WorldWideScience

Sample records for experimental mouse model

  1. Experimental photoallergic contact dermatitis: a mouse model

    International Nuclear Information System (INIS)

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-01-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model

  2. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  3. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis.

    Science.gov (United States)

    Gatej, Simona M; Marino, Victor; Bright, Richard; Fitzsimmons, Tracy R; Gully, Neville; Zilm, Peter; Gibson, Rachel J; Edwards, Suzanne; Bartold, Peter M

    2018-02-01

    This study investigated the role of Lactobacillus rhamnosus GG (LGG) on bone loss and local and systemic inflammation in an in vivo mouse model of experimental periodontitis (PD). Experimental PD was induced in mice by oral inoculation with Porphyromonas gingivalis and Fusobacterium nucleatum over a period of 44 days. The probiotic LGG was administered via oral inoculation or oral gavage prior to, and during disease induction. The antimicrobial activity of LGG on the inoculum was also tested. Alveolar bone levels and gingival tissue changes were assessed using in vivo microcomputed tomography and histological analysis. Serum levels of mouse homologues for IL-8 were measured using multiplex assays. Pre-treatment with probiotics either via oral gavage or via oral inoculation significantly reduced bone loss (p loss in a mouse model of induced PD irrespective of the mode of administration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. In vivo biodistribution of CNTs using a BALB/c mouse experimental model.

    Science.gov (United States)

    Fufă, Mariana Oana Mihaela; Mihaiescu, Dan Eduard; Mogoantă, Laurenţiu; Bălşeanu, Tudor Adrian; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Bolocan, Alexandra

    2015-01-01

    Due to their unique behaviors, carbon nanotubes (CNTs)-based systems meet essential requirements for modern applications, such as electronics, optics, photovoltaics, fuel cells, aerospace engineering, military and biomedical applications. CNTs biocompatibility and toxic effects were assessed both in vitro and in vivo, in terms of hemocompatibility, cytocompatibility, immunoreactions and genetic behavior. The aim of this paper is to evaluate the in vivo biodistribution and biocompatibility of carbon nanopowder synthesized by plasma processing, using a BALB/c mouse experimental model. Three months old BALB/c mice were aseptically injected with 100 μL of 1 mg/mL dispersions. The obtained carbon-based nano-systems were dispersed in saline solution and subsequently sterilized by using a 30 minutes treatment with UV irradiation. The reference mice were injected with 100 μL of saline. The mice were kept under standard conditions of light, temperature, humidity, food and water (ad libitum) before the vital organ harvest. The animal welfare was daily monitored. At two and 10 days after the inoculation, the animals were euthanized under general anesthesia, for the sampling of internal organs (brain, myocardium, pancreas, liver, lung, kidney and spleen). No animal died during the experiment. Brain, myocardium and pancreas were histologically normal, with no tissue damage, inflammatory infiltrate or inorganic deposits. CNTs were evidenced only in hepatic, renal, pulmonary and spleen tissue samples. Increased amounts of inorganic granular structures were reported after 10 days of treatment, when compared to the short-term (two days) inoculation. Our BALB/c mouse experimental model was found to be useful for the in vivo assessment of biodistribution and biocompatibility of CNTs.

  5. Effects of Quercetin in a Mouse Model of Experimental Dry Eye.

    Science.gov (United States)

    Oh, Ha Na; Kim, Chae Eun; Lee, Ji Hyun; Yang, Jae Wook

    2015-09-01

    To evaluate the effect of treatment with quercetin in a mouse model of dry eye. 0.5% quercetin eye drops were prepared and an experimental dry eye model was induced in NOD.B10.H2(b) mice through desiccation stress. The mice were divided into 3 groups according to the treatment regimen: the DS 10D group (desiccation stress for 10 days), the phosphate buffered saline (PBS) group, and the quercetin group. Tear volumes and corneal irregularity scores were measured at 3, 5, 7, and 10 days after treatment. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemistry were performed at the end of the experiment. The quercetin group had increased tear volumes (0.2 ± 0.03 μm, P lacrimal gland than did the PBS group. Topical application of quercetin can help to improve ocular surface disorders of dry eye not only by decreasing the corneal surface irregularity but also by increasing the tear volume and goblet cell density. Moreover, quercetin has the potential for use in eye drops as a treatment for dry eye disease with antiinflammatory effects on the lacrimal functional unit.

  6. A meta-analysis of experimental studies of attenuated Schistosoma mansoni vaccines in the mouse model

    Directory of Open Access Journals (Sweden)

    Mizuho eFukushige

    2015-02-01

    Full Text Available Schistosomiasis is a water-borne, parasitic disease of major public health importance. There has been considerable effort for several decades towards the development of a vaccine against the disease. Numerous mouse experimental studies using attenuated Schistosoma mansoni parasites for vaccination have been published since the 1960s. However, to date, there has been no systematic review or meta-analysis of these data. The aim of this study is to identify measurable experimental conditions that affect the level of protection against re-infection with S. mansoni in mice vaccinated with radiation attenuated cercariae. Following a systematic review, a total of 755 observations were extracted from 105 articles (published 1963-2007 meeting the searching criteria. Random effects meta-regression models were used to identify the influential predictors.Three predictors were found to have statistically significant effects on the level of protection from vaccination: increasing numbers of immunizing parasites had a positive effect on fraction of protection whereas increasing radiation dose and time to challenge infection had negative effects. Models showed that the irradiated cercariae vaccine has the potential to achieve protection as high as 78% with a single dose vaccination. This declines slowly over time but remains high for at least 8 months after the last immunization. These findings provide insights into the optimal delivery of attenuated parasite vaccination and into the nature and development of protective vaccine induced immunity against schistosomiasis which may inform the formulation of human vaccines and the predicted duration of protection and thus frequency of booster vaccines.

  7. Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety.

    Science.gov (United States)

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-11-05

    Anxiety disorders are widely spread psychiatric illnesses that are a cause of major concern. Despite a consistent increase in anxiolytics, the prevalence of anxiety is static; this necessitates the development of new compounds with potential activity and minimum unwanted effects. A serotonergic (5HT) system plays an important role in pathogenesis of anxiety and predominantly involves 5HT1A receptor action in mediating anxiety-like behavior; the antagonism of 5HT1A receptor has demonstrated to produce anxiolytic-like effects. Alverine citrate (AVC) is reported as a 5HT1A antagonist; however, its effects on anxiety-like behavior are not investigated. Thus, the present study, by utilizing a neurobehavioral approach, examined the anxiolytic-like effects of AVC in experimental mouse models of anxiety. Mice were acutely treated with AVC (5-20mg/kg, i.p.)/diazepam (DIA, 2mg/kg, i.p.) and subjected to four validated anxiety models viz. elevated plus-maze (EPM), light/dark (L/D), hole-board (HB) and marble burying (MB) tests. AVC (15-20mg/kg) and DIA significantly increased open arm activity in EPM, exploration in light chamber in L/D test, exploratory behavior in HB and reduced MB behavior in marble burying test. AVC (5mg/kg) had no effect on all behavioral tests, while AVC (10mg/kg) produced partial effects. It revealed anxiolytic-like effects of AVC. Furthermore, anxiolytic-like effects of AVC at higher doses (15-20mg/kg) were more pronounced than lower doses (10mg/kg) and were quite similar to the standard drug DIA. The present finding demonstrates, for the first time, the anxiolytic-like effects of AVC, which may be an alternative approach for management of anxiety-related disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. THE MOUSE AS AN EXPERIMENTAL MODEL FOR TITYUS SERRULATUS SCORPION ENVENOMING

    Directory of Open Access Journals (Sweden)

    Mônica de Mônico Magalhães

    1998-10-01

    Full Text Available The scorpion toxin induces a number of physiological parameters alterations, as disturbance of cardiac rhythm, heart failure, shock, pancreatic hypersecretion, abortion, respiratory arrhytmias and pulmonary edema. As the purification of the venom fractions is a laborious process, one alternative for this would be the utilization of small animals. We utilized in the present study thity-six mice that received progressive doses of scorpion toxin TsTX, i.p. or i.v., and were observed for three hours or sacrificed, and the pulmonary alterations were determined by the lung-body index and by histological analysis of the lungs in order to determine if the mouse can be an esperimental model for scorpion envenomation. The data were analyzed by One Way analysis of variance with pA toxina do escorpião induz a várias alterações fisiológicas, como disturbio do ritmo cardíaco, insuficiência cardíaca, choque, hipersecreção pancreática, aborto, arritmias respiratórias e edema pulmonar. A purificação de frações do veneno é um processo trabalhoso. Como alternativa utilizam-se animais pequenos. No presente estudo utilizou-se 36 camundongos que receberam doses progressivas de toxinas do escorpião (TsTX, intraperitoneal ou intravenosa e foram observados por tres horas ou sacrificados. As alteraçòes pulmonares foram determinadas pela fórmula peso do pulmão x 100/ peso corporal e pela análise hitológica dos pulmões a fim de determinar que o camundongo pode ser um modelo experimental do envenenamento pelo escorpião. Os dados foram analizados pela análise de variância considerando-se p<0,05 indicando significancia. Os experimentos não mostraram diferença nos sinais clínicos do envenenamento comparando-se o camundongo com outros mamíferos. Os efeitos foram dose-dependente e que pela via venosa necessita-se menos quantidade para produzir as mesmas alterações. Nos aspectos histológicos pulmonares observou-se edema septal e não alveolar

  9. Altered vector competence in an experimental mosquito-mouse transmission model of Zika infection.

    Directory of Open Access Journals (Sweden)

    Ryuta Uraki

    2018-03-01

    Full Text Available Few animal models of Zika virus (ZIKV infection have incorporated arthropod-borne transmission. Here, we establish an Aedes aegypti mosquito model of ZIKV infection of mice, and demonstrate altered vector competency among three strains, (Orlando, ORL, Ho Chi Minh, HCM, and Patilas, PAT. All strains acquired ZIKV in their midguts after a blood meal from infected mice, but ZIKV transmission only occurred in mice fed upon by HCM, and to a lesser extent PAT, but not ORL, mosquitoes. This defect in transmission from ORL or PAT mosquitoes was overcome by intrathoracic injection of ZIKV into mosquito. Genetic analysis revealed significant diversity among these strains, suggesting a genetic basis for differences in ability for mosquito strains to transmit ZIKV. The intrathoracic injection mosquito-mouse transmission model is critical to understanding the influence of mosquitoes on ZIKV transmission, infectivity and pathogenesis in the vertebrate host, and represents a natural transmission route for testing vaccines and therapeutics.

  10. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Science.gov (United States)

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  11. The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria.

    Science.gov (United States)

    Ihara, Tatsuya; Mitsui, Takahiko; Nakamura, Yuki; Kira, Satoru; Miyamoto, Tatsuya; Nakagomi, Hiroshi; Sawada, Norifumi; Hirayama, Yuri; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Yoichi; Yoshiyama, Mitsuharu; Andersson, Karl-Erik; Nakao, Atsuhito; Takeda, Masayuki; Koizumi, Schuichi

    2017-04-01

    The pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock Δ19/Δ19 ) mice in order to determine the effects of clock genes on NOC/NP. Male C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock Δ19/Δ19 mice aged 8 weeks were used. They were bred under 12 hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. No significant differences were observed in behavior patterns between Clock Δ19/Δ19 and WT mice. Clock Δ19/Δ19 mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock Δ19/Δ19 mice. Additionally, functional bladder capacity was significantly lower in Clock Δ19/Δ19 mice than in WT mice. We demonstrated that Clock Δ19/Δ19 mice showed the phenotype of NOC/NP. The Clock Δ19/Δ19 mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Noninvasive Monitoring of Pneumococcal Meningitis and Evaluation of Treatment Efficacy in an Experimental Mouse Model*

    Directory of Open Access Journals (Sweden)

    Jagath L. Kadurugamuwa

    2005-04-01

    Full Text Available Noninvasive real-time in vivo bioluminescent imaging was used to assess the spread of Streptococcus pneumoniae throughout the spinal cord and brain during the acute stages of bacterial meningitis. A mouse model was established by lumbar (LP or intracisternal (IC injection of bioluminescent S. pneumoniae into the subarachnoid space. Bacteria replicated initially at the site of inoculation and spread progressively from the spinal cord to the brain or from the brain down to the cervical part of the spinal column and to the lower vertebral levels. After 24 hr, animals showed strong bioluminescent signals throughout the spinal canal, indicating acute meningitis of the intracranial and intraspinal meninges. A decline in bacterial cell viability, as judged by a reduction in the bioluminescent signal, was observed over time in animals treated with ceftriaxone, but not in untreated groups. Mice treated with the antibiotic survived infection, whereas all mice in untreated groups became moribund, first in the IC group then in the LP group. No untreated animal survived beyond 48 hr after induction of infection. Colony counts of infected cerebrospinal fluid (CSF correlated positively with bioluminescent signals. This methodology is especially appealing because it allows detecting infected mice as early as 3 hr after inoculation, provide temporal, sequential, and spatial distribution of bacteria within the brain and spinal cord throughout the entire disease process and the rapid monitoring of treatment efficacy in a nondestructive manner. Moreover, it avoids the need to sacrifice the animals for CSF sampling and the potential manipulative damage that can occur with other conventional methods.

  13. Histopathology of motor cortex in an experimental focal ischemic stroke in mouse model.

    Science.gov (United States)

    de Oliveira, Juçara Loli; Crispin, Pedro di Tárique Barreto; Duarte, Elisa Cristiana Winkelmann; Marloch, Gilberto Domingos; Gargioni, Rogério; Trentin, Andréa Gonçalves; Alvarez-Silva, Marcio

    2014-05-01

    Experimental ischemia results in cortical brain lesion followed by ischemic stroke. In this study, focal cerebral ischemia was induced in mice by occlusion of the middle cerebral artery. We studied cortical layers I, II/III, V and VI in the caudal forelimb area (CFA) and medial agranular cortex (AGm) from control and C57BL/6 mice induced with ischemic stroke. Based on our analysis of CFA and AGm motor cortex, significant differences were observed in the numbers of neurons, astrocytes and microglia in the superficial II/III and deep V cortical layers. Cellular changes were more prominent in layer V of the CFA with nuclear pyknosis, chromatin fragmentation, necrosis and degeneration, as well as, morphological evidence of apoptosis, mainly in neurons. As result, the CFA was more severely impaired than the AGm in this focal cerebral ischemic model, as evidenced by the proliferation of astrocytes, potentially resulting in neuroinflammation by microglia-like cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  15. Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye.

    Science.gov (United States)

    Choi, Won; Lee, Jee Bum; Cui, Lian; Li, Ying; Li, Zhengri; Choi, Ji Suk; Lee, Hyo Seok; Yoon, Kyung Chul

    2016-01-01

    Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P model mice.

  16. Metabolomic profiling of faecal extracts from Cryptosporidium parvum infection in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Josephine S Y Ng Hublin

    Full Text Available Cryptosporidiosis is a gastrointestinal disease in humans and animals caused by infection with the protozoan parasite Cryptosporidium. In healthy individuals, the disease manifests mainly as acute self-limiting diarrhoea, but may be chronic and life threatening for those with compromised immune systems. Control and treatment of the disease is challenged by the lack of sensitive diagnostic tools and broad-spectrum chemotherapy. Metabolomics, or metabolite profiling, is an emerging field of study, which enables characterisation of the end products of regulatory processes in a biological system. Analysis of changes in metabolite patterns reflects changes in biochemical regulation, production and control, and may contribute to understanding the effects of Cryptosporidium infection in the host environment. In the present study, metabolomic analysis of faecal samples from experimentally infected mice was carried out to assess metabolite profiles pertaining to the infection. Gas-chromatography mass spectrometry (GC-MS carried out on faecal samples from a group of C. parvum infected mice and a group of uninfected control mice detected a mean total of 220 compounds. Multivariate analyses showed distinct differences between the profiles of C. parvum infected mice and uninfected control mice,identifying a total of 40 compounds, or metabolites that contributed most to the variance between the two groups. These metabolites consisted of amino acids (n = 17, carbohydrates (n = 8, lipids (n = 7, organic acids (n = 3 and other various metabolites (n = 5, which showed significant differences in levels of metabolite abundance between the infected and uninfected mice groups (p < 0.05. The metabolites detected in this study as well as the differences in abundance between the C. parvum infected and the uninfected control mice, highlights the effects of the infection on intestinal permeability and the fate of the metabolites as a result of nutrient scavenging by the

  17. Experimentally induced intravaginal Tritrichomonas foetus infection in a mouse model Infecção experimental intravaginal com Tritricho-monas foetus em modelo camundongo

    Directory of Open Access Journals (Sweden)

    Pedro Soto

    2005-12-01

    Full Text Available The interest to develop research on the host-parasite relationship in bovine tritrichomonosis has accomplished the use of experimental models alternative to cattle. The BALB/c mouse became the most appropriate species susceptible to vaginal Tritrichomonas foetus infection requiring previous estrogenization. For the need of an experimental model without persistent estrogenization and with normal estrous cycles, the establishment and persistence of vaginal infection on BALB/c mouse with different concentrations of T. foetus in two experimental groups was evaluated. Group A was treated with 5mg of b-estradiol 3-benzoate to synchronize the estrous, 48 hours before the T. foetus vaginal inoculation, and Group B was inoculated in natural estrus. At 5-7 days after treatment, estrogenic effect decreased allowing all animals to cycle regularly during the experiment. From the first week post-infection, samples of vaginal mucus were taken from all animals during 34 weeks, in order to evaluate the course of infection and the stage of the estrus cycle. Group A showed 93.6% of infected animals, and Group B showed 38%. Different doses of T. foetus were assayed to establish the vaginal infection, with a persistence of 34 weeks. Although different behavior was observed in each subgroup belonging to either Group A or Group B, there were no significant differences among the infecting doses used. The b-estradiol 3-benzoate treatment had a favorable effect on the establishment of the infection (PA necessidade de esclarecer a relação agente-hospedeiro na tricomoníase bovina deu motivo para o uso de modelos experimentais alternativos ao bovino. O camundongo BALB/c resultou como espécie mais adequada para a infeção vaginal com Tritrichomonas foetus, requerendo uma estrogenização prévia. Visando a necessidade de um modelo experimental sem estrogenização persistente e com ciclos estrais normais, foi avaliada a instalação e persistência da infeção vaginal

  18. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Giacoppo S

    2016-10-01

    Full Text Available Sabrina Giacoppo,1 Thangavelu Soundara Rajan,1 Gina Rosalinda De Nicola,2 Renato Iori,2 Placido Bramanti,1 Emanuela Mazzon1 1IRCCS Centre Neurolesi “Bonino-Pulejo”, Messina, Italy; 2Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN, Bologna, Italy Abstract: Aberrant canonical Wnt–β-catenin signaling has been reported in multiple sclerosis (MS, although the results are controversial. The present study aimed to examine the role of the Wnt–β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate, resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin–PPARγ axis. Experimental autoimmune encephalomyelitis (EAE, the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35–55. Released moringin (10 mg/kg glucomoringin +5 µL myrosinase/mouse was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt–β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt–β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3, suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2, through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt–β-catenin signaling cascade and as a new potential therapeutic target for MS treatment. Keywords: Wnt

  19. BAMOS: A recording application for BAsso MOuse scale of locomotion in experimental models of spinal cord injury.

    Science.gov (United States)

    Gómez, Alberto; Nieto-Díaz, Manuel; Del Águila, Ángela; Arias, Enrique

    2018-05-01

    Transparency in science is increasingly a hot topic. Scientists are required to show not only results but also evidence of how they have achieved these results. In experimental studies of spinal cord injury, there are a number of standardized tests, such as the Basso-Beattie-Bresnahan locomotor rating scale for rats and Basso Mouse Scale for mice, which researchers use to study the pathophysiology of spinal cord injury and to evaluate the effects of experimental therapies. Although the standardized data from the Basso-Beattie-Bresnahan locomotor rating scale and the Basso Mouse Scale are particularly suited for storage and sharing in databases, systems of data acquisition and repositories are still lacking. To the best of our knowledge, both tests are usually conducted manually, with the data being recorded on a paper form, which may be documented with video recordings, before the data is transferred to a spreadsheet for analysis. The data thus obtained is used to compute global scores, which is the information that usually appears in publications, with a wealth of information being omitted. This information may be relevant to understand locomotion deficits or recovery, or even important aspects of the treatment effects. Therefore, this paper presents a mobile application to record and share Basso Mouse Scale tests, meeting the following criteria: i) user-friendly; ii) few hardware requirements (only a smartphone or tablet with a camera running under Android Operating System); and iii) based on open source software such as SQLite, XML, Java, Android Studio and Android SDK. The BAMOS app can be downloaded and installed from the Google Market repository and the app code is available at the GitHub repository. The BAMOS app demonstrates that mobile technology constitutes an opportunity to develop tools for aiding spinal cord injury scientists in recording and sharing experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Evaluation of cross-protection by immunization with an experimental trivalent companion animal periodontitis vaccine in the mouse periodontitis model.

    Science.gov (United States)

    Hardham, John; Sfintescu, Cornelia; Evans, Richard T

    2008-03-01

    Companion animal periodontal disease is one of the most prevalent diseases seen by veterinarians. The goal of this study was to evaluate the vaccine performance of a trivalent canine periodontitis vaccine in the mouse oral challenge model of periodontitis. Mice vaccinated subcutaneously with an inactivated, whole-cell vaccine preparation of Porphyromonas denticanis, Porphyromonas gulae, and Porphyromonas salivosa displayed significantly reduced alveolar bone loss in response to heterologous and cross-species challenges as compared to sham vaccinated animals. Based on the results of these studies, a periodontitis vaccine may be a useful tool in preventing the initiation and progression of periodontitis caused by the most commonly isolated pigmenting anaerobic bacteria in animals.

  1. Experimental mouse model of optic neuritis with inflammatory demyelination produced by passive transfer of neuromyelitis optica-immunoglobulin G

    Science.gov (United States)

    2014-01-01

    Background Although optic neuritis (ON) is a defining feature of neuromyelitis optica (NMO), appropriate animal models of NMO ON are lacking. Most NMO patients are seropositive for immunoglobulin G autoantibodies (NMO-IgG) against the astrocyte water channel aquaporin-4 (AQP4). Methods Several approaches were tested to develop a robust, passive-transfer mouse model of NMO ON, including NMO-IgG and complement delivery by: (i) retrobulbar infusion; (ii) intravitreal injection; (iii) a single intracranial injection near the optic chiasm; and (iv) 3-days continuous intracranial infusion near the optic chiasm. Results Little ON or retinal pathology was seen using approaches (i) to (iii). Using approach (iv), however, optic nerves showed characteristic NMO pathology, with loss of AQP4 and glial fibrillary acidic protein immunoreactivity, granulocyte and macrophage infiltration, deposition of activated complement, demyelination and axonal injury. Even more extensive pathology was created in mice lacking complement inhibitor protein CD59, or using a genetically modified NMO-IgG with enhanced complement effector function, including significant loss of retinal ganglion cells. In control studies, optic nerve pathology was absent in treated AQP4-deficient mice, or in wild-type mice receiving control (non-NMO) IgG and complement. Conclusion Passive transfer of NMO-IgG and complement by continuous infusion near the optic chiasm in mice is sufficient to produce ON with characteristic NMO pathology. The mouse model of NMO ON should be useful in further studies of NMO pathogenesis mechanisms and therapeutics. PMID:24468108

  2. Short time effects of radiotherapy on lymphatic vessels and restorative lymphatic pathways: experimental approaches ina mouse model.

    Science.gov (United States)

    Pastouret, F; Lievens, P; Leduc, O; Bourgeois, P; Tournel, K; Lamote, J; Zirak, C; Leduc, A

    2014-06-01

    Radiotherapy (RT) is an important component in the therapeutic approach to oncologic conditions. This study presents the investigative results on the impact of RT on lymphatic vessels and on the regenerative response of the lymphatic system in a mouse model. We first irradiated 3 groups of ten mice using brachytherapy in a single treatment of 20 Gy. We then performed morphological examination of the irradiated lymphatic vessels using an in vivo microscopic transillumination technique at 2, 4, and 6 weeks. Next we evaluated lymphatic flow using lymphoscintigraphy and in vivo microscopy at 6 to 11 weeks in: 10 additional mice following irradiation as above (IR), in 10 mice following incision of a lymphatic vessel (I), and in a non-treated control group of 10 mice (N). Intact lymphatic vessels were observed in all mice at 2, 4, and 8 weeks following the single dose of radiotherapy in the first group of mice and normal lymphatic flow was fully restored in the irradiated (IR) and incised (I) mice indicating that the reparative substitution lymphatic pathways are functioning normally. We found that following irradiation with one dose of 20 Gy, lymphatic vessels were not visibly damaged and also that lymphatic flow was consistently restored and substitutive lymphatic pathways formed.

  3. Improved Debulking of Peritoneal Tumor Implants by Near-Infrared Fluorescent Nanobody Image Guidance in an Experimental Mouse Model.

    Science.gov (United States)

    Debie, Pieterjan; Vanhoeij, Marian; Poortmans, Natalie; Puttemans, Janik; Gillis, Kris; Devoogdt, Nick; Lahoutte, Tony; Hernot, Sophie

    2017-10-31

    Debulking followed by combination chemotherapy is currently regarded as the most effective treatment for advanced ovarian cancer. Prognosis depends drastically on the degree of debulking. Accordingly, near-infrared (NIR) fluorescence imaging has been proposed to revolutionize cancer surgery by acting as a sensitive, specific, and real-time tool enabling visualization of cancer lesions. We have previously developed a NIR-labeled nanobody that allows fast, specific, and high-contrast imaging of HER2-positive tumors. In this study, we applied this tracer during fluorescence-guided surgery in a mouse model and investigated the effect on surgical efficiency. 0.5 × 10 6 SKOV3.IP1-Luc+ cells were inoculated intraperitoneally in athymic mice and were allowed to grow for 30 days. Two nanomoles of IRDye800CW-anti-HER2 nanobody was injected intravenously. After 1h30, mice were killed, randomized in two groups, and subjected to surgery. In the first animal group (n = 7), lesions were removed by a conventional surgical protocol, followed by excision of remaining fluorescent tissue using a NIR camera. The second group of mice (n = 6) underwent directly fluorescence-guided surgery. Bioluminescence imaging was performed before and after surgery. Resected tissue was categorized as visualized during conventional surgery or not, fluorescent or not, and bioluminescent positive or negative. Fluorescence imaging allowed clear visualization of tumor nodules within the abdomen, up to submillimeter-sized lesions. Fluorescence guidance resulted in significantly reduced residual tumor as compared to conventional surgery. Moreover, sensitivity increased from 59.3 to 99.0 %, and the percentage of false positive lesions detected decreased from 19.6 to 7.1 %. This study demonstrates the advantage of intraoperative fluorescence imaging using nanobody-based tracers on the efficiency of debulking surgery.

  4. Immunization with lipopolysaccharide-deficient whole cells provides protective immunity in an experimental mouse model of Acinetobacter baumannii infection.

    Directory of Open Access Journals (Sweden)

    Meritxell García-Quintanilla

    Full Text Available The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010, one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (<1.0 endotoxin unit/106 cells compared to wild type cells. Immunization with formalin inactivated IB010 produced a robust antibody response consisting of both IgG1 and IgG2c subtypes. Mice immunized with IB010 had significantly lower post-infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii.

  5. Inhibition of miR-142-5P ameliorates disease in mouse models of experimental colitis.

    Directory of Open Access Journals (Sweden)

    Nicolette W Duijvis

    Full Text Available MicroRNAs (miRNAs are epigenetically involved in regulating gene expression. They may be of importance in the pathogenesis of inflammatory bowel disease (IBD. The aim of this study was to determine the role of miRNAs by their specific blocking in the CD4+CB45RBhi T-cell transfer model of chronic experimental colitis.Colitis caused by transfer of WT CD4+CD45RBhi T cells in severe combined immunodeficiency (SCID mice shares many features with human IBD. Colonic miRNA expression levels were measured at three time points in colitic mice, where a time-dependent upregulation of multiple miRNAs was seen. To inhibit these miRNAs, specific locked-nucleic-acid-modified (LNA oligonucleotides were administered in further experiments at the moment the mice demonstrated the first signs of colitis. As controls, PBS and a scrambled sequence of anti-miRNA were used. Genome-wide expression analyses were also performed in order to detect candidate target genes of miR-142-5p, of which inhibition resulted in most effective amelioration of colitis.Anti-miR-142-5p reduced colitis and related wasting disease when administered in the T-cell transfer model, reflected in reduced weight loss and a lower disease activity index (DAI. In further validation experiments we also observed a higher survival rate and less colonic histological inflammation in the antagomir-treated mice. Moreover, by genome-wide expression analyses, we found downstream activation of the anti-inflammatory IL10RA pathway, including three genes also found in the top-20 candidate target genes of miR-142-5p.In conclusion, CD4+CD45RBhi-transfer colitis induces miR-142-5p. Blocking miR-142-5p reduced colitis and prevented wasting disease, possibly by activation of the IL10RA pathway.

  6. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.

    2009-01-01

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  7. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  8. Differential host determinants contribute to the pathogenesis of 2009 pandemic H1N1 and human H5N1 influenza A viruses in experimental mouse models.

    Science.gov (United States)

    Otte, Anna; Sauter, Martina; Alleva, Lisa; Baumgarte, Sigrid; Klingel, Karin; Gabriel, Gülsah

    2011-07-01

    Influenza viruses are responsible for high morbidities in humans and may, eventually, cause pandemics. Herein, we compared the pathogenesis and host innate immune responses of a seasonal H1N1, two 2009 pandemic H1N1, and a human H5N1 influenza virus in experimental BALB/c and C57BL/6J mouse models. We found that both 2009 pandemic H1N1 isolates studied (A/Hamburg/05/09 and A/Hamburg/NY1580/09) were low pathogenic in BALB/c mice [log mouse lethal dose 50 (MLD(50)) >6 plaque-forming units (PFU)] but displayed remarkable differences in virulence in C57BL/6J mice. A/Hamburg/NY1580/09 was more virulent (logMLD(50) = 3.5 PFU) than A/Hamburg/05/09 (logMLD(50) = 5.2 PFU) in C57BL/6J mice. In contrast, the H5N1 influenza virus was more virulent in BALB/c mice (logMLD(50) = 0.3 PFU) than in C57BL/6J mice (logMLD(50) = 1.8 PFU). Seasonal H1N1 influenza revealed marginal pathogenicity in BALB/c or C57BL/6J mice (logMLD(50) >6 PFU). Enhanced susceptibility of C57BL/6J mice to pandemic H1N1 correlated with a depressed cytokine response. In contrast, enhanced H5N1 virulence in BALB/c mice correlated with an elevated proinflammatory cytokine response. These findings highlight that host determinants responsible for the pathogenesis of 2009 pandemic H1N1 influenza viruses are different from those contributing to H5N1 pathogenesis. Our results show, for the first time to our knowledge, that the C57BL/6J mouse strain is more appropriate for the evaluation and identification of intrinsic pathogenicity markers of 2009 pandemic H1N1 influenza viruses that are "masked" in BALB/c mice. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  10. Disparate phospho-Smad2 levels in advanced type 2 diabetes patients with diabetic nephropathy and early experimental db/db mouse model

    DEFF Research Database (Denmark)

    Thomsen, Lise Høj; Fog-Tonnesen, Morten; Nielsen Fink, Lisbeth

    2017-01-01

    Uncontrolled activation of transforming growth factor beta (TGF-β) family members is hypothesized to participate in type 2 diabetes (T2D) dependent diabetic nephropathy (DN). We evaluated and compared downstream activation of the Smad2-signaling pathway in kidney samples from T2D patients...... to kidneys from the T2D model of leptin receptor deficient db/db mouse. Furthermore, expression of TGF-β family members was evaluated to elucidate molecular mechanisms in the mouse model. Kidney samples from patients with advanced stages of DN showed elevated pSmad2 staining whereas db/db mouse kidneys...... surprisingly showed a decrease in pSmad2 in the tubular compartment. Structurally, kidney tissue showed dilated tubules and expanded glomeruli, but no clear fibrotic pattern was found in the diabetic mice. Selective TGF-β family members were up-regulated at the mRNA level. Antagonists of bone morphogenetic...

  11. miR-451 deficiency is associated with altered endometrial fibrinogen alpha chain expression and reduced endometriotic implant establishment in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Warren B Nothnick

    development in an experimental mouse model suggesting that this approach may prove useful in the prevention of endometriosis establishment and survival.

  12. Mouse Models of Gastric Cancer

    Science.gov (United States)

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  13. Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease.

    Science.gov (United States)

    Willebrords, Joost; Maes, Michaël; Pereira, Isabel Veloso Alves; da Silva, Tereza Cristina; Govoni, Veronica Mollica; Lopes, Valéria Veras; Crespo Yanguas, Sara; Shestopalov, Valery I; Nogueira, Marina Sayuri; de Castro, Inar Alves; Farhood, Anwar; Mannaerts, Inge; van Grunsven, Leo; Akakpo, Jephte; Lebofsky, Margitta; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2018-03-01

    Pannexins are transmembrane proteins that form communication channels connecting the cytosol of an individual cell with its extracellular environment. A number of studies have documented the presence of pannexin1 in liver as well as its involvement in inflammatory responses. In this study, it was investigated whether pannexin1 plays a role in acute liver failure and non-alcoholic steatohepatitis, being prototypical acute and chronic liver pathologies, respectively, both featured by liver damage, oxidative stress and inflammation. To this end, wild-type and pannexin1 -/- mice were overdosed with acetaminophen for 1, 6, 24 or 48h or were fed a choline-deficient high-fat diet for 8weeks. Evaluation of the effects of genetic pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, lipid accumulation, protein adduct formation, oxidative stress and inflammation. In parallel, in order to elucidate molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. The results of this study show that pannexin1 -/- diseased mice present less liver damage and oxidative stress, while inflammation was only decreased in pannexin1 -/- mice in which non-alcoholic steatohepatitis was induced. A multitude of genes related to inflammation, oxidative stress and xenobiotic metabolism were differentially modulated in both liver disease models in wild-type and in pannexin1 -/- mice. Overall, the results of this study suggest that pannexin1 may play a role in the pathogenesis of liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Efficacy of a new topical cationic emulsion of cyclosporine A on dry eye clinical signs in an experimental mouse model of dry eye.

    Science.gov (United States)

    Daull, Philippe; Feraille, Laurence; Barabino, Stefano; Cimbolini, Nicolas; Antonelli, Sophie; Mauro, Virgine; Garrigue, Jean-Sébastien

    2016-12-01

    Dry eye disease (DED) is a complex, multifactorial pathology characterized by corneal epithelium lesions and inflammation. The aim of the present study was to evaluate the efficacy of a cationic emulsion of cyclosporine A (CsA) in a mouse model that mimics severe dry eye. Eight to 12-week-old female C57BL/6N mice with tail patches of scopolamine were housed in controlled environment chambers to induce dry eye. At day three, following dry eye confirmation by corneal fluorescein staining (CFS, score 0-15) and phenol red thread (PRT) lacrimation test, the mice (n = 10/gp) were either treated 3 times a day in both eyes with drug-free cationic emulsion, a 0.1% CsA cationic emulsion, or 1% methylprednisolone (positive control), or non-treated. Aqueous tear production and CFS scores were evaluated at baseline and throughout the treatment period. The lacrimation test confirmed the scopolamine-induced decrease in aqueous production by the lacrimal gland. A reduction of 59% in induced-CFS was observed following topical treatment with 0.1% CsA. The beneficial effect of the cationic emulsion vehicle itself on keratitis was also clearly evidenced by its better performance over 1% methylprednisolone, -36%, vs. -28% on the CFS scores, respectively. This study indicates that the cationic emulsion of CsA (0.1%) was a very effective formulation for the management of corneal epithelium lesions in a severe DED mouse model. In addition, it performed better than a potent glucocorticosteroid (1% methylprednisolone). This cationic emulsion of CsA (0.1%), combining CsA and a tear film oriented therapy (TFOT), i.e. with vehicle properties that mechanically stabilize the tear film, represents a promising new treatment strategy for the management of the signs of dry eye. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  18. Experimental hypoplastic marrow failure in the mouse

    International Nuclear Information System (INIS)

    Kubota, K.; Mizoguchi, H.; Miura, Y.; Kano, S.; Takaku, F.

    1978-01-01

    In order to study the pathogenesis of aplastic anemia in man, hemopoietic stem cells were investigated in 'aplastic mice' the aplasia being induced by the immunological method. C3H/He(H-2sup(k), Mlssup(c)) received 600 rad whole body x-irradiation followed by the transplantation of 10 7 lymph node cells prepared from B10.BR mice (H-2sup(k), Mlssup(b)). The C3H/He mice developed pancytopenia and marrow hypoplasia 21 days after these treatments. The total number of nucleated cells, CFU-S and CFU-C in the marrow and the wet weight and CFU-C of the spleen were markedly reduced. These findings are consistent with those of aplastic anemia in man and the model may provide a useful tool for the investigation of the pathogenesis of this anemia. Control mice that received irradiation only recovered from the damage 21 days later, while control mice that received lymph node cells only showed no hematological changes. (author)

  19. Evaluation of the antiproliferative, proapoptotic, and antiangiogenic effects of a double-stranded RNA mimic complexed with polycations in an experimental mouse model of leiomyoma.

    Science.gov (United States)

    García-Pascual, Carmen Maria; Ferrero, Hortensia; Juarez, Irene; Martínez, Jessica; Villanueva, Ana; Pozuelo-Rubio, Mercedes; Soengas, Marisol; Tormo, Damiá; Simón, Carlos; Gómez, Raúl; Pellicer, Antonio

    2016-02-01

    To assess the antiproliferative, proapoptotic, and antiangiogenic effects of the double-stranded RNA mimic polyinosine-polycytidylic acid (pIC) complexed with polyethylenimine [pIC(PEI)] in xenografted human leiomyomas. Heterologous leiomyoma mouse model. University-affiliated infertility center. Ovariectomized and hormone-replaced nude mice (n = 16) who received human leiomyoma fragment transplantation. Leiomyoma fragments placed in the peritoneum of 5-week-old nude female mice and treated with the vehicle (n = 8) or 0.6 mg/kg [pIC(PEI)] (n = 8) for 4 weeks. The size of the leiomyoma implants, and cellular proliferation (Ki67), vascularization (PECAM), and apoptosis (OH-ends) assessed by quantitative immunohistochemical/immunofluorescent analysis of the recovered implants. No significant differences were observed in the size of the leiomyoma implants between groups. Vascularization and proliferation were significantly decreased, and apoptosis was increased in the [pIC(PEI)]-treated group versus control. We hypothesize that the antiangiogenic and apoptotic effects exerted by [pIC(PEI)] might lead to a decrease in lesion size in this animal model if the compound is administered for longer periods of time. This study provides promising data on [pIC(PEI)] as a potential novel therapeutic agent against human leiomyoma. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Mouse infection models for space flight immunology

    Science.gov (United States)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  1. Mouse Model Resources for Vision Research

    Directory of Open Access Journals (Sweden)

    Jungyeon Won

    2011-01-01

    Full Text Available The need for mouse models, with their well-developed genetics and similarity to human physiology and anatomy, is clear and their central role in furthering our understanding of human disease is readily apparent in the literature. Mice carrying mutations that alter developmental pathways or cellular function provide model systems for analyzing defects in comparable human disorders and for testing therapeutic strategies. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Two programs, the Eye Mutant Resource and the Translational Vision Research Models, focused on providing such models to the vision research community are described herein. Over 100 mutant lines from the Eye Mutant Resource and 60 mutant lines from the Translational Vision Research Models have been developed. The ocular diseases of the mutant lines include a wide range of phenotypes, including cataracts, retinal dysplasia and degeneration, and abnormal blood vessel formation. The mutations in disease genes have been mapped and in some cases identified by direct sequencing. Here, we report 3 novel alleles of Crxtvrm65, Rp1tvrm64, and Rpe65tvrm148 as successful examples of the TVRM program, that closely resemble previously reported knockout models.

  2. A novel duplex ddPCR assay for the diagnosis of schistosomiasis japonica: proof of concept in an experimental mouse model.

    Science.gov (United States)

    Weerakoon, Kosala G; Gordon, Catherine A; Cai, Pengfei; Gobert, Geoffrey N; Duke, Mary; Williams, Gail M; McManus, Donald P

    2017-07-01

    The current World Health Organization strategic plan targets the elimination of schistosomiasis as a public health problem by 2025 and accurate diagnostics will play a pivotal role in achieving this goal. DNA-based detection methods provide a viable alternative to some of the commonly used tests, notably microscopy and serology, for the diagnosis of schistosomiasis. The detection of parasite cell-free DNA in different clinical samples is a recent valuable advance, which provides significant benefits for accurate disease diagnosis. Here we validated a novel duplex droplet digital PCR assay for the diagnosis of Chinese (SjC) and Philippine (SjP) strains of Schistosoma japonicum infection in a mouse model. The assay proved applicable for both SjC and SjP infections and capable of detecting infection at a very early intra-mammalian stage in conveniently obtainable samples (urine and saliva) as well as in serum and feces. The target DNA copy numbers obtained in the assay showed a positive correlation with the infection burden assessed by direct traditional parasitology. The potential to detect parasite DNA in urine and saliva has important practical implications for large-scale epidemiological screening programmes in the future, particularly in terms of logistical convenience, and the assay has the potential to be a valuable additional tool for the diagnosis of schistosomiasis japonica.

  3. Serine protease inhibitor A3K suppressed the formation of ocular surface squamous metaplasia in a mouse model of experimental dry eye.

    Science.gov (United States)

    Lin, Zhirong; Zhou, Yueping; Wang, Yuqian; Zhou, Tong; Li, Jie; Luo, Pingping; He, Hui; Wu, Huping; Liu, Zuguo

    2014-08-07

    To investigate the effects and possible mechanisms of serine protease inhibitor A3K (SERPINA3K) on the formation of ocular surface squamous metaplasia in a mouse dry eye model induced by topical benzalkonium chloride (BAC). The eye drops containing SERPINA3K were topically administered during the induction of BAC-induced dry eye. The clinical indications of dry eye were evaluated on day (D)16, including tear break-up time (BUT), tear volume, corneal fluorescein staining, and inflammatory index. Global specimens were collected on D16 and the following examinations were performed: histologic investigation, immunostaining of cytokeratin 10 (K10), p63 and Ki67 in the cornea, and Western blot analysis of tumor necrosis factor-α (TNF-α). Serine protease inhibitor A3K suppressed the formation of BAC-induced dry eye, presenting with longer BUTs, lower corneal fluorescein staining scores, and inflammatory index, while no significant changes in tear volume. It also reduced the severity of abnormal differentiation and proliferation on ocular surface with lower expressions of K10, p63, and Ki67, and retained the number of goblet cells in the conjunctival fornix. Serine protease inhibitor A3K significantly decreased the levels of TNF-α in the cornea. Topical application of SERPINA3K ameliorated the severity of ocular surface squamous metaplasia and suppressed the formation of BAC-induced dry eye. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  4. Efficacy of an oral and tropically stable lipid-based formulation of Amphotericin B (iCo-010) in an experimental mouse model of systemic candidiasis.

    Science.gov (United States)

    Ibrahim, Fady; Sivak, Olena; Wasan, Ellen K; Bartlett, Karen; Wasan, Kishor M

    2013-10-29

    An oral lipid based formulation that exhibits tropical stability (iCo-010) was developed to enhance the absorption of orally administered amphotericin B (AmB). iCo-010 has previously shown high efficacy in an acute model of systemic candidiasis in rats, directing the focus of this study to be its efficacy in a chronic model of systemic candidiasis in mice. Mice were infected with 0.6 to 1×108 CFUs of Candida albicans ATCC 18804 strain by tail vein injection and were left for three days to develop the infection after which time treatment was initiated. The infected animals were assigned to the following treatment groups: no treatment (control) or iCo-010 at 5, 10 and 20 mg/kg administered by oral gavage once daily (QD) for 5 consecutive days. The animals were sacrificed 7 days after the last dose and the concentration of AmB and the fungal burden were assessed within the liver, kidneys, heart, lungs, spleen and brain. Although the infection was relatively low (~ 60-100 CFUs/ 1 ml tissue homogenate) in the liver, lungs and heart, the infection level was very high (70 000 CFUs / 1 ml tissue homogenate) in the kidney tissues for the control group. The highest concentrations of AmB were recovered in the kidneys and the spleen. The fungal burden in the tissues was lowered by 69-96% in the treatment groups when compared to the control group. Oral iCo-010 is an effective treatment of systemic candidiasis in the mouse model.

  5. Melatonin receptors: latest insights from mouse models

    Science.gov (United States)

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  6. Clinical Evaluation of a Royal Jelly Supplementation for the Restoration of Dry Eye: A Prospective Randomized Double Blind Placebo Controlled Study and an Experimental Mouse Model

    Science.gov (United States)

    Inoue, Sachiko; Kawashima, Motoko; Hisamura, Ryuji; Imada, Toshihiro; Izuta, Yusuke; Nakamura, Shigeru; Ito, Masataka; Tsubota, Kazuo

    2017-01-01

    Background Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. Methods and Findings We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20–60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. Conclusion Our results suggest that RJ improves tear volume in patients with dry eye. Trial Registration Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446) PMID:28060936

  7. Clinical Evaluation of a Royal Jelly Supplementation for the Restoration of Dry Eye: A Prospective Randomized Double Blind Placebo Controlled Study and an Experimental Mouse Model.

    Science.gov (United States)

    Inoue, Sachiko; Kawashima, Motoko; Hisamura, Ryuji; Imada, Toshihiro; Izuta, Yusuke; Nakamura, Shigeru; Ito, Masataka; Tsubota, Kazuo

    2017-01-01

    Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20-60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. Our results suggest that RJ improves tear volume in patients with dry eye. Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446).

  8. Follow-up of bone lesions in an experimental multiple myeloma mouse model: Description of an in vivo technique using radiography dedicated for mammography

    NARCIS (Netherlands)

    Vanderkerken, K.; Goes, E.; Raeve, H. de; Radl, J.; Camp, B. van

    1996-01-01

    The evolution of bone lesions in transplantable C57BL/KaLwRij 5T mouse myeloma (MM) has been followed in vivo. Mice were anaesthetised and a radiograph of the pelvis and hind legs was performed by a radiograph dedicated for mammography. This is the first description of an in vivo technique under

  9. Mouse Model of Burn Wound and Infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2017-01-01

    The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr) a depres......The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr...

  10. Histologic scoring of gastritis and gastric cancer in mouse models.

    Science.gov (United States)

    Rogers, Arlin B

    2012-01-01

    Histopathology is a defining endpoint in mouse models of experimental gastritis and gastric adenocarcinoma. Presented here is an overview of the histology of gastritis and gastric cancer in mice experimentally infected with Helicobacter pylori or H. felis. A modular histopathologic scoring scheme is provided that incorporates relevant disease-associated changes. Whereas the guide uses Helicobacter infection as the prototype challenge, features may be applied to chemical and genetically engineered mouse models of stomach cancer as well. Specific criteria included in the combined gastric histologic activity index (HAI) include inflammation, epithelial defects, oxyntic atrophy, hyperplasia, pseudopyloric metaplasia, and dysplasia or neoplasia. Representative photomicrographs accompany descriptions for each lesion grade. Differentiation of genuine tumor invasion from pseudoinvasion is highlighted. A brief comparison of normal rodent versus human stomach anatomy and physiology is accompanied by an introduction to mouse-specific lesions including mucous metaplasia and eosinophilic droplets (hyalinosis). In conjunction with qualified pathology support, this guide is intended to assist research scientists, postdoctoral fellows, graduate students, and medical professionals from affiliated disciplines in the interpretation and histologic grading of chronic gastritis and gastric carcinoma in mouse models.

  11. Humanized mouse models: Application to human diseases.

    Science.gov (United States)

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  12. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L.; Youssef, S. A.; de Bruin, A.

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of geroscience,

  13. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-01-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience,"

  14. HIF-2α-induced chemokines stimulate motility of fibroblast-like synoviocytes and chondrocytes into the cartilage-pannus interface in experimental rheumatoid arthritis mouse models.

    Science.gov (United States)

    Huh, Yun Hyun; Lee, Gyuseok; Lee, Keun-Bae; Koh, Jeong-Tae; Chun, Jang-Soo; Ryu, Je-Hwang

    2015-10-29

    Pannus formation and resulting cartilage destruction during rheumatoid arthritis (RA) depends on the migration of synoviocytes to cartilage tissue. Here, we focused on the role of hypoxia-inducible factor (HIF)-2α-induced chemokines by chondrocytes in the regulation of fibroblast-like synoviocyte (FLS) migration into the cartilage-pannus interface and cartilage erosion. Collagen-induced arthritis (CIA), K/BxN serum transfer, and tumor necrosis factor-α transgenic mice were used as experimental RA models. Expression patterns of HIF-2α and chemokines were determined via immunostaining, Western blotting and RT-PCR. FLS motility was evaluated using transwell migration and invasion assays. The specific role of HIF-2α was determined via local deletion of HIF-2α in joint tissues or using conditional knockout (KO) mice. Cartilage destruction, synovitis and pannus formation were assessed via histological analysis. HIF-2α and various chemokines were markedly upregulated in degenerating cartilage and pannus of RA joints. HIF-2α induced chemokine expression by chondrocytes in both primary culture and cartilage tissue. HIF-2α -induced chemokines by chondrocytes regulated the migration and invasion of FLS. Local deletion of HIF-2α in joint tissues inhibited pannus formation adjacent to cartilage tissue and cartilage destruction caused by K/BxN serum transfer. Furthermore, conditional knockout of HIF-2α in cartilage blocked pannus formation in adjacent cartilage but not bone tissue, along with inhibition of cartilage erosion caused by K/BxN serum transfer. Our findings suggest that chemokines induced by IL-1β or HIF-2α in chondrocytes regulate pannus expansion by stimulating FLS migration and invasion, leading to cartilage erosion during RA pathogenesis.

  15. Engineering a new mouse model for vitiligo.

    Science.gov (United States)

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  16. Curcuma longa extract exerts a myorelaxant effect on the ileum and colon in a mouse experimental colitis model, independent of the anti-inflammatory effect.

    Science.gov (United States)

    Aldini, Rita; Budriesi, Roberta; Roda, Giulia; Micucci, Matteo; Ioan, Pierfranco; D'Errico-Grigioni, Antonia; Sartini, Alessandro; Guidetti, Elena; Marocchi, Margherita; Cevenini, Monica; Rosini, Francesca; Montagnani, Marco; Chiarini, Alberto; Mazzella, Giuseppe

    2012-01-01

    Curcuma has long been used as an anti-inflammatory agent in inflammatory bowel disease. Since gastrointestinal motility is impaired in inflammatory states, the aim of this work was to evaluate if Curcuma Longa had any effect on intestinal motility. The biological activity of Curcuma extract was evaluated against Carbachol induced contraction in isolated mice intestine. Acute and chronic colitis were induced in Balb/c mice by Dextran Sulphate Sodium administration (5% and 2.5% respectively) and either Curcuma extract (200 mg/kg/day) or placebo was thereafter administered for 7 and 21 days respectively. Spontaneous contractions and the response to Carbachol and Atropine of ileum and colon were studied after colitis induction and Curcuma administration. Curcuma extract reduced the spontaneous contractions in the ileum and colon; the maximal response to Carbachol was inhibited in a non-competitive and reversible manner. Similar results were obtained in ileum and colon from Curcuma fed mice. DSS administration decreased the motility, mainly in the colon and Curcuma almost restored both the spontaneous contractions and the response to Carbachol after 14 days assumption, compared to standard diet, but a prolonged assumption of Curcuma decreased the spontaneous and Carbachol-induced contractions. Curcuma extract has a direct and indirect myorelaxant effect on mouse ileum and colon, independent of the anti-inflammatory effect. The indirect effect is reversible and non-competitive with the cholinergic agent. These results suggest the use of curcuma extract as a spasmolytic agent.

  17. Using the mouse to model human disease: increasing validity and reproducibility

    Directory of Open Access Journals (Sweden)

    Monica J. Justice

    2016-02-01

    Full Text Available Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings.

  18. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  19. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  20. Mouse Models of Graves' Disease

    OpenAIRE

    Nagayama, Yuji

    2005-01-01

    Graves' disease is characterized by overstimulation of the thyroid gland with agonistic autoantibodies against the thyrotropin (TSH) receptor, leading to hyperthyroidism and diffuse hyperplasia of the thyroid gland. Our and other laboratories have recently established several animal models of Graves' hyperthyroidism with novel immunization approaches, i.e., in vivo expression of the TSH receptor by injection of syngeneic living cells co-expressing the TSH receptor and major histocompatibility...

  1. Mouse models for understanding human developmental anomalies

    International Nuclear Information System (INIS)

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals

  2. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  3. Comparison of G protein sequences of South African street rabies viruses showing distinct progression of the disease in a mouse model of experimental rabies.

    Science.gov (United States)

    Seo, Wonhyo; Servat, Alexandre; Cliquet, Florence; Akinbowale, Jenkins; Prehaud, Christophe; Lafon, Monique; Sabeta, Claude

    Rabies is a fatal zoonotic disease and infections generally lead to a fatal encephalomyelitis in both humans and animals. In South Africa, domestic (dogs) and the wildlife (yellow mongoose) host species maintain the canid and mongoose rabies variants respectively. In this study, pathogenicity differences of South African canid and mongoose rabies viruses were investigated in a murine model, by assessing the progression of clinical signs and survivorship. Comparison of glycoprotein gene sequences revealed amino acid differences that may underpin the observed pathogenicity differences. Cumulatively, our results suggest that the canid rabies virus may be more neurovirulent in mice than the mongoose rabies variant. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Recent mouse and rat methods for the study of experimental oral candidiasis.

    Science.gov (United States)

    Costa, Anna C B P; Pereira, Cristiane A; Junqueira, Juliana C; Jorge, Antonio O C

    2013-07-01

    The Candida genus expresses virulence factors that, when combined with immunosuppression and other risk factors, can cause different manifestations of oral candidiasis. The treatment of mucosal infections caused by Candida and the elucidation of the disease process have proven challenging. Therefore, the study of experimentally induced oral candidiasis in rats and mice is useful to clarify the etiopathology of this condition, improve diagnosis, and search for new therapeutic options because the disease process in these animals is similar to that of human candidiasis lesions. Here, we describe and discuss new studies involving rat and mouse models of oral candidiasis with respect to methods for inducing experimental infection, methods for evaluating the development of experimental candidiasis, and new treatment strategies for oral candidiasis.

  5. Recent mouse and rat methods for the study of experimental oral candidiasis

    Science.gov (United States)

    Costa, Anna CBP; Pereira, Cristiane A; Junqueira, Juliana C; Jorge, Antonio OC

    2013-01-01

    The Candida genus expresses virulence factors that, when combined with immunosuppression and other risk factors, can cause different manifestations of oral candidiasis. The treatment of mucosal infections caused by Candida and the elucidation of the disease process have proven challenging. Therefore, the study of experimentally induced oral candidiasis in rats and mice is useful to clarify the etiopathology of this condition, improve diagnosis, and search for new therapeutic options because the disease process in these animals is similar to that of human candidiasis lesions. Here, we describe and discuss new studies involving rat and mouse models of oral candidiasis with respect to methods for inducing experimental infection, methods for evaluating the development of experimental candidiasis, and new treatment strategies for oral candidiasis. PMID:23715031

  6. Esophageal Cancer: Insights from Mouse Models

    Directory of Open Access Journals (Sweden)

    Marie-Pier Tétreault

    2015-01-01

    Full Text Available Esophageal cancer is the eighth leading cause of cancer and the sixth most common cause of cancer-related death worldwide. Despite recent advances in the development of surgical techniques in combination with the use of radiotherapy and chemotherapy, the prognosis for esophageal cancer remains poor. The cellular and molecular mechanisms that drive the pathogenesis of esophageal cancer are still poorly understood. Hence, understanding these mechanisms is crucial to improving outcomes for patients with esophageal cancer. Mouse models constitute valuable tools for modeling human cancers and for the preclinical testing of therapeutic strategies in a manner not possible in human subjects. Mice are excellent models for studying human cancers because they are similar to humans at the physiological and molecular levels and because they have a shorter gestation time and life cycle. Moreover, a wide range of well-developed technologies for introducing genetic modifications into mice are currently available. In this review, we describe how different mouse models are used to study esophageal cancer.

  7. A Mouse Model for Human Anal Cancer

    Science.gov (United States)

    Stelzer, Marie K.; Pitot, Henry C.; Liem, Amy; Schweizer, Johannes; Mahoney, Charles; Lambert, Paul F.

    2010-01-01

    Human anal cancers are associated with high-risk human papillomaviruses (HPVs) that cause other anogenital cancers and head and neck cancers. As with other cancers, HPV16 is the most common high-risk HPV in anal cancers. We describe the generation and characterization of a mouse model for human anal cancer. This model makes use of K14E6 and K14E7 transgenic mice in which the HPV16 E6 and E7 genes are directed in their expression to stratified squamous epithelia. HPV16 E6 and E7 possess oncogenic properties including but not limited to their capacity to inactivate the cellular tumor suppressors p53 and pRb, respectively. Both E6 and E7 were found to be functionally expressed in the anal epithelia of K14E6/K14E7 transgenic mice. To assess the susceptibility of these mice to anal cancer, mice were treated topically with dimethylbenz[a]anthracene (DMBA), a chemical carcinogen that is known to induce squamous cell carcinomas in other sites. Nearly 50% of DMBA-treated HPV16 E6/E7 transgenic mice showed overt signs of tumors; whereas, none of the like treated non-transgenic mice showed tumors. Histopathological analyses confirmed that the HPV16 transgenic mice were increased in their susceptibility to anal cancers and precancerous lesions. Biomarker analyses demonstrated that these mouse anal cancers exhibit properties that are similar to those observed in HPV-positive precursors to human anal cancer. This is the first mouse model for investigating the contributions of viral and cellular factors in anal carcinogenesis, and should provide a platform for assessing new therapeutic modalities for treating and/or preventing this type of cancer. PMID:20947489

  8. Mouse models of long QT syndrome

    Science.gov (United States)

    Salama, Guy; London, Barry

    2007-01-01

    Congenital long QT syndrome is a rare inherited condition characterized by prolongation of action potential duration (APD) in cardiac myocytes, prolongation of the QT interval on the surface electrocardiogram (ECG), and an increased risk of syncope and sudden death due to ventricular tachyarrhythmias. Mutations of cardiac ion channel genes that affect repolarization cause the majority of the congenital cases. Despite detailed characterizations of the mutated ion channels at the molecular level, a complete understanding of the mechanisms by which individual mutations may lead to arrhythmias and sudden death requires study of the intact heart and its modulation by the autonomic nervous system. Here, we will review studies of molecularly engineered mice with mutations in the genes (a) known to cause long QT syndrome in humans and (b) specific to cardiac repolarization in the mouse. Our goal is to provide the reader with a comprehensive overview of mouse models with long QT syndrome and to emphasize the advantages and limitations of these models. PMID:17038432

  9. Rational Design of Mouse Models for Cancer Research

    NARCIS (Netherlands)

    Landgraf, M.; McGovern, J.A.; Friedl, P.; Hutmacher, D.W.

    2018-01-01

    The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models.

  10. Experimental investigation of mouse kidney aging with SR PCI technology

    Science.gov (United States)

    Yifeng, P.; Zehua, Z.; Guohao, D.; Tiqiao, X.; Hongjie, X.; Peiping, Z.

    2013-08-01

    Objective. Basing on the coherence character of the Synchrotron radiation (SR), the mouse kidney study is performed using the propagation-based phase-contrast imaging (PCI) technology which as one approach of the phase contrasts imaging (PCI). The aim of this paper was to visualize the kidney at different ages and evaluate the latent value of aging mechanism with SR phase contrast imaging technology. Methods. The experiments were performed at the BL13W1 line of the SSRF (the Shanghai synchrotron radiation facility), the samples were soaked in 10% formalin solution, the mouse kidneys at different ages were imaged on the shelf in the propagation-based phase-contrast imaging setup and captured with CCD. The captured images were analyzed and compared. Results. When the distance is 50 cm between the samples and imaging plate, good contrast and high resolution were obtained in the propagation-based phase-contrast imaging (PCI), as such renal capsule revealed well, and the resolution reach to 30 micron; there is significant difference in the shape and vessels structures among the mouse kidneys at different age. Conclusion. The PCI is good for the applying of main light element organization imaging, the difference in shape and vessels structure between the young and old mouse kidney maybe indicated at some extent with the propagation-based phase-contrast imaging technology.

  11. Pre implanted mouse embryos as model for uranium toxicology studies

    International Nuclear Information System (INIS)

    Kundt, Miriam S.

    2001-01-01

    Full text: The search of 'in vitro' toxicology model that can predict toxicology effects 'in vivo' is a permanent challenge. A toxicology experimental model must to fill to certain requirements: to have a predictive character, an appropriate control to facilitate the interpretation of the data among the experimental groups, and to be able to control the independent variables that can interfere or modify the results that we are analyzing. The preimplantation embryos posses many advantages in this respect: they are a simple model that begins with the development of only one cell. The 'in vitro' model reproduces successfully the 'in vivo' situation. Due to the similarity that exists among the embryos of mammals during this period the model is practically valid for other species. The embryo is itself a stem cell, the toxicology effects are early observed in his clonal development and the physical-chemical parameters are easily controllable. The purpose of the exhibition is to explain the properties of the pre implanted embryo model for toxicology studies of uranium and to show our experimental results. The cultivation 'in vitro' of mouse embryos with uranylo nitrate demonstrated that the uranium causes from the 13 μgU/ml delay of development, decrease the number of cells per embryo and hipoploidy in the embryonic blastomere. (author)

  12. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    OpenAIRE

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2008-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models...

  13. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  14. Experimental Object-Oriented Modelling

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    through, e.g., technical prototyping and active user involvement. We introduce and examine “experimental object-oriented modelling” as the intersection of these practices. The contributions of this thesis are expected to be within three perspectives on models and modelling in experimental system...... development: Grounding We develop an empirically based conceptualization of modelling and use of models in system development projects characterized by a high degree of uncertainty in requirements and point to implications for tools and techniques for modelling in such a setting. Techniques We introduce......This thesis examines object-oriented modelling in experimental system development. Object-oriented modelling aims at representing concepts and phenomena of a problem domain in terms of classes and objects. Experimental system development seeks active experimentation in a system development project...

  15. Humanized Mouse Models of Staphylococcus aureus Infection

    Directory of Open Access Journals (Sweden)

    Dane Parker

    2017-05-01

    Full Text Available Staphylococcus aureus is a successful human pathogen that has adapted itself in response to selection pressure by the human immune system. A commensal of the human skin and nose, it is a leading cause of several conditions: skin and soft tissue infection, pneumonia, septicemia, peritonitis, bacteremia, and endocarditis. Mice have been used extensively in all these conditions to identify virulence factors and host components important for pathogenesis. Although significant effort has gone toward development of an anti-staphylococcal vaccine, antibodies have proven ineffective in preventing infection in humans after successful studies in mice. These results have raised questions as to the utility of mice to predict patient outcome and suggest that humanized mice might prove useful in modeling infection. The development of humanized mouse models of S. aureus infection will allow us to assess the contribution of several human-specific virulence factors, in addition to exploring components of the human immune system in protection against S. aureus infection. Their use is discussed in light of several recently reported studies.

  16. Mouse models for gastric cancer: Matching models to biological questions

    Science.gov (United States)

    Poh, Ashleigh R; O'Donoghue, Robert J J

    2016-01-01

    Abstract Gastric cancer is the third leading cause of cancer‐related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late‐stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new‐targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre‐clinical development of new therapeutics. PMID:26809278

  17. Systematic review of survival time in experimental mouse stroke with impact on reliability of infarct estimation

    DEFF Research Database (Denmark)

    Klarskov, Carina Kirstine; Klarskov, Mikkel Buster; Hasseldam, Henrik

    2016-01-01

    infarcts with more substantial edema. Purpose: This paper will give an overview of previous studies of experimental mouse stroke, and correlate survival time to peak time of edema formation. Furthermore, investigations of whether the included studies corrected the infarct measurements for edema...... of reasons for the translational problems from mouse experimental stroke to clinical trials probably exists, including infarct size estimations around the peak time of edema formation. Furthermore, edema is a more prominent feature of stroke in mice than in humans, because of the tendency to produce larger...... of the investigated process. Our findings indicate a need for more research in this area, and establishment of common correction methodology....

  18. Characterization of a pneumococcal meningitis mouse model

    Directory of Open Access Journals (Sweden)

    Mook-Kanamori Barry

    2012-03-01

    Full Text Available Abstract Background S. pneumoniae is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation. Methods Adult mice (C57BL/6 were inoculated in the cisterna magna with increasing doses of S. pneumoniae serotype 3 colony forming units (CFU; n = 24, 104, 105, 106 and 107 CFU and survival studies were performed. Cerebrospinal fluid (CSF, brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 104 CFU S. pneumoniae serotype 3 and sacrificed at 6 (n = 6 and 30 hours (n = 6. Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex® in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies. Results Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 104, 56 hrs; 105, 38 hrs, 106, 28 hrs. 107, 24 hrs. Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 104 CFU of S. pneumoniae, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively. Conclusion We have developed and validated a murine model of pneumococcal meningitis.

  19. A Humanized Mouse Model Generated Using Surplus Neonatal Tissue

    Directory of Open Access Journals (Sweden)

    Matthew E. Brown

    2018-04-01

    Full Text Available Summary: Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs. Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. : Corresponding author William Burlingham and colleagues created a humanized mouse model called the NeoThy. The NeoThy uses human neonatal, rather than fetal, tissue sources for generating a human immune system within immunocompromised mouse hosts. NeoThy mice are an attractive alternative to conventional humanized mouse models, as they enable robust and reproducible iPSC immunogenicity experiments in vivo. Keywords: NeoThy, humanized mouse, iPSC, PSC, immunogenicity, transplantation, immunology, hematopoietic stem cells, induced pluripotent stem cells, thymus

  20. A Mouse Model of Chronic West Nile Virus Disease.

    Directory of Open Access Journals (Sweden)

    Jessica B Graham

    2016-11-01

    Full Text Available Infection with West Nile virus (WNV leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.

  1. An antibiotic-responsive mouse model of fulminant ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Silvia S Kang

    2008-03-01

    Full Text Available BACKGROUND: The constellation of human inflammatory bowel disease (IBD includes ulcerative colitis and Crohn's disease, which both display a wide spectrum in the severity of pathology. One theory is that multiple genetic hits to the host immune system may contribute to the susceptibility and severity of IBD. However, experimental proof of this concept is still lacking. Several genetic mouse models that each recapitulate some aspects of human IBD have utilized a single gene defect to induce colitis. However, none have produced pathology clearly distinguishable as either ulcerative colitis or Crohn's disease, in part because none of them reproduce the most severe forms of disease that are observed in human patients. This lack of severe IBD models has posed a challenge for research into pathogenic mechanisms and development of new treatments. We hypothesized that multiple genetic hits to the regulatory machinery that normally inhibits immune activation in the intestine would generate more severe, reproducible pathology that would mimic either ulcerative colitis or Crohn's disease. METHODS AND FINDINGS: We generated a novel mouse line (dnKO that possessed defects in both TGFbetaRII and IL-10R2 signaling. These mice rapidly and reproducibly developed a disease resembling fulminant human ulcerative colitis that was quite distinct from the much longer and more variable course of pathology observed previously in mice possessing only single defects. Pathogenesis was driven by uncontrolled production of proinflammatory cytokines resulting in large part from T cell activation. The disease process could be significantly ameliorated by administration of antibodies against IFNgamma and TNFalpha and was completely inhibited by a combination of broad-spectrum antibiotics. CONCLUSIONS: Here, we develop to our knowledge the first mouse model of fulminant ulcerative colitis by combining multiple genetic hits in immune regulation and demonstrate that the resulting

  2. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin

    2017-01-01

    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor be......, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery....

  3. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    Energy Technology Data Exchange (ETDEWEB)

    Salek, Reza M.; Pears, Michael R. [University of Cambridge, Department of Biochemistry and Cambridge Systems Biology Centre (United Kingdom); Cooper, Jonathan D. [King' s College London, Pediatric Storage Disorders Laboratory, Department of Neuroscience, Institute of Psychiatry (United Kingdom); Mitchison, Hannah M. [Royal Free and University College Medical School, Department of Paediatrics and Child Health (United Kingdom); Pearce, David A. [Sanford School of Medicine of the University of South Dakota, Department of Pediatrics (United States); Mortishire-Smith, Russell J. [Johnson and Johnson PR and D (Belgium); Griffin, Julian L., E-mail: jlg40@mole.bio.cam.ac.uk [University of Cambridge, Department of Biochemistry and the Cambridge Systems Biology Centre (United Kingdom)

    2011-04-15

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in {gamma}-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  5. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    International Nuclear Information System (INIS)

    Salek, Reza M.; Pears, Michael R.; Cooper, Jonathan D.; Mitchison, Hannah M.; Pearce, David A.; Mortishire-Smith, Russell J.; Griffin, Julian L.

    2011-01-01

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in γ-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  6. Transgenic mouse models of hormonal mammary carcinogenesis: advantages and limitations.

    Science.gov (United States)

    Kirma, Nameer B; Tekmal, Rajeshwar R

    2012-09-01

    Mouse models of breast cancer, especially transgenic and knockout mice, have been established as valuable tools in shedding light on factors involved in preneoplastic changes, tumor development and malignant progression. The majority of mouse transgenic models develop estrogen receptor (ER) negative tumors. This is seen as a drawback because the majority of human breast cancers present an ER positive phenotype. On the other hand, several transgenic mouse models have been developed that produce ER positive mammary tumors. These include mice over-expressing aromatase, ERα, PELP-1 and AIB-1. In this review, we will discuss the value of these models as physiologically relevant in vivo systems to understand breast cancer as well as some of the pitfalls involving these models. In all, we argue that the use of transgenic models has improved our understanding of the molecular aspects and biology of breast cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Strain preservation of experimental animals: vitrification of two-cell stage embryos for multiple mouse strains.

    Science.gov (United States)

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu

    2015-04-01

    Strain preservation of experimental animals is crucial for experimental reproducibility. Maintaining complete animal strains, however, is costly and there is a risk for genetic mutations as well as complete loss due to disasters or illness. Therefore, the development of effective vitrification techniques for cryopreservation of multiple experimental animal strains is important. We examined whether a vitrification method using cryoprotectant solutions, P10 and PEPeS, is suitable for preservation of multiple inbred and outbred mouse strains. First, we investigated whether our vitrification method using cryoprotectant solutions was suitable for two-cell stage mouse embryos. In vitro development of embryos exposed to the cryoprotectant solutions was similar to that of fresh controls. Further, the survival rate of the vitrified embryos was extremely high (98.1%). Next, we collected and vitrified two-cell stage embryos of 14 mouse strains. The average number of embryos obtained from one female was 7.3-33.3. The survival rate of vitrified embryos ranged from 92.8% to 99.1%, with no significant differences among mouse strains. In vivo development did not differ significantly between fresh controls and vitrified embryos of each strain. For strain preservation using cryopreserved embryos, two offspring for inbred lines and one offspring for outbred lines must be produced from two-cell stage embryos collected from one female. The expected number of surviving fetuses obtained from embryos collected from one female of either the inbred or outbred strains ranged from 2.9 to 19.5. The findings of the present study indicated that this vitrification method is suitable for strain preservation of multiple mouse strains. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Mouse Models as Predictors of Human Responses: Evolutionary Medicine.

    Science.gov (United States)

    Uhl, Elizabeth W; Warner, Natalie J

    Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.

  9. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  10. Experimental Modeling of Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten Haack

    2006-01-01

    An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...

  11. A preclinical mouse model of invasive lobular breast cancer metastasis

    NARCIS (Netherlands)

    Doornebal, Chris W.; Klarenbeek, Sjoerd; Braumuller, Tanya M.; Klijn, Christiaan N.; Ciampricotti, Metamia; Hau, Cheei-Sing; Hollmann, Markus W.; Jonkers, Jos; de Visser, Karin E.

    2013-01-01

    Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous

  12. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  13. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-01-01

    Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling

  14. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries.

    Science.gov (United States)

    Zhang, Hua; Zheng, Wenjing; Shen, Yan; Adhikari, Deepak; Ueno, Hiroo; Liu, Kui

    2012-07-31

    It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26(rbw/+);Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries.

  15. A mouse model of mammary hyperplasia induced by oral hormone ...

    African Journals Online (AJOL)

    Methods and Materials: To address the mechanism, we developed a mouse model of mammary hyperplasia. We gave mice estradiol valerate tablets and progesterone capsules sequentially for one month by intragastric administration. Results: Mice treated by this method had a series of pathological changes which are ...

  16. Towards a mouse model of depression : a psychoneuroendocrine approach

    NARCIS (Netherlands)

    Dalm, Sergiu

    2012-01-01

    Chronic stress is considered a vulnerability factor for depression. A key symptom is anhedonia; a reduced response to positive stimuli. Drugs are effective for only 20-40% of the patients and new drugs are urgently needed. The objective of the research was to develop a mouse model of depression that

  17. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia

    DEFF Research Database (Denmark)

    Anzovino, Amy; Chiang, Shannon; Brown, Bronwyn E

    2017-01-01

    mechanisms. Using a mouse conditional frataxin knockout (KO) model in the heart and skeletal muscle, we examined the Nrf2 pathway in these tissues. Frataxin KO results in fatal cardiomyopathy, whereas skeletal muscle was asymptomatic. In the KO heart, protein oxidation and a decreased glutathione...

  18. Experimental Oral Candidiasis in Animal Models

    Science.gov (United States)

    Samaranayake, Yuthika H.; Samaranayake, Lakshman P.

    2001-01-01

    Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data. PMID:11292645

  19. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse.

    Science.gov (United States)

    Lichius, J J; Muth, C

    1997-08-01

    Extracts of stinging nettle roots (Urtica dioica L. Urticaceae) are used in the treatment of benign prostatic hyperplasia (BPH). We established a BPH-model by directly implanting an urogenital sinus (UGS) into the ventral prostate gland of an adult mouse. Five differently prepared stinging nettle root extracts were tested in this model. The 20% methanolic extract was the most effective with a 51.4% inhibition of induced growth.

  20. The Event Coordination Notation: Behaviour Modelling Beyond Mickey Mouse

    DEFF Research Database (Denmark)

    Jepsen, Jesper; Kindler, Ekkart

    2015-01-01

    The Event Coordination Notation (ECNO) allows modelling the desired behaviour of a software system on top of any object-oriented software. Together with existing technologies from Model-based Software Engineering (MBSE) for automatically generating the software for the structural parts, ECNO allows...... special aspect of ECNO or another; and it would be fair to call them “Mickey Mouse examples”. In this paper, we give a concise overview of the motivation, ideas, and concepts of ECNO. More importantly, we discuss a larger system, which was completely generated from the underlying models: a workflow...... management system. This way, we demonstrate that ECNO can be used for modelling software beyond the typical Mickey Mouse examples. This example demonstrates that the essence of workflow management – including its behaviour – can be captured in ECNO: in a sense, it is a domain model of workflow management...

  1. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35:

  2. Spallanzani's mouse: a model of restoration and regeneration.

    Science.gov (United States)

    Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D

    2004-01-01

    The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

  3. Experimental models of developmental hypothyroidism.

    Science.gov (United States)

    Argumedo, G S; Sanz, C R; Olguín, H J

    2012-02-01

    Hypothyroidism is a systemic disease resulting from either thyroid gland's anatomical and functional absence or lack of hypophyseal stimulation, both of which can lead to deficiency in thyroid hormone (TH) production. TH is essential for human and animal development, growth, and function of multiple organs. Children with deficient TH can develop alterations in central nervous system (CNS), striated muscle, bone tissue, liver, bone marrow, and cardiorespiratory system. Among the clinical outlook are signs like breathing difficulty, cardiac insufficiency, dysphagia, and repeated bronchial aspiration, constipation, muscle weakness, cognitive alterations, cochlear dysfunction, reduced height, defects in temperature regulation, anaemia, jaundice, susceptibility to infection, and others. Experimental and clinical studies have shown that TH is very essential for normal brain development. Other research work based on mice pointed out that a reduced level of TH in pregnant mother leads to congenital hypothyroidism in animal models and it is associated with mental retardation, deep neurologic deficiency that impacts on cognitive, learning, and memory functions. The principal experimental model studies that have focused on hypothyroidism are reviewed in this study. This is important on considering the fact that almost all animal species require thyroid hormones for their metabolism. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Mouse models for atherosclerosis and pharmaceutical modifiers

    NARCIS (Netherlands)

    Zadelaar, A.S.M.; Kleemann, R.; Verschuren, L.; Vries-van der Weij, J. de; Hoorn, J. van der; Princen, H.M.; Kooistra, T.

    2007-01-01

    Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically

  5. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Francis Richard W

    2010-04-01

    Full Text Available Abstract Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL. However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo.

  6. A two-compartment model of VEGF distribution in the mouse.

    Directory of Open Access Journals (Sweden)

    Phillip Yen

    Full Text Available Vascular endothelial growth factor (VEGF is a key regulator of angiogenesis--the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF(120 and VEGF(164 and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in

  7. A transgenic mouse model for trilateral retinoblastoma

    NARCIS (Netherlands)

    O'Brien, J.M.; Marcus, D.M.; Bernards, R.A.; Carpenter, J.L.; Windle, J.J.; Mellon, P.; Albert, D.M.

    1990-01-01

    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically

  8. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  9. A consensus definition of cataplexy in mouse models of narcolepsy.

    Science.gov (United States)

    Scammell, Thomas E; Willie, Jon T; Guilleminault, Christian; Siegel, Jerome M

    2009-01-01

    People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.

  10. Mouse Models Recapitulating Human Adrenocortical Tumors: What is lacking?

    Directory of Open Access Journals (Sweden)

    Felicia Leccia

    2016-07-01

    Full Text Available Adrenal cortex tumors are divided into benign forms such as primary hyperplasias and adrenocortical adenomas (ACAs, and malignant forms or adrenocortical carcinomas (ACCs. Primary hyperplasias are rare causes of ACTH-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely functional, i.e producing steroids. When functional, adenomas result in endocrine disorders such as Cushing’s syndrome (hypercortisolism or Conn’s syndrome (hyperaldosteronism. In contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors led to the identification of potentially causative genes, most of them being involved in PKA, Wnt/β-catenin and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders and in fine to provide in vivo tools for therapeutic screens. In this article we will provide an overview on the existing mouse models (xenografted and genetically engineered of adrenocortical tumors by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.

  11. Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Verbeek, Jef; Jacobs, Ans; Spincemaille, Pieter; Cassiman, David

    2016-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  12. Experimental models of liver fibrosis.

    Science.gov (United States)

    Yanguas, Sara Crespo; Cogliati, Bruno; Willebrords, Joost; Maes, Michaël; Colle, Isabelle; van den Bossche, Bert; de Oliveira, Claudia Pinto Marques Souza; Andraus, Wellington; Alves, Venâncio Avancini Ferreira; Leclercq, Isabelle; Vinken, Mathieu

    2016-05-01

    Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.

  13. Efficacy of Enrofloxacin in a Mouse Model of Sepsis

    OpenAIRE

    Slate, Andrea R; Bandyopadhyay, Sheila; Francis, Kevin P; Papich, Mark G; Karolewski, Brian; Hod, Eldad A; Prestia, Kevin A

    2014-01-01

    We examined the efficacy of enrofloxacin administered by 2 different routes in a mouse model of sepsis. Male CD1 mice were infected with a bioluminescent strain of enteropathogenic Escherichia coli and treated with enrofloxacin either by injection or in drinking water. Peak serum levels were evaluated by using HPLC. Mice were monitored for signs of clinical disease, and infections were monitored by using bioluminescence imaging. Serum levels of enrofloxacin and the active metabolite ciproflox...

  14. Skeletal muscle repair in a mouse model of nemaline myopathy

    OpenAIRE

    Sanoudou, Despina; Corbett, Mark A.; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T.; Vlahovich, Nicole; Hardeman, Edna C.; Beggs, Alan H.

    2006-01-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five d...

  15. Behavioral characterization of mouse models of neuroferritinopathy.

    Directory of Open Access Journals (Sweden)

    Sara Capoccia

    Full Text Available Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK promoter. Transgenic (Tg mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests. The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help

  16. Behavioral characterization of mouse models of neuroferritinopathy.

    Science.gov (United States)

    Capoccia, Sara; Maccarinelli, Federica; Buffoli, Barbara; Rodella, Luigi F; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca

    2015-01-01

    Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing

  17. Mouse Models of the Skin: Models to Define Mechanisms of Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Wheeler, D. L.; Verma, A. K.; Denning, M. F.

    2013-01-01

    The multistep model of mouse skin carcinogenesis has facilitated identification of irreversible genetic events of initiation and progression, and epigenetic events of tumor promotion. Mouse skin tumor initiation can be accomplished by a single exposure to a sufficiently small dose of a carcinogen, and this step is rapid and irreversible. However, promotion of skin tumor formation requires a repeated and prolonged exposure to a promoter, and that tumor promotion is reversible. Investigations focused on the mechanisms of mouse carcinogenesis have resulted in the identifications of potential molecular targets of cancer induction and progression useful in planning strategies for human cancer prevention trials. This special issue contains eight papers that focus on mouse models used to study individual proteins expressed in the mouse skin and the role they play in differentiation, tissue homeostasis, skin carcinogenesis, and chemo prevention of skin cancer.

  18. Mouse models: the ketogenic diet and polyunsaturated fatty acids.

    Science.gov (United States)

    Borges, Karin

    2008-11-01

    Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.

  19. Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity

    International Nuclear Information System (INIS)

    Martinez, Stephanie M.; Bradford, Blair U.; Soldatow, Valerie Y.; Kosyk, Oksana; Sandot, Amelia; Witek, Rafal; Kaiser, Robert; Stewart, Todd; Amaral, Kirsten; Freeman, Kimberly; Black, Chris; LeCluyse, Edward L.; Ferguson, Stephen S.; Rusyn, Ivan

    2010-01-01

    Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality over subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.

  20. Optimization of experimental human leukemia models (review

    Directory of Open Access Journals (Sweden)

    D. D. Pankov

    2012-01-01

    Full Text Available Actual problem of assessing immunotherapy prospects including antigenpecific cell therapy using animal models was covered in this review.Describe the various groups of currently existing animal models and methods of their creating – from different immunodeficient mice to severalvariants of tumor cells engraftment in them. The review addresses the possibility of tumor stem cells studying using mouse models for the leukemia treatment with adoptive cell therapy including WT1. Also issues of human leukemia cells migration and proliferation in a mice withdifferent immunodeficiency degree are discussed. To assess the potential immunotherapy efficacy comparison of immunodeficient mouse model with clinical situation in oncology patients after chemotherapy is proposed.

  1. Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome.

    Science.gov (United States)

    Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin; Rougie, Marie; Ferrer, Alejandra I; Nikolova, Viktoriya D; Riddick, Natallia V; Moy, Sheryl S; Philpot, Benjamin D

    2018-03-14

    Angelman syndrome (AS), a neurodevelopmental disorder associated with intellectual disability, is caused by loss of maternal allele expression of UBE3A in neurons. Mouse models of AS faithfully recapitulate disease phenotypes across multiple domains, including behavior. Yet in AS, there has been only limited study of behaviors encoded by the prefrontal cortex, a region broadly involved in executive function and cognition. Because cognitive impairment is a core feature of AS, it is critical to develop behavioral readouts of prefrontal circuit function in AS mouse models. One such readout is behavioral extinction, which has been well described mechanistically and relies upon prefrontal circuits in rodents. Here we report exaggerated operant extinction in male AS model mice, concomitant with enhanced excitability in medial prefrontal neurons from male and female AS model mice. Abnormal behavior was specific to operant extinction, as two other prefrontally dependent tasks (cued fear extinction and visuospatial discrimination) were largely normal in AS model mice. Inducible deletion of Ube3a during adulthood was not sufficient to drive abnormal extinction, supporting the hypothesis that there is an early critical period for development of cognitive phenotypes in AS. This work represents the first formal experimental analysis of prefrontal circuit function in AS, and identifies operant extinction as a useful experimental paradigm for modeling cognitive aspects of AS in mice. SIGNIFICANCE STATEMENT Prefrontal cortex encodes "high-level" cognitive processes. Thus, understanding prefrontal function is critical in neurodevelopmental disorders where cognitive impairment is highly penetrant. Angelman syndrome is a neurodevelopmental disorder associated with speech and motor impairments, an outwardly happy demeanor, and intellectual disability. We describe a behavioral phenotype in a mouse model of Angelman syndrome and related abnormalities in prefrontal cortex function. We

  2. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  3. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  4. Human immune system mouse models of Ebola virus infection.

    Science.gov (United States)

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  5. Arrhythmia phenotype in mouse models of human long QT.

    Science.gov (United States)

    Salama, Guy; Baker, Linda; Wolk, Robert; Barhanin, Jacques; London, Barry

    2009-03-01

    Enhanced dispersion of repolarization (DR) was proposed as a unifying mechanism, central to arrhythmia genesis in the long QT (LQT) syndrome. In mammalian hearts, K(+) channels are heterogeneously expressed across the ventricles resulting in 'intrinsic' DR that may worsen in long QT. DR was shown to be central to the arrhythmia phenotype of transgenic mice with LQT caused by loss of function of the dominant mouse K(+) currents. Here, we investigated the arrhythmia phenotype of mice with targeted deletions of KCNE1 and KCNH2 genes which encode for minK/IsK and Merg1 (mouse homolog of human ERG) proteins resulting in loss of function of I(Ks) and I(Kr), respectively. Both currents are important human K(+) currents associated with LQT5 and LQT2. Loss of minK, a protein subunit that interacts with KvLQT1, results in a marked reduction of I(Ks) giving rise to the Jervell and Lange-Nielsen syndrome and the reduced KCNH2 gene reduces MERG and I(Kr). Hearts were perfused, stained with di-4-ANEPPS and optically mapped to compare action potential durations (APDs) and arrhythmia phenotype in homozygous minK (minK(-/-)) and heterozygous Merg1 (Merg(+/-)) deletions and littermate control mice. MinK(-/-) mice has similar APDs and no arrhythmias (n = 4). Merg(+/-) mice had prolonged APDs (from 20 +/- 6 to 32 +/- 9 ms at the base, p mice (60% vs. 10%). A comparison of mouse models of LQT based on K(+) channel mutations important to human and mouse repolarization emphasizes DR as a major determinant of arrhythmia vulnerability.

  6. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-12-01

    The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems

  7. A chimeric human-mouse model of Sjögren's syndrome.

    Science.gov (United States)

    Young, Nicholas A; Wu, Lai-Chu; Bruss, Michael; Kaffenberger, Benjamin H; Hampton, Jeffrey; Bolon, Brad; Jarjour, Wael N

    2015-01-01

    Despite recent advances in the understanding of Sjögren's Syndrome (SjS), the pathogenic mechanisms remain elusive and an ideal model for early drug discovery is not yet available. To establish a humanized mouse model of SjS, peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with SjS were transferred into immunodeficient NOD-scid IL-2rγ(null) mouse recipients to produce chimeric mice. While no difference was observed in the distribution of cells, chimeric mice transferred with PBMCs from SjS patients produced enhanced cytokine levels, most significantly IFN-γ and IL-10. Histological examination revealed enhanced inflammatory responses in the lacrimal and salivary glands of SjS chimeras, as measured by digital image analysis and blinded histopathological scoring. Infiltrates were primarily CD4+, with minimal detection of CD8+ T-cells and B-cells. These results demonstrate a novel chimeric mouse model of human SjS that provides a unique in vivo environment to test experimental therapeutics and investigate T-cell disease pathology. Copyright © 2014. Published by Elsevier Inc.

  8. Effect of induced peritoneal endometriosis on oocyte and embryo quality in a mouse model.

    Science.gov (United States)

    Cohen, J; Ziyyat, A; Naoura, I; Chabbert-Buffet, N; Aractingi, S; Darai, E; Lefevre, B

    2015-02-01

    To assess the impact of peritoneal endometriosis on oocyte and embryo quality in a mouse model. Peritoneal endometriosis was surgically induced in 33 B6CBA/F1 female mice (endometriosis group, N = 17) and sham-operated were used as control (sham group, N = 16). Mice were superovulated 4 weeks after surgery and mated or not, to collect E0.5-embryos or MII-oocytes. Evaluation of oocyte and zygote quality was done by immunofluorescence under spinning disk confocal microscopy. Endometriosis-like lesions were observed in all mice of endometriosis group. In both groups, a similar mean number of MII oocytes per mouse was observed in non-mated mice (30.2 vs 32.6), with a lower proportion of normal oocytes in the endometriosis group (61 vs 83 %, p endometriosis group (21 vs 35.5, p = 0.02) without difference in embryo quality. Our results support that induced peritoneal endometriosis in a mouse model is associated with a decrease in oocyte quality and embryo number. This experimental model allows further studies to understand mechanisms of endometriosis-associated infertility.

  9. Experimental mouse lethality of Escherichia coli strains isolated from free ranging Tibetan yaks.

    Science.gov (United States)

    Rehman, Mujeeb Ur; Zhang, Hui; Wang, Yajing; Mehmood, Khalid; Huang, Shucheng; Iqbal, Muhammad Kashif; Li, Jiakui

    2017-08-01

    The present study has examined the virulence potential of Escherichia coli isolates harboring at least one virulence gene (associated with ExPEC or InPEC pathotype and belonging to different phylogenetic groups: A, B1, B2 or D), isolated from free ranging Tibetan yak feces. The E. coli isolates (n = 87) were characterized for different serogroups and a mouse model of subcutaneous-infection was used to envisage the virulence within these E. coli strains. Of the 87 E. coli isolates examined, 23% of the E. coli isolates caused lethal infections in a mouse model of subcutaneous infection and were classified as killer. Moreover, the majority of the killer strains belonged to phylogroup A (65%) and serogroup O 60 or O 101 (35%). Phylogroup B1, serogroups O 60 and O 101 were statistically associated with the killer status (P 1) were observed between the killer status isolates and all other bacterial virulence traits. This study comprises the first report on the virulence potential of E. coli strains isolated from free-ranging Tibetan yaks feces. Our findings suggest that pathogenic E. coli of free ranging yaks is highly worrisome, as these feces are used as manures by farmers and therewith pose a health risk to humans upon exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2011-11-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  11. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model.

    Science.gov (United States)

    Chen, Xi; Wu, Jun; Lvovskaya, Svetlana; Herndon, Emily; Supnet, Charlene; Bezprozvanny, Ilya

    2011-11-25

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs). Our group has previously demonstrated that calcium (Ca2+) signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128). Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT) MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2) and spinocerebellar ataxia 3 (SCA3) mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg) twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that RyanR inhibitors and Ca2+ signaling stabilizers such as

  12. Development of a metastatic fluorescent Lewis Lung carcinoma mouse model

    DEFF Research Database (Denmark)

    Rask, Lene; Fregil, Marianne; Høgdall, Estrid

    2013-01-01

    Cancer metastasis is the foremost cause of death in cancer patients. A series of observable pathological changes takes place during progression and metastasis of cancer, but the underlying genetic changes remain unclear. Therefore, new approaches are required, including insights from cancer mouse...... and the model is well suited for the identification of novel microRNAs and mRNAs involved in malignant progression. Our results suggest that increases in metalloproteinase expression and impairment of microRNA processing are involved in the acquirement of metastatic ability....

  13. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Svobodová, M.; Havelková, Helena; Krulová, Magdalena; Badalová, Jana; Nohýnková, E.; Hart, A. A. M.; Schlegel, David; Volf, P.; Demant, P.

    2002-01-01

    Roč. 54, č. 3 (2002), s. 174-183 ISSN 0093-7711 R&D Projects: GA MZd NM28; GA ČR GA310/00/0760; GA MŠk OK 394 Grant - others:Howard Hughes Medical Institute(US) HHMI55000323; WHO(XX) TDR I.D. 970772; EC(XE) ERBI-C15-CT98-0317; EC(XE) BIO-4-CT98-0445 Institutional research plan: CEZ:AV0Z5052915 Keywords : Leishmaniasis * mouse model * complex disease Subject RIV: EC - Immunology Impact factor: 2.475, year: 2002

  14. The calm mouse: an animal model of stress reduction.

    Science.gov (United States)

    Gurfein, Blake T; Stamm, Andrew W; Bacchetti, Peter; Dallman, Mary F; Nadkarni, Nachiket A; Milush, Jeffrey M; Touma, Chadi; Palme, Rupert; Di Borgo, Charles Pozzo; Fromentin, Gilles; Lown-Hecht, Rachel; Konsman, Jan Pieter; Acree, Michael; Premenko-Lanier, Mary; Darcel, Nicolas; Hecht, Frederick M; Nixon, Douglas F

    2012-05-09

    Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a "calm mouse model" with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models.

  15. Tumour-cell killing by X-rays and immunity quantitated in a mouse model system

    International Nuclear Information System (INIS)

    Porteous, D.D.; Porteous, K.M.; Hughes, M.J.

    1979-01-01

    As part of an investigation of the interaction of X-rays and immune cytotoxicity in tumour control, an experimental mouse model system has been used in which quantitative anti-tumour immunity was raised in prospective recipients of tumour-cell suspensions exposed to varying doses of X-rays in vitro before injection. Findings reported here indicate that, whilst X-rays kill a proportion of cells, induced immunity deals with a fixed number dependent upon the immune status of the host, and that X-rays and anti-tumour immunity do not act synergistically in tumour-cell killing. The tumour used was the ascites sarcoma BP8. (author)

  16. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Primary amines protect against retinal degeneration in mouse models of retinopathies.

    Science.gov (United States)

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-12-25

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.

  18. Revisiting the mouse model of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Kim CB

    2016-05-01

    Full Text Available Clifford B Kim,1,2 Patricia A D’Amore,2–4 Kip M Connor1,2 1Angiogenesis Laboratory, Massachusetts Eye and Ear, 2Department of Ophthalmology, Harvard Medical School, 3Schepens Eye Research Institute, Massachusetts Eye and Ear, 4Department of Pathology, Harvard Medical School, Boston, MA, USA Abstract: Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP, proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress. Keywords: ROP, OIR, angiogenesis

  19. EXPERIMENTAL MEASUREMENT, ANALYSIS AND MODELLING ...

    African Journals Online (AJOL)

    30 juin 2010 ... We obtain a good agreement between the resolution of the nonlinear equation of heat and the results obtained by the experimentation. . Keywords: Emissivity, Température, optimal Linearisation, finite elements. 1. ..... basse température, Rapport de Stage de D.E.A, Université Paris 12 – Val de Marne.

  20. Dendritic spine pathology in autism: lessons learned from mouse models

    Institute of Scientific and Technical Information of China (English)

    Qiangge Zhang; Dingxi Zhou; Guoping Feng

    2016-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that affect up to 1.5% of population in the world. Recent large scale genomic studies show that genetic causes of ASD are very heterogeneous. Gene ontology, pathway analysis and animal model studies have revealed several potential converging mechanisms including postsynaptic dysfunction of excitatory synapses. In this review, we focus on the structural and functional specializations of dendritic spines, and describe their defects in ASD. We use Fragile X syndrome, Rett syndrome and Phe-lan-McDermid syndrome, three of the most studied neurodevelopmental disorders with autism features, as examples to demonstrate the significant contribution made by mouse models towards the understanding of monogenic ASD. We envision that the development and application of new technologies to study the function of dendritic spines in valid animal models will eventually lead to innovative treatments for ASD.

  1. UV radiation and mouse models of herpes simplex virus infection

    International Nuclear Information System (INIS)

    Norval, Mary; El-Ghorr, A.A.

    1996-01-01

    Orolabial human infections with herpes simplex virus type 1 (HSV-1) are very common; following the primary epidermal infection, the virus is retained in a latent form in the trigeminal ganglia from where it can reactivate and cause a recrudescent lesion. Recrudescences are triggered by various stimuli including exposure to sunlight. In this review three categories of mouse models are used to examine the effects of UV irradiation on HSV infections: these are UV exposure prior to primary infection, UV exposure as a triggering event for recrudescence and UV exposure prior to challenge with virus is mice already immunized to HSV. In each of these models immunosuppression occurs, which is manifest, in some instances, in increased morbidity or an increased rate of recrudescence. Where known, the immunological mechanisms involved in the models are summarized and their relevance to human infections considered. (Author)

  2. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics

    Science.gov (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie

    2016-01-01

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922

  3. A novel minimal invasive mouse model of extracorporeal circulation.

    Science.gov (United States)

    Luo, Shuhua; Tang, Menglin; Du, Lei; Gong, Lina; Xu, Jin; Chen, Youwen; Wang, Yabo; Lin, Ke; An, Qi

    2015-01-01

    Extracorporeal circulation (ECC) is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n = 20) survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  4. A Novel Minimal Invasive Mouse Model of Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Shuhua Luo

    2015-01-01

    Full Text Available Extracorporeal circulation (ECC is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n=20 survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  5. Ibrutinib suppresses alloantibody responses in a mouse model of allosensitization.

    Science.gov (United States)

    Kim, Irene; Wu, Gordon; Chai, Ning-Ning; Klein, Andrew S; Jordan, Stanley

    2017-12-01

    Ibrutinib is a Bruton's tyrosine Kinase (BTK) antagonist that inhibits B cell receptor (BCR) signaling. Complete BTK deficiency is associated with absence of B-cells. Ibrutinb is currently approved by FDA for treatment of B-cell malignancies, including Waldenström macroglobulinaemia. We recently carried out studies to determine if ibrutinib could modify alloantibody responses. A mouse model of allogenic sensitization using a C57BL/6 mouse as the recipient of a skin allograft from an HLA-A2 transgenic mouse was utilized to examine the effects of ibrutinib on alloantibody responses and B cell effector functions. Donor-specific antibody (DSA) levels were measured in a flow-cytometric antibody binding assay. Splenic T and B cell subsets and plasma cells were analyzed in flow cytometry. Control mice developed peak levels of DSA IgM at day 14 PTx while the ibrutinib treated mice had significantly lower levels of DSA IgM (p=0.0047). Control mice developed HLA.A2-specific IgG antibodies at day 14 (230±60 MFI) and reached peak levels at day 21 (426±61 MFI). In contrast, mice in the treatment group had low levels of HLA.A2-specific IgG at day 14 (109±59 MFI, p=0.004) and day 21 (241±86 MFI, p=0.003). FACS analysis found a reduction of B220 + or CD19 + B cell population (pibrutinib attenuated recall DSA IgG responses to re-sensitization (pIbrutinib is effective in suppressing alloantibody responses through blocking BTK-mediated BCR signaling, leading to reduction of B cells and short-lived plasma cells in the spleens. Use of ibrutinib may provide benefits to HLA-sensitized transplant patients for alloantibody suppression. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Glycomic analyses of mouse models of congenital muscular dystrophy.

    Science.gov (United States)

    Stalnaker, Stephanie H; Aoki, Kazuhiro; Lim, Jae-Min; Porterfield, Mindy; Liu, Mian; Satz, Jakob S; Buskirk, Sean; Xiong, Yufang; Zhang, Peng; Campbell, Kevin P; Hu, Huaiyu; Live, David; Tiemeyer, Michael; Wells, Lance

    2011-06-17

    Dystroglycanopathies are a subset of congenital muscular dystrophies wherein α-dystroglycan (α-DG) is hypoglycosylated. α-DG is an extensively O-glycosylated extracellular matrix-binding protein and a key component of the dystrophin-glycoprotein complex. Previous studies have shown α-DG to be post-translationally modified by both O-GalNAc- and O-mannose-initiated glycan structures. Mutations in defined or putative glycosyltransferase genes involved in O-mannosylation are associated with a loss of ligand-binding activity of α-DG and are causal for various forms of congenital muscular dystrophy. In this study, we sought to perform glycomic analysis on brain O-linked glycan structures released from proteins of three different knock-out mouse models associated with O-mannosylation (POMGnT1, LARGE (Myd), and DAG1(-/-)). Using mass spectrometry approaches, we were able to identify nine O-mannose-initiated and 25 O-GalNAc-initiated glycan structures in wild-type littermate control mouse brains. Through our analysis, we were able to confirm that POMGnT1 is essential for the extension of all observed O-mannose glycan structures with β1,2-linked GlcNAc. Loss of LARGE expression in the Myd mouse had no observable effect on the O-mannose-initiated glycan structures characterized here. Interestingly, we also determined that similar amounts of O-mannose-initiated glycan structures are present on brain proteins from α-DG-lacking mice (DAG1) compared with wild-type mice, indicating that there must be additional proteins that are O-mannosylated in the mammalian brain. Our findings illustrate that classical β1,2-elongation and β1,6-GlcNAc branching of O-mannose glycan structures are dependent upon the POMGnT1 enzyme and that O-mannosylation is not limited solely to α-DG in the brain.

  7. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  8. X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model.

    Directory of Open Access Journals (Sweden)

    Arne Tapfer

    Full Text Available To explore the potential of grating-based x-ray phase-contrast computed tomography (CT for preclinical research, a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC was investigated. One ex-vivo mouse specimen was scanned with different grating-based phase-contrast CT imaging setups covering two different settings: i high-resolution synchrotron radiation (SR imaging and ii dose-reduced imaging using either synchrotron radiation or a conventional x-ray tube source. These experimental settings were chosen to assess the potential of phase-contrast imaging for two different types of application: i high-performance imaging for virtual microscopy applications and ii biomedical imaging with increased soft-tissue contrast for in-vivo applications. For validation and as a reference, histological slicing and magnetic resonance imaging (MRI were performed on the same mouse specimen. For each x-ray imaging setup, attenuation and phase-contrast images were compared visually with regard to contrast in general, and specifically concerning the recognizability of lesions and cancerous tissue. To quantitatively assess contrast, the contrast-to-noise ratios (CNR of selected regions of interest (ROI in the attenuation images and the phase images were analyzed and compared. It was found that both for virtual microscopy and for in-vivo applications, there is great potential for phase-contrast imaging: in the SR-based benchmarking data, fine details about tissue composition are accessible in the phase images and the visibility of solid tumor tissue under dose-reduced conditions is markedly superior in the phase images. The present study hence demonstrates improved diagnostic value with phase-contrast CT in a mouse model of a complex endogenous cancer, promoting the use and further development of grating-based phase-contrast CT for biomedical imaging applications.

  9. Mouse models of ageing and their relevance to disease.

    Science.gov (United States)

    Kõks, Sulev; Dogan, Soner; Tuna, Bilge Guvenc; González-Navarro, Herminia; Potter, Paul; Vandenbroucke, Roosmarijn E

    2016-12-01

    Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism

    Science.gov (United States)

    Guo, Yue-Ping; Commons, Kathryn G.

    2017-01-01

    The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061

  11. Human tissue models in cancer research: looking beyond the mouse

    Directory of Open Access Journals (Sweden)

    Samuel J. Jackson

    2017-08-01

    Full Text Available Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of ‘non-animal human tissue’ models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models.

  12. Human tissue models in cancer research: looking beyond the mouse.

    Science.gov (United States)

    Jackson, Samuel J; Thomas, Gareth J

    2017-08-01

    Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of 'non-animal human tissue' models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models. © 2017. Published by The Company of Biologists Ltd.

  13. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU.

    Directory of Open Access Journals (Sweden)

    Ronglan Zhao

    Full Text Available Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU. Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs, T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases.

  14. Susceptibility to experimental biliary atresia linked to different hepatic gene expression profiles in two mouse strains.

    Science.gov (United States)

    Leonhardt, Johannes; Kuebler, Joachim F; Turowski, Carmen; Tschernig, Thomas; Geffers, Robert; Petersen, Claus

    2010-02-01

    To compare hepatic gene expression during the development of experimental biliary atresia (BA) in two different mouse strains. Balb/c mice and C57Black/6 (Black/6) mice were infected with rhesus rotavirus (RRV) postpartum, clinical signs of BA and survival were noted. Liver sections were assessed for cluster of differentiation antigen (CD) 3, CD4 and CD8 expression, and the hepatic virus load was determined. Second, mice of both strains were sacrificed three days after infection. Isolated hepatic RNA was subjected to gene expression analysis using Affymetrix Gene Chip MOE 430 2.0. The incidence of BA was significantly lower in Black/6 mice compared to Balb/c mice (13.5% vs. 67%, P < 0.05). The mean virus titers were higher in mice with BA compared to mice without BA. Different gene profiles three days after virus infection were noted, with differential expression of 201 genes, including those regulating apoptosis, nucleic acid binding, transport function and particularly the immune response (chemokine C-C motif ligand 2, toll-like receptor 3, CD antigen 14, chemokine (C-X-C motif) ligands 10 and 11). This correlated with a significant increase of CD4 positive cells only in Balb/c mice with BA compared to healthy mice (13.5 vs. 5.0; P < 0.05). Black/6 mice did not exhibit any significant increase of CD3 or CD4 leukocytes despite cholestasis. The different susceptibility to experimental BA was associated with an increase of CD4 T-cells in the liver of Balb/c mice, which is linked to different gene profiles at the onset of bile duct obstruction.

  15. Natural and molecular history of prolactinoma: insights from a Prlr-/- mouse model.

    Science.gov (United States)

    Bernard, Valérie; Villa, Chiara; Auguste, Aurélie; Lamothe, Sophie; Guillou, Anne; Martin, Agnès; Caburet, Sandrine; Young, Jacques; Veitia, Reiner A; Binart, Nadine

    2018-01-19

    Lactotroph adenoma, also called prolactinoma, is the most common pituitary tumor but little is known about its pathogenesis. Mouse models of prolactinoma can be useful to better understand molecular mechanisms involved in abnormal lactotroph cell proliferation and secretion. We have previously developed a prolactin receptor deficient ( Prlr -/- ) mouse, which develops prolactinoma. The present study aims to explore the natural history of prolactinoma formation in Prlr -/- mice, using hormonal, radiological, histological and molecular analyses to uncover mechanisms involved in lactotroph adenoma development. Prlr -/- females develop large secreting prolactinomas from 12 months of age, with a penetrance of 100%, mimicking human aggressive densely granulated macroprolactinoma, which is a highly secreting subtype. Mean blood PRL measurements reach 14 902 ng/mL at 24 months in Prlr -/- females while PRL levels were below 15 ng/mL in control mice ( p model in ACI rats, we pinpointed 218 concordantly differentially expressed (DE) genes involved in cell cycle, mitosis, cell adhesion molecules, dopaminergic synapse and estrogen signaling. Pathway/gene-set enrichment analyses suggest that the transcriptomic dysregulation in both models of prolactinoma might be mediated by a limited set of transcription factors (i.e., STAT5, STAT3, AhR, ESR1, BRD4, CEBPD, YAP, FOXO1) and kinases (i.e., JAK2, AKT1, BRAF, BMPR1A, CDK8, HUNK, ALK, FGFR1, ILK). Our experimental results and their bioinformatic analysis provide insights into early genomic changes in murine models of the most frequent human pituitary tumor.

  16. Distraction induced enterogenesis: a unique mouse model using polyethylene glycol.

    Science.gov (United States)

    Okawada, Manabu; Maria, Haytham Mustafa; Teitelbaum, Daniel H

    2011-09-01

    Recent studies have demonstrated that the small intestine can be lengthened by applying mechanical forces to the bowel lumen-distraction-induced enterogenesis. However, the mechanisms which account for this growth are unknown, and might be best examined using a mouse model. The purpose of this study is to establish the feasibility of developing distractive-induced small bowel growth in mouse. Twelve-week old C57BL/6J mice had a jejunal segment taken out of continuity, and distended with polyethylene glycol (PEG: 3350 KDa); this group was compared with a control group without stretching. Segment length and diameter were measured intra-operatively and after 5 d. Villus height, crypt depth, and muscle thickness in the isolated segment were assessed. Rate of epithelial cell proliferation (5-bromo-2-deoxyuridine: BrdU incorporation) in crypts were also examined. The mucosal mRNA expression of targeted factors was performed to investigate potential mechanisms which might lead to distraction-induced enterogenesis. At harvest, the PEG-stretched group showed a significant increase in length and diameter versus controls. Villus height, crypt depth, and muscular layer thickness increased in the PEG group. The PEG group also showed significantly increased rates of epithelial cell proliferation versus controls. Real-time PCR showed a trend toward higher β-catenin and c-myc mRNA expression in the PEG-stretched group; however, this difference was not statistically significant. Radial distraction-induced enterogenesis with PEG is a viable method for increasing small intestinal length and diameter. This model may provide a new method for studying the mechanisms leading to distraction-induced enterogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Mariela Andrea Bilotas

    Full Text Available To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation.Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid.Pregnancy rate (i.e. pregnant mice/N decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions.Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  18. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Science.gov (United States)

    Bilotas, Mariela Andrea; Olivares, Carla Noemí; Ricci, Analía Gabriela; Baston, Juan Ignacio; Bengochea, Tatiana Soledad; Meresman, Gabriela Fabiana; Barañao, Rosa Inés

    2015-01-01

    To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation. Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid. Pregnancy rate (i.e. pregnant mice/N) decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions. Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  19. Research on mouse model of grade II corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Bai

    2016-04-01

    Full Text Available AIM: To choose appropriate concentration of sodium hydroxide (NaOH solution to establish a stable and consistent corneal alkali burn mouse model in grade II. METHODS: The mice (n=60 were randomly divided into four groups and 15 mice each group. Corneal alkali burns were induced by placing circle filter paper soaked with NaOH solutions on the right central cornea for 30s. The concentrations of NaOH solutions of groups A, B, C, and D were 0.1 mol/L, 0.15 mol/L , 0.2 mol/L, and 1.0 mol/L respectively. Then these corneas were irrigated with 20 mL physiological saline (0.9% NaCl. On day 7 postburn, slit lamp microscope was used to observe corneal opacity, corneal epithelial sodium fluorescein staining positive rate, incidence of corneal ulcer and corneal neovascularization, meanwhile pictures of the anterior eyes were taken. Cirrus spectral domain optical coherence tomography was used to scan cornea to observe corneal epithelial defect and corneal ulcer. RESULTS: Corneal opacity scores ( were not significantly different between the group A and group B (P=0.097. Incidence of corneal ulcer in group B was significantly higher than that in group A (P=0.035. Incidence of corneal ulcer and perforation rate in group B was lower than that in group C. Group C and D had corneal neovascularization, and incidence of corneal neovascularization in group D was significantly higher than that in group C (P=0.000. CONCLUSION: Using 0.15 mol/L NaOH can establish grade II mouse model of corneal alkali burns.

  20. Development of a transgenic mouse model to study the immunogenicity of recombinant human insulin

    NARCIS (Netherlands)

    Torosantucci, Riccardo; Brinks, Vera; Kijanka, Grzegorz; Halim, Liem Andhyk; Sauerborn, Melody; Schellekens, Huub; Jiskoot, Wim

    2014-01-01

    Mouse models are commonly used to assess the immunogenicity of therapeutic proteins and to investigate the immunological processes leading to antidrug antibodies. The aim of this work was to develop a transgenic (TG) Balb/c mouse model for evaluating the immunogenicity of recombinant human insulin

  1. Chlamydophila abortus infection in the mouse: a useful model of the ovine disease.

    Science.gov (United States)

    Caro, M R; Buendía, A J; Del Rio, L; Ortega, N; Gallego, M C; Cuello, F; Navarro, J A; Sanchez, J; Salinas, J

    2009-03-16

    Chlamydophila (C.) abortus is an obligate intracellular bacterium able to colonize the placenta of several species of mammals, which may induce abortion in the last third of pregnancy. The infection affects mainly small ruminants resulting in major economic losses in farming industries worldwide. Furthermore, its zoonotic risk has been reported in pregnant farmers or abattoir workers. Mouse models have been widely used to study both the pathology of the disease and the role of immune cells in controlling infection. Moreover, this animal experimental model has been considered a useful tool to evaluate new vaccine candidates and adjuvants that could prevent abortion and reduce fetal death. Future studies using these models will provide and reveal information about the precise mechanisms in the immune response against C. abortus and will increase the knowledge about poorly understood issues such as chlamydial persistence.

  2. A Mouse Model of Enterovirus D68 Infection for Assessment of the Efficacy of Inactivated Vaccine

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2018-01-01

    Full Text Available In recent years, enterovirus D68 (EVD68 has been reported increasingly to be associated with severe respiratory tract infections and acute flaccid myelitis (AFM in children all over the world. Yet, no effective vaccines or antiviral drugs are currently available for EVD68. Although several experimental animal models have been developed, immunogenicity and protective efficacy of inactivated EVD68 vaccines has not been fully evaluated. To promote the development of vaccines, we established an Institute of Cancer Research (ICR suckling mouse model of EVD68 infection in this study. The results showed that ICR neonatal mice up to about nine days of age were susceptible to infection with EVD68 clinical strain US/MO/14-18947 by intraperitoneal injection. The infected mice exhibited progressive limb paralysis prior to death and the mortality of mice was age- and virus dose-dependent. Tissue viral load analysis showed that limb muscle and spinal cord were the major sites of viral replication. Moreover, histopathologic examination revealed the severe necrosis of the limb and juxtaspinal muscles, suggesting that US/MO/14-18947 has a strong tropism toward muscle tissues. Additionally, β-propiolactone-inactivated EVD68 vaccine showed high purity and quality and induced robust EVD68-specific neutralizing antibody responses in adult mice. Importantly, results from both antisera transfer and maternal immunization experiments clearly showed that inactivated EVD68 vaccine was able to protect against lethal viral infection in the mouse model. In short, these results demonstrate the successful establishment of the mouse model of EVD68 infection for evaluating candidate vaccines against EVD68 and also provide important information for the development of inactivated virus-based EVD68 vaccines.

  3. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  4. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  5. Experimental animal data and modeling of late somatic effects

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1988-01-01

    This section is restricted to radiation-induced life shortening and cancer and mainly to studies with external radiation. The emphasis will be on the experimental data that are available and the experimental systems that could provide the type of data with which to either formulate or test models. Genetic effects which are of concern are not discussed in this section. Experimental animal radiation studies fall into those that establish general principles and those that demonstrate mechanisms. General principles include the influence of dose, radiation quality, dose rate, fractionation, protraction and such biological factors as age and gender. The influence of these factors are considered as general principles because they are independent, at least qualitatively, of the species studied. For example, if an increase in the LET of the radiation causes an increased effectiveness in cancer induction in a mouse a comparable increase in effectiveness can be expected in humans. Thus, models, whether empirical or mechanistic, formulated from experimental animal data should be generally applicable

  6. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C

    2011-06-01

    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  7. Improving treatment outcome assessment in a mouse tuberculosis model.

    Science.gov (United States)

    Mourik, Bas C; Svensson, Robin J; de Knegt, Gerjo J; Bax, Hannelore I; Verbon, Annelies; Simonsson, Ulrika S H; de Steenwinkel, Jurriaan E M

    2018-04-09

    Preclinical treatment outcome evaluation of tuberculosis (TB) occurs primarily in mice. Current designs compare relapse rates of different regimens at selected time points, but lack information about the correlation between treatment length and treatment outcome, which is required to efficiently estimate a regimens' treatment-shortening potential. Therefore we developed a new approach. BALB/c mice were infected with a Mycobacterium tuberculosis Beijing genotype strain and were treated with rifapentine-pyrazinamide-isoniazid-ethambutol (R p ZHE), rifampicin-pyrazinamide-moxifloxacin-ethambutol (RZME) or rifampicin-pyrazinamide-moxifloxacin-isoniazid (RZMH). Treatment outcome was assessed in n = 3 mice after 9 different treatment lengths between 2-6 months. Next, we created a mathematical model that best fitted the observational data and used this for inter-regimen comparison. The observed data were best described by a sigmoidal E max model in favor over linear or conventional E max models. Estimating regimen-specific parameters showed significantly higher curative potentials for RZME and R p ZHE compared to RZMH. In conclusion, we provide a new design for treatment outcome evaluation in a mouse TB model, which (i) provides accurate tools for assessment of the relationship between treatment length and predicted cure, (ii) allows for efficient comparison between regimens and (iii) adheres to the reduction and refinement principles of laboratory animal use.

  8. Experimental models of demyelination and remyelination.

    Science.gov (United States)

    Torre-Fuentes, L; Moreno-Jiménez, L; Pytel, V; Matías-Guiu, J A; Gómez-Pinedo, U; Matías-Guiu, J

    2017-08-29

    Experimental animal models constitute a useful tool to deepen our knowledge of central nervous system disorders. In the case of multiple sclerosis, however, there is no such specific model able to provide an overview of the disease; multiple models covering the different pathophysiological features of the disease are therefore necessary. We reviewed the different in vitro and in vivo experimental models used in multiple sclerosis research. Concerning in vitro models, we analysed cell cultures and slice models. As for in vivo models, we examined such models of autoimmunity and inflammation as experimental allergic encephalitis in different animals and virus-induced demyelinating diseases. Furthermore, we analysed models of demyelination and remyelination, including chemical lesions caused by cuprizone, lysolecithin, and ethidium bromide; zebrafish; and transgenic models. Experimental models provide a deeper understanding of the different pathogenic mechanisms involved in multiple sclerosis. Choosing one model or another depends on the specific aims of the study. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Iodine uptake and prostate cancer in the TRAMP mouse model.

    Science.gov (United States)

    Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda

    2013-11-08

    Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I₂) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²⁵I⁻ and ¹²⁵I₂ uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I₂/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I₂ uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.

  10. The synthetic parasite-derived peptide GK1 increases survival in a preclinical mouse melanoma model.

    Science.gov (United States)

    Pérez-Torres, Armando; Vera-Aguilera, Jesús; Hernaiz-Leonardo, Juan Carlos; Moreno-Aguilera, Eduardo; Monteverde-Suarez, Diego; Vera-Aguilera, Carlos; Estrada-Bárcenas, Daniel

    2013-11-01

    The therapeutic efficacy of a synthetic parasite-derived peptide GK1, an immune response booster, was evaluated in a mouse melanoma model. This melanoma model correlates with human stage IIb melanoma, which is treated with wide surgical excision; a parallel study employing a surgical treatment was carried out as an instructive goal. C57BL/6 mice were injected subcutaneously in the flank with 2×10(5) B16-F10 murine melanoma cells. When the tumors reached 20 mm3, mice were separated into two different groups; the GK1 group, treated weekly with peritumoral injections of GK1 (10 μg/100 μL of sterile saline solution) and the control group, treated weekly with an antiseptic peritumoral injection of 100 μL of sterile saline solution without further intervention. All mice were monitored daily for clinical appearance, tumor size, and survival. Surgical treatment was performed in parallel when the tumor size was 20 mm3 (group A), 500 mm3 (group B), and >500 mm3 (group C). The GK1 peptide effectively increased the mean survival time by 9.05 days, corresponding to an increase of 42.58%, and significantly delayed tumor growth from day 3 to 12 of treatment. In addition, tumor necrosis was significantly increased (pcancers remains to be determined, and surgical removal remains a challenge for any new experimental treatment of melanoma in mouse models.

  11. Ultrasonographic Characterization of the db/db Mouse: An Animal Model of Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Francesco Faita

    2018-01-01

    Full Text Available The availability of an animal model able to reliably mirror organ damage occurring in metabolic diseases is an urgent need. These models, mostly rodents, have not been fully characterized in terms of cardiovascular, renal, and hepatic ultrasound parameters, and only sparse values can be found in literature. Aim of this paper is to provide a detailed, noninvasive description of the heart, vessels, liver, and kidneys of the db/db mouse by ultrasound imaging. Sixteen wild type and thirty-four db/db male mice (11-week-old were studied. State-of-the-art ultrasound technology was used to acquire images of cardiovascular, renal, and hepatic districts. A set of parameters describing function of the selected organs was evaluated. db/db mice are characterized by systolic and diastolic dysfunction, confirmed by strain analysis. Abdominal aortic and carotid stiffness do not seem to be increased in diabetic rodents; furthermore, they are characterized by a smaller mean diameter for both vessels. Renal microcirculation is significantly compromised, while liver steatosis is only slightly higher in db/db mice than in controls. We offer here for the first time an in vivo detailed ultrasonographic characterization of the db/db mouse, providing a useful tool for a thoughtful choice of the right rodent model for any experimental design.

  12. Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.

    Science.gov (United States)

    Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H

    2009-04-01

    The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P model, and may have implications for the effects of these strategies on experimental outcomes.

  13. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    Science.gov (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  14. Zmpste24-/- mouse model for senescent wound healing research.

    Science.gov (United States)

    Butala, Parag; Szpalski, Caroline; Soares, Marc; Davidson, Edward H; Knobel, Denis; Warren, Stephen M

    2012-12-01

    The graying of our population has motivated the authors to better understand age-related impairments in wound healing. To increase research throughput, the authors hypothesized that the Hutchinson-Gilford progeria syndrome Zmpste24-deficient (Zmpste24(-/-)) mouse could serve as a model of senescent wound healing. Using a stented excisional wound closure model, the authors tested this hypothesis on 8-week-old male Zmpste24(-/-) mice (n = 25) and age-matched male C57BL/6J wild-type mice (n = 25). Wounds were measured photogrammetrically and harvested for immunohistochemistry, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction, and circulating vasculogenic progenitor cells were measured by flow cytometry. Zmpste24(-/-) mice had a significant delay in wound closure compared with wild-type mice during the proliferative/vasculogenic phase. Zmpste24(-/-) wounds had decreased proliferation, increased 8-hydroxy-2'-deoxyguanosine levels, increased proapoptotic signaling (i.e., p53, PUMA, BAX), decreased antiapoptotic signaling (i.e., Bcl-2), and increased DNA fragmentation. These changes correlated with decreased local vasculogenic growth factor expression, decreased mobilization of bone marrow-derived vasculogenic progenitor cells, and decreased new blood vessel formation. Age-related impairments in wound closure are multifactorial. The authors' data suggest that the Hutchinson-Gilford progeria syndrome Zmpste24(-/-) progeroid syndrome shares mechanistic overlap with normal aging and therefore might provide a uniquely informative model with which to study age-associated impairments in wound closure.

  15. HUPO BPP Workshop on Mouse Models for Neurodegeneration--Choosing the right models.

    Science.gov (United States)

    Hamacher, Michael; Marcus, Katrin; Stephan, Christian; van Hall, Andre; Meyer, Helmut E

    2005-09-01

    The HUPO Brain Proteome Project met during the 4th Dutch Endo-Neuro-Psycho Meeting in Doorwerth, The Netherlands, on June 1, 2005, in order to discuss appropriate (mouse) models for neurodegenerative diseases as well as to conceptualise sophisticated proteomics analyses strategies. Here, the topics of the meeting are summarised.

  16. CSF transthyretin neuroprotection in a mouse model of brain ischemia

    DEFF Research Database (Denmark)

    Santos, Sofia Duque; Lambertsen, Kate Lykke; Clausen, Bettina Hjelm

    2010-01-01

    Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke. ...

  17. Improving the physiological realism of experimental models.

    Science.gov (United States)

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  18. A mouse air pouch model for evaluating the immune response to Taenia crassiceps infection.

    Science.gov (United States)

    Gaspar, Emanuelle B; Sakai, Yuriko I; Gaspari, Elizabeth De

    2014-02-01

    The experimental system of Taenia crassiceps cysticerci infection in BALB/c mice is considered to be the most representative model of cysticercosis. In our work, mice were sacrificed 7 and 30days after infection, and pouch fluid was collected to determine the number of accumulated cells and the concentrations of IFNγ, IL-2, IL-4, IL-6, IL-10 and nitric oxide. The injection of 50 nonbudding cysticerci into normal mouse dorsal air pouches induced a high level of IFNγ and nitric oxide production relative to the parasite load. The air pouch provides a convenient cavity that allows studying the cellular immunological aspects of the T. crassiceps parasite. The nonbudding cysticerci recovered from the air pouches contained cells that can reconstitute complete cysts in the peritoneal cavity of mice. In conclusion, these results demonstrate that the air pouch model is an alternative tool for the evaluation of the immune characteristics of T. crassiceps infection. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma.

    Directory of Open Access Journals (Sweden)

    Maria Kärrlander

    Full Text Available Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG, a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B, in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma.

  20. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    Full Text Available Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006. Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007. As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001. This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027 and asparaginase (P = 0.036. We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids.

  1. Analysis of a Mouse Skin Model of Tuberous Sclerosis Complex.

    Directory of Open Access Journals (Sweden)

    Yanan Guo

    Full Text Available Tuberous Sclerosis Complex (TSC is an autosomal dominant tumor suppressor gene syndrome in which patients develop several types of tumors, including facial angiofibroma, subungual fibroma, Shagreen patch, angiomyolipomas, and lymphangioleiomyomatosis. It is due to inactivating mutations in TSC1 or TSC2. We sought to generate a mouse model of one or more of these tumor types by targeting deletion of the Tsc1 gene to fibroblasts using the Fsp-Cre allele. Mutant, Tsc1ccFsp-Cre+ mice survived a median of nearly a year, and developed tumors in multiple sites but did not develop angiomyolipoma or lymphangioleiomyomatosis. They did develop a prominent skin phenotype with marked thickening of the dermis with accumulation of mast cells, that was minimally responsive to systemic rapamycin therapy, and was quite different from the pathology seen in human TSC skin lesions. Recombination and loss of Tsc1 was demonstrated in skin fibroblasts in vivo and in cultured skin fibroblasts. Loss of Tsc1 in fibroblasts in mice does not lead to a model of angiomyolipoma or lymphangioleiomyomatosis.

  2. Deficient Sleep in Mouse Models of Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    R. Michelle Saré

    2017-09-01

    Full Text Available In patients with fragile X syndrome (FXS, sleep problems are commonly observed but are not well characterized. In animal models of FXS (dfmr1 and Fmr1 knockout (KO/Fxr2 heterozygote circadian rhythmicity is affected, but sleep per se has not been examined. We used a home-cage monitoring system to assess total sleep time in both light and dark phases in Fmr1 KO mice at different developmental stages. Fmr1 KOs at P21 do not differ from controls, but genotype × phase interactions in both adult (P70 and P180 groups are statistically significant indicating that sleep in Fmr1 KOs is reduced selectively in the light phase compared to controls. Our results show the emergence of abnormal sleep in Fmr1 KOs during the later stages of brain maturation. Treatment of adult Fmr1 KO mice with a GABAB agonist, R-baclofen, did not restore sleep duration in the light phase. In adult (P70 Fmr1 KO/Fxr2 heterozygote animals, total sleep time was further reduced, once again in the light phase. Our data highlight the importance of the fragile X genes (Fmr1 and Fxr2 in sleep physiology and confirm the utility of these mouse models in enhancing our understanding of sleep disorders in FXS.

  3. Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis.

    Science.gov (United States)

    Marzo, Elena; Vilaplana, Cristina; Tapia, Gustavo; Diaz, Jorge; Garcia, Vanessa; Cardona, Pere-Joan

    2014-01-01

    Tuberculosis was studied using an experimental model based on the C3HeB/FeJ mouse strain, which mimics the liquefaction of caseous necrosis occurring during active disease in immunocompetent adults. Mice were intravenously infected with 2 × 10(4) Colony Forming Units of Mycobacterium tuberculosis and their histopathology, immune response, bacillary load, and survival were evaluated. The effects of the administration of drugs with anti-inflammatory activity were examined, and the C3H/HeN mouse strain was also included for comparative purposes. Massive intra-alveolar neutrophilic infiltration led to rapid granuloma growth and coalescence of lesions into superlesions. A central necrotic area appeared showing progressive cellular destruction, the alveoli cell walls being initially conserved (caseous necrosis) but finally destroyed (liquefactive necrosis). Increasing levels of pro-inflammatory mediators were detected in lungs. C3HeB/FeJ treated with anti-inflammatory drugs and C3H/HeN animals presented lower levels of pro-inflammatory mediators such as TNF-α, IL-17, IL-6 and CXCL5, a lower bacillary load, better histopathology, and increased survival compared with untreated C3HeB/FeJ. The observation of massive neutrophilic infiltration suggests that inflammation may be a key factor in progression towards active tuberculosis. On the basis of our findings, we consider that the C3HeB/FeJ mouse model would be useful for evaluating new therapeutic strategies against human tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  5. Sparse Statistical Deformation Model for the Analysis of Craniofacial Malformations in the Crouzon Mouse

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Hansen, Michael Sass; Sjöstrand, Karl

    2007-01-01

    Crouzon syndrome is characterised by the premature fusion of cranial sutures. Recently the first genetic Crouzon mouse model was generated. In this study, Micro CT skull scannings of wild-type mice and Crouzon mice were investigated. Using nonrigid registration, a wild-type mouse atlas was built...

  6. Understanding Leadership: An Experimental-Experiential Model

    Science.gov (United States)

    Hole, George T.

    2014-01-01

    Books about leadership are dangerous to readers who fantasize about being leaders or apply leadership ideas as if they were proven formulas. As an antidote, I offer an experimental framework in which any leadership-management model can be tested to gain experiential understanding of the model. As a result one can gain reality-based insights about…

  7. Conditional Expression of Human 15-Lipoxygenase-1 in Mouse Prostate Induces Prostatic Intraepithelial Neoplasia: The FLiMP Mouse Model

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2006-06-01

    Full Text Available The incidence and mortality of prostate cancer (PCa vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1, which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN, and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. To further define the role of 15-LO-1 in prostate carcinogenesis, we established a novel GEM model with targeted overexpression of h15-LO-1 in the prostate [human fifteen lipoxygenase-1 in mouse prostate (FLiMP]. We used a Cre- mediated and a loxP-mediated recombination strategy to target h15-LO-1 specifically to the prostate of C57BL/6 mice. Wild-type (wt, FLiMP+/-, and FLiMP+/+ mice aged 7 to 21, 24 to 28, and 35 weeks were characterized by histopathology, immunohistochemistry (IHC, and DNA/RNA and enzyme analyses. Compared to wt mice, h15-LO-1 enzyme activity was increased similarly in both homozygous FLiMP+/+ and hemizygous FLiMP+/- prostates. Dorsolateral and ventral prostates of FLiMP mice showed focal and progressive epithelial hyperplasia with nuclear atypia, indicative of the definition of mouse prostatic intraepithelial neoplasia (mPIN according to the National Cancer Institute. These foci showed increased proliferation by Ki-67 IHC. No progression to invasive PCa was noted up to 35 weeks. By IHC, h15-LO-1 expression was limited to luminal epithelial cells, with increased expression in mPIN foci (similar to human HGPIN. In summary, targeted overexpression of h

  8. Mevalonate Pathway Antagonist Inhibits Proliferation of Serous Tubal Intraepithelial Carcinoma and Ovarian Carcinoma in Mouse Models

    Science.gov (United States)

    Kobayashi, Yusuke; Kashima, Hiroyasu; Wu, Ren-Chin; Jung, Jin- Gyoung; Kuan, Jen-Chun; Gu, Jinghua; Xuan, Jianhua; Sokoll, Lori; Visvanathan, Kala; Shih, Ie-Ming; Wang, Tian-Li

    2015-01-01

    Purpose Statins are among the most frequently prescribed drugs because of their efficacy and low toxicity in treating hypercholesterolemia. Recently, statins have been reported to inhibit the proliferative activity of cancer cells, especially those with TP53 mutations. Since TP53 mutations occur in almost all of the ovarian high-grade serous carcinoma, we determined if statins suppressed tumor growth in animal models of ovarian cancer. Experimental Design Two ovarian cancer mouse models were employed. The first one was a genetically engineered model, mogp-TAg, in which the promoter of oviduct glycoprotein-1 was used to drive the expression of SV40 T-antigen in gynecologic tissues. These mice spontaneously develop serous tubal intraepithelial carcinomas (STICs), which are known as ovarian cancer precursor lesions. The second model was a xenograft tumor model in which human ovarian cancer cells were inoculated into immunocompromised mice. Mice in both models were treated with lovastatin, and effects on tumor growth were monitored. The molecular mechanisms underlying the anti-tumor effects of lovastatin were also investigated. Results Lovastatin significantly reduced the development of STICs in mogp-TAg mice and inhibited ovarian tumor growth in the mouse xenograft model. Knockdown of prenylation enzymes in the mevalonate pathway recapitulated the lovastatin-induced anti-proliferative phenotype. Transcriptome analysis indicated that lovastatin affected the expression of genes associated with DNA replication, Rho/PLC signaling, glycolysis, and cholesterol biosynthesis pathways, suggesting that statins have pleiotropic effects on tumor cells. Conclusion The above results suggest that repurposing statin drugs for ovarian cancer may provide a promising strategy to prevent and manage this devastating disease. PMID:26109099

  9. The Sound of Silence: Mouse Models for Hearing Loss

    Directory of Open Access Journals (Sweden)

    Sumantra Chatterjee

    2011-01-01

    Full Text Available Sensorineural hearing loss is one of the most common disabilities in humans. It is estimated that about 278 million people worldwide have slight to extreme hearing loss in both ears, which results in an economic loss for the country and personal loss for the individual. It is thus critical to have a deeper understanding of the causes for hearing loss to better manage and treat the affected individuals. The mouse serves as an excellent model to study and recapitulate some of these phenotypes, identify new genes which cause deafness, and to study their roles in vivo and in detail. Mutant mice have been instrumental in elucidating the function and mechanisms of the inner ear. The development and morphogenesis of the inner ear from an ectodermal layer into distinct auditory and vestibular components depends on well-coordinated gene expression and well-orchestrated signaling cascades within the otic vesicle and interactions with surrounding layers of tissues. Any disruption in these pathways can lead to hearing impairment. This review takes a look at some of the genes and their corresponding mice mutants that have shed light on the mechanism governing hearing impairment (HI in humans.

  10. Efficacy of enrofloxacin in a mouse model of sepsis.

    Science.gov (United States)

    Slate, Andrea R; Bandyopadhyay, Sheila; Francis, Kevin P; Papich, Mark G; Karolewski, Brian; Hod, Eldad A; Prestia, Kevin A

    2014-07-01

    We examined the efficacy of enrofloxacin administered by 2 different routes in a mouse model of sepsis. Male CD1 mice were infected with a bioluminescent strain of enteropathogenic Escherichia coli and treated with enrofloxacin either by injection or in drinking water. Peak serum levels were evaluated by using HPLC. Mice were monitored for signs of clinical disease, and infections were monitored by using bioluminescence imaging. Serum levels of enrofloxacin and the active metabolite ciprofloxacin were greater in the group treated by injection than in controls or the groups treated by administration in drinking water. Survival of the group treated with enrofloxacin injection was greater than that of controls and groups treated with enrofloxacin in the drinking water. Bioluminescence in the group treated with enrofloxacin injection was less than that in the groups treated with oral administration at 12 h and in the groups treated orally and the control group at 16 h. According to these findings, we recommend the use of injectable enrofloxacin at 5 mg/kg SC for mice with systemic infections.

  11. Increased opioid dependence in a mouse model of panic disorder

    Directory of Open Access Journals (Sweden)

    Xavier Gallego

    2010-02-01

    Full Text Available Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3. Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 locus coeruleus neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in locus coeruleus and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.

  12. Fundus autofluorescence findings in a mouse model of retinal detachment.

    Science.gov (United States)

    Secondi, Roberta; Kong, Jian; Blonska, Anna M; Staurenghi, Giovanni; Sparrow, Janet R

    2012-08-07

    Fundus autofluorescence (fundus AF) changes were monitored in a mouse model of retinal detachment (RD). RD was induced by transscleral injection of hyaluronic acid (Healon) or sterile balanced salt solution (BSS) into the subretinal space of 4-5-day-old albino Abca4 null mutant and Abca4 wild-type mice. Images acquired by confocal scanning laser ophthalmoscopy (Spectralis HRA) were correlated with spectral domain optical coherence tomography (SD-OCT), infrared reflectance (IR), fluorescence spectroscopy, and histologic analysis. Results. In the area of detached retina, multiple hyperreflective spots in IR images corresponded to punctate areas of intense autofluorescence visible in fundus AF mode. The puncta exhibited changes in fluorescence intensity with time. SD-OCT disclosed undulations of the neural retina and hyperreflectivity of the photoreceptor layer that likely corresponded to histologically visible photoreceptor cell rosettes. Fluorescence emission spectra generated using flat-mounted retina, and 488 and 561 nm excitation, were similar to that of RPE lipofuscin. With increased excitation wavelength, the emission maximum shifted towards longer wavelengths, a characteristic typical of fundus autofluorescence. In detached retinas, hyper-autofluorescent spots appeared to originate from photoreceptor outer segments that were arranged within retinal folds and rosettes. Consistent with this interpretation is the finding that the autofluorescence was spectroscopically similar to the bisretinoids that constitute RPE lipofuscin. Under the conditions of a RD, abnormal autofluorescence may arise from excessive production of bisretinoid by impaired photoreceptor cells.

  13. Hepatitis C Virus-Related Lymphomagenesis in a Mouse Model

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Sekiguchi, Satoshi; Kasama, Yuri; Salem, Nagla Elwy; Machida, Keigo; Kohara, Michinori

    2011-01-01

    B cell non-Hodgkin lymphoma is a typical extrahepatic manifestation frequently associated with hepatitis C virus (HCV) infection. The mechanism by which HCV infection leads to lymphoproliferative disorder remains unclear. Our group established HCV transgenic mice that expressed the full HCV genome in B cells (RzCD19Cre mice). We observed a 25.0% incidence of diffuse large B cell non-Hodgkin lymphomas (22.2% in male and 29.6% in female mice) within 600 days of birth. Interestingly, RzCD19Cre mice with substantially elevated serum-soluble interleukin-2 receptor α-subunit (sIL-2Rα) levels (>1000 pg/mL) developed B cell lymphomas. Another mouse model of lymphoproliferative disorder was established by persistent expression of HCV structural proteins through disruption of interferon regulatory factor-1 (irf-1_/_/CN2 mice). Irf-1_/_/CN2 mice showed extremely high incidences of lymphomas and lymphoproliferative disorders. Moreover, these mice showed increased levels of interleukin (IL)-2, IL-10, and Bcl-2 as well as increased Bcl-2 expression, which promoted oncogenic transformation of lymphocytes. PMID:22084693

  14. A mouse model for degeneration of the spiral ligament.

    Science.gov (United States)

    Kada, Shinpei; Nakagawa, Takayuki; Ito, Juichi

    2009-06-01

    Previous studies have indicated the importance of the spiral ligament (SL) in the pathogenesis of sensorineural hearing loss. The aim of this study was to establish a mouse model for SL degeneration as the basis for the development of new strategies for SL regeneration. We injected 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, at various concentrations into the posterior semicircular canal of adult C57BL/6 mice. Saline-injected animals were used as controls. Auditory function was monitored by measurements of auditory brain stem responses (ABRs). On postoperative day 14, cochlear specimens were obtained after the measurement of the endocochlear potential (EP). Animals that were injected with 5 or 10 mM 3-NP showed a massive elevation of ABR thresholds along with extensive degeneration of the cochleae. Cochleae injected with 1 mM 3-NP exhibited selective degeneration of the SL fibrocytes but alterations in EP levels and ABR thresholds were not of sufficient magnitude to allow for testing functional recovery after therapeutic interventions. Animals injected with 3 mM 3-NP showed a reduction of around 50% in the EP along with a significant loss of SL fibrocytes, although degeneration of spiral ganglion neurons and hair cells was still present in certain regions. These findings indicate that cochleae injected with 3 mM 3-NP may be useful in investigations designed to test the feasibility of new therapeutic manipulations for functional SL regeneration.

  15. Skeletal muscle repair in a mouse model of nemaline myopathy.

    Science.gov (United States)

    Sanoudou, Despina; Corbett, Mark A; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T; Vlahovich, Nicole; Hardeman, Edna C; Beggs, Alan H

    2006-09-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles.

  16. Impaired peripheral nerve regeneration in type-2 diabetic mouse model.

    Science.gov (United States)

    Pham, Vuong M; Tu, Nguyen Huu; Katano, Tayo; Matsumura, Shinji; Saito, Akira; Yamada, Akihiro; Furue, Hidemasa; Ito, Seiji

    2018-01-01

    Peripheral neuropathy is one of the most common and serious complications of type-2 diabetes. Diabetic neuropathy is characterized by a distal symmetrical sensorimotor polyneuropathy, and its incidence increases in patients 40 years of age or older. In spite of extensive research over decades, there are few effective treatments for diabetic neuropathy besides glucose control and improved lifestyle. The earliest changes in diabetic neuropathy occur in sensory nerve fibers, with initial degeneration and regeneration resulting in pain. To seek its effective treatment, here we prepared a type-2 diabetic mouse model by giving mice 2 injections of streptozotocin and nicotinamide and examining the ability for nerve regeneration by using a sciatic nerve transection-regeneration model previously established by us. Seventeen weeks after the last injection, the mice exhibited symptoms of type-2 diabetes, that is, impaired glucose tolerance, decreased insulin level, mechanical hyperalgesia, and impaired sensory nerve fibers in the plantar skin. These mice showed delayed functional recovery and nerve regeneration by 2 weeks compared with young healthy mice and by 1 week compared with age-matched non-diabetic mice after axotomy. Furthermore, type-2 diabetic mice displayed increased expression of PTEN in their DRG neurons. Administration of a PTEN inhibitor at the cutting site of the nerve for 4 weeks promoted the axonal transport and functional recovery remarkably. This study demonstrates that peripheral nerve regeneration was impaired in type-2 diabetic model and that its combination with sciatic nerve transection is suitable for the study of the pathogenesis and treatment of early diabetic neuropathy. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Involvement of TRPM2 in a wide range of inflammatory and neuropathic pain mouse models

    Directory of Open Access Journals (Sweden)

    Kanako So

    2015-03-01

    Full Text Available Recent evidence suggests a role of transient receptor potential melastatin 2 (TRPM2 in immune and inflammatory responses. We previously reported that TRPM2 deficiency attenuated inflammatory and neuropathic pain in some pain mouse models, including formalin- or carrageenan-induced inflammatory pain, and peripheral nerve injury-induced neuropathic pain models, while it had no effect on the basal mechanical and thermal nociceptive sensitivities. In this study, we further explored the involvement of TRPM2 in various pain models using TRPM2-knockout mice. There were no differences in the chemonociceptive behaviors evoked by intraplantar injection of capsaicin or hydrogen peroxide between wildtype and TRPM2-knockout mice, while acetic acid-induced writhing behavior was significantly attenuated in TRPM2-knockout mice. In the postoperative incisional pain model, no difference in mechanical allodynia was observed between the two genotypes. By contrast, mechanical allodynia in the monosodium iodoacetate-induced osteoarthritis pain model and the experimental autoimmune encephalomyelitis model were significantly attenuated in TRPM2-knockout mice. Furthermore, mechanical allodynia in paclitaxel-induced peripheral neuropathy and streptozotocin-induced painful diabetic neuropathy models were significantly attenuated in TRPM2-knockout mice. Taken together, these results suggest that TRPM2 plays roles in a wide range of pathological pain models based on peripheral and central neuroinflammation, rather than physiological nociceptive pain.

  18. A mouse model of cytogenetic analysis to evaluate caesium137 radiation dose exposure and contamination level in lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roch-Lefevre, Sandrine; Martin-Bodiot, Cecile; Gregoire, Eric; Roy, Laurence [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Dosimetrie Biologique (PRP-HOM/SRBE/LDB), Fontenay aux Roses Cedex (France); Desbree, Aurelie [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-HOM/SDI, Laboratoire d' Evaluation de la Dose Interne, Fontenay aux Roses Cedex (France); Barquinero, Joan Francesc [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Dosimetrie Biologique (PRP-HOM/SRBE/LDB), Fontenay aux Roses Cedex (France); Universitat Autonoma de Barcelona, Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Bellaterra (Spain)

    2016-03-15

    In case of external overexposure to ionizing radiation, an estimation of its genotoxic effects on exposed individuals can be made retrospectively by the measurement of radiation-induced chromosome aberrations on circulating lymphocytes. Compared with external irradiation, intakes of radionuclides may, however, lead to specific features influencing dose distribution at the scale of body, of tissue or even of cell. Therefore, in case of internal contamination by radionuclides, experimental studies, particularly using animal models, are required to better understand mechanisms of their genotoxic effects and to better estimate the absorbed dose. The present study was designed to evaluate a cytogenetic method in mouse peripheral blood lymphocytes that would allow determination of yields and complexities of chromosome aberrations after low-dose rate exposure to {sup 137}Cs delivered in vitro either by irradiation or by contamination. By using M-FISH analysis, we compared the low-dose rate responses observed in mouse to the high-dose rate responses observed both in mouse and in human. Promising similarities between the two species in the relative biological effect evaluation show that our cytogenetic model established in mouse might be useful to evaluate various radiation exposures, particularly relevant in case of intakes of radionuclides. (orig.)

  19. EXPERIMENTAL MODEL OF THE PRIMARY MALE HYPOGONADISM

    Directory of Open Access Journals (Sweden)

    P. A. Kulikova

    2014-01-01

    Full Text Available Background: Development of the new methods of treatment of primary male hypogonadism is an urgent medical problem. Its solution requires a suitable experimental model of the disease. Aim: The creation of new experimental model of primary male hypogonadism. Materials and methods: The study was conducted on the male Wistar rats, hypogonadism was modeled by temporary ligation of the distal part of the spermatic cord. Results: It was shown that three-day ligation of the spermatic cord led to persistent disturbance of the testosterone-producing and reproductive functions. These manifestations were reversible at shorter duration of the exposure. Conclusion: The created model of primary male hypogonadism is characterized by the persistent testosterone-producing and reproductive functions disturbance, technical availability, non-toxicity to the other organs and systems. Availability of the model provides new opportunities for the development of approaches to treating diseases of the reproductive organs in men.

  20. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis.

    Science.gov (United States)

    Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla; Oler, Andrew J; Stübig, Thomas; Prassolov, Vladimir; Fehse, Boris; Kozak, Christine A; Kröger, Nicolaus; Stocking, Carol

    2014-06-10

    The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdc(scid) and Il2rg(null) alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation.

  1. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-01-01

    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.

  2. Efficacy of Alteplase in a Mouse Model of Acute Ischemic Stroke: A Retrospective Pooled Analysis.

    Science.gov (United States)

    Orset, Cyrille; Haelewyn, Benoit; Allan, Stuart M; Ansar, Saema; Campos, Francesco; Cho, Tae Hee; Durand, Anne; El Amki, Mohamad; Fatar, Marc; Garcia-Yébenes, Isaac; Gauberti, Maxime; Grudzenski, Saskia; Lizasoain, Ignacio; Lo, Eng; Macrez, Richard; Margaill, Isabelle; Maysami, Samaneh; Meairs, Stephen; Nighoghossian, Norbert; Orbe, Josune; Paramo, Jose Antonio; Parienti, Jean-Jacques; Rothwell, Nancy J; Rubio, Marina; Waeber, Christian; Young, Alan R; Touzé, Emmanuel; Vivien, Denis

    2016-05-01

    The debate over the fact that experimental drugs proposed for the treatment of stroke fail in the translation to the clinical situation has attracted considerable attention in the literature. In this context, we present a retrospective pooled analysis of a large data set from preclinical studies, to examine the effects of early versus late administration of intravenous recombinant tissue-type plasminogen activator. We collected data from 26 individual studies from 9 international centers (13 researchers; 716 animals) that compared recombinant tissue-type plasminogen activator with controls, in a unique mouse model of thromboembolic stroke induced by an in situ injection of thrombin into the middle cerebral artery. Studies were classified into early (stroke in mice. The power analysis reveals that a multicenter trial would require 123 animals per group instead of 40 for a single-center trial. © 2016 American Heart Association, Inc.

  3. A gastrointestinal rotavirus infection mouse model for immune modulation studies

    Directory of Open Access Journals (Sweden)

    van Amerongen Geert

    2011-03-01

    Full Text Available Abstract Background Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The current study was conducted to assess whether colostrum containing rotavirus-specific antibodies (Gastrogard-R® could protect against rotavirus infection. In addition, this illness model was used to study modulatory effects of intervention on several immune parameters after re-infection. Methods BALB/c mice were treated by gavage once daily with Gastrogard-R® from the age of 4 to 10 days, and were inoculated with rhesus rotavirus (RRV at 7 days of age. A secondary inoculation with epizootic-diarrhea infant-mouse (EDIM virus was administered at 17 days of age. Disease symptoms were scored daily and viral shedding was measured in fecal samples during the post-inoculation periods. Rotavirus-specific IgM, IgG and IgG subclasses in serum, T cell proliferation and rotavirus-specific delayed-type hypersensitivity (DTH responses were also measured. Results Primary inoculation with RRV induced a mild but consistent level of diarrhea during 3-4 days post-inoculation. All mice receiving Gastrogard-R® were 100% protected against rotavirus-induced diarrhea. Mice receiving both RRV and EDIM inoculation had a lower faecal-viral load following EDIM inoculation then mice receiving EDIM alone or Gastrogard-R®. Mice receiving Gastrogard-R® however displayed an enhanced rotavirus-specific T-cell proliferation whereas rotavirus-specific antibody subtypes were not affected. Conclusions Preventing RRV-induced diarrhea by Gastrogard-R® early in life showed a diminished protection against EDIM re-infection, but a rotavirus-specific immune response was developed including both B cell and T cell responses. In general, this intervention model can be used for studying clinical symptoms as well as the immune responses required for protection against viral re-infection.

  4. A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Fennell, T R; Brown, C D

    2001-06-15

    Ethylene oxide (EO) is widely used as a gaseous sterilant and industrial intermediate and is a direct-acting mutagen and carcinogen. The objective of these studies was to develop physiologically based pharmacokinetic (PB-PK) models for EO to describe the exposure-tissue dose relationship in rodents and humans. We previously reported results describing in vitro and in vivo kinetics of EO metabolism in male and female F344 rats and B6C3F1 mice. These studies were extended by determining the kinetics of EO metabolism in human liver cytosol and microsomes. The results indicate enzymatically catalyzed GSH conjugation via cytosolic glutathione S-transferase (cGST) and hydrolysis via microsomal epoxide hydrolase (mEH) occur in both rodents and humans. The in vitro kinetic constants were scaled to account for cytosolic (cGST) and microsomal (mEH) protein content and incorporated into PB-PK descriptions for mouse, rat, and human. Flow-limited models adequately predicted blood and tissue EO levels, disposition, and elimination kinetics determined experimentally in rats and mice, with the exception of testis concentrations, which were overestimated. Incorporation of a diffusion-limited description for testis improved the ability of the model to describe testis concentrations. The model accounted for nonlinear increases in blood and tissue concentrations that occur in mice on exposure to EO concentrations greater than 200 ppm. Species differences are predicted in the metabolism and exposure-dose relationship, with a nonlinear relationship observed in the mouse as a result of GSH depletion. These models represent an essential step in developing a mechanistically based EO exposure-dose-response description for estimating human risk from exposure to EO. Copyright 2001 Academic Press.

  5. Hemorrhoids: an experimental model in monkeys

    Directory of Open Access Journals (Sweden)

    Plapler Hélio

    2006-01-01

    Full Text Available PURPOSE: Hemorrhoids are a matter of concern due to a painful outcome. We describe a simple, easy and reliable experimental model to produce hemorrhoids in monkeys. METHODS: 14 monkeys (Cebus apella were used. After general anesthesia, hemorrhoids were induced by ligation of the inferior hemorrhoidal vein, which is very alike to humans. The vein was located through a perianal incision, dissected and ligated with a 3-0 vicryl. The skin was sutured with a 4-0 catgut thread. Animals were kept in appropriate cages and evaluated daily. RESULTS: Nine days later there were hemorrhoidal piles in the anus in fifty percent (50% of the animals. Outcome was unremarkable. There was no bleeding and all animals showed no signs of pain or suffering. CONCLUSION: This is an affordable and reliable experimental model to induce hemorrhoids for experimental studies.

  6. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Vladimir E Bondarenko

    Full Text Available The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca(2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol. The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca(2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca(2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca(2+]i transients; changes in intracellular and transmembrane Ca(2+ fluxes; and [Na(+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca(2+]i transients. In particular, the model includes two subpopulations of the L-type Ca(2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca(2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of

  7. Optimal Experimental Design for Model Discrimination

    Science.gov (United States)

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it…

  8. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    National Research Council Canada - National Science Library

    Brown, Susan

    1999-01-01

    ... (HE) and familial amyotrophic lateral sclerosis (FALS), using transgenic mouse models. Studies in this first year employed C-14-2-deoxyglucose in vivo autoradiography and spectrophotometric metabolic enzyme assays...

  9. Wound Healing Effects of Rose Placenta in a Mouse Model of Full-Thickness Wounds

    Directory of Open Access Journals (Sweden)

    Yang Woo Kim

    2015-11-01

    Full Text Available BackgroundRosa damascena, a type of herb, has been used for wound healing in Eastern folk medicine. The goal of this study was to evaluate the effectiveness of rose placenta from R. damascena in a full-thickness wound model in mice.MethodsSixty six-week-old C57BL/6N mice were used. Full-thickness wounds were made with an 8-mm diameter punch. Two wounds were made on each side of the back, and wounds were assigned randomly to the control and experimental groups. Rose placenta (250 µg was injected in the experimental group, and normal saline was injected in the control group. Wound sizes were measured with digital photography, and specimens were harvested. Immunohistochemical staining was performed to assess the expression of epidermal growth factor (EGF, vascular endothelial growth factor (VEGF, transforming growth factor-β1 (TGF-β1, and CD31. Vessel density was measured. Quantitative analysis using an enzyme-linked immunosorbent assay (ELISA for EGF was performed. All evaluations were performed on postoperative days 0, 2, 4, 7, and 10. Statistical analyses were performed using the paired t-test.Results On days 4, 7, and 10, the wounds treated with rose placenta were significantly smaller. On day 2, VEGF and EGF expression increased in the experimental group. On days 7 and 10, TGF-β1 expression decreased in the experimental group. On day 10, vessel density increased in the experimental group. The increase in EGF on day 2 was confirmed with ELISA.ConclusionsRose placenta was found to be associated with improved wound healing in a mouse full-thickness wound model via increased EGF release. Rose placenta may potentially be a novel drug candidate for enhancing wound healing.

  10. Enhanced experimental tumor metastasis with age in senescence-accelerated mouse

    International Nuclear Information System (INIS)

    Shimizu, Kosuke; Kinouchi Shimizu, Naomi; Asai, Tomohiro; Oku, Naoto; Tsukada, Hideo

    2008-01-01

    Tumor metastasis is affected by the host immune surveillance system. Since aging may attenuate the host immune potential, the experimental tumor metastasis may be enhanced with age. In the present study, we investigated this alteration of experimental tumor metastasis with age. We used senescence-accelerated mice prone 10 (SAMP10) as a model of aged animals. Natural killer cell (NK) activity, as an indicator of immune surveillance potential, in 8-month-old (aged) SAMP10 mice was observed to be much lower than that in 2-month-old (young) mice. When we examined the in vivo trafficking of lung-metastatic K1735M2 melanoma cells in SAMP10 with positron emission tomography (PET), K1735M2 cells labeled with [2- 18 F]2-deoxy-2-fluoro-D-glucose ([ 18 F]FDG) were observed in both young and aged SAMP10 just after injection of the cells, whereas the clearance of 18 F from the lungs was retarded in aged animals. The accumulation of 5-[ 125 I]iodo-2'-deoxyuridine ([ 125 I]IUdR)-labeled K1735M2 cells in the lungs of SAMP10 at 24 h after injection was significantly higher in aged mice. Corresponding to these results, the number of metastatic colonies in the lung was larger in the aged SAMP10 of the experimental tumor metastasis model. The present study demonstrated that the aging process produced a susceptible environment allowing the tumor cells to metastasize due to decrease in the host immune surveillance potential with age. (author)

  11. A conscious mouse model of gastric ileus using clinically relevant endpoints

    Directory of Open Access Journals (Sweden)

    Shao Yuanlin

    2005-06-01

    Full Text Available Abstract Background Gastric ileus is an unsolved clinical problem and current treatment is limited to supportive measures. Models of ileus using anesthetized animals, muscle strips or isolated smooth muscle cells do not adequately reproduce the clinical situation. Thus, previous studies using these techniques have not led to a clear understanding of the pathophysiology of ileus. The feasibility of using food intake and fecal output as simple, clinically relevant endpoints for monitoring ileus in a conscious mouse model was evaluated by assessing the severity and time course of various insults known to cause ileus. Methods Delayed food intake and fecal output associated with ileus was monitored after intraperitoneal injection of endotoxin, laparotomy with bowel manipulation, thermal injury or cerulein induced acute pancreatitis. The correlation of decreased food intake after endotoxin injection with gastric ileus was validated by measuring gastric emptying. The effect of endotoxin on general activity level and feeding behavior was also determined. Small bowel transit was measured using a phenol red marker. Results Each insult resulted in a transient and comparable decrease in food intake and fecal output consistent with the clinical picture of ileus. The endpoints were highly sensitive to small changes in low doses of endotoxin, the extent of bowel manipulation, and cerulein dose. The delay in food intake directly correlated with delayed gastric emptying. Changes in general activity and feeding behavior were insufficient to explain decreased food intake. Intestinal transit remained unchanged at the times measured. Conclusion Food intake and fecal output are sensitive markers of gastric dysfunction in four experimental models of ileus. In the mouse, delayed gastric emptying appears to be the major cause of the anorexic effect associated with ileus. Gastric dysfunction is more important than small bowel dysfunction in this model. Recovery of

  12. Mouse model for acute Epstein-Barr virus infection.

    Science.gov (United States)

    Wirtz, Tristan; Weber, Timm; Kracker, Sven; Sommermann, Thomas; Rajewsky, Klaus; Yasuda, Tomoharu

    2016-11-29

    Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.

  13. Novel autoimmune response in a tauopathy mouse model

    Directory of Open Access Journals (Sweden)

    Carlos J Nogueras-Ortiz

    2014-01-01

    Full Text Available Molecular diagnostic tools with non-invasive properties that allow detection of pathological events in Alzheimer’s disease (AD and other neurodegenerative tauopathies are essential for the development of therapeutics. Several diagnostic strategies based on the identification of biomarkers have been proposed. However, its specificity among neurodegenerative disorders is disputable as the association with pathological events remains elusive. Recently, we showed that Amphiphysin-1 (AMPH1 protein’s abundance is reduced in the central nervous system (CNS of the tauopathy mouse model JNPL3 and AD brains. AMPH1 is a synaptic protein that plays an important role in clathrin-mediated endocytosis and associates with BIN1, one of the most important risk loci for AD. Also, it has been associated with a rare neurological disease known as Stiff-Person Syndrome (SPS. Auto-antibodies against AMPH1 are used as diagnostic biomarkers for a paraneoplastic variant of SPS. Therefore, we set up to evaluate the presence and abundance of auto-AMPH1 antibodies in tau-mediated neurodegeneration. Immunoblots and enzyme-linked immunosorbent assays (ELISA were conducted to detect the presence of auto-AMPH1 antibodies in sera from euthanized mice that developed neurodegeneration (JNPL3 and healthy control mice (NTg. Results showed increased levels of auto-AMPH1 antibodies in JNPL3 sera compared to NTg controls. The abundance of auto-AMPH1 antibodies correlated with motor impairment and AMPH1 protein level decrease in the CNS. The results suggest that auto-AMPH1 antibodies could serve as a biomarker for the progression of tau-mediated neurodegeneration in JNPL3 mice.

  14. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  15. A novel transgenic mouse model of lysosomal storage disorder.

    Science.gov (United States)

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A; Greiner, Dale L; Bortell, Rita; Gregg, Ronald G; Cheng, Alan; Hennings, Leah J; Rittenhouse, Ann R

    2016-11-01

    Knockout technology has proven useful for delineating functional roles of specific genes. Here we describe and provide an explanation for striking pathology that occurs in a subset of genetically engineered mice expressing a rat Ca V β2a transgene under control of the cardiac α-myosin heavy chain promoter. Lesions were limited to mice homozygous for transgene and independent of native Cacnb2 genomic copy number. Gross findings included an atrophied pancreas; decreased adipose tissue; thickened, orange intestines; and enlarged liver, spleen, and abdominal lymph nodes. Immune cell infiltration and cell engulfment by macrophages were associated with loss of pancreatic acinar cells. Foamy macrophages diffusely infiltrated the small intestine's lamina propria, while similar macrophage aggregates packed liver and splenic red pulp sinusoids. Periodic acid-Schiff-positive, diastase-resistant, iron-negative, Oil Red O-positive, and autofluorescent cytoplasm was indicative of a lipid storage disorder. Electron microscopic analysis revealed liver sinusoids distended by clusters of macrophages containing intracellular myelin "swirls" and hepatocytes with enlarged lysosomes. Additionally, build up of cholesterol, cholesterol esters, and triglycerides, along with changes in liver metabolic enzyme levels, were consistent with a lipid processing defect. Because of this complex pathology, we examined the transgene insertion site. Multiple transgene copies inserted into chromosome 19; at this same site, an approximate 180,000 base pair deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95 Loss of gene function can account for the altered lipid processing, along with hypertrophy of the immune system, which define this phenotype, and serendipitously provides a novel mouse model of lysosomal storage disorder. Copyright © 2016 the American Physiological Society.

  16. Regulatory Forum commentary: alternative mouse models for future cancer risk assessment.

    Science.gov (United States)

    Morton, Daniel; Sistare, Frank D; Nambiar, Prashant R; Turner, Oliver C; Radi, Zaher; Bower, Nancy

    2014-07-01

    International regulatory and pharmaceutical industry scientists are discussing revision of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S1 guidance on rodent carcinogenicity assessment of small molecule pharmaceuticals. A weight-of-evidence approach is proposed to determine the need for rodent carcinogenicity studies. For compounds with high human cancer risk, the product may be labeled appropriately without conducting rodent carcinogenicity studies. For compounds with minimal cancer risk, only a 6-month transgenic mouse study (rasH2 mouse or p53+/- mouse) or a 2-year mouse study would be needed. If rodent carcinogenicity testing may add significant value to cancer risk assessment, a 2-year rat study and either a 6-month transgenic mouse or a 2-year mouse study is appropriate. In many cases, therefore, one rodent carcinogenicity study could be sufficient. The rasH2 model predicts neoplastic findings relevant to human cancer risk assessment as well as 2-year rodent models, produces fewer irrelevant neoplastic outcomes, and often will be preferable to a 2-year rodent study. Before revising ICH S1 guidance, a prospective evaluation will be conducted to test the proposed weight-of-evidence approach. This evaluation offers an opportunity for a secondary analysis comparing the value of alternative mouse models and 2-year rodent studies in the proposed ICH S1 weight-of-evidence approach for human cancer risk assessment. © 2014 by The Author(s).

  17. Macrophages and Uveitis in Experimental Animal Models

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    2015-01-01

    Full Text Available Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution.

  18. Electrochemical desalination of bricks - Experimental and modeling

    DEFF Research Database (Denmark)

    Skibsted, Gry; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Chlorides, nitrates and sulfates play an important role in the salt-decay of porous materials in buildings and monuments. Electrochemical desalination is a technology able to remove salts from such porous materials in order to stop or prevent the decay. In this paper, experimental and numerical......-contaminated bricks with respect to the monovalent ions is discussed. Comparison between the experimental and the simulation results showed that the proposed numerical model is able to predict electrochemical desalination treatments with remarkable accuracy, and it can be used as a predictive tool...

  19. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  20. Irradiation Design for an Experimental Murine Model

    International Nuclear Information System (INIS)

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-01-01

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  1. Comparative Analysis and Modeling of the Severity of Steatohepatitis in DDC-Treated Mouse Strains

    Science.gov (United States)

    Pandey, Vikash; Sultan, Marc; Kashofer, Karl; Ralser, Meryem; Amstislavskiy, Vyacheslav; Starmann, Julia; Osprian, Ingrid; Grimm, Christina; Hache, Hendrik; Yaspo, Marie-Laure; Sültmann, Holger; Trauner, Michael; Denk, Helmut; Zatloukal, Kurt; Lehrach, Hans; Wierling, Christoph

    2014-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH) showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. Methodology and Results In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA) and S-adenosylmethionine (SAMe) metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis. Conclusions We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE), 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin D2 (PGD2) are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A/J and C57BL/6J

  2. Comparative analysis and modeling of the severity of steatohepatitis in DDC-treated mouse strains.

    Science.gov (United States)

    Pandey, Vikash; Sultan, Marc; Kashofer, Karl; Ralser, Meryem; Amstislavskiy, Vyacheslav; Starmann, Julia; Osprian, Ingrid; Grimm, Christina; Hache, Hendrik; Yaspo, Marie-Laure; Sültmann, Holger; Trauner, Michael; Denk, Helmut; Zatloukal, Kurt; Lehrach, Hans; Wierling, Christoph

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH) showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA) and S-adenosylmethionine (SAMe) metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis. We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE), 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin D2 (PGD2) are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A/J and C57BL/6J on the one hand and PWD/PhJ on the other.

  3. Comparative analysis and modeling of the severity of steatohepatitis in DDC-treated mouse strains.

    Directory of Open Access Journals (Sweden)

    Vikash Pandey

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. METHODOLOGY AND RESULTS: In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA and S-adenosylmethionine (SAMe metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis. CONCLUSIONS: We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE, 15-hydroxyeicosatetraenoic acid (15-HETE and prostaglandin D2 (PGD2 are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A

  4. Huntington disease: Experimental models and therapeutic perspectives

    International Nuclear Information System (INIS)

    Serrano Sanchez, Teresa; Blanco Lezcano, Lisette; Garcia Minet, Rocio; Alberti Amador, Esteban; Diaz Armesto, Ivan and others

    2011-01-01

    Huntington's disease (HD) is a degenerative dysfunction of hereditary origin. Up to date there is not, an effective treatment to the disease which having lapsed 15 or 20 years advances inexorably, in a slow form, toward the total inability or death. This paper reviews the clinical and morphological characteristics of Huntington's disease as well as the experimental models more commonly used to study this disease, having as source the articles indexed in Medline data base, published in the last 20 years. Advantages and disadvantages of all experimental models to reproduce the disease as well as the perspectives to therapeutic assay have been also considered. the consent of outline reported about the toxic models, those induced by neurotoxins such as quinolinic acid, appears to be the most appropriate to reproduce the neuropathologic characteristic of the disease, an genetic models contributing with more evidence to the knowledge of the disease etiology. Numerous treatments ameliorate clinical manifestations, but none of them has been able to stop or diminish the affectations derived from neuronal loss. At present time it is possible to reproduce, at least partially, the characteristics of the disease in experimentation animals that allow therapy evaluation in HD. from the treatment view point, the more promissory seems to be transplantation of no neuronal cells, taking into account ethical issues and factibility. On the other hand the new technology of interference RNA emerges as a potential therapeutic tool for treatment in HD, and to respond basic questions on the development of the disease.

  5. Tooth loss might not alter molecular pathogenesis in an aged transgenic Alzheimer's disease model mouse.

    Science.gov (United States)

    Oue, Hiroshi; Miyamoto, Yasunari; Koretake, Katsunori; Okada, Shinsuke; Doi, Kazuya; Jung, Cha-Gyun; Michikawa, Makoto; Akagawa, Yasumasa

    2016-09-01

    Previous studies have reported that tooth loss is a risk factor of Alzheimer's disease (AD). However, the association between tooth loss and cognition and the impact of tooth loss on the molecular pathogenesis of AD remain elusive. In this study, we tested the effect of tooth loss on learning and memory and on the molecular pathogenesis of AD in an aged AD model mice. We divided 14-month-old amyloid precursor protein (APP) transgenic mice, an AD model mouse line, into upper molar extracted group (experimental) and molar intact group (control). At 18 months old, we analysed not only the changes of amyloid-beta (Aβ), pyramidal cells in the brain but also the learning and memory ability with step-through passive avoidance test. The amount of Aβ and the number of pyramidal cells in the hippocampus were not significantly different between the experimental and control group. Similarly, the difference of learning and memory ability could not be distinguished between the groups. Neither molecular pathogenesis of AD nor associated learning and memory were aggravated by tooth loss in these mice. The limited results of this study which used the aged mice may help the dental profession to plan and explain treatments to patients with AD, which must be designed while taking into account the severity of the AD symptoms. © 2014 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  6. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    Science.gov (United States)

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  7. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Yuki Kita

    Full Text Available BACKGROUND: Optimal treatment for nonalcoholic steatohepatitis (NASH has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model. METHODOLOGY/PRINCIPAL FINDINGS: Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH. CONCLUSIONS/SIGNIFICANCE: These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance.

  8. Potentiation of X-ray response by quinacrine in experimental mouse mammary carcinomas

    International Nuclear Information System (INIS)

    Neubort, S.; Goldfeder, A.

    1984-01-01

    Two mouse mammary carcinomas were subjected to various doses of 250 KV X-rays alone or in combination with quinacrine-HCl (Atabrine). The tumors, maintained by subcutaneous implant in isogenic mouse hosts, were: MT2 (X/Gf mouse strain) and DBAH (DBA/2J strain). X-rays were given locally in single doses to the tumor while the body was shielded. Quinacrine was given ad lib in drinking water (0.03%) for 5 days beginning 48 hr before X-rays. Quinacrine alone had no effect on tumor growth, and was well-tolerated by the mice, which recovered rapidly after slight, transient weight loss. In the MT2 tumor, quinacrine had only a small potentiating effect, reducing the TCD-50 from 57.5 Gy (54.9, 60.2 95% confidence) to 49.0 (47.5, 52.5) Gy for the combination treatment. Conversely, in the DBAH tumor a substantial potential was obtained (E.R. = 2.0), the TCD-50 being reduced from 50.1 (46.8, 53.7) Gy to 25.1 (22.9, 27.5) Gy. The mechanism of this potential is under investigation. Since the more responsive DBAH tumor is known to be less hypoxic than the MT2 tumor, sensitization of hypoxic cells does not appear to play a role in quinacrine-induced potentiation

  9. Adjustment model of thermoluminescence experimental data

    International Nuclear Information System (INIS)

    Moreno y Moreno, A.; Moreno B, A.

    2002-01-01

    This model adjusts the experimental results for thermoluminescence according to the equation: I (T) = I (a i * exp (-1/b i * (T-C i )) where: a i , b i , c i are the i-Th peak adjusted to a gaussian curve. The adjustments of the curve can be operated manual or analytically using the macro function and the solver.xla complement installed previously in the computational system. In this work it is shown: 1. The information of experimental data from a LiF curve obtained from the Physics Institute of UNAM which the data adjustment model is operated in the macro type. 2. A LiF curve of four peaks obtained from Harshaw information simulated in Microsoft Excel, discussed in previous works, as a reference not in macro. (Author)

  10. Lyssavirus infection: 'low dose, multiple exposure' in the mouse model.

    Science.gov (United States)

    Banyard, Ashley C; Healy, Derek M; Brookes, Sharon M; Voller, Katja; Hicks, Daniel J; Núñez, Alejandro; Fooks, Anthony R

    2014-03-06

    The European bat lyssaviruses (EBLV-1 and EBLV-2) are zoonotic pathogens present within bat populations across Europe. The maintenance and transmission of lyssaviruses within bat colonies is poorly understood. Cases of repeated isolation of lyssaviruses from bat roosts have raised questions regarding the maintenance and intraspecies transmissibility of these viruses within colonies. Furthermore, the significance of seropositive bats in colonies remains unclear. Due to the protected nature of European bat species, and hence restrictions to working with the natural host for lyssaviruses, this study analysed the outcome following repeat inoculation of low doses of lyssaviruses in a murine model. A standardized dose of virus, EBLV-1, EBLV-2 or a 'street strain' of rabies (RABV), was administered via a peripheral route to attempt to mimic what is hypothesized as natural infection. Each mouse (n=10/virus/group/dilution) received four inoculations, two doses in each footpad over a period of four months, alternating footpad with each inoculation. Mice were tail bled between inoculations to evaluate antibody responses to infection. Mice succumbed to infection after each inoculation with 26.6% of mice developing clinical disease following the initial exposure across all dilutions (RABV, 32.5% (n=13/40); EBLV-1, 35% (n=13/40); EBLV-2, 12.5% (n=5/40)). Interestingly, the lowest dose caused clinical disease in some mice upon first exposure ((RABV, 20% (n=2/10) after first inoculation; RABV, 12.5% (n=1/8) after second inoculation; EBLV-2, 10% (n=1/10) after primary inoculation). Furthermore, five mice developed clinical disease following the second exposure to live virus (RABV, n=1; EBLV-1, n=1; EBLV-2, n=3) although histopathological examination indicated that the primary inoculation was the most probably cause of death due to levels of inflammation and virus antigen distribution observed. All the remaining mice (RABV, n=26; EBLV-1, n=26; EBLV-2, n=29) survived the tertiary and

  11. Experimental tests of proton spin models

    International Nuclear Information System (INIS)

    Ramsey, G.P.; Argonne National Lab., IL

    1989-01-01

    We have developed models for the spin-weighted quark and gluon distribution in a longitudinally polarized proton. The model parameters are determined from current algebra sum rules and polarized deep-inelastic scattering data. A number of different scenarios are presented for the fraction of spin carried the constituent parton distributions. A possible long-range experimental program is suggested for measuring various hard scattering processes using polarized lepton and proton beams. With the knowledge gained from these experiments, we can begin to understand the parton contributions to the proton spin. 28 refs., 5 figs

  12. Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model.

    Science.gov (United States)

    Wang, Sibo; Yang, Tao; Zhang, Xuyong; Xia, Jie; Guo, Jun; Wang, Xiaoyi; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-06-01

    Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.

  13. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    International Nuclear Information System (INIS)

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-01-01

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C → A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C → T, two C → A, one C → G, and one A → T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab

  14. Establishment of Orthotopic Xuanwei Lung Cancer SCID Mouse Model 
and Analysis of Biological Properties

    Directory of Open Access Journals (Sweden)

    Yongchun ZHOU

    2012-08-01

    Full Text Available Background and objective The incidence of Xuanwei lung cancer ranks first in China, and its pathogenesis requires in-depth investigation. This study aims to establish an orthotopic Xuanwei lung cancer severe combined immunodeficiency (SCID mouse model and to provide a basic experimental platform for further study. Methods The Xuanwei lung cancer cell line XWLC-05 was inoculated into the lung tissue of SCID mice in high and low doses. The tumor formation rates, tumor characteristics, spontaneous metastases, and survival times of the mice were observed, taking a subcutaneously transplanted tumor as control. Results The tumor formation rates of the orthotopic transplantation of lung cancer cells in high and low doses were 81% and 83%, respectively, among which mice in the high-dose group appeared cachectic on day 13. Extensive invasion and adhesion were observed in the contralateral lung and thoracic cavity, but no distant metastasis was exhibited. Mice with low-dose cells in the orthotopic transplantation group appeared cachectic and distant metastasis occurred on day 25. The tumor formation rates in the subcutaneous inoculation group by the high and low doses of cells were 100% and 94.5%, respectively, and no distant metastasis was observed. The rate of metastasis within the orthotopic transplantation group and between the orthotopic and subcutaneous inoculation groups showed a significant difference (P<0.05. A significant difference was indicated by the survival rate within and between the groups (P<0.001. Conclusion We successfully established an orthotopic XWLC SCID mouse model, which lays the foundation for a more in-depth study.

  15. Experimental In Vivo Models of Candidiasis

    Directory of Open Access Journals (Sweden)

    Esther Segal

    2018-02-01

    Full Text Available Candidiasis is a multifaceted fungal disease including mucosal-cutaneous, visceral, and disseminated infections caused by yeast species of the genus Candida. Candida infections are among the most common human mycoses. Candida species are the third to fourth most common isolates from bloodstream infections in neutropenic or immunocompromised hospitalized patients. The mucosal-cutaneous forms—particularly vaginal infections—have a high prevalence. Vaginitis caused by Candida species is the second most common vaginal infection. Hence, candidiasis is a major subject for research, including experimental in vivo models to study pathogenesis, prevention, or therapy of the disease. The following review article will focus on various experimental in vivo models in different laboratory animals, such as mammals (mice, rats, rabbits, the fruit fly–Drosophila melanogaster, the larvae of the moth Galleria mellonella, or the free-living nematode Caenorhabditis elegans. The review will describe the induction of the different clinical forms of candidiasis in the various models and the validity of such models in mimicking the human clinical situations. The use of such models for the assessment of antifungal drugs, evaluation of potential vaccines to protect before candidiasis, exploration of Candida virulence factors, and comparison of pathogenicity of different Candida species will be included in the review. All of the above will be reported as based on published studies of numerous investigators as well as on the research of the author and his group.

  16. Experimental modeling of eddy current inspection capabilities

    International Nuclear Information System (INIS)

    Junker, W.R.; Clark, W.G.

    1984-01-01

    This chapter examines the experimental modeling of eddy current inspection capabilities based upon the use of liquid mercury samples designed to represent metal components containing discontinuities. A brief summary of past work with mercury modeling and a detailed discussion of recent experiments designed to further evaluate the technique are presented. The main disadvantages of the mercury modeling concept are that mercury is toxic and must be handled carefully, liquid mercury can only be used to represent nonferromagnetic materials, and wetting and meniscus problems can distort the effective size of artificial discontinuities. Artificial discontinuities placed in a liquid mercury sample can be used to represent discontinuities in solid metallic structures. Discontinuity size and type cannot be characterized from phase angle and signal amplitude data developed with a surface scanning, pancake-type eddy current probe. It is concluded that the mercury model approach can greatly enhance the overall understanding and applicability of eddy current inspection techniques

  17. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    Science.gov (United States)

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  18. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    Energy Technology Data Exchange (ETDEWEB)

    Melo M, B.; Ferreira F, C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T., E-mail: bmm@cdtn.br [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil)

    2015-10-15

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM{sub B}RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM{sub B}RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse

  19. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    International Nuclear Information System (INIS)

    Melo M, B.; Ferreira F, C.; Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T.

    2015-10-01

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM B RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM B RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse phantoms

  20. Endometriose: modelo experimental em ratas Endometriosis: experimental model in rats

    Directory of Open Access Journals (Sweden)

    Eduardo Schor

    1999-06-01

    Full Text Available Objetivo: divulgar a metodologia da indução de endometriose experimental em animais de laboratório. Método: utilizamos ratas albinas, virgens, adultas de aproximadamente três meses de idade, que foram inicialmente anestesiadas pelo éter etílico. Aberta a cavidade abdominal, identificamos os cornos uterinos e retiramos um fragmento de aproximadamente 4 cm do corno uterino direito. Esse fragmento foi mergulhado em solução fisiológica e sob lupa estereoscópica foi separado o endométrio do miométrio e feitos retângulos de aproximadamente 4 por 5 mm. Esses foram fixados por meio de fio de sutura, sobre vasos sangüíneos visíveis a olho nu, na parede lateral do abdômen, tomando-se sempre o cuidado de manter a porção do endométrio livre voltada para a luz da cavidade abdominal. Após 21 dias os animais foram novamente operados para verificarmos o tamanho dos implantes e para retirada do endométrio ectópico para análise histológica. Resultados: macroscopicamente observamos crescimento significativo dos implantes endometriais. Ao exame microscópico pudemos observar a presença de epitélio glandular e estroma semelhantes ao do endométrio tópico. Conclusões: o modelo utilizado reproduz a doença, em ratas, sendo método auxiliar de valia para estudar esta afecção, principalmente a ação de medicamentos sobre esses implantes.Purpose: to demonstrate the experimental endometriosis induction in animals. Method: we used adult female Wistar rats weighing 200 - 250 g anesthetized with ethyl ether to open the abdominal cavity. After identifying the uterine horns, we removed an approximately 4 cm fragment from the right uterine horn. This fragment was placed in physiological saline and, with the aid of a stereoscopic magnifying glass, the endometrium was separated from the myometrium and cut into rectangles of approximately 4 x 5 mm. These rectangles were fastened to the lateral abdominal wall near great blood vessels, taking care

  1. Defining the role of polyamines in colon carcinogenesis using mouse models

    Directory of Open Access Journals (Sweden)

    Natalia A Ignatenko

    2011-01-01

    Full Text Available Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention.

  2. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  3. Models for Experimental High Density Housing

    Science.gov (United States)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  4. Experimental data and dose-response models

    International Nuclear Information System (INIS)

    Ullrich, R.L.

    1985-01-01

    Dose-response relationships for radiation carcinogenesis have been of interest to biologists, modelers, and statisticians for many years. Despite his interest there are few instances in which there are sufficient experimental data to allow the fitting of various dose-response models. In those experimental systems for which data are available the dose-response curves for tumor induction for the various systems cannot be described by a single model. Dose-response models which have been observed following acute exposures to gamma rays include threshold, quadratic, and linear models. Data on sex, age, and environmental influences of dose suggest a strong role of host factors on the dose response. With decreasing dose rate the effectiveness of gamma ray irradiation tends to decrease in essentially every instance. In those cases in which the high dose rate dose response could be described by a quadratic model, the effect of dose rate is consistent with predictions based on radiation effects on the induction of initial events. Whether the underlying reasons for the observed dose-rate effect is a result of effects on the induction of initial events or is due to effects on the subsequent steps in the carcinogenic process is unknown. Information on the dose response for tumor induction for high LET (linear energy transfer) radiations such as neutrons is even more limited. The observed dose and dose rate data for tumor induction following neutron exposure are complex and do not appear to be consistent with predictions based on models for the induction of initial events

  5. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models.

    Science.gov (United States)

    Samala, Ramakrishna; Willis, Sarah; Borges, Karin

    2008-10-01

    Anticonvulsant effects of the ketogenic diet (KD) have been reported in the mouse, although previous studies did not control for intake of vitamins, minerals and antioxidants. The aim of this study was to examine the effects of balanced ketogenic and control diets in acute mouse seizure models. The behavior in four mouse seizure models, plasma d-beta-hydroxybutyrate (d-BHB) and glucose levels were determined after feeding control diet, 4:1 and 6:1 KDs with matched vitamins, minerals and antioxidants. Feeding 4:1 and 6:1 KDs ad lib to 3-week-old (adolescent) mice resulted in 1.2-2.2mM d-BHB in plasma, but did not consistently change glucose levels. The 6:1 KD reproducibly elevated the CC50 (current that initiates seizures in 50% mice tested) in the 6-Hz model after 14 days of feeding to adolescent CD1 mice. Higher plasma d-BHB levels correlated with anticonvulsant effects. Despite ketosis, no consistent anticonvulsant effects of KDs were found in the fluorothyl or pentylenetetrazole CD1 mouse models. The 4:1 KD was neither anticonvulsant nor neuroprotective in hippocampus in the C3H mouse kainate model. Taken together, the KD's anticonvulsant effect was limited to the 6-Hz model, required chronic feeding with 6:1 fat content, and was independent from lowering plasma glucose.

  6. Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia

    Directory of Open Access Journals (Sweden)

    Claudio Nardiello

    2017-02-01

    Full Text Available Progress in developing new therapies for bronchopulmonary dysplasia (BPD is sometimes complicated by the lack of a standardised animal model. Our objective was to develop a robust hyperoxia-based mouse model of BPD that recapitulated the pathological perturbations to lung structure noted in infants with BPD. Newborn mouse pups were exposed to a varying fraction of oxygen in the inspired air (FiO2 and a varying window of hyperoxia exposure, after which lung structure was assessed by design-based stereology with systemic uniform random sampling. The efficacy of a candidate therapeutic intervention using parenteral nutrition was evaluated to demonstrate the utility of the standardised BPD model for drug discovery. An FiO2 of 0.85 for the first 14 days of life decreased total alveoli number and concomitantly increased alveolar septal wall thickness, which are two key histopathological characteristics of BPD. A reduction in FiO2 to 0.60 or 0.40 also caused a decrease in the total alveoli number, but the septal wall thickness was not impacted. Neither a decreasing oxygen gradient (from FiO2 0.85 to 0.21 over the first 14 days of life nor an oscillation in FiO2 (between 0.85 and 0.40 on a 24 h:24 h cycle had an appreciable impact on lung development. The risk of missing beneficial effects of therapeutic interventions at FiO2 0.85, using parenteral nutrition as an intervention in the model, was also noted, highlighting the utility of lower FiO2 in selected studies, and underscoring the need to tailor the model employed to the experimental intervention. Thus, a state-of-the-art BPD animal model that recapitulates the two histopathological hallmark perturbations to lung architecture associated with BPD is described. The model presented here, where injurious stimuli have been systematically evaluated, provides a most promising approach for the development of new strategies to drive postnatal lung maturation in affected infants.

  7. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  8. Novel test of motor and other dysfunctions in mouse neurological disease models.

    Science.gov (United States)

    Barth, Albert M I; Mody, Istvan

    2014-01-15

    Just like human neurological disorders, corresponding mouse models present multiple deficiencies. Estimating disease progression or potential treatment effectiveness in such models necessitates the use of time consuming and multiple tests usually requiring a large number of scarcely available genetically modified animals. Here we present a novel and simple single camera arrangement and analysis software for detailed motor function evaluation in mice walking on a wire mesh that provides complex 3D information (instantaneous position, speed, distance traveled, foot fault depth, duration, location, relationship to speed of movement, etc.). We investigated 3 groups of mice with various neurological deficits: (1) unilateral motor cortical stroke; (2) effects of moderate ethanol doses; and (3) aging (96-99 weeks old). We show that post stroke recovery can be divided into separate stages based on strikingly different characteristics of motor function deficits, some resembling the human motor neglect syndrome. Mice treated with moderate dose of alcohol and aged mice showed specific motor and exploratory deficits. Other tests rely either partially or entirely on manual video analysis introducing a significant subjective component into the analysis, and analyze a single aspect of motor function. Our novel experimental approach provides qualitatively new, complex information about motor impairments and locomotor/exploratory activity. It should be useful for the detailed characterization of a broad range of human neurological disease models in mice, and for the more accurate assessment of disease progression or treatment effectiveness. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  10. Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Zoe eFonseca-Kelly

    2012-05-01

    Full Text Available Resveratrol is a naturally-occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE, a model of multiple sclerosis. In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current studies examine potential neuroprotective and immunomodulatory effects of resveratrol in chronic EAE induced by immunization with myelin oligodendroglial glycoprotein peptide in C57/Bl6 mice. Effects of two distinct formulations of resveratrol administered daily orally were compared. Resveratrol delayed the onset of EAE compared to vehicle-treated EAE mice, but did not prevent or alter the phenotype of inflammation in spinal cords or optic nerves. Significant neuroprotective effects were observed, with higher numbers of retinal ganglion cells found in eyes of resveratrol-treated EAE mice with optic nerve inflammation. Results demonstrate that resveratrol prevents neuronal loss in this chronic demyelinating disease model, similar to its effects in relapsing EAE. Differences in immunosuppression compared with prior studies suggest that immunomodulatory effects may be limited and may depend on specific immunization parameters or timing of treatment. Importantly, neuroprotective effects can occur without immunosuppression, suggesting a potential additive benefit of resveratrol in combination with anti-inflammatory therapies for multiple sclerosis.

  11. The Effect of Silybum marianum on GFAP and Spatial Memory in a Mouse Model of Alzheimer\\'s Disease

    Directory of Open Access Journals (Sweden)

    A Hadinia

    2010-01-01

    Full Text Available Introduction & Objective: Studies have shown that Silybum marianum have high levels of antioxidant polyphenolic substances and have neuro-protective effects on neurodegenerative diseases. Accordingly, this study was conducted to determine the possible effect of Silybum marianum on expression of and spatial memory in a mouse model of Alzheimer's disease. Materials & Methods: This experimental study was conducted at Yasuj University of Medical Sciences in 2009. Thirty adult male Wistar rats were allocated in three groups: sham group, experimental group, and lesion group, each consisting of ten rats. The experimental and lesion groups received Ibotonic acid of the NBM nucleus in stereotaxic apparatus whereas the sham group underwent surgical procedure without any injection. The experimental group received 200mg/kg of Silybum mirianum extract orally, diluted in 1% Arabic gum. Also the sham group received 1% Arabic gum every day for four weeks. The lesion group did not receive anything. The behavioral assessment was measured, after treatment , by using of Y maze test on day 7 and 28 in all groups. The ELISA method was used to measure the GFAP level in Hippocamp at the end of behavioral assessment. The collected data was analyzed by the SPSS software using ANOVA and Repeated Measures of Analysis Variance tests. Results:Improvement of behavioral performance of the experimental animals compared to the lesion and sham groups were increased significantly on day 7 and 28 (P <0.01 & P <0.001 respectively. The ELISA method showed that the level of the GFAP synthesis decreased in the experimental group compared to the lesion and sham groups (P <0.001. Conclusion: The Silybum marianum plant has a protective effect on the nerve tissue in a mouse model of Alzheimer's disease by decreasing of the GFAP synthesis and lead to the improvement of behavioral performance. :

  12. Craniomandibular form and body size variation of first generation mouse hybrids: A model for hominin hybridization.

    Science.gov (United States)

    Warren, Kerryn A; Ritzman, Terrence B; Humphreys, Robyn A; Percival, Christopher J; Hallgrímsson, Benedikt; Ackermann, Rebecca Rogers

    2018-03-01

    Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F 1 ) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F 1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F 1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  14. Ultrastructural study of Rift Valley fever virus in the mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E. [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States); Smith, Darci R., E-mail: darci.smith1@us.army.mil [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States)

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  15. Ultrastructural study of Rift Valley fever virus in the mouse model

    International Nuclear Information System (INIS)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-01-01

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV–host interactions and further characterize the mouse model of RVF.

  16. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    International Nuclear Information System (INIS)

    Dullin, Christian; Larsson, Emanuel; Tromba, Giuliana; Markus, Andrea M.; Alves, Frauke

    2015-01-01

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma

  17. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Larsson, Emanuel [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); University of Trieste, Trieste (Italy); Linkoeping University, SE-581 83 Linkoeping (Sweden); Tromba, Giuliana [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); Markus, Andrea M. [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Alves, Frauke [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Max Planck Institut for Experimental Medicine, Hermann-Rein-Strasse 3, Goettingen, Lower Saxony 37075 (Germany)

    2015-06-17

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma.

  18. Superficial tension: experimental model with simple materials

    Directory of Open Access Journals (Sweden)

    Tintori Ferreira, María Alejandra

    2012-09-01

    Full Text Available In this work appears a didactic offer based on an experimental activity using materials of very low cost, orientated to achieving that the student understand and interpret the phenomenon of superficial tension together with the importance of the modeling in sciences. It has as principal aim of education bring the student over to the mechanics of the static fluids and the intermolecular forces, combining scientific contents with questions near to the student what provides an additional motivation to the reflection of the scientific investigation.

  19. Radiation-Guided Peptide Delivery in a Mouse Model of Nasopharyngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    Pei-cheng Lin

    2016-01-01

    Full Text Available Purpose. This study aimed to evaluate the characteristics of the HVGGSSV peptide, exploring radiation-guided delivery in a mouse model of nasopharyngeal carcinoma. Methods. Mice with CNE-1 nasopharyngeal carcinoma were assigned to two different groups treated with Cy7-NHS and Cy7-HVGGSSV, respectively. Meanwhile, each mouse received a single dose of 3 Gy radiation. Biological distribution of the recombinant peptide was assessed on an in vivo small animal imaging system. Results. The experimental group showed maximum fluorescence intensity in irradiated tumors treated with Cy7-labeled HVGGSSV, while untreated (0 Gy control tumors showed lower intensity levels. Fluorescence intensities of tumors in the right hind limbs of experimental animals were 7.84×107±1.13×107, 1.35×108±2.66×107, 4.05×108±1.75×107, 5.57×108±3.47×107, and 9.26×107±1.73×107 photons/s/cm2 higher compared with left hind limb values at 1, 2, 15, 24, and 48 h, respectively. Fluorescence intensities of tumor in the right hind limbs of the experimental group were 1.66×108±1.71×107, 1.51×108±3.23×107, 5.38×108±1.96×107, 5.89×108±3.57×107, and 1.62×108±1.69×107 photons/s/cm2 higher compared with control group values at 1, 2, 15, 24, and 48 h, respectively. Fluorescence was not specifically distributed in the control group. Compared with low fluorescence intensity in the heart, lungs, and tumors, high fluorescence distribution was found in the liver and kidney at 48 h. Conclusions. HVGGSSV was selectively bound to irradiated nasopharyngeal carcinoma, acting as a targeting transport carrier for radiation-guided drugs that are mainly metabolized in the kidney and liver.

  20. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  1. Combination use of lentinan with x-ray therapy in mouse experimental tumor system, (3)

    International Nuclear Information System (INIS)

    Shiio, Tsuyoshi; Ohishi, Kazuo; Niitsu, Iwayasu; Hayashibara, Hiromi; Tsuchiya, Yoshiharu; Yoshihama, Takashi; Moriyuki, Hirobumi

    1988-01-01

    Combination effect of lentinan with X-ray irradiation on the metastatic mouse tumors, L1210, KLN205 and Lewis lung carcinoma were studied. Combination use of lentinan with X-ray therapy prolonged the life of BDF 1 mice bearing L1210 leukemia in the suitable combination conditions. Combination effects of lentinan with X-ray therapy were also observed on the suppression of the growth of KLN205 squamus cell carcinoma and on the suppression of the metastasis of Lewis lung carcinoma. Especially, in the case that lentinan was administered before or after X-ray local irradiation in the pulmorary metastasis system of Lewis lung carcinoma, a marked suppressin of pulmonary metastasis was observed and 2 to 4 mice among 8 tested mice were tumor free. (author)

  2. The leukaemogenic effect of whole-body irradiation of the mouse: Experimental work at the Radiobiological Research Unit, Harwell

    International Nuclear Information System (INIS)

    Mole, R.H.

    1960-01-01

    Mouse 'leukaemia' is a generic term which might well be replaced by the clumsier, but more accurate, 'malignant disease of reticular tissue'. There are a variety of cytologically definable types (reticulosarcoma, 'histiocytoma' or monocytic leukaemia, lymphosarcoma and lymphoid leukaemia, myeloid leukosis) and a variety of morbid anatomical patterns, but there is only an approximate correlation between morbid anatomy and cytological type. True leukaemia where the white blood cell count is raised and morphologically abnormal white cells are found in the blood) occurs but is relatively uncommon; leukaemoid blood pictures are also found. Normally the murine thymus persists for much of the reproductive life-span, atrophying only in middle age, instead of in early childhood as in man. This may be the reason why the anatomical region of the thymus is more often involved in leukaemia in younger than in older animals, and why 'thymic leukaemia' is a characteristically murine disease and does not seem to occur in man. A great deal of the experimental work on mouse leukaemia reported in the literature is concerned with 'thymic leukaemia,' and this is often considered to be synonymous with thymic lymphoma or lymphosarcoma. However, the anatomy of tumour masses in the superior mediastinum. not infrequently suggests that they are not truly thymic in origin and their cell type is often not lymphoid

  3. The leukaemogenic effect of whole-body irradiation of the mouse: Experimental work at the Radiobiological Research Unit, Harwell

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R H

    1960-12-01

    Mouse 'leukaemia' is a generic term which might well be replaced by the clumsier, but more accurate, 'malignant disease of reticular tissue'. There are a variety of cytologically definable types (reticulosarcoma, 'histiocytoma' or monocytic leukaemia, lymphosarcoma and lymphoid leukaemia, myeloid leukosis) and a variety of morbid anatomical patterns, but there is only an approximate correlation between morbid anatomy and cytological type. True leukaemia where the white blood cell count is raised and morphologically abnormal white cells are found in the blood) occurs but is relatively uncommon; leukaemoid blood pictures are also found. Normally the murine thymus persists for much of the reproductive life-span, atrophying only in middle age, instead of in early childhood as in man. This may be the reason why the anatomical region of the thymus is more often involved in leukaemia in younger than in older animals, and why 'thymic leukaemia' is a characteristically murine disease and does not seem to occur in man. A great deal of the experimental work on mouse leukaemia reported in the literature is concerned with 'thymic leukaemia,' and this is often considered to be synonymous with thymic lymphoma or lymphosarcoma. However, the anatomy of tumour masses in the superior mediastinum. not infrequently suggests that they are not truly thymic in origin and their cell type is often not lymphoid.

  4. Analysis of left ventricular function of the mouse heart during experimentally induced hyperthyroidism and recovery.

    Science.gov (United States)

    Hübner, Neele Saskia; Merkle, Annette; Jung, Bernd; von Elverfeldt, Dominik; Harsan, Laura-Adela

    2015-01-01

    Many of the clinical manifestations of hyperthyroidism are due to the ability of thyroid hormones to alter myocardial contractility and cardiovascular hemodynamics, leading to cardiovascular impairment. In contrast, recent studies highlight also the potential beneficial effects of thyroid hormone administration for clinical or preclinical treatment of different diseases such as atherosclerosis, obesity and diabetes or as a new therapeutic approach in demyelinating disorders. In these contexts and in the view of developing thyroid hormone-based therapeutic strategies, it is, however, important to analyze undesirable secondary effects on the heart. Animal models of experimentally induced hyperthyroidism therefore represent important tools for investigating and monitoring changes of cardiac function. In our present study we use high-field cardiac MRI to monitor and follow-up longitudinally the effects of prolonged thyroid hormone (triiodothyronine) administration focusing on murine left ventricular function. Using a 9.4 T small horizontal bore animal scanner, cinematographic MRI was used to analyze changes in ejection fraction, wall thickening, systolic index and fractional shortening. Cardiac MRI investigations were performed after sustained cycles of triiodothyronine administration and treatment arrest in adolescent (8 week old) and adult (24 week old) female C57Bl/6 N mice. Triiodothyronine supplementation of 3 weeks led to an impairment of cardiac performance with a decline in ejection fraction, wall thickening, systolic index and fractional shortening in both age groups but with a higher extent in the group of adolescent mice. However, after a hormonal treatment cessation of 3 weeks, only young mice are able to partly restore cardiac performance in contrast to adult mice lacking this recovery potential and therefore indicating a presence of chronically developed heart pathology. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Experimental model of bladder instability in rabbits

    Directory of Open Access Journals (Sweden)

    Balasteghin K.T.

    2003-01-01

    Full Text Available OBJECTIVE: Propose a new experimental model of bladder instability in rabbits after partial bladder obstruction. MATERIALS AND METHODS: Thirty North Folk male rabbits, weighting 1,700 to 2,820 g (mean: 2,162 g were studied. The animals were distributed in 2 experimental groups, formed by 15 rabbits each: Group 1 - clinical control. In this group there was no surgical intervention; Group 2 - bladder outlet obstruction. In this group, after anesthetizing the animal, urethral cannulation with Foley catheter 10F was performed and then an adjustable plastic bracelet was passed around the bladder neck. It was then adjusted in order to not constrict the urethra. The following parameters were studied in M1 - pre-operative period; M2 - 4 weeks post-operatively moments: 1- urine culture; 2- cystometric study; 3- serum creatinine and BUN. RESULTS: Bladder weight was 2.5 times larger in the group with obstruction than in the control group. Cystometric evaluation showed a significant increase in maximal vesical volume in the final moment at Group G2. However, there was no statistically significant difference among the groups studied. There was no statistically significant difference between maximal detrusor pressure and vesical compliance in the different moments or in the studied groups. There was an absence of uninhibited detrusor contractions in all the animals in group 1, and involuntary contractions were detected in 93% of group 2 animals. There was no significant variation in BUN and serum creatinine either among the groups or in the same group. CONCLUSIONS: We observed in the group with obstruction a bladder weight 2.5 higher than normal bladders. We detected involuntary contractions in 93% of the animals in group 2, establishing this experimental model as appropriate to secondary bladder instability and partial bladder outlet obstruction.

  6. Humanized Mouse Models of Epstein-Barr Virus Infection and Associated Diseases

    Science.gov (United States)

    Fujiwara, Shigeyoshi; Matsuda, Go; Imadome, Ken-Ichi

    2013-01-01

    Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus. PMID:25436886

  7. Allergen-Specific Immunotherapy with Monomeric Allergoid in a Mouse Model of Atopic Dermatitis

    Science.gov (United States)

    Babakhin, Alexander; Andreev, Sergey; Nikonova, Alexandra; Shilovsky, Igor; Buzuk, Andrey; Elisyutina, Olga; Fedenko, Elena; Khaitov, Musa

    2015-01-01

    Atopic dermatitis (AD) is a widespread and difficult to treat allergic skin disease and is a tough challenge for healthcare. In this study, we investigated whether allergen-specific immunotherapy (ASIT) with a monomeric allergoid obtained by succinylation of ovalbumin (sOVA) is effective in a mouse model of atopic dermatitis. An experimental model of AD was reproduced by epicutaneous sensitization with ovalbumin (OVA). ASIT was performed with subcutaneous (SC) administration of increasing doses of OVA or sOVA. The levels of anti-OVA antibodies, as well as cytokines, were detected by ELISA. Skin samples from patch areas were taken for histologic examination. ASIT with either OVA or sOVA resulted in a reduction of both the anti-OVA IgE level and the IgG1/IgG2a ratio. Moreover, ASIT with sOVA increased the IFN-γ level in supernatants after splenocyte stimulation with OVA. Histologic analysis of skin samples from the sites of allergen application showed that ASIT improved the histologic picture by decreasing allergic inflammation in comparison with untreated mice. These data suggest that ASIT with a succinylated allergen represents promising approach for the treatment of AD. PMID:26275152

  8. Therapeutic effects of D-aspartate in a mouse model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Sanaz Afraei

    2017-07-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis. EAE is mainly mediated by adaptive and innate immune responses that leads to an inflammatory demyelization and axonal damage. The aim of the present research was to examine the therapeutic efficacy of D-aspartic acid (D-Asp on a mouse EAE model. EAE induction was performed in female C57BL/6 mice by myelin 40 oligodendrocyte glycoprotein (35-55 in a complete Freund's adjuvant emulsion, and D-Asp was used to test its efficiency in the reduction of EAE. During the course of study, clinical evaluation was assessed, and on Day 21, post-immunization blood samples were taken from the heart of mice for the evaluation of interleukin 6 and other chemical molecules. The mice were sacrificed, and their brain and cerebellum were removed for histological analysis. Our findings indicated that D-Asp had beneficial effects on EAE by attenuation in the severity and delay in the onset of the disease. Histological analysis showed that treatment with D-Asp can reduce inflammation. Moreover, in D-Asp-treated mice, the serum level of interleukin 6 was significantly lower than that in control animals, whereas the total antioxidant capacity was significantly higher. The data indicates that D-Asp possess neuroprotective property to prevent the onset of the multiple sclerosis.

  9. Lessons from Mouse Models of High-Fat Diet-Induced NAFLD

    Directory of Open Access Journals (Sweden)

    Yasuo Terauchi

    2013-10-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD encompasses a clinicopathologic spectrum of diseases ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH, the more aggressive form of fatty liver disease that may progress to cirrhosis and cirrhosis-related complications, including hepatocellular carcinoma. The prevalence of NAFLD, including NASH, is also increasing in parallel with the growing epidemics of obesity and diabetes. However, the causal relationships between obesity and/or diabetes and NASH or liver tumorigenesis have not yet been clearly elucidated. Animal models of NAFLD/NASH provide crucial information, not only for elucidating the pathogenesis of NAFLD/NASH, but also for examining therapeutic effects of various agents. A high-fat diet is widely used to produce hepatic steatosis and NASH in experimental animals. Several studies, including our own, have shown that long-term high-fat diet loading, which can induce obesity and insulin resistance, can also induce NASH and liver tumorigenesis in C57BL/6J mice. In this article, we discuss the pathophysiology of and treatment strategies for NAFLD and subsequent NAFLD-related complications such as NASH and liver tumorigenesis, mainly based on lessons learned from mouse models of high-fat diet-induced NAFLD/NASH.

  10. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    Science.gov (United States)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  11. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.

  12. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  13. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  14. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Dijk, van M.; Dijk, F.J.; Boekschoten, M.V.; Faber, J.; Argiles, J.M.; Laviano, A.; Müller, M.R.; Witkamp, R.F.; Norren, van K.

    2014-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an

  15. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  16. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model

    NARCIS (Netherlands)

    Koopman, F. A.; Vosters, J. L.; Roescher, N.; Broekstra, N.; Tak, P. P.; Vervoordeldonk, M. J.

    2015-01-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's

  17. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Lei ZG

    2016-01-01

    Full Text Available Zhen-ge Lei,1,* Xiao-hua Ren,2,* Sha-sha Wang,3 Xin-hua Liang,3,4 Ya-ling Tang3,5 1Department of Oral and Maxillofacial Surgery, Stomatological Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 2Department of Stomatology, Sichuan Medical Science Academy and Sichuan Provincial People’s Hospital, 3State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 4Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, 5Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China *These authors contributed equally to this work Abstract: Mouse models can closely mimic human oral squamous epithelial carcinogenesis, greatly expand the in vivo research possibilities, and play a critical role in the development of diagnosis, monitoring, and treatment of head and neck squamous cell carcinoma. With the development of the recent research on the contribution of immunity/inflammation to cancer initiation and progression, mouse models have been divided into two categories, namely, immunocompromised and immunocompetent mouse models. And thus, this paper will review these two kinds of models applied in head and neck squamous cell carcinoma to provide a platform to understand the complicated histological, molecular, and genetic changes of oral squamous epithelial tumorigenesis. Keywords: head and neck squamous cell carcinoma, HNSCC, mouse models, immunocompromised models, immunocompetent models, transgenic models

  18. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  19. Experimental models of chronic subdural hematoma.

    Science.gov (United States)

    D'Abbondanza, Josephine A; Loch Macdonald, R

    2014-02-01

    Chronic subdural hematoma (CSDH) is a common neurosurgical problem. Most studies of pathogenesis and treatment involve humans. Advances in understanding of human diseases may be made using animal models. We reviewed all animal models of CSDH and report here their results, conclusions and limitations in order to set a baseline upon which further advanced experimental work related to this disease can be made. PubMed, Medline, Embase and ISI Web of Knowledge were searched with no time limits using the keyword 'chronic subdural hematoma' and MeSH term 'hematoma, subdural, chronic'. The authors reviewed all papers written related to this disease and selected all publications involving animals. There were no other restrictions. The findings and conclusions of the papers are summarized here. No formal analysis was done because of the variation in species used, methods for induction of CSDH, times of assessment and reporting of results. Attempts to create CSDH have been made in mice, rats, cats, dogs and monkeys. Methods include injection or surgical implantation of clotted blood or various other blood products and mixtures into the potential subdural space or the subcutaneous space. No intracranial model produced a progressively expanding CSDH. Transient hematoma expansion with liquification could be produced by subcutaneous injections in some models. Spontaneous subdural blood collections were found after creation of hydrocephalus in mice by systemic injection of the neurotoxin, 6-aminonicotinamide. The histology of the hematoma membranes in several models resembles the appearance in humans. None of the models has been replicated since its first description. We did not find a report of a reproducible, well-described animal model of human CSDH.

  20. Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicates the natural transmission process.

    Science.gov (United States)

    Secundino, Nagila Francinete Costa; Chaves, Barbara Aparecida; Orfano, Alessandra Silva; Silveira, Karine Renata Dias; Rodrigues, Nilton Barnabe; Campolina, Thais Bonifácio; Nacif-Pimenta, Rafael; Villegas, Luiz Eduardo Martinez; Silva, Breno Melo; Lacerda, Marcus Vinícius Guimarães; Norris, Douglas Eric; Pimenta, Paulo Filemon Paolucci

    2017-07-20

    Zika disease has transformed into a serious global health problem due to the rapid spread of the arbovirus and alarming severity including congenital complications, microcephaly and Guillain-Barré syndrome. Zika virus (ZIKV) is primarily transmitted to humans through the bite of an infective mosquito, with Aedes aegypti being the main vector. We successfully developed a ZIKV experimental transmission model by single infectious Ae. aegypti bite to a laboratory mouse using circulating Brazilian strains of both arbovirus and vector. Mosquitoes were orally infected and single Ae. aegypti were allowed to feed on mouse ears 14 days post-infection. Additionally, salivary gland (SG) homogenates from infected mosquitoes were intrathoracically inoculated into naïve Ae. aegypti. Mosquito and mouse tissue samples were cultured in C6/36 cells and processed by quantitative real-time PCR. A total of 26 Ae. aegypti were allowed to feed individually on mouse ears. Of these, 17 mosquitoes fed, all to full engorgement. The transmission rate of ZIKV by bite from these engorged mosquitoes to mouse ears was 100%. The amount of virus inoculated into the ears by bites ranged from 2 × 10 2 -2.1 × 10 10 ZIKV cDNA copies and was positively correlated with ZIKV cDNA quantified from SGs dissected from mosquitoes post-feeding. Replicating ZIKV was confirmed in macerated SGs (2.45 × 10 7 cDNA copies), mouse ear tissue (1.15 × 10 3 cDNA copies, and mosquitoes 14 days post-intrathoracic inoculation (1.49 × 10 7 cDNA copies) by cytopathic effect in C6/36 cell culture and qPCR. Our model illustrates successful transmission of ZIKV by an infectious mosquito bite to a live vertebrate host. This approach offers a comprehensive tool for evaluating the development of infection in and transmission from mosquitoes, and the vertebrate-ZIKV interaction and progression of infection following a natural transmission process.

  1. Cerebral radiation necrosis: limits and prospects of experimental models

    International Nuclear Information System (INIS)

    Lefaix, J.L.

    1992-01-01

    Cerebral radiation necrosis is the major CNS hazard of clinical treatment therapy involving delivery of high doses of radiation to the brain. It is generally irreversible and frequently leads to death from brain necrosis. Necrosis has been reported with total doses of 60 Gy, delivered in conventional fractions. Symptoms depend upon the volume of brain irradiated and are frequently those of an intracranial mass and may be present as an area of gliosis or frank necrosis. Possible causes include some direct effect of radiation on glial cells, vascular changes and the action of an immunological mechanism. The weight of evidence suggests that demyelination is important in the early delayed reaction, and that vascular changes gradually become more important in the late delayed reactions, from several months to years after treatment. The advent of sophisticated radiographic technologies such as computed tomography, magnetic resonance imaging and spectroscopy, and positron emission tomography have facilitated serial non invasive examination of morphologic or physiologic parameters within the brain after irradiation. Limits and prospects of these technologies are reviewed in experimental animal models of late radiation injuries of the brain, which were carried out in many species ranging from mouse to monkey

  2. Experimental and theoretical requirements for fuel modelling

    International Nuclear Information System (INIS)

    Gatesoupe, J.P.

    1979-01-01

    From a scientific point of view it may be considered that any event in the life of a fuel pin under irradiation should be perfectly well understood and foreseen from that deterministic point of view, the whole behaviour of the pin maybe analysed and dismantled with a specific function for every component part and each component part related to one basic phenomenon which can be independently studied on pure physical grounds. When extracted from the code structure the subroutine is studied for itself by specialists who try to keep as close as possible to the physics involved in the phenomenon; that often leads to an impressive luxury in details and a subsequent need for many unavailable input data. It might seem more secure to follow that approach since it tries to be firmly based on theoretical grounds. One should think so if the phenomenological situation in the pin were less complex than it is. The codes would not be adequate for off-normal operating conditions since for the accidental transient conditions the key-phenomena would not be the same as for steady-state or slow transient conditions. The orientation given to fuel modelling is based on our two main technological constraints which are: no fuel melting; no cladding failure; no excessive cladding deformation. In this context, the only relevant models are those which have a significant influence on the maximum temperatures in the fuel or on the cladding damage hence the selection between key models and irrelevant models which will next be done. A rather pragmatic view is kept on codification with a special focus on a few determinant aspects of fuel behaviour and no attention to models which are nothing but decorative. Fuel modeling is merely considered as a link between experimental knowledge; it serves as a guide for further improvements in fuel design and as so happens to be quite useful. On this basis the main lacks in of fuel behaviour is described. These are mainly concerning: thermal transfer through

  3. Musical Electroacupuncture May Be a Better Choice than Electroacupuncture in a Mouse Model of Alzheimer's Disease

    OpenAIRE

    Jiang, Jing; Liu, Gang; Shi, Suhua; Li, Zhigang

    2016-01-01

    Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical e...

  4. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Eléonore Pérès

    2015-12-01

    Full Text Available The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1, is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.

  5. Experimental study and modelling of transient boiling

    International Nuclear Information System (INIS)

    Baudin, Nicolas

    2015-01-01

    A failure in the control system of the power of a nuclear reactor can lead to a Reactivity Initiated Accident in a nuclear power plant. Then, a power peak occurs in some fuel rods, high enough to lead to the coolant film boiling. It leads to an important increase of the temperature of the rod. The possible risk of the clad failure is a matter of interest for the Institut de Radioprotection et de Securite Nucleaire. The transient boiling heat transfer is not yet understood and modelled. An experimental set-up has been built at the Institut de Mecanique des Fluides de Toulouse (IMFT). Subcooled HFE-7000 flows vertically upward in a semi annulus test section. The inner half cylinder simulates the clad and is made of a stainless steel foil, heated by Joule effect. Its temperature is measured by an infrared camera, coupled with a high speed camera for the visualization of the flow topology. The whole boiling curve is studied in steady state and transient regimes: convection, onset of boiling, nucleate boiling, critical heat flux, film boiling and rewetting. The steady state heat transfers are well modelled by literature correlations. Models are suggested for the transient heat flux: the convection and nucleate boiling evolutions are self-similar during a power step. This observation allows to model more complex evolutions, as temperature ramps. The transient Hsu model well represents the onset of nucleate boiling. When the intensity of the power step increases, the film boiling begins at the same temperature but with an increasing heat flux. For power ramps, the critical heat flux decreases while the corresponding temperature increases with the heating rate. When the wall is heated, the film boiling heat transfer is higher than in steady state but it is not understood. A two-fluid model well simulates the cooling film boiling and the rewetting. (author)

  6. Invited review: Genetic and genomic mouse models for livestock research

    Directory of Open Access Journals (Sweden)

    D. Arends

    2018-02-01

    Full Text Available Knowledge about the function and functioning of single or multiple interacting genes is of the utmost significance for understanding the organism as a whole and for accurate livestock improvement through genomic selection. This includes, but is not limited to, understanding the ontogenetic and environmentally driven regulation of gene action contributing to simple and complex traits. Genetically modified mice, in which the functions of single genes are annotated; mice with reduced genetic complexity; and simplified structured populations are tools to gain fundamental knowledge of inheritance patterns and whole system genetics and genomics. In this review, we briefly describe existing mouse resources and discuss their value for fundamental and applied research in livestock.

  7. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    Science.gov (United States)

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P control group compared to other three groups (P neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  8. Uncompensated polyuria in a mouse model of Bartter's syndrome

    Science.gov (United States)

    Takahashi, Nobuyuki; Chernavvsky, Daniel R.; Gomez, R. Ariel; Igarashi, Peter; Gitelman, Hillel J.; Smithies, Oliver

    2000-01-01

    We have used homologous recombination to disrupt the mouse gene coding for the NaK2Cl cotransporter (NKCC2) expressed in kidney epithelial cells of the thick ascending limb and macula densa. This gene is one of several that when mutated causes Bartter's syndrome in humans, a syndrome characterized by severe polyuria and electrolyte imbalance. Homozygous NKCC2−/− pups were born in expected numbers and appeared normal. However, by day 1 they showed signs of extracellular volume depletion (hematocrit 51%; wild type 37%). They subsequently failed to thrive. By day 7, they were small and markedly dehydrated and exhibited renal insufficiency, high plasma potassium, metabolic acidosis, hydronephrosis of varying severity, and high plasma renin concentrations. None survived to weaning. Treatment of −/− pups with indomethacin from day 1 prevented growth retardation and 10% treated for 3 weeks survived, although as adults they exhibited severe polyuria (10 ml/day), extreme hydronephrosis, low plasma potassium, high blood pH, hypercalciuria, and proteinuria. Wild-type mice treated with furosemide, an inhibitor of NaK2Cl cotransporters, have a phenotype similar to the indomethacin-rescued −/− adults except that hydronephrosis was mild. The polyuria, hypercalciuria, and proteinuria of the −/− adults and furosemide-treated wild-type mice were unresponsive to inhibitors of the renin angiotensin system, vasopressin, and further indomethacin. Thus absence of NKCC2 in the mouse causes polyuria that is not compensated elsewhere in the nephron. The NKCC2 mutant animals should be valuable for uncovering new pathophysiologic and therapeutic aspects of genetic disturbances in water and electrolyte recovery by the kidney. PMID:10779555

  9. Rescue of retinal function by BDNF in a mouse model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Luciano Domenici

    Full Text Available Vision loss in glaucoma is caused by progressive dysfunction of retinal ganglion cells (RGCs and optic nerve atrophy. Here, we investigated the effectiveness of BDNF treatment to preserve vision in a glaucoma experimental model. As an established experimental model, we used the DBA/2J mouse, which develops chronic intraocular pressure (IOP elevation that mimics primary open-angle glaucoma (POAG. IOP was measured at different ages in DBA/2J mice. Visual function was monitored using the steady-state Pattern Electroretinogram (P-ERG and visual cortical evoked potentials (VEP. RGC alterations were assessed using Brn3 immunolabeling, and confocal microscope analysis. Human recombinant BDNF was dissolved in physiological solution (0.9% NaCl; the effects of repeated intravitreal injections and topical eye BDNF applications were independently evaluated in DBA/2J mice with ocular hypertension. BDNF level was measured in retinal homogenate by ELISA and western blot. We found a progressive decline of P-ERG and VEP responses in DBA/2J mice between 4 and 7 months of age, in relationship with the development of ocular hypertension and the reduction of Brn3 immunopositive RGCs. Conversely, repeated intravitreal injections (BDNF concentration = 2 µg/µl, volume = 1 µl, for each injection; 1 injection every four days, three injections over two weeks and topical eye application of BDNF eye-drops (12 µg/µl, 5 µl eye-drop every 48 h for two weeks were able to rescue visual responses in 7 month DBA/2J mice. In particular, BDNF topical eye treatment recovered P-ERG and VEP impairment increasing the number of Brn3 immunopositive RGCs. We showed that BDNF effects were independent of IOP reduction. Thus, topical eye treatment with BDNF represents a promisingly safe and feasible strategy to preserve visual function and diminish RGC vulnerability to ocular hypertension.

  10. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models.

    Science.gov (United States)

    Caldwell, A S L; Middleton, L J; Jimenez, M; Desai, R; McMahon, A C; Allan, C M; Handelsman, D J; Walters, K A

    2014-08-01

    Polycystic ovary syndrome (PCOS) affects 5-10% of women of reproductive age, causing a range of reproductive, metabolic and endocrine defects including anovulation, infertility, hyperandrogenism, obesity, hyperinsulinism, and an increased risk of type 2 diabetes and cardiovascular disease. Hyperandrogenism is the most consistent feature of PCOS, but its etiology remains unknown, and ethical and logistic constraints limit definitive experimentation in humans to determine mechanisms involved. In this study, we provide the first comprehensive characterization of reproductive, endocrine, and metabolic PCOS traits in 4 distinct murine models of hyperandrogenism, comprising prenatal dihydrotestosterone (DHT, potent nonaromatizable androgen) treatment during days 16-18 of gestation, or long-term treatment (90 days from 21 days of age) with DHT, dehydroepiandrosterone (DHEA), or letrozole (aromatase inhibitor). Prenatal DHT-treated mature mice exhibited irregular estrous cycles, oligo-ovulation, reduced preantral follicle health, hepatic steatosis, and adipocyte hypertrophy, but lacked overall changes in body-fat composition. Long-term DHT treatment induced polycystic ovaries displaying unhealthy antral follicles (degenerate oocyte and/or > 10% pyknotic granulosa cells), as well as anovulation and acyclicity in mature (16-week-old) females. Long-term DHT also increased body and fat pad weights and induced adipocyte hypertrophy and hypercholesterolemia. Long-term letrozole-treated mice exhibited absent or irregular cycles, oligo-ovulation, polycystic ovaries containing hemorrhagic cysts atypical of PCOS, and displayed no metabolic features of PCOS. Long-term dehydroepiandrosterone treatment produced no PCOS features in mature mice. Our findings reveal that long-term DHT treatment replicated a breadth of ovarian, endocrine, and metabolic features of human PCOS and provides the best mouse model for experimental studies of PCOS pathogenesis.

  11. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes

    Science.gov (United States)

    Multhaup, Michael L.; Seldin, Marcus; Jaffe, Andrew E.; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R.; Wong, G. William; Feinberg, Andrew P.

    2015-01-01

    SUMMARY Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211

  12. The STR/ort mouse model of spontaneous osteoarthritis - an update.

    Science.gov (United States)

    Staines, K A; Poulet, B; Wentworth, D N; Pitsillides, A A

    2017-06-01

    Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. An inducible mouse model of late onset Tay-Sachs disease.

    Science.gov (United States)

    Jeyakumar, Mylvaganam; Smith, David; Eliott-Smith, Elena; Cortina-Borja, Mario; Reinkensmeier, Gabriele; Butters, Terry D; Lemm, Thorsten; Sandhoff, Konrad; Perry, V Hugh; Dwek, Raymond A; Platt, Frances M

    2002-08-01

    Mouse models of the G(M2) gangliosidoses, Tay-Sachs and Sandhoff disease, are null for the hexosaminidase alpha and beta subunits respectively. The Sandhoff (Hexb-/-) mouse has severe neurological disease and mimics the human infantile onset variant. However, the Tay-Sachs (Hexa-/-) mouse model lacks an overt phenotype as mice can partially bypass the blocked catabolic pathway and escape disease. We have investigated whether a subset of Tay-Sachs mice develop late onset disease. We have found that approximately 65% of the mice develop one or more clinical signs of the disease within their natural life span (n = 52, P disease at an earlier age (n = 21, P Tay-Sachs mice confirmed that pregnancy induces late onset Tay-Sachs disease. Onset of symptoms correlated with reduced up-regulation of hexosaminidase B, a component of the bypass pathway.

  14. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    Science.gov (United States)

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  15. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines

    Directory of Open Access Journals (Sweden)

    C. Dirk Keene

    2016-06-01

    Full Text Available Dozens of transgenic mouse models, generally based on mutations associated with familial Alzheimer's disease (AD, have been developed, in part, for preclinical testing of candidate AD therapies. However, none of these models has successfully predicted the clinical efficacy of drugs for treating AD patients. Therefore, development of more translationally relevant AD mouse models remains a critical unmet need in the field. A concept not previously implemented in AD preclinical drug testing is the use of mouse lines that have been validated for neuropathological features of human AD. Current thinking suggests that amyloid plaque and neurofibrillary tangle deposition is an essential component for accurate modeling of AD. Therefore, the AD translational paradigm would require pathologic Aβ and tau deposition, a disease-relevant distribution of plaques and tangles, and a pattern of disease progression of Aβ and tau isoforms similar to the neuropathological features found in the brains of AD patients. Additional parameters useful to evaluate parallels between AD and animal models would include 1 cerebrospinal fluid (CSF AD biomarker changes with reduced Aβ and increased phospho-tau/tau; 2 structural and functional neuroimaging patterns including MRI hippocampal atrophy, fluorodeoxyglucose (FDG, and amyloid/tau PET alterations in activity and/or patterns of pathologic peptide deposition and distribution; and 3 cognitive impairment with emphasis on spatial learning and memory to distinguish presymptomatic and symptomatic mice at specific ages. A validated AD mouse model for drug testing would likely show tau-related neurofibrillary degeneration following Aβ deposition and demonstrate changes in pathology, CSF analysis, and neuroimaging that mirror human AD. Development of the ideal model would revolutionize the ability to establish the translational value of AD mouse models and serve as a platform for discussions about national phenotyping guidelines

  16. Experimental models of autoimmune inflammatory ocular diseases

    Directory of Open Access Journals (Sweden)

    Fabio Gasparin

    2012-04-01

    Full Text Available Ocular inflammation is one of the leading causes of blindness and loss of vision. Human uveitis is a complex and heterogeneous group of diseases characterized by inflammation of intraocular tissues. The eye may be the only organ involved, or uveitis may be part of a systemic disease. A significant number of cases are of unknown etiology and are labeled idiopathic. Animal models have been developed to the study of the physiopathogenesis of autoimmune uveitis due to the difficulty in obtaining human eye inflamed tissues for experiments. Most of those models are induced by injection of specific photoreceptors proteins (e.g., S-antigen, interphotoreceptor retinoid-binding protein, rhodopsin, recoverin, phosducin. Non-retinal antigens, including melanin-associated proteins and myelin basic protein, are also good inducers of uveitis in animals. Understanding the basic mechanisms and pathogenesis of autoimmune ocular diseases are essential for the development of new treatment approaches and therapeutic agents. The present review describes the main experimental models of autoimmune ocular inflammatory diseases.

  17. Modeling a nuclear reactor for experimental purposes

    International Nuclear Information System (INIS)

    Berta, V.T.

    1980-01-01

    The Loss-of-Fluid Test (LOFT) Facility is a scale model of a commercial PWR and is as fully functional and operational as the generic commercial counterpart. LOFT was designed and built for experimental purposes as part of the overall NRC reactor safety research program. The purpose of LOFT is to assess the capability of reactor safety systems to perform their intended functions during occurrences of off-normal conditions in a commercial nuclear reactor. Off-normal conditions arising from large and small break loss-of-coolant accidents (LOCA), operational transients, and anticipated transients without scram (ATWS) were to be investigated. This paper describes the LOFT model of the generic PWR and summarizes the experiments that have been conducted in the context of the significant findings involving the complex transient thermal-hydraulics and the consequent effects on the commercial reactor analytical licensing techniques. Through these techniques the validity of the LOFT model as a scaled counterpart of the generic PWR is shown

  18. Biliary System Architecture: Experimental Models and Visualization Techniques

    Czech Academy of Sciences Publication Activity Database

    Sarnová, Lenka; Gregor, Martin

    2017-01-01

    Roč. 66, č. 3 (2017), s. 383-390 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LQ1604; GA ČR GA15-23858S Institutional support: RVO:68378050 Keywords : Biliary system * Mouse model * Cholestasis * Visualisation * Morphology Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 1.461, year: 2016

  19. Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis.

    Science.gov (United States)

    Wu, Xiaoli; Sandhu, Sumit; Nabi, Zinnatun; Ding, Hao

    2012-10-01

    Regulator of telomere length 1 (RTEL1) is a DNA helicase protein that has been demonstrated to be required for the maintenance of telomere length and genomic stability. It has also been found to be essential for DNA homologous recombination during DNA repairing. Human RTEL1 genomic locus (20q13.3) is frequently amplified in multiple types of human cancers, including hepatocellular carcinoma and gastrointestinal tract tumors, indicating that upregulated RTEL1 activity could be important for tumorigenesis. In this study, we have developed a conditional transgenic mouse model that overexpress mouse Rtel1 in a Cre-excision manner. By crossing with a ubiquitous Cre mouse line, we further demonstrated that these established Rtel1 conditional transgenic mice allow to efficiently and highly express a functional Rtel1 that is able to rescue the embryonic defects of Rtel1 null mouse allele. Furthermore, we demonstrated that more than 70% transgenic mice that widely overexpress Rtel1 developed liver tumors that recapitulate many malignant features of human hepatocellular carcinoma (HCC). Our work not only generated a valuable mouse model for determining the role of RTEL1 in the development of cancers, but also provided the first genetic evidence to support that amplification of RTEL1, as observed in several types of human cancers, is tumorigenic.

  20. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Caihong Zhu

    Full Text Available Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer's disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer's disease. In addition, impaired insulin signaling in the Alzheimer's disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.

  1. Data mining strategies to improve multiplex microbead immunoassay tolerance in a mouse model of infectious diseases.

    Directory of Open Access Journals (Sweden)

    Akshay Mani

    Full Text Available Multiplex methodologies, especially those with high-throughput capabilities generate large volumes of data. Accumulation of such data (e.g., genomics, proteomics, metabolomics etc. is fast becoming more common and thus requires the development and implementation of effective data mining strategies designed for biological and clinical applications. Multiplex microbead immunoassay (MMIA, on xMAP or MagPix platform (Luminex, which is amenable to automation, offers a major advantage over conventional methods such as Western blot or ELISA, for increasing the efficiencies in serodiagnosis of infectious diseases. MMIA allows detection of antibodies and/or antigens efficiently for a wide range of infectious agents simultaneously in host blood samples, in one reaction vessel. In the process, MMIA generates large volumes of data. In this report we demonstrate the application of data mining tools on how the inherent large volume data can improve the assay tolerance (measured in terms of sensitivity and specificity by analysis of experimental data accumulated over a span of two years. The combination of prior knowledge with machine learning tools provides an efficient approach to improve the diagnostic power of the assay in a continuous basis. Furthermore, this study provides an in-depth knowledge base to study pathological trends of infectious agents in mouse colonies on a multivariate scale. Data mining techniques using serodetection of infections in mice, developed in this study, can be used as a general model for more complex applications in epidemiology and clinical translational research.

  2. [Effect of Shouwu Shudi Yin on dopaminegic neurons in MPTP induced Parkinson's disease mouse model].

    Science.gov (United States)

    Tunje, Reginachizi; Ye, Yang-Lie; Sonauddin, Ahmed; Hansraj, Bhugun; Ngawang, Sangye; Shivani, Sharma; Zhang, Xiong; Zhu, Jian-Hong; Liu, Rong-Pei

    2016-09-01

    In order to investigate the effect of Shouwu Shudi Yin on dopaminegic neurons in MPTP induced Parkinson's disease mouse model and the possible mechamism, the experimental mice were randomly divided into 4 groups: control, Shouwu Shudi Yin, MPTP and the treatment (MPTP+Shouwu Shudi Yin) groups. The number of tyrosine hydroxylase (TH) positive cells in the substantia nigra was measured by immunohistochemistry, and mRNA expression of TH and glutathione peroxidase (GPX) were detected by PCR. The results showed that the number of TH positive cells and mRNA expression of TH were significantly reduced in MPTP group compared with the control (PYin didn't show protective effect. Compared to MPTP group, the mRNA expression of four subtypes of GPX were increased in various degrees in the treatment group pretreated with Shouwu Shudi Yin, although the difference was not statistically significant. These indicated that the preventive medication of Shouwu Shudi Yin don't have protective effect on the mice with Parkinson' s disease induced by MPTP, but it may enhance the antioxidant capacity through increasing the expression of GPX. Copyright© by the Chinese Pharmaceutical Association.

  3. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Directory of Open Access Journals (Sweden)

    Alex H P Chan

    Full Text Available Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP. This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days. We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  4. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Science.gov (United States)

    Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G

    2017-01-01

    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  5. Medullary Thymic Epithelial Cells and Central Tolerance in Autoimmune Hepatitis Development: Novel Perspective from a New Mouse Model

    Directory of Open Access Journals (Sweden)

    Konstantina Alexandropoulos

    2015-01-01

    Full Text Available Autoimmune hepatitis (AIH is an immune-mediated disorder that affects the liver parenchyma. Diagnosis usually occurs at the later stages of the disease, complicating efforts towards understanding the causes of disease development. While animal models are useful for studying the etiology of autoimmune disorders, most of the existing animal models of AIH do not recapitulate the chronic course of the human condition. In addition, approaches to mimic AIH-associated liver inflammation have instead led to liver tolerance, consistent with the high tolerogenic capacity of the liver. Recently, we described a new mouse model that exhibited spontaneous and chronic liver inflammation that recapitulated the known histopathological and immunological parameters of AIH. The approach involved liver-extrinsic genetic engineering that interfered with the induction of T-cell tolerance in the thymus, the very process thought to inhibit AIH induction by liver-specific expression of exogenous antigens. The mutation led to depletion of specialized thymic epithelial cells that present self-antigens and eliminate autoreactive T-cells before they exit the thymus. Based on our findings, which are summarized below, we believe that this mouse model represents a relevant experimental tool towards elucidating the cellular and molecular aspects of AIH development and developing novel therapeutic strategies for treating this disease.

  6. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    Science.gov (United States)

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  7. The selective vitamin D receptor agonist, elocalcitol, reduces endometriosis development in a mouse model by inhibiting peritoneal inflammation.

    Science.gov (United States)

    Mariani, Margherita; Viganò, Paola; Gentilini, Davide; Camisa, Barbara; Caporizzo, Elvira; Di Lucia, Pietro; Monno, Antonella; Candiani, Massimo; Somigliana, Edgardo; Panina-Bordignon, Paola

    2012-07-01

    Endometriosis, which is characterized by the growth of endometrial tissue at ectopic locations as well as vascular development and inflammation, is still an unmet clinical need since an optimal drug that allows for both pain and infertility management does not exist. Since both the eutopic and the ectopic endometrium express the vitamin D receptor (VDR), and VDR agonists are endowed with anti-proliferative and anti-inflammatory properties, we evaluated the effect of elocalcitol, a VDR agonist with low calcaemic liability, in a mouse model of experimentally induced endometriosis. Endometriosis was induced by injection of syngeneic endometrial tissue fragments into adult Balb/c female mice. After having confirmed by immunohistochemistry that endometriotic lesions developing in mice expressed VDR, the mice were administered with elocalcitol (100 μg/kg) or vehicle orally, once a day, for various durations of time. In this model, elocalcitol was able to reduce total lesion weight up to 70% upon treatment for 1 week before and 2 weeks after disease induction. Interestingly, a therapeutic effect was also observed on already established lesions. Elocalcitol was shown to reduce the capacity of mouse endometrial cells to adhere to collagen. In addition in treated mice, a decreased state of peritoneal inflammation was demonstrated by the inhibition of macrophage recruitment and inflammatory cytokine secretion. The VDR agonist elocalcitol inhibits lesion development in a validated mouse model of endometriosis, and exerts a protective effect on both the implantation and organization of transferred endometrial tissue. These preliminary data in mice provide a sound rationale for further testing in primate models and eventually in humans.

  8. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ?

    OpenAIRE

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoim...

  9. USING OF MOUSE MODEL TO ANALYZE IMMUNE RESPONSE TO INFECTIOUS PATHOGENS BY THE METHODS OF CLASSICAL GENETICS

    Directory of Open Access Journals (Sweden)

    A. Poltorak

    2011-01-01

    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  10. Experimental models for Murray’s law

    Science.gov (United States)

    Akita, Dai; Kunita, Itsuki; Fricker, Mark D.; Kuroda, Shigeru; Sato, Katsuhiko; Nakagaki, Toshiyuki

    2017-01-01

    Transport networks are ubiquitous in multicellular organisms and include leaf veins, fungal mycelia and blood vessels. While transport of materials and signals through the network plays a crucial role in maintaining the living system, the transport capacity of the network can best be understood in terms of hydrodynamics. We report here that plasmodium from the large, single-celled amoeboid Physarum was able to construct a hydrodynamically optimized vein-network when evacuating biomass from confined arenas of various shapes through a narrow exit. Increasingly thick veins developed towards the exit, and the network spanned the arena via repetitive bifurcations to give a branching tree. The Hausdorff distance from all parts of the plasmodium to the vein network was kept low, whilst the hydrodynamic conductivity from distal parts of the network to the exit was equivalent, irrespective of the arena shape. This combination of spatial patterning and differential vein thickening served to evacuate biomass at an equivalent rate across the entire arena. The scaling relationship at the vein branches was determined experimentally to be 2.53-3.29, consistent with predictions from Murray’s law. Furthermore, we show that mathematical models for self-organised, adaptive transport in Physarum simulate the experimental network organisation well if the scaling coefficient of the current-reinforcement rule is set to 3. In simulations, this resulted in rapid development of an optimal network that minimised the combined volume and frictional energy in comparison with other scaling coefficients. This would predict that the boundary shear forces within each vein are constant throughout the network, and would be consistent with a feedback mechanism based on a sensing a threshold shear at the vein wall.

  11. Experimental models for Murray’s law

    International Nuclear Information System (INIS)

    Akita, Dai; Kunita, Itsuki; Fricker, Mark D; Kuroda, Shigeru; Sato, Katsuhiko; Nakagaki, Toshiyuki

    2017-01-01

    Transport networks are ubiquitous in multicellular organisms and include leaf veins, fungal mycelia and blood vessels. While transport of materials and signals through the network plays a crucial role in maintaining the living system, the transport capacity of the network can best be understood in terms of hydrodynamics. We report here that plasmodium from the large, single-celled amoeboid Physarum was able to construct a hydrodynamically optimized vein-network when evacuating biomass from confined arenas of various shapes through a narrow exit. Increasingly thick veins developed towards the exit, and the network spanned the arena via repetitive bifurcations to give a branching tree. The Hausdorff distance from all parts of the plasmodium to the vein network was kept low, whilst the hydrodynamic conductivity from distal parts of the network to the exit was equivalent, irrespective of the arena shape. This combination of spatial patterning and differential vein thickening served to evacuate biomass at an equivalent rate across the entire arena. The scaling relationship at the vein branches was determined experimentally to be 2.53–3.29, consistent with predictions from Murray’s law. Furthermore, we show that mathematical models for self-organised, adaptive transport in Physarum simulate the experimental network organisation well if the scaling coefficient of the current-reinforcement rule is set to 3. In simulations, this resulted in rapid development of an optimal network that minimised the combined volume and frictional energy in comparison with other scaling coefficients. This would predict that the boundary shear forces within each vein are constant throughout the network, and would be consistent with a feedback mechanism based on a sensing a threshold shear at the vein wall. (paper)

  12. Animal models for studying neural crest development: is the mouse different?

    Science.gov (United States)

    Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto

    2015-05-01

    The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.

  13. Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); A.T. van der Ploeg (Ans); E.H. van de Kamp; M.A. Kroos (Marian); J.-H. Ding (Jia-Huan); B.Z. Yang (Bing); P. Visser (Pim); C.E. Bakker (Cathy); M.Ph. Verbeet (Martin); B.A. Oostra (Ben); A.J.J. Reuser (Arnold)

    1998-01-01

    textabstractGlycogen storage disease type II (GSDII; Pompe disease), caused by inherited deficiency of acid alpha-glucosidase, is a lysosomal disorder affecting heart and skeletal muscles. A mouse model of this disease was obtained by targeted disruption of the

  14. Role of Stat in Skin Carcinogenesis: Insights Gained from Relevant Mouse Models

    International Nuclear Information System (INIS)

    Macias, E.; Rao, D.; DiGiovanni, J.; DiGiovanni, J.; DiGiovanni, J.

    2013-01-01

    Signal transducer and activator of transcription 3 (Stat) is a cytoplasmic protein that is activated in response to cytokines and growth factors and acts as a transcription factor. Stat plays critical roles in various biological activities including cell proliferation, migration, and survival. Studies using keratinocyte-specific Stat-deficient mice have revealed that Stat plays an important role in skin homeostasis including keratinocyte migration, wound healing, and hair follicle growth. Use of both constitutive and inducible keratinocyte-specific Stat-deficient mouse models has demonstrated that Stat is required for both the initiation and promotion stages of multistage skin carcinogenesis. Further studies using a transgenic mouse model with a gain of function mutant of Stat (Stat3C) expressed in the basal layer of the epidermis revealed a novel role for Stat in skin tumor progression. Studies using similar Stat-deficient and gain-of-function mouse models have indicated its similar roles in ultraviolet B (UVB) radiation-mediated skin carcinogenesis. This paper summarizes the use of these various mouse models for studying the role and underlying mechanisms for the function of Stat in skin carcinogenesis. Given its significant role throughout the skin carcinogenesis process, Stat is an attractive target for skin cancer prevention and treatment.

  15. Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models

    NARCIS (Netherlands)

    Dekker, Alain D; Vermeiren, Yannick; Albac, Christelle; Lana-Elola, Eva; Watson-Scales, Sheona; Gibbins, Dorota; Aerts, Tony; Van Dam, Debby; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Potier, Marie-Claude; De Deyn, Peter P

    Altered concentrations of monoamine neurotransmitters and metabolites have been repeatedly found in people with Down syndrome (DS, trisomy 21). Because of the limited availability of human post-mortem tissue, DS mouse models are of great interest to study these changes and the underlying

  16. NOD mouse model for Sjögren's syndrome: lack of longitudinal stability

    NARCIS (Netherlands)

    Lodde, B. M.; Mineshiba, F.; Kok, M. R.; Wang, J.; Zheng, C.; Schmidt, M.; Cotrim, A. P.; Kriete, M.; Tak, P. P.; Baum, B. J.

    2006-01-01

    OBJECTIVES: The non-obese diabetic (NOD) mouse is not only a widely used model for diabetes mellitus type I, but also for the chronic autoimmune disease Sjögren's syndrome (SS), mainly affecting salivary and lacrimal glands. We studied the efficacy of local recombinant serotype 2 adeno-associated

  17. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model

    NARCIS (Netherlands)

    Vissers, Joost L. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Kapsenberg, Martien L.; Weller, Frank R.; van Oosterhout, Antoon J. M.

    2004-01-01

    Background: Human studies have demonstrated that allergen immunotherapy induces memory suppressive responses and IL-10 production by allergen-specific T cells. Previously, we established a mouse model in which allergen immunotherapy was effective in the suppression of allergen-induced asthma

  18. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.

    NARCIS (Netherlands)

    Wijnhoven, Susan W P; Hoogervorst, Esther M; Waard, Harm de; Horst, Gijsbertus T J van der; Steeg, Harry van

    2007-01-01

    Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can

  19. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  20. Mast cells trigger epithelial barrier dysfunction, bacterial translocation and postoperative ileus in a mouse model

    NARCIS (Netherlands)

    Snoek, S. A.; Dhawan, S.; van Bree, S. H.; Cailotto, C.; van Diest, S. A.; Duarte, J. M.; Stanisor, O. I.; Hilbers, F. W.; Nijhuis, L.; Koeman, A.; van den Wijngaard, R. M.; Zuurbier, C. J.; Boeckxstaens, G. E.; de Jonge, W. J.

    2012-01-01

    Background Abdominal surgery involving bowel manipulation commonly results in inflammation of the bowel wall, which leads to impaired intestinal motility and postoperative ileus (POI). Mast cells have shown to play a key role in the pathogenesis of POI in mouse models and human studies. We studied

  1. Breeding a PKU-mouse model on Phe-free diet, is it possible?

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Johansen, Karen Singers; Vorup-Jensen, Thomas

    2014-01-01

    The PKU-mouse model mutated in the PAH gene was developed in the 1990s in the laboratory of Dr. Alexandra Shedlovsky at the McArdle Laboratory for Cancer Research, University of Wisconsin. The mutation was generated by ENU (N-ethyl-N-nitrosourea) treatment of BTBR males. Several mutation was found...

  2. A novel brain trauma model in the mouse : effects of dexamethasone treatment

    NARCIS (Netherlands)

    Hortobágyi, Tibor; Hortobagyi, S; Gorlach, C; Harkany, T; Benbyo, Z; Gorogh, T; Nagel, W; Wahl, M

    2000-01-01

    We describe a novel methodological approach for inducing cold lesion in the mouse as a model of human cortical contusion trauma. To validate its reproducibility and reliability, dexamethasone (Dxm) was repeatedly applied to demonstrate possible antioedematous drug effects. Following tho induction of

  3. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    OpenAIRE

    Dwarkasing, Jvalini T.; van Dijk, Miriam; Dijk, Francina J.; Boekschoten, Mark V.; Faber, Joyce; Argilès, Josep M.; Laviano, Alessandro; Müller, Michael; Witkamp, Renger F.; van Norren, Klaske

    2013-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an increased food intake subsequently to the loss of body weight. We hypothesise that in this model, appetite-regulating systems in the hypothalamus, which apparently fail in anorexia, are still able t...

  4. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  5. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  6. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, J M [University of Alabama, Birmingham; Michaud III, Edward J [ORNL; Schoeb, T [University of Alabama, Birmingham; Aydin Son, Yesim [University of Tennessee, Knoxville (UTK); Miller, M [University of Alabama, Birmingham; Yoder, Bradley [University of Alabama, Birmingham

    2008-08-01

    The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can be analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.

  7. Antiurolithic effect of olive oil in a mouse model of ethylene glycol-induced urolithiasis

    Directory of Open Access Journals (Sweden)

    Mohammed Alenzi

    2017-05-01

    Full Text Available Purpose: At present, commercially available antiurolithic drugs have more adverse effects than potential therapeutic or preventive effects with chronic use. With this in mind, the present study was designed to assess the antiurolithic effect of olive oil in a mouse model of ethylene glycol (EG-induced urolithiasis. Materials and Methods: Adult albino mice were divided into 6 groups. Group I was fed the vehicle only. Group II was supplemented with 0.75% EG alone in drinking water during the experimental period to initiate deposition of calcium oxalate in kidneys, which leads to urolithiasis in animals. Groups III (olive oil control group through V were fed olive oil orally at various doses during the experimental period. Group VI received cystone (750 mg/kg. Groups IV–VI additionally received 0.75% EG in drinking water ad libitum. SPSS ver.17.0 was used for statistical analysis. Results: The study results showed significantly higher levels of serum urea, uric acid, and creatinine (p<0.05 in group II than in groups III–VI and I. Administration of olive oil at different doses restored the elevated serum parameters in groups IV and V compared with group II. Urine and kidney calcium, oxalate, and phosphate levels in groups IV–VI were significantly lower (p<0.05 than in animals with EG-induced urolithiasis (group II. Group V mice showed a significant restoration effect on serum as well as urine and kidney parameters compared with group II. Conclusions: Supplementation with olive oil (1.7 mL/kg body weight reduced and prevented the growth of urinary stones, possibly by inhibiting renal tubular membrane damage due to peroxidative stress induced by hyperoxaluria.

  8. Pine needle extract prevents hippocampal memory impairment in acute restraint stress mouse model.

    Science.gov (United States)

    Lee, Jin-Seok; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Ahn, Yo-Chan; Son, Chang-Gue

    2017-07-31

    The Pinus densiflora leaf has been traditionally used to treat mental health disorders as a traditional Chinese medicine. Here we examined the ethnopharmacological relevance of pine needle on memory impairment caused by stress. To elucidate the possible modulatory actions of 30% ethanolic pine needle extract (PNE) on stress-induced hippocampal excitotoxicity, we adopted an acute restraint stress mouse model. Mice were orally administered with PNE (25, 50, or 100mg/kg) or ascorbic acid (100mg/kg) for 9 days, and were then subjected to restraint stress (6h/day) for 3 days (from experimental day 7-9). To evaluate spatial cognitive and memory function, the Morris water maze was performed during experimental days 5-9. Restraint stress induced the memory impairment (the prolonged escape latency and cumulative path-length, and reduced time spent in the target quadrant), and these effects were significantly prevented by PNE treatment. The levels of corticosterone and its receptor in the sera/hippocampus were increased by restraint stress, which was normalized by PNE treatment. Restraint stress elicited the hippocampal excitotoxicity, the inflammatory response and oxidative injury as demonstrated by the increased glutamate levels, altered levels of tumor necrosis factor (TNF)-α and imbalanced oxidant-antioxidant balance biomarkers. Two immunohistochemistry activities against glial fibrillary acidic protein (GFAP)-positive astrocytes and neuronal nuclei (NeuN)-positive neurons supported the finding of excitotoxicity especially in the cornu ammonis (CA)3 region of the hippocampus. Those alterations were notably attenuated by administration of PNE. The above findings showed that PNE has pharmacological properties that modulate the hippocampal excitotoxicity-derived memory impairment under severe stress conditions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. Pancreatic protective and hypoglycemic effects of Vitex agnus-castus L. fruit hydroalcoholic extract in D-galactose-induced aging mouse model

    OpenAIRE

    Ahangarpour, Akram; Oroojan, Ali Akbar; Khorsandi, Layasadat; Najimi, Seyedeh Asma

    2017-01-01

    D-galactose induces pancreatic disorder along with aging mouse model. Vitex agnus-castus (VAC) has potential pancreatic protective effect. Hence, this study was designed to evaluate the hypoglycemic and pancreas protective effects of VAC hydroalcoholic extract in D-galactose-induced aging female mice. In the present experimental study, 72 adult female Naval Medical Research Institute (NMRI) mice (weighing 30–35 g) were divided into 6 groups of control, VAC hydroalcoholic extract, D-galactose,...

  10. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  11. A mouse model of paralytic myelitis caused by enterovirus D68.

    Directory of Open Access Journals (Sweden)

    Alison M Hixon

    2017-02-01

    Full Text Available In 2014, the United States experienced an epidemic of acute flaccid myelitis (AFM cases in children coincident with a nationwide outbreak of enterovirus D68 (EV-D68 respiratory disease. Up to half of the 2014 AFM patients had EV-D68 RNA detected by RT-PCR in their respiratory secretions, although EV-D68 was only detected in cerebrospinal fluid (CSF from one 2014 AFM patient. Given previously described molecular and epidemiologic associations between EV-D68 and AFM, we sought to develop an animal model by screening seven EV-D68 strains for the ability to induce neurological disease in neonatal mice. We found that four EV-D68 strains from the 2014 outbreak (out of five tested produced a paralytic disease in mice resembling human AFM. The remaining 2014 strain, as well as 1962 prototype EV-D68 strains Fermon and Rhyne, did not produce, or rarely produced, paralysis in mice. In-depth examination of the paralysis caused by a representative 2014 strain, MO/14-18947, revealed infectious virus, virion particles, and viral genome in the spinal cords of paralyzed mice. Paralysis was elicited in mice following intramuscular, intracerebral, intraperitoneal, and intranasal infection, in descending frequency, and was associated with infection and loss of motor neurons in the anterior horns of spinal cord segments corresponding to paralyzed limbs. Virus isolated from spinal cords of infected mice transmitted disease when injected into naïve mice, fulfilling Koch's postulates in this model. Finally, we found that EV-D68 immune sera, but not normal mouse sera, protected mice from development of paralysis and death when administered prior to viral challenge. These studies establish an experimental model to study EV-D68-induced myelitis and to better understand disease pathogenesis and develop potential therapies.

  12. Catalytic immunoglobulin gene delivery in a mouse model of Alzheimer's disease: prophylactic and therapeutic applications.

    Science.gov (United States)

    Kou, Jinghong; Yang, Junling; Lim, Jeong-Eun; Pattanayak, Abhinandan; Song, Min; Planque, Stephanie; Paul, Sudhir; Fukuchi, Ken-Ichiro

    2015-02-01

    Accumulation of amyloid beta-peptide (Aβ) in the brain is hypothesized to be a causal event leading to dementia in Alzheimer's disease (AD). Aβ vaccination removes Aβ deposits from the brain. Aβ immunotherapy, however, may cause T cell- and/or Fc-receptor-mediated brain inflammation and relocate parenchymal Aβ deposits to blood vessels leading to cerebral hemorrhages. Because catalytic antibodies do not form stable immune complexes and Aβ fragments produced by catalytic antibodies are less likely to form aggregates, Aβ-specific catalytic antibodies may have safer therapeutic profiles than reversibly-binding anti-Aβ antibodies. Additionally, catalytic antibodies may remove Aβ more efficiently than binding antibodies because a single catalytic antibody can hydrolyze thousands of Aβ molecules. We previously isolated Aβ-specific catalytic antibody, IgVL5D3, with strong Aβ-hydrolyzing activity. Here, we evaluated the prophylactic and therapeutic efficacy of brain-targeted IgVL5D3 gene delivery via recombinant adeno-associated virus serotype 9 (rAAV9) in an AD mouse model. One single injection of rAAV9-IgVL5D3 into the right ventricle of AD model mice yielded widespread, high expression of IgVL5D3 in the unilateral hemisphere. IgVL5D3 expression was readily detectable in the contralateral hemisphere but to a much lesser extent. IgVL5D3 expression was also confirmed in the cerebrospinal fluid. Prophylactic and therapeutic injection of rAAV9-IgVL5D3 reduced Aβ load in the ipsilateral hippocampus of AD model mice. No evidence of hemorrhages, increased vascular amyloid deposits, increased proinflammatory cytokines, or infiltrating T-cells in the brains was found in the experimental animals. AAV9-mediated anti-Aβ catalytic antibody brain delivery can be prophylactic and therapeutic options for AD.

  13. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  14. B cell-targeted therapy with anti-CD20 monoclonal antibody in a mouse model of Graves' hyperthyroidism.

    Science.gov (United States)

    Ueki, I; Abiru, N; Kobayashi, M; Nakahara, M; Ichikawa, T; Eguchi, K; Nagayama, Y

    2011-03-01

    Graves' disease is a B cell-mediated and T cell-dependent autoimmune disease of the thyroid which is characterized by overproduction of thyroid hormones and thyroid enlargement by agonistic anti-thyrotrophin receptor (TSHR) autoantibody. In addition to antibody secretion, B cells have recently been recognized to function as antigen-presenting/immune-modulatory cells. The present study was designed to evaluate the efficacy of B cell depletion by anti-mouse (m) CD20 monoclonal antibody (mAb) on Graves' hyperthyroidism in a mouse model involving repeated injection of adenovirus expressing TSHR A-subunit (Ad-TSHR289). We observe that a single injection of 250 µg/mouse anti-mCD20 mAb eliminated B cells efficiently from the periphery and spleen and to a lesser extent from the peritoneum for more than 3 weeks. B cell depletion before immunization suppressed an increase in serum immunoglobulin (Ig)G levels, TSHR-specific splenocyte secretion of interferon (IFN)-γ, anti-TSHR antibody production and development of hyperthyroidism. B cell depletion 2 weeks after the first immunization, a time-point at which T cells were primed but antibody production was not observed, was still effective at inhibiting antibody production and disease development without inhibiting splenocyte secretion of IFN-γ. By contrast, B cell depletion in hyperthyroid mice was therapeutically ineffective. Together, these data demonstrate that B cells are critical not only as antibody-producing cells but also as antigen-presenting/immune-modulatory cells in the early phase of the induction of experimental Graves' hyperthyroidism and, although therapeutically less effective, B cell depletion is highly efficient for preventing disease development. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  15. The Neuroprotective Properties of Hericium erinaceus in Glutamate-Damaged Differentiated PC12 Cells and an Alzheimer's Disease Mouse Model.

    Science.gov (United States)

    Zhang, Junrong; An, Shengshu; Hu, Wenji; Teng, Meiyu; Wang, Xue; Qu, Yidi; Liu, Yang; Yuan, Ye; Wang, Di

    2016-11-01

    Hericium erinaceus , an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson's and Alzheimer's disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE) on an l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cellular apoptosis model and an AlCl₃ combined with d-galactose-induced Alzheimer's disease mouse model. The data revealed that HE successfully induced PC12 cell differentiation. A 3 h HE incubation at doses of 50 and 100 µg/mL before 25 mM of l-Glu effectively reversed the reduction of cell viability and the enhancement of the nuclear apoptosis rate in DPC12 cells. Compared with l-Glu-damaged cells, in PC12 cells, HE suppressed intracellular reactive oxygen species accumulation, blocked Ca 2+ overload and prevented mitochondrial membrane potential (MMP) depolarization. In the Alzheimer's disease mouse model, HE administration enhanced the horizontal and vertical movements in the autonomic activity test, improved the endurance time in the rotarod test, and decreased the escape latency time in the water maze test. It also improved the central cholinergic system function in the Alzheimer's mice, demonstrated by the fact that it dose-dependently enhanced the acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations in both the serum and the hypothalamus. Our findings provide experimental evidence that HE may provide neuroprotective candidates for treating or preventing neurodegenerative diseases.

  16. Transmission Properties of Human PrP 102L Prions Challenge the Relevance of Mouse Models of GSS.

    Science.gov (United States)

    Asante, Emmanuel A; Grimshaw, Andrew; Smidak, Michelle; Jakubcova, Tatiana; Tomlinson, Andrew; Jeelani, Asif; Hamdan, Shyma; Powell, Caroline; Joiner, Susan; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2015-07-01

    Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease.

  17. High-resolution gene expression profiling using RNA sequencing in patients with inflammatory bowel disease and in mouse models of colitis

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Kutlu, Burak; Fox, Brian

    2015-01-01

    pathways and assess the similarity between the experimental models and human disease. RNA sequencing was performed on colon biopsies from CD patients, UC patients and non-IBD controls. Genes shown to be significantly dysregulated in human IBD were used to study gene expression in colons from a piroxicam......Proper interpretation of data from preclinical animal studies requires a thorough knowledge about the pathophysiology of both the human disease and animal models. In this study, the expression of IBD-associated genes was characterised in mouse models of colitis to examine the underlying molecular......-accelerated colitis interleukin-10 knockout (PAC IL-10 k.o.), an adoptive transfer (AdTr) and a dextran sulfate sodium (DSS) colitis mouse model. 92 out of 115 literature-defined genes linked to IBD were significantly differentially expressed in inflamed mucosa of CD and/or UC patients compared with non-IBD controls...

  18. Standard Model theory calculations and experimental tests

    International Nuclear Information System (INIS)

    Cacciari, M.; Hamel de Monchenault, G.

    2015-01-01

    To present knowledge, all the physics at the Large Hadron Collider (LHC) can be described in the framework of the Standard Model (SM) of particle physics. Indeed the newly discovered Higgs boson with a mass close to 125 GeV seems to confirm the predictions of the SM. Thus, besides looking for direct manifestations of the physics beyond the SM, one of the primary missions of the LHC is to perform ever more stringent tests of the SM. This requires not only improved theoretical developments to produce testable predictions and provide experiments with reliable event generators, but also sophisticated analyses techniques to overcome the formidable experimental environment of the LHC and perform precision measurements. In the first section, we describe the state of the art of the theoretical tools and event generators that are used to provide predictions for the production cross sections of the processes of interest. In section 2, inclusive cross section measurements with jets, leptons and vector bosons are presented. Examples of differential cross sections, charge asymmetries and the study of lepton pairs are proposed in section 3. Finally, in section 4, we report studies on the multiple production of gauge bosons and constraints on anomalous gauge couplings

  19. IVIM: modeling, experimental validation and application to animal models

    International Nuclear Information System (INIS)

    Fournet, Gabrielle

    2016-01-01

    This PhD thesis is centered on the study of the IVIM ('Intravoxel Incoherent Motion') MRI sequence. This sequence allows for the study of the blood microvasculature such as the capillaries, arterioles and venules. To be sensitive only to moving groups of spins, diffusion gradients are added before and after the 180 degrees pulse of a spin echo (SE) sequence. The signal component corresponding to spins diffusing in the tissue can be separated from the one related to spins travelling in the blood vessels which is called the IVIM signal. These two components are weighted by f IVIM which represents the volume fraction of blood inside the tissue. The IVIM signal is usually modelled by a mono-exponential (ME) function and characterized by a pseudo-diffusion coefficient, D*. We propose instead a bi-exponential IVIM model consisting of a slow pool, characterized by F slow and D* slow corresponding to the capillaries as in the ME model, and a fast pool, characterized by F fast and D* fast, related to larger vessels such as medium-size arterioles and venules. This model was validated experimentally and more information was retrieved by comparing the experimental signals to a dictionary of simulated IVIM signals. The influence of the pulse sequence, the repetition time and the diffusion encoding time was also studied. Finally, the IVIM sequence was applied to the study of an animal model of Alzheimer's disease. (author) [fr

  20. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors.

    Science.gov (United States)

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.

  1. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy.

    Science.gov (United States)

    Nash, Kevin R; Lee, Daniel C; Hunt, Jerry B; Morganti, Josh M; Selenica, Maj-Linda; Moran, Peter; Reid, Patrick; Brownlow, Milene; Guang-Yu Yang, Clement; Savalia, Miloni; Gemma, Carmelina; Bickford, Paula C; Gordon, Marcia N; Morgan, David

    2013-06-01

    Alzheimer's disease is characterized by amyloid plaques, neurofibrillary tangles, glial activation, and neurodegeneration. In mouse models, inflammatory activation of microglia accelerates tau pathology. The chemokine fractalkine serves as an endogenous neuronal modulator to quell microglial activation. Experiments with fractalkine receptor null mice suggest that fractalkine signaling diminishes tau pathology, but exacerbates amyloid pathology. Consistent with this outcome, we report here that soluble fractalkine overexpression using adeno-associated viral vectors significantly reduced tau pathology in the rTg4510 mouse model of tau deposition. Furthermore, this treatment reduced microglial activation and appeared to prevent neurodegeneration normally found in this model. However, in contrast to studies with fractalkine receptor null mice, parallel studies in an APP/PS1 model found no effect of increased fractalkine signaling on amyloid deposition. These data argue that agonism at fractalkine receptors might be an excellent target for therapeutic intervention in tauopathies, including those associated with amyloid deposition. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease.

    Science.gov (United States)

    Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; Cunha, Sandro Torrentes da; Paula, Luis Felipe; Carvalho, Alysson Roncally; Carvalho, Antonio Carlos Campos de; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli Dos Santos

    2017-08-01

    Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.

  3. In vitro culture of pre-implanted mouse embryos. A model system for studying combined effects

    International Nuclear Information System (INIS)

    Streffer, C.; Beuningen, D. van; Molls, M.; Pon, A.; Schulz, S.; Zamboglou, N.

    1978-01-01

    Studies on combined effects, e.g. interaction between chemical toxicants and ionizing radiation, are difficult to perform, as they are dependent on many factors (substance concentration, radiation dose, sequence of treatments, etc.). In order to obtain data from such studies it is necessary to establish a comparatively simple experimental model system. We have established such a model system by studying combined effects on pre-implanted mouse embryos cultured in vitro. This system has the following advantages: (1) The embryos can be cultivated for several days in vitro; (2) Their physiological intactness can be tested; and (3) Cell proliferation, cell killing and chromosomal damage can be investigated comparatively easily. The embryos are isolated at the 2-cell stage and incubated in a culture medium in vitro. The development of the embryos is followed under the microscope until the development of blastocysts or the hatching of blastocysts is observed. These blastocysts can be transplanted to fostered mice and the development of normal animals determined. The proliferation kinetics can be studied easily, and the methods are described. A method has also been developed to measure the DNA content of individual cells by microscope fluorometry. After treatment of the embryos with ionizing radiation or drugs the release of micronuclei has been observed from the cell nuclei, which is an expression for chromosomal damage. Substances or radionuclides can be added to the culture medium or external irradiation can be performed during the culture period. Also the combined effects of radiation and heating can be studied. The effects of X-rays and tritiated compounds have also been investigated. The combined effects of radiation with antibiotics such as actinomycin D, and environmental toxicants such as lead, have been determined. The system described has been useful to evaluate cytological, teratogenic and cytogenetic effects

  4. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease

    OpenAIRE

    Van Leuven Fred; Wera Stefaan; Van der Auwera Ingrid; Henderson Samuel T

    2005-01-01

    Abstract Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-β (Aβ) deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Results S...

  5. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model

    OpenAIRE

    Cho, Seo-Hee; Song, Ji Yun; Shin, Jinyeon; Kim, Seonhee

    2016-01-01

    Background Mutations of Crb1 gene cause irreversible and incurable visual impairment in humans. This study aims to use an LCA8-like mouse model to identify host-mediated responses that might interfere with survival, retinal integration and differentiation of grafted cells during neonatal cell therapy. Methods Mixed retinal donor cells (1?~?2???104) isolated from neural retinas of neonatal eGFP transgenic mice were injected into the subretinal space of LCA8-like model neonatal mice. Markers of...

  6. Dissociation of social and nonsocial anxiety in a mouse model of fragile X syndrome

    OpenAIRE

    Liu, Zhong-Hua; Smith, Carolyn Beebe

    2009-01-01

    Anxiety is a common symptom in fragile X patients. However, an anxiety-prone phenotype in mouse models of fragile X syndrome is not clear. In most studies of fmr1 knockout mice, decreased anxiety-like responses in exploratory-based models are found, but mice also exhibit abnormal social interactions. We hypothesize the coexistence of elevated social anxiety and reduced nonsocial anxiety in fmr1 knockout mice. In the present study, we applied an automated three-chambered social approach method...

  7. Brain Transcriptome Profiles in Mouse Model Simulating Features of Post-traumatic Stress Disorder

    Science.gov (United States)

    2015-02-28

    analyses of DEGs suggested pos- sible roles in anxiety-related behavioral responses, synaptic plasticity, neurogenesis, inflammation, obesity...Behavioral evaluation of mouse model We established [29] a rodent model manifesting PTSD- like behavioral features. We believe that, because the stres - sor...hippo- campus (HC), medial prefrontal cortex (MPFC) play primary roles in fear learning and memory, and thus, may contribute to the behavioral

  8. DISC1 mouse models as a tool to decipher gene-environment interactions in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tyler eCash-Padgett

    2013-09-01

    Full Text Available DISC1 was discovered in a Scottish pedigree in which a chromosomal translocation that breaks this gene segregates with psychiatric disorders, mainly depression and schizophrenia. Linkage and association studies in diverse populations support DISC1 as a susceptibility gene to a variety of neuropsychiatric disorders. Many Disc1 mouse models have been generated to study its neuronal functions. These mouse models display variable phenotypes, some of them relevant to schizophrenia, others to depression.The Disc1 mouse models are popular genetic models for studying gene-environment interactions in schizophrenia. Five different Disc1 models have been combined with environmental factors. The environmental stressors employed can be classified as either early immune activation or later social paradigms. These studies cover major time points along the neurodevelopmental trajectory: prenatal, early postnatal, adolescence, and adulthood. Various combinations of molecular, anatomical and behavioral methods have been used to assess the outcomes. Additionally, three of the studies sought to rescue the resulting abnormalities.Here we provide background on the environmental paradigms used, summarize the results of these studies combining Disc1 mouse models with environmental stressors and discuss what we can learn and how to proceed. A major question is how the genetic and environmental factors determine which psychiatric disorder will be clinically manifested. To address this we can take advantage of the many Disc1 models available and expose them to the same environmental stressor. The complementary experiment would be to expose the same model to different environmental stressors. DISC1 is an ideal gene for this approach, since in the Scottish pedigree the same chromosomal translocation results in different psychiatric conditions.

  9. Mobile Laser Indirect Ophthalmoscope: For the Induction of Choroidal Neovascularization in a Mouse Model.

    Science.gov (United States)

    Weinberger, Dov; Bor-Shavit, Elite; Barliya, Tilda; Dahbash, Mor; Kinrot, Opher; Gaton, Dan D; Nisgav, Yael; Livnat, Tami

    2017-11-01

    This study aims to evaluate and standardize the reliability of a mobile laser indirect ophthalmoscope in the induction of choroidal neovascularization (CNV) in a mouse model. A diode laser indirect ophthalmoscope was used to induce CNV in pigmented male C57BL/6J mice. Standardization of spot size and laser intensity was determined using different aspheric lenses with increasing laser intensities applied around the optic disc. Development of CNV was evaluated 1, 5, and 14 days post laser application using fluorescein angiography (FA), histology, and choroidal flat mounts stained for the endothelial marker CD31 and FITC-dextran. Correlation between the number of laser hits to the number and size of developed CNV lesions was determined using flat mount choroid staining. The ability of intravitreally injected anti-human and anti-mouse VEGF antibodies to inhibit CNV induced by the mobile laser was evaluated. Laser parameters were standardized on 350 mW for 100 msec, using the 90 diopter lens to accomplish the highest incidence of Bruch's membrane rupture. CNV lesions' formation was validated on days 5 and 14 post laser injury, though FA showed leakage on as early as day 1. The number of laser hits was significantly correlated with the CNV area. CNV growth was successfully inhibited by both anti-human and mouse VEGF antibodies. The mobile laser indirect ophthalmoscope can serve as a feasible and a reliable alternative method for the CNV induction in a mouse model.

  10. ¹H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors.

    Science.gov (United States)

    Hulsey, Keith M; Mashimo, Tomoyuki; Banerjee, Abhishek; Soesbe, Todd C; Spence, Jeffrey S; Vemireddy, Vamsidhara; Maher, Elizabeth A; Bachoo, Robert M; Choi, Changho

    2015-01-01

    Glioblastoma (GBM), the most common primary brain tumor, is resistant to currently available treatments. The development of mouse models of human GBM has provided a tool for studying mechanisms involved in tumor initiation and growth as well as a platform for preclinical investigation of new drugs. In this study we used (1) H MR spectroscopy to study the neurochemical profile of a human orthotopic tumor (HOT) mouse model of human GBM. The goal of this study was to evaluate differences in metabolite concentrations in the GBM HOT mice when compared with normal mouse brain in order to determine if MRS could reliably differentiate tumor from normal brain. A TE =19 ms PRESS sequence at 9.4 T was used for measuring metabolite levels in 12 GBM mice and 8 healthy mice. Levels for 12 metabolites and for lipids/macromolecules at 0.9 ppm and at 1.3 ppm were reliably detected in all mouse spectra. The tumors had significantly lower concentrations of total creatine, GABA, glutamate, total N-acetylaspartate, aspartate, lipids/macromolecules at 0.9 ppm, and lipids/macromolecules at 1.3 ppm than did the brains of normal mice. The concentrations of glycine and lactate, however, were significantly higher in tumors than in normal brain. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Estimating Lead (Pb) Bioavailability In A Mouse Model

    Science.gov (United States)

    Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...

  12. Salmon cartilage proteoglycan suppresses mouse experimental colitis through induction of Foxp3+ regulatory T cells

    International Nuclear Information System (INIS)

    Mitsui, Toshihito; Sashinami, Hiroshi; Sato, Fuyuki; Kijima, Hiroshi; Ishiguro, Yoh; Fukuda, Shinsaku; Yoshihara, Shuichi; Hakamada, Ken-Ichi; Nakane, Akio

    2010-01-01

    Research highlights: → Salmon proteoglycan suppresses IL-10 -/- cell transfer-induced colitis progression. → Salmon proteoglycan suppresses Th1- and Th17-related factors in colitis mice. → Salmon proteoglycan enhances Foxp3 expression. -- Abstract: Proteoglycans (PGs) are complex glycohydrates which are widely distributed in extracellular matrix (ECM). PGs are involved in the construction of ECM, cell proliferation and differentiation. ECM components are involved in transduction of proinflammatory responses, but it is still unknown whether PGs are involved in inflammatory response. In this study, we investigated the effect of PG extracted from salmon cartilage on the progression of experimental colitis-induced in severe combined immunodeficiency mice by cell transfer from interleukin-10 (IL-10) -/- mice. IL-10 -/- cell-transferred mice showed weight loss, colon shortening and histological appearance of mild colitis. Daily oral administration of PG attenuated the clinical progression of colitis in a dose-dependent manner. Colitis-induced mice showed the elevated expression of IFN-γ, IL-12, TNF-α, IL-21, IL-23p19, IL-6, IL-17A and retinoic acid-related orphan receptor γt (RORγt) in lamina propria mononuclear cells (LPMCs) and oral administration of PG suppressed the expression of these factors. Conversely, expression of Foxp3 that induces CD4 + CD25 + regulatory T cells in LPMCs was enhanced by PG administration. These findings suggested that salmon PG attenuated the progression of colitis due to suppression of inflammatory response by enhancement of regulatory T cell induction.

  13. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ‡

    Science.gov (United States)

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1–20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8–14 days post-immunization, shortly before EAU expression, but ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses and this effect was γδ T cell-dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help improve the design of ADA- and AR-targeted therapies. PMID:26856700

  14. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    Science.gov (United States)

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A Mathematical Model of Skeletal Muscle Disease and Immune Response in the mdx Mouse

    Directory of Open Access Journals (Sweden)

    Abdul Salam Jarrah

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is a genetic disease that results in the death of affected boys by early adulthood. The genetic defect responsible for DMD has been known for over 25 years, yet at present there is neither cure nor effective treatment for DMD. During early disease onset, the mdx mouse has been validated as an animal model for DMD and use of this model has led to valuable but incomplete insights into the disease process. For example, immune cells are thought to be responsible for a significant portion of muscle cell death in the mdx mouse; however, the role and time course of the immune response in the dystrophic process have not been well described. In this paper we constructed a simple mathematical model to investigate the role of the immune response in muscle degeneration and subsequent regeneration in the mdx mouse model of Duchenne muscular dystrophy. Our model suggests that the immune response contributes substantially to the muscle degeneration and regeneration processes. Furthermore, the analysis of the model predicts that the immune system response oscillates throughout the life of the mice, and the damaged fibers are never completely cleared.

  16. Riluzole does not improve lifespan or motor function in three ALS mouse models.

    Science.gov (United States)

    Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M

    2017-12-08

    Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.

  17. COMPARATIVE EFFICIENCIES STUDY OF SLOT MODEL AND MOUSE MODEL IN PRESSURISED PIPE FLOW

    Directory of Open Access Journals (Sweden)

    Saroj K. Pandit

    2014-01-01

    Full Text Available The flow in sewers is unsteady and variable between free-surfac e to full pipe pressurized flow. Sewers are designed on the basis of free surf ace flow (gravity flow however they may carry pressurized flow. Preissmann Slot concep t is widely used numerical approach in unsteady free surface-pressurized flow as it provides the advantage of using free surface flow as a single type flow. Slo t concept uses the Saint- Venant’s equations as a basic equation for one-dimensional unst eady free surface flow. This paper includes two different numerical models using Saint Venant’s equations. The Saint Venant’s e quations of continuity and momen tum are solved by the Method of Characteristics and presented in forms for direct substitution into FORTRAN programming for numerical analysis in the first model. The MOUSE model carries out computation of unsteady flows which is founde d on an implicit, finite difference numerical solut ion of the basic one dimension al Saint Venant’s equations of free surface flow. The simulation results are comp ared to analyze the nature and degree of errors for further improvement.

  18. In vivo bioluminescence imaging for leptomeningeal dissemination of medulloblastoma in mouse models

    International Nuclear Information System (INIS)

    Choi, Seung Ah; Kwak, Pil Ae; Kim, Seung-Ki; Park, Sung-Hye; Lee, Ji Yeoun; Wang, Kyu-Chang; Oh, Hyun Jeong; Kim, Kyuwan; Lee, Dong Soo; Hwang, Do Won; Phi, Ji Hoon

    2016-01-01

    The primary cause of treatment failure in medulloblastomas (MB) is the development of leptomeningeal dissemination (seeding). For translational research on MB seeding, one of the major challenges is the development of reliable experimental models that simulate the seeding and growth characteristics of MBs. To overcome this obstacle, we improved an experimental mouse model by intracisternal inoculation of human MB cells and monitoring with in vivo live images. Human MB cells (UW426, D283 and MED8A) were transfected with a firefly luciferase gene and a Thy1.1 (CD90.1) marker linked with IRES under the control of the CMV promoter in a retroviral DNA backbone (effLuc). The MB-effLuc cells were injected into the cisterna magna using an intrathecal catheter, and bioluminescence images were captured. We performed histopathological analysis to confirm the extent of tumor seeding. The luciferase activity of MB-effLuc cells displayed a gradually increasing pattern, which correlated with a quantitative luminometric assay. Live imaging showed that the MB-effLuc cells were diffusely distributed in the cervical spinal cord and the lumbosacral area. All mice injected with UW426-effLuc, D283-effLuc and MED8A-effLuc died within 51 days. The median survival was 22, 41 and 12 days after injection of 1.2 × 10 6 UW426-effLuc, D283-effLuc and MED8A-effLuc cells, respectively. The histopathological studies revealed that the MB-effLuc cells spread extensively and diffusely along the leptomeninges of the brain and spinal cord, forming tumor cell-coated layers. The tumor cells in the subarachnoid space expressed a human nuclei marker and Ki-67. Compared with the intracerebellar injection method in which the subfrontal area and distal spinal cord were spared by tumor cell seeding in some mice, the intracisternal injection model more closely resembled the widespread leptomeningeal seeding observed in MB patients. The results and described method are valuable resources for further

  19. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  20. Salmon cartilage proteoglycan suppresses mouse experimental colitis through induction of Foxp3{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Toshihito [Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562 (Japan); Department of Digestive Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Sashinami, Hiroshi [Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562 (Japan); Sato, Fuyuki; Kijima, Hiroshi [Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Ishiguro, Yoh; Fukuda, Shinsaku [Department of Digestive Internal Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Yoshihara, Shuichi [Department of Glycomedicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Hakamada, Ken-Ichi [Department of Digestive Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Nakane, Akio, E-mail: a27k03n0@cc.hirosaki-u.ac.jp [Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562 (Japan)

    2010-11-12

    Research highlights: {yields} Salmon proteoglycan suppresses IL-10{sup -/-} cell transfer-induced colitis progression. {yields} Salmon proteoglycan suppresses Th1- and Th17-related factors in colitis mice. {yields} Salmon proteoglycan enhances Foxp3 expression. -- Abstract: Proteoglycans (PGs) are complex glycohydrates which are widely distributed in extracellular matrix (ECM). PGs are involved in the construction of ECM, cell proliferation and differentiation. ECM components are involved in transduction of proinflammatory responses, but it is still unknown whether PGs are involved in inflammatory response. In this study, we investigated the effect of PG extracted from salmon cartilage on the progression of experimental colitis-induced in severe combined immunodeficiency mice by cell transfer from interleukin-10 (IL-10){sup -/-} mice. IL-10{sup -/-} cell-transferred mice showed weight loss, colon shortening and histological appearance of mild colitis. Daily oral administration of PG attenuated the clinical progression of colitis in a dose-dependent manner. Colitis-induced mice showed the elevated expression of IFN-{gamma}, IL-12, TNF-{alpha}, IL-21, IL-23p19, IL-6, IL-17A and retinoic acid-related orphan receptor {gamma}t (ROR{gamma}t) in lamina propria mononuclear cells (LPMCs) and oral administration of PG suppressed the expression of these factors. Conversely, expression of Foxp3 that induces CD4{sup +}CD25{sup +} regulatory T cells in LPMCs was enhanced by PG administration. These findings suggested that salmon PG attenuated the progression of colitis due to suppression of inflammatory response by enhancement of regulatory T cell induction.

  1. Mouse model in food allergy: dynamic determination of shrimp ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... Available online at http://www.academicjournals.org/AJB ... Food allergy is now an important health issue, and there is urgent need for a developmental approach to identify ... ideal model and method for the characterization of.

  2. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection.

    Science.gov (United States)

    Carraro, Mattia; Park, Albert H; Harrison, Robert V

    2016-02-01

    Some forms of sensorineural hearing loss involve damage or degenerative changes to the stria vascularis and/or other vascular structures in the cochlea. In animal models, many methods for anatomical assessment of cochlear vasculature exist, each with advantages and limitations. One methodology, corrosion casting, has proved useful in some species, however in the mouse model this technique is difficult to achieve because digestion of non vascular tissue results in collapse of the delicate cast specimen. We have developed a partial corrosion cast method that allows visualization of vasculature along much of the cochlear length but maintains some structural integrity of the specimen. We provide a detailed step-by-step description of this novel technique. We give some illustrative examples of the use of the method in mouse models of presbycusis and cytomegalovirus (CMV) infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Automatic Assessment of Craniofacial Growth in a Mouse Model of Crouzon Syndrome

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Larsen, Rasmus; Darvann, Tron Andre

    2009-01-01

    for each mouse-type; growth models were created using linear interpolation and visualized as 3D animations. Spatial regions of significantly different growth were identified using the local False Discovery Rate method, estimating the expected percentage of false predictions in a set of predictions. For all......-rigid volumetric image registration was applied to micro-CT scans of ten 4-week and twenty 6-week euthanized mice for growth modeling. Each age group consisted of 50% normal and 50% Crouzon mice. Four 3D mean shapes, one for each mouse-type and age group were created. Extracting a dense field of growth vectors...... a tool for spatially detailed automatic phenotyping. MAIN OBJECTIVES OF PRESENTATION: We will present a 3D growth model of normal and Crouzon mice, and differences will be statistically and visually compared....

  4. Mouse models in liver cancer research: A review of current literature

    Science.gov (United States)

    Leenders, Martijn WH; Nijkamp, Maarten W; Rinkes, Inne HM Borel

    2008-01-01

    Primary liver cancer remains one of the most lethal malignancies worldwide. Due to differences in prevalence of etiological factors the incidence of primary liver cancer varies among the world, with a peak in East-Asia. As this disease is still lethal in most of the cases, research has to be done to improve our understanding of the disease, offering insights for possible treatment options. For this purpose, animal models are widely used, especially mouse models. In this review, we describe the different types of mouse models used in liver cancer research, with emphasis on genetically engineered mice used in this field. We focus on hepatocellular carcinoma (HCC), as this is by far the most common type of primary liver cancer, accounting for 70%-85% of cases. PMID:19058325

  5. Injury Based on Its Study in Experimental Models

    Directory of Open Access Journals (Sweden)

    M. Mendes-Braz

    2012-01-01

    Full Text Available The present review focuses on the numerous experimental models used to study the complexity of hepatic ischemia/reperfusion (I/R injury. Although experimental models of hepatic I/R injury represent a compromise between the clinical reality and experimental simplification, the clinical transfer of experimental results is problematic because of anatomical and physiological differences and the inevitable simplification of experimental work. In this review, the strengths and limitations of the various models of hepatic I/R are discussed. Several strategies to protect the liver from I/R injury have been developed in animal models and, some of these, might find their way into clinical practice. We also attempt to highlight the fact that the mechanisms responsible for hepatic I/R injury depend on the experimental model used, and therefore the therapeutic strategies also differ according to the model used. Thus, the choice of model must therefore be adapted to the clinical question being answered.

  6. Prospects of experimentally reachable beyond Standard Model ...

    Indian Academy of Sciences (India)

    2016-01-06

    Jan 6, 2016 ... Since then, the theory has been experimentally verified to a ... Despite the fact that SM has unravelled the gauge origin of fundamental forces and the structure of Universe while successfully confronting numerous ...

  7. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    Directory of Open Access Journals (Sweden)

    Nicolas Vignier

    Full Text Available Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD, limb-girdle muscular dystrophy type 2D (LGMD2D, limb-girdle muscular dystrophy type 2C (LGMD2C, Emery-Dreifuss muscular dystrophy (EDMD and hypertrophic cardiomyopathy (HCM. Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  8. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease.

    Science.gov (United States)

    Yhnell, Emma; Dunnett, Stephen B; Brooks, Simon P

    2016-05-31

    Huntington's disease (HD) is a rare, incurable neurodegenerative disorder caused by a CAG trinucleotide expansion with the first exon of the huntingtin gene. Numerous knock-in mouse models are currently available for modelling HD. However, before their use in scientific research, these models must be characterised to determine their face and predictive validity as models of the disease and their reliability in recapitulating HD symptoms. Manifest HD is currently diagnosed upon the onset of motor symptoms, thus we sought to longitudinally characterise the progression and severity of motor signs in the HdhQ111 knock-in mouse model of HD, in heterozygous mice. An extensive battery of motor tests including: rotarod, inverted lid test, balance beam, spontaneous locomotor activity and gait analysis were applied longitudinally to a cohort of HdhQ111 heterozygous mice in order to progressively assess motor function. A progressive failure to gain body weight was demonstrated from 11 months of age and motor problems in all measures of balance beam performance were shown in HdhQ111 heterozygous animals in comparison to wild type control animals from 9 months of age. A decreased latency to fall from the rotarod was demonstrated in HdhQ111 heterozygous animals in comparison to wild type animals, although this was not progressive with time. No genotype specific differences were demonstrated in any of the other motor tests included in the test battery. The HdhQ111 heterozygous mouse demonstrates a subtle and progressive motor phenotype that begins at 9 months of age. This mouse model represents an early disease stage and would be ideal for testing therapeutic strategies that require elongated lead-in times, such as viral gene therapies or striatal transplantation.

  9. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson's disease.

    Science.gov (United States)

    Thiele, Sherri L; Warre, Ruth; Nash, Joanne E

    2012-02-14

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients(1-4). However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise(3,5). In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)(8), allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice(9,10). However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer(11). More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia(11,12,13,14) was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse(15). Whilst this

  10. Dose-response study of the hematological toxicity induced by vectorized radionuclides in a mouse model

    International Nuclear Information System (INIS)

    Rousseau-Poivet, J.; Sas, N.; Nguyen, F.; Abadie, J.; Chouin, N.; Barbet, J.

    2015-01-01

    Full text of publication follows. Aim: in internal radiotherapy, the dose-limiting factor is often the bone marrow (BM) toxicity. In patients, its relationship with the BM absorbed dose seems to be elusive. Most probable reasons are the BM depletion following previous treatments associated to dose assessment complexity. To avoid this and better understand myelotoxicity mechanisms, we investigated hematopoiesis from BM to blood after radionuclide injections in healthy mice associated to individual BM dosimetry. Based on these data, a compartmental model was developed to predict the depletion of each mouse hematopoietic cell in a dose-dependent manner. Materials and methods: C57/Bl6 mice were injected with increasing activities of 18 FNa, an osteo-tropic agent. Mean absorbed doses to the BM were calculated using the MIRD formalism with the mineralized bone considered as the principal source of 18 FNa. Time-integrated activities within the skeleton were derived from dynamic micro PET-CT images. Hematological toxicity was monitored via blood cell counts and myeloid progenitor colony assays over time after injection. The myelotoxicity model consists in compartments for each hematopoietic cell. Its parameters were adjusted to reproduce experimental toxicities. Results: for an absorbed dose to the BM of 0.8 ± 0.1 Gy, myeloid progenitors showed a 84% depletion 84% at day 7 post-injection (D7) and a recovery at D14 for all precursors and D21 for the less differentiated progenitor. In blood, neutrocytopenia was observed at D3 (80% decrease) and recovered at D7. Thrombocytopenia was also noticed between D7 and D17 with a nadir at D7 (26% of depletion). The compartmental model predicted platelets kinetics in a satisfying manner. The nadir value, time to nadir and time to recovery were estimated with errors of 4.9%, 10.2% and 10% respectively. Whereas higher absorbed doses only increased platelets depletion (62% associated to 1.4 Gy), they extended the recovery time for all

  11. Quantification of Lung Metastases from In Vivo Mouse Models

    DEFF Research Database (Denmark)

    Chang, Joan; Erler, Janine T

    2016-01-01

    Cancer research has made significant progress in terms of understanding and targeting primary tumors; however, the challenge remains for the successful treatment of metastatic cancers. This highlights the importance to use in vivo models to study the metastatic process, as well as for preclinical...

  12. Mouse models of acute and chronic hepacivirus infection

    DEFF Research Database (Denmark)

    Billerbeck, Eva; Wolfisberg, Raphael; Fahnøe, Ulrik

    2017-01-01

    An estimated 71 million people worldwide are infected with hepatitis C virus (HCV). The lack of small-animal models has impeded studies of antiviral immune mechanisms. Here we show that an HCV-related hepacivirus discovered in Norway rats can establish high-titer hepatotropic infections in labora...

  13. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ- free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  14. Organoid Models of Human and Mouse Ductal Pancreatic Cancer

    NARCIS (Netherlands)

    Boj, Sylvia F.; Hwang, Chang-Il; Baker, Lindsey A.; Chio, Iok In Christine; Engle, Dannielle D.; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Herve; Spector, Mona S.; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H.; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D.; Wilson, John P.; Feigin, Michael E.; Oehlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M.; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N.; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H. M.; Molenaar, IQ; Borel Rinkes, Inne H.; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J.; Iacobuzio-Donahue, Christine; Leach, Steven D.; Pappin, Darryl J.; Hammell, Molly; Klimstra, David S.; Basturk, Olca; Hruban, Ralph H.; Offerhaus, George Johan; Vries, Robert G. J.; Clevers, Hans; Tuveson, David A.

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and

  15. Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy.

    Directory of Open Access Journals (Sweden)

    Franziska Altmüller

    2017-03-01

    Full Text Available Noonan syndrome (NS is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity

  16. Insights into mechanisms of transmission and pathogenesis from transgenic mouse models of prion diseases

    Science.gov (United States)

    Moreno, Julie A.; Telling, Glenn C.

    2018-01-01

    Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSE’s), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSE’s, is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer’s and Parkinson’s diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect inter-species prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review we will focus on advances in our understanding of prion biology that

  17. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus.

    Science.gov (United States)

    Gómez-Guzmán, Manuel; Jiménez, Rosario; Romero, Miguel; Sánchez, Manuel; Zarzuelo, María José; Gómez-Morales, Mercedes; O'Valle, Francisco; López-Farré, Antonio José; Algieri, Francesca; Gálvez, Julio; Pérez-Vizcaino, Francisco; Sabio, José Mario; Duarte, Juan

    2014-08-01

    Hydroxychloroquine has been shown to be efficacious in the treatment of autoimmune diseases, including systemic lupus erythematosus. Hydroxychloroquine-treated lupus patients showed a lower incidence of thromboembolic disease. Endothelial dysfunction, the earliest indicator of the development of cardiovascular disease, is present in lupus. Whether hydroxychloroquine improves endothelial function in lupus is not clear. The aim of this study was to analyze the effects of hydroxychloroquine on hypertension, endothelial dysfunction, and renal injury in a female mouse model of lupus. NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with hydroxychloroquine 10 mg/kg per day by oral gavage, or with tempol and apocynin in the drinking water, for 5 weeks. Hydroxychloroquine treatment did not alter lupus disease activity (assessed by plasma double-stranded DNA autoantibodies) but prevented hypertension, cardiac and renal hypertrophy, proteinuria, and renal injury in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and enhanced contraction to phenylephrine, which were normalized by hydroxychloroquine or antioxidant treatments. No differences among all experimental groups were found in both the relaxant responses to acetylcholine and the contractile responses to phenylephrine in rings incubated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. Vascular reactive oxygen species content and mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase subunits NOX-1 and p47(phox) were increased in lupus mice and reduced by hydroxychloroquine or antioxidants. Chronic hydroxychloroquine treatment reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, despite the persistent elevation of anti-double-stranded DNA, suggesting the involvement of new additional mechanisms to improve cardiovascular complications. © 2014 American Heart Association, Inc.

  18. 7,12-Dimethylbenz[a]anthracene-Induced Malignancies in a Mouse Model of Menopause

    Science.gov (United States)

    Marion, Samuel L; Watson, Jennifer; Sen, Nivedita; Brewer, Molly A; Barton, Jennifer K; Hoyer, Patricia B

    2013-01-01

    Ovarian cancer has a high mortality rate because there are few symptoms in early disease development. The incidence of ovarian cancer increases in women after menopause. Understanding early events in this disease can best be achieved by using animal models. Therefore, the objective of this study was to develop and track the onset of ovarian tumorigenesis in mice mimicking characteristics of postmenopausal epithelial cancer in women. Female B6C3F1 mice (age, 28 d) received 4-vinylcyclohexene diepoxide (VCD, 160 mg/kg IV daily for 20 d) to cause ovarian failure. Four months after VCD treatment, via surgical intervention, each mouse received a single injection of 7,12-dimethylbenz[a]anthracene (DMBA) or vehicle control (sesame oil) under the bursa of the right ovary to cause ovarian neoplasms. The experimental groups were untreated controls (Con–Con), DMBA-treatment only (Con–DMBA), VCD treatment only (VCD–Con), and VCD+DMBA-treated (VCD+DMBA) mice. At 3, 5, 7, and 9 mo after DMBA injection, ovaries were collected for histologic and immunohistochemical evaluation. No tumors developed in Con–Con mice. All VCD-treated mice (with or without DMBA) exhibited ovarian failure. Mice that received both VCD and DMBA exhibited tumors at 3 mo (50%), 5 mo (14%), 7 mo (90%), and 9 mo (57%) after DMBA treatment; 31% of the tumors were epithelial in origin. Our findings confirm that inducing ovarian tumors in mice by chemical means is an effective method for studying early stages of tumor development that may be relevant to epithelial ovarian cancers that arise in postmenopausal women. PMID:23561932

  19. Imaging of intestinal lymphocyte homing by means of pinhole SPECT in a TNBS colitis mouse model

    International Nuclear Information System (INIS)

    Bennink, Roelof J.; Montfrans, Catherine van; Jonge, Wouter J. de; Bruin, Kora de; Deventer, Sander J. van; Velde, Anje A. te

    2004-01-01

    Background and aims: The increasing knowledge of the molecular basis of leukocyte trafficking results in the development of novel anti-inflammatory strategies for inflammatory bowel disease (IBD). For optimal evaluation of therapy efficacy, information about inflammatory activity in bowel segments or lymphocyte recirculation and kinetics in the follow-up of experimental treatment for IBD is needed. The aim of this study was to evaluate a non-invasive scintigraphic technique, able to assess lymphocyte trafficking in a trinitrobenzene sulfonic acid (TNBS) induced mouse colitis model of IBD. Methods: TNBS sensitized and non-sensitized murine total splenocytes were labeled in vitro with 111 In-oxine and injected into either control or TNBS colitis BALB/c mice. Biodistribution and specific radioactive uptake, representing transferred cells, were determined by serial dedicated animal planar scintigraphy and pinhole SPECT of the abdomen 4, 24 and 48h post injection of labeled cells. In addition, the severity of inflammation was. Results: Migration of 111 In labeled splenocytes to the colon increased in time and was maximal at 48h after administration. The highest specific radioactive uptake ratio in the colon after 48h was observed in mice with TNBS colitis that received TNBS sensitized lymphocytes. Histological scoring confirmed the presence of colitis in the TNBS treated groups. Conclusion: Homing of TNBS-sensitized lymphocytes can be assessed in vivo by means of dedicated animal pinhole SPECT. Generally, this technique enables serial measurement of specific cell trafficking with potential of in vivo evaluation of novel anti-inflammatory strategies in inflammatory bowel disease

  20. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.

    Science.gov (United States)

    Kim, Dong Eon; Lee, Yonghyun; Kim, MinGyo; Lee, Soyoung; Jon, Sangyong; Lee, Seung-Hyo

    2017-09-01

    Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4 + T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN.

    Science.gov (United States)

    Kyte, S Lauren; Toma, Wisam; Bagdas, Deniz; Meade, Julie A; Schurman, Lesley D; Lichtman, Aron H; Chen, Zhi-Jian; Del Fabbro, Egidio; Fang, Xianjun; Bigbee, John W; Damaj, M Imad; Gewirtz, David A

    2018-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments. Our studies were designed to investigate whether nicotine can prevent and/or reverse paclitaxel-induced peripheral neuropathy in a mouse model of CIPN, while ensuring that nicotine will not stimulate lung tumor cell proliferation or interfere with the antitumor properties of paclitaxel. Male C57BL/6J mice received paclitaxel every other day for a total of four injections (8 mg/kg, i.p.). Acute (0.3-0.9 mg/kg, i.p.) and chronic (24 mg/kg per day, s.c.) administration of nicotine respectively reversed and prevented paclitaxel-induced mechanical allodynia. Blockade of the antinociceptive effect of nicotine with mecamylamine and methyllycaconitine suggests that the reversal of paclitaxel-induced mechanical allodynia is primarily mediated by the α 7 nicotinic acetylcholine receptor subtype. Chronic nicotine treatment also prevented paclitaxel-induced intraepidermal nerve fiber loss. Notably, nicotine neither promoted proliferation of A549 and H460 non-small cell lung cancer cells nor interfered with paclitaxel-induced antitumor effects, including apoptosis. Most importantly, chronic nicotine administration did not enhance Lewis lung carcinoma tumor growth in C57BL/6J mice. These data suggest that the nicotinic acetylcholine receptor-mediated pathways may be promising drug targets for the prevention and treatment of CIPN. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Mouse Models Applied to the Research of Pharmacological Treatments in Asthma.

    Science.gov (United States)

    Marqués-García, Fernando; Marcos-Vadillo, Elena

    2016-01-01

    Models developed for the study of asthma mechanisms can be used to investigate new compounds with pharmacological activity against this disease. The increasing number of compounds requires a preclinical evaluation before starting the application in humans. Preclinical evaluation in animal models reduces the number of clinical trials positively impacting in the cost and in safety. In this chapter, three protocols for the study of drugs are shown: a model to investigate corticoids as a classical treatment of asthma; a protocol to test the effects of retinoic acid (RA) on asthma; and a mouse model to test new therapies in asthma as monoclonal antibodies.

  3. A mouse model for binge-like sucrose overconsumption: Contribution of enhanced motivation for sweetener consumption.

    Science.gov (United States)

    Yasoshima, Yasunobu; Shimura, Tsuyoshi

    2015-01-01

    Behavioral and neural features of binge-like sugar overconsumption have been studied using rat models. However, few mouse models are available to examine the interaction between neural and genetic underpinnings of bingeing. In the present study, we first aim to establish a simple mouse model of binge-like sucrose overconsumption using daytime limited access training in food-restricted male mice. Trained mice received 4-h limited access to both 0.5M sucrose solution and chow for 10 days. Three control groups received (1) 4-h sucrose and 20-h chow access, (2) 20-h sucrose and 4-h, or (3) 20-h chow access, respectively. Only the trained group showed progressively increased sucrose consumption during brief periods of time and developed binge-like excessive behavior. Next, we examined whether the present mouse model mimicked a human feature of binge eating known as "eating when not physically hungry." Trained mice consumed significantly more sucrose or non-caloric sweetener (saccharin) during post-training days even after they nocturnally consumed substantial chow prior to daytime sweetener access. In other trained groups, both a systemic administration of glucose and substantial chow consumption prior to the daytime limited sucrose access failed to reduce binge-like sucrose overconsumption. Our results suggest that even when caloric consumption is not necessarily required, limited access training shapes and triggers binge-like overconsumption of sweetened solution in trained mice. The binge-like behavior in trained mice may be mainly due to enhanced hedonic motivation for the sweetener's taste. The present study suggests that our mouse model for binge-like sugar overconsumption may mimic some human features of binge eating and can be used to investigate the roles of neural and genetic mechanisms in binge-like overconsumption of sweetened substances in the absence of physical hunger. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effects of gypenosides on anxiety disorders in MPTP-lesioned mouse model of Parkinson's disease.

    Science.gov (United States)

    Shin, Keon Sung; Zhao, Ting Ting; Choi, Hyun Sook; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo

    2014-06-03

    Ethanol extract (GP-EX) of Gynostemma pentaphyllum (GP) ameliorates chronic stress-induced anxiety in mice. The present study investigated the effects of gypenoside-enriched components (GPS), GP-EX and water extract of GP (GP-WX) on MPTP lesion-induced affective disorders in C57BL/6 mice. GPS (50mg/kg) and GP-EX (50mg/kg) for 21 day-treatment period improved the symptom of anxiety disorders in the MPTP-lesioned mouse model of PD with or without L-DOPA treatment, which was examined by the elevated plus-maze and marble burying tests. In these states, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) significantly increased the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. In addition, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) showed protective effects on dopaminergic neurons in MPTP-lesioned mouse model of PD with or without L-DOPA treatment. In contrast, GPS (30 mg/kg) and GP-WX (50mg/kg) showed anxiolytic effects in the same animal models, but it was not significant. These results suggest that GPS (50mg/kg) and GP-EX (50mg/kg) showed anxiolytic effects on affective disorders and protective effects on dopaminergic neurons by modulating the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. Clinical trials of GPS and GP-EX need to be conducted further so as to develop adjuvant therapeutic agents for PD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen.

    Science.gov (United States)

    Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S

    2012-07-30

    The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA. Copyright © 2012 Elsevier Ireland

  6. Impaired spatial processing in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Ghilan, Mohamed; Bettio, Luis E B; Noonan, Athena; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R

    2018-05-17

    Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1 -/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1 -/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1 -/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1 -/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  7. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    Energy Technology Data Exchange (ETDEWEB)

    Davoudi, Mina [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Kallijärvi, Jukka; Marjavaara, Sanna [Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Kotarsky, Heike; Hansson, Eva [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Levéen, Per [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Fellman, Vineta, E-mail: Vineta.Fellman@med.lu.se [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki 00029 (Finland)

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIII inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.

  8. Novel orally available salvinorin A analog PR-38 inhibits gastrointestinal motility and reduces abdominal pain in mouse models mimicking irritable bowel syndrome.

    Science.gov (United States)

    Sałaga, M; Polepally, P R; Sobczak, M; Grzywacz, D; Kamysz, W; Sibaev, A; Storr, M; Do Rego, J C; Zjawiony, J K; Fichna, J

    2014-07-01

    The opioid and cannabinoid systems play a crucial role in multiple physiological processes in the central nervous system and in the periphery. Selective opioid as well as cannabinoid (CB) receptor agonists exert a potent inhibitory action on gastrointestinal (GI) motility and pain. In this study, we examined (in vitro and in vivo) whether PR-38 (2-O-cinnamoylsalvinorin B), a novel analog of salvinorin A, can interact with both systems and demonstrate therapeutic effects. We used mouse models of hypermotility, diarrhea, and abdominal pain. We also assessed the influence of PR-38 on the central nervous system by measurement of motoric parameters and exploratory behaviors in mice. Subsequently, we investigated the pharmacokinetics of PR-38 in mouse blood samples after intraperitoneal and oral administration. PR-38 significantly inhibited mouse colonic motility in vitro and in vivo. Administration of PR-38 significantly prolonged the whole GI transit time, and this effect was mediated by µ- and κ-opioid receptors and the CB1 receptor. PR-38 reversed hypermotility and reduced pain in mouse models mimicking functional GI disorders. These data expand our understanding of the interactions between opioid and cannabinoid systems and their functions in the GI tract. We also provide a novel framework for the development of future potential treatments of functional GI disorders. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Organoid Models of Human and Mouse Ductal Pancreatic Cancer

    Science.gov (United States)

    Boj, Sylvia F.; Hwang, Chang-Il; Baker, Lindsey A.; Chio, Iok In Christine; Engle, Dannielle D.; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Hervé; Spector, Mona S.; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H.; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D.; Wilson, John P.; Feigin, Michael E.; Öhlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M.; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N.; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H.M.; Molenaar, I. Quintus; Borel Rinkes, Inne H.; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J.; Iacobuzio-Donahue, Christine; Leach, Steven D.; Pappin, Darryl J.; Hammell, Molly; Klimstra, David S.; Basturk, Olca; Hruban, Ralph H.; Offerhaus, George Johan; Vries, Robert G.J.; Clevers, Hans; Tuveson, David A.

    2015-01-01

    SUMMARY Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation and exhibit ductal- and disease stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy. PMID:25557080

  10. A novel transgenic mouse model of lysosomal storage disorder

    OpenAIRE

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A.; Greiner, Dale L.; Bortell, Rita; Gregg, Ronald G.; Cheng, Alan; Hennings, Leah J.; Rittenhouse, Ann R.

    2016-01-01

    We provide an explanation for striking pathology found in a subset of genetically engineered mice homozygous for a rat CaVβ2a transgene (Tg+/+). Multiple transgene (Tg) copies inserted into chromosome 19; at this same site a large deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95. Their loss of function can account for lipid build up and immune system hypertrophy, which defines this phenotype and serendipitously provides a novel model...

  11. A Susceptible Mouse Model for Zika Virus Infection.

    Directory of Open Access Journals (Sweden)

    Stuart D Dowall

    2016-05-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne pathogen which has recently spread beyond Africa and into Pacific and South American regions. Despite first being detected in 1947, very little information is known about the virus, and its spread has been associated with increases in Guillain-Barre syndrome and microcephaly. There are currently no known vaccines or antivirals against ZIKV infection. Progress in assessing interventions will require the development of animal models to test efficacies; however, there are only limited reports on in vivo studies. The only susceptible murine models have involved intracerebral inoculations or juvenile animals, which do not replicate natural infection. Our report has studied the effect of ZIKV infection in type-I interferon receptor deficient (A129 mice and the parent strain (129Sv/Ev after subcutaneous challenge in the lower leg to mimic a mosquito bite. A129 mice developed severe symptoms with widespread viral RNA detection in the blood, brain, spleen, liver and ovaries. Histological changes were also striking in these animals. 129Sv/Ev mice developed no clinical symptoms or histological changes, despite viral RNA being detectable in the blood, spleen and ovaries, albeit at lower levels than those seen in A129 mice. Our results identify A129 mice as being highly susceptible to ZIKV and thus A129 mice represent a suitable, and urgently required, small animal model for the testing of vaccines and antivirals.

  12. Fucoidan Extracted from Fucus evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    Directory of Open Access Journals (Sweden)

    Tatyana A. Kuznetsova

    2014-01-01

    Full Text Available An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS. The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6, as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS.

  13. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Science.gov (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  14. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  15. Transgenic Mouse Models Transferred into the Test Tube: New Perspectives for Developmental Toxicity Testing In Vitro?

    Science.gov (United States)

    Kugler, Josephine; Luch, Andreas; Oelgeschläger, Michael

    2016-10-01

    Despite our increasing understanding of molecular mechanisms controlling embryogenesis, the identification and characterization of teratogenic substances still heavily relies on animal testing. Embryonic development depends on cell-autonomous and non-autonomous processes including spatiotemporally regulated extracellular signaling activities. These have been elucidated in transgenic mouse models harboring easily detectable reporter genes under the control of evolutionarily conserved signaling cascades. We propose combining these transgenic mouse models and cells derived thereof with existing alternative toxicological testing strategies. This would enable the plausibility of in vitro data to be verified in light of in vivo data and, ultimately, facilitate regulatory acceptance of in vitro test methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer's disease

    International Nuclear Information System (INIS)

    Winkeler, A.; Waerzeggers, Y.; Klose, A.; Monfared, P.; Thomas, A.V.; Jacobs, A.H.; Schubert, M.; Heneka, M.T.

    2008-01-01

    Molecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimers' disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases. (orig.)

  17. B cell-targeted therapy with anti-CD20 monoclonal antibody in a mouse model of Graves' hyperthyroidism

    Science.gov (United States)

    Ueki, I; Abiru, N; Kobayashi, M; Nakahara, M; Ichikawa, T; Eguchi, K; Nagayama, Y

    2011-01-01

    Graves' disease is a B cell-mediated and T cell-dependent autoimmune disease of the thyroid which is characterized by overproduction of thyroid hormones and thyroid enlargement by agonistic anti-thyrotrophin receptor (TSHR) autoantibody. In addition to antibody secretion, B cells have recently been recognized to function as antigen-presenting/immune-modulatory cells. The present study was designed to evaluate the efficacy of B cell depletion by anti-mouse (m) CD20 monoclonal antibody (mAb) on Graves' hyperthyroidism in a mouse model involving repeated injection of adenovirus expressing TSHR A-subunit (Ad-TSHR289). We observe that a single injection of 250 µg/mouse anti-mCD20 mAb eliminated B cells efficiently from the periphery and spleen and to a lesser extent from the peritoneum for more than 3 weeks. B cell depletion before immunization suppressed an increase in serum immunoglobulin (Ig)G levels, TSHR-specific splenocyte secretion of interferon (IFN)-γ, anti-TSHR antibody production and development of hyperthyroidism. B cell depletion 2 weeks after the first immunization, a time-point at which T cells were primed but antibody production was not observed, was still effective at inhibiting antibody production and disease development without inhibiting splenocyte secretion of IFN-γ. By contrast, B cell depletion in hyperthyroid mice was therapeutically ineffective. Together, these data demonstrate that B cells are critical not only as antibody-producing cells but also as antigen-presenting/immune-modulatory cells in the early phase of the induction of experimental Graves' hyperthyroidism and, although therapeutically less effective, B cell depletion is highly efficient for preventing disease development. PMID:21235532

  18. A human lung xenograft mouse model of Nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Gustavo Valbuena

    2014-04-01

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus (family Paramyxoviridae that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%. NiV can cause Acute Lung Injury (ALI in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7 TCID50/gram lung tissue as early as 3 days post infection (pi. NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  19. Subthreshold transpupillary thermotherapy reduces experimental choroidal neovascularization in the mouse without collateral damage to the neural retina.

    Science.gov (United States)

    Ming, Yue; Algvere, Peep V; Odergren, Anne; Berglin, Lennart; van der Ploeg, Ingeborg; Seregard, Stefan; Kvanta, Anders

    2004-06-01

    Transpupillary thermotherapy (TTT) is currently being evaluated for treatment of choroidal neovascularization (CNV) in age-related macular degeneration. To optimize TTT for CNV, the effect was analyzed of invisible (subthreshold) or visible (threshold) doses of TTT on the normal mouse retina and on experimental CNV. TTT was delivered to the normal retina of 42 mice with a diode laser at increasing power settings (50, 60, 70, or 80 mW), to obtain thermal lesions ranging from invisible (subthreshold) to visible (threshold) burns. CNV was induced in 53 mice by krypton laser photocoagulation of the fundus, after which the CNV lesions were treated with TTT (50, 60, or 80 mW). Eyes were enucleated 7 days after TTT and prepared for histology, and the CNV complex was evaluated on hematoxylin-eosin stained serial sections by measuring the maximum height of the CNV lesions. Ultrastructural changes were examined by transmission electron microscopy. Increasing the TTT laser power yielded gradually more visible effects. At 50 mW, which induced subthreshold burns, no damage was seen in the neural retina, retinal pigment epithelium (RPE), or choroid at any time point. By contrast, eyes treated with higher power exhibited progressively more damage to the neural retina, including a complete disruption of the outer nuclear layer. When TTT was applied to the laser-induced CNV lesions, the height of lesions was significantly reduced (P response to all three power settings at 7 days after treatment. The mean relative thickness of the CNV lesion was 3.29 +/- 0.89 in untreated mice, whereas in TTT-treated mice it was 1.69 +/- 0.35, 1.69 +/- 0.41 and 1.70 +/- 0.17 at power settings of 50, 60, and 80 mW, respectively. The overlying neural retina showed no apparent damage with the 50- or 60-mW settings, whereas outer nuclear layer disruption occurred with a power of 80 mW. Electron microscopy confirmed the presence of vascular occlusion at 1 day and a fibrotic scar at 7 days after TTT

  20. A Trp53fl/flPtenfl/fl mouse model of undifferentiated pleomorphic sarcoma mediated by adeno-Cre injection and in vivo bioluminescence imaging.

    Directory of Open Access Journals (Sweden)

    Marisa R Buchakjian

    Full Text Available Genetic mouse models of soft tissue sarcoma provide critical insights into disease pathophysiology, which are oftentimes unable to be extracted from human tumor samples or xenograft models. In this study we describe a mouse model of soft tissue sarcoma mediated by adenoviral-Cre recombinase injection into Trp53fl/fl/Ptenfl/fl lox-stop-lox luciferase mice. Injection of adenovirus expressing Cre recombinase, either subcutaneously or intramuscularly in two experimental groups, results in viral infection and gene recombination with 100% penetrance within the first 24 hours following injection. Luciferase expression measured by real-time bioluminescence imaging increases over time, with an initial robust increase following viral injection, followed by a steady rise over the next several weeks as primary tumors develop and grow. Intramuscular injections were more commonly associated with evidence of systemic viral distribution than subcutaneous injections. All mice developed soft tissue sarcomas at the primary injection site, with histological examination identifying 93% of tumors as invasive pleomorphic sarcomas based on microscopic morphology and immunohistochemical expression of sarcoma markers. A lymphocytic infiltrate was present in 64% of the sarcomas in this immunocompetent model and 71% of tumors expressed PD-L1. This is the first report of a viral-Cre mediated Trp53/Pten mouse model of undifferentiated pleomorphic sarcoma. The bioluminescence imaging feature, along with high penetrance of the model and its immunological characteristics, makes it suited for pre-clinical studies of soft tissue sarcoma.

  1. Use of mouse thigh as a radiobiological model of radiation-induced skin reactions

    International Nuclear Information System (INIS)

    Smith, A.J.; Hagkyriakou, H.; Martin, R.F.

    2000-01-01

    Full text: The effects of radiation exposure on skin have been widely studied. One of the most useful and relatively easy methods for evaluating radiation-induced skin reactions is the mouse thigh model. This model is non-invasive and has the advantage of not requiring the use of anaesthetic. In the current adaptation of the mouse thigh model, female C3H/HeJ ARC mice (from the Animal Resource Centre, W.A.) were used. The mice were restrained in specially designed jigs where the right leg was held in place by a metal hook. Lead shielding ensured that only the right ventral thigh was exposed to the radiation beam. A 6MeV electron beam from a Varian 2100 Linac (20Gy / minute) was used, thus minimising the time for which the mice were restrained. Eight to twelve days after exposure to the radiation, the first skin reactions can be seen. These are scored according to a scale ranging from 0 (no visible reaction) to 3.5 (breakdown of the entire area with severe exudation). The skin reactions (erythema and moist desquamation) peak approximately 18-22 days after radiation exposure and may remain at peak for only 1-3 days. Therefore, the reactions need to be scored daily and this continues, generally until day 35, or until all moist desquamation has healed. The maximum score in a score versus time profile for each mouse in a group of 5-6 animals are averaged. Radiation-dose response data will be presented. Using the mouse thigh model, hair loss can also be measured (usually on about day 30-35) using a scale from 0-4, where 0 depicts no evident hair loss and 4 represents complete epilation. Leg contraction can also be measured as a late effect by comparison with the length of the unirradiated leg

  2. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model.

    Science.gov (United States)

    Jung, Yong Gi; Lane, Andrew P

    2016-06-01

    To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (etanercept) on an inducible olfactory inflammation (IOI) mouse model. An in vivo study using a transgenic mouse model. Research laboratory. To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally controlled fashion within the olfactory epithelium. In one group of mice (n = 4), etanercept was injected intraperitoneally (100 μg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n = 2) underwent induction of TNF-α expression for 8 weeks, with etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with an equal-number control group. Compared with nontreated IOI mice, etanercept-treated IOI mice showed significantly improved EOG responses after 2 weeks (P loss of olfactory epithelium and no EOG response in nontreated IOI mice. However, in etanercept-treated mice, regeneration of olfactory epithelium was observed. Concomitant administration of etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  3. A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology*

    OpenAIRE

    Paton, Leigh; Bitoun, Emmanuelle; Kenyon, Janet; Priestman, David A.; Oliver, Peter L.; Edwards, Benjamin; Platt, Frances M.; Davies, Kay E.

    2014-01-01

    Mucolipidosis II (MLII) is a lysosomal storage disorder caused by loss of N-acetylglucosamine-1-phosphotransferase, which tags lysosomal enzymes with a mannose 6-phosphate marker for transport to the lysosome. In MLII, the loss of this marker leads to deficiency of multiple enzymes and non-enzymatic proteins in the lysosome, leading to the storage of multiple substrates. Here we present a novel mouse model of MLII homozygous for a patient mutation in the GNPTAB gene. Whereas the current gene ...

  4. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia

    OpenAIRE

    Ihnatko, Robert; Post, Claes; Blomqvist, Anders

    2013-01-01

    Background: Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain’s metabolic control centre. Methods: The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed litterma...

  5. Obesity-Linked Mouse Models of Liver Cancer | Center for Cancer Research

    Science.gov (United States)

    Jimmy Stauffer, Ph.D., and colleagues working with Robert  Wiltrout, Ph.D., in CCR’s Cancer and Inflammation Program, along with collaborators in the Laboratory of Human Carcinogenesis, have developed a novel mouse model that demonstrates how fat-producing phenotypes can influence the development of hepatic cancer.   The team recently reported their findings in Cancer Research.

  6. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  7. A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene

    Czech Academy of Sciences Publication Activity Database

    Kašpárek, Petr; Ileninová, Zuzana; Hanečková, Radka; Kanchev, Ivan; Jeníčková, Irena; Sedláček, Radislav

    2016-01-01

    Roč. 397, č. 12 (2016), s. 1287-1292 ISSN 1431-6730 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LM2011032; GA MŠk(CZ) LO1509 Institutional support: RVO:68378050 Keywords : mosaicism * mouse model * netherton syndrome * skin * SPINK5 * TALEN Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.273, year: 2016

  8. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis

    OpenAIRE

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W.; Beier, Frank; Cai, Daozhang

    2018-01-01

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. R...

  9. Abnormal notochord branching is associated with foregut malformations in the adriamycin treated mouse model.

    Science.gov (United States)

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities.

  10. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration

    OpenAIRE

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin

    2014-01-01

    Photoreceptors degenerate in a wide array of hereditary retinal diseases and age-related macular degeneration. There is currently no treatment available for retinal degenerations. While outnumbered roughly 20:1 by rods in the human retina, it is the cones that mediate color vision and visual acuity, and their survival is critical for vision. In this communication, we investigate whether thyroid hormone (TH) signaling affects cone viability in retinal degeneration mouse models. TH signaling is...

  11. Altered Gastrointestinal Function in the Neuroligin-3 Mouse Model of Autism

    Science.gov (United States)

    2013-10-01

    the Neuroligin-3 Mouse Model of Autism PRINCIPAL INVESTIGATOR: Professor Joel Bornstein CONTRACTING ORGANIZATION: The University of...NUMBER The University of Melbourne PARKVILLE, AU 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...of the DDC GI forum at Texas Children’s Hospital in Houston, TX, May 2013 20 Conclusion The data obtained in this component of the project

  12. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  13. Investigations of oocyte in vitro maturation within a mouse model.

    Science.gov (United States)

    Chin, Alexis Heng Boon; Chye, Ng Soon

    2004-02-01

    This study attempted to develop a 'less meiotically competent' murine model for oocyte in vitro maturation (IVM), which could more readily be extrapolated to human clinical assisted reproduction. Oocyte meiotic competence was drastically reduced upon shortening the standard duration of in vivo gonadotrophin stimulation from 48 h to 24 h, and by selecting only naked or partially naked germinal vesicle oocytes, instead of fully cumulus enclosed oocyte complexes. With such a less meiotically competent model, only porcine granulosa coculture significantly enhanced the oocyte maturation rate in vitro, whereas no significant enhancement was observed with macaque and murine granulosa coculture. Increased serum concentrations and the supplementation of gonadotrophins, follicular fluid and extracellular matrix gel within the culture medium did not enhance IVM under either cell-free or coculture conditions. Culture medium conditioned by porcine granulosa also enhanced the maturation rate, and this beneficial effect was not diminished upon freeze-thawing. Enhanced IVM in the presence of porcine granulosa coculture did not, however, translate into improved developmental competence, as assessed by in vitro fertilization and embryo culture to the blastocyst stage.

  14. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  15. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  16. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  17. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  18. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Sian E. Piret

    2017-06-01

    Full Text Available Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD due to missense uromodulin (UMOD mutations (ADTKD-UMOD. ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R. Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78 was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo. Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis.

  19. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Science.gov (United States)

    Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand

    2015-01-01

    Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393

  20. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Shobi Veleri

    2015-02-01

    Full Text Available Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.

  1. The mouse as a model organism in aging research: usefulness, pitfalls and possibilities.

    Science.gov (United States)

    Vanhooren, Valerie; Libert, Claude

    2013-01-01

    The mouse has become the favorite mammalian model. Among the many reasons for this privileged position of mice is their genetic proximity to humans, the possibilities of genetically manipulating their genomes and the availability of many tools, mutants and inbred strains. Also in the field of aging, mice have become very robust and reliable research tools. Since laboratory mice have a life expectancy of only a few years, genetic approaches and other strategies for intervening in aging can be tested by examining their effects on life span and aging parameters during the relatively short period of, for example, a PhD project. Moreover, experiments on mice with an extended life span as well as on mice demonstrating signs of (segmental) premature aging, together with genetic mapping strategies, have provided novel insights into the fundamental processes that drive aging. Finally, the results of studies on caloric restriction and pharmacological anti-aging treatments in mice have a high degree of relevance to humans. In this paper, we review a number of recent genetic mapping studies that have yielded novel insights into the aging process. We discuss the value of the mouse as a model for testing interventions in aging, such as caloric restriction, and we critically discuss mouse strains with an extended or a shortened life span as models of aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  3. [Establishment of mouse endometrial injury model by electrocoagulation].

    Science.gov (United States)

    Hu, Xiaoxiao; Lin, Xiaona; Jiang, Yinshen; Shi, Libing; Wang, Jieyu; Zhao, Lijuan; Zhang, Songying

    2014-12-23

    To establish the murine model of moderate endometrial injury. Electrocoagulation was applied to induce endometrial injury of ICR mice with 0.5 watts power while contralateral uterine cavity acted as control without electrocoagulation. The endometrial histomorphology was observed in 7 days later by microscopy and fetal number of each lateral uterus assessed at 17.5 days after pregnancy. At 7 days post-electrocoagulation, the average endometrial thickness of operating side was significantly thinner than that of control side (1.14 ± 0.08 vs 1.88 ± 0.15 mm, P electrocoagulation injury shows morphologic changes and decreased fertile ability. It has potential uses for animal studies of endometrial injury treatment.

  4. Complete cardiac regeneration in a mouse model of myocardial infarction.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Adamowicz-Brice, Martyna; Khadayate, Sanjay; Tiefenthaler, Viktoria; Metzler, Bernhard; Aitman, Tim; Penninger, Josef M

    2012-12-01

    Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated

  5. Heterotopic ossifications in a mouse model of albright hereditary osteodystrophy.

    Directory of Open Access Journals (Sweden)

    David L Huso

    Full Text Available Albright hereditary osteodystrophy (AHO is characterized by short stature, brachydactyly, and often heterotopic ossifications that are typically subcutaneous. Subcutaneous ossifications (SCO cause considerable morbidity in AHO with no effective treatment. AHO is caused by heterozygous inactivating mutations in those GNAS exons encoding the α-subunit of the stimulatory G protein (Gα(s. When inherited maternally, these mutations are associated with obesity, cognitive impairment, and resistance to certain hormones that mediate their actions through G protein-coupled receptors, a condition termed pseudohypoparathyroidism type 1a (PHP1a. When inherited paternally, GNAS mutations cause only AHO but not hormonal resistance, termed pseudopseudohypoparathyroidism (PPHP. Mice with targeted disruption of exon 1 of Gnas (Gnas(E1-/+ replicate human PHP1a or PPHP phenotypically and hormonally. However, SCO have not yet been reported in Gnas(E1+/- mice, at least not those that had been analyzed by us up to 3 months of age. Here we now show that Gnas(E1-/+ animals develop SCO over time. The ossified lesions increase in number and size and are uniformly detected in adult mice by one year of age. They are located in both the dermis, often in perifollicular areas, and the subcutis. These lesions are particularly prominent in skin prone to injury or pressure. The SCO comprise mature bone with evidence of mineral deposition and bone marrow elements. Superficial localization was confirmed by radiographic and computerized tomographic imaging. In situ hybridization of SCO lesions were positive for both osteonectin and osteopontin. Notably, the ossifications were much more extensive in males than females. Because Gnas(E1-/+ mice develop SCO features that are similar to those observed in AHO patients, these animals provide a model system suitable for investigating pathogenic mechanisms involved in SCO formation and for developing novel therapeutics for heterotopic bone

  6. H3 and H4 Lysine Acetylation Correlates with Developmental and Experimentally Induced Adult Experience-Dependent Plasticity in the Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Gabriela Vierci

    2016-01-01

    Full Text Available Histone posttranslational modifications play a fundamental role in orchestrating gene expression. In this work, we analyzed the acetylation of H3 and H4 histones (AcH3-AcH4 and its modulation by visual experience in the mouse visual cortex (VC during normal development and in two experimental conditions that restore juvenile-like plasticity levels in adults (fluoxetine treatment and enriched environment. We found that AcH3-AcH4 declines with age and is upregulated by treatments restoring plasticity in the adult. We also found that visual experience modulates AcH3-AcH4 in young and adult plasticity-restored mice but not in untreated ones. Finally, we showed that the transporter vGAT is downregulated in adult plasticity-restored models. In summary, we identified a dynamic regulation of AcH3-AcH4, which is associated with high plasticity levels and enhanced by visual experience. These data, along with recent ones, indicate H3-H4 acetylation as a central hub in the control of experience-dependent plasticity in the VC.

  7. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis

    DEFF Research Database (Denmark)

    Hoffmann, Nadine; Rasmussen, Thomas Bovbjerg; Jensen, Peter Østrup

    2005-01-01

    (NH57388C) from the mucoid isolate (NH57388A) and a nonmucoid isolate (NH57388B) deficient in AHL were almost cleared from the lungs of the mice. This model, in which P. aeruginosa is protected against the defense system of the lung by alginate, is similar to the clinical situation. Therefore...... pulmonary mouse model without artificial embedding. The model is based on a stable mucoid CF sputum isolate (NH57388A) with hyperproduction of alginate due to a deletion in mucA and functional N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Chronic lung infection could be established in both CF...

  8. Experimental Models of Vaginal Candidiasis and Their Relevance to Human Candidiasis

    Science.gov (United States)

    Sobel, Jack D.

    2016-01-01

    Vulvovaginal candidiasis (VVC) is a high-incidence disease seriously affecting the quality of life of women worldwide, particularly in its chronic, recurrent forms (RVVC), and with no definitive cure or preventive measure. Experimental studies in currently used rat and mouse models of vaginal candidiasis have generated a large mass of data on pathogenicity determinants and inflammation and immune responses of potential importance for the control of human pathology. However, reflection is necessary about the relevance of these rodent models to RVVC. Here we examine the chemical, biochemical, and biological factors that determine or contrast the forms of the disease in rodent models and in women and highlight the differences between them. We also appeal for approaches to improve or replace the current models in order to enhance their relevance to human infection. PMID:26883592

  9. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2.

    Directory of Open Access Journals (Sweden)

    Loredana Leo

    2011-06-01

    Full Text Available Familial hemiplegic migraine type 2 (FHM2 is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887 mutants died just after birth, while heterozygous Atp1a2(+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD, the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.

  10. Normal social seeking behavior, hypoactivity and reduced exploratory range in a mouse model of Angelman syndrome

    Directory of Open Access Journals (Sweden)

    Reiter Lawrence T

    2011-01-01

    Full Text Available Abstract Background Angelman syndrome (AS is a neurogenetic disorder characterized by severe developmental delay with mental retardation, a generally happy disposition, ataxia and characteristic behaviors such as inappropriate laughter, social-seeking behavior and hyperactivity. The majority of AS cases are due to loss of the maternal copy of the UBE3A gene. Maternal Ube3a deficiency (Ube3am-/p+, as well as complete loss of Ube3a expression (Ube3am-/p-, have been reproduced in the mouse model used here. Results Here we asked if two characteristic AS phenotypes - social-seeking behavior and hyperactivity - are reproduced in the Ube3a deficient mouse model of AS. We quantified social-seeking behavior as time spent in close proximity to a stranger mouse and activity as total time spent moving during exploration, movement speed and total length of the exploratory path. Mice of all three genotypes (Ube3am+/p+, Ube3am-/p+, Ube3am-/p- were tested and found to spend the same amount of time in close proximity to the stranger, indicating that Ube3a deficiency in mice does not result in increased social seeking behavior or social dis-inhibition. Also, Ube3a deficient mice were hypoactive compared to their wild-type littermates as shown by significantly lower levels of activity, slower movement velocities, shorter exploratory paths and a reduced exploratory range. Conclusions Although hyperactivity and social-seeking behavior are characteristic phenotypes of Angelman Syndrome in humans, the Ube3a deficient mouse model does not reproduce these phenotypes in comparison to their wild-type littermates. These phenotypic differences may be explained by differences in the size of the genetic defect as ~70% of AS patients have a deletion that includes several other genes surrounding the UBE3A locus.

  11. Effect of CPAP in a Mouse Model of Hyperoxic Neonatal Lung Injury

    Science.gov (United States)

    Reyburn, Brent; Fiore, Juliann M. Di; Raffay, Thomas; Martin, Richard J.; Y.S., Prakash; Jafri, Anjum; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure [CPAP] and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia [BPD], the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP during the first week of life on later respiratory system mechanics. Objective To test the hypothesis that daily CPAP in a newborn mouse model of BPD improves longer term respiratory mechanics. Methods Mouse pups from C57BL/6 pregnant dams were exposed to room air [RA] or hyperoxia [50% O2, 24hrs/day] for the first postnatal week with or without exposure to daily CPAP [6cmH2O, 3hrs/day]. Respiratory system resistance [Rrs] and compliance [Crs] were measured following a subsequent 2 week period of room RA recovery. Additional measurements included radial alveolar counts and macrophage counts. Results Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization, and increased macrophage counts at three weeks compared to RA treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization, and decreased lung macrophage infiltration in hyperoxia-exposed pups. Conclusions We have demonstrated that daily CPAP had a longer term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic newborn lung injury. PMID:26394387

  12. Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration

    Science.gov (United States)

    Bora, Puran S.; Hu, Zhiwei; Tezel, Tongalp H.; Sohn, Jeong-Hyeon; Kang, Shin Goo; Cruz, Jose M. C.; Bora, Nalini S.; Garen, Alan; Kaplan, Henry J.

    2003-03-01

    Age-related macular degeneration (AMD) is the leading cause of blindness after age 55 in the industrialized world. Severe loss of central vision frequently occurs with the exudative (wet) form of AMD, as a result of the formation of a pathological choroidal neovasculature (CNV) that damages the macular region of the retina. We tested the effect of an immunotherapy procedure, which had been shown to destroy the pathological neovasculature in solid tumors, on the formation of laser-induced CNV in a mouse model simulating exudative AMD in humans. The procedure involves administering an Icon molecule that binds with high affinity and specificity to tissue factor (TF), resulting in the activation of a potent cytolytic immune response against cells expressing TF. The Icon binds selectively to TF on the vascular endothelium of a CNV in the mouse and pig models and also on the CNV of patients with exudative AMD. Here we show that the Icon dramatically reduces the frequency of CNV formation in the mouse model. After laser treatment to induce CNV formation, the mice were injected either with an adenoviral vector encoding the Icon, resulting in synthesis of the Icon by vector-infected mouse cells, or with the Icon protein. The route of injection was i.v. or intraocular. The efficacy of the Icon in preventing formation of laser-induced CNV depends on binding selectively to the CNV. Because the Icon binds selectively to the CNV in exudative AMD as well as to laser-induced CNV, the Icon might also be efficacious for treating patients with exudative AMD.

  13. Epithelial morphogenesis: the mouse eye as a model system.

    Science.gov (United States)

    Chauhan, Bharesh; Plageman, Timothy; Lou, Ming; Lang, Richard

    2015-01-01

    Morphogenesis is the developmental process by which tissues and organs acquire the shape that is critical to their function. Here, we review recent advances in our understanding of the mechanisms that drive morphogenesis in the developing eye. These investigations have shown that regulation of the actin cytoskeleton is central to shaping the presumptive lens and retinal epithelia that are the major components of the eye. Regulation of the actin cytoskeleton is mediated by Rho family GTPases, by signaling pathways and indirectly, by transcription factors that govern the expression of critical genes. Changes in the actin cytoskeleton can shape cells through the generation of filopodia (that, in the eye, connect adjacent epithelia) or through apical constriction, a process that produces a wedge-shaped cell. We have also learned that one tissue can influence the shape of an adjacent one, probably by direct force transmission, in a process we term inductive morphogenesis. Though these mechanisms of morphogenesis have been identified using the eye as a model system, they are likely to apply broadly where epithelia influence the shape of organs during development. © 2015 Elsevier Inc. All rights reserved.

  14. A Redox Sensitive Pathway in the Mouse ES Cell Assay Modeled From ToxCast HTS Data

    Science.gov (United States)

    The broad chemical landscape coupled with the lack of developmental toxicity information across most environmental chemicals has motivated the need for high- throughput screening methods and predictive models of developmental toxicity. Towards this end, we used the mouse embryoni...

  15. Behavioral and neurochemical characterization of new mouse model of hyperphenylalaninemia.

    Directory of Open Access Journals (Sweden)

    Tiziana Pascucci

    Full Text Available Hyperphenylalaninemia (HPA refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU (PHE > 1200 µM/L, mild PKU (PHE 600-1200 µM/L and persistent HPA (PHE 120-600 µM/L (normal blood PHE < 120 µM/L. The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU, developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE.

  16. Therapeutic action of ghrelin in a mouse model of colitis.

    Science.gov (United States)

    Gonzalez-Rey, Elena; Chorny, Alejo; Delgado, Mario

    2006-05-01

    Ghrelin is a novel growth hormone-releasing peptide with potential endogenous anti-inflammatory activities ameliorating some pathologic inflammatory conditions. Crohn's disease is a chronic debilitating disease characterized by severe T helper cell (Th)1-driven inflammation of the colon. The aim of this study was to investigate the therapeutic effect of ghrelin in a murine model of colitis. We examined the anti-inflammatory action of ghrelin in the colitis induced by intracolonic administration of trinitrobenzene sulfonic acid. Diverse clinical signs of the disease were evaluated, including weight loss, diarrhea, colitis, and histopathology. We also investigated the mechanisms involved in the potential therapeutic effect of ghrelin, such as inflammatory cytokines and chemokines, Th1-type response, and regulatory factors. Ghrelin ameliorated significantly the clinical and histopathologic severity of the trinitrobenzene sulfonic acid-induced colitis; abrogating body weight loss, diarrhea, and inflammation; and increasing survival. The therapeutic effect was associated with down-regulation of both inflammatory and Th1-driven autoimmune response through the regulation of a wide spectrum of inflammatory mediators. In addition, a partial involvement of interluekin-10/transforming growth factor-beta1-secreting regulatory T cells in this therapeutic effect was demonstrated. Importantly, the ghrelin treatment was therapeutically effective in established colitis and avoided the recurrence of the disease. Our data demonstrate novel anti-inflammatory actions for ghrelin in the gastrointestinal tract, ie, the capacity to deactivate the intestinal inflammatory response and to restore mucosal immune tolerance at multiple levels. Consequently, ghrelin administration represents a novel possible therapeutic approach for the treatment of Crohn's disease and other Th1-mediated inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis.

  17. Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models.

    Science.gov (United States)

    Saha, Dipongkor; Wakimoto, Hiroaki; Peters, Cole W; Antoszczyk, Slawomir J; Rabkin, Samuel D; Martuza, Robert L

    2018-03-29

    Purpose: Glioblastoma (GBM), a fatal brain cancer, contains a subpopulation of GBM stem-like cells (GSCs) that contribute to resistance to current therapy. Angiogenesis also plays a key role in GBM progression. Therefore, we developed a strategy to target the complex GBM microenvironment, including GSCs and tumor vasculature. Experimental Design: We evaluated the cytotoxic effects of VEFGR tyrosine kinase inhibitor (TKI) axitinib in vitro and then tested antitumor efficacy of axitinib in combination with oncolytic herpes simplex virus (oHSV) expressing antiangiogenic cytokine murine IL12 (G47Δ-mIL12) in two orthotopic GSC-derived GBM models: patient-derived recurrent MGG123 GSCs, forming vascular xenografts in immunodeficient mice; and mouse 005 GSCs, forming syngeneic tumors in immunocompetent mice. Results: GSCs form endothelial-like tubes and were sensitive to axitinib. G47Δ-mIL12 significantly improved survival, as did axitinib, while dual combinations further extended survival significantly compared with single therapies alone in both models. In MGG123 tumors, axitinib was effective only at high doses (50 mg/kg), alone and in combination with G47Δ-mIL12, and this was associated with greatly decreased vascularity, increased macrophage infiltration, extensive tumor necrosis, and PDGFR/ERK pathway inhibition. In the mouse 005 model, antiglioma activity, after single and combination therapy, was only observed in immunocompetent mice and not the T-cell-deficient athymic mice. Interestingly, immune checkpoint inhibition did not improve efficacy. Conclusions: Systemic TKI (axitinib) beneficially combines with G47Δ-mIL12 to enhance antitumor efficacy in both immunodeficient and immunocompetent orthotopic GBM models. Our results support further investigation of TKIs in combination with oHSV for GBM treatment. Clin Cancer Res; 1-14. ©2018 AACR. ©2018 American Association for Cancer Research.

  18. Models of experimental saccular aneurysms of carotid arteries in canine

    International Nuclear Information System (INIS)

    Zhang Haixia; Cheng Yingsheng; Li Minghua

    2006-01-01

    Objective: To study the availability by making experimental saccular aneurysm models of carotid arteries in canine similar to human intracranial aneurysms. Methods: Twenty healthy canines with experimental saccular side-wall aneurysms of carotid arteries were created successfully by surgery. Results: Forty experimental saccular side-wall aneurysms of carotid arteries were created successfully with 36 aneurysms and parent arteries maintaining patency with each other and four spontaneously occluded confirmed by angiography. Model successful rate reached 90%. Conclusions: Experimental saccular side-wall aneurysms of carotid arteries in canines were one of best models created for simulating human intracranial aneurysms. (authors)

  19. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    Science.gov (United States)

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  20. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    parameters. Taken together, this typically catabolic treatment (disuse and irradiation) appeared to stimulate cortical expansion in MCAT mice but not WT mice. In conclusion, these results reveal the importance of mitochondrial ROS generation in skeletal remodeling and show that MCAT mice provide a useful animal model for bone studies.

  1. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Simone B Sartori

    Full Text Available The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB, or normal (NAB anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i for identifying biological factors underlying misguided conditioned fear responses and (ii for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  2. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    Science.gov (United States)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  3. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  4. Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deforges, Séverine; Branchu, Julien; Biondi, Olivier; Grondard, Clément; Pariset, Claude; Lécolle, Sylvie; Lopes, Philippe; Vidal, Pierre-Paul; Chanoine, Christophe; Charbonnier, Frédéric

    2009-07-15

    Several studies using transgenic mouse models of familial amyotrophic lateral sclerosis (ALS) have reported a life span increase in exercised animals, as long as animals are submitted to a moderate-intensity training protocol. However, the neuroprotective potential of exercise is still questionable. To gain further insight into the cellular basis of the exercise-induced effects in neuroprotection, we compared the efficiency of a swimming-based training, a high-frequency and -amplitude exercise that preferentially recruits the fast motor units, and of a moderate running-based training, that preferentially triggers the slow motor units, in an ALS mouse model. Surprisingly, we found that the swimming-induced benefits sustained the motor function and increased the ALS mouse life span by about 25 days. The magnitude of this beneficial effect is one of the highest among those induced by any therapeutic strategy in this disease. We have shown that, unlike running, swimming significantly delays spinal motoneuron death and, more specifically, the motoneurons of large soma area. Analysis of the muscular phenotype revealed a swimming-induced relative maintenance of the fast phenotype in fast-twitch muscles. Furthermore, the swimming programme preserved astrocyte and oligodendrocyte populations in ALS spinal cord. As a whole, these data are highly suggestive of a causal relationship not only linking motoneuron activation and protection, but also motoneuron protection and the maintenance of the motoneuron surrounding environment. Basically, exercise-induced neuroprotective mechanisms provide an example of the molecular adaptation of activated motoneurons.

  5. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nina Fransén-Pettersson

    Full Text Available Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

  6. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    International Nuclear Information System (INIS)

    Wakeford, S.; Watt, D.J.; Partridge, T.A.

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD

  7. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    Energy Technology Data Exchange (ETDEWEB)

    Wakeford, S.; Watt, D.J.; Partridge, T.A. (Charing Cross and Westminster Medical School, London (England))

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD.

  8. Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium

    Science.gov (United States)

    Meehan, Terrence F.; Conte, Nathalie; West, David B.; Jacobsen, Julius O.; Mason, Jeremy; Warren, Jonathan; Chen, Chao-Kung; Tudose, Ilinca; Relac, Mike; Matthews, Peter; Karp, Natasha; Santos, Luis; Fiegel, Tanja; Ring, Natalie; Westerberg, Henrik; Greenaway, Simon; Sneddon, Duncan; Morgan, Hugh; Codner, Gemma F; Stewart, Michelle E; Brown, James; Horner, Neil; Haendel, Melissa; Washington, Nicole; Mungall, Christopher J.; Reynolds, Corey L; Gallegos, Juan; Gailus-Durner, Valerie; Sorg, Tania; Pavlovic, Guillaume; Bower, Lynette R; Moore, Mark; Morse, Iva; Gao, Xiang; Tocchini-Valentini, Glauco P; Obata, Yuichi; Cho, Soo Young; Seong, Je Kyung; Seavitt, John; Beaudet, Arthur L.; Dickinson, Mary E.; Herault, Yann; Wurst, Wolfgang; de Angelis, Martin Hrabe; Lloyd, K.C. Kent; Flenniken, Ann M; Nutter, Lauryl MJ; Newbigging, Susan; McKerlie, Colin; Justice, Monica J.; Murray, Stephen A.; Svenson, Karen L.; Braun, Robert E.; White, Jacqueline K.; Bradley, Allan; Flicek, Paul; Wells, Sara; Skarnes, William C.; Adams, David J.; Parkinson, Helen; Mallon, Ann-Marie; Brown, Steve D.M.; Smedley, Damian

    2017-01-01

    Although next generation sequencing has revolutionised the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by our lack of knowledge of function and pathobiological mechanism for most genes. To address this challenge, the International Mouse Phenotyping Consortium (IMPC) is creating a genome- and phenome-wide catalogue of gene function by characterizing new knockout mouse strains across diverse biological systems through a broad set of standardised phenotyping tests, with all mice made readily available to the biomedical community. Analysing the first 3328 genes reveals models for 360 diseases including the first for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations are novel, providing the first functional evidence for 1092 genes and candidates in unsolved diseases such as Arrhythmogenic Right Ventricular Dysplasia 3. Finally, we describe our role in variant functional validation with the 100,000 Genomes and other projects. PMID:28650483

  9. Analgesic effects of lappaconitine in leukemia bone pain in a mouse model

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Zhu

    2015-05-01

    Full Text Available Bone pain is a common and severe symptom in cancer patients. The present study employed a mouse model of leukemia bone pain by injection K562 cells into tibia of mouse to evaluate the analgesic effects of lappacontine. Our results showed that the lappaconitine treatment at day 15, 17 and 19 could effectively reduce the spontaneous pain scoring values, restore reduced degree in the inclined-plate test induced by injection of K562 cells, as well as restore paw mechanical withdrawal threshold and paw withdrawal thermal latency induced by injection of K562 cells to the normal levels. Additionally, the molecular mechanisms of lappaconitine’s analgesic effects may be related to affect the expression levels of endogenous opioid system genes (POMC, PENK and MOR, as well as apoptosis-related genes (Xiap, Smac, Bim, NF-κB and p53. Our present results indicated that lappaconitine may become a new analgesic agent for leukemia bone pain management.

  10. Phenotypic and pathologic evaluation of the myd mouse. A candidate model for facioscapulohumeral dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.D.; Rapisarda, D.; Bailey, H.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others

    1995-07-01

    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease of unknown pathogenesis which is characterized by weakness of the face and shoulder girdle. It is associated with a sensorineural hearing loss which may be subclinical. FSHD has been mapped to the distalmost portion of 4q35, although the gene has not yet been identified. Distal 4q has homology with a region of mouse chromosome 8 to which a mouse mutant, myodystrophy (myd), has been mapped. Muscle from homozygotes for the myd mutation appears dystrophic, showing degenerating and regenerating fibers, inflammatory infiltrates, central nuclei, and variation in fiber size. Brainstem auditory evoked potentials reveal a sensorineural hearing loss in myd homozygotes. Based on the homologous genetic map locations, and the phenotypic syndrome of dystrophic muscle with sensorineural hearing loss, we suggest that myd represents an animal model for the human disease FSHD. 28 refs., 4 figs.

  11. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  12. Experimental comparison of models for ultrafast impact ionization is silicon

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd

    2016-01-01

    We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses.......We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses....

  13. Experimental modeling of swirl flows in power plants

    Science.gov (United States)

    Shtork, S. I.; Litvinov, I. V.; Gesheva, E. S.; Tsoy, M. A.; Skripkin, S. G.

    2018-03-01

    The article presents an overview of the methods and approaches to experimental modeling of various thermal and hydropower units - furnaces of pulverized coal boilers and flow-through elements of hydro turbines. The presented modeling approaches based on a combination of experimentation and rapid prototyping of working parts may be useful in optimizing energy equipment to improve safety and efficiency of industrial energy systems.

  14. Improving the physiological realism of experimental models

    NARCIS (Netherlands)

    Vinnakota, Kalyan C.; Cha, Chae Y.; Rorsman, Patrik; Balaban, Robert S.; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A.; Jeneson, Jeroen A. L.

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these

  15. Experimental models of the gut microbiome

    NARCIS (Netherlands)

    Venema, K.; Abbeele, P. van den

    2013-01-01

    The human gut contains a diverse microbiota with large potential to influence health. Given the difficulty to access the main sites of the gut, in vitro models have been developed to dynamically monitor microbial processes at the site of metabolic activity. These models range from simple batch

  16. A new dry eye mouse model produced by exorbital and intraorbital lacrimal gland excision.

    Science.gov (United States)

    Shinomiya, Katsuhiko; Ueta, Mayumi; Kinoshita, Shigeru

    2018-01-24

    Chronic dry eye is an increasingly prevalent condition worldwide, with resulting loss of visual function and quality of life. Relevant, repeatable, and stable animal models of dry eye are still needed. We have developed an improved surgical mouse model for dry eye based on severe aqueous fluid deficiency, by excising both the exorbital and intraorbital lacrimal glands (ELG and ILG, respectively) of mice. After ELG plus ILG excision, dry eye symptoms were evaluated using fluorescein infiltration observation, tear production measurement, and histological evaluation of ocular surface. Tear production in the model mice was significantly decreased compared with the controls. The corneal fluorescein infiltration score of the model mice was also significantly increased compared with the controls. Histological examination revealed significant severe inflammatory changes in the cornea, conjunctiva or meibomian glands of the model mice after surgery. In the observation of LysM-eGFP (+/-) mice tissues, postsurgical infiltration of green fluorescent neutrophils was observed in the ocular surface tissues. We theorize that the inflammatory changes on the ocular surface of this model were induced secondarily by persistent severe tear reduction. The mouse model will be useful for investigations of both pathophysiology as well as new therapies for tear-volume-reduction type dry eye.

  17. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz, E-mail: rcmosca@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm{sup 3}) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  18. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    International Nuclear Information System (INIS)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz

    2013-01-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm 3 ) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  19. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Svoboda, Kathy K. [Texas A and M University, Baylor College of Dentistry, Center for Craniofacial Research 3302 Gaston Ave, Dallas, Texas 75246 (United States); Casillas, Robert P. [MRIGlobal, 425 Volker Boulevard, Kansas City, MO 64110 (United States); Laskin, Jeffrey D. [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Medicine, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gordon, Marion K. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States)

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  20. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  1. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.

    Directory of Open Access Journals (Sweden)

    Kristine M Sikora

    Full Text Available Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcay(jit (jittery and Atcay(swd (sidewinder mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcay(ji-hes (hesitant line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin's physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin's role in maintaining normal neuronal function.

  2. Long-term exposure to intranasal oxytocin in a mouse autism model.

    Science.gov (United States)

    Bales, K L; Solomon, M; Jacob, S; Crawley, J N; Silverman, J L; Larke, R H; Sahagun, E; Puhger, K R; Pride, M C; Mendoza, S P

    2014-11-11

    Oxytocin (OT) is a neuropeptide involved in mammalian social behavior. It is currently in clinical trials for the treatment of autism spectrum disorder (ASD). Previous studies in healthy rodents (prairie voles and C57BL/6J mice) have shown that there may be detrimental effects of long-term intranasal administration, raising the questions about safety and efficacy. To investigate the effects of OT on the aspects of ASD phenotype, we conducted the first study of chronic intranasal OT in a well-validated mouse model of autism, the BTBR T+ Itpr3tf/J inbred strain (BTBR), which displays low sociability and high repetitive behaviors. BTBR and C57BL/6J (B6) mice (N=94) were administered 0.8  IU/kg of OT intranasally, daily for 30 days, starting on day 21. We ran a well-characterized set of behavioral tasks relevant to diagnostic and associated symptoms of autism, including juvenile reciprocal social interactions, three-chambered social approach, open-field exploratory activity, repetitive self-grooming and fear-conditioned learning and memory, some during and some post treatment. Intranasal OT did not improve autism-relevant behaviors in BTBR, except for female sniffing in the three-chambered social interaction test. Male saline-treated BTBR mice showed increased interest in a novel mouse, both in chamber time and sniffing time, whereas OT-treated male BTBR mice showed a preference for the novel mouse in sniffing time only. No deleterious effects of OT were detected in either B6 or BTBR mice, except possibly for the lack of a preference for the novel mouse's chamber in OT-treated male BTBR mice. These results highlight the complexity inherent in understanding the effects of OT on behavior. Future investigations of chronic intranasal OT should include a wider dose range and early developmental time points in both healthy rodents and ASD models to affirm the efficacy and safety of OT.

  3. Cytomegalovirus-induced embryopathology: mouse submandibular salivary gland epithelial-mesenchymal ontogeny as a model

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2006-09-01

    Full Text Available Abstract Background Human studies suggest, and mouse models clearly demonstrate, that cytomegalovirus (CMV is dysmorphic to early organ and tissue development. CMV has a particular tropism for embryonic salivary gland and other head mesenchyme. CMV has evolved to co-opt cell signaling networks so to optimize replication and survival, to the detriment of infected tissues. It has been postulated that mesenchymal infection is the critical step in disrupting organogenesis. If so, organogenesis dependent on epithelial-mesenchymal interactions would be particularly vulnerable. In this study, we chose to model the vulnerability by investigating the cell and molecular pathogenesis of CMV infected mouse embryonic submandibular salivary glands (SMGs. Results We infected E15 SMG explants with mouse CMV (mCMV. Active infection for up to 12 days in vitro results in a remarkable cell and molecular pathology characterized by atypical ductal epithelial hyperplasia, apparent epitheliomesenchymal transformation, oncocytic-like stromal metaplasia, β-catenin nuclear localization, and upregulation of Nfkb2, Relb, Il6, Stat3, and Cox2. Rescue with an antiviral nucleoside analogue indicates that mCMV replication is necessary to initiate and maintain SMG dysmorphogenesis. Conclusion mCMV infection of embryonic mouse explants results in dysplasia, metaplasia, and, possibly, anaplasia. The molecular pathogenesis appears to center around the activation of canonical and, perhaps more importantly, noncanonical NFκB. Further, COX-2 and IL-6 are important downstream effectors of embryopathology. At the cellular level, there appears to be a consequential interplay between the transformed SMG cells and the surrounding extracellular matrix, resulting in the nuclear translocation of β-catenin. From these studies, a tentative framework has emerged within which additional studies may be planned and performed.

  4. Dmdmdx/Largemyd: a new mouse model of neuromuscular diseases useful for studying physiopathological mechanisms and testing therapies

    Directory of Open Access Journals (Sweden)

    Poliana C. M. Martins

    2013-09-01

    Although muscular dystrophies are among the most common human genetic disorders, there are few treatment options available. Animal models have become increasingly important for testing new therapies prior to entering human clinical trials. The Dmdmdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD, presenting the same molecular and protein defect as seen in humans with the disease. However, this mouse is not useful for clinical trials because of its very mild phenotype. The mouse model for congenital myodystrophy type 1D, Largemyd, harbors a mutation in the glycosyltransferase Large gene and displays a severe phenotype. To help elucidate the role of the proteins dystrophin and LARGE in the organization of the dystrophin-glycoprotein complex in muscle sarcolemma, we generated double-mutant mice for the dystrophin and LARGE proteins. The new Dmdmdx/Largemyd mouse model is viable and shows a severe phenotype that is associated with the lack of dystrophin in muscle. We tested the usefulness of our new mouse model for cell therapy by systemically injecting them with normal murine mesenchymal adipose stem cells (mASCs. We verified that the mASCs were hosted in the dystrophic muscle. The new mouse model has proven to be very useful for the study of several other therapies, because injected cells can be screened both through DNA and protein analysis. Study of its substantial muscle weakness will also be very informative in the evaluation of functional benefits of these therapies.

  5. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction.

    Science.gov (United States)

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo

    2016-11-01

    The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue

  6. A novel surgical approach for intratracheal administration of bioactive agents in a fetal mouse model.

    Science.gov (United States)

    Carlon, Marianne S; Toelen, Jaan; da Cunha, Marina Mori; Vidović, Dragana; Van der Perren, Anke; Mayer, Steffi; Sbragia, Lourenço; Nuyts, Johan; Himmelreich, Uwe; Debyser, Zeger; Deprest, Jan

    2012-10-31

    Prenatal pulmonary delivery of cells, genes or pharmacologic agents could provide the basis for new therapeutic strategies for a variety of genetic and acquired diseases. Apart from congenital or inherited abnormalities with the requirement for long-term expression of the delivered gene, several non-inherited perinatal conditions, where short-term gene expression or pharmacological intervention is sufficient to achieve therapeutic effects, are considered as potential future indications for this kind of approach. Candidate diseases for the application of short-term prenatal therapy could be the transient neonatal deficiency of surfactant protein B causing neonatal respiratory distress syndrome(1,2) or hyperoxic injuries of the neonatal lung(3). Candidate diseases for permanent therapeutic correction are Cystic Fibrosis (CF)(4), genetic variants of surfactant deficiencies(5) and α1-antitrypsin deficiency(6). Generally, an important advantage of prenatal gene therapy is the ability to start therapeutic intervention early in development, at or even prior to clinical manifestations in the patient, thus preventing irreparable damage to the individual. In addition, fetal organs have an increased cell proliferation rate as compared to adult organs, which could allow a more efficient gene or stem cell transfer into the fetus. Furthermore, in utero gene delivery is performed when the individual's immune system is not completely mature. Therefore, transplantation of heterologous cells or supplementation of a non-functional or absent protein with a correct version should not cause immune sensitization to the cell, vector or transgene product, which has recently been proven to be the case with both cellular and genetic therapies(7). In the present study, we investigated the potential to directly target the fetal trachea in a mouse model. This procedure is in use in larger animal models such as rabbits and sheep(8), and even in a clinical setting(9), but has to date not been

  7. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  8. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Uehara, Takeki; Kato, Yuki [Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka (Japan); Kono, Hiroshi [First Department of Surgery, University of Yamanashi, Yamanashi (Japan); Bataller, Ramon [Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC (United States); Rusyn, Ivan, E-mail: irusyn@tamu.edu [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States)

    2016-11-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies