen, and sectioned for examination by fluorescence. Results The normal mouse bladder bound a very thin layer of the labelled chondroitin sulphate on the luminal surface. Trypsin- and HCl-damaged bladders bound the labelled chondroitin sulphate extensively on the surface with little penetration into the bladder muscle. Protamine produced less overt damage, and much less labelling was seen, presumably due to loss of the label as it complexed with the protamine intercalated into the bladder surface. Conclusion Glycosaminoglycan administered intravesically does bind to damaged bladder. Given that the changes seen following bladder damage resemble those seen naturally in interstitial cystitis, the mechanisms proposed for the action of these agents is consistent with a coating of damaged bladder.

  11. Muscle injury: review of experimental models.

    Science.gov (United States)

    Souza, Jaqueline de; Gottfried, Carmem

    2013-12-01

    Skeletal muscle is the most abundant tissue in the human body. Its main characteristic is the capacity to regenerate after injury independent of the cause of injury through a process called inflammatory response. Mechanical injuries are the most common type of the skeletal muscle injuries and are classified into one of three areas strain, contusion, and laceration. First, this review aims to describe and compare the main experimental methods that replicate the mechanical muscle injuries. There are several ways to replicate each kind of mechanical injury; there are, however, specific characteristics that must be taken into account when choosing the most appropriate model for the experiment. Finally, this review discusses the context of mechanical injury considering types, variability of methods, and the ability to reproduce injury models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mouse lung infection model to assess Rhodococcus equi virulence and vaccine protection.

    Science.gov (United States)

    González-Iglesias, Patricia; Scortti, Mariela; MacArthur, Iain; Hapeshi, Alexia; Rodriguez, Héctor; Prescott, John F; Vazquez-Boland, José A

    2014-08-06

    The pathogenic actinomycete Rhodococcus equi causes severe purulent lung infections in foals and immunocompromised people. Although relatively unsusceptible to R. equi, mice are widely used for in vivo studies with this pathogen. The most commonly employed mouse model is based on systemic (intravenous) infection and determination of R. equi burdens in spleen and liver. Here, we investigated the murine lung for experimental infection studies with R. equi. Using a 10(7)CFU intranasal challenge in BALB/c mice, virulent R. equi consistently survived in quantifiable numbers up to 10 days in the lungs whereas virulence-deficient R. equi bacteria were rapidly cleared. An internally controlled virulence assay was developed in which the test R. equi strains are co-inoculated and monitored in the same mouse. Isogenic R. equi bacteria lacking either the plasmid vapA gene or the entire virulence plasmid were compared using this competitive assay. Both strains showed no significant differences in in vivo fitness in the lung, indicating that the single loss of the virulence factor VapA was sufficient to account for the full attenuation seen in the absence of the virulence plasmid. To test the adequacy of the lung infection model for monitoring R. equi vaccine efficacy, BALB/c mice were immunized with live R. equi and challenged intranasally. Vaccination conferred protection against acute pulmonary challenge with virulent R. equi. Our data indicate that the murine lung infection model provides a useful tool for both R. equi virulence and vaccine studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comparative analysis and modeling of the severity of steatohepatitis in DDC-treated mouse strains.

    Directory of Open Access Journals (Sweden)

    Vikash Pandey

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. METHODOLOGY AND RESULTS: In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA and S-adenosylmethionine (SAMe metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis. CONCLUSIONS: We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE, 15-hydroxyeicosatetraenoic acid (15-HETE and prostaglandin D2 (PGD2 are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A

  14. Comparative Analysis and Modeling of the Severity of Steatohepatitis in DDC-Treated Mouse Strains

    Science.gov (United States)

    Pandey, Vikash; Sultan, Marc; Kashofer, Karl; Ralser, Meryem; Amstislavskiy, Vyacheslav; Starmann, Julia; Osprian, Ingrid; Grimm, Christina; Hache, Hendrik; Yaspo, Marie-Laure; Sültmann, Holger; Trauner, Michael; Denk, Helmut; Zatloukal, Kurt; Lehrach, Hans; Wierling, Christoph

    2014-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH) showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. Methodology and Results In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA) and S-adenosylmethionine (SAMe) metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis. Conclusions We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE), 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin D2 (PGD2) are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A/J and C57BL/6J

  15. Isobolographic Analysis of the Interaction Between Tapentadol and Ketorolac in a Mouse Model of Visceral Pain.

    Science.gov (United States)

    Zapata-Morales, Juan R; Aragon-Martinez, Othoniel H; Adriana Soto-Castro, Tely; Alonso-Castro, Ángel J; Castañeda-Santana, Demian I; Isiordia-Espinoza, Mario A

    2016-06-01

    Preclinical Research The aim of this experimental assay was to assess the antinociceptive interaction between tapentadol and ketorolac in the acetic acid-induced writhing model in mice. Tapentadol (5.62-31.6 mg/kg ip) or ketorolac (5.62-31.6 mg/kg ip) were administered 15 min before the acetic acid administration. The ED50 values of the individual drugs were determined and different proportions (tapentadol-ketorolac in 1:1, 3:1, and 1:3) were assayed in combination in the writhing test. Isobolographic analysis and the interaction index demonstrated an antinociceptive synergistic interaction between tapentadol and ketorolac in all combination. Thus, the experimental ED50 values were lower when compared with their theoretical ED50 values. These data suggest that the tapentadol-ketorolac combination produces an antinociceptive synergistic interaction in the mouse acetic acid-induced writhing model. Drug Dev Res 77 : 187-191, 2016.   © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    Science.gov (United States)

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  17. Lysed Enterococcus faecalis FK-23 (LFK Suppressing Allergic Responses in Mouse Models

    Directory of Open Access Journals (Sweden)

    Takashi Shimada

    2005-01-01

    Full Text Available Recently, several clinical trials have been published to discuss the possibility of probiotic supplementation, especially some products of lactic acid bacteria such as Lactobacillus and Bifidobacterium strains, in prevention and treatment of allergic disorders. However, the results of some investigations were inconsistent with each other. The contradictory effect of probiotics among different individuals might suggest differences in genetic or environmental factors, or both. It is conceivably beneficial to use inbred mice as experimental models to explore whether the effect of probiotics on limiting allergy is under the influence of genetic factors. In this review, firstly, we summarized recent publications regarding the effects of lysed Enterococcus faecalis FK-23 (LFK, which is a preparation of a probiotic lactic acid bacterium strain, on suppressing allergic responses in BALB/c mice. And then, we presented our latest data focused on the effects of LFK on suppressing active cutaneous anaphylaxis and local accumulation of eosinophils in four inbred mouse models by using the BALB/c, C57BL/ 6, C3H/HeN and C3H/HeJ strains. The finding of our experimental study suggests that the effect of LFK on combating allergic inflammatory reactions might be affect by individuals’ hereditary background.

  18. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Yuki Kita

    Full Text Available BACKGROUND: Optimal treatment for nonalcoholic steatohepatitis (NASH has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model. METHODOLOGY/PRINCIPAL FINDINGS: Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH. CONCLUSIONS/SIGNIFICANCE: These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance.

  19. Organ models in wound ballistics: experimental study.

    Science.gov (United States)

    Ozer, Mustafa Tahir; Oğünç, Gökhan; Eryilmaz, Mehmet; Yiğit, Taner; Menteş, Mustafa Oner; Dakak, Mehmet; Uzar, Ali Ihsan; Oner, Köksal

    2007-01-01

    Effects of various types and diameters of guns and related treatment principles are different. Our study was performed to experimentally demonstrate the effects of different gunshots in body tissues. 9x19 mm hand-gun and 7.62x51 mm G-3 infantry rifle were used in the study. Injury models were created through hand-gun and rifle shootings at isolated soft tissue, lower extremity, liver and intestine tissue simulants made of ballistic candle. High-speed cameras were used to capture 1000 frames per second. Images were examined and wound mechanisms were evaluated. It was observed that the colon content distributed more within the surrounding tissues by the rifle shootings comparing with hand-gun shootings and could be an infection source due to the large size of the cavity in the colon. Especially when the bullets hitting the bone were investigated, it was seen that much more tissue injury occurs with high speed bullets due to bullet deformation and fragmentation. However, no significant difference was found between the effect of hand-gun and rifle bullets passing through the extremity without hitting the bone. To know the type of the gun that caused the injury and its characteristics will allow to estimate severity and size of the injury before the treatment and to focus on different alternatives of treatment. Therefore, use of appropriate models is required in experimental studies.

  20. A mouse model for binge-level methamphetamine use

    Directory of Open Access Journals (Sweden)

    Shkelzen Shabani

    2016-11-01

    Full Text Available Binge/crash cycles of methamphetamine (MA use are frequently reported by individuals suffering from MA use disorders. An MA binge is self-reported as multiple daily doses that commonly accumulate to 800 mg/day (~10 mg/kg/day for a 170 pound human. A genetic animal model with a similar vulnerability to binge-level MA intake is missing. We used selectively bred MA high drinking (MAHDR and low drinking (MALDR mouse lines to determine whether several procedural variations would result in binge-level MA intake. Data were also collected in two progenitor populations of the MA drinking lines, the DBA/2J (D2 strain and the F2 cross of the D2 and C57BL/6J strains. The impact of 3 factors was examined: (1 concentration of MA in the two-bottle choice procedure used for selective breeding; (2 ratio of bottles containing MA vs. water, and (3 length of the withdrawal (or abstinence period between MA drinking sessions. When MA concentration was progressively increased every 4 days in 20 mg/l amounts from 20 to 140 mg/l, maximum intake in MALDR mice was 1.1 mg/kg, whereas MAHDR mice consumed as much as 14.6 mg/kg. When these concentrations were tested in a multiple bottle choice procedure, the highest ratio of MA to water bottles (3:1 was associated with escalated MA intake of up to 29.1 mg/kg in MAHDR mice and 12.0 mg/kg in F2 mice; MALDR mice did not show a ratio-dependent escalation in MA intake. Finally, MAHDR and D2 mice were offered 3 bottles of MA vs. water at increasing concentrations from 20 to 80 mg/l, and tested under an intermittent 6-h withdrawal period, which was lengthened to 30 hours (D2 mice or to 30 or 78 hours (MAHDR. D2 and MAHDR mice initially consumed similar amounts of 14-16 mg/kg MA, but D2 mice reduced their MA intake 3-fold after introduction of 30-h abstinence periods, whereas MAHDR mice retained their high level of intake regardless of withdrawal period. MAHDR mice provide a genetic model of binge-level MA intake appropriate for the

  1. The Effects of Genetic Background of Mouse Models of Cancer: Friend or Foe?

    Science.gov (United States)

    Reilly, Karlyne M

    2016-03-01

    Over the past century, mice have been selectively bred to give rise to the strains used in biomedical research today. Mouse models of cancer allow researchers to control variables of diet, environment, and genetic heterogeneity to better dissect the role of these factors in cancer in humans. Because of the important role of genetic background in cancer, the strain of the mouse can introduce confounding results in studies of mouse models if not properly controlled. Conversely, genetic variation between strains can also provide important new insights into cancer mechanisms. Here, the sources of genetic heterogeneity in mouse models are reviewed, with an explanation of how heterogeneity modifies cancer phenotypes. © 2016 Cold Spring Harbor Laboratory Press.

  2. Models of intestinal infection by Salmonella enterica: introduction of a new neonate mouse model [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Marc Schulte

    2016-06-01

    Full Text Available Salmonella enterica serovar Typhimurium is a foodborne pathogen causing inflammatory disease in the intestine following diarrhea and is responsible for thousands of deaths worldwide. Many in vitro investigations using cell culture models are available, but these do not represent the real natural environment present in the intestine of infected hosts. Several in vivo animal models have been used to study the host-pathogen interaction and to unravel the immune responses and cellular processes occurring during infection. An animal model for Salmonella-induced intestinal inflammation relies on the pretreatment of mice with streptomycin. This model is of great importance but still shows limitations to investigate the host-pathogen interaction in the small intestine in vivo. Here, we review the use of mouse models for Salmonella infections and focus on a new small animal model using 1-day-old neonate mice. The neonate model enables researchers to observe infection of both the small and large intestine, thereby offering perspectives for new experimental approaches, as well as to analyze the Salmonella-enterocyte interaction in the small intestine in vivo.

  3. A critical period of progesterone withdrawal precedes endometrial breakdown and shedding in mouse menstrual-like model.

    Science.gov (United States)

    Wang, Qianxing; Xu, Xiangbo; He, Bin; Li, Yunfeng; Chen, Xihua; Wang, Jiedong

    2013-06-01

    Is there a critical period of progesterone (P4) withdrawal in a mouse menstrual-like model, and at what time after P4 withdrawal endometrial breakdown become irreversible? Our results showed that a 12-16 h critical period of P4 withdrawal exists in the mouse menstrual-like model. P4 withdrawal is the trigger for endometrial breakdown and shedding during menstruation. To date, the molecular mechanisms responsible for endometrial breakdown have not been fully elucidated. In an ovariectomized macaque model, P4 replacement could reduce or block menses during a period of 36-48 h after P4 withdrawal, but after this, P4 supplementation did not reduce or block menses. Thus, in the macaque, a critical period of P4 withdrawal lasting 36-48 h exists before menses. We created a mouse menstrual-like model and restored P4 at four time points. The total number of mice was 120 and the duration of treatment was 26 days. A mouse menstrual model was characterized by endometrial morphology and plasma P4 levels. P4 was then replaced at 8, 12, 16 and 20 h after the removal of P4 implants. Vaginal smears, endometrial morphology, plasma P4 levels and expression patterns of matrix metalloproteinases (MMP-2, MMP-3, MMP-9, MMP-10, MMP-11 and MMP-13) were investigated. Replacement of P4 at 8 and 12 h blocked menstrual-like bleeding and endometrial shedding; however, replacement at 16 and 20 h did not suppress bleeding or shedding. Furthermore, P4 replacement at 12 h inhibited the expression of all latent or active MMPs; however, replacement at 16 h inhibited only pMMP-13. Although determination of the critical period in vivo using a mouse model was successfully demonstrated, the mechanisms of P4 regulation need to be further explored. The experimental opportunities provided by the mouse model will facilitate understanding the role of P4 in the regulation of menstruation and help to identify new targets for the clinical intervention of menstrual disorders.

  4. Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2010-11-01

    Full Text Available Abstract Background Serum Amyloid A (SAA is a major acute phase protein of unknown function. SAA is mostly expressed in the liver, but also in other tissues including the intestinal epithelium. SAA reportedly has anti-bacterial effects, and because inflammatory bowel diseases (IBD result from a breakdown in homeostatic interactions between intestinal epithelia and bacteria, we hypothesized that SAA is protective during experimental colitis. Methods Intestinal SAA expression was measured in mouse and human samples. Dextran sodium sulfate (DSS colitis was induced in SAA 1/2 double knockout (DKO mice and in wildtype controls. Anti-bacterial effects of SAA1/2 were tested in intestinal epithelial cell lines transduced with adenoviral vectors encoding the CE/J SAA isoform or control vectors prior to exposure to live Escherichia coli. Results Significant levels of SAA1/SAA2 RNA and SAA protein were detected by in situ hybridization and immunohistochemistry in mouse colonic epithelium. SAA3 expression was weaker, but similarly distributed. SAA1/2 RNA was present in the ileum and colon of conventional mice and in the colon of germfree mice. Expression of SAA3 was strongly regulated by bacterial lipopolysaccharides in cultured epithelial cell lines, whereas SAA1/2 expression was constitutive and not LPS inducible. Overexpression of SAA1/2 in cultured epithelial cell lines reduced the viability of co-cultured E. coli. This might partially explain the observed increase in susceptibility of DKO mice to DSS colitis. SAA1/2 expression was increased in colon samples obtained from Crohn's Disease patients compared to controls. Conclusions Intestinal epithelial SAA displays bactericidal properties in vitro and could play a protective role in experimental mouse colitis. Altered expression of SAA in intestinal biopsies from Crohn's Disease patients suggests that SAA is involved in the disease process..

  5. A novel mouse xenotransplantation model of EBV-T/NK-LPD and the application of the mouse model.

    Science.gov (United States)

    Imadome, Ken-Ichi

    2013-01-01

    Chronic active Epstein-Barr virus (EBV) infection (CAEBV), characterized by proliferation of EBV-infected T or NK cells, is a disease of unknown pathogenesis and requires hematopoietic stem cell transplantation for curative treatment. Here we show that intravenous injection of peripheral blood mononuclear cells (PBMCs) isolated from patients with CAEBV to NOD/Shi-scid/IL-2R γ(null) (NOG) mice leads to engraftment of EBV-infected T or NK cells. Analysis of TCR repertoire identified an identical predominant EBV-infected T-cell clone both in a patient and a mouse transplanted with his PBMCs. EBV-infected T or NK cells infiltrated to most major organs including the liver, spleen, lungs, kidneys, adrenal glands, and intestine, showing histological characteristics of CAEBV. Expression of EBNA1, LMP1, and LMP2A, but not EBNA2, in these cells indicated the latency II program of EBV gene characteristic to CAEBV. High levels of TNF-α, IFN-γ, and RANTES were detected in the peripheral blood of these mice. EBV-containing fractions of either CD8(+), γδT, or NK cell lineages failed to engraft, once they were isolated from PBMCs ; they could engraft only when CD4(+) cell fraction was transplanted in parallel. Isolated EBV-containing CD4(+) T cells, in contrast, did engraft on their own. This is the first report of an animal model of CAEBV and suggest that EBV-infected T or NK cells in CAEBV are not truly neoplastic but are dependent on CD4(+) T cells for their proliferation in vivo.

  6. p38 Mitogen-activated protein kinase accelerates emphysema in mouse model of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Amano, Hiroyuki; Murata, Kazuya; Matsunaga, Hirofumi; Tanaka, Kensuke; Yoshioka, Kento; Kobayashi, Takeshi; Ishida, Junji; Fukamizu, Akiyoshi; Sugiyama, Fumihiro; Sudo, Tatsuhiko; Kimura, Sadao; Tatsumi, Koichiro; Kasuya, Yoshitoshi

    2014-08-01

    There are few short-term mouse models of chronic obstructive pulmonary disease (COPD) mimicking the human disease. In addition, p38 is recently recognized as a target for the treatment of COPD. However, the precise mechanism how p38 contributes to the pathogenesis of COPD is still unknown. We attempted to create a new mouse model for COPD by intra-tracheal administration of a mixture of lipopolysaccharide (LPS) and cigarette smoke solution (CSS), and investigated the importance of the p38 mitogen-activated protein kinase (p38) pathway in the pathogenesis of COPD. Mice were administered LPS + CSS once a day on days 0-4 and 7-11. Thereafter, CSS alone was administered to mice once a day on days 14-18. On day 28, histopathological changes of the lung were evaluated, and bronchoalveolar lavage fluid (BALF) was subjected to western blot array for cytokines. Transgenic (TG) mice expressing a constitutive-active form of MKK6, a p38-specific activator in the lung, were subjected to our experimental protocol of COPD model. LPS + CSS administration induced enlargement of alveolar air spaces and destruction of lung parenchyma. BALF analyses of the LPS + CSS group revealed an increase in expression levels of several cytokines involved in the pathogenesis of human COPD. These results suggest that our experimental protocol can induce COPD in mice. Likewise, histopathological findings of the lung and induction of cytokines in BALF from MKK6 c.a.-TG mice were more marked than those in WT mice. In a new experimental COPD mouse model, p38 accelerates the development of emphysema.

  7. A mouse model of osteonecrotic femoral head induced by methylprednisolone and lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Ha Thi -Ngan Le

    2016-03-01

    Full Text Available Introduction: Osteonecrosis of the femoral head is caused by various factors, including prolonged use of steroid drugs, use of alcohol, vascular injuries and hemoglobinopathies. This study aims to develop a mouse model for glucocorticoid-induced avascular necrosis (AVN of the femoral head.Methods: Adult mice were randomly divided into two groups: experimental and control. Group A (the experimental group was given (via intramuscular injection 10 mg/kg of lipopolysaccharide (LPS and 30 mg/kg of methylprednisolone (MPS. Each mouse additionally received MPS in divided oral doses of 13 mg/kg for 10 consecutive days. Group B (the control group received normal saline at the same location and same volume as those in Group A. Histological changes of the femoral heads were observed by electron microscopy at 3, 5, and 7 weeks after the last chemical injection. The percentage of empty lacunae was measured randomly and the expression of fibrocartilage was evaluated using an image analyz and shy;ing system. The expression of CD31 and VEGF-R2 were observed by immunohistochemistry. The bone marrow-derived mononuclear cells were stained with propidium iodide and cell cycle was analyzed by flow cytometry. Results:The results showed that at weeks 3 and 5, mice in Group A showed an increase in body weight. From weeks 5 to 7, mouse body weight in both groups remained constant. No difference in bone morphology was observed at week 7. The percentage of empty lacunae was 5.87 2.49% at week 5 and 21.58 8.10% at week 7. After 7 weeks, chondrocyte degeneration and fibrocartilage expression were observed. Moreover, the density of CD31 and VEGF-R2 markers increased in the femoral head. The rate of apoptosis in the bone marrow increased at week 3 then decreased. Conclusion: The data show that MPS, combined with LPS, can induce in mice features typical of early AVN of the femoral head. [Biomed Res Ther 2016; 3(3.000: 548-556

  8. Experimental drug STA-8666 causes complete tumor regression in animal models of pediatric sarcomas | Center for Cancer Research

    Science.gov (United States)

    New studies from scientists in the NCI Center for Cancer Research’s (CCR) Pediatric Oncology Branch suggest that an experimental drug called STA-8666 could be an effective treatment for the childhood cancers Ewing sarcoma and rhabdomyosarcoma. In mouse models of these diseases, STA-8666 eliminated tumors and prolonged survival beyond that of animals treated with a related drug, irinotecan. Read more…

  9. Experimental Basis for IED Particle Model

    Science.gov (United States)

    Zheng-Johansson, J.

    2009-05-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. arxiv:0812.3951, J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  10. Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever

    Science.gov (United States)

    2009-07-01

    thromboplastin time [aPTT]) were determined using ThromboScreen (Fisher Diagnostics). Tissues from each mouse were col- lected in 10% neutral buffered...Pokhodiaev, K. L. Lopatov, and I. V. Firsova. 1991. The sensitivity of different experimental animals to the Mar- burg virus. Vopr. Virusol. 36:435–437. 24

  11. Therapeutic effects of traditional Chinese medicine Niubeixiaohe in mouse tuberculosis models.

    Science.gov (United States)

    Liang, Yan; Wang, Xiaomei; Song, Jinying; Wang, Lan; Chen, Dan; Yang, Yourong; Bai, Xuejuan; Wang, Jie; Shi, Yingchang; Chen, Shibing; Liu, Jun; Yang, Cunwei; Luo, Huafeng; Liu, Guangling; Wu, Xueqiong

    2017-01-04

    The traditional Chinese medicine Niubeixiaohe (NBXH) is an effective anti-tuberculosis prescription, which is made up of Bulbus Fritillariae Cirrhosae, Rhizoma Bletillae, Radix Platycodonis, Fructus Arctii, Herba Houttuyniae and Glutinous rice. In this study, NBXH powder (I) and three kinds of NBXH extracts (II, III, and IV) were prepared. The water decoction of NBXH had been used to treat TB in clinic sixteen years suggested that it was effective to treat TB. This study evaluated the effects of different processing products of NBXH on mouse TB model in vivo and provide a new Chinese medicine for the clinical treatment of TB. In this study, 120 female BALB/c mice infected with Mycobacterium tuberculosis H37Rv, were treated with distilled water, M. vaccae vaccine, the low, middle and high doses of NBXH I, the low, middle and high doses of NBXH II, the low, middle and high doses of NBXH III, the low, middle and high doses of NBXH IV for 12 weeks, respectively. The body weights of mice in all NBXH groups were higher than that in the water group. The weight indexes of the spleens in M. vaccae group, the middle dose of NBXH II group, the low dose of NBXH IV group and in the high dose of NBXH IV group were significantly lower than that in the water group(Ptraditional Chinese medicine NBXH all had anti-tuberculosis therapeutic effects on mouse tuberculosis model, and this study provided a base for the further development of Chinese patent medicine NBXH. Also, this is the first report on comprehensive experimental research of NBXH extracts coming from six kinds of traditional Chinese medicine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Establishment of Orthotopic Xuanwei Lung Cancer SCID Mouse Model 
and Analysis of Biological Properties

    Directory of Open Access Journals (Sweden)

    Yongchun ZHOU

    2012-08-01

    Full Text Available Background and objective The incidence of Xuanwei lung cancer ranks first in China, and its pathogenesis requires in-depth investigation. This study aims to establish an orthotopic Xuanwei lung cancer severe combined immunodeficiency (SCID mouse model and to provide a basic experimental platform for further study. Methods The Xuanwei lung cancer cell line XWLC-05 was inoculated into the lung tissue of SCID mice in high and low doses. The tumor formation rates, tumor characteristics, spontaneous metastases, and survival times of the mice were observed, taking a subcutaneously transplanted tumor as control. Results The tumor formation rates of the orthotopic transplantation of lung cancer cells in high and low doses were 81% and 83%, respectively, among which mice in the high-dose group appeared cachectic on day 13. Extensive invasion and adhesion were observed in the contralateral lung and thoracic cavity, but no distant metastasis was exhibited. Mice with low-dose cells in the orthotopic transplantation group appeared cachectic and distant metastasis occurred on day 25. The tumor formation rates in the subcutaneous inoculation group by the high and low doses of cells were 100% and 94.5%, respectively, and no distant metastasis was observed. The rate of metastasis within the orthotopic transplantation group and between the orthotopic and subcutaneous inoculation groups showed a significant difference (P<0.05. A significant difference was indicated by the survival rate within and between the groups (P<0.001. Conclusion We successfully established an orthotopic XWLC SCID mouse model, which lays the foundation for a more in-depth study.

  13. A progressive translational mouse model of human valosin-containing protein disease: the VCP(R155H/+) mouse.

    Science.gov (United States)

    Nalbandian, Angèle; Llewellyn, Katrina J; Badadani, Mallikarjun; Yin, Hong Z; Nguyen, Christopher; Katheria, Veeral; Watts, Giles; Mukherjee, Jogeshwar; Vesa, Jouni; Caiozzo, Vincent; Mozaffar, Tahseen; Weiss, John H; Kimonis, Virginia E

    2013-02-01

    Mutations in the valosin-containing protein (VCP) gene cause hereditary inclusion body myopathy (IBM) associated with Paget disease of bone (PDB), and frontotemporal dementia (FTD). More recently, these mutations have been linked to 2% of familial amyotrophic lateral sclerosis (ALS) cases. A knock-in mouse model offers the opportunity to study VCP-associated pathogenesis. The VCP(R155H/+) knock-in mouse model was assessed for muscle strength and immunohistochemical, Western blot, apoptosis, autophagy, and microPET/CT imaging analyses. VCP(R155H/+) mice developed significant progressive muscle weakness, and the quadriceps and brain developed progressive cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies, and increased LC3-II staining. MicroCT analyses revealed Paget-like lesions at the ends of long bones. Spinal cord demonstrated neurodegenerative changes, ubiquitin, and TDP-43 pathology of motor neurons. VCP(R155H/+) knock-in mice represent an excellent preclinical model for understanding VCP-associated disease mechanisms and future treatments. Copyright © 2012 Wiley Periodicals, Inc.

  14. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    Energy Technology Data Exchange (ETDEWEB)

    Melo M, B.; Ferreira F, C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T., E-mail: bmm@cdtn.br [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil)

    2015-10-15

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM{sub B}RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM{sub B}RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse

  15. Experimental models of autoimmune inflammatory ocular diseases

    Directory of Open Access Journals (Sweden)

    Fabio Gasparin

    2012-04-01

    Full Text Available Ocular inflammation is one of the leading causes of blindness and loss of vision. Human uveitis is a complex and heterogeneous group of diseases characterized by inflammation of intraocular tissues. The eye may be the only organ involved, or uveitis may be part of a systemic disease. A significant number of cases are of unknown etiology and are labeled idiopathic. Animal models have been developed to the study of the physiopathogenesis of autoimmune uveitis due to the difficulty in obtaining human eye inflamed tissues for experiments. Most of those models are induced by injection of specific photoreceptors proteins (e.g., S-antigen, interphotoreceptor retinoid-binding protein, rhodopsin, recoverin, phosducin. Non-retinal antigens, including melanin-associated proteins and myelin basic protein, are also good inducers of uveitis in animals. Understanding the basic mechanisms and pathogenesis of autoimmune ocular diseases are essential for the development of new treatment approaches and therapeutic agents. The present review describes the main experimental models of autoimmune ocular inflammatory diseases.

  16. Experimental model for Porphyromonas gingivalis infection in animals.

    Science.gov (United States)

    Eke, P I; Rotimi, V O; Laughon, B E

    1996-03-01

    A virulence model suitable for studying the dynamics of Porphyromonas gingivalis infection, including the pathogenicity of P. gingivalis in experimentally induced infections of multiple organs was developed using mouse and hamster. Virulence of P. gingivalis strains was expressed contrastingly in subcutaneous (sc) infection in the Murine abscess model (MAM) and the Hamsters abscess model (HAM). Subcutaneous infection in the MAM was characterized by a gravity abscess, spreading from the primary site of inoculation downwards, frequently erupting as a secondary lesion. In contract, s.c. P. gingivalis infection in HAM was characterized as a palpable localized abscess at the primary site of inoculation. When the Semi-Solid Agar (SSA) was added to the mono-culture of P. gingivalis, reproducibility of infection in both models was enhanced. P. gingivalis culture supplemented with haemin, or combined with oral Actinomyces viscosus had its virulence overtly enhanced and often fatal in the MAM. Menadione, Eh reducing agents and mixture with the Streptococcus or A. neaslundii did not potentiate virulence in either mode. Transtracheal challenge of the lungs of hamster with P. gingivalis initiated an early pneumonitis and later sequelae of necrosis and abscess formation. Also, abscess was induced by direct inoculation of P. gingivalis in the muscles, liver and testes, but did not induce intra-abdominal abscesses. In conclusion, the HAM applied with the SSA procedure caused a localized P. gingivalis tissue infection with practical advantages for quantitative and qualitative studies of P. gingivalis infections. This study also demonstrates the pathogenic potential of P. gingivalis by reproducing similar infections in multiple anatomical sites.

  17. A human experimental model of episodic pain

    DEFF Research Database (Denmark)

    Petrini, Laura; Hennings, Kristian; Li, Xi

    2014-01-01

    were subjected to 45 min of intense painful cutaneous electrical stimulation (episodic pain session), using a stimulus paradigm that in animals has been shown to induce long-term potentiation. These electrical stimulations produced a verbal pain rating of approximately 85 on a 0-100 verbal rating scale......An experimental model of daily episodic pain was developed to investigate peripheral sensitization and cortical reorganization in healthy individuals. Two experiments (A and B) were conducted. Experiments A and B consisted of one and five consecutive days, respectively, in which the participants...... (VRS). Physiological (blood flow and axon flare reflex), psychophysical (perception threshold and verbal pain ratings) and electrophysiological (128 channels recorded somatosensory evoked potential (SEP)) measurements were recorded. The stimulation evoked a visible axon flare reflex and caused...

  18. Uncovering Pathogenic Mechanisms of Inflammatory Bowel Disease Using Mouse Models of Crohn's Disease-Like Ileitis: What is the Right Model?

    Science.gov (United States)

    Cominelli, Fabio; Arseneau, Kristen O; Rodriguez-Palacios, Alexander; Pizarro, Theresa T

    2017-07-01

    Crohn's disease and ulcerative colitis, together known as inflammatory bowel disease, are debilitating chronic disorders of unknown cause and cure. Our evolving understanding of these pathologies is enhanced greatly by the use of animal models of intestinal inflammation that allow in vivo mechanistic studies, preclinical evaluation of new therapies, and investigation into the causative factors that underlie disease pathogenesis. Several animal models, most commonly generated in mice, exist for the study of colitis. The appropriateness of their use often can be determined by their mode of generation (ie, chemical induction, T-cell transfer, targeted genetic manipulation, spontaneously occurring, and so forth), the type of investigation (mechanistic studies, pathogenic experiments, preclinical evaluations, and so forth), and the type of inflammation that occurs in the model (acute vs chronic colitis, tissue injury/repair, and so forth). Although most murine models of inflammatory bowel disease develop inflammation in the colon, Crohn's disease most commonly occurs in the terminal ileum, where a very limited number of mouse models manifest disease. This review discusses appropriate experimental applications for different mouse models of colitis, and highlights the particular utility of 2 highly relevant models of Crohn's-like ileitis-the spontaneous SAMP1/YitFc inbred mouse strain and the genetically engineered Tnf(ΔAU-rich element/+) mouse model of tumor necrosis factor overexpression, both of which bear strong resemblance to the human condition. Similar to patients with Crohn's disease, SAMP1/YitFc ileitis develops spontaneously, without chemical, genetic, or immunologic manipulation, making this model particularly relevant for studies aimed at identifying the primary defect underlying the occurrence of Crohn's ileitis, as well as preclinical testing of novel treatment modalities.

  19. Experimental validation of model Hortel Whillier; Validacion experimental del model de Hottel-Whillier

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Munoz, F.; Cejudo Lopez, J. M.; Carrillo andres, A.

    2010-07-01

    Comparing the results of testing of a commercial flat-plate solar collector with a detailed implementation model of Hottel Whillier fin and tube. The validation procedure is based on comparing experimental and theoretical curves and more likely uncertainty bands. the model correctly predicts the end of profits and underestimates the 5% of losses, although a sensitivity analysis shows that this result is not attributable to the model itself but to the inputs with which it was implemented. The model has difficulty differentiating between the terms of linear and quadratic losses that appear in the quadratic fit curve. (Author) 1 refs.

  20. The mouse as a model for human biology: a resource guide for complex trait analysis.

    Science.gov (United States)

    Peters, Luanne L; Robledo, Raymond F; Bult, Carol J; Churchill, Gary A; Paigen, Beverly J; Svenson, Karen L

    2007-01-01

    The mouse has been a powerful force in elucidating the genetic basis of human physiology and pathophysiology. From its beginnings as the model organism for cancer research and transplantation biology to the present, when dissection of the genetic basis of complex disease is at the forefront of genomics research, an enormous and remarkable mouse resource infrastructure has accumulated. This review summarizes those resources and provides practical guidelines for their use, particularly in the analysis of quantitative traits.

  1. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease.

    Science.gov (United States)

    Agrawal, Anurodh Shankar; Garron, Tania; Tao, Xinrong; Peng, Bi-Hung; Wakamiya, Maki; Chan, Teh-Sheng; Couch, Robert B; Tseng, Chien-Te K

    2015-04-01

    The emergence of Middle East respiratory syndrome-coronavirus (MERS-CoV) in the Middle East since 2012 has caused more than 900 human infections with ∼40% mortality to date. Animal models are needed for studying pathogenesis and for development of preventive and therapeutic agents against MERS-CoV infection. Nonhuman primates (rhesus macaques and marmosets) are expensive models of limited availability. Although a mouse lung infection model has been described using adenovirus vectors expressing human CD26/dipeptidyl peptidase 4 (DPP4), it is believed that a transgenic mouse model is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. We show that transgenic mice globally expressing hCD26/DPP4 were fully permissive to MERS-CoV infection, resulting in relentless weight loss and death within days postinfection. High infectious virus titers were recovered primarily from the lungs and brains of mice at 2 and 4 days postinfection, respectively, whereas viral RNAs were also detected in the heart, spleen, and intestine, indicating a disseminating viral infection. Infected Tg(+) mice developed a progressive pneumonia, characterized by extensive inflammatory infiltration. In contrast, an inconsistent mild perivascular cuffing was the only pathological change associated with the infected brains. Moreover, infected Tg(+) mice were able to activate genes encoding for many antiviral and inflammatory mediators within the lungs and brains, coinciding with the high levels of viral replication. This new and unique transgenic mouse model will be useful for furthering knowledge of MERS pathogenesis and for the development of vaccine and treatments against MERS-CoV infection. Small and economical animal models are required for the controlled and extensive studies needed for elucidating pathogenesis and development of vaccines and antivirals against MERS. Mice are the most desirable small-animal species for this purpose because of

  2. Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia

    Science.gov (United States)

    Nardiello, Claudio; Mižíková, Ivana; Silva, Diogo M.; Ruiz-Camp, Jordi; Mayer, Konstantin; Vadász, István; Herold, Susanne; Seeger, Werner

    2017-01-01

    ABSTRACT Progress in developing new therapies for bronchopulmonary dysplasia (BPD) is sometimes complicated by the lack of a standardised animal model. Our objective was to develop a robust hyperoxia-based mouse model of BPD that recapitulated the pathological perturbations to lung structure noted in infants with BPD. Newborn mouse pups were exposed to a varying fraction of oxygen in the inspired air (FiO2) and a varying window of hyperoxia exposure, after which lung structure was assessed by design-based stereology with systemic uniform random sampling. The efficacy of a candidate therapeutic intervention using parenteral nutrition was evaluated to demonstrate the utility of the standardised BPD model for drug discovery. An FiO2 of 0.85 for the first 14 days of life decreased total alveoli number and concomitantly increased alveolar septal wall thickness, which are two key histopathological characteristics of BPD. A reduction in FiO2 to 0.60 or 0.40 also caused a decrease in the total alveoli number, but the septal wall thickness was not impacted. Neither a decreasing oxygen gradient (from FiO2 0.85 to 0.21 over the first 14 days of life) nor an oscillation in FiO2 (between 0.85 and 0.40 on a 24 h:24 h cycle) had an appreciable impact on lung development. The risk of missing beneficial effects of therapeutic interventions at FiO2 0.85, using parenteral nutrition as an intervention in the model, was also noted, highlighting the utility of lower FiO2 in selected studies, and underscoring the need to tailor the model employed to the experimental intervention. Thus, a state-of-the-art BPD animal model that recapitulates the two histopathological hallmark perturbations to lung architecture associated with BPD is described. The model presented here, where injurious stimuli have been systematically evaluated, provides a most promising approach for the development of new strategies to drive postnatal lung maturation in affected infants. PMID:28067624

  3. Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia

    Directory of Open Access Journals (Sweden)

    Claudio Nardiello

    2017-02-01

    Full Text Available Progress in developing new therapies for bronchopulmonary dysplasia (BPD is sometimes complicated by the lack of a standardised animal model. Our objective was to develop a robust hyperoxia-based mouse model of BPD that recapitulated the pathological perturbations to lung structure noted in infants with BPD. Newborn mouse pups were exposed to a varying fraction of oxygen in the inspired air (FiO2 and a varying window of hyperoxia exposure, after which lung structure was assessed by design-based stereology with systemic uniform random sampling. The efficacy of a candidate therapeutic intervention using parenteral nutrition was evaluated to demonstrate the utility of the standardised BPD model for drug discovery. An FiO2 of 0.85 for the first 14 days of life decreased total alveoli number and concomitantly increased alveolar septal wall thickness, which are two key histopathological characteristics of BPD. A reduction in FiO2 to 0.60 or 0.40 also caused a decrease in the total alveoli number, but the septal wall thickness was not impacted. Neither a decreasing oxygen gradient (from FiO2 0.85 to 0.21 over the first 14 days of life nor an oscillation in FiO2 (between 0.85 and 0.40 on a 24 h:24 h cycle had an appreciable impact on lung development. The risk of missing beneficial effects of therapeutic interventions at FiO2 0.85, using parenteral nutrition as an intervention in the model, was also noted, highlighting the utility of lower FiO2 in selected studies, and underscoring the need to tailor the model employed to the experimental intervention. Thus, a state-of-the-art BPD animal model that recapitulates the two histopathological hallmark perturbations to lung architecture associated with BPD is described. The model presented here, where injurious stimuli have been systematically evaluated, provides a most promising approach for the development of new strategies to drive postnatal lung maturation in affected infants.

  4. A progressive translational mouse model of human valosin-containing protein disease: The VCPR155H/+ mouse

    OpenAIRE

    Nalbandian, A; Llewellyn, KJ; Badadani, M; Yin, HZ; Nguyen, C; Katheria, V; G. Watts; Mukherjee, J.; Vesa, J; Caiozzo, V; Mozaffar, T. (Tahseen); Weiss, JH; Kimonis, VE

    2013-01-01

    Introduction: Mutations in the valosin-containing protein (VCP) gene cause hereditary inclusion body myopathy (IBM) associated with Paget disease of bone (PDB), and frontotemporal dementia (FTD). More recently, these mutations have been linked to 2% of familial amyotrophic lateral sclerosis (ALS) cases. A knock-in mouse model offers the opportunity to study VCP-associated pathogenesis. Methods: The VCP R155H/+ knock-in mouse model was assessed for muscle strength and immunohistochemical, Wes...

  5. Development of a unique mouse model for pancreatic cancer lymphatic metastasis.

    Science.gov (United States)

    Long, Jiang; Luo, Guopei; Liu, Chen; Cui, Xiaobo; Satoh, Kei; Xiao, Zhiwen; Zhang, Bo; Xu, Jin; Ni, Quanxing; Li, Min; Yu, Xianjun

    2012-11-01

    Lymphatic metastasis of pancreatic cancer is a predictor of poor prognosis. However, the molecular mechanisms are largely unknown, thus, making the development of appropriate cell lines and experimental models critically important for future investigations. The purpose of the present study was to establish a 'pancreatic cancer cell and mouse model with high lymphatic metastasis potential' for in-depth study of the underlying mechanisms. The BxPC-3-LN subline, derived from the BxPC-3 human pancreatic cancer cell line, was established through serial passages in nude mice via footpad injections. The subline was able to develop notable lymphatic metastases in 100% of the recipient mice 8 weeks after tumor cell implantation. Compared with the parental BxPC-3 cells, BxPC-3-LN cells were more aggressive, displaying invasive ultrastructure, increased migration and invasion ability, and chemoresistance. Metastasis-related gene alteration including upregulation of MMP14, MMP24, MIF and ADRM1, and downregulation of TGFB2 and ROBO1 were also observed in BxPC-3-LN cells by cDNA microarrays. Thus, the newly selected BxPC-3-LN subline can serve as a unique model for further study of lymphatic metastasis of pancreatic cancer.

  6. Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Zoe eFonseca-Kelly

    2012-05-01

    Full Text Available Resveratrol is a naturally-occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE, a model of multiple sclerosis. In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current studies examine potential neuroprotective and immunomodulatory effects of resveratrol in chronic EAE induced by immunization with myelin oligodendroglial glycoprotein peptide in C57/Bl6 mice. Effects of two distinct formulations of resveratrol administered daily orally were compared. Resveratrol delayed the onset of EAE compared to vehicle-treated EAE mice, but did not prevent or alter the phenotype of inflammation in spinal cords or optic nerves. Significant neuroprotective effects were observed, with higher numbers of retinal ganglion cells found in eyes of resveratrol-treated EAE mice with optic nerve inflammation. Results demonstrate that resveratrol prevents neuronal loss in this chronic demyelinating disease model, similar to its effects in relapsing EAE. Differences in immunosuppression compared with prior studies suggest that immunomodulatory effects may be limited and may depend on specific immunization parameters or timing of treatment. Importantly, neuroprotective effects can occur without immunosuppression, suggesting a potential additive benefit of resveratrol in combination with anti-inflammatory therapies for multiple sclerosis.

  7. Defining the role of polyamines in colon carcinogenesis using mouse models

    Directory of Open Access Journals (Sweden)

    Natalia A Ignatenko

    2011-01-01

    Full Text Available Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention.

  8. A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains.

    Science.gov (United States)

    Sankoorikal, Geena Mary V; Kaercher, Kristin A; Boon, Catherine J; Lee, Jin Kyoung; Brodkin, Edward S

    2006-03-01

    Impairments in social behaviors are highly disabling symptoms of autism, schizophrenia, and other psychiatric disorders. Mouse model systems are useful for identifying the many genes and environmental factors likely to affect complex behaviors, such as sociability (the tendency to seek social interaction). To progress toward developing such a model system, we tested the hypothesis that C57BL/6J inbred mice show higher levels of sociability than BALB/cJ inbred mice. Mice tested for sociability were 4- and 9-week-old, male and female C57BL/6J and BALB/cJ mice. On 2 consecutive days, the sociability of each test mouse toward an unfamiliar 4-week-old DBA/2J stimulus mouse was assessed with a social choice paradigm conducted in a three-chambered apparatus. Measures of sociability included the time that the test mouse spent near versus far from the stimulus mouse, the time spent directly sniffing the stimulus mouse, and the time spent in contact between test and stimulus mice in a free interaction. C57BL/6J mice showed higher levels of sociability than BALB/cJ mice overall in each of these measures. We propose that C57BL/6J and BALB/cJ mice will be a useful mouse model system for future genetic and neurobiological studies of sociability.

  9. Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model.

    Science.gov (United States)

    Maes, Wim; Van Gool, Stefaan W

    2011-02-01

    Nearly twenty years of experimental immunotherapy for malignant glioma yielded important insights in the mechanisms governing glioma immunology. Still considered promising, it is clear that immunotherapy does not on its own represent the magic bullet in glioma therapy. In this review, we summarize the major immunotherapeutic achievements in the mouse GL261 glioma model, which has emerged as the gold standard syngeneic model for experimental glioma therapy. Gene therapy, monoclonal antibody treatment, cytokine therapy, cell transfer strategies and dendritic cell therapy were hereby considered. Apart from the considerable progress made in understanding glioma immunology in this model, we also addressed its most pertinent issues and shortcomings. Despite these, the GL261 model will remain indispensable in glioma research since it is a fast, highly reproducible and easy-to-establish model system.

  10. Effects of Anethole in Nociception Experimental Models

    Directory of Open Access Journals (Sweden)

    Alessandra Mileni Versuti Ritter

    2014-01-01

    Full Text Available This study investigated the antinociceptive activity of anethole (anethole 1-methoxy-4-benzene (1-propenyl, major compound of the essential oil of star anise (Illicium verum, in different experimental models of nociception. The animals were pretreated with anethole (62.5, 125, 250, and 500 mg/kg one hour before the experiments. To eliminate a possible sedative effect of anethole, the open field test was conducted. Anethole (62.5, 125, 250, and 500 mg/kg showed an antinociceptive effect in the writhing model induced by acetic acid, in the second phase of the formalin test (125 and 250 mg/kg in the test of glutamate (62.5, 125, and 250 mg/kg, and expresses pain induced by ACF (250 mg/kg. In contrast, anethole was not able to increase the latency time on the hot plate and decrease the number of flinches during the initial phase of the formalin test in any of the doses tested. It was also demonstrated that anethole has no association with sedative effects. Therefore, these data showed that anethole, at all used doses, has no sedative effect and has an antinociceptive effect. This effect may be due to a decrease in the production/release of inflammatory mediators.

  11. Tendon healing in vivo. An experimental model.

    Science.gov (United States)

    Abrahamsson, S O; Lundborg, G; Lohmander, L S

    1989-01-01

    Flexor tendon segments were incubated in a diffusion chamber in the subcutis of rabbits. Tendons incubated up to 6 weeks in the diffusion chamber showed proliferating and migrating cells from the epitenon cell layer as well as viable endotenon cells. Explants frozen in liquid nitrogen prior to incubation showed no signs of extrinsic cell contamination and remained non-viable indicating that no cell penetration occurred through the Millipore filter and that cell division seen in non-frozen and incubated tendons was an expression of intrinsic cellular proliferative capacity of the tendon. In tendon segments incubated in chambers for three weeks, collagen synthesis was reduced by 50% and the rate of cell proliferation measured as 3H-thymidine incorporation, was 15 times that of native tendons. Frozen and incubated tendons showed only traces of remaining matrix synthesis or cell proliferation. With this experimental model we have histologically and biochemically shown that tendons may survive and heal while the nutrition exclusively could be based on diffusion and the tendons have an intrinsic capacity of healing. The described model enables further studies on tendon healing and its regulation.

  12. Common circuit defect of excitatory-inhibitory balance in mouse models of autism.

    Science.gov (United States)

    Gogolla, Nadine; Leblanc, Jocelyn J; Quast, Kathleen B; Südhof, Thomas C; Fagiolini, Michela; Hensch, Takao K

    2009-06-01

    One unifying explanation for the complexity of Autism Spectrum Disorders (ASD) may lie in the disruption of excitatory/inhibitory (E/I) circuit balance during critical periods of development. We examined whether Parvalbumin (PV)-positive inhibitory neurons, which normally drive experience-dependent circuit refinement (Hensch Nat Rev Neurosci 6:877-888, 1), are disrupted across heterogeneous ASD mouse models. We performed a meta-analysis of PV expression in previously published ASD mouse models and analyzed two additional models, reflecting an embryonic chemical insult (prenatal valproate, VPA) or single-gene mutation identified in human patients (Neuroligin-3, NL-3 R451C). PV-cells were reduced in the neocortex across multiple ASD mouse models. In striking contrast to controls, both VPA and NL-3 mouse models exhibited an asymmetric PV-cell reduction across hemispheres in parietal and occipital cortices (but not the underlying area CA1). ASD mouse models may share a PV-circuit disruption, providing new insight into circuit development and potential prevention by treatment of autism. The online version of this article (doi:10.1007/s11689-009-9023-x) contains supplementary material, which is available to authorized users.

  13. Experimental models for Murray’s law

    Science.gov (United States)

    Akita, Dai; Kunita, Itsuki; Fricker, Mark D.; Kuroda, Shigeru; Sato, Katsuhiko; Nakagaki, Toshiyuki

    2017-01-01

    Transport networks are ubiquitous in multicellular organisms and include leaf veins, fungal mycelia and blood vessels. While transport of materials and signals through the network plays a crucial role in maintaining the living system, the transport capacity of the network can best be understood in terms of hydrodynamics. We report here that plasmodium from the large, single-celled amoeboid Physarum was able to construct a hydrodynamically optimized vein-network when evacuating biomass from confined arenas of various shapes through a narrow exit. Increasingly thick veins developed towards the exit, and the network spanned the arena via repetitive bifurcations to give a branching tree. The Hausdorff distance from all parts of the plasmodium to the vein network was kept low, whilst the hydrodynamic conductivity from distal parts of the network to the exit was equivalent, irrespective of the arena shape. This combination of spatial patterning and differential vein thickening served to evacuate biomass at an equivalent rate across the entire arena. The scaling relationship at the vein branches was determined experimentally to be 2.53-3.29, consistent with predictions from Murray’s law. Furthermore, we show that mathematical models for self-organised, adaptive transport in Physarum simulate the experimental network organisation well if the scaling coefficient of the current-reinforcement rule is set to 3. In simulations, this resulted in rapid development of an optimal network that minimised the combined volume and frictional energy in comparison with other scaling coefficients. This would predict that the boundary shear forces within each vein are constant throughout the network, and would be consistent with a feedback mechanism based on a sensing a threshold shear at the vein wall.

  14. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Larsson, Emanuel [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); University of Trieste, Trieste (Italy); Linkoeping University, SE-581 83 Linkoeping (Sweden); Tromba, Giuliana [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); Markus, Andrea M. [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Alves, Frauke [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Max Planck Institut for Experimental Medicine, Hermann-Rein-Strasse 3, Goettingen, Lower Saxony 37075 (Germany)

    2015-06-17

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma.

  15. Biliary System Architecture: Experimental Models and Visualization Techniques

    Czech Academy of Sciences Publication Activity Database

    Sarnová, Lenka; Gregor, Martin

    2017-01-01

    Roč. 66, č. 3 (2017), s. 383-390 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LQ1604; GA ČR GA15-23858S Institutional support: RVO:68378050 Keywords : Biliary system * Mouse model * Cholestasis * Visualisation * Morphology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.461, year: 2016

  16. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse.

    Science.gov (United States)

    Hood, Derek; Moxon, Richard; Purnell, Tom; Richter, Caroline; Williams, Debbie; Azar, Ali; Crompton, Michael; Wells, Sara; Fray, Martin; Brown, Steve D M; Cheeseman, Michael T

    2016-01-01

    Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (10(4)-10(5) colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria. © 2016. Published by The Company of Biologists Ltd.

  17. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse

    Directory of Open Access Journals (Sweden)

    Derek Hood

    2016-01-01

    Full Text Available Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi. The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+ bears a mutation in a gene (Evi1, also known as Mecom that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90% of middle ear infection and bacterial titres (104-105 colony-forming units/µl in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria.

  18. Radiation-Guided Peptide Delivery in a Mouse Model of Nasopharyngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    Pei-cheng Lin

    2016-01-01

    Full Text Available Purpose. This study aimed to evaluate the characteristics of the HVGGSSV peptide, exploring radiation-guided delivery in a mouse model of nasopharyngeal carcinoma. Methods. Mice with CNE-1 nasopharyngeal carcinoma were assigned to two different groups treated with Cy7-NHS and Cy7-HVGGSSV, respectively. Meanwhile, each mouse received a single dose of 3 Gy radiation. Biological distribution of the recombinant peptide was assessed on an in vivo small animal imaging system. Results. The experimental group showed maximum fluorescence intensity in irradiated tumors treated with Cy7-labeled HVGGSSV, while untreated (0 Gy control tumors showed lower intensity levels. Fluorescence intensities of tumors in the right hind limbs of experimental animals were 7.84×107±1.13×107, 1.35×108±2.66×107, 4.05×108±1.75×107, 5.57×108±3.47×107, and 9.26×107±1.73×107 photons/s/cm2 higher compared with left hind limb values at 1, 2, 15, 24, and 48 h, respectively. Fluorescence intensities of tumor in the right hind limbs of the experimental group were 1.66×108±1.71×107, 1.51×108±3.23×107, 5.38×108±1.96×107, 5.89×108±3.57×107, and 1.62×108±1.69×107 photons/s/cm2 higher compared with control group values at 1, 2, 15, 24, and 48 h, respectively. Fluorescence was not specifically distributed in the control group. Compared with low fluorescence intensity in the heart, lungs, and tumors, high fluorescence distribution was found in the liver and kidney at 48 h. Conclusions. HVGGSSV was selectively bound to irradiated nasopharyngeal carcinoma, acting as a targeting transport carrier for radiation-guided drugs that are mainly metabolized in the kidney and liver.

  19. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    Directory of Open Access Journals (Sweden)

    Jang Soo Yook

    2016-03-01

    Full Text Available Naturally occurring astaxantin (ASX is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses using DNA microarray (Agilent 4 × 44 K whole mouse genome chip analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197 as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus.

  20. Alterations in Striatal Synaptic Transmission are Consistent across Genetic Mouse Models of Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Damian M Cummings

    2010-05-01

    Full Text Available Since the identification of the gene responsible for HD (Huntington's disease, many genetic mouse models have been generated. Each employs a unique approach for delivery of the mutated gene and has a different CAG repeat length and background strain. The resultant diversity in the genetic context and phenotypes of these models has led to extensive debate regarding the relevance of each model to the human disorder. Here, we compare and contrast the striatal synaptic phenotypes of two models of HD, namely the YAC128 mouse, which carries the full-length huntingtin gene on a yeast artificial chromosome, and the CAG140 KI*** (knock-in mouse, which carries a human/mouse chimaeric gene that is expressed in the context of the mouse genome, with our previously published data obtained from the R6/2 mouse, which is transgenic for exon 1 mutant huntingtin. We show that striatal MSNs (medium-sized spiny neurons in YAC128 and CAG140 KI mice have similar electrophysiological phenotypes to that of the R6/2 mouse. These include a progressive increase in membrane input resistance, a reduction in membrane capacitance, a lower frequency of spontaneous excitatory postsynaptic currents and a greater frequency of spontaneous inhibitory postsynaptic currents in a subpopulation of striatal neurons. Thus, despite differences in the context of the inserted gene between these three models of HD, the primary electrophysiological changes observed in striatal MSNs are consistent. The outcomes suggest that the changes are due to the expression of mutant huntingtin and such alterations can be extended to the human condition.

  1. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  2. Ultrastructural study of Rift Valley fever virus in the mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E. [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States); Smith, Darci R., E-mail: darci.smith1@us.army.mil [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States)

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  3. Repurposing of antiparasitic drugs: the hydroxy-naphthoquinone buparvaquone inhibits vertical transmission in the pregnant neosporosis mouse model.

    Science.gov (United States)

    Müller, Joachim; Aguado-Martínez, Adriana; Manser, Vera; Wong, Ho Ning; Haynes, Richard K; Hemphill, Andrew

    2016-02-17

    The three anti-malarial drugs artemiside, artemisone, and mefloquine, and the naphthoquinone buparvaquone known to be active against theileriosis in cattle and Leishmania infections in rodents, were assessed for activity against Neospora caninum infection. All four compounds inhibited the proliferation of N. caninum tachyzoites in vitro with IC50 in the sub-micromolar range, but artemisone and buparvaquone were most effective (IC50 = 3 and 4.9 nM, respectively). However, in a neosporosis mouse model for cerebral infection comprising Balb/c mice experimentally infected with the virulent isolate Nc-Spain7, the three anti-malarial compounds failed to exhibit any activity, since treatment did not reduce the parasite burden in brains and lungs compared to untreated controls. Thus, these compounds were not further evaluated in pregnant mice. On the other hand, buparvaquone, shown earlier to be effective in reducing the parasite load in the lungs in an acute neosporosis disease model, was further assessed in the pregnant mouse model. Buparvaquone efficiently inhibited vertical transmission in Balb/c mice experimentally infected at day 7 of pregnancy, reduced clinical signs in the pups, but had no effect on cerebral infection in the dams. This demonstrates proof-of-concept that drug repurposing may lead to the discovery of an effective compound against neosporosis that can protect offspring from vertical transmission and disease.

  4. A Multihit Model: Colitis Lessons from the Interleukin-10–deficient Mouse

    Science.gov (United States)

    Keubler, Lydia M.; Buettner, Manuela; Häger, Christine

    2015-01-01

    Abstract: Complex mechanisms are pulling the strings to initiate the development of inflammatory bowel disease. Current evidence indicates that an interaction of genetic susceptibilities (polymorphisms), environmental factors, and the host microbiota leads to a dysregulation of the mucosal immune system. In the past decades, the interleukin-10–deficient mouse has served as an excellent model to mirror the multifactorial nature of this disease. Here, we want to review in detail the interplay of the genetic factors, immune aspects, and especially summarize and discuss the role of the microbiota contributing to colitis development in the interleukin-10–deficient mouse model of inflammatory bowel disease as a multihit model. PMID:26164667

  5. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    Science.gov (United States)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  6. Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology

    Science.gov (United States)

    Dey, Aditi; Castleton, Anna Z.; Schwab, Claire; Samuel, Edward; Sivakumaran, Janani; Beaton, Brendan; Zareian, Nahid; Zhang, Christie Yu; Rai, Lena; Enver, Tariq; Moorman, Anthony V.; Fielding, Adele K.

    2014-01-01

    The distinct nature of acute lymphoblastic leukemia (ALL) in adults, evidenced by inferior treatment outcome and different genetic landscape, mandates specific studies of disease-initiating mechanisms. In this study, we used NOD/LtSz-scid IL2Rγ nullc (NSG) mouse xenotransplantation approaches to elucidate leukemia-initiating cell (LIC) biology in primary adult precursor B (pre-B) ALL to optimize disease modeling. In contrast with xenografting studies of pediatric ALL, we found that modification of the NSG host environment using preconditioning total body irradiation (TBI) was indispensable for efficient engraftment of adult non-t(4;11) pre-B ALL, whereas t(4;11) pre-B ALL was successfully reconstituted without this adaptation. Furthermore, TBI-based xenotransplantation of non-t(4;11) pre-B ALL enabled detection of a high frequency of LICs (<1:6900) and permitted frank leukemic engraftment from a remission sample containing drug-resistant minimal residual disease. Investigation of TBI-sensitive stromal-derived factor-1/chemokine receptor type 4 signaling revealed greater functional dependence of non-t(4;11) pre-B ALL on this niche-based interaction, providing a possible basis for the differential engraftment behavior. Thus, our studies establish the optimal conditions for experimental modeling of human adult pre-B ALL and demonstrate the critical protumorogenic role of microenvironment-derived SDF-1 in regulating adult pre-B LIC activity that may present a therapeutic opportunity. PMID:24825861

  7. Hypermetabolism in a triple-transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Knight, Elysse M; Verkhratsky, Alexei; Luckman, Simon M; Allan, Stuart M; Lawrence, Catherine B

    2012-01-01

    A common feature of Alzheimer's disease (AD) is weight loss, even though there is often an increase in food intake in AD patients. The reasons for this weight loss are unknown, but may be due to increased energy expenditure (metabolic rate) or a reduction in energy intake. This was investigated in the present study, using a triple-transgenic (3xTgAD) mouse model of AD. Two-month-old 3xTgAD mice displayed greater food intake (17%) and body weight (34%) but no difference in metabolic rate, as compared with nontransgenic controls (non-Tg). At 12 months of age, 3xTgAD mice still consumed more food (30%), but their body weight was significantly lower (15%) than non-Tg controls. This reduction in body weight was accompanied by a significant rise in metabolic rate, indicated by greater oxygen consumption (24%) and carbon dioxide production (29%); the effects were also observed in 18-month-old 3xTgAD mice. These data demonstrate for the first time the existence of a hypermetabolic state in an experimental model of AD, but whether this can explain the weight loss observed in AD patients remains to be determined. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Therapeutic effects of D-aspartate in a mouse model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Sanaz Afraei

    2017-07-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis. EAE is mainly mediated by adaptive and innate immune responses that leads to an inflammatory demyelization and axonal damage. The aim of the present research was to examine the therapeutic efficacy of D-aspartic acid (D-Asp on a mouse EAE model. EAE induction was performed in female C57BL/6 mice by myelin 40 oligodendrocyte glycoprotein (35-55 in a complete Freund's adjuvant emulsion, and D-Asp was used to test its efficiency in the reduction of EAE. During the course of study, clinical evaluation was assessed, and on Day 21, post-immunization blood samples were taken from the heart of mice for the evaluation of interleukin 6 and other chemical molecules. The mice were sacrificed, and their brain and cerebellum were removed for histological analysis. Our findings indicated that D-Asp had beneficial effects on EAE by attenuation in the severity and delay in the onset of the disease. Histological analysis showed that treatment with D-Asp can reduce inflammation. Moreover, in D-Asp-treated mice, the serum level of interleukin 6 was significantly lower than that in control animals, whereas the total antioxidant capacity was significantly higher. The data indicates that D-Asp possess neuroprotective property to prevent the onset of the multiple sclerosis.

  9. Analysis of TMEFF2 allografts and transgenic mouse models reveals roles in prostate regeneration and cancer.

    Science.gov (United States)

    Corbin, Joshua M; Overcash, Ryan F; Wren, Jonathan D; Coburn, Anita; Tipton, Greg J; Ezzell, Jennifer A; McNaughton, Kirk K; Fung, Kar-Ming; Kosanke, Stanley D; Ruiz-Echevarria, Maria J

    2016-01-01

    Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. The role of TMEFF2 was examined in PCa cells using Matrigel(TM) cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological, and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa

  10. Anti-hyaluronidase Activity in Vitro and Amelioration of Mouse Experimental Dermatitis by Tomato Saponin, Esculeoside A.

    Science.gov (United States)

    Zhou, Jian-Rong; Kanda, Yurina; Tanaka, Anna; Manabe, Hideyuki; Nohara, Toshihiro; Yokomizo, Kazumi

    2016-01-20

    The increasing incidence of atopic dermatitis during recent decades has prompted the development of safe and effective agents for prevention of atopic diseases. Esculeoside A, a glycoside of spirosolane type, is identified as a major component in ripe tomato fruits. The present study investigated the effects of esculeoside A and its aglycon esculeogenin A on hyaluronidase activity in vitro and antiallergy in experimental dermatitis mice. Esculeogenin A/esculeoside A (esculeogenin A equivalent) with an IC50 of about 2 μM/9 μM dose-dependently inhibited hyaluronidase activity measured by a modified Morgan-Elson method. Oral treatment with esculeoside A 10 mg/kg of experimental dermatitis mice for 4 weeks significantly decreased the skin clinical score to 2.5 without any detectable side effects compared with 6.75 of the control. The scratching frequency of esculeoside A 100 mg/kg application was decreased significantly as 107.5 times compared with 296.67 times of the control. Thus, the present study showed that esculeoside A/esculeogenin A significantly blocks hyaluronidase activity in vitro and that esculeoside A ameliorates mouse experimental dermatitis.

  11. Generation and characterization of a novel CYP2A13--transgenic mouse model.

    Science.gov (United States)

    Jia, Kunzhi; Li, Lei; Liu, Zhihua; Hartog, Matthew; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin

    2014-08-01

    CYP2A13, CYP2B6, and CYP2F1 are neighboring cytochrome P450 genes on human chromosome 19, and the enzymes that they encode overlap in substrate specificity. A CYP2A13/2B6/2F1-transgenic mouse, in which CYP2A13 and 2F1 are both expressed in the respiratory tract and CYP2B6 is expressed in the liver, was recently generated. We generated a CYP2A13 (only) transgenic mouse so that the specific activity of CYP2A13 can be determined. The CYP2B6 and CYP2F1 genes in the CYP2A13/2B6/2F1 genomic clone were inactivated via genetic manipulations, and CYP2A13 was kept intact. A CYP2A13 (only) transgenic (2A13-TG) mouse was generated using the engineered construct and then characterized to confirm transgene integrity and determine copy numbers. The 2A13-TG mice were normal in gross morphology, development, and fertility. As in the CYP2A13/2B6/2F1-transgenic mouse, CYP2A13 expression in the 2A13-TG mouse was limited to the respiratory tract; in contrast, CYP2B6 and 2F1 proteins were not detected. Additional studies using the CYP2A13-humanized (2A13-TG/Cyp2abfgs-null) mouse produced by intercrossing between 2A13-TG and Cyp2abfgs-null mice confirmed that the transgenic CYP2A13 is active in the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a lung procarcinogen. The 2A13-TG mouse should be valuable for assessing specific roles of human CYP2A13 in xenobiotic toxicity in the respiratory tract. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Dijk, van M.; Dijk, F.J.; Boekschoten, M.V.; Faber, J.; Argiles, J.M.; Laviano, A.; Müller, M.R.; Witkamp, R.F.; Norren, van K.

    2014-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an

  13. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  14. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  15. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model

    NARCIS (Netherlands)

    Koopman, F. A.; Vosters, J. L.; Roescher, N.; Broekstra, N.; Tak, P. P.; Vervoordeldonk, M. J.

    2015-01-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's

  16. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Lei ZG

    2016-01-01

    Full Text Available Zhen-ge Lei,1,* Xiao-hua Ren,2,* Sha-sha Wang,3 Xin-hua Liang,3,4 Ya-ling Tang3,5 1Department of Oral and Maxillofacial Surgery, Stomatological Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 2Department of Stomatology, Sichuan Medical Science Academy and Sichuan Provincial People’s Hospital, 3State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 4Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, 5Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China *These authors contributed equally to this work Abstract: Mouse models can closely mimic human oral squamous epithelial carcinogenesis, greatly expand the in vivo research possibilities, and play a critical role in the development of diagnosis, monitoring, and treatment of head and neck squamous cell carcinoma. With the development of the recent research on the contribution of immunity/inflammation to cancer initiation and progression, mouse models have been divided into two categories, namely, immunocompromised and immunocompetent mouse models. And thus, this paper will review these two kinds of models applied in head and neck squamous cell carcinoma to provide a platform to understand the complicated histological, molecular, and genetic changes of oral squamous epithelial tumorigenesis. Keywords: head and neck squamous cell carcinoma, HNSCC, mouse models, immunocompromised models, immunocompetent models, transgenic models

  17. Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder.

    Science.gov (United States)

    Kim, Hyopil; Lim, Chae-Seok; Kaang, Bong-Kiun

    2016-01-20

    Autism spectrum disorder (ASD) refers to a broad spectrum of neurodevelopmental disorders characterized by three central behavioral symptoms: impaired social interaction, impaired social communication, and restricted and repetitive behaviors. However, the symptoms are heterogeneous among patients and a number of ASD mouse models have been generated containing mutations that mimic the mutations found in human patients with ASD. Each mouse model was found to display a unique set of repetitive behaviors. In this review, we summarize the repetitive behaviors of the ASD mouse models and variations found in their neural mechanisms including molecular and electrophysiological features. We also propose potential neuronal mechanisms underlying these repetitive behaviors, focusing on the role of the cortico-basal ganglia-thalamic circuits and brain regions associated with both social and repetitive behaviors. Further understanding of molecular and circuitry mechanisms of the repetitive behaviors associated with ASD is necessary to aid the development of effective treatments for these disorders.

  18. Distinct Defects in Spine Formation or Pruning in Two Gene Duplication Mouse Models of Autism.

    Science.gov (United States)

    Wang, Miao; Li, Huiping; Takumi, Toru; Qiu, Zilong; Xu, Xiu; Yu, Xiang; Bian, Wen-Jie

    2017-04-01

    Autism spectrum disorder (ASD) encompasses a complex set of developmental neurological disorders, characterized by deficits in social communication and excessive repetitive behaviors. In recent years, ASD is increasingly being considered as a disease of the synapse. One main type of genetic aberration leading to ASD is gene duplication, and several mouse models have been generated mimicking these mutations. Here, we studied the effects of MECP2 duplication and human chromosome 15q11-13 duplication on synaptic development and neural circuit wiring in the mouse sensory cortices. We showed that mice carrying MECP2 duplication had specific defects in spine pruning, while the 15q11-13 duplication mouse model had impaired spine formation. Our results demonstrate that spine pathology varies significantly between autism models and that distinct aspects of neural circuit development may be targeted in different ASD mutations. Our results further underscore the importance of gene dosage in normal development and function of the brain.

  19. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes

    Science.gov (United States)

    Multhaup, Michael L.; Seldin, Marcus; Jaffe, Andrew E.; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R.; Wong, G. William; Feinberg, Andrew P.

    2015-01-01

    SUMMARY Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211

  20. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs (Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  1. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J.; Pendleton, Jozeph L.; Sholtz, Alex; Krasnow, Maya R.; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A.; Krasnow, Mark A.

    2017-01-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs (Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene “knockout” library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  2. Severity of sepsis-induced acute kidney injury in a novel mouse model is age dependent.

    Science.gov (United States)

    Maddens, Bert; Vandendriessche, Benjamin; Demon, Dieter; Vanholder, Raymond; Chiers, Koen; Cauwels, Anje; Meyer, Evelyne

    2012-09-01

    Despite extensive research, the mortality rate of patients with sepsis-induced acute kidney injury (AKI) is unacceptably high, especially in the elderly. Current sepsis models have difficulties in reproducing AKI. This study aimed to develop a novel, clinically relevant mouse model for sepsis-induced AKI by uterine ligation and inoculation of bacteria. In addition, the age dependency of the severity of sepsis and sepsis-induced AKI was studied by validating this model in three different age categories. Experimental animal investigation. University research laboratory. Young (12-14 wks), aged (46-48 wks), and old (70-72 wks) C57BL/6 female mice were used as models for adolescent, adult premenopausal, and elderly postmenopausal women, respectively. Uterine ligation and inoculation with 10 colony forming unit Escherichia coli or saline (sham) was performed; in vivo imaging with a luminescent Escherichia coli strain documented the course of infection. All mice had established Escherichia coli sepsis at 48 hrs postinfection, with higher mortality rate in old (43%) compared to aged (23%) or young (9%) mice. Infected mice had elevated serum or plasma cytokine, chemokine (tumor necrosis factor, interleukin-6, keratinocyte-derived chemokine, monocyte chemoattractant protein 1, and interleukin-10), and NOx concentrations compared to sham mice. AKI was confirmed by renal histology. Serum creatinine concentrations at 48 hrs increased with age (mean ± SEM; controls 0.18 ± 0.03 mg/dL, young 0.28 ± 0.03 mg/dL, aged 0.38 ± 0.05 mg/dL, and old 0.44 ± 0.06 mg/dL). The uterine ligation and inoculation model for sepsis-induced AKI starts from a real infectious focus and shows an age-dependent severity of septic AKI that resembles AKI in humans.

  3. Integrating model behavior, optimization, and sensitivity/uncertainty analysis: overview and application of the MOUSE software toolbox

    Science.gov (United States)

    This paper provides an overview of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) software application, an open-source, Java-based toolbox of visual and numerical analysis components for the evaluation of environmental models. MOUSE is based on the OPTAS model calibration syst...

  4. The 5T mouse multiple myeloma model: absence of c-myc oncogene rearrangement in early transplant generations.

    Science.gov (United States)

    Radl, J.; Punt, Y. A.; van den Enden-Vieveen, M. H.; Bentvelzen, P. A.; Bakkus, M. H.; van den Akker, T. W.; Benner, R.

    1990-01-01

    Consistent chromosomal translocations involving the c-myc cellular oncogene and one of the three immunoglobin loci are typical for human Burkitt's lymphoma, induced mouse plasmacytoma (MPC) and spontaneously arising rat immunocytoma (RIC). Another plasma cell malignancy, multiple myeloma (MM), arising spontaneously in the ageing C57BL/KaLwRij mice, was investigated in order to see whether the MM cells contain c-myc abnormalities of the MPC or RIC type. Rearrangement of the c-myc oncogene was found in the bone marrow cells only in 5T2 MM transplantation line in a mouse of the 24th generation and in none of the seven other MM of the 5T series which were of earlier generations. Since the mouse 5T MM resembles the human MM very closely, including the absence of consistent structural c-myc oncogene abnormalities, it can serve as a useful experimental model for studies on the aetiopathogenesis of this disease. Images Figure 2 Figure 3 PMID:2310679

  5. Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Rooney, Jachinta E; Gurpur, Praveen B; Burkin, Dean J

    2009-05-12

    Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin results in reduced sarcolemmal integrity and increased susceptibility to muscle damage. The alpha(7)beta(1)-integrin is a laminin-binding protein up-regulated in the skeletal muscle of DMD patients and in the mdx mouse model. Transgenic overexpression of the alpha(7)-integrin alleviates muscle disease in dystrophic mice, making this gene a target for pharmacological intervention. Studies suggest laminin may regulate alpha(7)-integrin expression. To test this hypothesis, mouse and human myoblasts were treated with laminin and assayed for alpha(7)-integrin expression. We show that laminin-111 (alpha(1), beta(1), gamma(1)), which is expressed during embryonic development but absent in normal or dystrophic skeletal muscle, increased alpha(7)-integrin expression in mouse and DMD patient myoblasts. Injection of laminin-111 protein into the mdx mouse model of DMD increased expression of alpha(7)-integrin, stabilized the sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscle from exercised-induced damage. These findings demonstrate that laminin-111 is a highly potent therapeutic agent for the mdx mouse model of DMD and represents a paradigm for the systemic delivery of extracellular matrix proteins as therapies for genetic diseases.

  6. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Eléonore Pérès

    2015-12-01

    Full Text Available The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1, is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.

  7. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis.

    Science.gov (United States)

    Pérès, Eléonore; Bagdassarian, Eugénie; This, Sébastien; Villaudy, Julien; Rigal, Dominique; Gazzolo, Louis; Duc Dodon, Madeleine

    2015-12-07

    The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1), is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.

  8. Preclinical Studies of Signaling Pathways in a Mutant Mouse Model of Hormone-Refractory Prostate Cancer

    Science.gov (United States)

    2011-02-01

    prostate cancer in a preclinical mouse model. J Clin Invest 118, 3051-3064. 4) Wang, X., Kruithof-de Julio , M., Economides, K. D., Walker, D., Yu, H...Park R, Conti PS, Moats R, Berns A, Shi W, Zhou Z, et al. 2007. Mouse models of prostate adenocarcinoma with the capacity to monitor spontaneous...1779–1786. Ma X, Ziel-van der Made AC, Autar B, van der Korput HA, Vermeij M, van Duijn P, Cleutjens KB, de Krijger R, Krimpenfort P, Berns A, et al

  9. The use of mouse models to understand and improve cognitive deficits in Down syndrome.

    Science.gov (United States)

    Das, Ishita; Reeves, Roger H

    2011-09-01

    Remarkable advances have been made in recent years towards therapeutics for cognitive impairment in individuals with Down syndrome (DS) by using mouse models. In this review, we briefly describe the phenotypes of mouse models that represent outcome targets for drug testing, the behavioral tests used to assess impairments in cognition and the known mechanisms of action of several drugs that are being used in preclinical studies or are likely to be tested in clinical trials. Overlaps in the distribution of targets and in the pathways that are affected by these diverse drugs in the trisomic brain suggest new avenues for DS research and drug development.

  10. The use of mouse models to understand and improve cognitive deficits in Down syndrome

    Directory of Open Access Journals (Sweden)

    Ishita Das

    2011-09-01

    Full Text Available Remarkable advances have been made in recent years towards therapeutics for cognitive impairment in individuals with Down syndrome (DS by using mouse models. In this review, we briefly describe the phenotypes of mouse models that represent outcome targets for drug testing, the behavioral tests used to assess impairments in cognition and the known mechanisms of action of several drugs that are being used in preclinical studies or are likely to be tested in clinical trials. Overlaps in the distribution of targets and in the pathways that are affected by these diverse drugs in the trisomic brain suggest new avenues for DS research and drug development.

  11. Evaluation of an in vitro muscle contraction model in mouse primary cultured myotubes.

    Science.gov (United States)

    Manabe, Yasuko; Ogino, Shinya; Ito, Miyuki; Furuichi, Yasuro; Takagi, Mayumi; Yamada, Mio; Goto-Inoue, Naoko; Ono, Yusuke; Fujii, Nobuharu L

    2016-03-15

    To construct an in vitro contraction model with the primary cultured myotubes, we isolated satellite cells from the mouse extensor digitorum longus. Differentiated myotubes possessed a greater number of sarcomere assemblies and higher expression levels of myosin heavy chain, cytochrome c oxidase IV, and myoglobin than in C2C12 myotubes. In agreement with these results regarding the sarcomere assemblies and protein expressions, the primary myotubes showed higher contractile activity stimulated by the electric pulses than that in the C2C12 myotubes. These data suggest that mouse primary myotubes will be a valuable research tool as an in vitro muscle contraction model. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Generating Mouse Models Using Zygote Electroporation of Nucleases (ZEN) Technology with High Efficiency and Throughput.

    Science.gov (United States)

    Wang, Wenbo; Zhang, Yingfan; Wang, Haoyi

    2017-01-01

    Mouse models with genetic modifications are widely used in biology and biomedical research. Although the application of CRISPR-Cas9 system greatly accelerated the process of generating genetically modified mice, the delivery method depending on manual injection of the components into the embryos remains a bottleneck, as it is laborious, low throughput, and technically demanding. To overcome this limitation, we invented and optimized the ZEN (Zygote electroporation of nucleases) technology to deliver CRISPR-Cas9 reagents via electroporation. Using ZEN, we were able to generate genetically modified mouse models with high efficiency and throughput. Here, we describe the protocol in great detail.

  13. Model-Based Tumor Growth Dynamics and Therapy Response in a Mouse Model of De Novo Carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Charalambos Loizides

    Full Text Available Tumorigenesis is a complex, multistep process that depends on numerous alterations within the cell and contribution from the surrounding stroma. The ability to model macroscopic tumor evolution with high fidelity may contribute to better predictive tools for designing tumor therapy in the clinic. However, attempts to model tumor growth have mainly been developed and validated using data from xenograft mouse models, which fail to capture important aspects of tumorigenesis including tumor-initiating events and interactions with the immune system. In the present study, we investigate tumor growth and therapy dynamics in a mouse model of de novo carcinogenesis that closely recapitulates tumor initiation, progression and maintenance in vivo. We show that the rate of tumor growth and the effects of therapy are highly variable and mouse specific using a Gompertz model to describe tumor growth and a two-compartment pharmacokinetic/ pharmacodynamic model to describe the effects of therapy in mice treated with 5-FU. We show that inter-mouse growth variability is considerably larger than intra-mouse variability and that there is a correlation between tumor growth and drug kill rates. Our results show that in vivo tumor growth and regression in a double transgenic mouse model are highly variable both within and between subjects and that mathematical models can be used to capture the overall characteristics of this variability. In order for these models to become useful tools in the design of optimal therapy strategies and ultimately in clinical practice, a subject-specific modelling strategy is necessary, rather than approaches that are based on the average behavior of a given subject population which could provide erroneous results.

  14. Injury Based on Its Study in Experimental Models

    Directory of Open Access Journals (Sweden)

    M. Mendes-Braz

    2012-01-01

    Full Text Available The present review focuses on the numerous experimental models used to study the complexity of hepatic ischemia/reperfusion (I/R injury. Although experimental models of hepatic I/R injury represent a compromise between the clinical reality and experimental simplification, the clinical transfer of experimental results is problematic because of anatomical and physiological differences and the inevitable simplification of experimental work. In this review, the strengths and limitations of the various models of hepatic I/R are discussed. Several strategies to protect the liver from I/R injury have been developed in animal models and, some of these, might find their way into clinical practice. We also attempt to highlight the fact that the mechanisms responsible for hepatic I/R injury depend on the experimental model used, and therefore the therapeutic strategies also differ according to the model used. Thus, the choice of model must therefore be adapted to the clinical question being answered.

  15. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  16. Novel Transgenic Mouse Model for Studying Human Serum Albumin as a Biomarker of Carcinogenic Exposure.

    Science.gov (United States)

    Sheng, Jonathan; Wang, Yi; Turesky, Robert J; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin

    2016-05-16

    Albumin is a commonly used serum protein for studying human exposure to xenobiotic compounds, including therapeutics and environmental pollutants. Often, the reactivity of albumin with xenobiotic compounds is studied ex vivo with human albumin or plasma/serum samples. Some studies have characterized the reactivity of albumin with chemicals in rodent models; however, differences between the orthologous peptide sequences of human and rodent albumins can result in the formation of different types of chemical-protein adducts with different interaction sites or peptide sequences. Our goal is to generate a human albumin transgenic mouse model that can be used to establish human protein biomarkers of exposure to hazardous xenobiotics for human risk assessment via animal studies. We have developed a human albumin transgenic mouse model and characterized the genotype and phenotype of the transgenic mice. The presence of the human albumin gene in the genome of the model mouse was confirmed by genomic PCR analysis, whereas liver-specific expression of the transgenic human albumin mRNA was validated by RT-PCR analysis. Further immunoblot and mass spectrometry analyses indicated that the transgenic human albumin protein is a full-length, mature protein, which is less abundant than the endogenous mouse albumin that coexists in the serum of the transgenic mouse. The transgenic protein was able to form ex vivo adducts with a genotoxic metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a procarcinogenic heterocyclic aromatic amine formed in cooked meat. This novel human albumin transgenic mouse model will facilitate the development and validation of albumin-carcinogen adducts as biomarkers of xenobiotic exposure and/or toxicity in humans.

  17. A novel method of sampling gingival crevicular fluid from a mouse model of periodontitis.

    Science.gov (United States)

    Matsuda, Shinji; Movila, Alexandru; Suzuki, Maiko; Kajiya, Mikihito; Wisitrasameewong, Wichaya; Kayal, Rayyan; Hirshfeld, Josefine; Al-Dharrab, Ayman; Savitri, Irma J; Mira, Abdulghani; Kurihara, Hidemi; Taubman, Martin A; Kawai, Toshihisa

    2016-11-01

    Using a mouse model of silk ligature-induced periodontal disease (PD), we report a novel method of sampling mouse gingival crevicular fluid (GCF) to evaluate the time-dependent secretion patterns of bone resorption-related cytokines. GCF is a serum transudate containing host-derived biomarkers which can represent cellular response in the periodontium. As such, human clinical evaluations of PD status rely on sampling this critical secretion. At the same time, a method of sampling GCF from mice is absent, hindering the translational value of mouse models of PD. Therefore, we herein report a novel method of sampling GCF from a mouse model of periodontitis, involving a series of easy steps. First, the original ligature used for induction of PD was removed, and a fresh ligature for sampling GCF was placed in the gingival crevice for 10min. Immediately afterwards, the volume of GCF collected in the sampling ligature was measured using a high precision weighing balance. The sampling ligature containing GCF was then immersed in a solution of PBS-Tween 20 and subjected to ELISA. This enabled us to monitor the volume of GCF and detect time-dependent changes in the expression of such cytokines as IL-1b, TNF-α, IL-6, RANKL, and OPG associated with the levels of alveolar bone loss, as reflected in GCF collected from a mouse model of PD. Therefore, this novel GCF sampling method can be used to measure various cytokines in GCF relative to the dynamic changes in periodontal bone loss induced in a mouse model of PD. Copyright © 2016. Published by Elsevier B.V.

  18. Recombinant vascular endothelial growth factor 121 injection for the prevention of fetal growth restriction in a preeclampsia mouse model.

    Science.gov (United States)

    Sulistyowati, Sri; Bachnas, Muhammad Adrianes; Anggraini, Nuri Dyah; Yuliantara, Eric Edwin; Prabowo, Wisnu; Anggraini, Nutria Widya Purna; Pramono, Mochammad Besari Adi; Adityawarman; Dachlan, Erry Gumilar; Andonotopo, Wiku

    2017-02-01

    To discover the potential role of recombinant VEGF121 (rVEGF121) injection for the prevention of fetal growth restriction in a preeclampsia (PE) mouse model (Mus musculus). This is an experimental study of 30 pregnant mice that were randomly divided into three groups: normal, PE, and PE with rVEGF121 injection. The PE mouse model was created by injecting anti Qa-2 10 ng iv, which is deleterious to Qa-2 expression (homologous to HLA-G), from the first to the fourth day of gestation. PE was validated by measuring serum levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor(PIGF) and also by kidney histopathology. Recombinant VEGF121 was given on the ninth day until the 11th day of pregnancy; mice were terminated on the 16th day. Fetal weights were acquired with a Denver analytical balance. Serum levels of sFlt-1 and PlGF were measured using enzyme-linked immunosorbent assay (ELISA). The data were statistically analyzed via analysis of variance (ANOVA). On average, fetal birth weight was 0.7150 g in the normal group, 0.4936 g in the PE group, and 0.6768 g in the PE with rVEGF121 injection group. ANOVA showed significant growth restriction in the PE group (P=0.006), confirming the use of anti Qa-2 as a suitable PE model. Kidney histopathology results, sFlt-1 levels, and PlGF levels also demonstrated that anti Qa-2 consistently conferred hallmarks of PE in mice. Vascular endothelial growth factor (VEGF) injection prevented fetal growth restriction; comparable fetal weights were observed between the PE model with VEGF treatment and the normal group (P=0.610) but differed from the untreated PE group (P=0.021). Injection of rVEGF121 has the potential to prevent fetal growth restriction in a newly proposed PE mouse model.

  19. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines

    Directory of Open Access Journals (Sweden)

    C. Dirk Keene

    2016-06-01

    Full Text Available Dozens of transgenic mouse models, generally based on mutations associated with familial Alzheimer's disease (AD, have been developed, in part, for preclinical testing of candidate AD therapies. However, none of these models has successfully predicted the clinical efficacy of drugs for treating AD patients. Therefore, development of more translationally relevant AD mouse models remains a critical unmet need in the field. A concept not previously implemented in AD preclinical drug testing is the use of mouse lines that have been validated for neuropathological features of human AD. Current thinking suggests that amyloid plaque and neurofibrillary tangle deposition is an essential component for accurate modeling of AD. Therefore, the AD translational paradigm would require pathologic Aβ and tau deposition, a disease-relevant distribution of plaques and tangles, and a pattern of disease progression of Aβ and tau isoforms similar to the neuropathological features found in the brains of AD patients. Additional parameters useful to evaluate parallels between AD and animal models would include 1 cerebrospinal fluid (CSF AD biomarker changes with reduced Aβ and increased phospho-tau/tau; 2 structural and functional neuroimaging patterns including MRI hippocampal atrophy, fluorodeoxyglucose (FDG, and amyloid/tau PET alterations in activity and/or patterns of pathologic peptide deposition and distribution; and 3 cognitive impairment with emphasis on spatial learning and memory to distinguish presymptomatic and symptomatic mice at specific ages. A validated AD mouse model for drug testing would likely show tau-related neurofibrillary degeneration following Aβ deposition and demonstrate changes in pathology, CSF analysis, and neuroimaging that mirror human AD. Development of the ideal model would revolutionize the ability to establish the translational value of AD mouse models and serve as a platform for discussions about national phenotyping guidelines

  20. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines.

    Science.gov (United States)

    Keene, C Dirk; Darvas, Martin; Kraemer, Brian; Liggitt, Denny; Sigurdson, Christina; Ladiges, Warren

    2016-01-01

    Dozens of transgenic mouse models, generally based on mutations associated with familial Alzheimer's disease (AD), have been developed, in part, for preclinical testing of candidate AD therapies. However, none of these models has successfully predicted the clinical efficacy of drugs for treating AD patients. Therefore, development of more translationally relevant AD mouse models remains a critical unmet need in the field. A concept not previously implemented in AD preclinical drug testing is the use of mouse lines that have been validated for neuropathological features of human AD. Current thinking suggests that amyloid plaque and neurofibrillary tangle deposition is an essential component for accurate modeling of AD. Therefore, the AD translational paradigm would require pathologic Aβ and tau deposition, a disease-relevant distribution of plaques and tangles, and a pattern of disease progression of Aβ and tau isoforms similar to the neuropathological features found in the brains of AD patients. Additional parameters useful to evaluate parallels between AD and animal models would include 1) cerebrospinal fluid (CSF) AD biomarker changes with reduced Aβ and increased phospho-tau/tau; 2) structural and functional neuroimaging patterns including MRI hippocampal atrophy, fluorodeoxyglucose (FDG), and amyloid/tau PET alterations in activity and/or patterns of pathologic peptide deposition and distribution; and 3) cognitive impairment with emphasis on spatial learning and memory to distinguish presymptomatic and symptomatic mice at specific ages. A validated AD mouse model for drug testing would likely show tau-related neurofibrillary degeneration following Aβ deposition and demonstrate changes in pathology, CSF analysis, and neuroimaging that mirror human AD. Development of the ideal model would revolutionize the ability to establish the translational value of AD mouse models and serve as a platform for discussions about national phenotyping guidelines and standards

  1. PMWS: Experimental model and co-infections

    DEFF Research Database (Denmark)

    Allan, G. M.; McNeilly, F.; Ellis, J

    2004-01-01

    and pneumonia and typical histological lesions include lymphocytic depletion and multinucleated giant cell formation in lymph nodes, degeneration and necrosis of hepatocytes, and multifocal lymphohistocytic interstitial pneumonia. This communication will review the results of experimental infections...

  2. Characterization of a mouse model with complete RPE loss and its use for RPE cell transplantation.

    Science.gov (United States)

    Carido, Madalena; Zhu, Yu; Postel, Kai; Benkner, Boris; Cimalla, Peter; Karl, Mike O; Kurth, Thomas; Paquet-Durand, François; Koch, Edmund; Münch, Thomas A; Tanaka, Elly M; Ader, Marius

    2014-08-07

    Age-related macular degeneration (AMD) is a major leading cause of visual impairment and blindness with no cure currently established. Cell replacement of RPE is discussed as a potential therapy for AMD. Previous studies were performed in animal models with severe limitations in recapitulating the disease progression. In detail, we describe the effect of systemic injection of sodium iodate in the mouse retina. We further evaluate the usefulness of this animal model to analyze cell-specific effects following transplantation of human embryonic stem cell (hESC)-derived RPE cells. Morphologic, functional, and behavioral changes following sodium iodate injection were monitored by histology, gene expression analysis, electroretinography, and optokinetic head tracking. Human embryonic stem cell-derived RPE cells were transplanted 1 week after sodium iodate injection and experimental retinae were analyzed 3 weeks later. Injection of sodium iodate caused complete RPE cell loss, photoreceptor degeneration, and altered gene and protein expression in outer and inner nuclear layers. Retinal function was severely affected by day 3 and abolished from day 14. Following transplantation, donor hESC-derived RPE cells formed extensive monolayers that displayed wild-type RPE cell morphology, organization, and function, including phagocytosis of host photoreceptor outer segments. Systemic injection of sodium iodate has considerable effects on RPE, photoreceptors, and inner nuclear layer neurons, and provides a model to assay reconstitution and maturation of RPE cell transplants. The availability of an RPE-free Bruch's membrane in this model likely allows the unprecedented formation of extensive polarized cell monolayers from donor hESC-derived RPE cell suspensions. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  3. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Caihong Zhu

    Full Text Available Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer's disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer's disease. In addition, impaired insulin signaling in the Alzheimer's disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.

  4. Cortical Spreading Depression Causes Unique Dysregulation of Inflammatory Pathways in a Transgenic Mouse Model of Migraine.

    Science.gov (United States)

    Eising, Else; Shyti, Reinald; 't Hoen, Peter A C; Vijfhuizen, Lisanne S; Huisman, Sjoerd M H; Broos, Ludo A M; Mahfouz, Ahmed; Reinders, Marcel J T; Ferrari, Michel D; Tolner, Else A; de Vries, Boukje; van den Maagdenberg, Arn M J M

    2017-05-01

    Familial hemiplegic migraine type 1 (FHM1) is a rare monogenic subtype of migraine with aura caused by mutations in CACNA1A that encodes the α1A subunit of voltage-gated CaV2.1 calcium channels. Transgenic knock-in mice that carry the human FHM1 R192Q missense mutation ('FHM1 R192Q mice') exhibit an increased susceptibility to cortical spreading depression (CSD), the mechanism underlying migraine aura. Here, we analysed gene expression profiles from isolated cortical tissue of FHM1 R192Q mice 24 h after experimentally induced CSD in order to identify molecular pathways affected by CSD. Gene expression profiles were generated using deep serial analysis of gene expression sequencing. Our data reveal a signature of inflammatory signalling upon CSD in the cortex of both mutant and wild-type mice. However, only in the brains of FHM1 R192Q mice specific genes are up-regulated in response to CSD that are implicated in interferon-related inflammatory signalling. Our findings show that CSD modulates inflammatory processes in both wild-type and mutant brains, but that an additional unique inflammatory signature becomes expressed after CSD in a relevant mouse model of migraine.

  5. Intranasal Oncolytic Virotherapy with CXCR4-Enhanced Stem Cells Extends Survival in Mouse Model of Glioma.

    Science.gov (United States)

    Dey, Mahua; Yu, Dou; Kanojia, Deepak; Li, Gina; Sukhanova, Madina; Spencer, Drew A; Pituch, Katatzyna C; Zhang, Lingjiao; Han, Yu; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S; Balyasnikova, Irina V

    2016-09-13

    The challenges to effective drug delivery to brain tumors are twofold: (1) there is a lack of non-invasive methods of local delivery and (2) the blood-brain barrier limits systemic delivery. Intranasal delivery of therapeutics to the brain overcomes both challenges. In mouse model of malignant glioma, we observed that a small fraction of intranasally delivered neural stem cells (NSCs) can migrate to the brain tumor site. Here, we demonstrate that hypoxic preconditioning or overexpression of CXCR4 significantly enhances the tumor-targeting ability of NSCs, but without altering their phenotype only in genetically modified NSCs. Modified NSCs deliver oncolytic virus to glioma more efficiently and extend survival of experimental animals in the context of radiotherapy. Our findings indicate that intranasal delivery of stem cell-based therapeutics could be optimized for future clinical applications, and allow for safe and repeated administration of biological therapies to brain tumors and other CNS disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Primary tumour growth in an orthotopic osteosarcoma mouse model is not influenced by analgesic treatment with buprenorphine and meloxicam.

    Science.gov (United States)

    Husmann, K; Arlt, M J E; Jirkof, P; Arras, M; Born, W; Fuchs, B

    2015-10-01

    Little is known about the treatment of bone pain in animal models of bone cancer. In the present study, the orthotopic 143-B human osteosarcoma xenotransplantation model was used to address the following questions: (1) Can repetitive analgesic treatment extend the experimental period by prolonging the time to reach humane endpoints and (2) Does repetitive analgesic treatment affect bone tumour development and metastasis? The analgesics, buprenorphine and meloxicam, were either applied individually or in combination at 12 h intervals as soon as the animals began to avoid using the tumour cell injected leg. While control mice treated with NaCl showed continuous body weight loss, the major criterion previously for terminating the experiments, animals treated with analgesic substances did not. The control mice had to be sacrificed 26 days after tumour cell injection, whereas the groups of animals with the different pain treatments were euthanized after an additional eight days. Importantly, primary intratibial tumour growth was not affected in any of the experimental groups by any of the pain treatment procedures. Between days 26 and 34 after tumour cell injection an increase of about 100% of the number of lung metastases was found for the groups treated with buprenorphine alone or together with meloxicam, but not for the group treated with meloxicam alone. In summary, the results indicated that both buprenorphine and meloxicam are suitable analgesics for prolonging the experimental periods in an experimental intratibial osteosarcoma mouse model. © The Author(s) 2015.

  7. Medullary Thymic Epithelial Cells and Central Tolerance in Autoimmune Hepatitis Development: Novel Perspective from a New Mouse Model

    Directory of Open Access Journals (Sweden)

    Konstantina Alexandropoulos

    2015-01-01

    Full Text Available Autoimmune hepatitis (AIH is an immune-mediated disorder that affects the liver parenchyma. Diagnosis usually occurs at the later stages of the disease, complicating efforts towards understanding the causes of disease development. While animal models are useful for studying the etiology of autoimmune disorders, most of the existing animal models of AIH do not recapitulate the chronic course of the human condition. In addition, approaches to mimic AIH-associated liver inflammation have instead led to liver tolerance, consistent with the high tolerogenic capacity of the liver. Recently, we described a new mouse model that exhibited spontaneous and chronic liver inflammation that recapitulated the known histopathological and immunological parameters of AIH. The approach involved liver-extrinsic genetic engineering that interfered with the induction of T-cell tolerance in the thymus, the very process thought to inhibit AIH induction by liver-specific expression of exogenous antigens. The mutation led to depletion of specialized thymic epithelial cells that present self-antigens and eliminate autoreactive T-cells before they exit the thymus. Based on our findings, which are summarized below, we believe that this mouse model represents a relevant experimental tool towards elucidating the cellular and molecular aspects of AIH development and developing novel therapeutic strategies for treating this disease.

  8. The pathological phenotypes of human TDP-43 transgenic mouse models are independent of downregulation of mouse Tdp-43.

    Directory of Open Access Journals (Sweden)

    Ya-Fei Xu

    Full Text Available Tar DNA binding protein 43 (TDP-43 is the major component of pathological deposits in frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP and in amyotrophic lateral sclerosis (ALS. It has been reported that TDP-43 transgenic mouse models expressing human TDP-43 wild-type or ALS-associated mutations recapitulate certain ALS and FTLD pathological phenotypes. Of note, expression of human TDP-43 (hTDP-43 reduces the levels of mouse Tdp-43 (mTdp-43. However, it remained unclear whether the mechanisms through which TDP-43 induces ALS or FTLD-like pathologies resulted from a reduction in mTdp-43, an increase in hTDP-43, or a combination of both. In elucidating the role of mTdp-43 and hTDP-43 in hTDP-43 transgenic mice, we observed that reduction of mTdp-43 in non-transgenic mice by intraventricular brain injection of AAV1-shTardbp leads to a dramatic increase in the levels of splicing variants of mouse sortilin 1 and translin. However, the levels of these two abnormal splicing variants are not increased in hTDP-43 transgenic mice despite significant downregulation of mTdp-43 in these mice. Moreover, further downregulation of mTdp-43 in hTDP-43 hemizygous mice, which are asymptomatic, to the levels equivalent to that of mTdp-43 in hTDP-43 homozygous mice does not induce the pathological phenotypes observed in the homozygous mice. Lastly, the number of dendritic spines and the RNA levels of TDP-43 RNA targets critical for synapse formation and function are significantly decreased in symptomatic homozygous mice. Together, our findings indicate that mTdp-43 downregulation does not lead to a loss of function mechanism or account for the pathological phenotypes observed in hTDP-43 homozygous mice because hTDP-43 compensates for the reduction, and associated functions of mTdp-43. Rather, expression of hTDP-43 beyond a certain threshold leads to abnormal metabolism of TDP-43 RNA targets critical for neuronal structure and function, which might

  9. The pathological phenotypes of human TDP-43 transgenic mouse models are independent of downregulation of mouse Tdp-43.

    Science.gov (United States)

    Xu, Ya-Fei; Prudencio, Mercedes; Hubbard, Jaime M; Tong, Jimei; Whitelaw, Ena C; Jansen-West, Karen; Stetler, Caroline; Cao, Xiangkun; Song, John; Zhang, Yong-Jie

    2013-01-01

    Tar DNA binding protein 43 (TDP-43) is the major component of pathological deposits in frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) and in amyotrophic lateral sclerosis (ALS). It has been reported that TDP-43 transgenic mouse models expressing human TDP-43 wild-type or ALS-associated mutations recapitulate certain ALS and FTLD pathological phenotypes. Of note, expression of human TDP-43 (hTDP-43) reduces the levels of mouse Tdp-43 (mTdp-43). However, it remained unclear whether the mechanisms through which TDP-43 induces ALS or FTLD-like pathologies resulted from a reduction in mTdp-43, an increase in hTDP-43, or a combination of both. In elucidating the role of mTdp-43 and hTDP-43 in hTDP-43 transgenic mice, we observed that reduction of mTdp-43 in non-transgenic mice by intraventricular brain injection of AAV1-shTardbp leads to a dramatic increase in the levels of splicing variants of mouse sortilin 1 and translin. However, the levels of these two abnormal splicing variants are not increased in hTDP-43 transgenic mice despite significant downregulation of mTdp-43 in these mice. Moreover, further downregulation of mTdp-43 in hTDP-43 hemizygous mice, which are asymptomatic, to the levels equivalent to that of mTdp-43 in hTDP-43 homozygous mice does not induce the pathological phenotypes observed in the homozygous mice. Lastly, the number of dendritic spines and the RNA levels of TDP-43 RNA targets critical for synapse formation and function are significantly decreased in symptomatic homozygous mice. Together, our findings indicate that mTdp-43 downregulation does not lead to a loss of function mechanism or account for the pathological phenotypes observed in hTDP-43 homozygous mice because hTDP-43 compensates for the reduction, and associated functions of mTdp-43. Rather, expression of hTDP-43 beyond a certain threshold leads to abnormal metabolism of TDP-43 RNA targets critical for neuronal structure and function, which might be responsible

  10. The Bruton Tyrosine Kinase (BTK) Inhibitor Acalabrutinib Demonstrates Potent On-Target Effects and Efficacy in Two Mouse Models of Chronic Lymphocytic Leukemia

    DEFF Research Database (Denmark)

    Herman, Sarah E M; Montraveta, Arnau; Niemann, Carsten U

    2017-01-01

    lymphocytic leukemia (CLL).Experimental Design: Two distinct mouse models were used, the TCL1 adoptive transfer model where leukemic cells from Eμ-TCL1 transgenic mice are transplanted into C57BL/6 mice, and the human NSG primary CLL xenograft model. Mice received either vehicle or acalabrutinib formulated......, and significant inhibition of CLL cell proliferation. Furthermore, tumor burden in the spleen of the mice treated with acalabrutinib was significantly decreased compared with vehicle-treated mice. Similarly, in the TCL1 adoptive transfer model, decreased phosphorylation of BTK, PLCγ2, and S6 was observed. Most......). In two complementary mouse models of CLL, acalabrutinib significantly reduced tumor burden and increased survival compared with vehicle treatment. Overall, acalabrutinib showed increased BTK selectivity compared with ibrutinib while demonstrating significant antitumor efficacy in vivo on par...

  11. Etanercept reduces neuroinflammation and lethality in mouse model of Japanese encephalitis.

    Science.gov (United States)

    Ye, Jing; Jiang, Rong; Cui, Min; Zhu, Bibo; Sun, Leqiang; Wang, Yueyun; Zohaib, Ali; Dong, Qian; Ruan, Xindi; Song, Yunfeng; He, Wen; Chen, Huanchun; Cao, Shengbo

    2014-09-15

    Japanese encephalitis virus (JEV) is a neurotropic flavivirus that causes Japanese encephalitis (JE), which leads to high fatality rates in human. Tumor necrosis factor alpha (TNF-α) is a key factor that mediates immunopathology in the central nervous system (CNS) during JE. Etanercept is a safe anti-TNF-α drug that has been commonly used in the treatment of various human autoimmune diseases. The effect of etanercept on JE was investigated with a JEV-infected mouse model. Four groups of mice were assigned to receive injections of phosphate-buffered saline, etanercept, JEV, or JEV plus etanercept. Inflammatory responses in mouse brains and mortality of mice were evaluated within 23 days post infection. The in vitro assay with mouse neuron/glia cultures showed that etanercept treatment reduced the inflammatory response induced by JEV infection. In vivo experiments further demonstrated that administration of etanercept protected mice from JEV-induced lethality. Neuronal damage, glial activation, and secretion of proinflammatory cytokines were found to be markedly decreased in JEV-infected mice that received etanercept treatment. Additionally, etanercept treatment restored the integrity of the blood-brain barrier and reduced viral load in mouse brains. Etanercept effectively reduces the inflammation and provides protection against acute encephalitis in a JEV-infected mouse model. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. B-cell anergy induces a Th17 shift in a novel B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse.

    Science.gov (United States)

    Carrascal, Jorge; Carrillo, Jorge; Arpa, Berta; Egia-Mendikute, Leire; Rosell-Mases, Estela; Pujol-Autonell, Irma; Planas, Raquel; Mora, Conchi; Mauricio, Dídac; Ampudia, Rosa Maria; Vives-Pi, Marta; Verdaguer, Joan

    2016-03-01

    Autoreactive B lymphocytes play a key role as APCs in diaebetogenesis. However, it remains unclear whether B-cell tolerance is compromised in NOD mice. Here, we describe a new B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse, where the transgenes derive from an islet-infiltrating B lymphocyte of a (8.3-NODxNOR) F1 mouse. The 116C-NOD mouse produces clonal B lymphocytes with pancreatic islet beta cell specificity. The incidence of T1D in 116C-NOD mice is decreased in both genders when compared with NOD mice. Moreover, several immune selection mechanisms (including clonal deletion and anergy) acting on the development, phenotype, and function of autoreactive B lymphocytes during T1D development have been identified in the 116C-NOD mouse. Surprisingly, a more accurate analysis revealed that, despite their anergic phenotype, 116C B cells express some costimulatory molecules after activation, and induce a T-cell shift toward a Th17 phenotype. Furthermore, this shift on T lymphocytes seems to occur not only when both T and B cells contact, but also when helper T (Th) lineage is established. The 116C-NOD mouse model could be useful to elucidate the mechanisms involved in the generation of Th-cell lineages. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A physiologically-based kinetic model for the prediction of plasma cholesterol concentrations in the mouse.

    Science.gov (United States)

    van de Pas, Niek C A; Woutersen, Ruud A; van Ommen, Ben; Rietjens, Ivonne M C M; de Graaf, Albert A

    2011-05-01

    The LDL cholesterol (LDL-C) and HDL cholesterol (HDL-C) concentrations are determined by the activity of a complex network of reactions in several organs. Physiologically-based kinetic (PBK) computational models can be used to describe these different reactions in an integrated, quantitative manner. A PBK model to predict plasma cholesterol levels in the mouse was developed, validated, and analyzed. Kinetic parameters required for defining the model were obtained using data from published experiments. To construct the model, a set of appropriate submodels was selected from a set of 65,536 submodels differing in the kinetic expressions of the reactions. A submodel was considered appropriate if it had the ability to correctly predict an increased or decreased plasma cholesterol level for a training set of 5 knockout mouse strains. The model thus defined consisted of 8 appropriate submodels and was validated using data from an independent set of 9 knockout mouse strains. The model prediction is the average prediction of 8 appropriate submodels. Remarkably, these submodels had in common that the rate of cholesterol transport from the liver to HDL was not dependent on hepatic cholesterol concentrations. The model appeared able to accurately predict in a quantitative way the plasma cholesterol concentrations of all 14 knockout strains considered, including the frequently used Ldlr-/- and Apoe-/- mouse strains. The model presented is a useful tool to predict the effect of knocking out genes that act in important steps in cholesterol metabolism on total plasma cholesterol, HDL-C and LDL-C in the mouse. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Directory of Open Access Journals (Sweden)

    Alex H P Chan

    Full Text Available Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP. This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days. We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  15. A new transgenic mouse model for conditional overexpression of the Polycomb Group protein EZH2.

    Science.gov (United States)

    Koppens, Martijn A J; Tanger, Ellen; Nacerddine, Karim; Westerman, Bart; Song, Ji-Ying; van Lohuizen, Maarten

    2017-04-01

    The Polycomb Group protein EZH2 is upregulated in most prostate cancers, and its overexpression is associated with poor prognosis. Most insights into the functional role of EZH2 in prostate cancer have been gained using cell lines and EZH2 inactivation studies. However, the question remains whether overexpression of EZH2 can initiate prostate tumourigenesis or drive tumour progression. Appropriate transgenic mouse models that are required to answer such questions are lacking. We developed one such transgenic mouse model for conditional overexpression of Ezh2. In this transgene, Ezh2 and Luciferase are transcribed from a single open reading frame. The latter gene enables intravital bioluminescent imaging of tissues expressing this transgene, allowing the detection of tumour outgrowth and potential metastatic progression over time. Prostate-specific Ezh2 overexpression by crossbreeding with Probasin-Cre mice led to neoplastic prostate lesions at low incidence and with a long latency. Compounding a previously described Bmi1-transgene and Pten-deficiency prostate cancer mouse model with the Ezh2 transgene did not enhance tumour progression or drive metastasis formation. In conclusion, we here report the generation of a wildtype Ezh2 overexpression mouse model that allows for intravital surveillance of tissues with activated transgene. This model will be an invaluable tool for further unravelling the role of EZH2 in cancer.

  16. Antiurolithic effect of olive oil in a mouse model of ethylene glycol-induced urolithiasis

    Directory of Open Access Journals (Sweden)

    Mohammed Alenzi

    2017-05-01

    Full Text Available Purpose: At present, commercially available antiurolithic drugs have more adverse effects than potential therapeutic or preventive effects with chronic use. With this in mind, the present study was designed to assess the antiurolithic effect of olive oil in a mouse model of ethylene glycol (EG-induced urolithiasis. Materials and Methods: Adult albino mice were divided into 6 groups. Group I was fed the vehicle only. Group II was supplemented with 0.75% EG alone in drinking water during the experimental period to initiate deposition of calcium oxalate in kidneys, which leads to urolithiasis in animals. Groups III (olive oil control group through V were fed olive oil orally at various doses during the experimental period. Group VI received cystone (750 mg/kg. Groups IV–VI additionally received 0.75% EG in drinking water ad libitum. SPSS ver.17.0 was used for statistical analysis. Results: The study results showed significantly higher levels of serum urea, uric acid, and creatinine (p<0.05 in group II than in groups III–VI and I. Administration of olive oil at different doses restored the elevated serum parameters in groups IV and V compared with group II. Urine and kidney calcium, oxalate, and phosphate levels in groups IV–VI were significantly lower (p<0.05 than in animals with EG-induced urolithiasis (group II. Group V mice showed a significant restoration effect on serum as well as urine and kidney parameters compared with group II. Conclusions: Supplementation with olive oil (1.7 mL/kg body weight reduced and prevented the growth of urinary stones, possibly by inhibiting renal tubular membrane damage due to peroxidative stress induced by hyperoxaluria.

  17. Antiurolithic effect of olive oil in a mouse model of ethylene glycol-induced urolithiasis.

    Science.gov (United States)

    Alenzi, Mohammed; Rahiman, Shaik; Tantry, Bilal Ahmad

    2017-05-01

    At present, commercially available antiurolithic drugs have more adverse effects than potential therapeutic or preventive effects with chronic use. With this in mind, the present study was designed to assess the antiurolithic effect of olive oil in a mouse model of ethylene glycol (EG)-induced urolithiasis. Adult albino mice were divided into 6 groups. Group I was fed the vehicle only. Group II was supplemented with 0.75% EG alone in drinking water during the experimental period to initiate deposition of calcium oxalate in kidneys, which leads to urolithiasis in animals. Groups III (olive oil control group) through V were fed olive oil orally at various doses during the experimental period. Group VI received cystone (750 mg/kg). Groups IV-VI additionally received 0.75% EG in drinking water ad libitum. SPSS ver.17.0 was used for statistical analysis. The study results showed significantly higher levels of serum urea, uric acid, and creatinine (p<0.05) in group II than in groups III-VI and I. Administration of olive oil at different doses restored the elevated serum parameters in groups IV and V compared with group II. Urine and kidney calcium, oxalate, and phosphate levels in groups IV-VI were significantly lower (p<0.05) than in animals with EG-induced urolithiasis (group II). Group V mice showed a significant restoration effect on serum as well as urine and kidney parameters compared with group II. Supplementation with olive oil (1.7 mL/kg body weight) reduced and prevented the growth of urinary stones, possibly by inhibiting renal tubular membrane damage due to peroxidative stress induced by hyperoxaluria.

  18. Upper airway inflammation exacerbates bronchial hyperreactivity in mouse models of rhinosinusitis and allergic asthma.

    Science.gov (United States)

    Liang, Kai-Li; Jiang, Rong-San; Wang, Ren-Ching; Koo, Malcolm; Chen, Shyh-Chang; Huang, Wan-Chun; Yeh, Yueh-Chiao

    2013-07-01

    Recent studies have suggested that upper airway inflammation has a strong impact on lower airway diseases. The purpose of this study was to assess whether nasal inflammation could exacerbate allergic asthma in a mouse model. Mice were assigned to 4 groups: control (Cont), either rhinosinusitis (R) or allergic asthma (A) alone, and both rhinosinusitis and allergic asthma (R&A). Mice underwent induction of nasal inflammation (R and R&A) or sham surgery (Cont and A) on day 1. Mice in the A and R&A groups were sensitized to ovalbumin on days 1, 7, and 14, followed by aerosol challenge on days 18 to 20, whereas in the Cont and R groups only saline was administered. All mice were assessed for airway hyperresponsiveness (AHR) and were euthanized on day 21. The sera, bronchoalveolar lavage fluids (BALFs), and nasal and lung tissues were collected for further analyses. Histology findings confirmed upper and lower airway inflammation in experimental mice. Significantly increased AHR and total serum immunoglobulin E (IgE) were observed in the R&A group when compared with those of the Cont, R, and A groups. Responses to IgG2a induction were also found in sera and BALFs from mice with rhinosinusitis (R and R&A). Higher levels of interleukin 4 (IL-4) and IL-13, and increased eosinophilic inflammation were detected in BALFs and lung tissues from the experimental groups when compared with those from the Cont group. Our results confirm that upper airway inflammation could exacerbate allergic asthma, and provide support to the concept of "one airway, one disease. © 2013 ARS-AAOA, LLC.

  19. Intrahepatic Tissue Implantation Represents a Favorable Approach for Establishing Orthotopic Transplantation Hepatocellular Carcinoma Mouse Models.

    Directory of Open Access Journals (Sweden)

    Quan Rao

    Full Text Available Mouse models are commonly used for studying hepatocellular carcinoma (HCC biology and exploring new therapeutic interventions. Currently three main modalities of HCC mouse models have been extensively employed in pre-clinical studies including chemically induced, transgenic and transplantation models. Among them, transplantation models are preferred for evaluating in vivo drug efficacy in pre-clinical settings given the short latency, uniformity in size and close resemblance to tumors in patients. However methods used for establishing orthotopic HCC transplantation mouse models are diverse and fragmentized without a comprehensive comparison. Here, we systemically evaluate four different approaches commonly used to establish HCC mice in preclinical studies, including intravenous, intrasplenic, intrahepatic inoculation of tumor cells and intrahepatic tissue implantation. Four parameters--the latency period, take rates, pathological features and metastatic rates--were evaluated side-by-side. 100% take rates were achieved in liver with intrahepatic, intrasplenic inoculation of tumor cells and intrahepatic tissue implantation. In contrast, no tumor in liver was observed with intravenous injection of tumor cells. Intrahepatic tissue implantation resulted in the shortest latency with 0.5 cm (longitudinal diameter tumors found in liver two weeks after implantation, compared to 0.1cm for intrahepatic inoculation of tumor cells. Approximately 0.1cm tumors were only visible at 4 weeks after intrasplenic inoculation. Uniform, focal and solitary tumors were formed with intrahepatic tissue implantation whereas multinodular, dispersed and non-uniform tumors produced with intrahepatic and intrasplenic inoculation of tumor cells. Notably, metastasis became visible in liver, peritoneum and mesenterium at 3 weeks post-implantation, and lung metastasis was visible after 7 weeks. T cell infiltration was evident in tumors, resembling the situation in HCC patients

  20. Dynamic vehicle model for handling performance using experimental data

    Directory of Open Access Journals (Sweden)

    SangDo Na

    2015-11-01

    Full Text Available An analytical vehicle model is essential for the development of vehicle design and performance. Various vehicle models have different complexities, assumptions and limitations depending on the type of vehicle analysis. An accurate full vehicle model is essential in representing the behaviour of the vehicle in order to estimate vehicle dynamic system performance such as ride comfort and handling. An experimental vehicle model is developed in this article, which employs experimental kinematic and compliance data measured between the wheel and chassis. From these data, a vehicle model, which includes dynamic effects due to vehicle geometry changes, has been developed. The experimental vehicle model was validated using an instrumented experimental vehicle and data such as a step change steering input. This article shows a process to develop and validate an experimental vehicle model to enhance the accuracy of handling performance, which comes from precise suspension model measured by experimental data of a vehicle. The experimental force data obtained from a suspension parameter measuring device are employed for a precise modelling of the steering and handling response. The steering system is modelled by a lumped model, with stiffness coefficients defined and identified by comparing steering stiffness obtained by the measured data. The outputs, specifically the yaw rate and lateral acceleration of the vehicle, are verified by experimental results.

  1. Transgenic mouse models to study Gpr54/kisspeptin physiology.

    Science.gov (United States)

    Colledge, W H

    2009-01-01

    Four transgenic mouse lines have been generated with mutations in the Gpr54 gene and two lines with mutations in the Kiss1 gene. In general, the phenotypes of all these mutant mice are very similar and provide evidence that these molecules constitute an authentic receptor/ligand pair with no obvious redundancy or overlap with other signaling pathways. The mutant mice all fail to undergo pubertal maturation and show poor development of the gonads and infertility with low sex steroid and gonadotrophic hormone levels (hypogonadotrophic hypogonadism). Spermatogenesis and ovulation are severely impaired and mutant females do not show estrous cycling. The gonads and the anterior pituitary retain functional responses to hormonal stimulation however, consistent with the primary defect being a failure to secrete gonadotrophin releasing hormone (GnRH) from the hypothalamus. Slight differences between the phenotype of some of the mutant lines may reflect the type of mutation carried by each line. These mutant mice are being used to interrogate the function of Gpr54 and Kiss1 in key aspects of mammalian reproduction in vivo including the role of these proteins in the generation of the pre-ovulatory luteinizing hormone (LH) surge and aspects of sexual behavior. They provide a useful resource to further understand the hypothalamic regulation of mammalian reproduction, its integration with the pituitary-gonadal axis and to study the potential function of Gpr54 and Kiss1 in peripheral tissues.

  2. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  3. A mouse model of paralytic myelitis caused by enterovirus D68.

    Directory of Open Access Journals (Sweden)

    Alison M Hixon

    2017-02-01

    Full Text Available In 2014, the United States experienced an epidemic of acute flaccid myelitis (AFM cases in children coincident with a nationwide outbreak of enterovirus D68 (EV-D68 respiratory disease. Up to half of the 2014 AFM patients had EV-D68 RNA detected by RT-PCR in their respiratory secretions, although EV-D68 was only detected in cerebrospinal fluid (CSF from one 2014 AFM patient. Given previously described molecular and epidemiologic associations between EV-D68 and AFM, we sought to develop an animal model by screening seven EV-D68 strains for the ability to induce neurological disease in neonatal mice. We found that four EV-D68 strains from the 2014 outbreak (out of five tested produced a paralytic disease in mice resembling human AFM. The remaining 2014 strain, as well as 1962 prototype EV-D68 strains Fermon and Rhyne, did not produce, or rarely produced, paralysis in mice. In-depth examination of the paralysis caused by a representative 2014 strain, MO/14-18947, revealed infectious virus, virion particles, and viral genome in the spinal cords of paralyzed mice. Paralysis was elicited in mice following intramuscular, intracerebral, intraperitoneal, and intranasal infection, in descending frequency, and was associated with infection and loss of motor neurons in the anterior horns of spinal cord segments corresponding to paralyzed limbs. Virus isolated from spinal cords of infected mice transmitted disease when injected into naïve mice, fulfilling Koch's postulates in this model. Finally, we found that EV-D68 immune sera, but not normal mouse sera, protected mice from development of paralysis and death when administered prior to viral challenge. These studies establish an experimental model to study EV-D68-induced myelitis and to better understand disease pathogenesis and develop potential therapies.

  4. T2 weighted MRI for assessing renal lesions in transgenic mouse models of tuberous sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Kalogerou, Maria; Zhang, Yadan; Yang, Jian; Garrahan, Nigel [Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN (United Kingdom); Paisey, Stephen; Tokarczuk, Paweł; Stewart, Andrew [School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX (United Kingdom); Gallacher, John [Department of Primary Care and Public Health, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4YS (United Kingdom); Sampson, Julian R. [Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN (United Kingdom); Shen, Ming Hong, E-mail: shenmh@cf.ac.uk [Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN (United Kingdom)

    2012-09-15

    Objective: Transgenic mouse models of tuberous sclerosis (TSC) develop renal cysts, cystadenomas, solid adenomas and carcinomas. Identification and characterisation of these lesions in vivo may help in TSC pre-clinical trials. This study was to evaluate T2 weighted MRI for assessment of renal lesions in two Tsc mouse models. Materials and Methods: Tsc1{sup +/−}, Tsc2{sup +/−} and wild type mice were subjected to a first MRI scan at 12 months of age and a second scan 2 months later. One Tsc2{sup +/−} mouse was treated with rapamycin for two months after the initial scan. Immediately following the second scan, mice were sacrificed and MRI images were compared to renal histological findings. Results: MRI identified all types of Tsc-associated renal lesions in both Tsc1{sup +/−} and Tsc2{sup +/−} mice. The smallest detectable lesions were <0.1 mm{sup 3}. Eighty three percent of all renal lesions detected in the first scan were re-identified in the second scan. By MRI, these lesions demonstrated significant growth in the 9 untreated Tsc1{sup +/−} and Tsc2{sup +/−} mice but shrinkage in the rapamycin treated Tsc2{sup +/−} mouse. Between the two scans, MRI also revealed significant increase in both the total number and volume of lesions in untreated mice and decrease in the rapamycin treated mouse, respectively. In comparison to histological analysis MRI detected most cysts and cystadenomas (66%) but only a minority of solid tumours (29%). Conclusion: These results suggest that T2 weighted MRI may be a useful tool for assessing some renal lesions in pre-clinical studies using Tsc mouse models. However, improved sensitivity for T2 weighted MRI is required, particularly for solid renal lesions.

  5. GFAP expression as an indicator of disease severity in mouse models of Alexander disease.

    Science.gov (United States)

    Jany, Paige L; Hagemann, Tracy L; Messing, Albee

    2013-01-01

    AxD (Alexander disease) is a rare disorder caused by heterozygous mutations in GFAP (glial fibrillary acidic protein) resulting in accumulation of the GFAP protein and elevation of Gfap mRNA. To test whether GFAP itself can serve as a biomarker of disease status or progression, we investigated two independent measures of GFAP expression in AxD mouse models, one using a genetic reporter of promoter activity and the other quantifying GFAP protein directly in a manner that could also be employed in human studies. Using a transgenic reporter line that expresses firefly luciferase under the control of the murine Gfap promoter (Gfap-luc), we found that luciferase activity reflected the regional CNS (central nervous system) variability of Gfap mRNA in Gfap(+/+) mice, and increased in mice containing a point mutation in Gfap that mimics a common human mutation in AxD (R239H in the human sequence, and R236H in the murine sequence). In a second set of studies, we quantified GFAP protein in CSF (cerebrospinal fluid) taken from three different AxD mouse models and littermate controls. GFAP levels in CSF were increased in all three AxD models, in a manner corresponding to the concentrations of GFAP in brain. These studies demonstrate that transactivation of the Gfap promoter is an early and sustained indicator of the disease process in the mouse. Furthermore, GFAP in CSF serves as a potential biomarker that is comparable between mouse models and human patients.

  6. Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model

    NARCIS (Netherlands)

    H. Jiang (Hao); K. Clise-Dwyer (Karen); K.E. Ruisaard (Kathryn); X. Fan (Xuejun); W. Tian (Weihua); J. Gumin (Joy); M.L.M. Lamfers (Martine); A. Kleijn (Anne); F.F. Lang (Frederick); S. Yung (Sun); L.M. Vence (Luis); C. Gomez-Manzano (Candelaria); J. Fueyo (Juan)

    2014-01-01

    textabstractBackground: Emerging evidence suggests anti-cancer immunity is involved in the therapeutic effect induced by oncolytic viruses. Here we investigate the effect of Delta-24-RGD oncolytic adenovirus on innate and adaptive anti-glioma immunity. Design: Mouse GL261-glioma model was set up in

  7. Breeding a PKU-mouse model on Phe-free diet, is it possible?

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Johansen, Karen Singers; Vorup-Jensen, Thomas

    2014-01-01

    is therefore widely used model in PKU research. The Pahenu2 mutation has been transferred to the inbred C57BL/6 mouse strain. Breeding colonies on both inbred strains have been established at Aarhus University. Recently an attempt to breed homozygous animals on a Phe-free diet was attempted in order to reduce...

  8. Comparative mRNA analysis of behavioral and genetic mouse models of aggression

    NARCIS (Netherlands)

    Malki, Karim; Tosto, Maria G.; Pain, Oliver; Sluyter, Frans; Mineur, Yann S.; Crusio, Wim E.; de Boer, Sietse; Sandnabba, Kenneth N.; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C.; Asherson, Philip

    Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially

  9. A novel brain trauma model in the mouse : effects of dexamethasone treatment

    NARCIS (Netherlands)

    Hortobágyi, Tibor; Hortobagyi, S; Gorlach, C; Harkany, T; Benbyo, Z; Gorogh, T; Nagel, W; Wahl, M

    2000-01-01

    We describe a novel methodological approach for inducing cold lesion in the mouse as a model of human cortical contusion trauma. To validate its reproducibility and reliability, dexamethasone (Dxm) was repeatedly applied to demonstrate possible antioedematous drug effects. Following tho induction of

  10. Role of lipotoxicity in insulin resistance in subtotally nephrectomized mouse model

    Directory of Open Access Journals (Sweden)

    Laetitia Koppe

    2012-06-01

    In subtotally nephrectomized mouse model we showed an ectopic intramuscular and intrahepatic lipid redistribution concomitant with insulin resistance. Insulin resistance and lipotoxicity may represent the missing links (beyond the classical cardiovascular risk factors that may help explain the increased risk of cardiovascular disease in CKD.

  11. Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Athanassios Fragoulis

    2017-08-01

    Conclusion: In summary, these findings show that methysticin administration activates the Nrf2 pathway and reduces neuroinflammation, hippocampal oxidative damage and memory loss in a mouse model of AD. Therefore, kavalactones might be suitable candidates to serve as lead compounds for the development of a new class of neuroprotective drugs.

  12. Activity-Dependent Changes in MAPK Activation in the Angelman Syndrome Mouse Model

    Science.gov (United States)

    Filonova, Irina; Trotter, Justin H.; Banko, Jessica L.; Weeber, Edwin J.

    2014-01-01

    Angelman Syndrome (AS) is a devastating neurological disorder caused by disruption of the maternal "UBE3A" gene. Ube3a protein is identified as an E3 ubiquitin ligase that shows neuron-specific imprinting. Despite extensive research evaluating the localization and basal expression profiles of Ube3a in mouse models, the molecular…

  13. A modified immune tolerant mouse model to study the immunogenicity of recombinant human interferon beta

    NARCIS (Netherlands)

    Abdolvahab, Mohadeseh Haji; Brinks, Vera; Schellekens, Huub

    2014-01-01

    Interferon beta may induce antibodies in multiple sclerosis patients and the incidence of immunogenicity depends on the type of product. These antibodies can reduce the efficacy of interferon beta. Two transgenic immune tolerant mouse models for human interferon beta (hIFNβ) (C57Bl/6, and

  14. Transgenic mouse models to study the role of APOE in hyperlipidemia and atherosclerosis

    NARCIS (Netherlands)

    Hofker, M.H.; Vlijmen, B.J.M. van; Havekes, L.M.

    1998-01-01

    Transgenic technologies have provided a series of very useful mouse models to study hyperlipidemia and atherosclerosis. Normally, mice carry cholesterol mainly in the high density lipoprotein (HDL) sized lipoproteins, and have low density lipoprotein (LDL) and very low density lipoprotein (VLDL)

  15. Multiple faces of FoxM1 transcription factor: Lessons from transgenic mouse models

    National Research Council Canada - National Science Library

    Kalin, Tanya V; Ustiyan, Vladimir; Kalinichenko, Vladimir V

    2011-01-01

    .... In this review, we discussed the role of FoxM1 in different cell lineages using recent data from transgenic mouse models with conditional "gain-of-function" and "loss-of-function" of FoxM1, as well...

  16. NOD mouse model for Sjögren's syndrome: lack of longitudinal stability

    NARCIS (Netherlands)

    Lodde, B. M.; Mineshiba, F.; Kok, M. R.; Wang, J.; Zheng, C.; Schmidt, M.; Cotrim, A. P.; Kriete, M.; Tak, P. P.; Baum, B. J.

    2006-01-01

    OBJECTIVES: The non-obese diabetic (NOD) mouse is not only a widely used model for diabetes mellitus type I, but also for the chronic autoimmune disease Sjögren's syndrome (SS), mainly affecting salivary and lacrimal glands. We studied the efficacy of local recombinant serotype 2 adeno-associated

  17. Reduced activity-dependent protein levels in a mouse model of the fragile X premutation

    NARCIS (Netherlands)

    R.E. von Leden (Ramona); L.C. Curley (Lindsey); G.D. Greenberg (Gian); M.R. Hunsaker (Michael); R. Willemsen (Rob); R.F. Berman (Robert)

    2014-01-01

    textabstractEnvironmental enrichment results in increased levels of Fmrp in brain and increased dendritic complexity. The present experiment evaluated activity-dependent increases in Fmrp levels in the motor cortex in response to training on a skilled forelimb reaching task in the CGG KI mouse model

  18. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  19. Evaluation of the sensitizing potential of food proteins using two mouse models

    NARCIS (Netherlands)

    Smit, J.; Zeeuw-Brouwer, M.L.D.; Roest, M. van; Jong, G. de; Bilsen, J. van

    2016-01-01

    The current methodology to identify allergenic food proteins is effective in identifying those that are likely to cross-react with known allergens. However, most assays show false positive results for low/non-allergens. Therefore, an ex vivo/in vitro DC-T cell assay and an in vivo mouse model were

  20. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model

    NARCIS (Netherlands)

    Vissers, Joost L. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Kapsenberg, Martien L.; Weller, Frank R.; van Oosterhout, Antoon J. M.

    2004-01-01

    Background: Human studies have demonstrated that allergen immunotherapy induces memory suppressive responses and IL-10 production by allergen-specific T cells. Previously, we established a mouse model in which allergen immunotherapy was effective in the suppression of allergen-induced asthma

  1. Novel approaches to identify low-penetrance cancer susceptibility genes using mouse models.

    Science.gov (United States)

    de Koning, John P; Mao, Jian-Hua; Balmain, Allan

    2003-01-01

    Studies of cancer predisposition have largely concentrated on the role of high-penetrance susceptibility genes. Less than 10% of the total human tumor burden, however, is accounted for by mutations in these genes. More genetic variation in cancer risk is likely to be due to commoner but lower penetrance alleles. In man, such modifier genes will be difficult to find since they do not segregate as single Mendelian traits. The mouse offers a powerful system for studying polygenic traits such as cancer and has been widely used for this purpose. Novel approaches that might accelerate the identification of these low-penetrance cancer susceptibility genes by using mouse models will be discussed.

  2. Impact of an additional chronic BDNF reduction on learning performance in an Alzheimer mouse model

    OpenAIRE

    Laura ePsotta; Carolin eRockahr; Michael eGruss; Elmar eKirches; Katharina A Braun; Katharina A Braun; Volkmar eLessmann; Volkmar eLessmann; Joerg eBock; Thomas eEndres

    2015-01-01

    There is increasing evidence that brain-derived neurotrophic factor (BDNF) plays a crucial role in AD pathology. A number of studies demonstrated that AD patients exhibit reduced BDNF levels in the brain and the blood serum, and in addition, several animal-based studies indicated a potential protective effect of BDNF against Aβ-induced neurotoxicity. In order to further investigate the role of BDNF in the etiology of AD, we created a novel mouse model by crossing a well-established AD mouse m...

  3. The Neuroprotective Properties of Hericium erinaceus in Glutamate-Damaged Differentiated PC12 Cells and an Alzheimer's Disease Mouse Model.

    Science.gov (United States)

    Zhang, Junrong; An, Shengshu; Hu, Wenji; Teng, Meiyu; Wang, Xue; Qu, Yidi; Liu, Yang; Yuan, Ye; Wang, Di

    2016-11-01

    Hericium erinaceus , an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson's and Alzheimer's disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE) on an l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cellular apoptosis model and an AlCl₃ combined with d-galactose-induced Alzheimer's disease mouse model. The data revealed that HE successfully induced PC12 cell differentiation. A 3 h HE incubation at doses of 50 and 100 µg/mL before 25 mM of l-Glu effectively reversed the reduction of cell viability and the enhancement of the nuclear apoptosis rate in DPC12 cells. Compared with l-Glu-damaged cells, in PC12 cells, HE suppressed intracellular reactive oxygen species accumulation, blocked Ca 2+ overload and prevented mitochondrial membrane potential (MMP) depolarization. In the Alzheimer's disease mouse model, HE administration enhanced the horizontal and vertical movements in the autonomic activity test, improved the endurance time in the rotarod test, and decreased the escape latency time in the water maze test. It also improved the central cholinergic system function in the Alzheimer's mice, demonstrated by the fact that it dose-dependently enhanced the acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations in both the serum and the hypothalamus. Our findings provide experimental evidence that HE may provide neuroprotective candidates for treating or preventing neurodegenerative diseases.

  4. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, J M [University of Alabama, Birmingham; Michaud III, Edward J [ORNL; Schoeb, T [University of Alabama, Birmingham; Aydin Son, Yesim [University of Tennessee, Knoxville (UTK); Miller, M [University of Alabama, Birmingham; Yoder, Bradley [University of Alabama, Birmingham

    2008-08-01

    The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can be analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.

  5. Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders.

    Science.gov (United States)

    Sukoff Rizzo, Stacey J; Crawley, Jacqueline N

    2017-02-08

    Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.

  6. The Event Coordination Notation: Behaviour Modelling Beyond Mickey Mouse

    DEFF Research Database (Denmark)

    Jepsen, Jesper; Kindler, Ekkart

    2015-01-01

    generating fully functional software from a combination of class diagrams and ECNO models. What is more, software generated from ECNO models, integrates with existing software and software generated by other technologies. ECNO started out from some challenges in behaviour modelling and some requirements...

  7. Aspirin ameliorates cerebral infarction through regulation of TLR4/NF‑κB‑mediated endoplasmic reticulum stress in mouse model.

    Science.gov (United States)

    Wang, Xin; Shen, Bin; Sun, Dezhou; Cui, Xiangyu

    2018-01-01

    Cerebral infarction is a cerebrovascular disease caused by local brain ischemic necrosis or softening, which is associated with diabetes, obesity, hypertension and rheumatic heart arrhythmia. Previous studies have indicated that aspirin is a potential oral anticoagulant in the treatment of cerebral ischemic stroke. However, the potential mechanism mediated by aspirin in cerebral infarction therapy is not well understood. The present study analyzed the therapeutic effects of aspirin on cerebral infarction and investigated the underlying molecular mechanism of aspirin‑ameliorated benefits for thrombolysis. The results demonstrated that aspirin inhibited inflammation and apoptosis of cerebrovascular endothelial cells in a mouse model of cerebral infarction. Aspirin treatment suppressed toll‑like receptor (TLR)4 and nuclear factor (NF)‑κB expression in cerebrovascular endothelial cells. Endoplasmic reticulum (ER) stress was suppressed by aspirin treatment through the downregulation of protein kinase R‑like endoplasmic reticulum kinase, eukaryotic translation initiation factor 2 subunit 1 and C/EBP homologous protein expression levels in cerebrovascular endothelial cells. It was identified that knockdown of TLR4 inhibited aspirin‑mediated downregulation of NF‑κB signaling pathway and ER stress in cerebrovascular endothelial cells. Expression levels of adenosine diphosphate plasminogen activator inhibitors, von Willebrand factor and thromboxane were downregulated in cerebrovascular endothelial cells and in serum in experimental mice. The results demonstrated that aspirin was beneficial forthrombolysis by decreasing thrombin‑activatable fibrinolysis inhibitor and plasminogen activator inhibitor‑1 expression in a mouse model of cerebral infarction. These results suggested that aspirin may improve cerebral infarction by downregulating TLR4/NF‑κB‑mediated ER stress in a mouse model.

  8. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  9. Establishment of a transgenic mouse model of corneal dystrophy overexpressing human BIGH3.

    Science.gov (United States)

    Liao, Xin; Cui, Hongping; Wang, Fang

    2013-11-01

    This study aimed to establish a transgenic mouse model of corneal dystrophy (CD) overexpressing the human transforming growth factor, β-induced, 68 kDa (TGFBI, also known as BIGH3) gene. A purified and linearized recombinant plasmid carrying the expression cassette BIGH3‑IRES‑EGFP was microinjected into the pronuclei of C57BL/6J mouse fertilized eggs under the control of the phosphoglycerate kinase (PGK) promoter. The expression of human BIGH3 in the transgenic mice was confirmed by PCR using DNA extracted from tail tissue. Four founder transgenic mice were identified by PCR and the increased expression of BIGH3 was observed in the corneas of the transgenic mice by RT-PCR and western blot analysis. The abnormal corneas with central opacity were observed in the transgenic