Directory of Open Access Journals (Sweden)
A.V. Getman
2013-12-01
Full Text Available Theoretical aspects of an experimental determination method for residual and inductive magnetic moments of a technical object are considered. As input data, the technical object magnetic induction signatures obtained under its linear movement near a pair of three-component sensors are used. A magnetic signature integration technique based on spatial harmonic analysis of the magnetic field represented by twenty-four multipole coefficients is introduced.
2002-01-01
Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.
On verifying magnetic dipole moment of a magnetic torquer by experiments
Kuyyakanont, Aekjira; Kuntanapreeda, Suwat; Fuengwarodsakul, Nisai H.
2018-01-01
Magnetic torquers are used for the attitude control of small satellites, such as CubeSats with Low Earth Orbit (LEO). During the design of magnetic torquers, it is necessary to confirm if its magnetic dipole moment is enough to control the satellite attitude. The magnetic dipole moment can affect the detumbling time and the satellite rotation time. In addition, it is also necessary to understand how to design the magnetic torquer for operation in a CubeSat under the space environment at LEO. This paper reports an investigation of the magnetic dipole moment and the magnetic field generated by a circular air-coil magnetic torquer using experimental measurements. The experiment testbed was built on an air-bearing under a magnetic field generated by a Helmholtz coil. This paper also describes the procedure to determine and verify the magnetic dipole moment value of the designed circular air-core magnetic torquer. The experimental results are compared with the design calculations. According to the comparison results, the designed magnetic torquer reaches the required magnetic dipole moment. This designed magnetic torquer will be applied to the attitude control systems of a 1U CubeSat satellite in the project “KNACKSAT.”
Model independent bounds on magnetic moments of Majorana neutrinos
International Nuclear Information System (INIS)
Bell, Nicole F.; Gorchtein, Mikhail; Ramsey-Musolf, Michael J.; Vogel, Petr; Wang, Peng
2006-01-01
We analyze the implications of neutrino masses for the magnitude of neutrino magnetic moments. By considering electroweak radiative corrections to the neutrino mass, we derive model-independent naturalness upper bounds on neutrino magnetic moments, μ ν , generated by physics above the electroweak scale. For Dirac neutrinos, the bound is several orders of magnitude more stringent than present experimental limits. However, for Majorana neutrinos the magnetic moment contribution to the mass is Yukawa suppressed. The bounds we derive for magnetic moments of Majorana neutrinos are weaker than present experimental limits if μ ν is generated by new physics at ∼1 TeV, and surpass current experimental sensitivity only for new physics scales >10-100 TeV. The discovery of a neutrino magnetic moment near present limits would thus signify that neutrinos are Majorana particles
International Nuclear Information System (INIS)
Towner, I.S.; Khanna, F.C.
1984-01-01
Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents
Lattice QCD evaluation of baryon magnetic moment sum rules
International Nuclear Information System (INIS)
Leinweber, D.B.
1991-05-01
Magnetic moment combinations and sum rules are evaluated using recent results for the magnetic moments of octet baryons determined in a numerical simulation of quenched QCD. The model-independent and parameter-free results of the lattice calculations remove some of the confusion and contradiction surrounding past magnetic moment sum rule analyses. The lattice results reveal the underlying quark dynamics investigated by magnetic moment sum rules and indicate the origin of magnetic moment quenching for the non-strange quarks in Σ. In contrast to previous sum rule analyses, the magnetic moments of nonstrange quarks in Ξ are seen to be enhanced in the lattice results. In most cases, the spin-dependent dynamics and center-of-mass effects giving rise to baryon dependence of the quark moments are seen to be sufficient to violate the sum rules in agreement with experimental measurements. In turn, the sum rules are used to further examine the results of the lattice simulation. The Sachs sum rule suggests that quark loop contributions not included in present lattice calculations may play a key role in removing the discrepancies between lattice and experimental ratios of magnetic moments. This is supported by other sum rules sensitive to quark loop contributions. A measure of the isospin symmetry breaking in the effective quark moments due to quark loop contributions is in agreement with model expectations. (Author) 16 refs., 2 figs., 2 tabs
Theoretical status of baryon magnetic moments
Franklin, Jerrold
1989-05-01
This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12-17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article. (AIP)
Theoretical status of baryon magnetic moments
International Nuclear Information System (INIS)
Franklin, J.
1989-01-01
This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12--17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article
International Nuclear Information System (INIS)
Lipkin, H.J.
1983-06-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)
Theory of nuclear magnetic moments - LT-35
Energy Technology Data Exchange (ETDEWEB)
Kerman, A. K.
1952-09-15
The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)
Macroscopic quantum tunneling of the magnetic moment
Tejada, J.; Hernandez, J. M.; del Barco, E.
1999-05-01
In this paper we review the work done on magnetic relaxation during the last 10 years on both single-domain particles and magnetic molecules and its contribution to the discovery of quantum tunneling of the magnetic moment (Chudnovsky and Tejada, Macroscopic Quantum tunneling of the Magnetic moment, Cambridge University press, Cambridge, 1998). We present first the theoretical expressions and their connection to quantum relaxation and secondly, we show and discuss the experimental results. Finally, we discuss very recent hysteresis data on Mn 12Ac molecules at extremely large sweeping rate for the external magnetic field which suggest the existence of quantum spin—phonon avalanches.
Anomalous Magnetic and Electric Dipole Moments of the $\\tau$
Taylor, L
1998-01-01
This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the e/sup +/e/sup -/ to tau /sup +/ tau /sup -/ gamma process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: a/sub tau /=0.004+or-0.027+or-0.023 and d /sub tau /=(0.0+or-1.5+or-1.3)*10/sup -16/ e.cm. (22 refs). This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the $\\eettg$ process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: $\\atau = 0.004 10^{-16}{e{\\cdot}\\mathrm{cm}}$.
Baryon magnetic moments in the quark model and pion cloud contributions
International Nuclear Information System (INIS)
Sato, Toshiro; Sawada, Shoji
1981-01-01
Baryon magnetic moment is studied paying attention to the effects of pion cloud which is surrounding the 'bare' baryon whose magnetic moment is given by the quark model with broken SU(6) symmetry. The precisely measured nucleon magnetic moments are reproduced by the pion cloud contributions from the distance larger than 1.4 fm. The effects of pion cloud on the hyperon magnetic moments are also discussed. It is shown that the pion cloud contributions largely reduce the discrepancies between the quark model predictions and the recent accurate experimental data on the hyperon magnetic moments. (author)
Measurement of the electric dipole moment and magnetic moment anomaly of the muon
Onderwater, CJG
2005-01-01
The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The
6-quark contribution to nuclear magnetic moments
International Nuclear Information System (INIS)
Ito, H.
1985-01-01
The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes
An experimentally derived magnetic moment for the f7/2 proton in trans-lead nuclei
International Nuclear Information System (INIS)
Stuchbery, A.E.; Byrne, A.P.; Dracoulis, G.D.
1992-12-01
An experimental value for the g-factor of the 1f 7/2 proton is derived from the measured magnetic moment of the 14 + 1 state in 214 Ra using the multiparticle octupole coupling model. The result, g(f 7/2 ) = 1.41(2), is smaller than anticipated by theories which assume first order core polarization corrections to the proton spin g-factor together with an anomalous orbital magnetism of about 0.12. The experimental value suggests the proton spin g-factor g s may be quenched, in this orbital, to about half the bare-nucleon value, similar to that found for the 0h 9/2 and 0i 13/2 protons, or, alternatively, that the anomalous orbital magnetism is much reduced for the 1f 7/2 orbital. 15 refs., 2 tabs
Nuclear structure studies by means of magnetic moments of excited states
International Nuclear Information System (INIS)
Kaeubler, L.; Prade, H.; Schneider, L.; Brinckmann, H.F.; Stary, F.
1981-09-01
Experimental arrangements installed at the cyclotron U-120 and the tandem accelerator EGP-10 for the in-beam measurement of magnetic moments of excited nuclear states are discribed. The Perturbed-Angular-Distribution-method (PAD) has been used. A new evaluation method has been developed for the unique determination of the Larmor frequency from spin-procession spectra R(t) with less than half of an oscillation period between consecutive particle pulses. Magnetic moments in transitional nuclei or in nuclei near closed shells ( 103 Pd, 105 Ag, 117 Sb, 117 Te, 121 Te, 121 I, 143 Pm and 207 Bi) were measured. The results are discussed with the aim to get information about the nuclear structure of the corresponding isomeric states in connection with complex spectroscopic investigations. Therefore, the experimental values are compared to the results of model calculations (core-polarization, core-particle-coupling, Nilsson, particle-rotation-coupling or shell-model) or to the estimates on the basis of the additivity of effective magnetic moments. Single-particle aspects are discussed in connection with the magnetic moments of hsub(11/2)-, dsub(5/2)- and gsub(7/2)-neutron (ν) and proton (π) states in the nuclei 103 Pd, 117 Te, 121 Te and 143 Pm, respectively. The configurations of (π) 3 and (π)(ν) 2 -three-particle states in 105 Ag, 117 Sb, 121 I and 207 Bi could be determined using the additivity rule. The experimental magnetic moments of states in 143 Pm agree very well with the results of shell-model calculations, which have firstly been carried out also for negative-parity states in this mass region. Considering magnetic moments in 117 Te and 121 Te we could demonstrate the influence of different nuclear deformations on the magnetic moments in transitional nuclei. (author)
On a neutral particle with permanent magnetic dipole moment in a magnetic medium
Bakke, K.; Salvador, C.
2018-03-01
We investigate quantum effects that stem from the interaction of a permanent magnetic dipole moment of a neutral particle with an electric field in a magnetic medium. We consider a long non-conductor cylinder that possesses a uniform distribution of electric charges and a non-uniform magnetization. We discuss the possibility of achieving this non-uniform magnetization from the experimental point of view. Besides, due to this non-uniform magnetization, the permanent magnetic dipole moment of the neutral particle also interacts with a non-uniform magnetic field. This interaction gives rise to a linear scalar potential. Then, we show that bound states solutions to the Schrödinger-Pauli equation can be achieved.
The effect of a neutrino magnetic moment on nuclear excitation processes
International Nuclear Information System (INIS)
Dodd, A.C.; Papageorgiu, E.; Ranfone, S.
1991-01-01
It is shown that the MeV-range neutrinos with a magnetic moment of ≅ 10 -11 Bohr magnetons would excite nuclei, like 12 C, with cross sections comparable to those obtained in the Standard Model. This implies the possibility of improving the present experimental bounds on the magnetic moment of any flavour of neutrinos by one order of magnitude. Such a magnetic moment would also enhance the coherent neutrino-nuclear scattering in low-temperature detectors, enabling them to set comparable limits. (author)
International Nuclear Information System (INIS)
Stone, N.J.; Rikovska, J.
1988-01-01
The introduction very briefly outlines the basic idea and experimental evidence to suggest that quarks may behave differently in nuclei and in individual nucleons, with possible consequences for the calculation of nuclear magnetic dipole moments. After description of a calculation of moments made using the extreme model of total quark deconfinement (the MIT bag model) attention is focussed on experimental tests and the state of current evidence for more partial quark deconfinement. The arguments of Yamazaki which give an experimental basis for distinguishing quark deconfinement effects from, specifically, effects caused by pion exchange currents, are given in more detail. The reasons underlying choice of nuclei in which meaningful tests may be possible are given. Early claims by Karl et al. to have demonstrated the existence of quark deconfinement in mass 3 nuclei are discussed. The current status of evidence for deconfinement based on orbital g-factor measurements in heavier nuclei is also summarised. Finally some examples are given of possible experiments using recently developed on-line facilities which may provide further tests of these ideas. (orig.)
Measurement of Short Living Baryon Magnetic Moment using Bent Crystals at SPS and LHC
Burmistrov, L; Ivanov, Yu; Massacrier, L; Robbe, P; Scandale, W; Stocchi, A
2016-01-01
The magnetic moments of baryons containing u,d and s quarks have been extensively studied and measured. The experimental results are all obtained by a well-assessed method that consists in measuring the polarisation vector of the incoming particles and the precession angle when the particle is travelling through an intense magnetic field. The polarization is evaluated by analysing the angular distribution of the decay products. No measurement of magnetic moments of charm or beauty baryons (and τ leptons) has been performed so far. The main reason is the lifetimes of charm/beauty baryons, too short to measure the magnetic moment by standard techniques. Historically, the prediction of baryon magnetic moments was one of the striking successes of the quark model. The importance of the measurement of heavy quark magnetic moment is to test the possibility that the charmed and/or beauty quarks has an anomalous magnetic moment, arising if those quarks are composite objects. Measurements on magnetic moments of heav...
Two dimensional electron gas confined over a spherical surface: Magnetic moment
International Nuclear Information System (INIS)
Hernando, A; Crespo, P; Garcia, M A
2011-01-01
Magnetism of capped nanoparticles, NPs, of non-magnetic substances as Au and ZnO is briefly reviewed. The source of the magnetization is discussed on the light of recent X-ray magnetic circular dichroism experiments. As magnetic dichroism analysis has pointed out impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states. It is proposed that mesoscopic collective orbital magnetic moments induced at the surface states can account for the experimental magnetism characteristic of these nanoparticles. The total magnetic moment of the surface originated at the unfilled Fermi level can reach values as large as 10 2 or 10 3 Bohr magnetons.
International Nuclear Information System (INIS)
Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.
2004-01-01
The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived
Magnetic moments of the baryons: An experimental review
International Nuclear Information System (INIS)
Lach, J.
1990-11-01
Measurements of baryon magnetic moments have provided important insights into the composition of baryons as well as important constraints for model builders. These measurements show that a simple quark model describes most of the salient features. However, the significant discrepancies have raised fundamental questions about baryon structure and produced a steady stream of theoretical papers. I would like to briefly review the technology for making these measurements, the current state of the measurements, and the near term prospects for improvements. 14 refs., 5 figs., 1 tab
Two dimensional electron gas confined over a spherical surface: Magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Hernando, A; Crespo, P [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P. O. Box 155, Madrid 28230 (Spain) and Dpto. Fisica de Materiales, Universidad Complutense (Spain); Garcia, M A, E-mail: antonio.hernando@adif.es [Instituto de Ceramica y Vidrio, CSIC c/Kelsen, 5 Madrid 28049 (Spain)
2011-04-01
Magnetism of capped nanoparticles, NPs, of non-magnetic substances as Au and ZnO is briefly reviewed. The source of the magnetization is discussed on the light of recent X-ray magnetic circular dichroism experiments. As magnetic dichroism analysis has pointed out impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states. It is proposed that mesoscopic collective orbital magnetic moments induced at the surface states can account for the experimental magnetism characteristic of these nanoparticles. The total magnetic moment of the surface originated at the unfilled Fermi level can reach values as large as 10{sup 2} or 10{sup 3} Bohr magnetons.
Direct evidence of Ni magnetic moment in TbNi{sub 2}Mn—X-ray magnetic circular dichroism
Energy Technology Data Exchange (ETDEWEB)
Yu, D.H., E-mail: dyu@ansto.gov.au [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); Huang, Meng-Jie [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Wang, J.L. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia); Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Su, Hui-Chia; Lin, Hong-Ji; Chen, Chien-Te [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Campbell, S.J. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia)
2014-12-15
We have investigated the individual magnetic moments of Ni, Mn and Tb atoms in the intermetallic compound TbNi{sub 2}Mn in the Laves phase (magnetic phase transition temperature T{sub C} ∼131 K) by X-ray magnetic circular dichroism (XMCD) studies at 300 K, 80 K and 20 K. Analyses of the experimental results reveal that Ni atoms at 20 K in an applied magnetic field of 1 T carry an intrinsic magnetic moment of spin and orbital magnetic moment contributions 0.53±0.01 μ{sub B} and 0.05±0.01 μ{sub B}, respectively. These moment values are similar to those of the maximum saturated moment of Ni element. A very small magnetic moment of order <0.1 μ{sub B} has been measured for Mn. This suggests that Mn is antiferromagnetically ordered across the two nearly equally occupied sites of 16d and 8a. A magnetic moment of up to ∼0.3 μ{sub B} has been observed for the Tb atoms. Identification of a magnetic moment on the Ni atoms has provided further evidence for the mechanism of enhancement of the magnetic phase transition temperature in TbNi{sub 2}Mn compared with TbNi{sub 2} (T{sub C}∼37.5 K) and TbMn{sub 2} (T{sub C}∼54 K) due to rare earth–transition metal (R–T) and transition metal–transition metal (T–T) interactions. The behaviour of the X-ray magnetic circular dichroism spectra of TbNi{sub 2}Mn at 300 K, 80 K and 20 K – above and below the magnetic ordering temperature T{sub C} ∼131 K – is discussed. - Highlights: • We study the magnetic moment of TbNi{sub 2}Mn with XMCD. • We observe directly the Ni intrinsic magnetic moment in TbNi{sub 2}Mn. • We find that Mn ordered antiferromagnetically across the 16d and 8a sites. • We confirm the mechanism for increasing the magnetic phase transition temperature.
Phase analysis of NK-bar scattering and Λ-hyperon magnetic moment
International Nuclear Information System (INIS)
Nikitiu, F.
1987-01-01
The NK-bar-scattering S matrix is suggested to have the P 01 -channel pole which corresponds to Λ-hyperon. The Λ-hyperon magnetic moment is calculated. Its value ''arises'' only due to nucleon magnetic moments and N and K-bar nontrivial relativistic coupling in the P 01 -channel. This is one more method to the quark model methods. The calculations are in agreement with the experimental value of μΛ
Precise Determination of the Strangeness Magnetic Moment of the Nucleon
Energy Technology Data Exchange (ETDEWEB)
Leinweber, D B; Boinepalli, S; Cloet, I C; Thomas, A W; Williams, A G; Young, R D; Zanotti, J M; Zhang, J B
2005-06-01
By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass lattice QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely G{sub M}{sup s} = -0.051 +/- 0.021 mu{sub N}, is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.
On the baryon magnetic moments
International Nuclear Information System (INIS)
Ferreira, P.L.
1976-01-01
In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given
Magnetic moment and beta decay of RaE
International Nuclear Information System (INIS)
Morita, Masato; Ohtsubo, Hisao; Arita, Kozo.
1976-01-01
Asymmetry of the beta-ray angular distribution in polarized RaE is evaluated with the numerical values of nuclear matrix elements, i∫r, ∫α and ∫sigma x r, which are derived by the method of the least chi-square fit to the experimental data on the spectral shape, longitudinal polarization and ft value. The magnetic moment of RaE is known to have a negative sign from this calculation, the measured asymmetry in Tokyo and the knowledge about the internal magnetic field at decaying nucleus. A consistent explanation of i∫r, ∫sigma x r and the magnetic moment of RaE is obtained in a shell model, where the tensor forces in the residual interaction and the core polarization are properly taken into account. (auth.)
Effective magnetic moment of neutrinos in strong magnetic fields
International Nuclear Information System (INIS)
Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.
2002-01-01
In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)
Sum rules and systematics for baryon magnetic moments
International Nuclear Information System (INIS)
Lipkin, H.J.
1983-11-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the THETA - moment may indicate that the strange quark contribution to the THETA moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -(1/2)μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (author)
Sum rules and systematics for baryon magnetic moments
International Nuclear Information System (INIS)
Lipkin, H.J.
1984-01-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks, e.g. from a pion cloud. The large magnitude of the Ψ - moment may indicate that the strange quark contribution to the Ψ moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -1/2μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)
2007-11-15
Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.
Puzzle of magnetic moments of Ni clusters revisited using quantum Monte Carlo method.
Lee, Hung-Wen; Chang, Chun-Ming; Hsing, Cheng-Rong
2017-02-28
The puzzle of the magnetic moments of small nickel clusters arises from the discrepancy between values predicted using density functional theory (DFT) and experimental measurements. Traditional DFT approaches underestimate the magnetic moments of nickel clusters. Two fundamental problems are associated with this puzzle, namely, calculating the exchange-correlation interaction accurately and determining the global minimum structures of the clusters. Theoretically, the two problems can be solved using quantum Monte Carlo (QMC) calculations and the ab initio random structure searching (AIRSS) method correspondingly. Therefore, we combined the fixed-moment AIRSS and QMC methods to investigate the magnetic properties of Ni n (n = 5-9) clusters. The spin moments of the diffusion Monte Carlo (DMC) ground states are higher than those of the Perdew-Burke-Ernzerhof ground states and, in the case of Ni 8-9 , two new ground-state structures have been discovered using the DMC calculations. The predicted results are closer to the experimental findings, unlike the results predicted in previous standard DFT studies.
Variational approach to magnetic moments
Energy Technology Data Exchange (ETDEWEB)
Lipparini, E; Stringari, S; Traini, M [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy
1977-11-07
Magnetic moments in nuclei with a spin unsaturated core plus or minus an extra nucleon have been studied using a restricted Hartree-Fock approach. The method yields simple explicit expressions for the deformed ground state and for magnetic moments. Different projection techniques of the HF scheme have been discussed and compared with perturbation theory.
Baryon magnetic moments: Symmetries and relations
Energy Technology Data Exchange (ETDEWEB)
Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2018-04-01
Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.
E6-lepton mixing and lepton magnetic moment
International Nuclear Information System (INIS)
Vendramin, I.
1988-01-01
The contributions to the lepton magnetic moment due to the E 6 -exotic fermions and an extra vector boson Z' have been considered. Using the experimental limits on the E 6 -lepton mixing angles, these contributions are at least one order of magnitude smaller than the standard-model ones
Magnetic dipole moments of deformed odd-A nuclei
Energy Technology Data Exchange (ETDEWEB)
Garg, V P; Sharma, S D; Mahesh, P S [Punjabi Univ., Patiala (India). Dept. of Physics
1976-12-01
Using an extended version of A S Davydov and G F Filippov's model (1958), B E Chi and J P Davidson have calculated magnetic moments of odd-A nuclei in 2s-ld shell, diagonalizing the state matrices for a set of parameters giving the best fit for nuclear spectra (1966). To study the failure of this model in case of nuclear moments, instead of diagonalizing an attempt has been made to simplify the expression for magnetic dipole moment for single nucleonic states without configuration mixing. The model takes care of the proper sign of spin projections. On replacing the total angular momentum j of odd particle (proton or neutron) by its projection ..cap omega.., the expression reduces to that of Mottelson and Nilsson for spin-up nuclei. The Coriolis coupling calculations also have been performed for those odd-A nuclei with K = 1/2. The results are found in better agreement with experimental report in comparison with those of other models.
International Nuclear Information System (INIS)
Overseth, O.E.
1981-01-01
The Fermilab Neutral Hyperon Beam Collaboration has measured the magnetic moments of Λ 0 , XI-neutral and XI-minus hyperons. With a recently published result for the Σ + hyperon, we now have precision measurements on the magnetic moments of six baryons. This allows a sensitive test of the quark model. The data are in qualitative agreement with the simple additive static quark model. Quantitatively however the data disagree with theoretical predictions by typically 15%. Several theoretical attempts to understand or remedy this discrepancy will be mentioned
How to introduce the magnetic dipole moment
International Nuclear Information System (INIS)
Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)
Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy
International Nuclear Information System (INIS)
Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S
2008-01-01
Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)
Magnetic moment of inertia within the torque-torque correlation model.
Thonig, Danny; Eriksson, Olle; Pereiro, Manuel
2017-04-19
An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation. This is described by the Landau-Lifshitz-Gilbert equation and the well known damping parameter, which has been shown to be reproduced from quantum mechanical calculations. Recently the importance of inertia phenomena have been discussed for magnetisation dynamics. This magnetic counterpart to the well-known inertia of Newtonian mechanics, represents a research field that so far has received only limited attention. We present and elaborate here on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk itinerant magnets and we show that numerical values are comparable with recent experimental measurements. The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms. We propose ways to utilise this in order to tune the inertia experimentally, and to find materials with significant inertia dynamics.
Relativistic dynamics of point magnetic moment
Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew
2018-01-01
The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincaré symmetry of space-time. We propose a covariant formulation of the magnetic force based on a `magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g-2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape.
International Nuclear Information System (INIS)
Sun Jinji; Ren Yuan; Fang Jiancheng
2011-01-01
The paper presents a special configuration of passive axial magnetic bearing with segmented Halbach magnetized array in magnetically suspended control moment gyro (MSCMG). Peculiarity of presented passive axial magnetic bearing is its ability to provide angular stiffness so that it can produce gyro moment when it is used in MSCMG. The MSCMG with this passive axial magnetic bearing can efficiently reduce the power loss when it supplies gyro moment compared with the five degrees of freedom (5-DOF) MSCMG. The characteristics of the suspension force and stiffness of the passive axial magnetic bearing are studied using finite element method (FEM). The performance of the presented passive axial magnetic bearing with Halbach magnetized array is verified by a prototyped MSCMG. - Research highlights: → Passive axial magnetic bearing is used to provide angular stiffness. → Passive axial magnetic bearing is based on repulsion. → Layers Halbach magnetized array realizes higher stiffness per bearing volume. → Passive axial magnetic bearing can provide gyro moment in CMG. → Power loss of MSCMG with PMB does not increase when it provides gyro moment.
Magnetic moment of single layer graphene rings
Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.
2018-01-01
Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.
Exchange currents for hypernuclear magnetic moments
International Nuclear Information System (INIS)
Saito, K.; Oka, M.; Suzuki, T.
1997-01-01
The meson (K and π) exchange currents for the hypernuclear magnetic moments are calculated using the effective Lagrangian method. The seagull diagram, the mesonic diagram and the Σ 0 -excitation diagram are considered. The Λ-N exchange magnetic moments for 5 Λ He and A=6 hypernuclei are calculated employing the harmonic oscillator shell model. It is found that the two-body correction is about -9% of the single particle value for 5 Λ He. The π exchange current, induced only in the Σ 0 -excitation diagram, is found to give dominant contribution for the isovector magnetic moments of hypernuclei with A=6. (orig.)
Phase formation, thermal stability and magnetic moment of cobalt nitride thin films
Directory of Open Access Journals (Sweden)
Rachana Gupta
2015-09-01
Full Text Available Cobalt nitride (Co-N thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (RN2 was varied. As RN2 increases, Co(N, Co4N, Co3N and CoN phases are formed. An incremental increase in RN2, after emergence of Co4N phase at RN2 = 10%, results in a linear increase of the lattice constant (a of Co4N. For RN2 = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co4N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M4N have been theoretically predicted. Incorporation of N atoms in M4N configuration results in an expansion of a (relative to pure metal and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M4N compounds. Though a higher (than pure Fe magnetic moment for Fe4N thin films has been evidenced experimentally, higher (than pure Co magnetic moment is evidenced in this work.
Relativistic dynamics of point magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew [The University of Arizona, Department of Physics, Tucson, AZ (United States)
2018-01-15
The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincare symmetry of space-time. We propose a covariant formulation of the magnetic force based on a 'magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g - 2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape. (orig.)
Heavy quark and magnetic moment
International Nuclear Information System (INIS)
Mubarak, Ahmad; Jallu, M.S.
1979-01-01
The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)
International Nuclear Information System (INIS)
Montero, V.; Cernicchiaro, G.
2008-01-01
In this work we describe experimental results in which a DC SQUID (superconducting quantum interference device) is used as free induction decay detector. Measurements of a solid ammonium perchlorate (NH 4 ClO 4 ) sample were performed, in zero field, at 4.2 K. Unexpected magnetic moment oscillations were detected at 1.5 kHz. The computation of the magnetic fields suggests that the proton nuclear magnetic resonance may explain the measured resonance, considering reorientation of the ammonium group by quantum tunneling of protons and a magnetic proton dipole-dipole intermolecular interaction model
Composite quarks and their magnetic moments
International Nuclear Information System (INIS)
Parthasarathy, R.
1980-08-01
A composite quark model based on the symmetry group SU(10)sub(flavour) x SU(10)sub(colour) with the assumption of mass non-degenerate sub-quarks is considered. Magnetic moments of quarks and sub-quarks are obtained from the observed nucleon magnetic moments. Using these quark and sub-quark magnetic moments, a satisfactory agreement for the radiative decays of vector mesons (rho,ω) is obtained. The ratio of the masses of the sub-quarks constituting the u,d,s quarks are found to be Msub(p)/Msub(n) = 0.3953 and Msub(p)/Msub(lambda) = 0.596, indicating a mass hierarchy Msub(p) < Msub(n) < Msub(lambda) for the sub-quarks. (author)
Local moments, exchange interactions, and magnetic order in Mn-doped LaFe2Si2 alloys
International Nuclear Information System (INIS)
Turek, I.; Divis, M.; Niznansky, D.; Vejpravova, J.
2007-01-01
Formation of local magnetic moments in the intermetallic compound LaFe 2 Si 2 due to doping by a few at% of Mn has been investigated by theoretical and experimental tools. While a number of low-temperature experiments prove appearance of non-zero magnetic moments due to the Mn doping, the measured 57 Fe Moessbauer spectra rule out sizable local moments of Fe atoms. This conclusion is in agreement with results of first-principles electronic structure calculations that yield non-vanishing moments only on Mn atoms. The calculated Mn-Mn exchange interactions are of both signs which indicate a magnetically frustrated ground state, probably with a spin-glass-like arrangement of the Mn moments
Determination of the neutron magnetic moment
International Nuclear Information System (INIS)
Greene, G.L.; Ramsey, N.F.; Mampe, W.; Pendlebury, J.M.; Smith, K.; Dress, W.B.; Miller, P.D.; Perrin, P.
1981-01-01
The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H 2 O), we find μ/sub n//μ/sub p/ = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units
Solar and atmospheric neutrinos in three generations with a magnetic moment
International Nuclear Information System (INIS)
Pulido, J.; Tao, Z.
1995-01-01
A solution to the solar and atomospheric neutrino problems in three generations in the joint context of matter oscillations and the magnetic moment is investigated. An appropriate rotation of the evolution Hamiltonian reduces the three generation case to a two generation one. A convenient background for such a scenario with small neutrino masses and large magnetic moments is given by the Zee-type models, in which the mass generation mechanism leads to a pair of separate orders of magnitude for the mass square differences between neutrino species. We obtain a ratio var-epsilon congruent 10 -2 --10 -3 between these orders of magnitude, so that one of them [(0.3--3)x10 -2 eV 2 ] is suitable for the atmospheric neutrino solution and the other (∼10 -5 eV 2 ) for the solar neutrino solution. The magnetic moment leads to a decrease of the survival probability with solar neutrino energy. Such a decrease is consistent with the experimental situation
Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes
International Nuclear Information System (INIS)
Liu Hong
2006-01-01
The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points
Quantum tunneling of the magnetic moment in a free nanoparticle
International Nuclear Information System (INIS)
O'Keeffe, M.F.; Chudnovsky, E.M.; Garanin, D.A.
2012-01-01
We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: ► We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. ► The quantum phase diagram shows magnetic moment dependence on rotator shape and size. ► Our work explains magnetic properties of free atomic clusters and magnetic molecules.
Can the magnetic moment contribution explain the Ay puzzle?
International Nuclear Information System (INIS)
Stoks, V.G.
1998-01-01
We evaluate the full one-photon-exchange Born amplitude for Nd scattering. We include the contributions due to the magnetic moment of the proton or neutron, and the magnetic moment and quadrupole moment of the deuteron. It is found that the inclusion of the magnetic-moment interaction in the theoretical description of the Nd scattering observables cannot resolve the long-standing A y puzzle. copyright 1998 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co [Programa de Física, Universidad del Quindo (Colombia); Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)
2016-07-07
The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.
Quantum tunneling of the magnetic moment in a free nanoparticle
Energy Technology Data Exchange (ETDEWEB)
O' Keeffe, M.F. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Chudnovsky, E.M., E-mail: eugene.chudnovsky@lehman.cuny.edu [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Garanin, D.A. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States)
2012-09-15
We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: Black-Right-Pointing-Pointer We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. Black-Right-Pointing-Pointer The quantum phase diagram shows magnetic moment dependence on rotator shape and size. Black-Right-Pointing-Pointer Our work explains magnetic properties of free atomic clusters and magnetic molecules.
Energy Technology Data Exchange (ETDEWEB)
Stone, N. J., E-mail: n.stone@physics.ox.ac.uk [Department of Physics and Astronomy, University of Tennessee, Knoxville Tennessee 37996 (United States)
2015-09-15
The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.
Simple optical measurement of the magnetic moment of magnetically labeled objects
Energy Technology Data Exchange (ETDEWEB)
Heidsieck, Alexandra, E-mail: aheidsieck@tum.de [Zentralinstitut für Medizintechnik, Technische Universität München (Germany); Rudigkeit, Sarah [Physics Department, Technische Universität München (Germany); Rümenapp, Christine; Gleich, Bernhard [Zentralinstitut für Medizintechnik, Technische Universität München (Germany)
2017-04-01
The magnetic moment of magnetically labeled cells, microbubbles or microspheres is an important optimization parameter for many targeting, delivery or separation applications. The quantification of this property is often difficult, since it depends not only on the type of incorporated nanoparticle, but also on the intake capabilities, surface properties and internal distribution. We describe a method to determine the magnetic moment of those carriers using a microscopic set-up and an image processing algorithm. In contrast to other works, we measure the diversion of superparamagnetic nanoparticles in a static fluid. The set-up is optimized to achieve a homogeneous movement of the magnetic carriers inside the magnetic field. The evaluation is automated with a customized algorithm, utilizing a set of basic algorithms, including blob recognition, feature-based shape recognition and a graph algorithm. We present example measurements for the characteristic properties of different types of carriers in combination with different types of nanoparticles. Those properties include velocity in the magnetic field as well as the magnetic moment. The investigated carriers are adherent and suspension cells, while the used nanoparticles have different sizes and coatings to obtain varying behavior of the carriers. - Highlights: • Determination of the magnetic moment of magnetic carriers. • optimized set-up achieve a homogeneous movement. • Automated evaluation with a customized algorithm. • example measurements for the properties of nanoparticle-loaded cells.
Energy of magnetic moment of superconducting current in magnetic field
International Nuclear Information System (INIS)
Gurtovoi, V.L.; Nikulov, A.V.
2015-01-01
Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment
Nuclear orientation experiments on the magnetic moments of europium and gadolinium nuclei
International Nuclear Information System (INIS)
Berg, F.G. van den.
1984-01-01
In this thesis, experimental results on the ground state nuclear magnetic moments of europium and gadolinium isotopes are presented. The nuclear orientation experiments were performed on europium and gadolinium nuclei embedded in several host lattices. Attention is paid to the hyperfine interactions of the ions. Nuclear moments are discussed in the context of nuclear shell model. The theoretical framework is described for nuclear structure and low temperature nuclear orientation. Furthermore, the experimental techniques, the technical arrangement of the orientation apparatus, the methods for radiative detection and the use of nuclear orientation thermometry are described. (Auth.)
Nuclear structure and magnetic moment of the unstable 12B-12N mirror pair
International Nuclear Information System (INIS)
Zheng Yongnan; Zhou Dongmei; Yuan Daqing; Zuo Yi; Fan Ping; Xu Yongjun; Zhu Jiazheng; Wang Zhiqiang; Luo Hailong; Zhang Xizhen; Zhu Shengyun; Mihara, M.; Matsuta, K.; Fukuda, M.; Minamisono, T.; Suzuki, T.
2010-01-01
Magnetic moments of the A=12 unstable mirror pair nuclides 12 B and 12 N have been measured by the β-NMR technique. The experimentally measured magnetic moments are μ( 12 B)=1.00(17)μ N and μ( 12 N)=0.4571(1)μ N . The improved shell model using an SFO Hamiltonian with enhanced spin-isospin monopole proton-neutron interaction and modified single-particle energies is employed to calculate the magnetic moments of 12 B and 12 N. The calculation yields μ( 12 B)=0.929μ N and μ( 12 N)=0.452μ N and has produced a new magic number 6 for the short-lived unstable mirror pair nuclides 12 B and 12 N. (authors)
Neutrino magnetic moment in a theory with lepton flavor symmetry
International Nuclear Information System (INIS)
Stephanov, M.A.
1987-01-01
A model for generating the neutrino magnetic moment of the order of 10 -10 μ B is proposed, which is based on the SU(3) lepton flavor symmetry. In such a way one can avoid the flavor changing processes. The experimental constraints on the constants of the model are considered
Universal Effectiveness of Inducing Magnetic Moments in Graphene by Amino-Type sp3-Defects
Directory of Open Access Journals (Sweden)
Tao Tang
2018-04-01
Full Text Available Inducing magnetic moments in graphene is very important for its potential application in spintronics. Introducing sp3-defects on the graphene basal plane is deemed as the most promising approach to produce magnetic graphene. However, its universal validity has not been very well verified experimentally. By functionalization of approximately pure amino groups on graphene basal plane, a spin-generalization efficiency of ~1 μB/100 NH2 was obtained for the first time, thus providing substantial evidence for the validity of inducing magnetic moments by sp3-defects. As well, amino groups provide another potential sp3-type candidate to prepare magnetic graphene.
Electric and magnetic dipole moments of the neutron
International Nuclear Information System (INIS)
Ramsey, N.F.
1977-01-01
Experiments to measure the electric and magnetic dipole moments of the neutron are described. The apparatus used in this experiment is one to measure with high precision the precessional frequency of the neutron spin in a weak magnetic field with a neutron beam magnetic resonance apparatus similar to that used for measuring the magnetic moment of the neutron. Results of the measurement are presented. 52 references
High-Precision Measurements of the Bound Electron’s Magnetic Moment
Directory of Open Access Journals (Sweden)
Sven Sturm
2017-01-01
Full Text Available Highly charged ions represent environments that allow to study precisely one or more bound electrons subjected to unsurpassed electromagnetic fields. Under such conditions, the magnetic moment (g-factor of a bound electron changes significantly, to a large extent due to contributions from quantum electrodynamics. We present three Penning-trap experiments, which allow to measure magnetic moments with ppb precision and better, serving as stringent tests of corresponding calculations, and also yielding access to fundamental quantities like the fine structure constant α and the atomic mass of the electron. Additionally, the bound electrons can be used as sensitive probes for properties of the ionic nuclei. We summarize the measurements performed so far, discuss their significance, and give a detailed account of the experimental setups, procedures and the foreseen measurements.
Magnetic moments of ns-isomers in 105Ag and 103Pd
International Nuclear Information System (INIS)
Schneider, L.; Kaeubler, L.; Prade, H.; Hagemann, U.; Story, F.
1979-01-01
In recent years a considerable amount of experimental work has been done in order to study the structure of odd-A transitional nuclei around Z=50. In order to obtain additional experimental information on excited states in 105 Ag and 103 Pd the magnetic moments of the 15/2 + isomer in 105 Ag and the 11/2 - isomer in 103 Pd were determined. (author)
Magnetic moments of light nuclei within the framework of reduced Hamiltonian method
Deveikis, A
1998-01-01
A new procedure for evaluation of magnetic dipole moments of light atomic nuclei has been developed. The procedure presented obeys the principles of antisymmetry and translational invariance and is based on the reduced Hamiltonian method. The theoretical formulation has been illustrated by calculation of magnetic dipole moments for 2 sup H , 3 sup H , 3 sup H e, 4 sup H e, 5 sup H e, 5 sup L i, 11 sup L i, and 6 sup L i nuclei. The calculations were performed in a complete 0(h/2 pi)omega basis. The obtained results are in good agreement with the experimental data. (author)
Analysis of dynamical corrections to baryon magnetic moments
International Nuclear Information System (INIS)
Ha, Phuoc; Durand, Loyal
2003-01-01
We present and analyze QCD corrections to the baryon magnetic moments in terms of the one-, two-, and three-body operators which appear in the effective field theory developed in our recent papers. The main corrections are extended Thomas-type corrections associated with the confining interactions in the baryon. We investigate the contributions of low-lying angular excitations to the baryon magnetic moments quantitatively and show that they are completely negligible. When the QCD corrections are combined with the nonquark model contributions of the meson loops, we obtain a model which describes the baryon magnetic moments within a mean deviation of 0.04 μ N . The nontrivial interplay of the two types of corrections to the quark-model magnetic moments is analyzed in detail, and explains why the quark model is so successful. In the course of these calculations, we parametrize the general spin structure of the j=(1/2) + baryon wave functions in a form which clearly displays the symmetry properties and the internal angular momentum content of the wave functions, and allows us to use spin-trace methods to calculate the many spin matrix elements which appear in the expressions for the baryon magnetic moments. This representation may be useful elsewhere
Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy
Lima, Eduardo A.; Weiss, Benjamin P.
2016-09-01
Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.
International Nuclear Information System (INIS)
Antony, M.S.; Britz, J.
1986-01-01
A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison
Magnetic dipole moments of odd-odd lanthanides
International Nuclear Information System (INIS)
Sharma, S.D.; Gandhi, R.
1988-01-01
Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs
Magnetic resonance signal moment determination using the Earth's magnetic field
Fridjonsson, Einar Orn; Creber, Sarah A.; Vrouwenvelder, Johannes S.; Johns, Michael L.
2015-01-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.
Magnetic resonance signal moment determination using the Earth's magnetic field
Fridjonsson, Einar Orn
2015-03-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.
Dynamic interaction between localized magnetic moments in carbon nanotubes
International Nuclear Information System (INIS)
Costa, A T; Muniz, R B; Ferreira, M S
2008-01-01
Magnetic moments dilutely dispersed in a metallic host tend to be coupled through the conduction electrons of the metal. This indirect exchange coupling (IEC), known to occur for a variety of magnetic materials embedded in several different metallic structures, is of rather long range, especially for low-dimensional structures like carbon nanotubes. Motivated by recent claims that the indirect coupling between magnetic moments in precessional motion has a much longer range than its static counterpart, we consider here how magnetic atoms adsorbed to the walls of a metallic nanotube respond to a time-dependent perturbation that induces their magnetic moments to precess. By calculating the frequency-dependent spin susceptibility, we are able to identify resonant peaks whose respective widths provide information about the dynamic aspect of the IEC. We show that by departing from a purely static representation to another in which the moments are allowed to precess, we change from what is already considered a long-range interaction to another whose range is far superior. In other words, localized magnetic moments embedded in a metallic structure can feel each other's presence more easily when they are set in precessional motion. We argue that such an effect can have useful applications leading to large-scale spintronics devices
Theoretical study on the magnetic moments formation in Ta-doped anatase TiO2
Bupu, A.; Majidi, M. A.; Rusydi, A.
2017-04-01
We present a theoretical study on Ti-vacancy induced ferromagnetism in Ta-doped anatase TiO2. Experimental study of Ti1-x Ta x O2 thin film has shown that Ti-vacancies (assisted by Ta doping) induce the formation of localized magnetic moment around it, then, the observed ferromagnetism is caused by the alignment of localized magnetic moments through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. In this study, we focus on the formation of the localized magnetic moments in this system. We hypothesize that on a unit cell, Ti-vacancy has caused four electrons from the surrounding oxygen atoms to become unpaired. These unpaired electrons then arrange themselves into a configuration with a non-zero net magnetic moment. To examine our hypothesis, we construct a Hamiltonian of the four unpaired electrons, incorporating the Coulomb intra- and inter-orbital interactions, in matrix form. Using a set of chosen parameter values, we diagonalize the Hamiltonian to get the eigenstates and eigenvalues, then, with the resulting eigenstates, we calculate the magnetic moment, μ, by obtaining the expectation value of the square of total spin operator. Our calculation results show that in the ground state, provided that the ratio of parameters satisfies some criterion, μ ≈ 4μ B , corresponding to the four electron spins being almost perfectly aligned, can be achieved. Further, as long as we keep the Coulomb intra-orbital interaction between 0.5 and 1 eV, we find that μ ≈ 4μ B is robust up to far above room temperature. Our results demonstrate that Ti vacancies in anatase TiO2 can form very stable localized magnetic moments.
Meson-exchange-current corrections to magnetic moments in quantum hadrodynamics
International Nuclear Information System (INIS)
Morse, T.M.
1990-01-01
Corrections to the magnetic moments of the non-relativistic shell model (Schmidt lines) have a long history. In the early fifties calculations of pion exchange and core polarization contributions to nuclear magnetic moments were initiated. These calculations matured by the early eighties to include other mesons and the delta isobar. Relativistic nuclear shell model calculations are relatively recent. Meson exchange and the delta isobar current contributions to the magnetic moments of the relativistic shell model have remained largely unexplored. The disagreement between the valence values of spherical relativistic mean-field models and experiment was a major problem with early (1975-1985) quantum hydrodynamics (QHD) calculations of magnetic moments. Core polarization calculations (1986-1988) have been found to resolve the large discrepancy, predicting isoscalar magnetic moments to within typically five percent of experiment. The isovector magnetic moments, however, are about twice as far from experiment with an average discrepancy of about ten percent. The pion, being the lightest of the mesons, has historically been expected to dominate isovector corrections. Because this has been found to be true in non-relativistic calculations, the author calculated the pion corrections in the framework of QHD. The seagull and in-flight pion exchange current diagram corrections to the magnetic moments of eight finite nuclei (plus or minus one valence nucleon from the magic A = 16 and A = 40 doubly closed shell systems) are calculated in the framework of QHD, and compared with earlier non-relativistic calculations and experiment
Directory of Open Access Journals (Sweden)
Tetsuro Ueno
2017-05-01
Full Text Available We demonstrate the quantitative mapping of magnetic moments in a permanent-magnet material by X-ray magnetic circular dichroism nano-spectroscopy. An SmCo5 specimen was prepared from the bulk material by using a micro-fabrication technique. Scanning transmission X-ray microscopy images were obtained around the Sm M4,5 absorption edges. By applying the magneto-optical sum rules to these images, we obtained quantitative maps of the orbital and spin magnetic moments as well as their ratio. We found that the magnitudes of the orbital and spin magnetic moments and their ratio do not depend on thickness of the specimen.
The vector meson with anomalous magnetic moment
International Nuclear Information System (INIS)
Boyarkin, O.M.
1976-01-01
The possibility of introducing an anomalous magnetic moment into the Stuckelberg version of the charged vector meson theory is considered. It is shown that the interference of states with spins equal to one and zero is absent in the presence of an anomalous magnetic moment of a particle. The differential cross section of scattering on the Coulomb field of a nucleus is calculated, and so are the differential and integral cross sections of meson pair production on annihilation of two gamma quanta. The two-photon mechanism of production of a meson pair in colliding electron-positron beams is considered. It is shown that with any value of the anomalous magnetic moment the cross section of the esup(+)esup(-) → esup(+)esup(-)γsup(*)γsup(*) → esup(+)esup(-)Wsup(+)Wsup(-) reaction exceeds that of the esup(+)esup(-) → γsup(*) → Wsup(+)Wsup(-) at sufficiently high energies
A light Zeldovich-Konopinski-Mahmoud neutrino with a large magnetic moment
International Nuclear Information System (INIS)
Ecker, G.; Grimus, W.; Neufeld, H.
1989-08-01
We propose a non-Abelian extension of a Zeldovich-Konopinski-Mahmoud lepton number symmetry which gives rise to a naturally light Dirac neutrino with a magnetic moment of O(10 -11 μ B ). The neutrino mass appears first at the two-loop level and is well below the experimental upper bound. 13 refs., 3.figs. (Authors)
Lifetimes and magnetic moments in odd-odd 70 As
International Nuclear Information System (INIS)
Pantelica, D.; Negoita, F.; Stanoiu, M.
1998-01-01
The extensive experimental and theoretical work on the structure of N∼Z, A = 60-80 nuclei revealed many interesting features: large prolate deformations (β = 0.4), strong shape variations as a function of particle number, excitation energy, spin and shape coexistence effects. They are related with drastic changes of properties observed in nuclei with Z≥33 when going from spherical nuclei with N = 50 to neutron deficient nuclei with N = 38 or 40. Both the rapid changes in structure and the shape coexistence appear to reflect the competition between the shell gaps which occur at large oblate and prolate deformations near nucleon numbers 36 and 38 for both protons and neutrons. For N∼Z nuclei the same shell gaps appear simultaneously for both protons and neutrons and reinforce each other. The microscopic structure of the nuclei in the mass region A = 60-80 is essentially determined by the 1g 9/2 , 2p 1/2 , 1f 5/2 and 2p 3/2 orbitals. Because no unique interpretation of the unusual features discovered in these nuclei exists, the systematic experimental study of structure of these nuclei is still an interesting subject. As part of a systematic experimental study undertaken to investigate the structure of neutron deficient, odd-odd As nuclei, 68,70,72 As, the level scheme of 70 As was investigated using heavy ion induced reactions and in-beam γ-ray spectroscopy techniques. At energies between 500 and 900 keV a multiplet of negative parity levels has been observed. At higher energies a high-spin positive parity sequence of levels starting with a E x = 1676 keV, J π 8 + level is strongly populated. Additional information is required in order to establish the structure of low and high-spin levels of both parities. The magnetic moments of the 8 + and 9 + levels have been measured using the time-integral perturbed angular distribution technique and the lifetimes of four levels have been determined using the recoil-distance method. From the measured lifetime for the 9
Magnetic moments, coupling, and interface interdiffusion in Fe/V(001) superlattices
Schwickert, M. M.; Coehoorn, R.; Tomaz, M. A.; Mayo, E.; Lederman, D.; O'brien, W. L.; Lin, Tao; Harp, G. R.
1998-06-01
Epitaxial Fe/V(001) multilayers are studied both experimentally and by theoretical calculations. Sputter-deposited epitaxial films are characterized by x-ray diffraction, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. These results are compared with first-principles calculations modeling different amounts of interface interdiffusion. The exchange coupling across the V layers is observed to oscillate, with antiferromagnetic peaks near the V layer thicknesses tV~22, 32, and 42 Å. For all films including superlattices and alloys, the average V magnetic moment is antiparallel to that of Fe. The average V moment increases slightly with increasing interdiffusion at the Fe/V interface. Calculations modeling mixed interface layers and measurements indicate that all V atoms are aligned with one another for tV<~15 Å, although the magnitude of the V moment decays toward the center of the layer. This ``transient ferromagnetic'' state arises from direct (d-d) exchange coupling between V atoms in the layer. It is argued that the transient ferromagnetism suppresses the first antiferromagnetic coupling peak between Fe layers, expected to occur at tV~12 Å.
The anomalous magnetic moment of the muon
Jegerlehner, Friedrich
2017-01-01
This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...
The Anomalous Magnetic Moment of the Muon
Jegerlehner, Friedrich
2008-01-01
This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...
Magnetic moments of the lowest-lying singly heavy baryons
Yang, Ghil-Seok; Kim, Hyun-Chul
2018-06-01
A light baryon is viewed as Nc valence quarks bound by meson mean fields in the large Nc limit. In much the same way a singly heavy baryon is regarded as Nc - 1 valence quarks bound by the same mean fields, which makes it possible to use the properties of light baryons to investigate those of the heavy baryons. A heavy quark being regarded as a static color source in the limit of the infinitely heavy quark mass, the magnetic moments of the heavy baryon are determined entirely by the chiral soliton consisting of a light-quark pair. The magnetic moments of the baryon sextet are obtained by using the parameters fixed in the light-baryon sector. In this mean-field approach, the numerical results of the magnetic moments of the baryon sextet with spin 3/2 are just 3/2 larger than those with spin 1/2. The magnetic moments of the bottom baryons are the same as those of the corresponding charmed baryons.
Magnetic moments of composite quarks and leptons: further difficulties
International Nuclear Information System (INIS)
Lipkin, H.J.
1980-05-01
The previously noted difficulty of obtaining Dirac magnetic moments in composite models with two basic building blocks having different charges is combined with the observation by Shaw et al., that a light bound fermion state built from heavy constituents must have the Dirac moment in a renormalizable theory. The new constraint on any model that builds leptons from two fundamental fields bound by non-electromagnetic forces is that the ratio of the magnetic moment to the total charge of the bound state is independent of the values of the charges of the constituents; e.g., such a bound state of a spin-1/2 fermion and a scalar boson will have the same magnetic moment if the fermion is neutral and the boson has charge -e or vice versa
Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes
International Nuclear Information System (INIS)
Ekstroem, C.; Ingelman, S.; Wannberg, G.
1977-03-01
Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)
Shell structure of potassium isotopes deduced from their magnetic moments
Papuga, J.; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T
2014-09-29
$\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...
New limits on neutrino magnetic moment through nonvanishing 13-mixing
Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.
2018-05-01
The relatively large value of the neutrino mixing angle θ13 set by recent measurements allows us to use solar neutrinos to set a limit on the neutrino magnetic moment involving the second and third flavor families, μ23. The existence of a random magnetic field in the solar convective zone can produce a significant antineutrino flux when a nonvanishing neutrino magnetic moment is assumed. Even if we consider a vanishing neutrino magnetic moment involving the first family, electron antineutrinos are indirectly produced through the mixing between the first and third families and μ23≠0 . Using KamLAND limits on the solar flux of electron antineutrino, we set the limit μ23behavior of solar magnetic fields. This is the first time that a limit on μ23 has been established in the literature directly from neutrino interactions with magnetic fields, and, interestingly enough, is comparable with the limits on the neutrino magnetic moment involving the first family and with the ones coming from modifications to the electroweak cross section.
Restrictions on the neutrino magnetic dipole moment
International Nuclear Information System (INIS)
Duncan, M.J.; Sankar, S.U.; Grifols, J.A.; Mendez, A.
1987-01-01
We examine mechanisms for producing neutrino magnetic moments from a wide class of particle theories which are extensions of the standard model. We show that it is difficult to naturally obtain a moment greater than ≅ 10 -2 electron Bohr magnetons. Thus models of phenomena requiring moments of order ≅ 10 -10 magnetons, such as those proposed as a resolution to the solar neutrino puzzle, are in conflict with current perceptions in particle physics. (orig.)
Magnetic dipole moment of the Δ(1232) in chiral perturbation theory
International Nuclear Information System (INIS)
Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.
2006-01-01
The magnetic dipole moment of the Δ(1232) is calculated in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory in combination with the extended on-mass-shell renormalization scheme. As in the case of the nucleon, at leading order both isoscalar and isovector anomalous magnetic moments are given in terms of two low-energy constants. In contrast to the nucleon case, at next-to-leading order the isoscalar anomalous magnetic moment receives a (real) loop contribution. Moreover, due to the unstable nature of the Δ(1232), at next-to-leading order the isovector anomalous magnetic moment not only receives a real but also an imaginary loop contribution. (orig.)
The magnetic moment of NiO nanoparticles determined by Moessbauer spectroscopy
International Nuclear Information System (INIS)
Bahl, C R H; Hansen, M F; Pedersen, T; Saadi, S; Nielsen, K H; Lebech, B; Moerup, S
2006-01-01
We have studied the magnetic properties of 57 Fe-doped NiO nanoparticles using Moessbauer spectroscopy and magnetization measurements. Two samples with different degrees of interparticle interaction were studied. In both samples the particles were characterized by high-resolution transmission electron microscopy and x-ray diffraction and found to be plate-shaped. Computer simulations showed that high-field Moessbauer data are very sensitive to the size of the uncompensated magnetic moment. From analyses of the Moessbauer spectra we have estimated that the size of the uncompensated magnetic moment is in accordance with a model based on random occupation of surface sites. The analyses of the magnetization data gave larger magnetic moments, but the difference can be explained by the different sensitivity of the two methods to a particle size distribution and by interactions between the particles, which may have a strong influence on the moments estimated from magnetization data
Tilted-foil polarisation and magnetic moments of mirror nuclei at ISOLDE
Bordeanu, C; Thundiyamkulathu Baby, L; Lindroos, M
2002-01-01
We report here on the first measurement in an experimental program initiated at the ISOLDE facility at CERN for the measurement of magnetic moments of short-lived radionuclides. The 60~keV ISOLDE beam from the GPS separator is boosted in energy by a 200~kV high-voltage platform, on which the whole experiment is mounted, in order to achieve sufficiently high energy for transmission through the foils of a tilted-foil setup. The 520~keV $^{23}$Mg(2$^+$) nuclei are polarized by the tilted foil technique and the resulting 0$^o$ - 180$^o$ $\\beta$- asymmetry is monitored as a function of the frequency of an rf-applied perturbing magnetic field in an NMR setup.\\\\ In this experiment, earlier asymmetry measurements were confirmed and an NMR resonance was observed, corresponding to a preliminary value of the magnetic moment of 0.533(6) n.m., in agreement with a previous measurement. The measured asymmetry as function of NMR frequency and the fitted resonance curve are presented in the figure. During the e...
On the origin of the giant magnetic moment of the Al-Mn quasicrystals
Directory of Open Access Journals (Sweden)
Bocharov P.V.
2011-05-01
Full Text Available Ab initio calculations of magnetic moments for icosahedral clusters contained in crystal structures Al10Mn3, Al5Co2, Al17Mn4 (Al13Cr4Si4-type fulfilled in the framework of Density Functional Theory. The AlMn cluster having the trigonal D3h symmetry with the triangle of Mn ions in the interior has the moment being equal to three magnetic moments of a single manganese ion (4.4 μB, the moment of the tetrahedral Td cluster with the Mn tetrahedron in the interior is equal approximately to twelve magnetic moments of the single manganese ion (15.5 μB. The magnetic moment of icosahedral Al-Co clusters having the same configuration is equal to zero. The magnetic moments of the rod assembled from the icosahedral clusters with the sequence Td D3h - Td was found to be 20.5 μB. This value permits to explain the giant magnetic moment of icosahedral and decagonal Al-Mn quasicrystals and gives the indirect evidence to the hierarchical model of the quasicrystals structure proposed by the authors recently. An arrangement of magnetic moment carriers in the interior of the aluminum shell of icosahedral clusters permits to suggest the interaction between contacting manganese ions as the main origin of the giant magnetic moment of the Al-Mn quasicrystals.
Magnetic moment distribution in Co-V alloys
International Nuclear Information System (INIS)
Cable, J.W.
1982-01-01
Magnetization and neutron scattering measurements were made on Co-V alloys containing 10, 15, and 20 at.% V to determine the local environment effects on the magnetic moment distribution in this system. The magnetization data agree with earlier results and suggest the presence of some hcp phase in the 10% sample. This was confirmed by the neutron data which showed both fcc and hcp phases in an approximate 4:1 volume ratio for this alloy. The other two samples were single phase fcc but the 15% alloy was disordered while the 20% alloy was ordered in the Cu 3 Au-type structure with the maximum order consistent with the concentration. In this ordered alloy, the excess Co occupies the V sites. These ''wrong sited'' Co atoms have 12 Co nearest neighbors and larger magnetic moments than the ''properly sited'' Co atoms which have an average of 8.8 Co nearest neighbors. The average moments associated with these two types of sites were determined from flipping-ratio measurements on the superlattice and fundamental reflections. The values obtained are 0.28 μ/sub B//Co for the proper-site atoms and 1.3 μ/sub B//Co for the wrong-site atoms. Average moments at the Co and V sites were determined from the diffuse scattering for the 10% and 15% alloys. The results are 1.38 μ/sub B//Co and -0.26 μ/sub B//V for the 10% sample and 1.05 μ/sub B//Co and -0.11 μ/sub B//V for the 15% sample
Magnetic dipole moment of a moving electric dipole
Hnizdo, V.
2012-01-01
The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.
Fits combining hyperon semileptonic decays and magnetic moments and CVC
International Nuclear Information System (INIS)
Bohm, A.; Kielanowski, P.
1982-10-01
We have performed a test of CVC by determining the baryon charges and magnetic moments from the hyperon semileptonic data. Then CVC was applied in order to make a joint fit of all baryon semileptonic decay data and baryon magnetic moments for the spectrum generating group (SG) model as well as for the conventional (cabibbo and magnetic moments in nuclear magnetons) model. The SG model gives a very good fit with chi 2 /n/sub D/ = 25/20 approximately equals 21% C.L. whereas the conventional model gives a fit with chi 2 /n/sub D/ = 244/20
Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei
International Nuclear Information System (INIS)
Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse
2008-01-01
Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)
Determination of the magnetic moment of $^{140}$Pr
Kowalska, M; Kreim, K D; Krieger, A R; Litvinov, Y
We propose to measure the nuclear magnetic moment of the neutron-deficient isotope $^{140}$Pr using collinear laser spectroscopy at the COLLAPS experiment. This nuclide is one of two nuclear systems for which a modulated electron capture decay has been observed in hydrogen-like ions in a storage ring. The firm explanation of the observed phenomenon is still missing but some hypotheses suggest an interaction of the unpaired electron with the surrounding magnetic fields of the ring. In order to verify or discard these hypotheses the magnetic moment of $^{140}$Pr is required since this determines the energy of the 1s hyperfine splitting.
Effective particle magnetic moment of multi-core particles
Energy Technology Data Exchange (ETDEWEB)
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)
2015-04-15
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.
Effective particle magnetic moment of multi-core particles
International Nuclear Information System (INIS)
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; IJzendoorn, Leo J. van; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer
2015-01-01
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm
Effective particle magnetic moment of multi-core particles
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer
2015-04-01
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.
Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2011-04-01
This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)
Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2014-02-01
This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)
Magnetic moment of extremely proton-rich nucleus 23Al
International Nuclear Information System (INIS)
Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M
2005-01-01
The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N
Field Induced Magnetic Moments in a Metastable Iron-Mercury Alloy
DEFF Research Database (Denmark)
Pedersen, M.S.; Mørup, Steen; Linderoth, Søren
1996-01-01
The magnetic properties of a metastable iron-mercury alloy have been investigated in the temperature range from 5 to 200 K by Mossbauer spectroscopy and magnetization measurements. At low temperature the magnetic moment per iron atom is larger than af alpha-Fe. The effective spontaneous magnetic ....... It was found that the field-induced increase of the magnetic moment in the metastable iron-mecury alloy was about 0.06 Bohr magnetons per iron atom in the temperature range from 5 to 200 K for a field change from 6 to 12 T....
Measurement of the Magnetic Moment of the Negative Muon Bound in Different Atoms
Mamedov, T N; Gritsaj, K I; Kormann, O; Major, J V; Stoikov, A V; Zimmermann, U
2001-01-01
Theoretical calculations show that the magnetic moment of the electron and the negative muon in a bound state in an atom should be different from the magnetic moment of the free particle due to their relativistic motion. There are also additional radiative corrections to the magnetic moment of a bound electron (muon) due to the presence of the strong Coulomb field of the atomic nucleus. The results of the measurements of the magnetic moment of the negative muon in carbon, oxygen, magnesium, silicon, sulfur, and zinc are presented. The accuracy of the measurements makes it possible to prove the dependence of the relativistic correction to the magnetic moment of a bound muon on Z of the atom.
Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment
Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.
2017-07-01
Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.
Cooper pairs' magnetic moment in MCFL color superconductivity
International Nuclear Information System (INIS)
Feng Bo; Ferrer, Efrain J.; Incera, Vivian de la
2011-01-01
We investigate the effect of the alignment of the magnetic moments of Cooper pairs of charged quarks that form at high density in three-flavor quark matter. The high-density phase of this matter in the presence of a magnetic field is known to be the Magnetic Color-Flavor-Locked (MCFL) phase of color superconductivity. We derive the Fierz identities of the theory and show how the explicit breaking of the rotational symmetry by the uniform magnetic field opens new channels of interactions and allows the formation of a new diquark condensate. The new order parameter is a spin-1 condensate proportional to the component in the field direction of the average magnetic moment of the pairs of charged quarks. The magnitude of the spin-1 condensate becomes comparable to the larger of the two scalar gaps in the region of large fields. The existence of the spin-1 condensate is unavoidable, as in the presence of a magnetic field there is no solution of the gap equations with nonzero scalar gaps and zero magnetic moment condensate. This is consistent with the fact that the extra condensate does not break any symmetry that has not already been broken by the known MCFL gaps. The spin-1 condensate enhances the condensation energy of pairs formed by charged quarks and the magnetization of the system. We discuss the possible consequences of the new order parameter on the issue of the chromomagnetic instability that appears in color superconductivity at moderate density.
New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle
Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.
2018-03-01
A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.
New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.
Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V
2018-03-02
A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.
Magnetic moment densities in selected UTX compounds
Czech Academy of Sciences Publication Activity Database
Javorský, P.; Schweizer, J.; Givord, F.; Boucherle, J.-X.; Andreev, Alexander V.; Diviš, M.; Lelievre-Berna, E.; Sechovský, V.
2004-01-01
Roč. 350, - (2004), e131-e134 ISSN 0921-4526 R&D Projects: GA ČR GA202/03/0550 Institutional research plan: CEZ:AV0Z1010914 Keywords : uranium compound * polarized neutron scattering * magnetic moment Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004
Gate-dependent orbital magnetic moments in carbon nanotubes
DEFF Research Database (Denmark)
Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Flensberg, Karsten
2011-01-01
We investigate how the orbital magnetic moments of electron and hole states in a carbon nanotube quantum dot depend on the number of carriers on the dot. Low temperature transport measurements are carried out in a setup where the device can be rotated in an applied magnetic field, thus enabling...... accurate alignment with the nanotube axis. The field dependence of the level structure is measured by excited state spectroscopy and excellent correspondence with a single-particle calculation is found. In agreement with band structure calculations we find a decrease of the orbital magnetic moment...... with increasing electron or hole occupation of the dot, with a scale given by the band gap of the nanotube....
Neutrino magnetic moments and the solar neutrino problem
Energy Technology Data Exchange (ETDEWEB)
Akhmedov, E.Kh. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Valencia Univ. (Spain). Dept. de Fisica Teorica
1994-08-01
Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2{theta}{sub o} {approx_gt} 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar {bar {nu}}{sub e}`s.
Neutrino magnetic moments and the solar neutrino problem
International Nuclear Information System (INIS)
Akhmedov, E.Kh.; Valencia Univ.
1994-01-01
Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2θ o approx-gt 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar bar ν e 's
The effect of a neutrino magnetic moment on nuclear excitation processes
International Nuclear Information System (INIS)
Dodd, A.C.; Papageorgiu, E.; Ranfone, S.
1991-01-01
We discuss the sensitivity of magnetic transitions in nuclei like 12 C, to a small neutrino magnetic moment, and its implications for current and future experiments. We also point out that coherent neutrino-nuclear elastic scattering in low-temperature detectors, might improve the present laboratory bounds on the neutrino magnetic moment by an order of magnitude. (orig.)
Unstable magnetic moments in Ce compounds
International Nuclear Information System (INIS)
Aarts, J.
1984-01-01
The problems which are connected with the appearance or disappearance of local moments in metals are well reflected in the magnetic behaviour of Ce intermetallic compounds. This work describes experiments on two Ce compounds which are typical examples of unstable moment systems. The first of these is CeAl 2 which at low temperatures, shows coexistence of antiferromagnetic order and the Kondo effect. Measurements are presented of the magnetization and the susceptibility in different magnetic field and temperature regions. An analysis of these measurements, using a model for the crystal field effects, shows the agreement between the measurements and the calculations to be reasonably good for CeAl 2 , but this agreement becomes worse upon decreasing Ce concentration. A phenomenological description of the observations is given. The second compound reported on is CeCu 2 Si 2 , the first 'heavy-fermion' superconductor to be investigated. The superconducting state is possibly formed by the quasi-particles of a non-magnetic many body singlet state, and not simply by the (sd) conduction electrons. This being a novel phenomenon, a number of experiments were performed to test this picture and to obtain a detailed description of the behaviour of CeCu 2 Si 2 . Measurements of the Meissner volume, confirmed the superconductivity to be intrinsic. (Auth.)
Magnitude of localized magnetic moments in metals
International Nuclear Information System (INIS)
Kiwi, M.; Pestana, E.; Ramirez, R.
1979-01-01
The magnitude of the localized magnetic moment of a transition or rare earth element impurity in a metal is evaluated within the framework of the Anderson model. Rotational invariance is preserved throughout. Graphs of the magnitude of the magnetization as a function of the relevant parameters of the model are provided and discussed. (author)
International Nuclear Information System (INIS)
Oztekin, E.
2010-01-01
In this study, magnetic multipole moment integrals are calculated by using Slater type orbitals (STOs), Fourier transform and translation formulas. Firstly, multipole moment operators which appear in the three-center magnetic multipole moment integrals are translated to b-center from 0-center. So, three-center magnetic multipole moment integrals have been reduced to the two-center. Then, the obtained analytical expressions have been written in terms of overlap integrals. When the magnetic multipole moment integrals calculated, matrix representations for x-, y- and z-components of multipole moments was composed and every component was separately calculated to analytically. Consequently, magnetic multipole moment integrals are also given in terms of the same and different screening parameters.
Magnetic moment of short lived {beta}-emitter {sup 24m}Al
Energy Technology Data Exchange (ETDEWEB)
Nishimura, D., E-mail: daiki@vg.phys.sci.osaka-u.ac.jp; Komurasaki, J.; Matsuta, K.; Mihara, M.; Matsumiya, R. [Osaka University, Department of Physics (Japan); Momota, S. [Kochi University of Technology (Japan); Ohtsubo, T. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, RI Center (Japan); Hirano, H. [Niigata University, Department of Physics (Japan); Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S. [National Institute of Radiological Sciences (Japan); Fukuda, M.; Ishikawa, D. [Osaka University, Department of Physics (Japan); Minamisono, T. [Fukui University of Technology (Japan); Watanabe, R.; Kubo, T. [Niigata University, Department of Physics (Japan); Nojiri, Y. [Kochi University of Technology (Japan); Alonso, J. R. [Lawrence Berkeley Laboratory (United States)
2007-11-15
The magnetic moment of short lived {beta}-emitter {sup 24m}Al (426 keV, I{sup {pi}} = 1{sup +}, T{sub 1/2} = 131 ms) has been measured by means of {beta}-NMR technique, for the first time. From the {beta}-NMR spectrum, the magnetic moment was determined as |{mu}({sup 24m}Al)|=(2.99{+-}0.09){mu}{sub N}. Combined with the known magnetic moment of the mirror partner {sup 24m}Na, the expectation value of < S{sub z} > is obtained to be (0.08 {+-} 0.12). These values are reproduced well by the shell model calculation.
International Nuclear Information System (INIS)
Mohanta, S.K.; Mishra, S.N.; Srivastava, S.K.
2014-01-01
We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti–Co), 4d (Nb–Ru) and 5d (Ta–Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446–e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc–V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. - Highlights: • Detailed study of transition metal impurities in ferromagnetic Gd has been carried out. • The trends in impurity magnetic moment are qualitatively different from Fe, Co and Ni. • The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. • Experimental trend in a hyperfine field has been reproduced successfully
Exchange current contributions to isoscalar magnetic moments
International Nuclear Information System (INIS)
Arima, A.; Bentz, W.; Ichii, S.
1986-01-01
In this work the authors have investigated two recent suggestions which indicated appreciable exchange current contributions to isoscalar magnetic moments. On account of gauge invariance the authors found that in both treatments certain important terms seem to be omitted. The authors then performed explicit calculations using a one-boson exchange model for the exchange current operator. The authors found that the results are sensitive to the ratio of coupling constants g/sub σNN///g/sub ωNN/. Due to this fact it is difficult to draw quantitative conclusions. In the present model calculation the authors found that both g/sub s/(0) and g/sub 1//sup 0/ are enhanced by about 3% to 4%, resulting in non-negligible corrections to isoscalar magnetic moments
The effect of ions on the magnetic moment of vacancy for ion-implanted 4H-SiC
Peng, B.; Zhang, Y. M.; Dong, L. P.; Wang, Y. T.; Jia, R. X.
2017-04-01
The structural properties and the spin states of vacancies in ion implanted silicon carbide samples are analyzed by experimental measurements along with first-principles calculations. Different types and dosages of ions (N+, O+, and B+) were implanted in the 4H-silicon carbide single crystal. The Raman spectra, positron annihilation spectroscopy, and magnetization-magnetic field curves of the implanted samples were measured. The fitting results of magnetization-magnetic field curves reveal that samples implanted with 1 × 1016 cm-2 N+ and O+ ions generate paramagnetic centers with various spin states of J = 1 and J = 0.7, respectively. While for other implanted specimens, the spin states of the paramagnetic centers remain unchanged compared with the pristine sample. According to the positron annihilation spectroscopy and first-principles calculations, the change in spin states originates from the silicon vacancy carrying a magnetic moment of 3.0 μB in the high dosage N-implanted system and 2.0 μB in the O-doped system. In addition, the ratio of the concentration of implanted N ions and silicon vacancies will affect the magnetic moment of VSi. The formation of carbon vacancy which does not carry a local magnetic moment in B-implanted SiC can explain the invariability in the spin states of the paramagnetic centers. These results will help to understand the magnetic moments of vacancies in ion implanted 4H-SiC and provide a possible routine to induce vacancies with high spin states in SiC for the application in quantum technologies and spintronics.
Energy Technology Data Exchange (ETDEWEB)
Arroyo-Urena, M.A.; Tavares-Velasco, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Hernandez-Tome, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Departamento de Fisica, Mexico City (Mexico)
2017-04-15
We obtain analytical expressions, both in terms of parametric integrals and Passarino-Veltman scalar functions, for the one-loop contributions to the anomalous weak magnetic dipole moment (AWMDM) of a charged lepton in the framework of the simplest little Higgs model (SLHM). Our results are general and can be useful to compute the weak properties of a charged lepton in other extensions of the standard model (SM). As a by-product we obtain generic contributions to the anomalous magnetic dipole moment (AMDM), which agree with previous results. We then study numerically the potential contributions from this model to the τ lepton AMDM and AWMDM for values of the parameter space consistent with current experimental data. It is found that they depend mainly on the energy scale f at which the global symmetry is broken and the t{sub β} parameter, whereas there is little sensitivity to a mild change in the values of other parameters of the model. While the τ AMDM is of the order of 10{sup -9}, the real (imaginary) part of its AWMDM is of the order of 10{sup -9} (10{sup -10}). These values seem to be out of the reach of the expected experimental sensitivity of future experiments. (orig.)
Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments
Iwasaki, Yoshiki; Morinari, Takao
2018-03-01
We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.
International Nuclear Information System (INIS)
Zhu Zhenghe; Luo Deli; Feng Kaiming
2013-01-01
The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)
Chiral-model of weak-interaction form factors and magnetic moments of octet baryons
International Nuclear Information System (INIS)
Kubodera, K.; Kohyama, Y.; Tsushima, K.; Yamaguchi, T.
1989-01-01
For baryon spectroscopy, magnetic moments and weak interaction form factors provide valuable information, and the impressive amount of available experimental data on these quantities for the octet baryons invites detailed investigations. The authors of this paper have made extensive studies of the weak-interaction form factors and magnetic moments of the octet baryons within the framework of the volume-type cloudy-bag model (v-type CBM). The clouds of all octet mesons have been included. Furthermore, we have taken into account in a unified framework various effects that were so far only individually discussed in the literature. Thus, the gluonic effects, center-of-mass (CM0 corrections, and recoil corrections have been included). In this talk, after giving a brief summary of some salient features of the results, we discuss a very interesting application of our model to the problem of the spin content of nucleons
Top quark amplitudes with an anomalous magnetic moment
International Nuclear Information System (INIS)
Larkoski, Andrew J.; Peskin, Michael E.
2011-01-01
The anomalous magnetic moment of the top quark may be measured during the first run of the LHC at 7 TeV. For these measurements, it will be useful to have available tree amplitudes with tt and arbitrarily many photons and gluons, including both QED and color anomalous magnetic moments. In this paper, we present a method for computing these amplitudes using the Britto-Cachazo-Feng-Witten recursion formula. Because we deal with an effective theory with higher-dimension couplings, there are roadblocks to a direct computation with the Britto-Cachazo-Feng-Witten method. We evade these by using an auxiliary scalar theory to compute a subset of the amplitudes.
Anomalous magnetic moment with heavy virtual leptons
Energy Technology Data Exchange (ETDEWEB)
Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
International Nuclear Information System (INIS)
Arima, A.; Hyuga, H.
1979-01-01
The authors review systematically several important mechanisms which affect magnetic moments, magnetic dipole transitions and allowed beta-decays. They are first order configuration mixing, second order configuration mixing, the Sachs moment and other exchange magnetic moments, the contribution of the Sachs moment and other exchange magnetic moments with first order configuration mixing. It is shown that first order configuration mixing and the Sachs moment are important for heavy nuclei, and that all the effects except first order mixing are important for light nuclei. (Auth.)
Magnetic moments and the Skyrme interaction
Energy Technology Data Exchange (ETDEWEB)
Lipparini, E; Stringari, S; Traini, M [Trento Univ. (Italy). Dipartmento di Matematica e Fisica
1977-12-12
The magnetic properties of the Skyrme interaction have been studied by performing a restricted Hartree-Fock calculation in order to evaluate the magnetic polarizability and the corrections to the Schmidt moments in nuclei with closed jj shells plus or minus one nucleon. Different corrections to the Schmidt values have been evaluated and discussed: the M1 core polarization and the renormalization of the gyromagnetic factors due to exchange and spin-orbit forces. Several variants of the Skyrme interaction have been studied and discussed in detail.
Top Quark Amplitudes with an Anomolous Magnetic Moment
International Nuclear Information System (INIS)
Larkoski, Andrew
2011-01-01
The anomalous magnetic moment of the top quark may be measured during the first run of the LHC at 7 TeV. For these measurements, it will be useful to have available tree amplitudes with t(bar t) and arbitrarily many photons and gluons, including both QED and color anomalous magnetic moments. In this paper, we present a method for computing these amplitudes using the Britto-Cachazo-Feng-Witten recursion formula. Because we deal with an effective theory with higher-dimension couplings, there are roadblocks to a direct computation with the Britto-Cachazo-Feng-Witten method. We evade these by using an auxiliary scalar theory to compute a subset of the amplitudes.
Nucleon magnetic moments and magnetic properties of vacuum in QCD
International Nuclear Information System (INIS)
Ioffe, B.L.; Smilga, A.V.
1983-01-01
Magnetic moments of a proton and a neutron are calculated in the QCD sum rule approach. The substantial role of the external electromagnetic field induced vacuum expectation values, the most important of which is connected with quark condensate magnetic susceptibility, is demonstrated. The results are μsub(p)=3.0, μsub(n)=2.0(+-10%) that is in a perfect agreement with experiment. The invariant amplitudes of Δ→pγ transition are also calculated
Magnetic dipole moments of the heavy tensor mesons in QCD
Energy Technology Data Exchange (ETDEWEB)
Aliev, T. M., E-mail: taliev@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T., E-mail: tbarakat@KSU.EDU.SA [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Physics and Astronomy Department, King Saud University, Riyadh (Saudi Arabia); Savcı, M., E-mail: savci@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey)
2015-11-03
The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors.
Magnetic dipole moments of the heavy tensor mesons in QCD
Energy Technology Data Exchange (ETDEWEB)
Aliev, T.M. [Middle East Technical University, Physics Department, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T. [Middle East Technical University, Physics Department, Ankara (Turkey); King Saud University, Physics and Astronomy Department, Riyadh (Saudi Arabia); Savci, M. [Middle East Technical University, Physics Department, Ankara (Turkey)
2015-11-15
The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors. (orig.)
The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops
International Nuclear Information System (INIS)
Baikov, P.
2013-07-01
The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.
The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops
Energy Technology Data Exchange (ETDEWEB)
Baikov, P. [Moscow State Univ. (Russian Federation). D.V. Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen, Garching (Germany). Physics Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-07-15
The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.
Hyperon magnetic moments and total cross sections
International Nuclear Information System (INIS)
Lipkin, H.J.
1982-06-01
The new data on both total cross sections and magnetic moments are simply described by beginning with the additive quark model in an SU(3) limit where all quarks behave like strange quarks and breaking both additivity and SU(3) simultaneously with an additional non-additive mechanism which affects only nonstrange quark contributions. The suggestion that strange quarks behave more simply than nonstrange may provide clues to underlying structure or dynamics. Small discrepancies in the moments are analyzed and shown to provide serious difficulties for most models if they are statistically significant. (author)
International Nuclear Information System (INIS)
Scheunert, G; Ward, C; Hendren, W R; Bowman, R M; Lapicki, A A; Hardeman, R; Mooney, M; Gubbins, M
2014-01-01
Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe 65 Co 35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature. (paper)
International Nuclear Information System (INIS)
Yukhimchuk, A.A.; Vinogradov, Yu.I.; Golubkov, A.N.; Grishechkin, S.K.; Il'kaev, R.I.; Kuryakin, A.V.; Lebedev, B.L.; Lobanov, V.N.; Mikhailov, V.N.; Tumkin, D.P.; Bogdanova, L.N.
2005-01-01
For the experiment on the measurement of the electron antineutrino magnetic moment we suggest a new approach to the tritium source design, namely, a configuration of annular cells filled with TiT 2 that are stacked into a hollow cylinder. Detectors are mounted in the hole inside.We present results of the optimization of geometrical and physical parameters of the source with respect to its experimental effectiveness and safety guaranty at all stages of its lifecycle. We discuss the choice of the construction materials and specify technological issues relevant to radiation purity of the source, being of the special concern in the experiment on the electron antineutrino magnetic moment measurement
Magnetic moment jumps in flat and nanopatterned Nb thin-walled cylinders
Energy Technology Data Exchange (ETDEWEB)
Tsindlekht, M.I., E-mail: mtsindl@vms.huji.ac.il [The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Genkin, V.M.; Felner, I.; Zeides, F.; Katz, N. [The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Gazi, Š.; Chromik, Š. [The Institute of Electrical Engineering SAS, Dúbravská cesta 9, 84104 Bratislava (Slovakia); Dobrovolskiy, O.V. [Physikalisches Institut, Goethe University, 60438 Frankfurt am Main (Germany); Physics Department, V. Karazin Kharkiv National University, 61077 Kharkiv (Ukraine); Sachser, R.; Huth, M. [Physikalisches Institut, Goethe University, 60438 Frankfurt am Main (Germany)
2017-02-15
Highlights: • Magnetization curves of as-prepared and patterned thin-walled cylinders were measured in magnetic fields applied parallel to cylinders axis. • Magnetic moment jumps were observed in magnetic fields lower and above Hc1. • Critical current density in isthmus between two antidots is higher than in a film itself. - Abstract: Penetration of magnetic flux into hollow superconducting cylinders is investigated by magnetic moment measurements. The magnetization curves of a flat and a nanopatterned thin-walled superconducting Nb cylinders with a rectangular cross section are reported for the axial field geometry. In the nanopatterned sample, a row of micron-sized antidots (holes) was milled in the film along the cylinder axis. Magnetic moment jumps are observed for both samples at low temperatures for magnetic fields not only above H{sub c1}, but also in fields lower than H{sub c1}, i. e., in the vortex-free regime. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H{sub c1}. At temperatures above 0.66T{sub c} and 0.78T{sub c} the magnetization curves become smooth for the patterned and the as-prepared sample, respectively. The magnetization curve of a reference flat Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures.
Fradin, Cécile
2013-01-01
Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185
Calculation of the electron magnetic moment in Fried-Yennie-gauge QED
International Nuclear Information System (INIS)
Adkins, G.S.
1989-01-01
The two-loop contribution to the electron magnetic moment is calculated in the Fried-Yennie gauge. This is the first treatment of the magnetic moment beyond one-loop order in a gauge other than the Feynman gauge. The Fried-Yennie gauge is infrared safe, and the calculation is done without introducing an infrared cutoff or photon mass. The Fried-Yennie-gauge result agrees with the Feynman-gauge result, as expected
Unusual temperature dependence of the magnetic moment in URu2Si2
International Nuclear Information System (INIS)
Faak, B.; Flouquet, J.; Lejay, P.
1994-01-01
The influence of the sample quality on the magnetic properties of the heavy-fermion superconductor URu 2 Si 2 has been studied by elastic neutron scattering. Two single crystals prepared under identical conditions received different heat treatments. The as-grown crystal shows an unusual temperature dependence of the magnetic Bragg peak intensity. The annealed sample behaves normally. The low-temperature magnetic moment is identical for the two samples, showing that the small moment of 0.023 (3) μ B is intrinsic. By varying the instrumental resolution, we show that the ordered moment as well as the limited correlation length (200-400 A) are of static origin. The finite correlation length appears related to defects. (author). 9 refs., 1 fig
Limits on the scaling of nucleon magnetic moments in nuclei
International Nuclear Information System (INIS)
Ericson, T.E.O.; State Univ. of New York, Stony Brook; Richter, A.; State Univ. of New York, Stony Brook
1987-01-01
In view of the suggestion that nucleon magnetic moments inside nuclei may be modified due to a rescaling of the nucleon size, we investigate empirically how large such an effect can be. The method is based on a nearly model-independent scaling relation between the axial vector matrix element and the main part of the corresponding magnetic dipole matrix element supplemented by a small and well understood contribution from the one-pion exchange current. Taking the mass A = 3 and 12 systems as examples the upper limit, for such a change of the nucleon magnetic moment inside nuclei is found to be about 2%, considerably smaller than previous estimates in the literature. (orig.)
Progress in analytical calculations for the anomalous magnetic moment of the muon
International Nuclear Information System (INIS)
Baikov, P.A.
2013-11-01
We present results for certain classes of diagrams contributing to the anomalous magnetic moment of the muon at five-loop order. Our method is based on first constructing an approximating function for the vacuum polarization function of the photon at four loop order which later can be numerically integrated to obtain the anomalous magnetic moment of the muon.
Progress in analytical calculations for the anomalous magnetic moment of the muon
Energy Technology Data Exchange (ETDEWEB)
Baikov, P.A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen (Germany). Physik Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We present results for certain classes of diagrams contributing to the anomalous magnetic moment of the muon at five-loop order. Our method is based on first constructing an approximating function for the vacuum polarization function of the photon at four loop order which later can be numerically integrated to obtain the anomalous magnetic moment of the muon.
Origin of the net magnetic moment in LaCoO3
Kaminsky, G. M.; Belanger, D. P.; Ye, F.; Fernandez-Baca, J. A.; Wang, J.; Matsuda, M.; Yan, J.-Q.
2018-01-01
We use polarized neutron scattering to characterize the Bragg scattering intensity below TC=89.5 K at the (1,0,0) pseudocubic nuclear Bragg point of LaCoO3. Upon cooling in a field (FC), a net magnetic moment is apparent in Bragg scattering intensity, just as it was in previous magnetization measurements. Critical behavior associated with the net moment near TC upon cooling in small applied fields rapidly rounds with increasing field strength. We show, using a mean-field calculation, that this net moment can develop in a metastable state that forms upon FC, even when all the interactions in the system are antiferromagnetic.
Planar Hall ring sensor for ultra-low magnetic moment sensing
DEFF Research Database (Denmark)
Hung, Tran Quang; Terki, Ferial; Kamara, Souleymanne
2015-01-01
The field sensitivity of a planar Hall effect (PHE) micro-ring type biosensor has been investigated as a function of magnetizing angle of the sensor material, for the sensing of low magnetic moment superparamagnetic labels. The field sensitivity is maximal at a magnetizing angle of α = 20°. At th...
Non-resonant precession of the neutron magnetic moment in antiferromagnets
International Nuclear Information System (INIS)
Skoblin, A.A.
1995-01-01
It is shown that the magnetic moment of a neutron moving in an antiferromagnet with a spiral-order magnetic field slowly precesses. Precession pitch strongly depends on the value and direction of the neutron velocity. 4 refs
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
International Nuclear Information System (INIS)
Córsico, A.H.; Althaus, L.G.; Bertolami, M.M. Miller; Kepler, S.O.; García-Berro, E.
2014-01-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ ν ) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ ν ∼< 10 -11 μ B . This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound
Measurement of dipole-moment in atomic transitions under strong external magnetic field
International Nuclear Information System (INIS)
Nittoh, Koichi; Kuwako, Akira; Ikehara, Tadashi; Yoshida, Tadashi; Watanabe, Takasi; Yoguchi, Itaru; Suzuki, Kazuhiro.
1996-01-01
Obtaining an accurate value of the electric dipole moment μ is essential in the fields of laser application technologies. A direct way of measuring the electric dipole moment μ is to observe the Rabi-oscillation which manifests itself in the coherent photo-excitation behavior of atoms. In the case of the elements which have large angular momenta, identifying the Rabi-oscillation in their excitation behavior becomes rather difficult. We proposed an accurate and straightforward method of determining the electric-dipole moment μ between multi-fold degenerate levels. The point is to remove the degeneracy by applying an external magnetic field with the aid of the Zeeman effect and, then, to realize a degeneration free coherent excitation. As a result, we can observe the Rabi-oscillations explicitly in the excitation υs. laser-fluence curves. The present method provides a reliable basis of experimental determination of μ. As an example, we applied the present method to a transition to 0-17,362 cm -1 level in uranium and obtained the value μ=0.86±0.06 (Debye). (author)
Energy Technology Data Exchange (ETDEWEB)
Ngo, D.-T., E-mail: ndthe82@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Meng, Z.L. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Tahmasebi, T. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, A-STAR (Agency for Science Technology and Research), 5 Engineering Drive 1, Singapore 117608 (Singapore); Yu, X. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Thoeng, E. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Yeo, L.H. [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rusydi, A., E-mail: phyandri@nus.edu.sg [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Han, G.C [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Teo, K.-L., E-mail: eleteokl@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)
2014-01-15
We report on a strong perpendicular magnetic anisotropy in [CoFe 0.4 nm/Pd t]{sub 6} (t=1.0–2.0 nm) multilayers fabricated by DC sputtering in an ultrahigh vacuum chamber. Saturation magnetization, M{sub s}, and uniaxial anisotropy, K{sub u}, of the multilayers decrease with increasing the spacing thickness; with a M{sub s} of 155 emu/cc and a K{sub u} of 1.14×10{sup 5} J/m{sup 3} at a spacing thickness of t=2 nm. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements reveal that spin and orbital magnetic moments of Co and Fe in CoFe film decrease as a function of Pd thickness, indicating the major contribution of surface/interfacial magnetism to the magnetic properties of the film. - Highlights: • Strong perpendicular magnetic anisotropy essentially contributed by interfacial anisotropy. • Controllably magnetic properties with low M{sub s}, high K{sub u}, high P. • Interfacial magnetic moments modified by CoFe/Pd interfaces with strong spin–orbit coupling. • Narrow Bloch walls with Néel caps. • Superior magnetic characteristics for spin-torque applications.
Influence of magnetic moment formation on the conductance of coupled quantum wires
International Nuclear Information System (INIS)
Puller, V I; Mourokh, L G; Bird, J P; Ochiai, Y
2005-01-01
In this paper, we develop a model for the resonant interaction between a pair of coupled quantum wires, under conditions where self-consistent effects lead to the formation of a local magnetic moment in one of the wires. Our analysis is motivated by the experimental results of Morimoto et al (2003 Appl. Phys. Lett. 82 3952), who showed that the conductance of one of the quantum wires exhibits a resonant peak at low temperatures, whenever the other wire is swept into the regime where local-moment formation is expected. In order to account for these observations, we develop a theoretical model for the inter-wire interaction that calculated the transmission properties of one (the fixed) wire when the device potential is modified by the presence of an extra scattering term, arising from the presence of the local moment in the swept wire. To determine the transmission coefficients in this system, we derive equations describing the dynamics of electrons in the swept and fixed wires of the coupled-wire geometry. Our analysis clearly shows that the observation of a resonant peak in the conductance of the fixed wire is correlated to the appearance of additional structure (near 0.75 x 2e 2 /h or 0.25 x 2e 2 /h) in the conductance of the swept wire, in agreement with the experimental results of Morimoto et al
Anomalous magnetic nucleon moments in a Bethe-Salpeter model
International Nuclear Information System (INIS)
Chak Wing Chan.
1978-01-01
We investigate the anomalous magnetic moment of the nucleon in a field theoretic many-channel model for the electromagnetic form factors of the N anti N, the ππ, the K anti K, the πω and the πrho systems. Propagator self-energy corrections from the Ward idendity and phenomenological strong vertex corrections are both included. The photon is coupled minimally to pions, kaons and nucleons with power multiplicative renormalization. With solutions in the framework of the Bethe-Salpeter equation we obtain a value 1.84 for the isovector moment and a value -0.02 for the isoscalar moment. (orig.)
Nuclear magnetic and electric dipole moments of neon-19
International Nuclear Information System (INIS)
MacArthur, D.W.
1983-01-01
This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19 Ne. The 19 Ne is generated in the reaction 19 F(p,n) 19 Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19 Ne measured to be μ( 19 Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19 Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19 Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19 Ne atom was measured to (7.2 +/- 6.2 X 10 -22 e-cm. This experiment and possible improvements are discussed in detail
Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders
DEFF Research Database (Denmark)
Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav
2011-01-01
An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...
Rollins, Nancy K.; Liang, Hui; Park, Yong Jong
2015-01-01
Purpose: Most orthodontic appliances are made of stainless steel materials and induce severe magnetic susceptibility artifacts in brain MRI. In an effort for correcting these artifacts, it is important to know the value of induced magnetic moments in all parts of orthodontic appliances. In this study, the induced magnetic moment of stainless steel orthodontic brackets, molar bands, and arch-wires from several vendors is measured. Methods: Individual stainless steel brackets, molar bands, and short segments of arch-wire were positioned in the center of spherical flask filled with water through a thin plastic rod. The induced magnetic moment at 1.5 T was determined by fitting the B0 map to the z-component of the magnetic dipole field using a computer routine. Results: The induced magnetic moment at 1.5 T was dominated by the longitudinal component mz, with a small contribution from the transverse components. The mz was insensitive to the orientation of the metal parts. The orthodontic brackets collectively dominated the magnetic dipole moment in orthodontic appliances. In brackets from six vendors, the total induced mz from 20 brackets for nonmolar teeth ranged from 0.108 to 0.158 (median 0.122) A ⋅ m2. The mz in eight molar bands with bracket attachment from two vendors ranged from 0.0004 to 0.0166 (median 0.0035) A ⋅ m2. Several full length arch wires had induced magnetic moment in the range of 0.006–0.025 (median 0.015) A ⋅ m2. Conclusions: Orthodontic brackets collectively contributed most to the total magnetic moment. Different types of brackets, molar bands, and arch wires all exhibit substantial variability in the induced magnetic moment. PMID:26429261
Determination of localized magnetic moments in Fe-Cr-Al alloys and the electron structure
International Nuclear Information System (INIS)
Blau, W.
1977-01-01
The localized magnetic moments of Fe and Cr are determined by combination of saturation magnetization measurements and magnetic diffuse scattering. Power series characterizing the interactions between the different kinds of atoms in the alloys are chosen to describe the concentration dependence of the magnetic moments. The different terms are discussed on the basis of band structure models valid for dilute alloys taking into account their modification by impurity interactions. (author)
The magnetic moments of the proton and the antiproton
Ulmer, S.; Blaum, K.; Braeuninger, S.; Franke, K.; Kracke, H.; Leiteritz, C.; Matsuda, Y.; Nagahama, H.; Ospelkaus, C.; Rodegheri, C.C.; Quint, W.; Schneider, G.; Smorra, C.; Van Gorp, S.; Walz, J.; Yamazaki, Y.
2014-01-01
Recent exciting progress in the preparation and manipulation of the motional quantum states of a single trapped proton enabled the first direct detection of the particle's spin state. Based on this success the proton magnetic moment $\\mu_p$ was measured with ppm precision in a Penning trap with a superimposed magnetic field inhomogeneity. An improvement by an additional factor of 1000 in precision is possible by application of the so-called double Penning trap technique. In a recent paper we reported the first demonstration of this method with a single trapped proton, which is a major step towards the first direct high-precision measurement of $\\mu_p$. The techniques required for the proton can be directly applied to measure the antiproton magnetic moment $\\mu_{\\bar{p}}$. An improvement in precision of $\\mu_{\\bar{p}}$ by more than three orders of magnitude becomes possible, which will provide one of the most sensitive tests of CPT invariance. To achieve this research goal we are currently setting up the Baryo...
A parts-per-billion measurement of the antiproton magnetic moment.
Smorra, C; Sellner, S; Borchert, M J; Harrington, J A; Higuchi, T; Nagahama, H; Tanaka, T; Mooser, A; Schneider, G; Bohman, M; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S
2017-10-18
Precise comparisons of the fundamental properties of matter-antimatter conjugates provide sensitive tests of charge-parity-time (CPT) invariance, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons, leptons and baryons have compared different properties of matter-antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron. Here we report a high-precision measurement of in units of the nuclear magneton μ N with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic multi-Penning trap system. Our result = -2.7928473441(42)μ N (where the number in parentheses represents the 68% confidence interval on the last digits of the value) improves the precision of the previous best measurement by a factor of approximately 350. The measured value is consistent with the proton magnetic moment, μ p = 2.792847350(9)μ N , and is in agreement with CPT invariance. Consequently, this measurement constrains the magnitude of certain CPT-violating effects to below 1.8 × 10 -24 gigaelectronvolts, and a possible splitting of the proton-antiproton magnetic moments by CPT-odd dimension-five interactions to below 6 × 10 -12 Bohr magnetons.
Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field
Silenko, Alexander J.
2008-01-01
The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.
Correct use of the Gordon decomposition in the calculation of nucleon magnetic dipole moments
International Nuclear Information System (INIS)
Mekhfi, Mustapha
2008-01-01
We perform the calculation of the nucleon dipole magnetic moment in full detail using the Gordon decomposition of the free quark current. This calculation has become necessary because of frequent misuse of the Gordon decomposition by some authors in computing the nucleon dipole magnetic moment
One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory
International Nuclear Information System (INIS)
Li Jian; Yao, J.M.; Meng Jie; Arima, Akito
2011-01-01
The one-pion exchange current corrections to isoscalar and isovector magnetic moments of double-closed shell nuclei plus and minus one nucleon with A = 15, 17, 39 and 41 have been studied in the relativistic mean field (RMF) theory and compared with previous relativistic and non-relativistic results. It has been found that the one-pion exchange current gives a negligible contribution to the isoscalar magnetic moments but a significant correction to the isovector ones. However, the one-pion exchange current enhances the isovector magnetic moments further and does not improve the corresponding description for the concerned nuclei in the present work. (author)
Magnetic moments in calcium isotopes via a surface-interaction experiment
International Nuclear Information System (INIS)
Niv, Y.; Hass, M.; Zemel, A.; Goldring, G.
1979-01-01
A rotation of the angular correlation of de-excitation γ-rays from 40 Ca and 44 Ca was observed in a tilted foil geometry. The signs and magnitudes of the magnetic moments of the 2 1 + of 44 Ca and of the 3 1 - level of 40 Ca were determined to be g = -0.28+-0.11 and g = +0.52+-0.18, respectively. This experiment provides further information regarding the polarization of deeply bound electronic configurations produced by a surface-interaction mechanism and demonstrates the feasibility of the present technique for measuring signs and magnitudes of magnetic moments of picosecond nuclear levels. (author)
Composite scalar contributions to the anomalous magnetic moments
International Nuclear Information System (INIS)
Stremnitzer, H.
1984-01-01
It is shown that the composite scalars recently introduced to explain the high Z 0 → e + e - γ rate contribute too much to the lepton anomalous magnetic moments, unless one uses very accurate chiral symmetry or composite models with two preonic scales. (Author)
Magnetic moment measurement of 140Ba nuclei using transient field technique
International Nuclear Information System (INIS)
Saxena, Mansi; Mandal, S.; Siwal, Davinder; Rainovski, G.; Danchev, M.; Damyanova, A.; Gladnishki, K.; Leske, J.; Bauer, C.; Bloch, T.; John, P.; Pietralla, N.; Wollersheim, H.J.; Kojouharov, I.; Pietri, S.; Schaffner, H.
2011-01-01
Mixed symmetry states have been identified in the neutron proton version of the Interacting Boson Model. The motivation of this experiment is to identify uniquely one phonon mixed symmetry states in 140 Ba nuclei by g factor measurement of the states. Magnetic moments measurements provide substantial information on the microscopic structure of the nuclei as the magnetic moment of a nuclei is described by the wave function of one state only. In this present paper we report the preliminary results of the g factor measurement of the first 2 + state of 140 Ba
First observation of magnetic moment precession of channeled particles in bent crystals
International Nuclear Information System (INIS)
Chen, D.; Albuquerque, I.F.; Baublis, V.V.; Bondar, N.F.; Carrigan, R.A. Jr.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Sun, C.R.; Tang Fukun; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Zhao Wenheng; Zheng Shuchen; Zhong Yuanyuan
1992-01-01
Spin precession of channeled particles in bent crystals has been observed for the first time. Polarized Σ + were channeled using bent Si crystals. These crystals provided an effective magnetic field of 45 T which resulted in a measured spin precession of 60±17 degree. This agrees with the prediction of 62±2 degree using the world average of Σ + magnetic moment measurements. This new technique gives a Σ + magnetic moment of (2.40±0.46±0.40)μ N , where the quoted uncertainties are statistical and systematic, respectively. We see no evidence of depolarization in the channeling process
The relation between anomalous magnetic moment and axial anomaly
International Nuclear Information System (INIS)
Teryaev, O.V.
1990-12-01
The conservation of total angular momentum of spinor particle leads to a simple relation between the famous Schwinger and Adler coefficients determining axial anomaly and anomalous magnetic moment, respectively. (author). 8 refs, 1 fig
The muon magnetic moment and new physics
Energy Technology Data Exchange (ETDEWEB)
Stoeckinger, Dominik, E-mail: Dominik.Stoeckinger@tu-dresden.de [Institute for Nuclear and Particle Physics (Germany)
2013-03-15
The impact of the muon magnetic moment measurement on physics beyond the Standard Model is briefly reviewed. Particular emphasis is given on the case of supersymmetry. The sensitivity of g - 2 to supersymmetry parameters and the potential for model discrimination and parameter measurements is described. The interplay between LHC data on the Higgs boson, limits on new particles, and g - 2 is discussed.
Lepton flavour symmetry and the neutrino magnetic moment
International Nuclear Information System (INIS)
Ecker, G.; Grimus, W.
1990-01-01
With the standard model gauge group and the three standard left-handed Weyl neutrinos, two minimal scenarios are investigated where an arbitrary non-abelian lepton flavour symmetry group G H is responsible for a light neutrino with a large magnetic moment. In the first case, with scalar fields carrying lepton flavour, some finetuning is necessary to get a small enough neutrino mass for μ ν = O(10 -11 μ B ). In the second scenario, the introduction of heavy charged gauge singlet fermions with lepton flavour allows for a strictly massless neutrino to one-loop order. In both cases, the interference mechanisms for small m ν and large μ ν is unique, independently of G H . In explicit realizations of the two scenarios, the horizontal groups are found to be non-abelian extensions of a Zeldovich-Konopinski-Mahmoud lepton number symmetry. Only a discrete part of G H is spontaneously broken leading to a light Dirac neutrino with a large magnetic moment. (Authors) 22 refs., 3 figs
Magnetism at the V/Gd interface
International Nuclear Information System (INIS)
Mouketo, L; M'Passi-Mabiala, B; Binggeli, N
2010-01-01
Recent experimental investigations into the magnetic properties of V/Gd bilayers have shown that vanadium, which is nonmagnetic in the bulk, can acquire a magnetic moment in such systems. We have performed ab initio pseudopotential calculations to examine the magnetic behavior of V(110)/Gd(0001) bilayers for V layers with thicknesses up to 4 monolayers (ML). We considered both abrupt and atomic intermixed V/Gd interfaces. In both cases, the magnetic moment of the V layer is found to align antiparallel to the moment of the Gd layer, consistent with the experimental observation. However, the magnitude of the V moment at the abrupt interface is considerably smaller than the moments reported experimentally. In the presence of atomic intermixing, instead, substantially larger V moments are found, closer to the experimentally reported moments. On the basis of the calculated atomic and spin resolved density of states, we discuss the possible mechanism responsible for the observed Gd-V antiferromagnetic coupling.
Unusually large magnetic moments in the normal state and superconducting state of Sn nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Hung, Chi-Hang; Lee, Chi-Hung; Hsu, Chien-Kang; Li, Chi-Yen; Karna, Sunil K.; Wang, Chin-Wei; Wu, Chun-Ming; Li, Wen-Hsien, E-mail: whli@phy.ncu.edu.tw [National Central University, Department of Physics and Center for Neutron Beam Applications (China)
2013-09-15
We report on the observations of spontaneous magnetic moments in the normal as well as in the superconducting states of a 9 nm Sn nanoparticle assembly, through X-ray diffraction, magnetization, ac magnetic susceptibility, and neutron diffraction measurements. The saturation magnetization reaches an unexpectedly large value of 1.04 emu/g at 5 K, with a temperature profile that can be described by Bloch's law with an exponent of b = 1.8. A magnetic moment of Left-Pointing-Angle-Bracket {mu}{sub Z} Right-Pointing-Angle-Bracket = 0.38 {mu}{sub B} develops after cooling from 260 to 4 K. Superconductivity develops below T{sub C} = 3.98 K, which is 7 % higher than the T{sub C} = 3.72 K of bulk Sn. Surprisingly, an addition magnetic moment of Left-Pointing-Angle-Bracket {mu}{sub Z} Right-Pointing-Angle-Bracket = 0.05 {mu}{sub B} develops upon entering the superconducting state.
Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T
2010-01-01
Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.
Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD
International Nuclear Information System (INIS)
Leinweber, Derek B.
2004-01-01
The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation
Measurements of lifetimes and magnetic moments in A∼90 nuclei with EUROBALL Cluster detectors
International Nuclear Information System (INIS)
Jungclaus, A.; Fischer, V.; Kast, D.
1998-01-01
Mass A∼90 nuclei with several valence nucleons outside the doubly-magic 100 Sn core are an ideal testing ground for the validity of the spherical shell model. Electromagnetic decay properties as well as magnetic dipole moments of excited states are the key quantities revealing the structure of the wave functions and the mechanisms responsible for strong dipole sequences. The present article discusses by means of two examples the advantages of employing the most recent developments both concerning detector technology and experimental methods
Temperature dependence of spin and orbital magnetic moments of Sm 4f electrons in (Sm, Gd)Al2
International Nuclear Information System (INIS)
Qiao, S.; Kimura, A.; Adachi, H.; Iori, K.; Miyamoto, K.; Xie, T.; Namatame, H.; Taniguchi, M.; Tanaka, A.; Muro, T.; Imada, S.; Suga, S.
2005-01-01
X-ray magnetic circular dichroism studies were carried out on (Sm, Gd)Al 2 , a ferromagnet without net magnetization at a certain compensation temperature. For Sm 4f electrons, the following understandings were obtained: the magnitude of expectation value of orbital magnetic moment (m L Sm ) is always larger than that of spin one (m S Sm ), so the cancellation of total spin and orbital magnetic moments cannot be achieved only by Sm 4f electrons and the contributions from Gd ions and conduction electrons are important; when the temperature decreases, the magnitude of both m L Sm and m S Sm increases and the gross magnetic moment due to the Sm 4f electrons monotonically deviates from zero. These results tell us that the temperature dependence of magnetic moments related with the electrons other than Sm 4f ones may play important roles in the subtle adjustment of the total spin and orbital magnetic moments to the zero magnetization at the compensation temperature
Neutrino magnetic moment contribution to the neutrino-deuteron reaction
International Nuclear Information System (INIS)
Tsuji, K.; Nakamura, S.; Sato, T.; Kubodera, K.; Myhrer, F.
2004-01-01
We study the effect of the neutrino magnetic moment on the neutrino-deuteron breakup reaction, using a method called the standard nuclear physics approach, which has already been well tested for several electroweak processes involving the deuteron
Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.
2017-08-01
A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.
A Bayesian Approach to Magnetic Moment Determination Using μSR
Blundell, S. J.; Steele, A. J.; Lancaster, T.; Wright, J. D.; Pratt, F. L.
A significant challenge in zero-field μSR experiments arises from the uncertainty in the muon site. It is possible to calculate the dipole field (and hence precession frequency v) at any particular site given the magnetic moment μ and magnetic structure. One can also evaluate f(v), the probability distribution function of v assuming that the muon site can be anywhere within the unit cell with equal probability, excluding physically forbidden sites. Since v is obtained from experiment, what we would like to know is g(μjv), the probability density function of μ given the observed v. This can be obtained from our calculated f(v/μ) using Bayes' theorem. We describe an approach to this problem which we have used to extract information about real systems including a low-moment osmate compound, a family of molecular magnets, and an iron-arsenide compound.
SNO results and neutrino magnetic moment solution to the solar ...
Indian Academy of Sciences (India)
that the solar neutrino deficit is due to the interaction of neutrino transition magnetic moment with the solar magnetic ... Another new feature in the analysis is that for the global analysis, we have replaced the spectrum by its centroid. ... rise to mean potentials Va for neutrinos which are proportional to the number density of.
International Nuclear Information System (INIS)
Dittrich, W.; Bauhoff, W.
1981-01-01
It is re-examined the problem of spontaneous pair creation in an external magnetic field. In contrast to earlier findings, it is shown that pair production does not occur due to the anomalous magnetic moment interaction. However, pairs may be observed in a situation of thermodynamic equilibrium at finite temperatures. (author)
Color interaction of quarks and magnetic moments of baryons in the bag model
International Nuclear Information System (INIS)
Krivoruchenko, M.I.
1984-01-01
The purpose of the present study is to saccount for the quark interaction in the bag model by calculating corrections to the baryon magnetic moments related to the colour interaction of quarks. The quark-in-bag wave function to that holds the confinement linear boundary condition has been found in the first order for the external magnetic field. Corrections to the baryon magnetic moments are calculated. They are related to energy variations of colour electric and colour magnetic fields. Numerical data are presented and the structure of corrections in the SU-3 group approximation is discussed. The results are compared with the potential model and the experiment
Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface
Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.
2018-01-01
The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.
Kopferman, H; Massey, H S W
1958-01-01
Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl
Hadronic part of the muon anomalous magnetic moment: an improved evaluation
International Nuclear Information System (INIS)
Martinovic, L.; Dubnicka, S.
1989-01-01
A new evaluation of the lowest-order hadronic vacuum-polarization contribution a μ vac to the anomalous magnetic moment of the muon with the result a μ vac =(7058±68)x10 -11 is calculated. The total error is reduced almost twice in comparison with the previous most precise evaluation. The improvement comes from the use of global analytic models of the pion and kaon form factors for the two-pion and two-kaon contributions as well as from the new experimental information mainly for the three-pion channel. The high-energy contribution to a μ vac calculated from the QCD expression for R=σ(e + e - →hadrons)/σ(e + e - →μ + μ - ) is found to be consistent with the calculation based on the experimental data only after the inclusion of the third-order correction for R. 26 refs.; 1 fig.; 2 tabs
Magnetic moments of J{sup P} = (3)/(2){sup +} decuplet baryons using the statistical model
Energy Technology Data Exchange (ETDEWEB)
Kaur, Amanpreet; Upadhyay, Alka [Thapar University, School of Physics and Materials Science, Patiala (India)
2016-04-15
A suitable wave function for the baryon decuplet is framed with the inclusion of the sea containing quark-gluon Fock states. Relevant operator formalism is applied to calculate the magnetic moments of J{sup P} = (3)/(2){sup +} baryon decuplet. The statistical model assumes the decomposition of the baryonic state in various quark-gluon Fock states and is used in combination with the detailed balance principle to find the relative probabilities of these Fock states in flavor, spin and color space. The upper limit to the gluon is restricted to three with the possibility of emission of quark-antiquark pairs. We study the importance of strangeness in the sea (scalar, vector and tensor) and its contribution to the magnetic moments. Our approach has confirmed the scalar-tensor sea dominancy over the vector sea. Various modifications in the model are used to check the validity of the statistical approach. The results are matched with the available theoretical data. A good consistency with the experimental data has been achieved for Δ{sup ++}, Δ{sup +} and Ω{sup -}. (orig.)
Experimental validation of optimum resistance moment of concrete ...
African Journals Online (AJOL)
Experimental validation of optimum resistance moment of concrete slabs reinforced ... other solutions to combat corrosion problems in steel reinforced concrete. ... Eight specimens of two-way spanning slabs reinforced with CFRP bars were ...
Ando, Shin'ichiro; Sato, Katsuhiko
2003-01-01
We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.
Strange Quark Magnetic Moment of the Nucleon at the Physical Point.
Sufian, Raza Sabbir; Yang, Yi-Bo; Alexandru, Andrei; Draper, Terrence; Liang, Jian; Liu, Keh-Fei
2017-01-27
We report a lattice QCD calculation of the strange quark contribution to the nucleon's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including at the physical pion mass. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of 0.051 GeV^{2}≲Q^{2}≲1.31 GeV^{2}. The finite lattice spacing and finite volume corrections are included in a global fit with 24 valence quark masses on four lattices with different lattice spacings, different volumes, and four sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment G_{M}^{s}(0)=-0.064(14)(09)μ_{N}. The four-sigma precision in statistics is achieved partly due to low-mode averaging of the quark loop and low-mode substitution to improve the statistics of the nucleon propagator. We also obtain the strange charge radius ⟨r_{s}^{2}⟩_{E}=-0.0043(16)(14) fm^{2}.
Development of low background germanium spectrometer for measurement of neutrino magnetic moment
Beda, A G; Starostin, A S
2000-01-01
The prospects for a search for neutrino magnetic moment down to (3-5)centre dot 10 sup - sup 1 sup 1 of the Bohr magneton with the use of low background Ge-NaI spectrometer built in ITEP are discussed. The lowest level of background for shallow setups was achieved in the preliminary test measurements of background. This result and estimations of additional sources of the background in a reactor experiment testify that using the low background Ge-NaI spectrometer with mass of Ge-crystal of 2 kg it is possible to achieve above objective, that will be one order of magnitude better than the present experimental limit.
Light--light scattering tensor and the anomalous magnetic moment of the muon
International Nuclear Information System (INIS)
Kuraev, E.A.; Silagadze, Z.K.; Cheshel', A.A.; Schiller, A.
1989-01-01
A general expression is obtained for the tensor that describes the effect of light--light scattering on the anomalous magnetic moment of leptons. An explicit expression is derived for the electron-loop contribution, for which an analytic evaluation is carried out of the coefficient in front of the logarithm of the ratio of the muon mass to the electron mass in the anomalous magnetic moment of the muon. Logarithmic contributions due to radiative corrections are shown to originate exclusively from the inclusion of the polarization of the vacuum of virtual photons
The muon magnetic moment in the 2HDM: complete two-loop result
International Nuclear Information System (INIS)
Cherchiglia, Adriano; Kneschke, Patrick; Stöckinger, Dominik; Stöckinger-Kim, Hyejung
2017-01-01
We study the 2HDM contribution to the muon anomalous magnetic moment a μ and present the complete two-loop result, particularly for the bosonic contribution. We focus on the Aligned 2HDM, which has general Yukawa couplings and contains the type I, II, X, Y models as special cases. The result is expressed with physical parameters: three Higgs boson masses, Yukawa couplings, two mixing angles, and one quartic potential parameter. We show that the result can be split into several parts, each of which has a simple parameter dependence, and we document their general behavior. Taking into account constraints on parameters, we find that the full 2HDM contribution to a μ can accommodate the current experimental value, and the complete two-loop bosonic contribution can amount to (2⋯4)×10 −10 , more than the future experimental uncertainty.
USING MAGNETIC MOMENTS TO UNVEIL THE NUCLEAR STRUCTURE OF LOW-SPIN NUCLEAR STATES
Directory of Open Access Journals (Sweden)
Diego A. Torres
2011-07-01
Full Text Available The experimental study of magnetic moments for nuclear states near the ground state, I ≤ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions has been used to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≤ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.
Meson exchange current corrections to magnetic moments in quantum hadro-dynamics
Energy Technology Data Exchange (ETDEWEB)
Morse, T M; Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics
1990-11-15
We have calculated pion exchange current corrections to the magnetic moments of closed shell {plus minus}1 particle nuclei near A=16 and 40 within the framework of quantum hadro-dynamics (QHD). We find that the correction is significant and that, in general, the agreement of the QHD isovector moments with experiment is worsened. Comparisons to previous non-relativistic calculations are also made. (orig.).
Magnetic dipole moments of 58Cu and 59Cu by in-source laser spectroscopy
International Nuclear Information System (INIS)
Stone, N. J.; Koester, U.; Stone, J. Rikovska; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Hass, M.; Lakshmi, S.
2008-01-01
Online measurements of the magnetic dipole moments and isotope shifts of 58 Cu and 59 Cu by the in-source laser spectroscopy method are reported. The results for the magnetic moments are μ ( 58 Cu) =+0.52(8) μ N ,μ( 59 Cu) =+1.84(3) μ N and for the isotope shifts δν 59,65 =1.72(22) GHz and δν 58,65 =1.99(30) GHz in the transition from the 3d 10 4s 2 S 1/2 ground state to the 3d 10 4p 2 P 1/2 state in Cu I. The magnetic moment of 58 Cu is discussed in the context of the strength of the subshell closure at 56 Ni, additivity rules and large-scale shell model calculations
Mosichkin, A. F.
2017-11-01
The process of radiative decay of the neutrino with a magnetic moment in a strong magnetic field with consideration of positronium influence on photon dispersion has been studied. Positronium contribution to the photon polarization operator induces significant modifications of the photon dispersion law and neutrino radiative decay amplitude. It has been shown that the mean energy loss of a neutrino with magnetic a moment significantly increases, when the positronium contribution to photon dispersion is taken into account.
High uniformity magnetic coil for search of neutron electric dipole moment
Energy Technology Data Exchange (ETDEWEB)
Perez Galvan, A., E-mail: apg@caltech.edu [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Plaster, B. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY, 40506 (United States); Boissevain, J.; Carr, R.; Filippone, B.W.; Mendenhall, M.P.; Schmid, R. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Alarcon, R.; Balascuta, S. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)
2011-12-21
We present in this article a prototype magnetic coil that has been developed for a new search for the electric dipole moment of the neutron at the Spallation Neutron Source at Oak Ridge National Laboratory. The gradients of the magnetic field generated by the coil have been optimized to reduce known systematic effects and to yield long polarization lifetimes of the trapped particles sampling the highly uniform magnetic field. Measurements of the field uniformity of this prototype magnetic coil are also presented.
Magnetic and electric dipole moments of the H 3Δ1 state in ThO
International Nuclear Information System (INIS)
Vutha, A. C.; Kirilov, E.; DeMille, D.; Spaun, B.; Gurevich, Y. V.; Hutzler, N. R.; Doyle, J. M.; Gabrielse, G.
2011-01-01
The metastable H 3 Δ 1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μ H and the molecule-fixed electric dipole moment D H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μ H =8.5(5)x10 -3 μ B displays the predicted cancellation of spin and orbital contributions in a 3 Δ 1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.
International Nuclear Information System (INIS)
Gisin, B V
2002-01-01
We consider the anomalous magnetic moment from an 'optical viewpoint' using an analogy between the motion of a particle with a magnetic moment in a magnetic field and the propagation of an optical pulse through an electro-optical crystal in an electric field. We show that an optical experiment similar to electron magnetic resonance is possible in some electro-optical crystals possessing the Faraday effect. This phenomenon is described by an analogue of the Pauli equation extracted from the Maxwell equation in the slowly varied amplitude approximation. In such an experiment the modulation by rotating fields plays a significant role. From the optical viewpoint the modulation assumes introducing the concept of a point rotation frame with the rotation axis at every point originated from the concept of the optical indicatrix (index ellipsoid). We discuss the connection between the non-classical transformation by transition from one such frame to another and an anomalous magnetic moment
A new online database of nuclear electromagnetic moments
Mertzimekis, Theo J.
2017-09-01
Nuclear electromagnetic (EM) moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info) focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non-evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months) and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed.
An online database of nuclear electromagnetic moments
International Nuclear Information System (INIS)
Mertzimekis, T.J.; Stamou, K.; Psaltis, A.
2016-01-01
Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure – including nuclear moments – which hinders the information management. A new, dedicated, public and user friendly online database ( (http://magneticmoments.info)) has been created comprising experimental data of nuclear electromagnetic moments. The present database supersedes existing printed compilations, including also non-evaluated series of data and relevant meta-data, while putting strong emphasis on bimonthly updates. The scope, features and extensions of the database are reported.
Object representation and magnetic moments in thin alkali films
Garrett, Douglas C.
2008-10-01
This thesis is broken into two parts a computer vision part and a solid state physics part. In the computer vision part of the thesis (chapters 1 through 5), the concept of an architecture is discussed with a review of what is known about the brain's visual architecture as it applies to object representation. With this in mind we review the two main types of architectures that are used in computer vision for object representation. A specific object representation is then implemented and optimized to solve a problem in object tracking. This representation is then used to derive the fiducial points of a face using two distinct methods. One using evolutionary algorithms and another by a Bayesian analysis of the feature responses drawn from a gallery of faces. The evolved fiducial representation is tested as a facial detection system. It is shown that the Bayesian analysis of facial images gives an entropy measure that can be used to further improve detection results in the facial detection system. In addition, two similarity metrics are explored in the context of facial detection. It is found that a normalized vector dot product substantially outperforms the Euclidean distance measure. The solid state part of the thesis is composed of two self contained chapters. An effort has been made to reduce the redundancies between the material but some will necessarily remain (i.e., short descriptions of the experimental setup). Both chapters deal with the phenomenon of magnetism of atomic impurities in and on thin metal host films. The important difference between the chapters, besides the results, lies in the experimental technique used to measure the magnetism. In chapter 6, thin films of Pb are covered in situ with sub monolayers of V, Mo and Co in the range between 0.01 and 1 monolayers. If the surface impurities are magnetic they will reduce the superconducting transition temperature of the Pb film. From the reduction of Tc the magnetic dephasing rate of the surface
High-energy scattering of particles with anomalous magnetic moments in quantum field theory
International Nuclear Information System (INIS)
Nguen Suan Khan; Pervushin, V.N.
1976-01-01
Eikonal type representations taking into account the anomalous magnetic moments of nucleons are obtained for the amplitude of pion-nucleon and nucleon-nucleon scattering in the asymptotic region s → infinity, (t) (<<) s in the framework of nonrenormalizable quantum field theory. The anomalous magnetic moment leads to additional terms in the amplitude which describe the spin flips in the scattering process. It is shown that the renormalization problem does not arise in the asymptotics s → infinity. As an application the Coulomb interference is considered
Vališka, Michal; Klicpera, Milan; Doležal, Petr; Fabelo, Oscar; Stunault, Anne; Diviš, Martin; Sechovský, Vladimír
2018-03-01
In a cubic ferromagnet, small spontaneous lattice distortions are expected below the Curie temperature, but the phenomenon is usually neglected. This study focuses on such an effect in the U4Ru7Ge6 compound. Based on DFT calculations, we propose a lattice distortion from the cubic I m -3 m space group to a lower, rhombohedral, symmetry described by the R -3 m space group. The strong spin-orbit coupling of the uranium ions plays an essential role in lowering the symmetry, giving rise to two different U sites (U1 and U2). Using polarized neutron diffraction in applied magnetic fields of 1 and 9 T in the ordered state (1.9 K ) and in the paramagnetic state (20 K ), we bring convincing experimental evidence of this splitting of the U sites, with different magnetic moments. The data have been analyzed both by maximum entropy calculations and by a direct fit in the dipolar approximation. In the ordered phase, the μL/μS ratio of the orbital and spin moments on the U2 site is remarkably lower than for the free U3 + or U4 + ion, which points to a strong hybridization of the U 5 f wave functions with the 4 d wave functions of the surrounding Ru. On the U1 site, the μL/μS ratio exhibits an unexpectedly low value: the orbital moment is almost quenched, like in metallic α -uranium. As a further evidence of the 5 f -4 d hybridization in the U4Ru7Ge6 system, we observe the absence of a magnetic moment on the Ru1 site, but a rather large induced moment on the Ru2 site, which is in closer coordination with both U positions. Very similar results are obtained at 20 K in the ferromagnetic regime induced by the magnetic field of 9 T . This shows that applying a strong magnetic field above the Curie temperature also leads to the splitting of the uranium sites, which further demonstrates the intimate coupling of the magnetic ordering and structural distortion. We propose that the difference between the magnetic moment on the U1 and U2 sites results from the strong spin
The muon anomalous magnetic moment and the pion polarizability
Energy Technology Data Exchange (ETDEWEB)
Engel, Kevin T. [University of Maryland, College Park, MD 20742 (United States); Ramsey-Musolf, Michael J. [Physics Department, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)
2014-11-10
We compute the charged pion loop contribution to the muon anomalous magnetic moment a{sub μ}, taking into account the previously omitted effect of the charged pion polarizability, (α{sub 1}−β{sub 1}){sub π{sup +}}. We evaluate this contribution using two different models that are consistent with the requirements of chiral symmetry in the low-momentum regime and perturbative quantum chromodynamics in the asymptotic region. The result may increase the disagreement between the present experimental value for a{sub μ} and the theoretical, Standard Model prediction by as much as ∼60×10{sup −11}, depending on the value of (α{sub 1}−β{sub 1}){sub π{sup +}} and the choice of the model. The planned determination of (α{sub 1}−β{sub 1}){sub π{sup +}} at Jefferson Laboratory will eliminate the dominant parametric error, leaving a theoretical model uncertainty commensurate with the error expected from planned Fermilab measurement of a{sub μ}.
A novel computational framework for deducing muscle synergies from experimental joint moments
Directory of Open Access Journals (Sweden)
Anantharaman eGopalakrishnan
2014-12-01
Full Text Available Prior experimental studies have hypothesized the existence of a ‘muscle synergy’ based control scheme for producing limb movements and locomotion in vertebrates. Such synergies have been suggested to consist of fixed muscle grouping schemes with the co-activation of all muscles in a synergy resulting in limb movement. Quantitative representations of these groupings (termed muscle weightings and their control signals (termed synergy controls have traditionally been derived by the factorization of experimentally measured EMG. This study presents a novel approach for deducing these weightings and controls from inverse dynamic joint moments that are computed from an alternative set of experimental measurements – movement kinematics and kinetics. This technique was applied to joint moments for healthy human walking at 0.7 and 1.7 m/s, and two sets of ‘simulated’ synergies were computed based on two different criteria (1 synergies were required to minimize errors between experimental and simulated joint moments in a musculoskeletal model (pure-synergy solution (2 along with minimizing joint moment errors, synergies also minimized muscle activation levels (optimal-synergy solution. On comparing the two solutions, it was observed that the introduction of optimality requirements (optimal-synergy to a control strategy solely aimed at reproducing the joint moments (pure-synergy did not necessitate major changes in the muscle grouping within synergies or the temporal profiles of synergy control signals. Synergies from both the simulated solutions exhibited many similarities to EMG derived synergies from a previously published study, thus implying that the analysis of the two different types of experimental data reveals similar, underlying synergy structures.
Moment analysis of hadronic vacuum polarization
Directory of Open Access Journals (Sweden)
Eduardo de Rafael
2014-09-01
Full Text Available I suggest a new approach to the determination of the hadronic vacuum polarization (HVP contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
Moment analysis of hadronic vacuum polarization
International Nuclear Information System (INIS)
Rafael, Eduardo de
2014-01-01
I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a μ HVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a μ HVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data
Moment analysis of hadronic vacuum polarization
Energy Technology Data Exchange (ETDEWEB)
Rafael, Eduardo de
2014-09-07
I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a{sub μ}{sup HVP} in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a{sub μ}{sup HVP} is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
The muon magnetic moment in flipped SU(5)
Energy Technology Data Exchange (ETDEWEB)
Abel, S.A.; Cottingham, W.N. (Bristol Univ. (UK). H.H. Wills Physics Lab.); Whittingham, I.B. (James Cook Univ. of North Queensland, Townsville (Australia). Dept. of Physics)
1991-04-25
The magnetic moment of the muon is examined for the no-scale supersymmetric flipped SU(5) theory, and it is found that supersymmetric contributions to (g-2){sub {mu}} are (-7{+-}2)x10{sup -9} and within this range are predominantly dependent on the scale of supersymmetry breaking. It is therefore suggested that experiments to measure this quantity may serve to limit the parameters of this model. (orig.).
Haldar, Soumyajyoti
2014-05-09
In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.
Relativistic correction to the deuteron magnetic moment and angular condition
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Strikman, M.I.
1983-01-01
The relativistic correction (RC) to the deuteron magnetic moment μsub(d) is investigated using the light-cone dynamics. The restrictions imposed by the angular condition on the electromagnetic current operator of deuteron are discussed in detail. It is shown that the additive model for the current operator of interacting consistuencies is consistent with the angular condition only for the two first terms of expansion of the ''good'' electromagnetic current component jsub(+) in powers of the momentum transfer q. The RC into μsub(d) is calculated using the mattix element of the ''good'' component. The account of RC decreases essentially the discrepancy between the theoretical and experimental values. The value of Δsub(μ) is determined for the Hamada-Johnston potential hard core potential (0.93x10 -2 ) for the Reid soft core potential (0.71x10 -2 ) and for the Paris potential (0.63x10 -2 )
International Nuclear Information System (INIS)
Barik, N.; Das, M.
1983-01-01
The effect of confinement on the magnetic moment of a quark has been studied in a simple independent-quark model based on the Dirac equation with a power-law potential. The magnetic moments so obtained for the constituent quarks, which are found to be significantly different from their corresponding Dirac moments, are used in predicting the magnetic moments of baryons in the nucleon octet as well as those in the charmed and b-flavored sectors. We not only get an improved result for the proton magnetic moment, but the calculation for the rest of the nucleon octet also turns out to be in reasonable agreement with experiment. The overall predictions for the charmed and b-flavored baryons are also comparable with other model predictions
Energy Technology Data Exchange (ETDEWEB)
Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)
2014-10-15
The planar quantum dynamics of a neutral particle with a magnetic dipole moment in the presence of electric and magnetic fields is considered. The criteria to establish the planar dynamics reveal that the resulting nonrelativistic Hamiltonian has a simplified expression without making approximations, and some terms have crucial importance for the system dynamics. (orig.)
Description of magnetic moments of long isotopic chains within the FFS theory
Energy Technology Data Exchange (ETDEWEB)
Borzov, I.N. [IPPE, Obninsk (Russian Federation); Saperstein, E.E.; Tolokonnikov, S.V. [Kurchatov Institute, Moscow (Russian Federation); Neyens, G.; Severijns, N. [Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium)
2010-08-15
Dipole magnetic moments of several long isotopic chains are analyzed within the self-consistent finite Fermi system theory with exact account for the pairing and quasiparticle continuum. The momentum dependence of the spin-isospin Landau-Migdal amplitude g' is taken into account. This dependence was introduced previously to describe high-energy electron magnetic scattering. New moment data for nuclei far from the {beta} -stability valley are included in the analysis. For a number of semi-magic isotopes of the tin and lead chains a good description of the data is obtained, with an accuracy of 0.1- 0.2{mu}{sub N}. A chain of non-magic isotopes of copper is also analyzed in detail. (orig.)
The anomalous magnetic moment of the muon
International Nuclear Information System (INIS)
Farley, F.J.M.
1975-01-01
A historical survey of the measurements of the gyromagnetic ratio g of the muon. A brief introduction is given to the theory of the 'anomalous magnetic moment' a equivalent to 1/2(g-2) and its significance is explained. The main part of the review concerns the successive (g-2) experiments to measure a directly, with gradually increasing accuracy. At present experiment and theory agree to (13+-29) parts in 10 9 in g, and the muon still obeys the rules of quantum electrodynamics for a structureless point charge. (author)
The Equivalence Principle and Anomalous Magnetic Moment Experiments
Alvarez, C.; Mann, R. B.
1995-01-01
We investigate the possibility of testing of the Einstein Equivalence Principle (EEP) using measurements of anomalous magnetic moments of elementary particles. We compute the one loop correction for the $g-2$ anomaly within the class of non metric theories of gravity described by the \\tmu formalism. We find several novel mechanisms for breaking the EEP whose origin is due purely to radiative corrections. We discuss the possibilities of setting new empirical constraints on these effects.
A parts-per-billion measurement of the antiproton magnetic moment
Smorra, C; Borchert, M J; Harrington, J A; Higuchi, T; Nagahama, H; Tanaka, T; Mooser, A; Schneider, G; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S
2017-01-01
Precise comparisons of the fundamental properties of matter–antimatter conjugates provide sensitive tests of charge–parity–time (CPT) invariance1, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons2, leptons3, 4 and baryons5, 6 have compared different properties of matter–antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level7, 8: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron3. Here we report a high-precision measurement of in units of the nuclear magneton μN with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic ...
International Nuclear Information System (INIS)
Bayegan, S.; Sadeghi, H.
2004-01-01
In big-bang nucleosynthesis, processes relevant ti increasing of nucleon density are more important. One of the theories that its solutions more accurately explain the experimental works is Effective Field Theory in this paper. Magnetic moment (χM1) for radiative capture of protons by deuterons p + d → 3 He+γ process is calculated using Effective Field Theory. The calculation includes coulomb interaction up to next-to -next-leading order (N 2 LO)
International Nuclear Information System (INIS)
Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.
2015-01-01
High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment
de Melo, Roger Duarte; Acosta-Avalos, Daniel
2017-09-01
Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.
Electric charge quantization and the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Pires, C.A.S. de; Rodrigues da Silva, P.S.
2002-01-01
We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems
International Nuclear Information System (INIS)
Orgassa, D.; Fujiwara, H.; Schulthess, T. C.; Butler, W. H.
2000-01-01
Using half-metallic ferromagnets in spin-dependent devices, like spin valves and ferromagnetic tunnel junctions, is expected to increase the device performance. However, using the half-metallic ferromagnet NiMnSb in such devices led to much less than ideal results. One of the possible sources for this behavior is atomic disorder. First-principles calculations of the influence of atomic disorder on the electronic structure of NiMnSb underline the sensitivity of half-metallic properties in NiMnSb to atomic disorder. In this article, we report on the disorder dependence of the total magnetic moment calculated by applying the layer Korringa-Kohn-Rostoker method in conjunction with the coherent potential approximation. We consider the following types of disorder: (1) intermixing of Ni and Mn, (2) partial occupancy of a normally vacant lattice site by Ni and Mn, and (3) partial occupancy of this site by Mn and Sb. In all cases the composition is kept stoichiometric. All three types of disorder decrease the moment monotonically with increasing disorder levels. For the experimentally seen disorder of 5% Mn and 5% Sb on the normally vacant lattice site, the total moment is decreased by 4.1%. The results suggest that precise measurement of the saturation magnetization of NiMnSb thin films can give information on the disorder. (c) 2000 American Institute of Physics
Magnetization, magnetic susceptibility, effective magnetic moment of Fe3+ ions in Bi25FeO39 ferrite
International Nuclear Information System (INIS)
Zatsiupa, A.A.; Bashkirov, L.A.; Troyanchuk, I.O.; Petrov, G.S.; Galyas, A.I.; Lobanovsky, L.S.; Truhanov, S.V.
2014-01-01
Magnetic susceptibility for ferrite Bi 25 FeO 39 is measured at 5–950 K in the magnetic field of 0.86 T. It is shown that Bi 25 FeO 39 is paramagnetic in the temperature range 5−950 K. The saturation magnetization is equal to 5.04μ B per formula unit at 5 K in a magnetic field of 10 T. It is found that at 5−300 K the effective magnetic moment of Fe 3+ ions in Bi 25 FeO 39 is equal to 5.82μ B . - Graphical abstract: The dependence of the magnetization (n, μ B ) on the magnetic field for one formula unit of Bi 25 FeO 39 at 5 K. - Highlights: • Magnetic susceptibility for Bi 25 FeO 39 is measured at 5–950 K in the magnetic field of 0.86 T. • It is shown that Bi 25 FeO 39 is paramagnetic in the temperature range 5−950 K. • The saturation magnetization is equal to 5.04μ B per formula unit at 5 K in a magnetic field of 10 T
Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet
Energy Technology Data Exchange (ETDEWEB)
Qi, Jian-Wen [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Li, Zai-Dong [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Yang, Wen-Li [Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China)
2017-06-15
Highlights: • Three different types of soliton excitations under the spin-wave background are demonstrated in spin chain system. • The magnetic moment distributions corresponding to these solitons are characterized in detail. • The formation mechanisms of those excitations are explained by the magnon density distribution. - Abstract: We study the nonlinear spin dynamics of an anisotropic Heisenberg helimagnet in a fourth-order integrable nonlinear Schrödinger equation. We demonstrate that there are three types of nonlinear spin excitations on a spin-wave background in the Heisenberg helimagnet, notably including anti-dark soliton, W-shaped soliton, and multi-peak soliton. The magnetic moment distribution that corresponds to each of these are characterized in detail. Additionally, the formation mechanism is clarified by the magnon density distribution.
Magnetic moments of octet baryons in a chiral potential model
International Nuclear Information System (INIS)
Barik, N.
1986-01-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. (author)
Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals
Van Der Wurff, E. C I; Stoof, H. T C
2016-01-01
We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac and Weyl semimetals. In a calculation reminiscent of Schwinger's seminal work on quantum electrodynamics, we find three physically distinct effects for the anomalous magnetic moment of the
Fe magnetic moment formation and exchange interaction in Fe{sub 2}P: A first-principles study
Energy Technology Data Exchange (ETDEWEB)
Liu, X.B., E-mail: liuxubo@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Ping Liu, J.; Zhang, Qiming [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Altounian, Z. [Center for the Physics of Materials and Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)
2013-03-15
Electronic structure and magnetic properties of Fe{sub 2}P have been studied by a first-principles density functional theory calculation. The ground state is ferromagnetic and the calculated magnetic moments for Fe{sub 1} (3f) and Fe{sub 2} (3g) are 0.83 and 2.30μ{sub B}, respectively. The nearest neighbor inter-site magnetic exchange coupling parameter at the Fe{sub 1} layer (0.02 mRy) is much smaller than that at the Fe{sub 2} layer (1.29 mRy). The Fe moment at the 3f site is metastable and sensitive to the inter-site exchange interaction with its magnetic neighbors, which is responsible for the first order magnetic transition and large magneto-caloric effect around T{sub C}.
Magnetic dipole moments of High-K isomeric states in Hf isotopes
Walters, W; Nishimura, K; Bingham, C R
2007-01-01
It is proposed to make precision measurements of the magnetic moments of 5 multi-quasi-particle K-isomers in Hf nuclei by the Nuclear Magnetic Resonance of Oriented Nuclei (NMR/ON) technique using the NICOLE on-line nuclear orientation facility and exploiting the unique HfF$_{3}$ beams recently available at ISOLDE. Results will be used to extract single-particle and collective g-factors of the isomeric states and their excitations and to shed new light on their structure.
International Nuclear Information System (INIS)
Casperson, D.E.; Crane, T.W.; Denison, A.B.; Egan, P.O.; Hughes, V.W.; Mariam, F.G.; Orth, H.; Reist, H.W.; Souder, P.A.; Stambaugh, R.D.; Thompson, P.A.; zu Putlitz, G.
1977-01-01
Measurements of Zeeman transitions in the ground state of muonium at strong magnetic field have yielded values for the hfs interval, Δν = 4463 302.35(52) kHz (0.12 ppm) and for the muon magnetic moment, μ/sub μ//μ/sub p/ = 3.183 3403(44) (1.4 ppm), fo considerably higher precision than previous results. The theoretical expression for Δν, including our measured value of μ/sub μ//μ/sub p/, disagrees with the experimental value by 2.5 standard deviations. The electronic g/sub J/ density shift for muonium in Kr has been measured
Marciano, William J
2010-01-01
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o
Magnetic moments of octet baryons in a chiral potential model
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Das, M
1986-12-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. 32 refs., 2 tables.
Examination of the strangeness contribution to the nucleon magnetic moment
Chen, XS; Timmermans, RGE; Sun, WM; Zong, HS; Wang, F
We examine the nucleon strangeness magnetic moment mu(s) with a lowest order meson cloud model. We observe that (1) strangeness in the nucleon is a natural requirement of the empirical relation mu(p)/mu(n)similar or equal to-3/2, which favors an SU(3) octet meson cloud instead of merely the SU(2)
Magnetic dipole moments of deformed odd-odd nuclei in 2s-1d and 2p-1f shells
Energy Technology Data Exchange (ETDEWEB)
Verma, A K; Garg, V P; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics
1979-01-01
A simple expression is derived for the computation of the magnetic moments of odd-odd nuclei. The computation of magnetic dipole moments is done with and without quenching factors for the last proton and neutron. The results are found to improve for /sup 22/Na, /sup 24/Na, sup(82m)Rb, /sup 14/N, /sup 68/Gd, /sup 54/Mn and /sup 86/Rb with extreme coupling of angular moments.
Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point
Sufian, Raza Sabbir; Yang, Yi-Bo; Liang, Jian; Draper, Terrence; Liu, Keh-Fei; χ QCD Collaboration
2017-12-01
We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μM(DI )=-0.022 (11 )(09 ) μN and to the nucleon mean square charge radius is ⟨r2⟩E(DI ) =-0.019 (05 )(05 ) fm2 which is about 1 /3 of the difference between the ⟨rp2⟩E of electron-proton scattering and that of a muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤Q2≤0.5 GeV2 .
Tang, Cheng; Zhang, Teng; Weiss, David S.
2018-03-01
We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.
International Nuclear Information System (INIS)
Chen, Zhi-Yuan; Xu, Bin; Gao, G.Y.
2013-01-01
The structural, electronic and magnetic properties of zinc-blende TiBi are investigated by using the first-principles full-potential linearized augmented plane-wave method. It is found that zinc-blende TiBi exhibits half-metallic ferromagnetism with the energy gap of 1.39 eV in the minority-spin channel. The calculated total magnetic moment of 1.00 µ B per formula unit mainly originates from the Ti atom. We also show that the half-metallicity of zinc-blende TiBi can be maintained up to 3% compression and 5% expansion of lattice constant with respect to the equilibrium lattice, and zinc-blende TiBi is still half-metallic when the spin–orbit coupling is considered. The robust half-metallicity and low magnetic moment make zinc-blende TiBi a potential candidate for spintronic applications. - Highlights: • Half-metallic ferromagnetism in zinc-blende TiBi. • Zinc-blende TiBi has low magnetic moment of 1.00 µ B /f.u. • Spin–orbit coupling does not destroy the half-metallicity of zinc-blende TiBi
Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193
Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.
2011-01-01
The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.
International Nuclear Information System (INIS)
Morris, D.A.
1988-01-01
We examine contributions to the anomalous magnetic moment of the muon from weak-isosinglet squarks found in E 6 superstring models. We find that such contributions are up to 2 orders of magnitude larger than those previously calculated and correspondingly require smaller Yukawa couplings in order to maintain agreement with the measured muon anomalous magnetic moment
Lattice QCD results for the HVP contribution to the anomalous magnetic moments of leptons
Directory of Open Access Journals (Sweden)
Borsanyi Szabolcs
2018-01-01
Full Text Available We present lattice QCD results by the Budapest-Marseille-Wuppertal (BMW Collaboration for the leading-order contribution of the hadron vacuum polarization (LOHVP to the anomalous magnetic moments of all charged leptons. Calculations are performed with u, d, s and c quarks at their physical masses, in volumes of linear extent larger than 6 fm, and at six values of the lattice spacing, allowing for controlled continuum extrapolations. All connected and disconnected contributions are calculated for not only the muon but also the electron and tau anomalous magnetic moments. Systematic uncertainties are thoroughly discussed and comparisons with other calculations and phenomenological estimates are made.
Lattice QCD results for the HVP contribution to the anomalous magnetic moments of leptons
2018-03-01
We present lattice QCD results by the Budapest-Marseille-Wuppertal (BMW) Collaboration for the leading-order contribution of the hadron vacuum polarization (LOHVP) to the anomalous magnetic moments of all charged leptons. Calculations are performed with u, d, s and c quarks at their physical masses, in volumes of linear extent larger than 6 fm, and at six values of the lattice spacing, allowing for controlled continuum extrapolations. All connected and disconnected contributions are calculated for not only the muon but also the electron and tau anomalous magnetic moments. Systematic uncertainties are thoroughly discussed and comparisons with other calculations and phenomenological estimates are made.
International Nuclear Information System (INIS)
Lamoreaux, S.K.
1999-01-01
A simple formulation for calculating the magnetic field external to an extended nonpermeable conducting body due to thermal current fluctuations within the body is developed, and is applied to a recent experimental search for the atomic electric-dipole moment (EDM) of 199 Hg. It is shown that the thermal fluctuation field is only slightly smaller in magnitude than other noise sources in that experiment. The formulation is extended to permeable bodies, and the implications for general EDM experiments are discussed. copyright 1999 The American Physical Society
Unimodular gravity and the lepton anomalous magnetic moment at one-loop
Energy Technology Data Exchange (ETDEWEB)
Martín, Carmelo P., E-mail: carmelop@fis.ucm.es [Departamento de Física Teórica I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)
2017-07-01
We work out the one-loop contribution to the lepton anomalous magnetic moment coming from Unimodular Gravity. We use Dimensional Regularization and Dimensional Reduction to carry out the computations. In either case, we find that Unimodular Gravity gives rise to the same one-loop correction as that of General Relativity.
International Nuclear Information System (INIS)
Barrou, A.; Prost, J.P.; Delidais, M.
1983-08-01
In order to avoid undesirable plastic response in PWR primary system components, tests were performed on 1/10 scale pipes and elbows made from AISI 316 austenitic stainless steel. L/D ratios were from 0.56 to 4.50 mm, arc angles of elbows were 30 0 , 45 0 , 60 0 and 90 0 . Pipes were subjected to bending moments at 3 internal pressure levels. They were tested to determine the mode of failure and served as a reference for elbows. Elbows were subjected to in-plane (closing and opening) and out-of-plane bending moments, at 3 pressure and 2 temperature levels. During these tests, loadings and displacements of components were monitored. Ovalisation of sections was measured regularly. The experimental plastic collapse moment corresponding to excessive deformation was compared to the maximum allowable moment under Design conditions. The experimental plastic instability moment considered as a limit for functional capability was compared to the maximum allowable moment for level C and D service limits
International Nuclear Information System (INIS)
Glendening, E.D.; Feller, D.; Peterson, K.A.; McCullough, E.A. Jr.; Miller, R.J.
1995-01-01
The dipole moment and magnetic hyperfine properties of the A 2 Σ + Rydberg state of nitric oxide have been evaluated at a variety of levels of theory with extended correlation consistent basis sets. Using the finite field approach to compute the dipole moment, restricted coupled cluster RCCSD(T) and complete active space-configuration interaction CAS-CI+Q methods yield values (1.09--1.12 D) that are essentially identical to experiment. In contrast, dipole moments computed as an expectation value of the dipole moment operator typically differ from experiment by 0.1--0.6 D. The rather unfavorable comparisons with experiment reported in previous theoretical studies may stem, in part, from the method chosen to evaluate the dipole moment. Magnetic hyperfine properties were evaluated using a variety of unrestricted and restricted open-shell Hartree--Fock-based methods. We estimated the full CI limiting properties by exploiting the convergence behavior of a sequence of MRCI wave functions. The isotropic component A iso ( 14 N) of 39±1 MHz evaluated in this fashion is in excellent accord with the experimental value of 41.4±1.7 MHz. Highly correlated UHF-based methods [e.g., CCSD(T) and QCISD(T)] yield comparable values of 40--41 MHz that are in good agreement with both experiment and the apparent full CI limit. However, for A iso ( 17 O), the full CI limit (-97±2 MHz) and the UHF-based results (ca.-118 MHz) differ by roughly 20 MHz. It remains unclear how to reconcile this large discrepancy. copyright 1995 American Institute of Physics
Postma, H; Heyde, K; Walker, P; Grant, I; Veskovic, M; Stone, N; Stone, J
2002-01-01
% IS301 \\\\ \\\\ Low temperature nuclear orientation of isotope-separator implanted short-lived radio-isotopes makes possible the measurements of nuclear magnetic dipole moments of oriented ground and excited states with half-lives longer than a few seconds. Coupling schemes characterizing the odd nucleons and ground-state deformations can be extracted from the nuclear moments. \\\\ We thus propose to measure the magnetic dipole moments of $^{127-133}$Sb to high precision using NMR/ON at the NICOLE facility. With (double magic +1) $^{133}$Sb as the reference, the main aim of this experiment is to examine whether the collective component in the 7/2$^+$ Sb ground state magnetic dipole moment varies as expected according to particle-core coupling calculations carried out for the Sb (Z=51) isotopes. Comparison of the 1-proton-particle excitations in Sb to 1-proton-hole states in In nuclei will shed light on differences between particle and hole excitations as understood within the present model. Comparison of ...
Energy Technology Data Exchange (ETDEWEB)
Aguirre, R.M.; Paoli, A.L. de [Universidad Nacional de La Plata, and IFLP, Departamento de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina)
2016-11-15
We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated. (orig.)
Directory of Open Access Journals (Sweden)
Felix Tobias Kurz
2016-12-01
Full Text Available In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.
Constraining screened fifth forces with the electron magnetic moment
Brax, Philippe; Davis, Anne-Christine; Elder, Benjamin; Wong, Leong Khim
2018-04-01
Chameleon and symmetron theories serve as archetypal models for how light scalar fields can couple to matter with gravitational strength or greater, yet evade the stringent constraints from classical tests of gravity on Earth and in the Solar System. They do so by employing screening mechanisms that dynamically alter the scalar's properties based on the local environment. Nevertheless, these do not hide the scalar completely, as screening leads to a distinct phenomenology that can be well constrained by looking for specific signatures. In this work, we investigate how a precision measurement of the electron magnetic moment places meaningful constraints on both chameleons and symmetrons. Two effects are identified: First, virtual chameleons and symmetrons run in loops to generate quantum corrections to the intrinsic value of the magnetic moment—a common process widely considered in the literature for many scenarios beyond the Standard Model. A second effect, however, is unique to scalar fields that exhibit screening. A scalar bubblelike profile forms inside the experimental vacuum chamber and exerts a fifth force on the electron, leading to a systematic shift in the experimental measurement. In quantifying this latter effect, we present a novel approach that combines analytic arguments and a small number of numerical simulations to solve for the bubblelike profile quickly for a large range of model parameters. Taken together, both effects yield interesting constraints in complementary regions of parameter space. While the constraints we obtain for the chameleon are largely uncompetitive with those in the existing literature, this still represents the tightest constraint achievable yet from an experiment not originally designed to search for fifth forces. We break more ground with the symmetron, for which our results exclude a large and previously unexplored region of parameter space. Central to this achievement are the quantum correction terms, which are able to
Electron contribution to the muon anomalous magnetic moment at four loops
International Nuclear Information System (INIS)
Kurz, Alexander; Liu, Tao; Smirnov, Alexander V.; Smirnov, Vladimir A.; Humboldt-Universitaet, Berlin; Humboldt-Universitaet, Berlin; Steinhauser, Matthias
2016-02-01
We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.
Suhl, Harry
1973-01-01
Magnetism, Volume V: Magnetic Properties of Metallic Alloys deals with the magnetic properties of metallic alloys and covers topics ranging from conditions favoring the localization of effective moments to the s-d model and the Kondo effect, along with perturbative, scattering, and Green's function theories of the s-d model. Asymptotically exact methods used in addressing the Kondo problem are also described.Comprised of 12 chapters, this volume begins with a review of experimental results and phenomenology concerning the formation of local magnetic moments in metals, followed by a Har
International Nuclear Information System (INIS)
Barut, A.O.; Aydin, Z.Z.
1988-08-01
Some implications of the anomalous magnetic moment a υ of the neutrino are discussed, in particular the differential cross-sections of the electron-neutrino (antineutrino) scattering, (υ e and υ μ ), of the magnetic model is compared with the standard model in order to set better limits on a υ . (author). 18 refs, 2 figs
Midhunlal, P. V.; Arout Chelvane, J.; Arjun Krishnan, U. M.; Prabhu, D.; Gopalan, R.; Kumar, N. Harish
2018-02-01
Mn2V1-x Co x Z (Z = Ga,Al and x = 0, 0.25, 0.5, 0.75, 1) Heusler alloys have been synthesized to investigate the effect of Co substitution at the V site on the magnetic moment and Curie temperature of half-metallic ferrimagnets Mn2VGa and Mn2VAl. Near total magnetic moment compensation was achieved with high Curie temperature for x = 0.5 composition. The Co substituted alloys show a non linear decrease in lattice parameter without altering the crystal structure of the parent alloys. The end members Mn2VGa and Mn2CoGa have the saturation magnetization of 1.80 µ B/f.u. and 2.05 µ B/f.u. respectively whereas for the Mn2V0.5Co0.5Ga alloy, a near total magnetic moment compensation (0.10 µ B/f.u.) was observed due to the ferrimagnetic coupling of Mn with parallelly aligned V and Co. The Co substituted Mn2VAl has also shown a similar trend with compensated magnetic moment value of 0.06 µ B/f.u. for x = 0.5. The Curie temperatures of the alloys including the x = 0.5 composition are well above the room temperature (more than 650 K) which is in sharp contrast to the earlier reported values of 171 K for the (MnCo)VGa and 105 K for the (MnCo)VAl (substitution at the Mn site). The observed T C values are highest among the Mn2V based fully compensated ferrimagnets. The magnetic moment compensation without significant reduction in T C indicates that the V site substitution of Co does not weaken the magnetic interaction in Mn2VZ (Z = Ga,Al) alloys which is contrary to the earlier experimental reports on Mn site substitution.
Manz, Thomas A; Sholl, David S
2011-12-13
The partitioning of electron spin density among atoms in a material gives atomic spin moments (ASMs), which are important for understanding magnetic properties. We compare ASMs computed using different population analysis methods and introduce a method for computing density derived electrostatic and chemical (DDEC) ASMs. Bader and DDEC ASMs can be computed for periodic and nonperiodic materials with either collinear or noncollinear magnetism, while natural population analysis (NPA) ASMs can be computed for nonperiodic materials with collinear magnetism. Our results show Bader, DDEC, and (where applicable) NPA methods give similar ASMs, but different net atomic charges. Because they are optimized to reproduce both the magnetic field and the chemical states of atoms in a material, DDEC ASMs are especially suitable for constructing interaction potentials for atomistic simulations. We describe the computation of accurate ASMs for (a) a variety of systems using collinear and noncollinear spin DFT, (b) highly correlated materials (e.g., magnetite) using DFT+U, and (c) various spin states of ozone using coupled cluster expansions. The computed ASMs are in good agreement with available experimental results for a variety of periodic and nonperiodic materials. Examples considered include the antiferromagnetic metal organic framework Cu3(BTC)2, several ozone spin states, mono- and binuclear transition metal complexes, ferri- and ferro-magnetic solids (e.g., Fe3O4, Fe3Si), and simple molecular systems. We briefly discuss the theory of exchange-correlation functionals for studying noncollinear magnetism. A method for finding the ground state of systems with highly noncollinear magnetism is introduced. We use these methods to study the spin-orbit coupling potential energy surface of the single molecule magnet Fe4C40H52N4O12, which has highly noncollinear magnetism, and find that it contains unusual features that give a new interpretation to experimental data.
Magnetic moments and lifetime measurements with a piezoelectrically driven plunger
International Nuclear Information System (INIS)
Rutten, A.J.
1980-01-01
Experiments are described leading to precise values for magnetic dipole moments of excited nuclear states and their mean lifetimes. A plunger system is described especially developed for g-factor and lifetime measurements with the coincidence time-differential recoil-into-vacuum technique. Measurements of the g-factors and lifetimes for the 2 1 + state of 20 O and the 5/2 1 + state of 13 C are described. (Auth.)
Nuclear quadrupole moment of the 99Tc ground state
International Nuclear Information System (INIS)
Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan
2008-01-01
By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced
van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben
2015-01-01
High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal
Anomalous moments of quarks and leptons from nonstandard WWγ couplings
International Nuclear Information System (INIS)
Boudjema, F.; Hagiwara, K.; Hamzaoui, C.; Numata, K.
1991-01-01
Contributions of nonstandard WWγ couplings to the four electromagnetic form factors of light quarks and leptons, magnetic and electric dipole moments, anapole moments, and charge radii, have been reevaluated, with a special emphasis on the effects of the locally SU(2) weak -invariant nonrenormalizable couplings λ and λ. Previous results for the contribution of the dimension-four anomalous couplings Δκ and κ are reproduced. The λ contribution to the charge radius and the anapole moments are found to be logarithmically sensitive to the cutoff scale (Λ), but the contribution of the λ coupling to the anomalous magnetic moments as well as that of the λ coupling to the electric dipole moments are found to be finite. These finite values are, however, found to be regularization-scheme dependent. The origin of the ambiguities is discussed and we argue that the numerical coefficients depend on the details of the underlying physics that gives rise to these nonstandard couplings. Banning an accidental cancellation, we can place an order-of-magnitude upper bound |λ|approx-lt 10 -4 from the experimental limit on the electric dipole moment of the neutron. Some definite predictions for the off-shell form factors are also presented
Dynamically fluctuating electric dipole moments in fullerene-based magnets.
Kambe, Takashi; Oshima, Kokichi
2014-09-19
We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed.
Nuclear anapole moment and tests of the standard model
International Nuclear Information System (INIS)
Flambaum, V. V.
1999-01-01
There are two sources of parity nonconservation (PNC) in atoms: the electron-nucleus weak interaction and the magnetic interaction of electrons with the nuclear anapole moment. A nuclear anapole moment has recently been observed. This is the first discovery of an electromagnetic moment violating fundamental symmetries--the anapole moment violates parity and charge-conjugation invariance. We describe the anapole moment and how it can be produced. The anapole moment creates a circular magnetic field inside the nucleus. The interesting point is that measurements of the anapole allow one to study parity violation inside the nucleus through atomic experiments. We use the experimental result for the nuclear anapole moment of 133 Cs to find the strengths of the parity violating proton-nucleus and meson-nucleon forces. Measurements of the weak charge characterizing the strength of the electron-nucleon weak interaction provide tests of the Standard Model and a way of searching for new physics beyond the Standard Model. Atomic experiments give limits on the extra Z-boson, leptoquarks, composite fermions, and radiative corrections produced by particles that are predicted by new theories. The weak charge and nuclear anapole moment can be measured in the same experiment. The weak charge gives the mean value of the PNC effect while the anapole gives the difference of the PNC effects for the different hyperfine components of an electromagnetic transition. The interaction between atomic electrons and the nuclear anapole moment may be called the ''PNC hyperfine interaction.''
First on-line $\\beta$-NMR on oriented nuclei magnetic dipole moments of the $\
Giles, T; Stone, N J; Van Esbroeck, K; White, G; Wöhr, A; Veskovic, M; Towner, I S; Mantica, P F; Prisciandaro, J I; Morrissey, D J; Fedosseev, V; Mishin, V I; Köster, U; Walters, W B
2000-01-01
The first fully on-line use of the angular distribution of $\\beta$ - emission in detection of NMR of nuclei oriented at low temperatures is reported. The magnetic moments of the single valence particle, intermediate mass, isotopes $^{67}$Ni($\
Magnetic moments of the spin-(3)/(2) doubly heavy baryons
Energy Technology Data Exchange (ETDEWEB)
Meng, Lu; Li, Hao-Song [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Liu, Zhan-Wei [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2017-12-15
In this work, we investigate the chiral corrections to the magnetic moments of the spin-(3)/(2) doubly charmed baryons systematically up to next-to-next-to-leading order with the heavy baryon chiral perturbation theory. The numerical results are given up to next-to-leading order: μ{sub Ξ}{sup {sub *}{sub +}{sub +{sub c{sub c}}}} = 2.61μ{sub N}, μ{sub Ξ}{sup {sub *}{sub +{sub c{sub c}}}} = -0.18μ{sub N}, μ{sub Ω}{sup {sub *}{sub +{sub c{sub c}}}} = 0.17μ{sub N}. As a by-product, we have also calculated the magnetic moments of the spin-(3)/(2) doubly bottom baryons and charmed bottom baryons: μ{sub Ξ}{sup {sub *}{sub 0{sub b{sub b}}}} = 2.83μ{sub N}, μ{sub Ξ}{sup {sub *}{sub -{sub b{sub b}}}} = -1.33μ{sub N}, μ{sub Ω}{sup {sub *}{sub -{sub b{sub b}}}} = -1.54μ{sub N}, μ{sub Ξ}{sup {sub *}{sub +{sub b{sub c}}}} = 3.22μ{sub N}, μ{sub Ξ}{sup {sub *}{sub 0{sub b{sub c}}}} = -0.84μ{sub N}, μ{sub Ω}{sup {sub *}{sub 0{sub b{sub c}}}} = -1.09μ{sub N}. (orig.)
Leading-order hadronic contributions to the electron and tau anomalous magnetic moments
International Nuclear Information System (INIS)
Burger, Florian; Hotzel, Grit
2015-01-01
The leading hadronic contributions to the anomalous magnetic moments of the electron and the τ-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found.
Experimental study of the conventional equation to determine a plate's moment of inertia
International Nuclear Information System (INIS)
Pintao, Carlos A F; Filho, Moacir P de Souza; Grandini, Carlos R; Hessel, Roberto
2004-01-01
In this work, we describe an experimental setup in which an electric current is used to determine the angular velocity attained by a plate rotating around a shaft in response to a torque applied for a given period. Based on this information, we show how the moment of inertia of a plate can be determined using a procedure that differs considerably from the ones most commonly used, which generally involve time measurements. Some experimental results are also presented which allow one to determine parameters such as the exponents and constant of the conventional equation of a plate's moment of inertia
Energy Technology Data Exchange (ETDEWEB)
Santos, C.A.M. dos
2005-06-24
interactions by exploiting the T=0-exact limiting case of the ferromagnetically saturated semiconductor and takes into account the correct symmetry of the atomic orbitals. The only parameter of the theory (inter-band exchange coupling J) is uniquely fixed by the band structure calculation. The self-consistently derived Curie temperature of 294.1 K and the T=0-magnetic moment of 7.71 {mu}{sub B} are surprisingly close to the experimental values. The induced temperature-dependence of the 5d conduction bands explains respective experimental photoemission data. (orig.)
Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb
Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S
2011-01-01
The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.
International Nuclear Information System (INIS)
Forssen, C.; Caurier, E.; Navratil, P.
2009-01-01
Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the 11 Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the 6 Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign
Inamori, Takaya; Sako, Nobutada; Nakasuka, Shinichi
2011-06-01
Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.
Antonelli, V; Picariello, M; Pulido, J; Torrente-Lujan, E
2003-01-01
We present here a recopilation of recent results about the possibility of detecting solar electron antineutrinos produced by solar core and convective magnetic fields. These antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. Using the recent Kamland results and assuming a concrete model for antineutrino production by spin-flavor precession in the convective zone based on chaotic magnetic fields,we obtain bounds on the flux of solar antineutrinos, on the average conversion neutrino-antineutrino probability and on intrinsic neutrino magnetic moment. In the most conservative case, $\\mu\\lsim 2.5\\times 10^{-11} \\mu_B$ (95% CL). When studying the effects of a core magnetic field, we find in the weak limit a scaling of the antineutrino probability with respect to the magnetic field profile in the sense that the same probability function can be reproduced by any profile with a suitable peak field value. In this way the solar ele...
Noncommutative QED and anomalous dipole moments
International Nuclear Information System (INIS)
Riad, I.F.; Sheikh-Jabbari, M.M.
2000-09-01
We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)
Measurement of the negative muon anomalous magnetic moment to 0.7 ppm
Bennett, GW; Bousquet, B; Brown, HN; Bunce, G; Carey, RM; Cushman, P; Danby, GT; Debevec, PT; Deile, M; Deng, H; Dhawan, SK; Druzhinin, VP; Duong, L; Farley, FJM; Fedotovich, GV; Gray, FE; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, MF; Hertzog, DW; Huang, [No Value; Hughes, VW; Iwasaki, M; Jungmann, K; Kawall, D; Khazin, BI; Krienen, F; Kronkvist, [No Value; Lam, A; Larsen, R; Lee, YY; Logashenko, [No Value; McNabb, R; Meng, W; Miller, JP; Morse, WM; Nikas, D; Onderwater, CJG; Orlov, Y; Ozben, CS; Paley, JM; Peng, Q; Polly, CC; Pretz, J; Prigl, R; Putlitz, GZ; Qian, T; Redin, SI; Rind, O; Roberts, BL; Ryskulov, N; Semertzidis, YK; Shagin, P; Shatunov, YM; Sichtermann, EP; Solodov, E; Sossong, M; Sulak, LR; Trofimov, A; von Walter, P; Yamamoto, A; Huang, X; Kronkvist, I.; Logashenko, I.; Özben, C.S.; Polley, C.C.; Shatunov, Yu.M.; von Walter, R.
2004-01-01
The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 ppm (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement for the negative muon.
Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin
International Nuclear Information System (INIS)
Barut, A.O.; Cruz, M.G.
1993-05-01
The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs
Lepton anomalous magnetic moments from twisted mass fermions
International Nuclear Information System (INIS)
Burger, Florian; Hotzel, Grit
2014-11-01
We present our results for the leading-order hadronic quark-connected contributions to the electron, the muon, and the tau anomalous magnetic moments obtained with four dynamical quarks. Performing the continuum limit and an analysis of systematic effects, full agreement with phenomenological results is found. To estimate the impact of omitting the quark-disconnected contributions to the hadronic vacuum polarisation we investigate them on one of the four-flavour ensembles. Additionally, the light quark contributions on the four-flavour sea are compared to the values obtained for N f =2 physically light quarks. In the latter case different methods to fit the hadronic vacuum polarisation function are tested.
Magnetic moment and magnetocrystalline anisotropy of 3d-ion subsystem in R2T14B
International Nuclear Information System (INIS)
Bartashevich, M.I.; Kudrevatykh, N.V.; Andreev, A.V.; Rejmer, V.A.
1990-01-01
The effect of substituting cobalt for iron on the magnetic moment, magneto-crystalline anisotropy and thermal expansion of R 2 (Fe 1-x Co x ) 14 B single crystals (R=Y, Gd, 0≤x≤0.3) is investigated. The uniaxial magnetic anisotropy constant K 1 for the 3d-subsystem passes through a maximum at T=4.2 K with increasing Co concentration. For T c the temperature dependence of K 1 does not possess a positive slope. The magnetic moment of the 3d-subsystem at 4.2 K does not exhibit the maximum at intermediate concentrations observed for most R(Fe, Co)-intermetallics. An explanation is presented of the changes in the magnetic properties. It is shown that the variation of the interatomic distances on thermal expansion should not affect the magnitude of the anisotropy constant of the 3d- and R-subsystems
Precise determination of the magnetic moment of helium in its 23S1 metastable state
International Nuclear Information System (INIS)
Zundell, B.E.
1976-01-01
The electronic magnetic moment of helium was measured by the atomic beam magnetic resonance method using separated oscillating fields. Actually, the magnetic moment of helium relative to that of rubidium was measured. The result was combined with the ratio g/sub J/(Rb)/g/sub J/(H) to get R = g/sub J/(He, 2 3 S 1 )/g/sub J/(H, 2 S/sub 1/2/) = 1 - (23.19 +- 0.1) x 10 -6 . The motivation for this Zeeman measurement was to provide as sensitive a test of the theory of atomic magnetism for a multielectron atom as possible. In particular, the experiment provides a test of the relativistic corrections to the Zeeman effect. The experiment also tests the additivity of the radiative corrections to the magnetic moments of the two electrons. Another motivation concerns the determination of the fine structure constant α from measurements of the 2 3 P fine structure intervals of 4 He; namely, the understanding of the 2 3 S states contributes to the knowledge of the theoretical expressions for the 2 3 P intervals. For the chosen magnetic field of 9.5 kG, the helium resonance frequency was 26.8 GHz, the rubidium frequency, 26.4 GHz. The linewidth associated with the microwave double loop was 25 KHz. Thus it was necessary to pick the resonance line centers to only 1 part in 10 to achieve a 0.1 ppM accuracy. This result is in excellent agreement with the latest theoretical value, R = 1 - 23.21 x 10 -6 ; and with earlier, less precise atomic beam measurements; and with the latest, comparably accurate optical pumping value. Many possible sources of error were investigated. The quoted error is based on analysis of residual systematic effects
Magnetic moments in present relativistic nuclear theories: a mean-field problem
International Nuclear Information System (INIS)
Desplanques, B.
1986-07-01
We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs
Magnetic moment of a two-particle bound state in quantum electrodynamics
International Nuclear Information System (INIS)
Martynenko, A.P.; Faustov, R.N.
2002-01-01
A quasipotential method for calculating relativistic and radiative corrections to the magnetic moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that the expression for the g factors of bound particles involve O(α 2 ) terms depending on the particle spin. Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium
Weak electric and magnetic dipole moments of the τ lepton from azimuthal asymmetries
International Nuclear Information System (INIS)
Sanchez Alvaro, E.
1997-01-01
Measurements of the weak electric dipole moment d τ w and, for the first time, the weak magnetic dipole moment a τ w of the τ lepton using L3 detector at LEP are presented. Azimuthal asymmetries for τ→πν and τ→ρν are used to obtain these measurements. Observed asymmetries are consistent with zero, and the limits set on d τ w and a τ w are vertical stroke d τ w vertical stroke -17 e.cm and vertical stroke a τ w vertical stroke <0.014 at 95% C.L. (orig.)
Spins, moments and charge radii beyond $^{48}$Ca
Neyens, G; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Garcia ruiz, R F; Kreim, K D; Budincevic, I
Laser spectroscopy of $^{49-54}$Ca is proposed as a continuation of the experimental theme initiated with IS484 “Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy” and expanded in INTC-I-117 “Moments, Spins and Charge Radii Beyond $^{48}$Ca.” It is anticipated that the charge radii of these isotopes can show strong evidence for the existence of a sub-shell closure at N=32 and could provide a first tentative investigation into the existence of a shell effect at N=34. Furthermore the proposed experiments will simultaneously provide model-independent measurements of the spins, magnetic moments and quadrupole moments of $^{51,53}$Ca permitting existing and future excitation spectra to be pinned to firm unambiguous ground states.
DEFF Research Database (Denmark)
Szpunar, B.; Kozarzewski, B.
1977-01-01
with a narrow d-band is considered. The magnetic moment of the alloy at zero temperature is calculated within the molecular field and Hartree-Fock approximations. Disorder is treated in the coherent potential approximation. Results are in good agreement with the experimental data obtained for the crystalline......Calculations are made of the mean magnetic moment per atom of the transition metal and the rare-earth metal in the intermetallic compounds, Gd1-x,Nix, Gd1-x Fex, Gd1-x Cox, and Y1-x Cox. A simple model of the disordered alloy consisting of spins localized on the rare-earth atoms and interacting...
Magnetic dipole moment of the doubly closed-shell plus one proton nucleus $^{49}$Sc
Gaulard, C V; Walters, W; Nishimura, K; Muto, S; Bingham, C R
It is proposed to measure the magnetic moment of $^{49}$Sc by the Nuclear Magnetic Resonance on Oriented Nuclei (NMR-ON) method using the NICOLE on-line nuclear orientation facility. $^{49}$Sc is the neutron rich, doubly closed-shell, nucleus $^{48}$Ca plus one proton. Results will be used to deduce the effective g-factors in the $^{48}$Ca region with reference to nuclear structure and meson exchange current effects.
Energy Technology Data Exchange (ETDEWEB)
Dru Renner, Xu Feng, Karl Jansen, Marcus Petschlies
2011-08-01
We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, infinite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513 (43) 10^-12, 5.72 (16) 10^-8 and 2.650 (54) 10^-6 for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%.
Magnetic moments of high spin rotational states in 158Dy and 164Dy+
International Nuclear Information System (INIS)
Seiler-Clark, G.
1983-09-01
For the study of their magnetic moments yrast states in 158 Dy and 164 Dy were excited via the multiple-Coulomb excitation by a 4.7 MeV/u 208 Pb beam. Hereby especially the question was of interest, how the one-particle effects in the nuclear structure in the region of the backbending anomaly in 158 Dy take effects on the g-factors of the high spin states in this region. The particle-γ angular correlations perturbed in the transient magnetic field during the passing of the excited Dy ions through a thin magnetized iron foil were measured. By the selective position-sensitive detection of Dy recoil ions and Pb projectiles under forward angles it was possible to determine additionally to the g-factors in the backbending region also g-factors in the spin region I 158 Dy and 164 Dy by detection of the particle-γ correlations precessing in the static hyperfine field after implantation in iron. The static hyperfine field was at the 4 + state in 164 Dy determined to B (Dy,Fe) = 245+-25 T. The g-factors were determined by comparison of the experimental results with calculations of the perturbed angular correlations by time-differential regarding of the population and de-excitation of the yrast states as well as by precession and hyperfine-relaxation effects during the flight of the Dy ions in the vacuum. (orig./HSI) [de
Fits of the baryon magnetic moments to the quark model and spectrum-generating SU(3)
International Nuclear Information System (INIS)
Bohm, A.; Teese, R.B.
1982-01-01
We show that for theoretical as well as phenomenological reasons the baryon magnetic moments that fulfill simple group transformation properties should be taken in intrinsic rather than nuclear magnetons. A fit of the recent experimental data to the reduced matrix elements of the usual octet electromagnetic current is still not good, and in order to obtain acceptable agreement, one has to add correction terms to the octet current. We have texted two kinds of corrections: U-spin-scalar terms, which are singles out by the model-independent algebraic properties of the hadron electromagnetic current, and octet U-spin vectors, which could come from quark-mass breaking in a nonrelativistic quark model. We find that the U-spin-scalar terms are more important than the U-spin vectors for various levels of demanded theoretical accuracy
Energy Technology Data Exchange (ETDEWEB)
Gold, S.
2005-07-01
The aim of this work was to examine, by use of XMCD-effect and additional measurements with SQUID-magnetometer, spin moments and hysteresis loops, but also to clarify the intrinsic properties like magnetocrystalline anisotropy, magnetic dipole term, and the nearly quenched orbital moment. The XMCD-measurements were done at the Cr L{sub 2,3}- and the O K-edge. The results for CrO{sub 2} show a strong dependence of the orbital, the sum of spin moment and magnetic dipole term, and the magnetocrystalline anisotropy energy from the angle between rutile a- and c-axis. Even more than the complete orbital moment, two separable and different spectral features show strong alterations of the different orbital moments. In a second part of this work the temperature dependence was investigated. The aim was to clarify the origin of the orbital moment, dipole term, and MAE in dependence of the spin moment and compare the results to different theoretical models. The extracted orbital moments and the magnetic dipole term show the same temperature dependence as the spin moment. In the following a dependence of the squared measured spin moment could be found for the MAE. For the first time the magnetic dipole term could be identified as the reason of the magnetocrystalline anisotropy energy. A strong Cr-O hybridisation was found, which shows in a similar structure and temperature dependence of the orbital moments for Cr L{sub 2,3} and the XMCD effect at O-K edge. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)
2011-10-15
In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Ward, Thomas
2013-10-01
A new electromagnetic neutral-current quark mixing matrix, analog to the well-known Cabibbo-Kobayashi-Maskawa (CKM) weak charge-current matrix, is proposed to account for the strange quark content of the neutron and proton and part of the anomalous axial vector magnetic moments. The EM-CKM matrix is shown to be equivalent to the weak-CKM matrix following an EM to weak gauge symmetry transformation, demonstrating the universality of the Standard Model (SM) CKM quark mixing matrix. The electric and magnetic form factors are reformulated using a new QCD three quark nucleon gyromagnetic factor, Dirac and Pauli form factors and anomalous kappa factors. The old 1943 Jauch form factors which have been systematically used and developed for many years is shown to be in stark disagreement with the new global set of experimental polarized electron-proton scattering data whereas the reformulated SM parameter set of this study is shown to agree very well, lending strong support for this new EM SM approach.
Evidence for a magnetic moment at the Lu site of LuFe2
International Nuclear Information System (INIS)
Kasamatsu, Y.; Armitage, J.G.M.; Lord, J.S.; Riedi, P.C.; Fort, D.
1995-01-01
High pressure 175 Lu NMR measurements of LuFe 2 at 4.2 K suggest that Lu, like Y and Zr, carries a negative magnetic moment, in agreement with self-consistent energy band calculations. The observed spectrum is more complicated than would be expected for a Laves phase compound. ((orig.))
Relativistic two-fermion equations with form factors and anomalous magnetic moment interactions
International Nuclear Information System (INIS)
Ahmed, S.
1977-04-01
Relativistic equations for two-fermion systems are derived from quantum field theory taking into account the form factors of the particles. When the q 2 dependence of the form factors is disregarded, in the static approximation, the two-fermion equations with Coulomb and anomalous magnetic moment interactions are obtained. Separating the angular variables, a sixteen-component relativistic radial equation are finally given
Phase-Transition and Magnetic Moment of the Gd3+ Ion in the Gd2Fe17 Compound
Institute of Scientific and Technical Information of China (English)
HAO Yan-Ming; FU Bin; ZHOU Yan; ZHAO Miao
2009-01-01
The structure and magnetic phase transitions of the Gd2Fe17 compound are investigated by using a differential thermal/thermogravimetric analyzer, x-ray diffraction, and magnetization measurements. The result shows that there are two phase structures for the Gd2Fe17 compound: the hexagonal Th2Ni17-type structure at high tem-peratures (above 1243℃), and the rhombohedrai Th2Zn17-type structure, respectively. A method to measure the magnetic moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound is presented. The moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound from 77 to 500 K are measured in this way with a vibrating sample magnetometer. A detailed discussion is presented.
Energy Technology Data Exchange (ETDEWEB)
Feng, Xu [DESY, Zeuthen (Germany). NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). NIC; Petschlies, Marcus [Humboldt Univ. Berlin (Germany). Inst. fuer Physik
2011-03-15
We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, in nite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modi cation to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513(43).10{sup -12}, 5.72(16).10{sup -8} and 2.650(54).10{sup -6} for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Vogel, J
2006-03-15
In this document, I use some results of my research activities of the last ten years to show the power of x-ray magnetic dichroism for determining magnetic properties of thin layers, multilayers and nano-structures. The use of sum rules for x-ray dichroism allows a quantitative determination of the spin and orbital contributions to the magnetic moment, for each element of a heterogeneous material separately. Used in a qualitative way, x-ray dichroism allows monitoring the magnetization of the different layers in a multilayer material as a function of applied field. In combination with the temporal structure of synchrotron radiation, it is possible to study fast magnetization reversal with element selectivity, which is important for devices like spin valves and magnetic tunnel junctions. Adding the spatial resolution of a photoelectron emission microscope (PEEM), it becomes possible to study all the details of the fast magnetization reversal in complex magnetic systems. (author)
International Nuclear Information System (INIS)
Wang, Liang; Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.
2015-01-01
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed
Lifting particle coordinate changes of magnetic moment type to Vlasov-Maxwell Hamiltonian dynamics
International Nuclear Information System (INIS)
Morrison, P. J.; Vittot, M.; Guillebon, L. de
2013-01-01
Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.
Reciprocity-based experimental determination of dynamic forces and moments: A feasibility study
Ver, Istvan L.; Howe, Michael S.
1994-01-01
BBN Systems and Technologies has been tasked by the Georgia Tech Research Center to carry Task Assignment No. 7 for the NASA Langley Research Center to explore the feasibility of 'In-Situ Experimental Evaluation of the Source Strength of Complex Vibration Sources Utilizing Reciprocity.' The task was carried out under NASA Contract No. NAS1-19061. In flight it is not feasible to connect the vibration sources to their mounting points on the fuselage through force gauges to measure dynamic forces and moments directly. However, it is possible to measure the interior sound field or vibration response caused by these structureborne sound sources at many locations and invoke principle of reciprocity to predict the dynamic forces and moments. The work carried out in the framework of Task 7 was directed to explore the feasibility of reciprocity-based measurements of vibration forces and moments.
Leading-order hadronic contributions to the electron and tau anomalous magnetic moments
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian; Pientka, Grit [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Jansen, Karl [NIC, DESY, Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, P.O.Box 27456, Nicosia (Cyprus); Rheinische Friedrich-Wilhelms-Universitaet Bonn, Institut fuer Strahlen- und Kernphysik, Bonn (Germany)
2016-08-15
The leading hadronic contributions to the anomalous magnetic moments of the electron and the τ-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The results presented are based on the quark-connected contribution to the hadronic vacuum polarisation function. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found. (orig.)
The ground state magnetic moment and susceptibility of a two electron Gaussian quantum dot
Boda, Aalu; Chatterjee, Ashok
2018-04-01
The problem of two interacting electrons moving in a two-dimensional semiconductor quantum dot with Gaussian confinement under the influence of an external magnetic field is studied by using a method of numerical diagonalization of the Hamiltonian matrix with in the effective-mass approximation. The energy spectrum is calculated as a function of the magnetic field. We find the ground state magnetic moment and the magnetic susceptibility show zero temperature diamagnetic peaks due to exchange induced singlet-triplet oscillations. The position and the number of these peaks depend on the size of the quantum dot and also strength of the electro-electron interaction. The theory is applied to a GaAs quantum dot.
Magnetic field modification of optical magnetic dipoles.
Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David
2015-03-11
Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.
Interactions among magnetic moments in the double perovskites Sr2Fe1+xMo1−xO6
International Nuclear Information System (INIS)
Pilo, J.; Carvajal, E.; Oviedo-Roa, R.; Cruz-Irisson, M.; Navarro, O.
2014-01-01
It is well known that every double perovskite shows a characteristic magnetic behavior, as a consequence of the interactions among the magnetic moments associated with the atoms in their cells; at the same time, the electric and magnetic properties of the bulk double perovskite Sr 2 FeMoO 6 are well characterized. In this work we studied the iron rich compounds Sr 2 Fe 1+x Mo 1−x O 6 , using a supercell to model such concentrations that made Fe richer perovskites by ±66.6% and ±200%. Starting from the stoichiometric double perovskite, and modifying the Fe/Mo ratio in the compound, the study of these materials were based on the calculation of the magnetic moment at each atom, as well as the partial density of states
Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa
2014-03-01
Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.
Energy Technology Data Exchange (ETDEWEB)
Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)
2017-05-15
A general theoretical description of a magnetic resonance is presented. This description is necessary for a detailed analysis of spin dynamics in electric-dipole-moment experiments in storage rings. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are obtained for an arbitrary initial polarization. These formulas are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance with allowance for both rotating fields. A general quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is shown. Quasimagnetic resonances for particles and nuclei moving in noncontinuous perturbing fields of accelerators and storage rings are considered. Distinguishing features of quasimagnetic resonances in storage ring electric-dipole-moment experiments are investigated in detail. The exact formulas for the effect caused by the electric dipole moment are derived. The difference between the resonance effects conditioned by the rf electric-field flipper and the rf Wien filter is found and is calculated for the first time. The existence of this difference is crucial for the establishment of a consent between analytical derivations and computer simulations and for checking spin tracking programs. The main systematical errors are considered. (orig.)
Weak correction to the muon magnetic moment in a gauge model
International Nuclear Information System (INIS)
Darby, D.; Grammer, G. Jr.
1976-01-01
The weak correction, asub(μ)sup(W), to the anomalous magnetic moment of the muon is calculated in an SU(2) x U(1) x U(1) gauge model of weak and electromagnetic interactions. The Rsub(xi) gauge is used and Ward-Takahashi identities are utilized in eliminating all xi-dependence before the loop integration is performed. asub(μ)sup(W,expt) places no constraint on the mass of one of the neutral vector mesons, which may be arbitrarily small. (Auth.)
Magnetic dipole excitations of the 163Dy nucleus
Zenginerler, Zemine; Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar; Guliyev, Ekber
2014-03-01
In this study some properties of the magnetic dipole excitations of the deformed odd mass 163Dy nucleus were studied by using Quasiparticle-phonon nuclear model (QPNM). The several of the ground-state and low-lying magnetic dipole (M1) mode characteristics were calculated for deformed odd-mass nuclei using a separable Hamiltonian within the QPNM. The M1 excited states, reduced transition probabilities B(M1), the ground-state magnetic properties such as magnetic moment (μ), intrinsic magnetic moment (gK) , effective spin factor (gseff.) are the fundamental characteristics of the odd-mass nucleus and provide key information to understand nuclear structure. The theoretical results were compared with the available experimental data and other theoretical approaches. Calculations show that the spin-spin interaction in this isotopes leads to polarization effect influencing the magnetic moments. Furthermore we found a strong fragmentation of the M1 strength in 163Dy nucleus which was in qualitative agreement with the experimental data. Sakarya University, Project Number: 2012-50-02-007 and Z.Zenginerler acknowledge to TUBITAK-TURKEY 2013, fellowship No: 2219.
Impurity-induced moments in underdoped cuprates
International Nuclear Information System (INIS)
Khaliullin, G.; Kilian, R.; Krivenko, S.; Fulde, P.
1997-01-01
We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Krivoruchenko, M.I.; Shchepkin, M.G.
1986-01-01
The magnetic moment of the six-quark bag with the deuteron quantum numbers is calculated in the chiral bag model taking into account the gluonic and the pionic corrections. For the six-quark bag radius R 6q =1.18-1.38 fm (corresponding to the nucleon bag radius R 3q =0.8-1.0 fm) the magnetic moment equals m D 6q =1.17-1.23 nuclear magnetons. This result together with the deuteron magnetic momentum data provides a restraint upon the six-quark bag admixture in the deuteron P B < or approx. 3%. This value is a few times lower than the probability that two nucleons are in the range r < 1.4 fm. Therefore, it may be interpreted as an evidence for a considerable difference between the properties of the effective bag in the deuteron and of the MIT bag
Charged point particles with magnetic moment in general relativity
International Nuclear Information System (INIS)
Amorim, R.; Tiomno, J.
1977-01-01
Halbwachs Lagrangean formalism for the theory of charged point particles with spin (g = 2) is generalized and formulated in General Relativity for particles of arbitrary charge and magnetic moment. Equations are obtained, both corresponding to Frenkel's condition Ssub(μν)Xsup(ν) = 0 and to Nakano's condition Ssub(μν)Psup(ν) = 0. With the later condition the exact equations are highly coupled and non linear. When linearized in the electromagnetic and gravitational fields they coincide with de Groot-Suttorp equations for vanishing gravitational fields and with Dixon-Wald equations in the absence of electromagnetic field. The equations corresponding to Frenkel's condition, when linearized in Ssub(μν), coincide with Papapetrou's and Frenkel's equations in the corresponding limits [pt
Kuiper, Pieter; Searle, Barry G.; Rudolf, Petra; Tjeng, L.H.; Chen, C.T.
1993-01-01
We report strong magnetic linear dichroism at the Fe L2,3 edge of the antiferromagnet Fe2O3 (hematite). The relative difference in absorption for light polarized parallel and perpendicular to the magnetic moment is as high as 40% at the Fe L2 edge. The spectra are in excellent agreement with
Experimental test of magnetic photons
International Nuclear Information System (INIS)
Lakes, R.S.
2004-01-01
A 'magnetic' photon hypothesis associated with magnetic monopoles is tested experimentally. These photons are predicted to easily penetrate metal. Experimentally the optical transmittance T of a metal foil was less than 2x10-17. The hypothesis is not supported since it predicts T=2x10-12
Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration
Shahzad, Munir; Sengupta, Pinaki
2017-12-01
We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.
International Nuclear Information System (INIS)
Pulido, J.
1993-01-01
The results reported by the four solar neutrino experiments (Homestake, Kamiokande, SAGE, Gallex) are analyzed from the point of view of the magnetic moment solution to the solar neutrino problem. The neutrino deficit reported by the gallium experiments (SAGE, Gallex) is apparently not as large as the one reported by Homestake and Kamiokande, a phenomenon suggesting a greater suppression in the large energy solar neutrino sector but also consistent with a uniform suppression for all neutrinos. Both uniform and nonuniform suppressions are examined for three different variants of the solar magnetic field and the possible parameter ranges for Δ 2 m 21 and μ ν are investigated. Massless neutrinos are not excluded and in all cases Δ 2 m 21 -5 eV 2 . The anticorrelation of the neutrino flux with sunspot activity is possible in any of the experiments but is in no way implied by a sizable magnetic moment and magnetic field
Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision.
Schneider, Georg; Mooser, Andreas; Bohman, Matthew; Schön, Natalie; Harrington, James; Higuchi, Takashi; Nagahama, Hiroki; Sellner, Stefan; Smorra, Christian; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Ulmer, Stefan
2017-11-24
Precise knowledge of the fundamental properties of the proton is essential for our understanding of atomic structure as well as for precise tests of fundamental symmetries. We report on a direct high-precision measurement of the magnetic moment μ p of the proton in units of the nuclear magneton μ N The result, μ p = 2.79284734462 (±0.00000000082) μ N , has a fractional precision of 0.3 parts per billion, improves the previous best measurement by a factor of 11, and is consistent with the currently accepted value. This was achieved with the use of an optimized double-Penning trap technique. Provided a similar measurement of the antiproton magnetic moment can be performed, this result will enable a test of the fundamental symmetry between matter and antimatter in the baryonic sector at the 10 -10 level. Copyright © 2017, American Association for the Advancement of Science.
Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems
Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani
2018-05-01
Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.
Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry
International Nuclear Information System (INIS)
Barik, N.; Dash, B.K.
1986-01-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment
Realizing high magnetic moments in fcc Fe nanoparticles through atomic structure stretch
International Nuclear Information System (INIS)
Baker, S H; Roy, M; Thornton, S C; Binns, C
2012-01-01
We describe the realization of a high moment state in fcc Fe nanoparticles through a controlled change in their atomic structure. Embedding Fe nanoparticles in a Cu 1-x Au x matrix causes their atomic structure to switch from bcc to fcc. Extended x-ray absorption fine structure (EXAFS) measurements show that the structure in both the matrix and the Fe nanoparticles expands as the amount of Au in the matrix is increased, with the data indicating a tetragonal stretch in the Fe nanoparticles. The samples were prepared directly from the gas phase by co-deposition, using a gas aggregation source and MBE-type sources respectively for the nanoparticle and matrix materials. The structure change in the Fe nanoparticles is accompanied by a sharp increase in atomic magnetic moment, ultimately to values of ∼2.5 ± 0.3 μ B /atom. (paper)
Energy Technology Data Exchange (ETDEWEB)
Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)
2017-10-15
We calculate the corrections for constant radial magnetic field in muon g - 2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of g - 2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab. (orig.)
Magnetic Phase Transitions in NdCoAsO
Energy Technology Data Exchange (ETDEWEB)
McGuire, Michael A [ORNL; Gout, Delphine J [ORNL; Garlea, Vasile O [ORNL; Sefat, A. S. [Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Mandrus, David [ORNL
2010-01-01
NdCoAsO undergoes three magnetic phase transitions below room temperature. Here we report the results of our experimental investigation of this compound, including determination of the crystal and magnetic structures using powder neutron diffraction, as well as measurements of electrical resistivity, thermal conductivity, Seebeck coefficient, magnetization, and heat capacity. These results show that upon cooling a ferromagnetic state emerges near 69 K with a small saturation moment of -0.2{micro}{sub B}, likely on Co atoms. At 14 K the material enters an antiferromagnetic state with propagation vector (0 0 1/2) and small ordered moments (-0.4{micro}{sub B}) on Co and Nd. Near 3.5 K a third transition is observed, and corresponds to the antiferromagnetic ordering of larger moments on Nd, with the same propagation vector. The ordered moment on Nd reaches 1.39(5){micro}{sub B} at 300 mK. Anomalies in the magnetization, electrical resistivity, and heat capacity are observed at all three magnetic phase transitions.
Silenko, Alexander J.
2017-10-01
We calculate the corrections for constant radial magnetic field in muon {g}-2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of {g}-2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab.
Energy Technology Data Exchange (ETDEWEB)
Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Kirch, K. [Paul Scherrer Institute, Villigen (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen (Switzerland); Bodek, K.; Zejma, J. [Jagellonian University, Cracow (Poland); Grujic, Z.; Kasprzak, M.; Weis, A. [University of Fribourg (Switzerland); Hélaine, V. [Laboratoire de Physique Corpusculaire, Caen (France); Paul Scherrer Institute, Villigen (Switzerland); Koch, H.-C. [Institut für Physik, Johannes-Gutenberg-Universität, Mainz (Germany); University of Fribourg (Switzerland); and others
2014-08-28
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.
Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László
1987-01-01
The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.
Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment
International Nuclear Information System (INIS)
Kurz, Alexander; Liu, Tao; Steinhauser, Matthias
2014-07-01
We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, a μ had,NNLO = 1.24 ± 0.01 x 10 -10 , is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.
On a Neutral Particle with a Magnetic Quadrupole Moment in a Uniform Effective Magnetic Field
International Nuclear Information System (INIS)
Fonseca, I. C.; Bakke, K.
2016-01-01
Quantum effects on a Landau-type system associated with a moving atom with a magnetic quadrupole moment subject to confining potentials are analysed. It is shown that the spectrum of energy of the Landau-type system can be modified, where the degeneracy of the energy levels can be broken. In three particular cases, it is shown that the analogue of the cyclotron frequency is modified, and the possible values of this angular frequency of the system are determined by the quantum numbers associated with the radial modes and the angular momentum and by the parameters associated with confining potentials in order that bound states solutions can be achieved.
Magnetic elements for switching magnetization magnetic force microscopy tips
International Nuclear Information System (INIS)
Cambel, V.; Elias, P.; Gregusova, D.; Martaus, J.; Fedor, J.; Karapetrov, G.; Novosad, V.
2010-01-01
Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.
Energy Technology Data Exchange (ETDEWEB)
Kong, Tai [Iowa State Univ., Ames, IA (United States)
2016-12-17
Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.
International Nuclear Information System (INIS)
Artru, X.; Fayolle, D.
2001-01-01
For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed
Energy Technology Data Exchange (ETDEWEB)
Sosa-Hernandez, E.M. [Departamento de Matematicas Aplicadas, Facultad de Contaduria y Administration, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico); Alvarado-Leyva, P.G. [Departamento de Fisica, Facultad de Ciencias, Universidad Autonoma de San Luis Potosi Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)]. E-mail: pal@galia.fc.uaslp.mx
2006-11-09
The magnetic behavior of clusters V{sub 6}-V{sub 9} in bulk Fe is determined by using an electronic Hamiltonian which includes s, p and d electrons. The spin density distribution is calculated self-consistenly in the unrestricted Hartree-Fock approximation. The local magnetic moments are obtained at V and Fe atoms; the magnetic coupling between Fe and V atoms is antiferromagnetic-like. We consider two cases, the first case correspond to non-interacting clusters, the distance between them is infinity, and the another case, when the clusters are interacting, the separation between them is finite; in the first case, the magnetic order in V{sub 6} is ferromagnetic-like whereas for V{sub 9} the magnetic order is antiferromagnetic-like, in the second case we have found that the magnetic order is not well stablished in V{sub 6}. We have found that the magnetic order in the matrix is not broken by the presence of the V atoms, although the local magnetic moments of Fe atoms at the interface cluster-matrix, are reduced respect to Fe bulk magnetization (2.22{mu} {sub B}) [e.g. {mu} {sub Fe}(5) = 1.98{mu} {sub B} in V{sub 6}; {mu} {sub Fe}(3) 1.89{mu} {sub B} in V{sub 9}].
Energy Technology Data Exchange (ETDEWEB)
Ouedraogo, Serge Aristide [Louisiana State Univ., Baton Rouge, LA (United States)
2008-12-01
A search for the muon neutrino magnetic moment was conducted using the Mini-BooNE low energy neutrino data. The analysis was performed by analyzing the elastic scattering interactions of muon neutrinos on electrons. The analysis looked for an excess of elastic scattering events above the Standard Model prediction from which a limit on the neutrino magnetic could be set. In this thesis, we report an excess of 15.3 ± 6.6(stat)±4.1(syst) v_{μ}e events above the expected background. At 90% C.L., we derived a limit on the muon neutrino magnetic moment of 12.7 x 10^{-10} μ_{B}. The other analysis reported in this thesis is a measurement of charged current single pion production (CCπ^{+}) to charged current quasi elastic (CCQE) interactions cross sections ratio. This measurement was performed with two different fitting algorithms and the results from both fitters are consistent with each other.
Micro magnetic modeling of magnetization reversal in permanent magnets
International Nuclear Information System (INIS)
Toussaint, J.C.; Kevorkian, B.; Givord, D.; Rossignol, M.F.
1996-01-01
Micro magnetic numerical 3 D calculation is presented in this paper to investigate the effect of a soft magnetic heterogeneity on the magnetization reversal of a single hard magnetic grain. Both equilibrium and transient magnetization configurations are obtained by solving the dynamic Landau-Lifshitz-Gilbert (L.L.G.) equation. A modified forward difference method is used to integrate the time dependent L.L.G. equation without conflicting with the constraint of constant magnetic moment. A continuum view of the material medium is adopted and the spatial finite difference method is used to describe the system as a set of cubic elements. In each element the magnetization is interpolated with quadratic polynomial functions and constrained to follow the Brown condition at the surface. A multigrid approach is developed to calculate the magnetic potential and the resulting stray field associated with a given microstructure. The calculated properties are compared to actual properties of Nd Fe B sintered magnets. Assuming a soft nucleus of 160 angstrom diameter and 80 angstrom depth, the calculated coercive field is about 1.45 T, close to experimental values and the calculated angular dependence of H c resembles experimental behaviours. (author)
AUTHOR|(CDS)2085887; Heylen, Hanne
In this work, the odd-even $^{51–63}$Mn isotopes have been analyzed using collinear laser spectroscopy, from which the magnetic dipole moment and the change in change in mean square charge radius can be determined. The magnetic moment is very sensitive to the composition of the total nuclear wave function, while the charge radius gives information about the relative size and degree of deformation of the nucleus. An additional advantage of collinear laser spectroscopy is the possibility of direct measurement of the nuclear spin. The main motivation behind the study of these isotopes is to investigate the change in nuclear structure when approaching neutron number N = 40. This region is of interest due to the apparent doubly magic nature of $^{68}$Ni , which is not seen in the N = 40 isotopes of $^{26}$Fe and $^{24}$Cr. Mn, situated between these elements, offers another perspective due to its uncoupled proton. Based on the observed spectra and extracted moments, spins were assigned to $^{59,61,63}$Mn. The ex...
Shao, Yangfan; Pang, Rui; Pan, Hui; Shi, Xingqiang
2018-03-01
The interfaces between organic molecules and magnetic metals have gained increasing interest for both fundamental reasons and applications. Among them, the C60/layered antiferromagnetic (AFM) interfaces have been studied only for C60 bonded to the outermost ferromagnetic layer [S. L. Kawahara et al., Nano Lett. 12, 4558 (2012) and D. Li et al., Phys. Rev. B 93, 085425 (2016)]. Here, via density functional theory calculations combined with evidence from the literature, we demonstrate that C60 adsorption can reconstruct the layered-AFM Cr(001) surface at elevated annealing temperatures so that C60 bonds to both the outermost and the subsurface Cr layers in opposite spin directions. Surface reconstruction drastically changes the adsorbed molecule spintronic properties: (1) the spin-split p-d hybridization involves multi-orbitals of C60 and top two layers of Cr with opposite spin-polarization, (2) the subsurface Cr atom dominates the C60 electronic properties, and (3) the reconstruction induces a large magnetic moment of 0.58 μB in C60 as a synergistic effect of the top two Cr layers. The induced magnetic moment in C60 can be explained by the magnetic direct-exchange mechanism, which can be generalized to other C60/magnetic metal systems. Understanding these complex hybridization behaviors is a crucial step for molecular spintronic applications.
International Nuclear Information System (INIS)
Hegstrom, R.A.; Lhuillier, C.
1977-01-01
Starting from a classical covariant equation of motion for the spin of a particle moving in a homogeneous electromagnetic field (the Bargmann-Michel-Telegdi equation), we show that the ''relativistic mass'' correction to the electron spin magnetic moment, which has been obtained previously from relativistic quantum-mechanical treatments of the Zeeman effect, may be reinterpreted as the combination of three classical effects: (i) the difference in time scales in the electron rest frame vis-a-vis the lab frame, (ii) the Lorentz transformation of the magnetic field between the two frames, and (iii) the Thomas precession of the electron spin due to the acceleration of the electron produced by the magnetic field
Energy Technology Data Exchange (ETDEWEB)
D' yachkov, A.B.; Firsov, V.A.; Gorkunov, A.A.; Labozin, A.V.; Mironov, S.M.; Saperstein, E.E.; Tolokonnikov, S.V.; Tsvetkov, G.O.; Panchenko, V.Y. [National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation)
2017-01-15
Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d{sup 8}4s{sup 2} {sup 3}F{sub 4} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} and 3d{sup 9}4s {sup 3}D{sub 3} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} transitions of {sup 63}Ni and {sup 61}Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of {sup 63}Ni for the first time: μ = +0.496(5)μ{sub N}. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems. (orig.)
Relativistic energy correction of the hydrogen atom with an anomalous magnetic moment
International Nuclear Information System (INIS)
Ambogo, David Otieno
2015-07-01
The electron is known to possess an anomalous magnetic moment, which interacts with the gradient of the electric field. This makes it necessary to compute its effects on the energy spectrum. Even though the Coulomb Dirac equation can be solved in closed form, this is no longer possible when the anomalous magnetic moment is included. In fact the interaction due to this term is so strong that it changes the domain of the Hamiltonian. From a differential equation point of view, the anomalous magnetic moment term is strongly singular near the origin. As usual, one has to resort to perturbation theory. This, however, only makes sense if the eigenvalues are stable. To prove stability is therefore a challenge one has to face before actually computing the energy shifts. The first stability results in this line were shown by Behncke for angular momenta κ≥3, because the eigenfunctions of the unperturbed Hamiltonian decay fast enough near the origin. He achieved this by decoupling the system and then using the techniques available for second order differential equations. Later, Kalf and Schmidt extended Behncke's results basing their analysis on the Pruefer angle technique and a comparison result for first order differential equations. The Pruefer angle method is particularly useful because it shows a better stability and because it obeys a first order differential equation. Nonetheless, Kalf and Schmidt had to exclude some coupling constants for κ>0. This I believe is an artefact of their method. In this study, I make increasing use of asymptotic integration, a method which is rather well adapted to perturbation theory and is known to give stability results to any level of accuracy. Together with the Pruefer angle technique, this lead to a more general stability result and even allows for an energy shifts estimate. Hamiltonians traditionally treated in physics to describe the spin-orbit effect are not self adjoint i.e. they are not proper observables in quantum
Relativistic energy correction of the hydrogen atom with an anomalous magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Ambogo, David Otieno
2015-07-15
The electron is known to possess an anomalous magnetic moment, which interacts with the gradient of the electric field. This makes it necessary to compute its effects on the energy spectrum. Even though the Coulomb Dirac equation can be solved in closed form, this is no longer possible when the anomalous magnetic moment is included. In fact the interaction due to this term is so strong that it changes the domain of the Hamiltonian. From a differential equation point of view, the anomalous magnetic moment term is strongly singular near the origin. As usual, one has to resort to perturbation theory. This, however, only makes sense if the eigenvalues are stable. To prove stability is therefore a challenge one has to face before actually computing the energy shifts. The first stability results in this line were shown by Behncke for angular momenta κ≥3, because the eigenfunctions of the unperturbed Hamiltonian decay fast enough near the origin. He achieved this by decoupling the system and then using the techniques available for second order differential equations. Later, Kalf and Schmidt extended Behncke's results basing their analysis on the Pruefer angle technique and a comparison result for first order differential equations. The Pruefer angle method is particularly useful because it shows a better stability and because it obeys a first order differential equation. Nonetheless, Kalf and Schmidt had to exclude some coupling constants for κ>0. This I believe is an artefact of their method. In this study, I make increasing use of asymptotic integration, a method which is rather well adapted to perturbation theory and is known to give stability results to any level of accuracy. Together with the Pruefer angle technique, this lead to a more general stability result and even allows for an energy shifts estimate. Hamiltonians traditionally treated in physics to describe the spin-orbit effect are not self adjoint i.e. they are not proper observables in quantum
Energy Technology Data Exchange (ETDEWEB)
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-03-29
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.
International Nuclear Information System (INIS)
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-01-01
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments
Dynamics of magnetic moments in high-Tc superconductors. Final report
International Nuclear Information System (INIS)
Holland-Moritz, E.; Jostarndt, H.D.
1992-01-01
The central topic of this research project was the question why PrBa 2 Cu 3 O 7 does not become superconducting. For this purpose, Pr specimens were investigated as well as for comparison purposes, specimens of the neighbouring rare earth Nd, by means of inelastic magnetic neutron scattering as a function of temperature and the pulse transmission. As the reason for the suppression of superconductivity, an anomalously large hybridization of 4f electrons of Pr with the p-electrons of oxygen was observed, which causes the magnetic atomic temperatures, which are abnormally high in comparison with other rare earth 1:2:3 systems. The present it is not known whether superconductivity is suppressed spatial correlations of the magnetic 4f-moments. In addition, in this project could be proven successfully for the first time, the high-energy crystal field stimulations in PrBa 2 Cu 3 O 7 as well as in PrBa 2 Cu 3 O 6 . The temperature dependence of the quasielastic line width in NdBa 2 Cu 3 O 7-δ shows a distinctive anomaly at 100 K, which means approximately near to the superconducting transition temperature of the O 7 -systems. It is remarkable that this anomaly occurs in the non-superconducting O 6 -systems as well. This behaviour is not yet completely understood. (orig./UU) [de
Ionospheric plasma escape by high-altitude electric fields: Magnetic moment ''pumping''
International Nuclear Information System (INIS)
Lundin, R.; Hultqvist, B.
1989-01-01
Measurements of electric fields and the composition of upward flowing ionospheric ions by the Viking spacecraft have provided further insight into the mass dependent plasma escape process taking place in the upper ionosphere. The Viking results of the temperature and mass-composition of individual ion beams suggest that upward flowing ion beams can be generated by a magnetic moment ''pumping'' mechanism caused by low-frequency transverse electric field fluctuations, in addition to a field aligned ''quasi-electrostatic'' acceleration process. Magnetic moment ''pumping'' within transverse electric field gradients can be described as a conversion of electric drift velocity to cyclotron velocity by the inertial drift in time-dependent electric field. This gives an equal cyclotron velocity gain for all plasma species, irrespective of mass. Oxygen ions thus gain 16 times as much transverse energy as protons. In addition to a transverse energy gain above the escape energy, a field-aligned quasi-electrostatic acceleration is considered primarily responsible for the collimated upward flow of ions. The field-aligned acceleration adds a constant parallel energy to escaping ionospheric ions. Thus, ion beams at high altitudes can be explained by a bimodal acceleration from both a transverse (equal velocity) and a parallel (equal energy) acceleration process. The Viking observations also show that the thermal energy of ion beams, and the ion beam width are mass dependent. The average O + /H + ''temperature ratio has been found to be 4.0 from the Viking observations. This is less than the factor of 16 anticipated from a coherent transverse electric field acceleration but greater than the factor of 1 (or even less than 1) expected from a turbulent acceleration process. copyright American Geophysical Union 1989
Moment analysis of hadronic vacuum polarization. Proposal for a lattice QCD evaluation of gμ - 2
de Rafael, Eduardo
2014-09-01
I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
Electronic and magnetic properties of intermetallic compound YCo5
International Nuclear Information System (INIS)
Zhang, G.W.; Feng, Y.P.; Ong, C.K.
1998-01-01
The electronic and magnetic properties of the intermetallic compound YCo 5 have been studied using density functional theory with the local spin density approximation. The calculated magnetic moments of Y, Co(2c) and Co(3g) are -0.61, 1.68 and 2.04 μ B , respectively, and the total magnetic moment is about 8.87 μ B per formula unit, which agrees well with the previous experimental results. The dependence of the magnetic moments of Y, Co(2c) and Co(3g) on the lattice spacing has been investigated. The local electronic structure of Y, Co(2c) and Co(3g) are discussed in detail. The local magnetic susceptibilities of Y, Co(2c) and Co(3g) are calculated. Based on our results, YCo 5 was found to have characteristic of a strong ferromagnet. (orig.)
The classical equations of motion for a spinning point particle with charge and magnetic moment
International Nuclear Information System (INIS)
Rowe, E.G.P.; Rowe, G.T.
1987-01-01
The classical, special relativistic equations of motion are derived for a spinning point particle interacting with the electromagnetic field through its charge and magnetic moment. Radiation reaction is included. The energy tensors for the particle and for the field are developed as well-defined distributions; consequently no infinities appear. The magnitude of spin and the rest mass are conserved. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Yang, Wenming, E-mail: wenming_y@126.com [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Pengkai [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Hao, Ruican [School of Mechanical Engineering, Beijing Polytechnic, Beijing 100176 (China); Ma, Buchuan [Beijing Institute of Aerospace Control Devices, Beijing 100854 (China)
2017-03-15
Analytical and numerical calculation methods of the radial magnetic levitation force on the cylindrical magnets in cylindrical vessels filled with ferrofluid was reviewed. An experimental apparatus to measure this force was designed and tailored, which could measure the forces in a range of 0–2.0 N with an accuracy of 0.001 N. After calibrated, this apparatus was used to study the radial magnetic levitation force experimentally. The results showed that the numerical method overestimates this force, while the analytical ones underestimate it. The maximum deviation between the numerical results and the experimental ones was 18.5%, while that between the experimental results with the analytical ones attained 68.5%. The latter deviation narrowed with the lengthening of the magnets. With the aids of the experimental verification of the radial magnetic levitation force, the effect of eccentric distance of magnets on the viscous energy dissipation in ferrofluid dampers could be assessed. It was shown that ignorance of the eccentricity of magnets during the estimation could overestimate the viscous dissipation in ferrofluid dampers. - Highlights: • Experimental method measuring magnetic levitation force of ferrofluid was studied. • A simple but rather witty apparatus was designed and tailored. • The apparatus can measure forces in a range of 0–2.0 N with an accuracy of 0.001 N. • Existing methods calculating magnetic levitation force were verified experimentally.
International Nuclear Information System (INIS)
Yang, Wenming; Wang, Pengkai; Hao, Ruican; Ma, Buchuan
2017-01-01
Analytical and numerical calculation methods of the radial magnetic levitation force on the cylindrical magnets in cylindrical vessels filled with ferrofluid was reviewed. An experimental apparatus to measure this force was designed and tailored, which could measure the forces in a range of 0–2.0 N with an accuracy of 0.001 N. After calibrated, this apparatus was used to study the radial magnetic levitation force experimentally. The results showed that the numerical method overestimates this force, while the analytical ones underestimate it. The maximum deviation between the numerical results and the experimental ones was 18.5%, while that between the experimental results with the analytical ones attained 68.5%. The latter deviation narrowed with the lengthening of the magnets. With the aids of the experimental verification of the radial magnetic levitation force, the effect of eccentric distance of magnets on the viscous energy dissipation in ferrofluid dampers could be assessed. It was shown that ignorance of the eccentricity of magnets during the estimation could overestimate the viscous dissipation in ferrofluid dampers. - Highlights: • Experimental method measuring magnetic levitation force of ferrofluid was studied. • A simple but rather witty apparatus was designed and tailored. • The apparatus can measure forces in a range of 0–2.0 N with an accuracy of 0.001 N. • Existing methods calculating magnetic levitation force were verified experimentally.
International Nuclear Information System (INIS)
Greedan, J.E.; MacLean, D.A.
1978-01-01
The rare-earth orthotitanites, RTi0 3 are a relatively new series of materials with properties which are strongly dependent on the identity of the rare-earth ion. Low-temperature magnetization studies on the system Lasub(x)Ysub(1-x)Ti0 3 and the compound GdTi0 3 indicate that the magnitude of the Ti 3+ spontaneous moment depends on the average size of the rare-earth ion and on its magnetic moment. For most of the phases studied except GdTi0 3 the Ti 3+ moment is very much smaller than the 'spin only' value and is non-integral, yet semiconducting behaviour is simultaneously observed. (author)
Experimental study of the moment of inertia of a cone-angular variation and inertia ellipsoid
International Nuclear Information System (INIS)
Pintao, Carlos A F; Souza de Filho, Moacir P; Usida, Wesley F; Xavier, Jose A
2007-01-01
In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque through electric current or frequency measurement is utilized
Magnetic properties of the CrMnFeCoNi high-entropy alloy
International Nuclear Information System (INIS)
Schneeweiss, Oldřich; Friák, Martin; Masaryk University, Brno; Dudová, Marie; Holec, David
2017-01-01
In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006 ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μ B ), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.
N=2-Maxwell-Chern-Simons model with anomalous magnetic moment coupling via dimensional reduction
International Nuclear Information System (INIS)
Christiansen, H.R.; Cunha, M.S.; Helayel Neto, Jose A.; Manssur, L.R.U; Nogueira, A.L.M.A.
1998-02-01
An N=1-supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with non-minimal coupling to matter is built up both in terms of superfields and in a component field formalism. By adopting a dimensional reduction procedure, the N=2-D=3 counterpart of the model comes out, with two main features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic moment coupling between matter and the gauge potential. (author)
Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment
Energy Technology Data Exchange (ETDEWEB)
Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, PB 58051-970 (Brazil)
2016-01-07
Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.
Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment
Fonseca, I. C.; Bakke, K.
2016-01-01
Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.
Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment
International Nuclear Information System (INIS)
Fonseca, I. C.; Bakke, K.
2016-01-01
Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels
Experimental constraint on quark electric dipole moments
Liu, Tianbo; Zhao, Zhiwen; Gao, Haiyan
2018-04-01
The electric dipole moments (EDMs) of nucleons are sensitive probes of additional C P violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to C P violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1.27 ×10-24 e .cm for the up quark and 1.17 ×10-24 e .cm for the down quark at the scale of 4 GeV2 . We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about 3 orders of magnitude leading to a much more sensitive probe of new physics models.
The magnetization of γ′-Fe4N: theory vs. experiment
DEFF Research Database (Denmark)
Peltzer y Blancá, Eitel L.; Desimoni, Judith; Christensen, Niels Egede
2009-01-01
the magnetization at the experimental value to obtain a satisfying description. Remaining disagreement between theory and experiment is pointed out. A recent experimental claim for a giant magnetic moment in γ ′-Fe4N is discussed, and is not reproduced by our calculations. We expect that the new insight obtained...
Touchless attitude correction for satellite with constant magnetic moment
Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan
2017-09-01
Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.
International Nuclear Information System (INIS)
Bhattacharya, Somesh Kr; Tanaka, Shingo; Kohyama, Masanori; Shiihara, Yoshinori
2013-01-01
We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)
Energy Technology Data Exchange (ETDEWEB)
Mamyrin, B.A.; Aruev, N.N.; Alekseenko, S.A.
1983-06-01
In connection with the revision of the table values of the atomic masses and the forthcoming coordination of the values of the fundamental physical constants, the result of measurement of the proton magnetic moment in nuclear Magnetons obtained in 1971 is re-examined by taking into account recent data. With the atomic masses recognized in 1982 the proton magnetic moment expressed in nuclear magnetons without a correction for diamagnetic screening of the proton in a water molecule is found to be ..mu..sub(p)'/..mu..sub(n)=2.7927729+-0.0000012 (4.3x10/sup -5/%).
International Nuclear Information System (INIS)
Cabral-Rosetti, L.G.; Bernabeu, J.; Vidal, J.
2000-01-01
We present a computation of the charge and the magnetic moment of the neutrino in the recently developed electro-weak background field method and in the linear R ξ L gauge. First, we deduce a formal Ward-Takahashi identity which implies the immediate cancellation of the neutrino electric charge. This Ward-Takahashi identity is as simple as that for QED. The computation of the (proper and improper) one loop vertex diagrams contributing to the neutrino electric charge is also presented in an arbitrary gauge, checking in this way the Ward-Takahashi identity previously obtained. Finally, the calculation of the magnetic moment of the neutrino, in the minimal extension of the standard model with massive Dirac neutrinos, is presented, showing its gauge parameter and gauge structure independence explicitly. (orig.)
EXPERIMENTAL STUDY OF MAGNETIC FLUID SEAL
Directory of Open Access Journals (Sweden)
V. G. Bashtovoi
2006-01-01
Full Text Available Dependences of critical pressure drop, being held by magnetic fluid seal, on time in a static state and shaft rotation velocity in dynamics have been experimentally determined. The significant influence of particles’ redistribution in magnetic fluid on static parameters of magnetic fluid seal has been established.
Electromagnetic moments of hadrons and quarks in a hybrid model
International Nuclear Information System (INIS)
Gerasimov, S.B.
1989-01-01
Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig
Coherent states of a particle in a magnetic field and the Stieltjes moment problem
International Nuclear Information System (INIS)
Gazeau, J.P.; Baldiotti, M.C.; Gitman, D.M.
2009-01-01
A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.
Coherent states of a particle in a magnetic field and the Stieltjes moment problem
Energy Technology Data Exchange (ETDEWEB)
Gazeau, J.P. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gazeau@apc.univ-paris7.fr; Baldiotti, M.C. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: baldiott@fma.if.usp.br; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gitman@dfn.if.usp.br
2009-05-11
A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.
Majorana neutrino transition magnetic moment in a variant of Zee model with horizontal symmetry
International Nuclear Information System (INIS)
Dhar, Jyoti; Dev, S.
1992-01-01
A SU(2) H symmetric variant of Zee model of lepton flavour violation is presented and is shown to lead to neutrino transition magnetic moment of the order required to explain the solar neutrino deficit and the possible anticorrelation of solar neutrino flux with sunspot activity via VVO mechanism. The use of horizontal symmetry leads to totally degenerate neutrino states which may be combined to form a ZKM Dirac neutrino with naturally small mass. (author). 22 refs., 1 fig
Energy Technology Data Exchange (ETDEWEB)
Pilo, J. [Escuela Superior de Ingeniería Mecánica y Eléctrica-Culhuacán, Instituto Politécnico Nacional Av. Santa Ana 1000, México, D. F., C. P. 04430, México (Mexico); Carvajal, E., E-mail: ecarvajalq@ipn.mx [Escuela Superior de Ingeniería Mecánica y Eléctrica-Culhuacán, Instituto Politécnico Nacional Av. Santa Ana 1000, México, D. F., C. P. 04430, México (Mexico); Oviedo-Roa, R. [Programa de Investigación en Ingeniería Molecular, Instituto Mexicano del Petróleo Eje Central Lázaro Cárdenas Norte 152, México, D. F., C. P. 07730, México (Mexico); Cruz-Irisson, M. [Escuela Superior de Ingeniería Mecánica y Eléctrica-Culhuacán, Instituto Politécnico Nacional Av. Santa Ana 1000, México, D. F., C. P. 04430, México (Mexico); Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México A.P. 70-360, México, D. F., C. P. 04510, México (Mexico)
2014-12-15
It is well known that every double perovskite shows a characteristic magnetic behavior, as a consequence of the interactions among the magnetic moments associated with the atoms in their cells; at the same time, the electric and magnetic properties of the bulk double perovskite Sr{sub 2}FeMoO{sub 6} are well characterized. In this work we studied the iron rich compounds Sr{sub 2}Fe{sub 1+x}Mo{sub 1−x}O{sub 6}, using a supercell to model such concentrations that made Fe richer perovskites by ±66.6% and ±200%. Starting from the stoichiometric double perovskite, and modifying the Fe/Mo ratio in the compound, the study of these materials were based on the calculation of the magnetic moment at each atom, as well as the partial density of states.
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt
Strange magnetism and the anapole structure of the proton
International Nuclear Information System (INIS)
Hasty, R.; Beck, D.H.; Danagoulian, A.; Blake, A.; Carr, R.; Covrig, S.; Filipoone, B.W.; Ito, T.M.; Gao, J.; Jones, C.E.; Lee, P.; McKeown, R.D.; Savu, V.; Beise, E.J.; Breuer, H.; Spayde, D.T.; Tieulent, R.; Herda, M.C.; Barkhuff, D.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Tsentalovich, E.; Yang, B.; Zwart, T.; Hawthorne-Allen, A.M.; Pitt, M.; Ritter, J.; Korsch, W.; Mueller, B.; Wells, S.P.; Averett, T.; Roche, J.; Kramer, K.
2000-01-01
The violation of mirror symmetry in the weak force provides a powerful tool to study the internal structure of the proton. Experimental results have been obtained that address the role of strange quarks in generating nuclear magnetism. The measurement reported here provides an unambiguous constraint on strange quark contributions to the proton's magnetic moment through the electron-proton weak interaction. We also report evidence for the existence of a parity-violating electromagnetic effect known as the anapole moment of the proton. The proton's anapole moment is not yet well understood theoretically, but it could have important implications for precision weak interaction studies in atomic systems such as cesium.
Magnetism in heavy-electron metals
International Nuclear Information System (INIS)
Ott, H.R.
1997-01-01
Originally it was believed that the presence of heavy-mass charge carriers at low temperatures in some special rare-earth or actinide compounds was simply the result of a suppression of magnetic order in these materials. Various experiments reveal, however, that magnetic order may occur from a heavy-electron state or that a heavy-electron state may also develop within a magnetically ordered materix. It turned out that pure compounds without any sign of a cooperative phase transition down to very low temperatures are rare but examples are known where microscopic experimental probes give evidence for strong magnetic correlations involving moments of much reduced magnitude (≤ 0.1μ Β ) in such cases. It apperas that electronic and magnetic inhomogeneities, both in real and reciprocal space occur which are not simply the result of chemical inhomogeneities. Long range magnetic order among strongly reduced magnetic moments seems to be a particular feature of some heavy-electron materials. Other examples show, that disorder may lead to a suppression of cooperative phase transitions and both macroscopic and microscopic physical properties indicate that conservative model calculations are not sufficient to describe the experimental observations. The main difficulty is to find a suitable theoretical approach that considers the various interactions of similar strength on an equal footing. Different examples of these various features are demonstrated and discussed. (au)
International Nuclear Information System (INIS)
Ekstroem, C.; Rubinsztein, H.; Moeller, P.
1976-01-01
A comparison is made between experimental and theoretical level assignments and static electromagnetic moments of nuclei in the region 72 Hf- 77 Ir. The theoretical calculations are based on the modified oscillator model. Equilibrium deformation values, epsilon and epsilon 4 , are determined for doubly-even and odd-mass nuclei from the minima in the potential energy surfaces. The influence of the different parameters entering the expressions for the magnetic dipole moment is analysed. The electric quadrupole and hexadecapole moments are calculated on the assumption that the nucleus is a homogeneously charged body with a sharp surface and a shape corresponding to that of an equipotential surface. In some selected cases, the electric multipole moments are evaluated by use of the single-particle wave functions. (Auth.)
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt
On the search for the electric dipole moment of strange and charm baryons at LHC
Energy Technology Data Exchange (ETDEWEB)
Botella, F.J.; Garcia Martin, L.M.; Martinez Vidal, F.; Oyanguren, A.; Ruiz Vidal, J. [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Marangotto, D.; Merli, A.; Neri, N. [INFN Sezione di Milano, Milan (Italy); Milano Univ., Milan (Italy)
2017-03-15
Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and anti Λ baryons. For short-lived Λ{sup +}{sub c} and Ξ{sup +}{sub c} baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed. (orig.)
W-boson electric dipole moment
International Nuclear Information System (INIS)
He, X.; McKellar, B.H.J.
1990-01-01
The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4
Table of Nuclear Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2013-12-01
This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)
Determination of Local Magnetic Dipole Moment of the Plasma at the PUPR Cusp-Mirror Machine
International Nuclear Information System (INIS)
Leal-Quiros, Edbertho; Prelas, Mark
2006-01-01
A novel diagnostic that allows measurement of the magnetic moment μ has been designed. The μ-Analyzer consists of a Directional Energy Analyzer and a Magnetic Hall Probe in the same detector miniature case. The Directional Energy Analyzer measures the ion temperature in the perpendicular direction to the magnetic field. On the other side, the Hall Probe measures the magnetic field. The μ-Analyzer is a miniature analyzer to avoid plasma perturbation. This allows the measurement of the ion temperature and the local magnetic field at the same point at the same time, therefore μ, the first adiabatic invariant is found. From the above parameters, the local Larmor radius also will be calculated. From the analysis of the data simultaneously in time and space, the μ of the Local Plasma has been determined. This result is a very important quantity, among other properties that permit one to know the stability of the magnetic confinement device using the MHD Stability Criterium, and also very important in Space Plasma Research. In addition to the above, a direct measurement of the Larmor radius of each position is also possible. The experiments have been made in a Cusp/Mirror Plasma Machine where plasma parameters such as Density and Temperature are relatively easy to change in a very wide range
Energy Technology Data Exchange (ETDEWEB)
Porter, Frank C. [Caltech, Pasadena, CA (United States). Physics Dept.
2015-04-29
The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e^{+}e^{-} collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e^{+}e^{-} → K^{+}K^{-}, π^{+}π^{-}, and e^{+}e^{-} → 4 hadrons
Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina
Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya
Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.
Directory of Open Access Journals (Sweden)
Chia-Feng Chang
2018-03-01
Full Text Available The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.
Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang
2018-03-01
The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.
The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment
Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.
2017-12-01
Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.
The anomalous magnetic moment of the electron
International Nuclear Information System (INIS)
Awobode, A.M.
2002-05-01
The gyromagnetic ratio g of an electron is calculated by taking the non-relativistic limit of a newly proposed extension of the Dirac Hamiltonian coupled to a magnetic field. It is observed that the calculated g is greater than 2; the Dirac theory had predicted that g=2 in sharp contradiction with accurate experimental observations. The additional quantity (g-2)/2≡δ∼(1.6x10 -3 ) is shown here to be due to an extra term which appears in the reduced Hamiltonian, as a consequence of the modification of the rest energy. No divergences are encountered in the calculations described. (author)
Zhang, Wen; Liu, Yi; Wang, Xiaoying; Zhang, Yun; Xie, Donghua
2018-03-01
The heavy fermion physics arises from the complex interplay of nearly localized 4f/5f electrons and itinerant band-like ones, yielding heavy quasiparticles with an effective mass about 100 times (or more) of the bare electrons. Recently, experimental and theoretical investigations point out a localized and delocalized dual nature in actinide compounds, where itinerant quasiparticles account for the unconventional superconductivity in the vicinity of a magnetic instability. Here we report the strong coupling between localized 5f moments and itinerant quasiparticles in the ferromagnetic superconductor UGe2. The coupling is nearly antiferromagnetic. As embedded in the ferromagnetic matrix of localized 5f moments below {T}{{C}}≈ 52 {{K}}, this coupling leads to short-range dynamic correlations of heavy quasiparticles, characterized by fluctuations of magnetic clusters. Those cluster-like spins of itinerant quasiparticles show a broad hump of magnetization at {T}X≈ 28 {{K}}, which is typical for the spin-glass freezing. Thus, our results present the direct observation of itinerant quasiparticles coexisting with localized 5f moments by conventional magnetic measurements, providing a new route into the coexistence between ferromagnetism and superconductivity in heavy fermion systems. Project supported by the National Natural Science Foundation of China (Grant No. 11404297), the Science Challenge Project (Grant No. TZ2016004), and the Science and Technology Foundation of China Academy of Engineering Physics (Grant Nos. 2013B0301050 and 2014A0301013).
International Nuclear Information System (INIS)
Khare, A.
1975-01-01
We show that Adler's sum rule for neutrino scattering and Bjorken's inequality for electron-proton scattering are modified if quark has finite anomalous magnetic moment ksub(q). We also show that if ksub(q) is nonzero, there exist fixed poles in spin-flip Compton scattering as well as in charged pion photoproduction. (auth.)
Leading SU(3)-breaking corrections to the baryon magnetic moments in chiral perturbation theory.
Geng, L S; Camalich, J Martin; Alvarez-Ruso, L; Vacas, M J Vicente
2008-11-28
We calculate the baryon magnetic moments using covariant chiral perturbation theory (chiPT) within the extended-on-mass-shell renormalization scheme. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3)-breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using heavy-baryon chiPT and covariant infrared chiPT. We also analyze the source of this improvement with particular attention to the comparison between the covariant results.
Blum, T.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.
2016-01-01
We report the first lattice QCD calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique which enabled the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the $48^3 \\times 96$ physical-pion-mass lattice generated by the RBC and UKQCD collaborations. We find $a_\\mu^{\\rm HVP~(LO)~DISC} = -9.6(3.3)(2.3)\\times 10^{-10}$, where the first error is statistical and the second systematic.
International Nuclear Information System (INIS)
Burn, D M; Atkinson, D; Hase, T P A
2014-01-01
Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga + ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe. (paper)
Nuclear magnetic moment of 69As from on-line β-NMR on oriented nuclei
International Nuclear Information System (INIS)
Golovko, V.V.; Kraev, I.S.; Phalet, T.; Severijns, N.; Delaure, B.; Beck, M.; Kozlov, V.Yu.; Lindroth, A.; Coeck, S.; Zakoucky, D.; Venos, D.; Srnka, D.; Honusek, M.; Herzog, P.; Tramm, C.; Koester, U.
2005-01-01
A precise value for the magnetic moment of the 69 As 5/2 - ground state has been obtained from nuclear magnetic resonance on oriented nuclei (NMR/ON) using the NICOLE 3 He- 4 He dilution refrigerator setup at ISOLDE/CERN. The NMR/ON signal was observed by monitoring the anisotropy of the 69 As β particles. The center frequency ν[B ext =0.0994(10)T]=169.98(9) MHz corresponds to μ[ 69 As]=+1.6229(16)μ N . This result differs considerably from the πf 5/2 single-particle value obtained with g factors for a free proton but is in reasonable agreement with the value obtained with effective g factors and with values from a core polarization calculation and from calculations in the framework of the interacting boson-fermion model. Assuming a single exponential spin-lattice relaxation behavior a relaxation time T 1 ' =10(25) s was observed for 69 AsFe -bar at a temperature of about 20 mK in a magnetic field B=0.1 T
International Nuclear Information System (INIS)
Shimomura, K.
1988-01-01
Significant nuclear polarization of unstable 170 Tm in Tm 2+ :SrF 2 was for the first time achieved with β-ray radiation detected optical pumping in solids, providing a new powerful method to measure magnetic moments of unstable nuclei. (author)
Magnetic phase diagram of HoxTm1-x alloys
DEFF Research Database (Denmark)
Sarthour, R.S.; Cowley, R.A.; Ward, R.C.C.
2000-01-01
The magnetic phase diagram of the competing anisotropy system, Ho/Tm, has been determined by neutron-scattering techniques and the results compared with calculations based on a mean-field model. The crystal-field interactions in Ho favor alignment of the magnetic moments in the basal plane whereas......, with long-range order, were identified and the magnetic phase diagram, including a pentacritical point, determined. A mean-field model was used to explain the results and the results are in good agreement with the experimental results....... in Tm they favor alignment along the c axis. Single-crystal alloys were grown with molecular-beam epitaxy techniques in Oxford. The components of the magnetic moment alone the c direction and in the basal plane were determined from the neutron-scattering measurements. Five distinct magnetic phases...
International Nuclear Information System (INIS)
Ioffe, B. L.
2009-01-01
A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated, as well as the masses of hyperons and some baryonic resonances, and expressed mainly through the values of quark condensates - , q = u, d, s,-the vacuum expectation values (v.e.v.) of quark field. The concept of v.e.v. induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron, and hyperons are calculated. The results of calculation of baryon octet β-decay constants are also presented.
Directory of Open Access Journals (Sweden)
Baoyu Zong
2008-01-01
Full Text Available A methodology to fabricate ultrasoft CoFe nano-/microfilms directly via electrodeposition from a semineutral iron sulfate solution is demonstrated. Using boron-reducer as the additive, the CoFe films become very soft with high magnetic moment. Typically, the film coercivity in the easy and hard axes is 6.5 and 2.5 Oersted, respectively, with a saturation polarization up to an average of 2.45 Tesla. Despite the softness, these shining and smooth films still display a high-anisotropic field of ~45 Oersted with permeability up to 104. This kind of films can potentially be used in current and future magnetic recording systems as well as microelectronic and biotechnological devices.
Mössbauer Magnetic Scan experiments
Energy Technology Data Exchange (ETDEWEB)
Pasquevich, G.A., E-mail: gpasquev@fisica.unlp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 67, 1900 La Plata (Argentina); Instituto de Física La Plata, CONICET, P.O. Box 67, 1900 La Plata (Argentina); Facultad de Ingeniería, Universidad Nacional de La Plata, P.O. Box 91, 1900 La Plata (Argentina); Mendoza Zélis, P. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 67, 1900 La Plata (Argentina); Instituto de Física La Plata, CONICET, P.O. Box 67, 1900 La Plata (Argentina); Facultad de Ingeniería, Universidad Nacional de La Plata, P.O. Box 91, 1900 La Plata (Argentina); Lencina, A. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 67, 1900 La Plata (Argentina); Centro de Investigaciones Ópticas (CONICET La Plata – CIC), P.O. Box 3, 1897 Gonnet (Argentina); Veiga, A. [Instituto de Física La Plata, CONICET, P.O. Box 67, 1900 La Plata (Argentina); Facultad de Ingeniería, Universidad Nacional de La Plata, P.O. Box 91, 1900 La Plata (Argentina); Fernández van Raap, M.B.; Sánchez, F.H. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 67, 1900 La Plata (Argentina); Instituto de Física La Plata, CONICET, P.O. Box 67, 1900 La Plata (Argentina)
2014-06-01
We report an application of the Mössbauer Effect designed to retrieve specific information on the magnetic response of iron-containing materials. It consists in the measurement of the nuclear absorption of gamma-rays as a function of an external magnetic field for a specific nuclear transition between magnetically-split nuclear levels. The experiments, here termed Mössbauer Magnetic Scan experiments, were carried out recording the absorption of {sup 57}Fe 14.4 keV gamma-ray in α-Fe at constant Doppler energies coincident with some of the spectral lines of the magnetically split Mössbauer spectrum. Due to the dependence of the transition probabilities on the relative orientation between the nuclear magnetic moment and the gamma-ray direction, the present application results in a useful method to study the magnetic-field evolution of the distribution of atomic-magnetic-moment orientations. The proposed technique inherit from the Mössbauer Spectroscopy the chemical-element selectiveness as well as the ability to differentiate responses from iron atoms located at inequivalent site or at different phases. In this work, we show that the data analysis for these experiments depends on the sample thickness that the gamma-ray has to cross. For thin samples (i.e.samples with Mössbauer effective thicknesses lower than one) the magnetic-field dependence of the second-order-moment of the orientation distribution in the direction of the gamma ray is obtained. On the other hand, for thicker samples, although the data analysis is more complex, the dependences of the three second-order-moments of the orientation distribution are obtained. The experiments were performed on two α-Fe foils of different Mössbauer effective thicknesses. They were chosen to represent the cases of thin and thick Mössbauer absorbers. The magnetic evolution of the orientations distribution is compared with results obtained from magnetometric measurements showing a good agreement as well indicating
Mössbauer Magnetic Scan experiments
Pasquevich, G. A.; Mendoza Zélis, P.; Lencina, A.; Veiga, A.; Fernández van Raap, M. B.; Sánchez, F. H.
2014-06-01
We report an application of the Mössbauer Effect designed to retrieve specific information on the magnetic response of iron-containing materials. It consists in the measurement of the nuclear absorption of gamma-rays as a function of an external magnetic field for a specific nuclear transition between magnetically-split nuclear levels. The experiments, here termed Mössbauer Magnetic Scan experiments, were carried out recording the absorption of 57Fe 14.4 keV gamma-ray in α-Fe at constant Doppler energies coincident with some of the spectral lines of the magnetically split Mössbauer spectrum. Due to the dependence of the transition probabilities on the relative orientation between the nuclear magnetic moment and the gamma-ray direction, the present application results in a useful method to study the magnetic-field evolution of the distribution of atomic-magnetic-moment orientations. The proposed technique inherit from the Mössbauer Spectroscopy the chemical-element selectiveness as well as the ability to differentiate responses from iron atoms located at inequivalent site or at different phases. In this work, we show that the data analysis for these experiments depends on the sample thickness that the gamma-ray has to cross. For thin samples (i.e.samples with Mössbauer effective thicknesses lower than one) the magnetic-field dependence of the second-order-moment of the orientation distribution in the direction of the gamma ray is obtained. On the other hand, for thicker samples, although the data analysis is more complex, the dependences of the three second-order-moments of the orientation distribution are obtained. The experiments were performed on two α-Fe foils of different Mössbauer effective thicknesses. They were chosen to represent the cases of thin and thick Mössbauer absorbers. The magnetic evolution of the orientations distribution is compared with results obtained from magnetometric measurements showing a good agreement as well indicating the
International Nuclear Information System (INIS)
Mamiya, H; Oba, Y; Ohnuma, M; Hagiya, H; Oku, T; Suzuki, J; Yokoyama, M; Nishihara, Y; Katayama, T; Awano, H; Koda, T
2011-01-01
In nanoparticulate films with perpendicular magnetic anisotropy, a large demagnetizing field almost compensates for the experimentally designed change in the magnetic field applied parallel to the film normal. We propose a new method based on field-cycling to eliminate the uncertainty in the demagnetizing response from the analysis of the activation volume of the reversal or magnetic activation moment in such films. In this method, the applied field induced variation in the magnetic relaxation rate is measured before the effect of the demagnetizing field becomes dominant. We also discuss an analogical thermal-cycling method to clarify the temperature dependence of the barrier height for magnetization reversal in a magnetic field. We apply these methods to a Co 74 Pt 16 Cr 10 -SiO 2 nanoparticulate film as an example. The results demonstrate that these methods are useful for studying thermal fluctuations in perpendicular recording media.
Search for a permanent Xe-electric dipole moment
Energy Technology Data Exchange (ETDEWEB)
Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Collaboration: MIXed-Collaboration
2016-07-01
A permanent electric dipole moment (EDM) of the isotope {sup 129}Xe would imply a breakdown of both parity P and time-reversal symmetry T and, through the CPT theorem, a breakdown in CP, the combined symmetries of charge conjugation C and parity P. Our goal is to improve the present experimental limit (d{sub Xe}<3.10{sup -27} ecm) by about three orders of magnitude. The most precise EDM limit on diamagnetic atoms was measured on {sup 199}Hg (d{sub Hg}<3.1.10{sup -29} ecm). To get more stringent limits, we perform a {sup 3}He/{sup 129}Xe clock comparison experiment with the detection of free spin precession of gaseous, nuclear polarized {sup 3}He or {sup 129}Xe samples with a SQUID as magnetic flux detector. The precession of co-located {sup 3}He/{sup 129}Xe nuclear spins are used as an ultra-sensitive probe for non-magnetic spin interactions of type δν∝ d{sub Xe}.E. With our experimental setup at the research center Juelich we are able to observe spin coherence times T{sub 2}{sup *} of several hours for both species. We report on first experimental results achieved within the MIXed-collaboration.
Computing moment to moment BOLD activation for real-time neurofeedback
Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.
2013-01-01
Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350
Meyer, Harvey B.
2017-09-01
We present a Lorentz-covariant, Euclidean coordinate-space expression for the hadronic vacuum polarisation, the Adler function and the leading hadronic contribution to the anomalous magnetic moment of the muon. The representation offers a high degree of flexibility for an implementation in lattice QCD. We expect it to be particularly helpful for the quark-line disconnected contributions.
Energy Technology Data Exchange (ETDEWEB)
Meyer, Harvey B. [Mainz Univ., PRISMA Cluster of Excellence, Inst. fuer Kernphysik und Helmholtz Institut Mainz (Germany)
2017-09-15
We present a Lorentz-covariant, Euclidean coordinate-space expression for the hadronic vacuum polarisation, the Adler function and the leading hadronic contribution to the anomalous magnetic moment of the muon. The representation offers a high degree of flexibility for an implementation in lattice QCD. We expect it to be particularly helpful for the quark-line disconnected contributions. (orig.)
Four-flavour leading hadronic contribution to the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Burger, Florian; Hotzel, Grit; Jansen, Karl; Renner, Dru B.
2013-11-01
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a hvp μ , arising from quark-connected Feynman graphs. It is based on ensembles featuring N f =2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a hvp μ . Our final result involving an estimate of the systematic uncertainty a hvp μ =6.74(21)(18) x 10 -8 shows a good overall agreement with these computations.
Moments method in the theory of accelerators
International Nuclear Information System (INIS)
Perel'shtejn, Eh.A.
1984-01-01
The moments method is widely used for solution of different physical and calculation problems in the theory of accelerators, magnetic optics and dynamics of high-current beams. Techniques using moments of the second order-mean squape characteristics of charged particle beams is shown to be most developed. The moments method is suitable and sometimes even the only technique applicable for solution of computerized problems on optimization of accelerating structures, beam transport channels, matching and other systems with accout of a beam space charge
Magnetic moment of $^{17}$Ne using beta -NMR and tilted foil polarization
Baby, L T; Hass, M; Haas, H; Weissman, L; Brown, B A
2004-01-01
We report on the measurement of the magnetic moment of the ground state of /sup 17/Ne. Radioactive /sup 17/Ne nuclei were delivered from the high resolution mass separator at ISOLDE onto a high voltage platform at -200 kV and were polarized using the tilted foil polarization method. The polarized nuclei were implanted into a Pt stopper situated in a liquid-helium cooled beta -NMR apparatus and the asymmetry destruction of the ensuing beta rays was monitored as a function of the rf frequency applied to the polarized nuclei. The measured value of mu = 0.74 +or- 0.03 affirms the nu p/sub 1/2//sup - / nature of the ground state of /sup 17/Ne and is compared to shell model calculations. (10 refs).
Quadrupole moments measured by nuclear orientation
International Nuclear Information System (INIS)
Bouchta, H.
1985-01-01
Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr
Temporal and spatial evolution of runaway electrons at the instability moments in Damavand tokamak
Energy Technology Data Exchange (ETDEWEB)
Pourshahab, B. [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Abdi, M. R. [Department of Physics, Faculty of Science, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Sadighzadeh, A.; Rasouli, C. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)
2016-07-15
The time and position behavior of runaway electrons at the Parail–Pogutse instability moments has been investigated using experimental observations in plasma current, loop voltage, the Hard X-ray (HXR) radiations, and 18 poloidal pickup coils signals received by data acquisition system simultaneously. The conditional average sampling (CAS) method was used to analyze the output data. Moreover, a filament current code was modified to study the runaway electrons beam movement in the event of instabilities. The results display a rapid drift of runaway beam toward the inner wall of the vacuum vessel and the collision with the wall components at the instability moments. The existence of the collisions in these experiments is evident in the HXR bursts which are considered as the main trigger for CAS Analysis. Also, the variation of HXR bursts with the toroidal magnetic field shows that the hard X-ray bursts drop with increase in the toroidal magnetic field and runaway electrons confinement quality.
Multipole electromagnetic moments of neutrino in dispersive medium
International Nuclear Information System (INIS)
Semikov, V.B.; Smorodinskij, Ya.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow
1989-01-01
Four multipole moments for a Dirac and Majorana neutrino in a dispersive medium are calculated viz., the electric monopole (charge), electric dipole, magnetic dipole and anapole dipole moment. For comparison the same quantities are presented in the case of vacuum. The neutrino does not possess an (induced) anapole moment in an isotropic medium; however, in a ferromagnetic such a moment exists and for the Majorana neutrino it is the only electromagnetic cjaracteristic. As an example the cross section for elastic scattering of a Majorana neutrino by nuclei in an isotropic plasma is calculated
Blum, T; Boyle, P A; Izubuchi, T; Jin, L; Jüttner, A; Lehner, C; Maltman, K; Marinkovic, M; Portelli, A; Spraggs, M
2016-06-10
We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 48^{3}×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization a_{μ}^{HVP(LO)disc}=-9.6(3.3)(2.3)×10^{-10}, where the first error is statistical and the second systematic.
Blum, T.; Boyle, P. A.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.; Rbc; Ukqcd Collaborations
2016-06-01
We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 483×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization aμHVP (LO )disc=-9.6 (3.3 )(2.3 )×10-10 , where the first error is statistical and the second systematic.
Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames
International Nuclear Information System (INIS)
Keshavarzi, Farhad; Torabian, Shahabeddin; Imanpour, Ali; Mirghaderi, Rasoul
2008-01-01
Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column.This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam--strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection.Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment
Local magnetic structure determination using polarized neutron holography
International Nuclear Information System (INIS)
Szakál, Alex; Markó, Márton; Cser, László
2015-01-01
A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems
Wu, Xuehang; Chen, Wen; Wu, Wenwei; Wu, Juan; Wang, Qing
2018-05-01
Four types of Ni-Zn based ferrites materials having the general formula Ni0.5Zn0.5NdxFe2-xO4 (0.0 ≤ x ≤ 0.12) have been successfully synthesized by calcining oxalates in air and the influence of Nd content on the structure and magnetic properties of Ni0.5Zn0.5NdxFe2-xO4 is studied. X-ray diffraction examination confirms that a high-crystallized Ni0.5Zn0.5NdxFe2-xO4 with cubic spinel structure is obtained when the precursor is calcined at 1000 °C in air for 2 h. The substitutions of Nd3+ ions for partial Fe3+ ions do not change the spinel crystalline structure of MFe2O4. The incorporation of Nd3+ ions in place of Fe3+ ions in Ni-Zn ferrites increases the average crystallite size. Specific saturation magnetization decreases with increase in Nd content. This is because Nd3+ ions with smaller magnetic moment preferentially fill the octahedral sites. In addition, antiferromagnetic FeNdO3 increases with increase in Nd content. In this study, Ni0.5Zn0.5Nd0.08Fe1.92O4, calcined at 1000 °C, exhibits the highest magnetic moment (4.2954 μB) and the lowest coercivity (28.82 Oe).
Electromagnetic moments and electric dipole transitions in carbon isotopes
International Nuclear Information System (INIS)
Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi
2003-01-01
We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12 C, 13 C, and 14 C, both in the low energy region below (ℎ/2π)ω=14 MeV and in the high energy giant resonance region (14 MeV 15 C is found to exhaust about 12-16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50-80 % of the cluster sum rule value
Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M
2013-05-22
Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.
First-principles Theory of Magnetic Multipoles in Condensed Matter Systems
Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.
2018-04-01
The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.
International Nuclear Information System (INIS)
Ling Langsheng; Zhang Lei; Tong Wei; Qu Zhe; Pi Li; Zhang Yuheng
2012-01-01
The substitution of Ga for Mn in manganite Nd 0.6 Dy 0.1 Sr 0.3 MnO 3 with a ferromagnetic (FM) ground state has been performed to study the influence of the Mn-sublattice magnetic ordering on the magnetic rare-earth sublattice. It is found that the substitution of Mn 3+ with Ga 3+ ions results in a sharp decrease of T C , reflecting the reduction of the double-exchange interactions strength J Mn–Mn . At the same time, a depinning effect of the rare-earth magnetic moment has been observed. This behavior unambiguously proves that the exchange interaction between Mn and rare-earth ions J Mn–R strongly influences the rare-earth magnetic ordering at temperatures below T C and stabilizes the rare-earth magnetic ground state.
Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order
International Nuclear Information System (INIS)
Kurz, Alexander; Smirnov, Alexander V.; Smirnov, Vladimir A.
2015-08-01
The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.
Magnetic moment of the 9/2[sup +] 96. 4 keV state in [sup 79] Rb
Energy Technology Data Exchange (ETDEWEB)
Dumitru, M; Ionescu-Bujor, M; Iordachescu, A; Ivan, A; Ivanov, E A; Pascovici, G; Plostinaru, D [Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, R-76900 Bucharest, P.O.Box MG-6, (Romania)
1992-01-01
The region of nuclei with A [approx equal] 80 is presently of considerable interest as it exhibits a rich variety of phenomena. In the present work, part of a programme of structure investigation in this region through electromagnetic moment measurements, we have determined the magnetic moment of the 9/2[sup +] 96.4 keV state in [sup 79] Rb. The state has been excited by the [sup 79] Br ([sup 3] He , 3 n) reaction on a K Br target with cubic structure, using a 30 MeV pulsed beam of [sup 3] He provided by a U-120 cyclotron. The measurements have been performed by the TDPAD method at several different values of the external magnetic field. From our investigations the half-life T[sub 1/2] = 18.5(5) ns and the gyromagnetic ratio g = +1.12(5) have been established for the 9/2[sup +] 96.4 keV state. The band properties of the odd Rb nuclei indicated a gradual change of the structure along the isotopes, the [sup 79] Rb nucleus being characterized by a deformation significantly larger than that of heavier once. This change in structure is also reflected in the g factor values of the low-lying 9/2[sup +] states, which show a monotonic decrease from [sup 85] Rb to [sup 79] Rb. (Author).
Four-flavour leading hadronic contribution to the muon anomalous magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [KEK National High Energy Physics, Tsukuba (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-11-15
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sup hvp}{sub {mu}}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N{sub f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a{sup hvp}{sub {mu}}. Our final result involving an estimate of the systematic uncertainty a{sup hvp}{sub {mu}}=6.74(21)(18) x 10{sup -8} shows a good overall agreement with these computations.
Neutron Electric Dipole Moment Experiments
Peng, Jen-Chieh
2008-01-01
The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.
Magnetic properties of bimetallic nanoislands deposited on Pt(111)
Energy Technology Data Exchange (ETDEWEB)
Bornemann, Sven; Minar, Jan; Mankovsky, Sergey; Ebert, Hubert [Department Chemie und Biochemie, LMU Muenchen, 81377 Muenchen (Germany); Ouazi, Safia; Rusponi, Stefano; Brune, Harald [Institute of Condensed Matter Physics, EPF Lausanne (Switzerland); Staunton, Julie B. [Department of Physics, University of Warwick (United Kingdom)
2010-07-01
In recent years, magnetic nanostructures on surfaces have been the subject of intense research activities which are driven by fundamental as well as practical interests. One of the central questions for future applications is how the magnetic properties like the magnetic anisotropy evolve in-between single magnetic adatoms and submonolayer magnetic particle arrays. Experimentalists have succeeded in assembling surface supported single domain particles where the magnetic moments of all atoms form a so-called macrospin and it is commonly believed that the special magnetic characteristics of such structures are mainly due to their exposed low-coordinated edge atoms. For some of these novel systems, however, unexpected low anisotropies or reduced magnetic moments are observed which makes it difficult to find promising candidates for real life technical applications. To support these experimental efforts the fully relativistic spin-polarized KKR method has been applied to investigate the influence of spin-orbit coupling on the magnetic properties of various FeCo nanostructures deposited on Pt(111). The discussion focuses on interface and alloy contributions to the magnetic anisotropy in these systems.
Electronic structure and magnetic properties of the ThCo4B compound
International Nuclear Information System (INIS)
Benea, D.; Pop, V.; Isnard, O.
2008-01-01
Detailed theoretical investigations of the electronic and magnetic properties of the newly discovered ThCo 4 B compound have been performed. The influence of the local environment on the magnitude of the Co magnetic moments is discussed by comparing the magnetic and electronic properties in the ThCo 4 B, YCo 4 B and ThCo 5 systems. All theoretical investigations of the electronic and magnetic properties have been done using the Korringa-Kohn-Rostoker (KKR) band-structure method in the ferromagnetic state. Very good agreement of the calculated and the experimental magnetic moments is obtained. Larger exchange-splitting is observed on the 2c site which carries by far the largest magnetic moment. Comparison of the band structure calculation for ThCo 5 and ThCo 4 B reveals that the presence of boron in the Co 6i site environment induces a broadening of the electronic bands as well as a significant reduction of the exchange-splitting and a diminution of the DOS at the Fermi level. These differences are attributed to the hybridization of the boron electronic states to the cobalt 3d ones. The calculated magnetic moment is 1.94μ B /formula unit. A large difference on the magnetic moment magnitude of the two Co sites is observed since 1.30 and 0.27μ B /atom are calculated for the 2c and 6i sites, respectively. The orbital contribution is found to differ by almost an order of magnitude on both cobalt sites. The Co magnetic moment is much smaller in the ThCo 4 B than in the YCo 4 B or RCo 4 B (where R is a rare earth) isotypes evidencing the major role played by the Th-Co bands on the electronic properties
Progress toward measuring the 6S1/2 5D3/2 magnetic-dipole transition moment in Ba+
Williams, Spencer; Jayakumar, Anupriya; Hoffman, Matthew; Blinov, Boris; Fortson, Norval
2015-05-01
We report the latest results from our effort to measure the magnetic-dipole transition moment (M1) between the 6S1 / 2 and 5D3 / 2 manifolds in Ba+. We describe a new technique for calibrating view-port birefringence and how we will use it to enhance the M1 signal. To access the transition moment we use a variation of a previously proposed technique that allows us to isolate the magnetic-dipole coupling from the much larger electric-quadrupole coupling in the transition rates between particular Zeeman sub-levels. Knowledge of M1 is crucial for a parity-nonconservation experiment in the ion where M1 will be a leading source of systematic errors. No measurement of this M1 has been made in Ba+, however, there are three calculations that predict it to be 80 ×10-5μB, 22 ×10-5μB, and 17 ×10-5μB. A precise measurement may help resolve this theoretical discrepancy which originates from their different estimations of many-body effects. Supported by NSF Grant No. 09-06494F.
International Nuclear Information System (INIS)
LeBlanc, M.A.R.; LeBlanc, D.; Cameron, D.S.M.; Celebi, S.
2000-01-01
We report on measurements of the evolution of the magnetization upon warming from T 0 (4.2 or 77 K) to T c for type II superconductors with the locus of initially situated along bridges between the envelopes of the major hysteresis curves. Strongly hysteretic and semi-reversible specimens of low and high T c type II superconductors have been studied (Nb 3 Zr, VTi, YBCO, Nb and BiSCCO). Concentric, oppositely directed magnetic moments coexist in the specimens when lies along the bridges. We focused on the cases where =0, hence, before warming, the constituent moments cancel each other exactly. Since they diminish in magnitude at different rates as T is increased to T c , their sequential 'release' leads to a rich variety of phenomena. A simple model exploiting the critical state, an equilibrium Meissner current and conservation of flux accounts for all the intricate behaviour encountered. (author)
GMAG Dissertation Award Talk: Zero-moment Half-Metallic Ferrimagnetic Semiconductors
Jamer, Michelle E.
2015-03-01
Low- and zero-moment half-metallic ferrimagnetic semiconductors have been proposed for advanced applications, such as nonvolatile RAM memory and quantum computing. These inverse-Heusler materials could be used to generate spin-polarized electron or hole currents without the associated harmful fringing magnetic fields. Such materials are expected to exhibit low to zero magnetic moment at room temperature, which makes them well-positioned for future spin-based devices. However, these compounds have been shown to suffer from disorder. This work focuses on the synthesis of these compounds and the investigation of their structural, magnetic, and transport properties. Cr2CoGa and Mn3Al thin films were synthesized by molecular beam epitaxy, and V3Al and Cr2CoAl were synthesized via arc-melting. Rietveld analysis was used to determine the degree of ordering in the sublattices as a function of annealing. The atomic moments were measured by X-ray magnetic circular and linear dichroism confirmed antiferromagnetic alignment of sublattices and the desired near-zero moment in several compounds. In collaboration with George E. Sterbinsky, Photon Sciences Directorate, Brookhaven National Laboratory; Dario Arena Photon Sciences Directorate, Brookhaven National Laboratory; Laura H. Lewis, Chemical Engineering, Northeastern University; and Don Heiman, Physics, Northeastern University. NSF-ECCS-1402738, NSF-DMR-0907007.
Khmelevskyi, S; Mohn, P
2012-01-11
The investigation of the electronic structure and magnetism for the compound MnB(2) with crystal structure type AlB(2) has been revisited to resolve contradictions between various experimental and theoretical results present in the literature. We find that MnB(2) exhibits an interesting example of a Kübler's covalent magnetism (Williams et al 1981 J. Appl. Phys. 52 2069). The covalent magnetism also appears to be the source of some disagreement between the calculated values of the magnetic moments and those given by neutron diffraction experiments. We show that this shortcoming is due to the atomic sphere approximation applied in earlier calculations. The application of the disordered local moment approach and the calculation of the inter-atomic exchange interactions within the Liechtenstein formalism reveal strong local moment antiferromagnetism with a high Néel temperature predicted from Monte Carlo simulations. A fully relativistic band structure calculation and then the application of the torque method yields a strong in-plane anisotropy of the Mn magnetic moments. The agreement of these results with neutron diffraction studies rules out any possible weak itinerant electron magnetism scenarios as proposed earlier for MnB(2).
Dipole moments of the rho meson
International Nuclear Information System (INIS)
Hecht, M.B.; McKellar, B.H.P.
1997-04-01
The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison
Production and detection of atomic hexadecapole at Earth's magnetic field.
Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D
2008-07-21
Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.
Investigation of intrinsic defect magnetic properties in wurtzite ZnO materials
Fedorov, A. S.; Visotin, M. A.; Kholtobina, A. S.; Kuzubov, A. A.; Mikhaleva, N. S.; Hsu, Hua Shu
2017-10-01
Theoretical and experimental investigations of the ferromagnetism induced by intrinsic defects inside wurtzite zinc oxide structures are performed using magnetic field-dependent circular dichroism (MCD-H), direct magnetization measurement (M-H) by superconducting quantum interference device (SQUID) as well as by generalized gradient density functional theory (GGA-DFT). To investigate localized magnetic moments of bulk material intrinsic defects - vacancies, interstitial atoms and Frenkel defects, various-size periodic supercells are calculated. It is shown that oxygen interstitial atoms (Oi) or zinc vacancies (Znv) generate magnetic moments of 1,98 и 1,26 μB respectively, however, the magnitudes are significantly reduced when the distance between defects increases. At the same time, the magnetic moments of oxygen Frenkel defects are large ( 1.5-1.8 μB) and do not depend on the distance between the defects. It is shown that the origin of the induced ferromagnetism in bulk ZnO is the extra spin density on the oxygen atoms nearest to the defect. Also dependence of the magnetization of ZnO (10 1 ̅ 0) and (0001) thin films on the positions of Oi and Znv in subsurface layers were investigated and it is shown that the magnetic moments of both defects are significantly different from the values inside bulk material. In order to check theoretical results regarding the defect induced ferromagnetism in ZnO, two thin films doped by carbon (C) and having Zn interstitials and oxygen vacancies were prepared and annealed in vacuum and air, respectively. According to the MCD-H and M-H measurements, the film, which was annealed in air, exhibits a ferromagnetic behavior, while the other does not. One can assume annealing of ZnO in vacuum should create oxygen vacancies or Zn interstitial atoms. At that annealing of the second C:ZnO film in air leads to essential magnetization, probably by annihilation of oxygen vacancies, formation of interstitial oxygen atoms or zinc vacancies
Manganese Nanostructures and Magnetism
Simov, Kirie Rangelov
The primary goal of this study is to incorporate adatoms with large magnetic moment, such as Mn, into two technologically significant group IV semiconductor (SC) matrices, e.g. Si and Ge. For the first time in the world, we experimentally demonstrate Mn doping by embedding nanostructured thin layers, i.e. delta-doping. The growth is observed by in-situ scanning tunneling microscopy (STM), which combines topographic and electronic information in a single image. We investigate the initial stages of Mn monolayer growth on a Si(100)(2x1) surface reconstruction, develop methods for classification of nanostructure types for a range of surface defect concentrations (1.0 to 18.2%), and subsequently encapsulate the thin Mn layer in a SC matrix. These experiments are instrumental in generating a surface processing diagram for self-assembly of monoatomic Mn-wires. The role of surface vacancies has also been studied by kinetic Monte Carlo modeling and the experimental observations are compared with the simulation results, leading to the conclusion that Si(100)(2x1) vacancies serve as nucleation centers in the Mn-Si system. Oxide formation, which happens readily in air, is detrimental to ferromagnetism and lessens the magnetic properties of the nanostructures. Therefore, the protective SC cap, composed of either Si or Ge, serves a dual purpose: it is both the embedding matrix for the Mn nanostructured thin film and a protective agent for oxidation. STM observations of partially deposited caps ensure that the nanostructures remain intact during growth. Lastly, the relationship between magnetism and nanostructure types is established by an in-depth study using x-ray magnetic circular dichroism (XMCD). This sensitive method detects signals even at coverages less than one atomic layer of Mn. XMCD is capable of discerning which chemical compounds contribute to the magnetic moment of the system, and provides a ratio between the orbital and spin contributions. Depending on the amount
Energy Technology Data Exchange (ETDEWEB)
Doenni, A.; Fischer, P.; Zolliker, M. [Laboratory for Neutron Scattering, ETH Zuerich and Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ehlers, G.; Maletta, H. [Hahn Meitner Institute Berlin, Glienicker Strasse 100, D-14092 Berlin (Germany); Kitazawa, H. [National Research Institute for Metals, Tsukuba, Ibaraki 305 (Japan)
1996-12-09
The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group P6-bar2m) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below T{sub N} = 2.7 K with an incommensurate antiferromagnetic propagation vector k=[1/2, 0, {tau}], {tau} approx. 0.35, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry. (author)
Experimental Studies with an Active Magnetic Regenerating Refrigerator
DEFF Research Database (Denmark)
Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian
2015-01-01
Experimental results for an active magnetic regenerator (AMR) are presented. The focus is on whether or not it pays off to partly substitute soft magnetic material with non-magnetic insulation in a flux-conducting core in the magnet system. Such a substitution reduces losses due to heat conduction...... and eddy currents, but also reduces the magnetic field. Two different cores were tested in the AMR system with different cooling loads and it is shown, that in the present case, replacing half of the iron with insulation lead to an average reduction in temperature span of 14%, but also a small decrease...... in COP, hence the substitution did not pay off. Furthermore, it is shown experimentally, that small imbalances in the heat transfer fluid flow greatly influence the system performance. A reduction of these imbalances through valve adjustments resulted in an increase in the temperature span from...
Magnetic hyperfine field at a Cd impurity diluted in RCo{sub 2} at finite temperatures
Energy Technology Data Exchange (ETDEWEB)
Oliveira, A.L. de, E-mail: alexandre.oliveira@ifrj.edu.br [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis – RJ (Brazil); Chaves, C.M., E-mail: cmch@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil); Oliveira, N.A. de [Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil); Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil)
2015-06-15
The local magnetic moments and the magnetic hyperfine fields at an s–p Cd impurity diluted in inter-metallic Laves phase compounds RCo{sub 2} (R=Gd, Tb) at finite temperatures are calculated. For other rare earth elements (light or heavy) the pure compounds display a magnetic first order transition and are not describable by our formalism. The host has two coupled lattices (R and Co) both having itinerant d electrons but only the rare earth lattice has localized f electrons. They all contribute to the magnetization of the host and also to the local moment and to the magnetic hyperfine field at the impurity. The investigation of magnetic hyperfine field in these materials then provides valuable information on the d-itinerant electrons and also on the localized (4f) magnetic moments. For the d–d electronic interaction we use the Hubbard–Stratonovich identity thus allowing the employment of functional integral in the static saddle point approximation. Our model reproduces quite well the experimental data. - Highlights: • A functional integral method in the static limit, producing site disorder, is used. • The site disorder is treated with the coherent potential approximation (CPA) • A Friedel sum rule gives a self-consistency condition for the impurity energy. • The experimental curve of hyperfine fields×temperature is very well reproduced.
Spontaneous phase transitions in magnetic films with a modulated structure
International Nuclear Information System (INIS)
Arzamastseva, G. V.; Evtikhov, M. G.; Lisovskii, F. V.; Mansvetova, E. G.
2011-01-01
The influence of monoperiodic and biperiodic bias fields on the nucleation of domain structures in quasi-uniaxial magnetic films near the Curie point has been studied experimentally. The main types of observed nonuniform magnetic moment distributions have been established and chains of a devil’s staircase phase transitions are shown to be realized when the films are slowly cooled.
Electric and Magnetic Dipole Moments
CERN. Geneva
2005-01-01
The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.
Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere
Institute of Scientific and Technical Information of China (English)
Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi
2005-01-01
In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.
CPA theory of the magnetization in rare earth transition metal alloys
International Nuclear Information System (INIS)
Szpunar, B.; Lindgaard, P.A.
1976-11-01
Calculations were made of the magnetic moment per atom of the transition metal and the rare earth metal in the intermetallic compounds, Gdsub(1-x)Nisub(x), Gdsub(1-x)Fesub(x), Gdsub(1-x)Cosub(x), and Ysub(1-x)Cosub(x). A simple model of the disordered alloy consisting of spins localized on the rare earth atoms and interacting with a narrow d-band is considered. The magnetic moment of the alloy at zero temperature is calculated within the molecular field and Hartree-Fock approximations. Disorder is treated in the coherent potential approximation. Results are in good agreement with the experimental data obtained for the crystalline and amorphous intermetallic compounds. It is shown that the temperature dependence of the magnetic moments and Curie and ferrimagnetic compensation temperatures can be accounted for by a simple model assuming a RKKY interaction between the rare-earth moments and the transition metal pseudo spin. The interaction is mediated by an effective alloy medium calculated using the CPA theory and elliptic densities of states. (Auth.)
Monte Carlo simulation of the surface magnetic phase transition in chromium
International Nuclear Information System (INIS)
Mata, G.J.; Valera, M.
1995-03-01
Antiferromagnetic chromium is known to have a surface magnetic phase transition at a temperature T s = 780K, which is well above its bulk Neel temperature, T N = 311K. Electronic structure calculations predict an enhancement of the magnetic moment at the surface, due to changes in the local electronic environment. In order to ascertain the role of such an enhancement in the surface magnetic transition, we have modelled the surface by means of a classical Heisenberg model in which: a) the magnitude of a given spin is equal to the value of the corresponding magnetic moment predicted by band structure calculations, b) the exchange interaction J between spins is the same throughout the system, and c) the exchange interaction is chosen so as to reproduce the bulk transition temperature. We find a ratio of surface to bulk transition temperature of T S /T N = 2.5, which is an excellent agreement with the experimental result. Our results suggest that the surface magnetic transition in chromium is driven by fluctuations in the orientation of the magnetic moments and that quantum fluctuations play a minor role. (author). 18 refs, 5 figs
Experimental investigation of magnetically confined plasma loops
International Nuclear Information System (INIS)
Tenfelde, Jan
2012-01-01
Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion
Experimental investigation of magnetically confined plasma loops
Energy Technology Data Exchange (ETDEWEB)
Tenfelde, Jan
2012-12-11
Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion
Energy Technology Data Exchange (ETDEWEB)
Gao, Jian-hua [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Wang, Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)
2015-10-07
We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.
Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.
2014-01-01
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a μ hvp , arising from quark-connected Feynman graphs. It is based on ensembles featuring N f =2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Incorporating the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a μ hvp . Our final result including an estimate of the systematic uncertainty a μ hvp =6.74(21)(18)⋅10 −8 shows a good overall agreement with these computations
Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment
Energy Technology Data Exchange (ETDEWEB)
Braumueller, Jochen; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Sandberg, Martin; Vissers, Michael R.; Pappas, David P. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Ustinov, Alexey V. [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); National University of Science and Technology MISIS, Moscow 119049 (Russian Federation); Weides, Martin [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Johannes Gutenberg University, Mainz, 55128 Mainz (Germany)
2016-07-01
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.
Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment
Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.
2016-01-01
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.
Moment methods with effective nuclear Hamiltonians; calculations of radial moments
International Nuclear Information System (INIS)
Belehrad, R.H.
1981-02-01
A truncated orthogonal polynomial expansion is used to evaluate the expectation value of the radial moments of the one-body density of nuclei. The expansion contains the configuration moments, , , and 2 >, where R/sup (k)/ is the operator for the k-th power of the radial coordinate r, and H is the effective nuclear Hamiltonian which is the sum of the relative kinetic energy operator and the Bruckner G matrix. Configuration moments are calculated using trace reduction formulae where the proton and neutron orbitals are treated separately in order to find expectation values of good total isospin. The operator averages are taken over many-body shell model states in the harmonic oscillator basis where all particles are active and single-particle orbitals through six major shells are included. The radial moment expectation values are calculated for the nuclei 16 O, 40 Ca, and 58 Ni and find that is usually the largest term in the expansion giving a large model space dependence to the results. For each of the 3 nuclei, a model space is found which gives the desired rms radius and then we find that the other 5 lowest moments compare favorably with other theoretical predictions. Finally, we use a method of Gordon (5) to employ the lowest 6 radial moment expectation values in the calculation of elastic electron scattering from these nuclei. For low to moderate momentum transfer, the results compare favorably with the experimental data
Unusual Co moment reduction in the NiCoO/Co exchange bias system
Energy Technology Data Exchange (ETDEWEB)
Brueck, S. [Max-Planck-Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)]. E-mail: brueck@mf.mpg.de; Goering, E. [Max-Planck-Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Tang, Y.J. [Center for Magnetic Recording Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0401 (United States); Schuetz, G. [Max-Planck-Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Berkowitz, A.E. [Center for Magnetic Recording Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0401 (United States); Department of Physics, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0401 (United States)
2007-03-15
To answer the question on how the explicit mechanism of coupling in the antiferromagnetic alloy NiCoO is established when in close contact to a ferromagnetic Co layer, X-ray magnetic circular dichroism (XMCD) measurements have been performed. Precise XMCD spectra at the L{sub 2,3}-edge of Ni as well as Co have been obtained at room temperature and at 80K by measuring total electron yield X-ray absorption spectra. The Ni XMCD clearly shows the existence of free, rotatable magnetic Ni moments in the antiferromagnet. As for the Co, XMCD at room temperature shows an average magnetic moment comparable to bulk values. Cooling the sample to 80K decreases the average Co moment by 10%. This decrease is explained by a reduction of ferromagnetic cobalt moments related to antiferromagnetic coupling or pinning close to the interface.
International Nuclear Information System (INIS)
Nguen Suan Khan; Pervushin, V.N.
1975-01-01
An eikonal representation has been obtained for the amplitude of the πN-scattering in the asymptotic form into account the anomalous nucleon magnetic moment leads to the introduction of the additive term in to the eikonal phase which is responsible for the spin flip in the scattering process. The Coulomb interference is considered
Lepton Dipole Moments in Supersymmetric Low-Scale Seesaw Models
Ilakovac, Amon; Popov, Luka
2014-01-01
We study the anomalous magnetic and electric dipole moments of charged leptons in supersymmetric low-scale seesaw models with right-handed neutrino superfields. We consider a minimally extended framework of minimal supergravity, by assuming that CP violation originates from complex soft SUSY-breaking bilinear and trilinear couplings associated with the right-handed sneutrino sector. We present numerical estimates of the muon anomalous magnetic moment and the electron electric dipole moment (EDM), as functions of key model parameters, such as the Majorana mass scale mN and tan(\\beta). In particular, we find that the contributions of the singlet heavy neutrinos and sneutrinos to the electron EDM are naturally small in this model, of order 10^{-27} - 10^{-28} e cm, and can be probed in the present and future experiments.
Brown, P J; Neumann, K U; Smith, J G; Ziebeck, K R A
1997-01-01
The antiferromagnetic structure of the intermetallic compound U sub 1 sub 4 Au sub 5 sub 1 has been determined from neutron polarimetric measurements and refined by combining these data with integrated intensity measurements. The structure was found to be non-collinear with the U moments confined to the a-b plane. The moments of U atoms in each of the two sets of sixfold sites are arranged hexagonally with rotations of 60 deg. between them and the two sets are rotated with respect to one another by 50 deg. The third (twofold) set of U atoms has no ordered moment. These conclusions are in disagreement with a previous determination of the structure from powder data which gave a collinear structure with moments parallel to the c axis. Magnetization measurements made on single crystals in the temperature range 300-2 K can be understood in terms of a transition to a non-collinear easy plane antiferromagnetic structure stable below 22 K. Polarized neutron measurements have been used to determine the contribution of...
Energy Technology Data Exchange (ETDEWEB)
Baker, C.A. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chibane, Y.; Chouder, M. [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Geltenbort, P. [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Green, K. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Harris, P.G., E-mail: p.g.harris@sussex.ac.uk [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Heckel, B.R. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Iaydjiev, P.; Ivanov, S.N.; Kilvington, I. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Lamoreaux, S.K. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); May, D.J.; Pendlebury, J.M.; Richardson, J.D.; Shiers, D.B.; Smith, K.F. [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Grinten, M. van der [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)
2014-02-01
A description is presented of apparatus used to carry out an experimental search for an electric dipole moment of the neutron, at the Institut Laue-Langevin (ILL), Grenoble. The experiment incorporated a cohabiting atomic-mercury magnetometer in order to reduce spurious signals from magnetic field fluctuations. The result has been published in an earlier letter [1]; here, the methods and equipment used are discussed in detail.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wenxu, E-mail: xwzhang@uestc.edu.cn; Zhang, Wanli
2016-04-15
The electronic structures of four Laves phase iron compounds (e.g. YFe{sub 2}, ZrFe{sub 2}, LuFe{sub 2} and HfFe{sub 2}) have been calculated with a state-of-the-art full potential electronic structure code. Our theoretical work predicted that the magnetic moments collapse under hydrostatic pressure. This feature is found to be universal in these materials. Its electronic origin is provided by the sharp peaks in the density of states near the Fermi level. It is shown that a first order quantum phase transition can be expected under pressure in Y(Zr, or Lu)Fe{sub 2}, while a second order one in HfFe{sub 2}. The bonding characteristics are discussed to elucidate the equilibrium lattice constant variation. The large spontaneous volume magnetostriction gives one of the most important characteristics of these compounds. Invar anomalies in these compounds can be partly explained by the current work when the fast continuous magnetic moment decrease with the decrease of the lattice constant was properly considered. This work may be as a first insight into the rich world of quantum phase transition and Invar mechanism in these Laves phase compounds. - Highlights: • Magnetic moment of YFe{sub 2}, ZrFe{sub 2}, LuFe{sub 2} and HfFe{sub 2} collapses under pressure. • The transition in Y(Zr or Lu) Fe{sub 2} under pressure is first order. • The transition in HfFe{sub 2} under pressure is second order. • The Invar effects in the compounds can be put into the magnetostriction model.
Molecules with an induced dipole moment in a stochastic electric field.
Band, Y B; Ben-Shimol, Y
2013-10-01
The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole moment and the average angular momentum along the deterministic electric field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution, the component of the average electric dipole moment and the average angular momentum in the deterministic electric field direction also decay to zero.
Magnetic and electric dipole constraints on extra dimensions and magnetic fluxes
International Nuclear Information System (INIS)
Roy, Aaron J.; Bander, Myron
2009-01-01
The propagation of charged particles and gauge fields in a compact extra dimension contributes to g-2 of the charged particles. In addition, a magnetic flux threading this extra dimension generates an electric dipole moment for these particles. We present constraints on the compactification size and on the possible magnetic flux imposed by the comparison of data and theory of the magnetic moment of the muon and from limits on the electric dipole moments of the muon, neutron and electron
Ferroelectricity with Ferromagnetic Moment in Orthoferrites
Tokunaga, Yusuke
2010-03-01
Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).
Directory of Open Access Journals (Sweden)
Jian-hua Gao
2015-10-01
Full Text Available We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.
Magnetic moment for the negative parity Λ→Σ0 transition in light cone QCD sum rules
Directory of Open Access Journals (Sweden)
T.M. Aliev
2016-07-01
Full Text Available The magnetic moment of the Λ→Σ0 transition between negative parity baryons is calculated in framework of the QCD sum rules approach by using the general form of the interpolating currents. The pollution arising from the positive-to-positive, and positive-to-negative parity baryons is eliminated by constructing the sum rules for different Lorentz structures. A comparison of our result with the predictions of the results of other approaches for the positive parity baryons is presented.
International Nuclear Information System (INIS)
Fiori, E.
2010-12-01
Magnetic moments can provide deep insight for nuclear structure and of the wave function composition, particularly when the single particle character of the nucleus is dominating. For this reason, the magnetic moment of the first excited state of the radioactive neutron-rich 72 Zn was measured at the GANIL facility (Caen, France). The result of the experiment confirmed the trend predicted by the shell model calculations, even if the error on the measurement did not allow for a rigorous constraint of the theories. The measurement was performed using the transient field (TF) technique and the nuclei of interest were produced in a fragmentation reaction. Before this experiment, the high-velocity TF (HVTF) technique had been used only with projectile up to Z = 24. It was the first time that a magnetic moment of an heavy ion with Z > 24 was measured in the high velocity regime. To further develop the technique and to gather information about the hyperfine interaction between the polarized electrons and the nucleons, two experiments were performed at LNS (Catania, Italy). In this thesis the development of the high-velocity TF technique for the experiments on g(2 + ; 72 Zn) and field strength B TF (Kr, Ge) is presented. The analysis of the results and their interpretation is then discussed. It was demonstrated that the HVTF technique, combined with Coulomb excitation, can be used for the measurement of g-factors of very short-lived states, with lifetimes of the order of tens of ps and lower, of heavy ions (A ∼ 80) traveling with intermediate relativistic speeds, β ∼ 0.25. The standard TF technique at low velocities (a few percent of the speed of light) has been used for a long time to provide the strong magnetic field necessary for the measurement of g-factors of very short-lived states. The breakthrough of the present development is the different velocity regime of the higher mass projectile under which the experiment is carried out
Anomalous magnetoresistance effect in sputtered TbFeCo relating to dispersed magnetic moment
International Nuclear Information System (INIS)
Yumoto, S.; Toki, K.; Okada, O.; Gokan, H.
1988-01-01
The electric resistance is sputtered TbFeCo has been measured at room temperature as a function of magnetic field perpendicular to the film plane. Two kinds of anomalous magnetoresistance have been observed. One is a magnetoresistance peak in the magnetization reversal region. The other is reversible change proportional to the applied magnetic field, appearing in the other region. The magnetoresistance peak agrees well with a curve calculated from experimental Hall loop, using a phenomenological relation between anomalous magnetoresistance and anomalous Hall voltage. The magnetoresistance peak is found to originate from magnetic domain walls. The linear magnetoresistance change for TM dominant samples appears in a direction opposite to that for RE dominant samples. The linear change can't be derived from Hall loop
Search for the permanent electric dipole moment of {sup 129}Xe
Energy Technology Data Exchange (ETDEWEB)
Grasdijk, Olivier; Jungmann, Klaus; Willmann, Lorenz [KVI, University of Groningen (Netherlands); Heil, Werner; Karpuk, Sergei; Scharth, Anja; Sobolev, Yuri; Tullney, Kathlynne [Institut fuer Physik, Universitaet Mainz (Germany); Allmendinger, Fabian; Schmidt, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Burghoff, Martin; Kilian, Wolfgang; Schnabel, Allard; Seifert, Frank; Trahms, Lutz [PTB Berlin (Germany)
2013-07-01
Permanent electric dipole moments (EDMs) violate parity and time reversal symmetry at the same time. Assuming CPT invariance a non-zero EDM would also violate CP symmetry, which could provide an explanation for the observed matter-antimatter asymmetry in the universe. An EDM at the present limit of experimental sensitivity would provide unambiguous evidence for physics beyond the Standard Model. Our approach is to observe the coherent spin-precession of co-located {sup 3}He/{sup 129}Xe polarized samples over extended periods of 1 day, typically. Based on results of measurements on Lorentz-invariance, we intend to reach a measurement sensitivity that will improve the present upper limit d{sub Xe} = 3 . 10{sup -27} ecm significantly. Phase I of this experiment will be performed in the magnetically shielded room BMSR-2 of the PTB Berlin using very sensitive SQUID gradiometers as magnetic flux detectors and electric fields of 2 kV/cm. The experimental setup, in particular the implementation of the electric field, and current status of work are presented.
Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstr. 15, D-12489 Berlin (Germany); Feng, Xu [High Energy Accelerator Research Organization (KEK),Tsukuba 305-0801 (Japan); Hotzel, Grit [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstr. 15, D-12489 Berlin (Germany); Jansen, Karl [NIC, DESY,Platanenallee 6, D-15738 Zeuthen (Germany); Department of Physics, University of Cyprus,P.O.Box 20537, 1678 Nicosia (Cyprus); Petschlies, Marcus [The Cyprus Institute,P.O.Box 27456, 1645 Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab,12000 Jefferson Avenue, Newport News, VA 23606 (United States); Collaboration: The ETM Collaboration
2014-02-24
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sub μ}{sup hvp}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N{sub f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Incorporating the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a{sub μ}{sup hvp}. Our final result including an estimate of the systematic uncertainty a{sub μ}{sup hvp}=6.74(21)(18)⋅10{sup −8} shows a good overall agreement with these computations.
Energy Technology Data Exchange (ETDEWEB)
Magnuson, Martin, E-mail: Martin.Magnuson@ifm.liu.se
2017-01-15
The induced magnetic moments in the V 3d electronic states of interface atomic layers in a Fe(6ML)/V(7ML) superlattice was investigated by x-ray resonant magnetic scattering. The first V atomic layer next to Fe was found to be strongly antiferromagnetically polarized relatively to Fe and the magnetic moments of the next few atomic layers in the interior V region decay exponentially with increasing distance from the interface, while the magnetic moments of the Fe atomic layers largely remain bulk-like. The induced V moments decay more rapidly as observed by x-ray magnetic scattering than in standard x-ray magnetic circular dichroism. The theoretical description of the induced magnetic atomic layer profile in V was found to strongly rely on the interface roughness within the superlattice period. These results provide new insight into interface magnetism by taking advantage of the enhanced depth sensitivity to the magnetic profile over a certain resonant energy bandwidth in the vicinity of the Bragg angles. - Highlights: • Magnetic moments of buried layers are probed by XRMS in a Fe/V superlattice. • The induced V magnetic moments in XRMS are more rapidly decaying than previously observed by XMCD. • The magnetic depth profile sensitivity is enhanced at an energy bandwidth in the vicinity of the Bragg angles.
The influence of Cr content in Fe-Cr-Co alloys on the magnetic properties and Moessbauer effect
International Nuclear Information System (INIS)
Yan Yong; Sho Hanru; Li Dexin; Li Guodong; Li Dongshen; Zhen Jinshan
1986-01-01
Fe-xCr-8Co (x=24, 25, 27, 29 and 32 wt%) permanent magnetic alloys have been studied by Moessbauer effect, magnetic balance and vibrating-sample magnetometer. It is indicated that the optimum permanent magnetic properties obtained for the composition of the alloys at about x=27. The value of Cr content in these alloys sigificantly influences the average hyperfine field, the saturation magnetic moment, the proportion of paramagnetic phase and orientation of magnetic moment in these alloys. The intrinsic coercive force is gradually reduced with the temperature decreasing from 290 to 77 K. The paramagnetic peak in the spectrum disappears at about 125 K. The certain mechanism has been suggested to explain the experimental results. (Auth.)
Dynamic colloidal sorting on a magnetic bubble lattice
Tierno, Pietro; Soba, Alejandro; Johansen, Tom H.; Sagués, Francesc
2008-11-01
We use a uniaxial garnet film with a magnetic bubble lattice to sort paramagnetic colloidal particles with different diameters, i.e., 1.0 and 2.8μm. We apply an external magnetic field which precesses around an axis normal to the film with a frequency Ω =62.8s-1 and intensity 3120A/m bubbles while the others are transported through the array. We complement the experimental measurements with numerical simulations to explore the sorting capability for particles with different magnetic moments.
International Nuclear Information System (INIS)
Williams, J.M.; Adetunji, J.; Gregori, M.
2000-01-01
We report the distribution of magnetic moments of Fe 3+ and Co 2+ in Co 2+ -, Ti 4+ -substituted M-type barium hexaferrite, Ba(Co,Ti) x Fe (12-2x) O 19 , as a function of doping rate, x. The substitution, x, for iron has been varied with x=0, 0.25, 0.50, 0.70 and 0.85. The magnetic moments of Fe 3+ and Co 2+ were calculated from the combined results of Moessbauer measurements for Fe 3+ ions in the sublattices and neutron diffraction data for the total moments of Fe 3+ and Co 2+ . A comparison of the signs of the magnetic moments of Fe 3+ and Co 2+ ions enabled us to attribute spin directions of the Co 2+ ions in the sublattices of the substituted ferrite samples. The spin directions of Co 2+ are opposite to those of Fe 3+ in the 4f 2 and 2b sublattices. They are reversed from the original directions in the 4f 1 and 12K sublattices when the value of x≥0.70. A quantitative analysis shows that Co 2+ and Ti 4+ ions are preferably substituted into 4f 2 and 12K sublattices, respectively. In addition, while the hyperfine field of Fe 3+ in the 2b sublattice gives rise to the 2b-4f 2 interaction it is the partially substituted Co 2+ ions in the 4f 1 and 12K sublattices that contribute to the near neighbour 2a-4f 1 and 2b-12K types of interaction
Kroell, T; Leske, J
2002-01-01
Magnetic moments are an indispensable source of information on the microscopic structure of atomic nuclei. It results from the fundamental difference of the spin $g$ factors of protons and neutrons, in $sign$ and $magnitude$, $\\textit{g}_{s}(\\pi)$ = +5.586 and $g_s(\
The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states
Azizi, K.; Özdem, U.
2018-05-01
The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.
The magnetic moment of the Z_c(3900) as an axialvector tetraquark state with QCD sum rules
Wang, Zhi-Gang
2018-04-01
In this article, we assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study its magnetic moment with the QCD sum rules in the external weak electromagnetic field by carrying out the operator product expansion up to the vacuum condensates of dimension 8. We pay special attention to matching the hadron side with the QCD side of the correlation function to obtain solid duality, the routine can be applied to study other electromagnetic properties of the exotic particles.
A sensitive search for a muon electric dipole moment
International Nuclear Information System (INIS)
Semertzidis, Yannis K.; Carey, R.M.; Miller, J.P.; Rind, O.; Roberts, B.L.; Sulak, L.R.; Brown, H.; Danby, G.T.; Jackson, J.W.; Larsen, R.; Lazarus, D.M.; Meng, W.; Morse, W.M.; Ozben, C.S.; Prigl, R.; Semertzidis, Y.K.; Balakin, V.; Bazhan, A.; Dudnikov, A.; Khazin, B. I.
2001-01-01
We are proposing a new method to carry out a dedicated search for a permanent electric dipole moment (EDM) of the muon with a sensitivity at a level of 10 -24 e·cm. The experiment will be sensitive to non-standard physics like SUSY. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring. As a key feature, a novel technique has been invented in which the g-2 precession is compensated with a radial electric field. The EDM signature will be an out of plane muon spin precession as a function of time. The rate of this precession will be proportional to the EDM amplitude of the muon
Light Magnetic Dark Matter in Direct Detection Searches
DEFF Research Database (Denmark)
Del Nobile, Eugenio; Kouvaris, Christoforos; Panci, Paolo
2012-01-01
We study a fermionic Dark Matter particle carrying magnetic dipole moment and analyze its impact on direct detection experiments. In particular we show that it can accommodate the DAMA, CoGeNT and CRESST experimental results. Assuming conservative bounds, this candidate is shown not to be ruled out...
Bhatt, Samir; Mund, H. S.; Kumar, Kishor; Bapna, Komal; Dashora, Alpa; Itou, M.; Sakurai, Y.; Ahuja, B. L.
2018-05-01
Spin momentum densities of ferromagnetic ZrFe2 and Zr0.8Sc0.2Fe2 have been measured using magnetic Compton scattering with 182.65 keV circularly polarized synchrotron radiations. Site specific spin moments, which are responsible for the formation of total spin moment, have been deduced from Compton line shapes. At room temperature, the computed spin moment of ZrFe2 is found to be slightly higher than that of Sc doped ZrFe2 which is in consensus with the magnetization data. To compare the experimental data, we have also computed magnetic Compton profiles (MCPs), total and partial spin projected density of states (DOS) and the site specific spin moments using spin-polarized relativistic Korringa-Kohn-Rostoker method. It is observed that the spin moment at Fe site is aligned antiparallel to that of Zr site in both ZrFe2 and Zr0.8Sc0.2Fe2. The MCP results when compared with vibrating sample magnetometer based magnetization data, show a very small contribution of orbital moment in the formation of total magnetic moments in both the compounds. The DOS of ferromagnetic ground state of ZrFe2 and Zr0.8Sc0.2Fe2 are interpreted on the basis of a covalent magnetic model beyond the Stoner rigid band model. It appears that on alloying between a magnetic and a non-magnetic partner (with low valence), a polarization develops on the non-magnetic atom which is anti-parallel to that of the magnetic atom.
Ahmed, E. H.; Qi, P.; Beser, B.; Bai, J.; Field, R. W.; Huennekens, J. P.; Lyyra, A. M.
2008-05-01
The absolute magnitude of the transition dipole moment function μe(R) of the AΣ1u+-XΣ1g+ band system of Na2 was mapped experimentally over a relatively large range of internuclear distance R . The transition dipole moment matrix element of a set of rovibrational transitions between the AΣ1u+ and XΣ1g+ states was measured using the Autler-Townes effect. By employing the R -centroid approximation, or a fit to a polynomial function involving higher order R centroids, μe as a function of the internuclear distance was obtained. These Autler-Townes effect based measurements yield the absolute magnitude of μe , which can be used to test ab initio theoretical transition dipole moment functions or to “normalize” experimental transition moment functions obtained from intensity measurements, which in general give only the relative behavior of μe(R) .
Size effect on local magnetic moments in ferrimagnetic molecular complexes: an XMCD investigation
International Nuclear Information System (INIS)
Champion, G.; Villain, F.; Cartier dit Moulin, C.; Arrio, M.-A.; Sainctavit, P.; Zacchigna, M.; Zangrando, M.; Finazzi, M.; Parmigiani, F.; Mathoniere, C.
2003-01-01
Molecular chemistry allows to synthesize new magnetic systems with controlled properties such as size, magnetization or anisotropy. The theoretical study of the magnetic properties of small molecules (from 2 to 10 metallic cations per molecule) predicts that the magnetization at saturation of each ion does not reach the expected value for uncoupled ions when the magnetic interaction is antiferromagnetic. The quantum origin of this effect is due to the linear combination of several spin states building the wave function of the ground state and clusters of finite size and of finite spin value exhibit this property. When single crystals are available, spin densities on each atom can be experimentally given by polarized neutron diffraction (PND) experiments. In the case of bimetallic MnCu powdered samples, we will show that x-ray magnetic circular dichroism (XMCD) spectroscopy can be used to follow the evolution of the spin distribution on the Mn II and Cu II sites when passing from a dinuclear MnCu unit to a one dimensional (MnCu) n compound. (author)
Electric and magnetic polarizabilities of hadrons via elastic Compton scattering at KAON
International Nuclear Information System (INIS)
Moinester, M.A.; Blecher, M.
1990-08-01
The study of dynamic properties of hadrons presents a challenge. Among the most basic of these are the electric and magnetic polarizabilities describing the electromagnetic structure of hadrons. They characterize the induced transient dipole moments of hadrons in an external electromagnetic field. During gamma-hadron Compton scattering the lowest order scattering is determined by the charge and magnetic moment. The next order scattering is determined by the induced dipole moments. The dipole polarizabilities probe the rigidity of the internal structure of baryons and mesons, the dipole moments being induced by the rearrangement of the hadron constituents driven by the presence of the electric and magnetic fields of the photon during scattering. A sophisticated understanding of hadrons within the framework of QCD will be tested, in part, by the prediction of these quantities. For the light charged pion, chiral symmetry leads to a precise prediction for the polarizabilities. For the heavier charged kaon, chiral perturbation theory can be applied to predict the polarizabilities. For these cases, the experimental polarizabilities subject the underlying chiral symmetry and chiral perturbation techniques of QCD to new and serious tests. Here the physics of electromagnetic polarizabilities is first described, followed by a review of previous experimental and theoretical polarizability results for the proton, neutron, pion, and kaon. A brief description is then given of how polarizabilities for these hadrons can be studied at the proposed TRIUMF KAON facility. (36 refs., 4 figs.)
Extended particle-based simulation for magnetic-aligned compaction of hard magnetic particles
Energy Technology Data Exchange (ETDEWEB)
Soda, Rikio; Takagi, Kenta; Ozaki, Kimihiro, E-mail: r-soda@aist.go.jp
2015-12-15
In order to understand the magnetic-aligned compaction process, we develop a three-dimensional (3D) discrete element method for simulating the motion of hard magnetic particles subjected to strong compression and magnetic fields. The proposed simulation model also considers the exact magnetic force involved via the calculation of the magnetic moment. First, to validate the simulation model, single-action compaction in the absence of a magnetic field was calculated. The calculated compaction curves are in good quantitative agreement with experimental ones. Based on this simulation model, the alignment behavior of Nd–Fe–B particles during compression under the application of a static magnetic field. The developed simulation model enables the visualization of particle behavior including the misorientation of the magnetization easy axis, which provided the quantitative relationships between applied pressure and particle misorientation. - Highlights: • A practical 3D DEM simulation technique for magnetic-aligned compaction was developed. • An extended simulation model was introduced for hard magnetic particles. • Magnetic-aligned compaction was simulated using the developed simulation model.
DEFF Research Database (Denmark)
Kjølhede, Klaus; Santos, Ilmar
2007-01-01
of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing...
Manifestation of the cyclo-toroid nuclear moment in anomalous conversion and Lamb shift
Tkalya, E. V.
2005-01-01
We offer the hypothesis that atomic nuclei, nucleons, and atoms possess a new type of electromagnetic moment, that we call a ``cyclo-toroid moment''. In nuclei, this moment arises when the toroid dipole (anapole) moments are arrayed in the form of a ring, or, equivalently, when the magnetic moments of the nucleons are arranged in the form of rings which, in turn, constitute the surface of a torus. We establish theoretically that the cyclo-toroid moment plays a role in the processes of the ato...
Magnetic model for a horse-spleen ferritin with a three-phase core structure
Energy Technology Data Exchange (ETDEWEB)
Jung, J.H.; Eom, T.W. [Quantum Photonic Science Research Center, Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Y.P., E-mail: yplee@hanyang.ac.kr [Quantum Photonic Science Research Center, Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhee, J.Y. [Department of Physics, Sungkyunkwan University, Suwon (Korea, Republic of); Choi, E.H. [Kwangwoon University, Seoul (Korea, Republic of)
2011-12-15
The increasing interests in magnetic nanoparticles has prompted research on ferritin, which is naturally a well-defined iron-storage protein in most living organisms. However, the exact magnetic behavior of ferritin is not well understood, because the crystal structures of ferritin and ferrihydrite, its major component, are not fully understood. Briefly, we discuss the previous magnetization models of ferritin and ferrihydrite and we present a new model ({Sigma}3L) of the initial magnetization of ferritin, considering its different phases. The new model includes three Langevin-function terms, which represent three different magnetic moments provided by the likely hydroxide and oxide mineral phases in ferritin. Compared to previous models, our simple model fits the experimental data 12 times better in terms of the sum of least squares. The magnetic independence of each component supports the multi-phase compositional model of the mineral core of horse-spleen ferritin. This {Sigma}3L model gives a quantization of the amounts of the different phases within horse-spleen ferritins that matches other published experimental data: 60-80% ferrihydrite, 15-25% maghemite/magnetite, and 1-10% hematite. - Highlights: > We present a new model ({Sigma}3L) of the initial magnetization of ferritin, considering its different phases. > New model includes three Langevin-function terms, which represent three different magnetic moments provided by ferritin phases. > Compared to previous models, our simple model fits the experimental data 12 times better in terms of the sum of least square. > The magnetic independence of each component supports that ferritin and ferrihydrite are composed of different phases.
Directory of Open Access Journals (Sweden)
Jennifer A Nichols
Full Text Available The utility of biomechanical models and simulations to examine clinical problems is currently limited by the need for extensive amounts of experimental data describing how a given procedure or disease affects the musculoskeletal system. Methods capable of predicting how individual biomechanical parameters are altered by surgery are necessary for the efficient development of surgical simulations. In this study, we evaluate to what extent models based on limited amounts of quantitative data can be used to predict how surgery influences muscle moment arms, a critical parameter that defines how muscle force is transformed into joint torque. We specifically examine proximal row carpectomy and scaphoid-excision four-corner fusion, two common surgeries to treat wrist osteoarthritis. Using models of these surgeries, which are based on limited data and many assumptions, we perform simulations to formulate a hypothesis regarding how these wrist surgeries influence muscle moment arms. Importantly, the hypothesis is based on analysis of only the primary wrist muscles. We then test the simulation-based hypothesis using a cadaveric experiment that measures moment arms of both the primary wrist and extrinsic thumb muscles. The measured moment arms of the primary wrist muscles are used to verify the hypothesis, while those of the extrinsic thumb muscles are used as cross-validation to test whether the hypothesis is generalizable. The moment arms estimated by the models and measured in the cadaveric experiment both indicate that a critical difference between the surgeries is how they alter radial-ulnar deviation versus flexion-extension moment arms at the wrist. Thus, our results demonstrate that models based on limited quantitative data can provide novel insights. This work also highlights that synergistically utilizing simulation and experimental methods can aid the design of experiments and make it possible to test the predictive limits of current computer
Magnetic moment of the fragmentation-aligned F61e (9/2+) isomer
International Nuclear Information System (INIS)
Matea, I.; Georgiev, G.; Lewitowicz, M.; Santos, F. de Oliveira; Daugas, J.M.; Belier, G.; Goutte, H.; Meot, V.; Roig, O.; Hass, M.; Baby, L.T.; Goldring, G.; Neyens, G.; Borremans, D.; Himpe, P.; Astabatyan, R.; Lukyanov, S.; Penionzhkevich, Yu.E.; Balabanski, D.L.; Sawicka, M.
2004-01-01
We report on the g factor measurement of an isomer in the neutron-rich F 26 61 e (E * =861 keV and T 1/2 =239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.229(2). In this way we open the possibility to study moments of very neutron-rich short-lived isomers, not accessible via other production and spin-orientation methods
International Nuclear Information System (INIS)
Svirskii, M.S.
1985-01-01
Oscillations with a period equal to the normal or superconducting flux quantum occur in the current density and the orbital parts of the energy and the magnetic moment in cyclic systems. Transitions between these regimes can be induced by changing the number of electrons or by switching between states with different energies
Paramagnetic moments in YBa2Cu3O7−δ nanocomposite films
International Nuclear Information System (INIS)
Dias, F.T.; Vieira, V.N.; Silva, D.L.; Albino Aguiar, J.; Valadão, D.R.B.; Obradors, X.; Puig, T.; Wolff-Fabris, F.; Kampert, E.
2014-01-01
Highlights: • The paramagnetic Meissner effect was observed in a nanocomposite YBaCuO thin film. • The paramagnetic moments in FC experiments were observed up to 10 T. • The paramagnetic Meissner effect increases when the magnetic field is increased. • Results may be explained based on the flux compression scenario and vortex pinning. • An apparent saturation tendency of the paramagnetic moments could be observed. - Abstract: We report on magnetization studies in YBa 2 Cu 3 O 7−δ thin films with dispersed Ba 2 YTaO 6 nanoparticles. The magnetization measurements were made using a superconducting quantum interference device (SQUID) and a vibrating sample magnetometer (VSM). Magnetic moments were measured as functions temperature using zero-field cooling (ZFC) and field-cooled (FC) prescriptions for magnetic fields up to 10 T applied parallel and perpendicular to the ab planes. A paramagnetic response related to the superconducting state was observed during the FC experiments. This effect, known as paramagnetic Meissner effect (PME), apparently increases when the magnetic field is increased. We discuss our PME results in terms of the strong pinning scenario modulated by Ba 2 YTaO 6 nanoparticles dispersed into the superconducting matrix
Searches for the electron electric dipole moment and nuclear anapole moments in solids
International Nuclear Information System (INIS)
Mukhamedjanov, T.N.; Sushkov, O.P.; Cadogan, J.M.; Dzuba, V.A.
2004-01-01
Full text: We consider effects caused by the electron electric dipole moment (EDM) in gadolinium garnets. Our estimates show that the experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. It is also possible to probe for nuclear anapole moments in a solid state experiment. We suggest such NMR-type experiment and perform estimates of the expected results
Magnetic studies of spin wave excitations in Fe/Mn multilayers
Energy Technology Data Exchange (ETDEWEB)
Salhi, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco); LMPG, Ecole supérieure de technologie, Université Hassan de Casablanca, Casablanca (Morocco); Moubah, R.; El Bahoui, A.; Lassri, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco)
2017-04-15
The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t{sub Fe}). The change of magnetization as a function of temperature is well depicted by a T{sup 3/2} law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.
Magnetic studies of spin wave excitations in Fe/Mn multilayers
International Nuclear Information System (INIS)
Salhi, H.; Moubah, R.; El Bahoui, A.; Lassri, H.
2017-01-01
The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t Fe ). The change of magnetization as a function of temperature is well depicted by a T 3/2 law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.
Moment distributions of clusters and molecules in the adiabatic rotor model
Ballentine, G. E.; Bertsch, G. F.; Onishi, N.; Yabana, K.
2008-01-01
We present a Fortran program to compute the distribution of dipole moments of free particles for use in analyzing molecular beams experiments that measure moments by deflection in an inhomogeneous field. The theory is the same for magnetic and electric dipole moments, and is based on a thermal ensemble of classical particles that are free to rotate and that have moment vectors aligned along a principal axis of rotation. The theory has two parameters, the ratio of the magnetic (or electric) dipole energy to the thermal energy, and the ratio of moments of inertia of the rotor. Program summaryProgram title:AdiabaticRotor Catalogue identifier:ADZO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZO_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:479 No. of bytes in distributed program, including test data, etc.:4853 Distribution format:tar.gz Programming language:Fortran 90 Computer:Pentium-IV, Macintosh Power PC G4 Operating system:Linux, Mac OS X RAM:600 Kbytes Word size:64 bits Classification:2.3 Nature of problem:The system considered is a thermal ensemble of rotors having a magnetic or electric moment aligned along one of the principal axes. The ensemble is placed in an external field which is turned on adiabatically. The problem is to find the distribution of moments in the presence of the external field. Solution method:There are three adiabatic invariants. The only nontrivial one is the action associated with the polar angle of the rotor axis with respect to external field. It is found by Newton's method. Running time:3 min on a 3 GHz Pentium IV processor.
Magnetism and superconductivity in a heavy-fermion superconductor, CePt3Si
International Nuclear Information System (INIS)
Takeuchi, T; Hashimoto, S; Yasuda, T; Shishido, H; Ueda, T; Yamada, M; Obiraki, Y; Shiimoto, M; Kohara, H; Yamamoto, T; Sugiyama, K; Kindo, K; Matsuda, T D; Haga, Y; Aoki, Y; Sato, H; Settai, R; Onuki, Y
2004-01-01
We have studied the magnetic and thermal properties of a single crystal of CePt 3 Si, which is a recently reported heavy-fermion superconductor with a superconducting transition temperature T c = 0.75 K and a Neel temperature T N = 2.2 K. The overall experimental data are principally explained on the basis of the crystalline electric field (CEF) scheme. Even in the antiferromagnetic state, the CEF model applies well to the characteristic features in the magnetization curve. These results indicate the existence of a localized magnetic moment at the Ce site, with a considerably reduced ordered moment of 0.16 μ B /Ce, and the strongly correlated conduction electrons are condensed into the superconducting state. We have also constructed the magnetic phase diagram including the superconducting phase for H parallel [110] and [001]. (letter to the editor)
Constraining neutrino magnetic moment with solar and reactor neutrino data
Tortola, M. A.
2004-01-01
We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MU...
Magnetic Launch Assist Experimental Track
1999-01-01
In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
International Nuclear Information System (INIS)
Aistov, A.V.; Gavrilenko, V.G.
1996-01-01
The normal incidence of a small-amplitude electromagnetic wave upon a semi-infinite turbulent collisional plasm with an oblique external magnetic field is considered. Within a small-angle-scattering approximation of the radiative transport theory, a system of differential equations is derived for statistical moments of the angular power spectrum of radiation. The dependences of the spectrum centroid, dispersion, and asymmetry on the depth of penetration are studied numerically. The nonmonotonic behavior of the dispersion is revealed, and an increase in the spectrum width with absorption anisotropy is found within some depth interval. It is shown that, at large depths, the direction of the displacement of the spectrum centroid, does not always coincide with the direction of minimum absorption
Magnetic dipole moments of deformed odd-odd nuclei up to 2p-1f shells
Energy Technology Data Exchange (ETDEWEB)
Garg, V P; Verma, A K; Gandhi, R; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics
1981-02-01
The expression for magnetic moments for the states comprising ground state configurations of odd-odd nuclei has been simplified by excluding mixing of other nucleonic configurations. This is contrary to Sharma's and Davidson's results which had been obtained by diagonalizing state matrices for a set of parameters using Davidov and Filippov's non-axial rotor model. According to the relative directions of spins of unpaired odd nucleons, the nuclei have been classified under four categories-an exercise not attempted till now. The calculations have been done with various quenching factors depending upon the relative spin orientations of odd nucleons. For most of the nuclei, the results show considerable improvement over those of Gallagher and Moszkowski and of Sharma.
Size dependent magnetism of mass selected deposited transition metal clusters
International Nuclear Information System (INIS)
Lau, T.
2002-05-01
The size dependent magnetic properties of small iron clusters deposited on ultrathin Ni/Cu(100) films have been studied with circularly polarised synchrotron radiation. For X-ray magnetic circular dichroism studies, the magnetic moments of size selected clusters were aligned perpendicular to the sample surface. Exchange coupling of the clusters to the ultrathin Ni/Cu(100) film determines the orientation of their magnetic moments. All clusters are coupled ferromagnetically to the underlayer. With the use of sum rules, orbital and spin magnetic moments as well as their ratios have been extracted from X-ray magnetic circular dichroism spectra. The ratio of orbital to spin magnetic moments varies considerably as a function of cluster size, reflecting the dependence of magnetic properties on cluster size and geometry. These variations can be explained in terms of a strongly size dependent orbital moment. Both orbital and spin magnetic moments are significantly enhanced in small clusters as compared to bulk iron, although this effect is more pronounced for the spin moment. Magnetic properties of deposited clusters are governed by the interplay of cluster specific properties on the one hand and cluster-substrate interactions on the other hand. Size dependent variations of magnetic moments are modified upon contact with the substrate. (orig.)
Controlling interactions between highly magnetic atoms with Feshbach resonances.
Kotochigova, Svetlana
2014-09-01
This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.
The pressure effect on magnetic properties of YNi5, LaNi5 i CeNi5 compounds
International Nuclear Information System (INIS)
Grechnev, G.E.; Logosha, A.V.; Panfilov, A.S.; Kuchin, A.G.; Vasil'ev, A.N.
2012-01-01
The pressure effect on electronic structure and magnetic properties of YNi 5 , LaNi 5 and CeNi 5 compounds is studied. For these systems high values of the magneto volume effect for magnetic susceptibility χ , d lnχ / d lnV ∼ 4-7, are obtained at low temperatures. The experimental data and ab initio calculated results of electronic structure and paramagnetic contributions to susceptibility indicate a close proximity of YNi 5 , LaNi 5 and CeNi 5 to the quantum critical point. It is found that in these exchange-enhanced itinerant paramagnets the orbital Van Vleck contribution to susceptibility amounts to 15-20% and should be taken into account for description of experimental χ and d ln V / d lnV values. The calculated spin and orbital paramagnetic moments, induced by an external magnetic field for atoms in the YNi 5 unit cell, demonstrate a nonuniform distribution of magnetization density and nontrivial competition between spin and orbital moments.
The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED
Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.
2018-04-01
The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.
On the single-ion Magnetic Anisotropy of the Rare-Earth Metals
DEFF Research Database (Denmark)
Kolmakova, N.P.; Tishin, A.M.; Bohr, Jakob
1996-01-01
The temperature dependences of the single-ion magnetic anisotropy constants for Tb and Dy metals are calculated in terms of the multipole moments of the rare-earth ions utilizing the available crystal-field parameters. The results are compared with the existing experimental data....
Zheng, X. Q.; Wu, H.; Chen, J.; Zhang, B.; Li, Y. Q.; Hu, F. X.; Sun, J. R.; Huang, Q. Z.; Shen, B. G.
2015-01-01
The PrGa compound shows excellent performance on the magnetocaloric effect (MCE) and magnetoresistance (MR). The physical mechanism of MCE and MR in PrGa compound was investigated and elaborated in detail on the basis of magnetic measurement, heat capacity measurement and neutron powder diffraction (NPD) experiment. New types of magnetic structure and magnetic transition are found. The results of the NPD along with the saturation magnetic moment (MS) and magnetic entropy (SM) indicate that the magnetic moments are randomly distributed within the equivalent conical surface in the ferromagnetic (FM) temperature range. PrGa compound undergoes an FM to FM transition and an FM to paramagnetic (PM) transition as temperature increases. The magnetizing process was discussed in detail and the physical mechanism of the magnetic field controlled magnetocaloric effect (MCE) and the magnetoresistance (MR) was studied. The formation of the plateau on MCE curve was explained and MR was calculated in detail on the basis of the magnetic structure and the analysis of the magnetizing process. The experimental results are in excellent agreement with the calculations. Finally, the expression of MR = β(T)X2 and its application conditions were discussed, where X is M(H)/Meff, and Meff is the paramagnetic effective moment. PMID:26455711
Molecular-Field Calculation of the Magnetic Structure in Erbium
DEFF Research Database (Denmark)
Jensen, J.
1976-01-01
A molecular-field calculation of the magnetic configurations in Er is found to reproduce the neutron diffraction results of the three different magnetic phases and to give a reasonable fit to the magnetization data at 4.2K. The two-ion coupling is considered to be described by the inter......-planar coupling parameters deduced from the dispersion of the spin waves in the low temperature conical phases. The four (effective) crystal-field parameters are determined by the fit to the experimental data. Projecting the magnetic moments present in the intermediate phase of Er (18-52.4K) to a common origin...
Gd3+-ESR and magnetic susceptibility of GdCu4Al8 and GdMn4Al8
International Nuclear Information System (INIS)
Coldea, R.; Coldea, M.; Pop, I.
1994-01-01
Gd ESR of GdCu 4 Al 8 and GdMn 4 Al 8 and magnetic susceptibility of GdCu 4 Al 8 , GdMn 4 Al 8 , and YMn 4 Al 8 were measured in the temperature range of 290K--460K and 90K--1050K, respectively. The occurrence of the Mn moment in YMn 4 Al 8 and GdMn 4 Al 8 is strongly correlated with the critical value of d∼2.6 angstrom of the Mn-Mn distance below which the Mn moment is not stable. The experimental data for GdMn 4 Al 8 , compared with the data for the isostructural compounds GdCu 4 Al 8 and YMn 4 Al 8 , show that near the critical value of d, the existence of Mn moment depends not only on the value of d, but also on the local magnetic surroundings. It has been revealed that the magnetic character of Mn moment in YMn 4 Al 8 and GdMn 4 Al 8 changes from an itinerant electron type to a local-moment type with increasing temperature
Fe/Rh (100) multilayer magnetism probed by x-ray magnetic circular dichroism
Tomaz, M. A.; Ingram, D. C.; Harp, G. R.; Lederman, D.; Mayo, E.; O'brien, W. L.
1997-09-01
We report the layer-averaged magnetic moments of both Fe and Rh in sputtered Fe/Rh (100) multilayer thin films as measured by x-ray magnetic circular dichroism. We observe two distinct regimes in these films. The first is characterized by Rh moments of at least 1μB, Fe moments enhanced as much as 30% above bulk, and a bct crystal structure. The second regime is distinguished by sharp declines of both Fe and Rh moments accompanied by a transition to an fct crystal lattice. The demarcation between the two regions is identified as the layer thickness for which both bct and fct phases first coexist, which we term the critical thickness tcrit. We attribute the change in magnetic behavior to the structural transformation.
Local moment formation in Dirac electrons
International Nuclear Information System (INIS)
Mashkoori, M; Mahyaeh, I; Jafari, S A
2015-01-01
Elemental bismuth and its compounds host strong spin-orbit interaction which is at the heart of topologically non-trivial alloys based on bismuth. These class of materials are described in terms of 4x4 matrices at each v point where spin and orbital labels of the underlying electrons are mixed. In this work we investigate the single impurity Anderson model (SIAM) within a mean field approximation to address the nature of local magnetic moment formation in a generic Dirac Hamiltonian. Despite the spin-mixing in the Hamiltonian, within the Hartree approximation it turns out that the impuritys Green function is diagonal in spin label. In the three dimensional Dirac materials defined over a bandwidth D and spin-orbit parameter γ, that hybridizes with impurity through V, a natural dimensionless parameter V 2 D/2πγ 3 emerges. So neither the hybridization strength, V, nor the spin-orbit coupling γ, but a combination thereof governs the phase diagram. By tuning chemical potential and the impurity level, we present phase diagram for various values of Hubbard U. Numerical results suggest that strong spin-orbit coupling enhances the local moment formation both in terms of its strength and the area of the local moment region. In the case that we tune the chemical potential in a similar way as normal metal we find that magnetic region is confined to μ ≥ ε 0 , in sharp contrast to 2D Dirac fermions. If one fixes the chemical potential and tunes the impurity level, phase diagram has two magnetic regions which corresponds to hybridization of impurity level with lower and upper bands. (paper)
Transverse tails and higher order moments
International Nuclear Information System (INIS)
Spence, W.L.; Decker, F.J.; Woodley, M.D.
1993-05-01
The tails that may be engendered in a beam's transverse phase space distribution by, e.g., intrabunch wakefields and nonlinear magnetic fields, are all important diagnostic and object of tuning in linear colliders. Wire scanners or phosphorescent screen monitors yield one dimensional projected spatial profiles of such beams that are generically asymmetric around their centroids, and therefore require characterization by the third moment left-angle x 3 right-angle in addition to the conventional mean-square or second moment. A set of measurements spread over sufficient phase advance then allows the complete set left-angle x 3 right-angle, left-angle xx' 2 right-angle, left-angle x' 3 right-angle, and left-angle x 2 x'right-angle to be deduced -- the natural extension of the well-known ''emittance measurement'' treatment of second moments. The four third moments may be usefully decomposed into parts rotating in phase space at the β-tron frequency and at its third harmonic, each specified by a phase-advance-invariant amplitude and a phase. They provide a framework for the analysis and tuning of transverse wakefield tails
Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment
Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.
2017-07-01
We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.
Development of Experimental Superconducting Magnet for the Collector Ring of FAIR Project
International Nuclear Information System (INIS)
Zhu Yinfeng; Wu Weiyue; Wu Songtao; Liu Changle; Xu Houchang
2010-01-01
A pool cooled experimental magnet based on the copper stabilized NbTi superconducting wire was designed, fabricated and tested, in order to evaluate the engineering design of the dipole superconducting magnet for the collector ring (CR) of the facility for antiproton and ion research (FAIR) project. In this paper, the experimental setup including quench protection system was presented. Performance of the liquid helium pool cooled test was introduced. All of the results indicate both the performance of conductor and the experimental superconducting magnet under low temperature is stable, which suggests the engineering design are feasible for the formal magnet in CR of the FAIR project.
New approaches in the design of magnetic tweezers–current magnetic tweezers
Energy Technology Data Exchange (ETDEWEB)
Bessalova, Valentina [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Perov, Nikolai [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); Rodionova, Valeria [Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); National University of Science and Technology ' MISiS' , Leninsky Prospect 4, 119049 Moscow (Russian Federation)
2016-10-01
The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10{sup −11} A m{sup 2} at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.