WorldWideScience

Sample records for experimental critical parameters

  1. A critical experimental study of integral physics parameters in simulated LMFBR meltdown cores

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Wade, D.C.; Bucher, R.G.; Smith, D.M.; McKnight, R.D.; Lesage, L.G.

    1978-01-01

    Integral physics parameters of several representative, idealized meltdown LMFBR configurations were measured in mockup critical assemblies on the ZPR-9 reactor at Argonne National Laboratory. The experiments were designed to provide data for the validation of analytical methods used in the neutronics part of LMFBR accident analysis. Large core distortions were introduced in these experiments (involving 18.5% core volume) and the reactivity worths of configuration changes were determined. The neutronics parameters measured in the various configurations showed large changes upon core distortion. Both diffusion theory and transport theory methods were shown to mispredict the experimental configuration eigenvalues. In addition, diffusion theory methods were shown to result in a non-conservative misprediction of the experimental configuration change worths. (author)

  2. Liquid metals. Coexistence line, critical parameters, compressibility

    International Nuclear Information System (INIS)

    Filippov, L.P.

    1986-01-01

    Formulae to calculate four characteristic parameters of liquid metals (density, compressibility, critical temperature and individual parameter) according to four initial data are obtained: two values of vapor density and two values of vapor pressure. Comparison between experimental and calculation results are presented for liquid Cs, Na, Li, K, Rb

  3. The evaluation of set of criticality parameters using scale system

    International Nuclear Information System (INIS)

    Abe, Alfredo; Sanchez, Andrea; Yamaguchi, Mistuo

    2009-01-01

    In evaluating the criticality safety of the nuclear fuel facility, it is important to apply a consistent methodology, which consider every aspects concerning various types of criticality parameters. Usually, the critical parameters are compiled and arranged into handbooks, and these handbooks are based on experience with nuclear facilities, experimental data from criticality safety research facilities, and theoretical studies performed using numerical simulations. Most of criticality safety evaluation can be addressed using the criticality parameters data directly from handbook, but some critical parameters for a specific chemical mixtures and/or enrichment are not be available. Consequently, not available parameters has to be evaluated. This work present the methodology to evaluate a set of critical parameters using SCALE system for various types of mixtures present at nuclear fuel cycle facilities for two different level of enrichment, the results are verified in the independent calculation using MCNP Monte Carlo Code. (author)

  4. Physical and geometrical parameters of ANNA critical assemblies. Pt. 2

    International Nuclear Information System (INIS)

    Malewski, S.; Dabrowski, C.

    1973-01-01

    An extended analysis of four critical configurations of ANNA Assembly has been performed. Diffusion parameters of the thermal group and of one or three epithermal groups have been determined. Using these data the critical calculations have been carried out and the main neutron density distributions presented. The role of some neutron processes in these systems and their influence on integral parameters has been considered. The calculated quantities have been compared with the available experimental data. (author)

  5. Experimental critical parameters of plutonium metal cylinders flooded with water

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Forty-nine critical configurations are reported for experiments involving arrays of 3 kg plutonium metal cylinders moderated and reflected by water. Thirty-four of these describe systems assembled in the laboratory, while 15 others are derived critical parameters inferred from 46 subcritical cases. The arrays included 2x2xN, N = 2, 3, 4, and 5, in one program and 3x3x3 configurations in a later study. All were three-dimensional, nearly square arrays with equal horizontal lattice spacings but a different vertical lattice spacing. Horizontal spacings ranged from units in contact to 180 mm center-to-center; and vertical spacings ranged from about 80 mm to almost 400 mm center-to-center. Several nearly-equilateral 3x3x3 arrays exhibit an extremely sensitive dependence upon horizontal separation for identical vertical spacings. A line array of unreflected and essentially unmoderated canned plutonium metal units appeared to be well subcritical based on measurements made to assure safety during the manual assembly operations. All experiments were performed at two widely separated times in the mid-1970s and early 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory.

  6. Experimental critical parameters of plutonium metal cylinders flooded with water

    International Nuclear Information System (INIS)

    1996-07-01

    Forty-nine critical configurations are reported for experiments involving arrays of 3 kg plutonium metal cylinders moderated and reflected by water. Thirty-four of these describe systems assembled in the laboratory, while 15 others are derived critical parameters inferred from 46 subcritical cases. The arrays included 2x2xN, N = 2, 3, 4, and 5, in one program and 3x3x3 configurations in a later study. All were three-dimensional, nearly square arrays with equal horizontal lattice spacings but a different vertical lattice spacing. Horizontal spacings ranged from units in contact to 180 mm center-to-center; and vertical spacings ranged from about 80 mm to almost 400 mm center-to-center. Several nearly-equilateral 3x3x3 arrays exhibit an extremely sensitive dependence upon horizontal separation for identical vertical spacings. A line array of unreflected and essentially unmoderated canned plutonium metal units appeared to be well subcritical based on measurements made to assure safety during the manual assembly operations. All experiments were performed at two widely separated times in the mid-1970s and early 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory

  7. Experimental Study on Critical Power in a Hemispherical Narrow Gap

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Sang-Baik; Kim, Hee-Dong; Jeong, Ji-Hwan

    2002-01-01

    An experimental study of critical heat flux in gap (CHFG) has been performed to investigate the inherent cooling mechanism in a hemispherical narrow gap. The objectives of the CHFG test are to measure critical power from a critical heat removal rate through the hemispherical narrow gap using distilled water with experimental parameters of system pressure and gap width. The CHFG test results have shown that a countercurrent flow limitation (CCFL) brings about local dryout at the small edge region of the upper part and finally global dryout in a hemispherical narrow gap. Increases in the gap width and pressure lead to an increase in critical power. The measured values of critical power are lower than the predictions made by other empirical CHF correlations applicable to flat plate, annuli, and small spherical gaps. The measured data on critical power in the hemispherical narrow gaps have been correlated using nondimensional parameters with a range of approximately ±20%. The developed correlation has been expanded to apply the spherical geometry using the Siemens/KWU correlation

  8. Critical parameters for ammonia

    International Nuclear Information System (INIS)

    Sato, M.; Masui, G.; Uematsu, M.

    2005-01-01

    (p, ρ, T) measurements and visual observations of the meniscus for ammonia were carried out carefully in the critical region over the range of temperatures: -1 K (T - T c ) 0.04 K, and of densities: -19 kg . m -3 (ρ - ρ c ) 19 kg . m -3 by a metal-bellows volumometer with an optical cell. Vapor pressures were also measured at T = (310, 350, and 400) K. The critical parameters of T c and ρ c were determined based on the results of observation of the critical opalescence. The critical pressure p c was determined from the present measurements at T c on the vapor pressure curve. Comparisons of the critical parameters with values given in the literature are presented

  9. Critical parameters for ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M. [Center for Mechanical Engineering and Applied Mechanics, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Masui, G. [Center for Mechanical Engineering and Applied Mechanics, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Uematsu, M. [Center for Mechanical Engineering and Applied Mechanics, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan)]. E-mail: uematsu@mech.keio.ac.jp

    2005-09-15

    (p, {rho}, T) measurements and visual observations of the meniscus for ammonia were carried out carefully in the critical region over the range of temperatures: -1 K (T - T {sub c}) 0.04 K, and of densities: -19 kg . m{sup -3} ({rho} - {rho} {sub c}) 19 kg . m{sup -3} by a metal-bellows volumometer with an optical cell. Vapor pressures were also measured at T = (310, 350, and 400) K. The critical parameters of T {sub c} and {rho} {sub c} were determined based on the results of observation of the critical opalescence. The critical pressure p {sub c} was determined from the present measurements at T {sub c} on the vapor pressure curve. Comparisons of the critical parameters with values given in the literature are presented.

  10. Determination of Critical Parameters of Carbon Dioxide+ Butyraldehyde System with Different Compositions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-chang; GAO Xi-xin; CAO Wei-liang

    2005-01-01

    Supercritical carbon dioxide( SC-CO2 ) is considered in green chemistry as a substitute for conventional solvents in chemical reactions due to its environmentally benign character. Recently we have reported the homogeneous hydroformylation of propylene in supercritical carbon dioxide( SC-CO2 ), which is an example of this kind of application of carbon dioxide. The determination for the critical parameters of carbon dioxide + butyraldehyde mixtures is necessary for this reaction design which is the focus of the present paper. The critical parameters of the binary systems were determined via the static visual method at a constant volume with the molar fraction of butyraldehyde ranging from 1.0%to 2. 2% and the pressure ranging from 5 to 10 MPa. The experimental results show that the critical pressure and temperature increased with increasing the molar fraction of butyraldehyde. The bubble(dew) temperatures and the bubble (dew) pressures for the binary systems were also determined experimentally. The p-T Figures at different compositions of the binary systems were described. In addition, the critical compressibility factors Zc of the binary systems at different concentrations of n-butyraldehyde were calculated. It was found that the critical compressibility factor values of the binary systems decreased with increasing the molar fraction of n-butyraldehyde in the experimental range.

  11. On the prospects of increasing critical parameters of superconductors

    International Nuclear Information System (INIS)

    Lazarev, B.G.; Pan, V.M.

    1979-01-01

    Noted is the importance of the production of materials with high critical parameters for modern science and technology. Considered are present notions about the nature of high critical densities of critical current. The opinion is expressed that the search of most high-temperature and high-field superconductors should be carried out, in the first place, among compounds based on transition metals displaying structural instability. Noted are prospects of the work over the synthesis of metastabile compounds with A15 structure (e.g. Nb 3 Si), three-component and more complex compounds, and superconductive amorphous systems(metglasses). It is emphasized that the exceeding of the paramagnetic limit of the critical magnetic field is often observed experimentally, and the prospects of critical field increase are sufficiently favourable. Considered is the role of narrow current channels in the formation of critical current density of superconductors

  12. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1997-12-01

    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments

  13. Calculation of kinetic parameters of Caliban metallic core experimental reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)

  14. Experimental study and technique for calculation of critical heat fluxes in helium boiling in tubes

    International Nuclear Information System (INIS)

    Arkhipov, V.V.; Kvasnyuk, S.V.; Deev, V.I.; Andreev, V.K.

    1979-01-01

    Studied is the effect of regime parameters on critical heat loads in helium boiling in a vertical tube in the range of mass rates of 80 2 xc) and pressures of 100<=p<=200 kPa for the vapor content range corresponding to the heat exchange crisis of the first kind. The method for calculating critical heat fluxes describing experimental data with the error less than +-15% is proposed. The critical heat loads in helium boiling in tubes reduce with the growth of pressure and vapor content in the regime parameter ranges under investigation. Both positive and negative effects of the mass rate on the critical heat flux are observed. The calculation method proposed satisfactorily describes the experimental data

  15. A neutron balance approach in critical parameter determination

    International Nuclear Information System (INIS)

    Dall'Osso, Aldo

    2008-01-01

    The determination of a critical parameter, process known also as criticality or eigenvalue search, is one of the major functionalities in neutronics codes. The determination of the critical boron concentration or the critical control rod position are two examples. Classical procedures used to solve this problem are based on the iterative Newton-Raphson method where the value of the parameter is changed until the eigenvalue matches the target. We present here a different approach where an equation, derived from the neutron balance, is set and the critical parameter is the unknown. Solving this equation is equivalent to solve an eigenvalue problem where the critical parameter is the eigenvalue. It is also shown that this approach can be seen as an application of inverse perturbation theory. This method reduces considerably the computation time in situations where changes on the critical parameter make a high distortion on the flux distribution, as it is the case of the control rods. Some numerical examples illustrate the performances and the gain in stability in cases of simultaneous control of criticality and axial offset of the power distribution. The application to the determination of the critical uranium enrichment in a transport code is also presented. The simplicity of the method makes its implementation in fuel bundle lattice and reactor codes very easy

  16. Critical parameters controlling irradiation swelling in beryllium

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1995-01-01

    Radiation effects in beryllium can hardly be explained within a framework of the conventional theory based on the bias concept due to elastic interaction difference (EID) between vacancies and self-interstitial atoms (SIAs) since beryllium belongs to hexagonal close-packed metals where diffusion has been shown to be anisotropic. Diffusional anisotropy difference (DAD) between point defects changes the cavity bias for their absorption and leads to dependence of the dislocation bias on the distribution of dislocations over crystallographic directions. On the other hand, the elastic interaction between point defects and cavities gives rise to the size and gas pressure dependencies of the cavity bias, resulting in new critical quantities for bubble-void transition effects at low temperature irradiation. In the present paper, we develop the concept of the critical parameters controlling irradiation swelling with account of both DAD and EID, and take care of thermal effects as well since they are of major importance for beryllium which has an anomalously low self-diffusion activation energy. Experimental data on beryllium swelling are analyzed on the basis of the present theory. (orig.)

  17. An experimental study on critical heat flux in a hemispherical narrow gap

    International Nuclear Information System (INIS)

    Park, R.J.; Lee, S.J.; Kang, K.H.; Kim, J.H.; Kim, S.B.; Kim, H.D.; Jeong, J.H.

    2000-01-01

    An experimental study of CHFG (Critical Heat Flux in Gap) has been performed to investigate the inherent cooling mechanism using distilled water and Freon R-113 in hemispherical narrow gaps. As a separate effect test of the CHFG test, a CCFL (Counter Current Flow Limit) test has been also performed to confirm the mechanism of the CHF in narrow annular gaps with large diameter. The CHFG test results have shown that an increase in the gap thickness leads to an increase in critical power. The pressure effect on the critical power was found to be much milder than predictions by CHF correlations of other studies. In the CCFL experiment, the occurrence of CCFL was correlated with the Wallis parameter, which was assumed to correspond to the critical power in the CHFG experiment. The measured values of critical power in the CHFG tests are much lower than CCFL experimental data and the predictions made by empirical CHF correlations. (author)

  18. 2000 CKM-triangle analysis a critical review with updated experimental inputs and theoretical parameters

    International Nuclear Information System (INIS)

    Roudeau, P.; Stocchi, A.; Ciuchini, M.; Lubicz, V.; D'Agostini, G.; Franco, E.; Martinelli, G.; Parodi, F.

    2000-12-01

    Within the Standard Model, a review of the current determination of the sides and angles of the CKM unitarity triangle is presented, using experimental constraints from the measurements of |ε K |, |V ub /V cb |, Δm d and from the limit on Δm s , available in September 2000. Results from the experimental search for B 0 s -B-bar 0 s oscillations are introduced in the present analysis using the likelihood. Special attention is devoted to the determination of the theoretical uncertainties. The purpose of the analysis is to infer regions where the parameters of interest lie with given probabilities. The BaBar '95% C.L. scanning' method is also commented. (authors)

  19. Improved experimental determination of critical-point data for tungsten

    International Nuclear Information System (INIS)

    Fucke, W.; Seydel, U.

    1980-01-01

    It is shown that under certain conditions in resistive pulse-heating experiments, refractory liquid metals can be heated up to the limit of thermodynamic stability (spinodal) of the superheated liquid. Here, an explosion-like decomposition takes place which is directly monitored by measurements of expansion, surface radiation, and electric resistivity, thus allowing the determination of the temperature-pressure dependence of the spinodal transition. A comparison of the spinodal equation obtained this way with theoretical models yields the critical temperature Tsub(c), pressure psub(c), and volume vsub(c). A completely experimentally-determined set of the critical parameters for tungsten is presented: Tsub(c) = (13400 +- 1400) K, psub(c) = (3370 +- 850) bar, vsub(c) = (43 +- 4) cm 3 mol -1 . (author)

  20. Experimental and computational correlation of fracture parameters KIc, JIc, and GIc for unimodular and bimodular graphite components

    Science.gov (United States)

    Bhushan, Awani; Panda, S. K.

    2018-05-01

    The influence of bimodularity (different stress ∼ strain behaviour in tension and compression) on fracture behaviour of graphite specimens has been studied with fracture toughness (KIc), critical J-integral (JIc) and critical strain energy release rate (GIc) as the characterizing parameter. Bimodularity index (ratio of tensile Young's modulus to compression Young's modulus) of graphite specimens has been obtained from the normalized test data of tensile and compression experimentation. Single edge notch bend (SENB) testing of pre-cracked specimens from the same lot have been carried out as per ASTM standard D7779-11 to determine the peak load and critical fracture parameters KIc, GIc and JIc using digital image correlation technology of crack opening displacements. Weibull weakest link theory has been used to evaluate the mean peak load, Weibull modulus and goodness of fit employing two parameter least square method (LIN2), biased (MLE2-B) and unbiased (MLE2-U) maximum likelihood estimator. The stress dependent elasticity problem of three-dimensional crack progression behaviour for the bimodular graphite components has been solved as an iterative finite element procedure. The crack characterizing parameters critical stress intensity factor and critical strain energy release rate have been estimated with the help of Weibull distribution plot between peak loads versus cumulative probability of failure. Experimental and Computational fracture parameters have been compared qualitatively to describe the significance of bimodularity. The bimodular influence on fracture behaviour of SENB graphite has been reflected on the experimental evaluation of GIc values only, which has been found to be different from the calculated JIc values. Numerical evaluation of bimodular 3D J-integral value is found to be close to the GIc value whereas the unimodular 3D J-value is nearer to the JIc value. The significant difference between the unimodular JIc and bimodular GIc indicates that

  1. Nuclear criticality safety parameter evaluation for uranium metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andrea; Abe, Alfredo, E-mail: andreasdpz@hotmail.com, E-mail: abye@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Energia Nuclear

    2013-07-01

    Nuclear criticality safety during fuel fabrication process, transport and storage of fissile and fissionable materials requires criticality safety analysis. Normally the analysis involves computer calculations and safety parameters determination. There are many different Criticality Safety Handbooks where such safety parameters for several different fissile mixtures are presented. The handbooks have been published to provide data and safety principles for the design, safety evaluation and licensing of operations, transport and storage of fissile and fissionable materials. The data often comprise not only critical values, but also subcritical limits and safe parameters obtained for specific conditions using criticality safety calculation codes such as SCALE system. Although many data are available for different fissile and fissionable materials, compounds, mixtures, different enrichment level, there are a lack of information regarding a uranium metal alloy, specifically UMo and UNbZr. Nowadays uranium metal alloy as fuel have been investigated under RERTR program as possible candidate to became a new fuel for research reactor due to high density. This work aim to evaluate a set of criticality safety parameters for uranium metal alloy using SCALE system and MCNP Monte Carlo code. (author)

  2. An Experimental investigation of critical flow rates of subcooled water through short pipes with small diameters

    International Nuclear Information System (INIS)

    Park, Choon Kyung

    1997-02-01

    The primary objective of this study is to improve our understanding on critical flow phenomena in a small size leak and to develop a model which can be used to estimate the critical mass flow rates through reactor vessel or primary coolant pipe wall. For this purpose, critical two-phase flow phenomena of subcooled water through short pipes (100 ≤ L ≤ 400 mm) with small diameters (3.4 ≤ D ≤ 7.15 mm) have been experimentally investigated for wide ranges of subcooling (0∼199 .deg. C) and pressure (0.5∼2.0MPa). To examine the effects of various parameters (i.e., the location of flashing inception, the degree of subcooling, the stagnation temperature and pressure, and the pipe size) on the critical two-phase flow rates of subcooled water, a total of 135 runs were made for various combinations of test parameters using four different L/D test sections. Experimental results that show effects of various parameters on subcooled critical two-phase flow rates are presented. The measured static pressure profiles along the discharge pipe show that the critical flow rate can be strongly influenced by the flashing location. The locations of saturation pressure for different values of the stagnation subcooling have been consistently determined from the pressure profiles. Based upon the test results, two important parameters have been identified. These are cold state discharge coefficient and dimensionless subcooling, which are found to efficiently take into account the test section geometry and the stagnation conditions, respectively. A semi-empirical model has been developed to predict subcooled two-phase flow rates through small size openings. This model provides a simple and direct calculation of the critical mass flow rates with information on the initial condition and on the test section geometry. Comparisons between the mass fluxes calculated by present model and a total of 755 selected experimental data from 9 different investigators show that the agreement is

  3. Nuclear Criticality Technology and Safety Project parameter study database

    International Nuclear Information System (INIS)

    Toffer, H.; Erickson, D.G.; Samuel, T.J.; Pearson, J.S.

    1993-03-01

    A computerized, knowledge-screened, comprehensive database of the nuclear criticality safety documentation has been assembled as part of the Nuclear Criticality Technology and Safety (NCTS) Project. The database is focused on nuclear criticality parameter studies. The database has been computerized using dBASE III Plus and can be used on a personal computer or a workstation. More than 1300 documents have been reviewed by nuclear criticality specialists over the last 5 years to produce over 800 database entries. Nuclear criticality specialists will be able to access the database and retrieve information about topical parameter studies, authors, and chronology. The database places the accumulated knowledge in the nuclear criticality area over the last 50 years at the fingertips of a criticality analyst

  4. Refinement of criticality and breeding parameters by means of experiments on a series of critical assemblies

    International Nuclear Information System (INIS)

    Golubev, V.I.; Dulin, V.A.; Kazanskij, Yu.A.; Mamontov, V.M.; Mozhaev, V.K.; Sidorov, G.I.

    1980-01-01

    A programme of measurements was performed on a number of critical assemblies with the aim of obtaining reliable experimental data under conditions approximating the simplest calculation model. To this end the neutron balance at the centres of the BFS-31, BFS-33, BFS-35, BFS-38, KBR-3 and KBR-7 critical assemblies was investigated. These assemblies contained central inserts made of uranium dioxide (BFS-33), natural uranium oxide and plutonium metal (BFS-31), natural uranium and plutonium metal (BFS-38), 90% enriched metallic uranium and stainless steel (KBR-3) and enriched uranium dioxide and nickel (KBR-7). The composition of the inserts was such that Ksub(infinite)=1. The K + values, the ratios of the reaction rates of the principal raw material and fissionable isotopes and the reactivity coefficients of a number of materials were measured in the inserts. The components of the breeding coefficient were measured at the centre of the BFS-39 critical assembly which simulates a power reactor (simplest composition with low- and high-enrichment zones and no control mechanism). The authors describe briefly the critical assemblies, the methods of measurement and calculation and methods of correcting for differences between the calculation model and the conditions under which the measurements were performed and compare the results of the experiments with the corresponding theoretical values obtained using various systems of group constants. In their latest versions, the group constants derived from different sets of integral experiments describe the experimental data much better than was previously possible. The deviations which occur in the predicted criticality and breeding parameters using different versions of the constants essentially reflect the difference in the results of the sets of integral experiments that were used for the group constants. (author)

  5. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Yu

    2017-05-01

    Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  6. Critical Parameters and Critical-Region (p,ρ ,T) Data of trans-1,1,1,3-Tetrafluorobut-2-ene [HFO-1354mzy(E)

    Science.gov (United States)

    Kimura, Takeru; Kayukawa, Yohei; Miyamoto, Hiroyuki; Saito, Kiyoshi

    2017-08-01

    This study presents the experimental measurement of the pρ T properties and critical parameters of a low GWP type refrigerant, trans-1,1,1,3-Tetrafluorobut-2-ene (HFO-1354mzy(E)). The sample purity of the substance was 99 area %. p ρ T property measurements and visual observations of the meniscus of HFO-1354mzy(E) were carried out using a metal-bellows volumometer with an optical cell. The critical temperature was determined by observation of the critical opalescence. The critical pressure and critical density were determined as the inflection point of the isothermal p ρ T property data at the critical temperature. For more precise clarification of the thermodynamic surface in the vicinity of the critical point, additional p ρ T property measurements were carried out on three isotherms in the supercritical region. The expanded uncertainties (k = 2) in the temperature, pressure, and density measurements were estimated to be less than 3 mK, 1.2 kPa, and 0.32 \\hbox {kg} \\cdot \\hbox {m}^{-3}, respectively. The expanded uncertainties of the critical parameters were estimated to be less than 13 mK, 1.4 kPa, and 2.3 \\hbox {kg} \\cdot \\hbox {m}^{-3}, respectively. These values are the first reported for HFO-1354mzy(E) and are necessary for the development of its equation of state in the near future.

  7. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  8. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  9. Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy

    International Nuclear Information System (INIS)

    Fritz, I.J.

    1987-01-01

    Experimental measurements of critical layer thicknesses (CLT's) in strained-layer epitaxy are considered. Finite experimental resolution can have a major effect on measured CLT's and can easily lead to spurious results. The theoretical approach to critical layer thicknesses of J. W. Matthews [J. Vac. Sci. Technol. 12, 126 (1975)] has been modified in a straightforward way to predict the apparent critical thickness for an experiment with finite resolution in lattice parameter. The theory has also been modified to account for the general empirical result that fewer misfit dislocations are generated than predicted by equilibrium calculation. The resulting expression is fit to recent x-ray diffraction data on InGaAs/GaAs and SiGe/Si. The results suggest that CLT's in these systems may not be significantly larger than predicted by equilibrium theory, in agreement with high-resolution measurements

  10. Test calculations of physical parameters of the TRX,BETTIS and MIT critical assemblies according to the TRIFON program

    International Nuclear Information System (INIS)

    Kochurov, B.P.

    1980-01-01

    Results of calculations of physical parameters characterizing the TRX, MIT and BETTIS critical assemblies obtained according to the program TRIFON are presented. The program TRIFON permits to calculate the space-energy neutron distribution in the multigroup approximation in a multizone cylindrical cell. Results of comparison of the TRX, BETTIS and MIT crytical assembly parameters with experimental data and calculational results according to the Monte Carlo method are presented as well. Deviations of the parameters are in the range of 1.5-2 of experimental errors. Data on the interference of uranium 238 levels in the resonant neutron absorption in the cell are given [ru

  11. Experimental facilities of Valduc critical station

    International Nuclear Information System (INIS)

    Mangin, D.; Maubert, L.

    1975-01-01

    The critical facility of Valduc and its experimentation possibilities are described. The different experimental programs carried out since 1962 are briefly reviewed. The last program involving a plutonium nitrate solution (18.9wt% 240 Pu) in a large parallelepipedic tank is presented and main results given [fr

  12. Scaling, crossover, and classical behavior in the order parameter equation for coexisting phases of benzene from triple point to critical point

    International Nuclear Information System (INIS)

    Shimansky, Yu.I.; Shimanskaya, E.T.

    1996-01-01

    The temperature dependence of the density along the coexistence curve of benzene in the vicinity of the critical point and in a wide temperature range down to the triple point was investigated. The original results as well as literature data were statistically treated. A regression analysis of data on the critical exponents and critical amplitudes used as fitting parameters in a model equations was carried out. An adequate description of the order parameter by the three-term scaling equation in the entire two-phase (liquid-gas) region of benzene was obtained with experimental values of Β O -0.352 ±0.003 and δ = 1.3 ± 0.2, which are inconsistent with the Ising model (Β O = 0.325) and the Wegner exponent (δ = 0.5), respectively. It is shown that the equation with fixed classical exponents does not adequately describe the experimental data even far from the critical point

  13. Thermal power blocks with ultra-super-critical steam parameters

    Directory of Open Access Journals (Sweden)

    Aličić Merim M.

    2016-01-01

    Full Text Available New generation of thermal power plants are required to have increased utilization rates, in addition to reduced emissions of pollutants, in order to reach optimal solutions, from both technical and economic point of view. One way to achieve greater utilization efficiency is operation of the plant at super critical (SC or ultra super critical steam parameters (USC. However, achieving high parameters depends on use of new materials, which have better properties at high temperatures and pressures, use of new welding technologies and by solving the problem of corrosion. The paper gives an overview of some of the plants with these parameters.

  14. Criticality parameters for uranyl nitrate or plutonium nitrate systems in tributyl phosphate/kerosine and water

    International Nuclear Information System (INIS)

    Weber, W.

    1985-01-01

    This report presents the calculated values of smallest critical masses and volumina and neutron physical parameters for uranyl nitrate (3, 4, 5% U-235) or plutonium nitrate (5% Pu-240), each in a 30 per cent solution of tributyl phosphate (TBP)/kerosine. For the corresponding nitrate-water solutions, newly calculated results are presented together with a revised solution density model. A comparison of the data shows to what extent the criticality of nitrate-TBP/kerosine systems can be assessed on the basis of nitrate-water parameters, revealing that such data can be applied to uranyl nitrate/water systems, taking into account that the smallest critical mass of uranyl nitrate-TBP/kerosine systems, up to a 5 p.c. U-235 enrichment, is by 4.5 p.c. at the most smaller than that of UNH-water solutions. Plutonium nitrate (5% Pu-240) in the TBP/kerosine solution will have a smallest critical mass of up to 7 p.c. smaller, as compared with the water data. The suitability of the computing methods and cross-sections used is verified by recalculating experiments carried out to determine the lowest critical enrichment of uranyl nitrate. The calculated results are well in agreement with experimental data. The lowest critical enrichment is calculated to be 2.10 p.c. in the isotope U-235. (orig.) [de

  15. Experimental and numerical study of influence of ferromagnetic cover on critical current of BiSCCO-2223/Ag tape superconductor

    International Nuclear Information System (INIS)

    Vojenciak, M; Souc, J; Goemoery, F

    2009-01-01

    Samples of commercially available BiSCCO-2223/Ag tape have been partially covered by the ferromagnetic material. Improvement of the self-field critical current up to 15 % has been achieved by this procedure. A critical current of such tape strongly depends on geometric and magnetic properties of both, the superconducting tape as well as the ferromagnetic cover. Numerical simulations, based on the critical state model using commercial finite element method (FEM) code, have been performed. Properties of superconductor are characterized by anisotropic dependence of the critical current density on magnetic field as well as detail geometry of filaments. The ferromagnetic material is characterized by nonlinear magnetization curve. Nonlinear dependences of the critical current on selected parameters are shown in this work. Optimization of the cover parameters using these curves has been made. Samples with various parameters have been manufactured for the confirmation of numerical simulations results. Experimental results are in good qualitative agreement with results obtained by numerical simulations.

  16. STACY and TRACY: nuclear criticality experimental facilities under construction

    International Nuclear Information System (INIS)

    Kobayashi, I.; Takeshita, I.; Yanagisawa, H.; Tsujino, T.

    1992-01-01

    Japan Atomic Energy Research Institute is constructing a Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF, where the following research themes essential for evaluating safety problems relating to back-end technology in nuclear fuel cycle facilities will be studied: nuclear criticality safety research; research on advanced reprocessing processes and partitioning; and research on transuranic waste treatment and disposal. To perform nuclear criticality safety research related to the reprocessing of light water reactor spent fuels, two criticality experimental facilities, STACY and TRACY, are under construction. STACY (Static Criticality Facility) will be used for the study of criticality conditions of solution fuels, uranium, plutonium and their mixtures. TRACY (Transient Criticality Facility) will be used to investigate criticality accident phenomena with uranium solutions. The construction progress and experimental programmes are described in this Paper. (author)

  17. Measurement of the main and critical parameters for optimal laser treatment of heart disease

    Science.gov (United States)

    Kabeya, FB; Abrahamse, H.; Karsten, AE

    2017-10-01

    Laser light is frequently used in the diagnosis and treatment of patients. As in traditional treatments such as medication, bypass surgery, and minimally invasive ways, laser treatment can also fail and present serious side effects. The true reason for laser treatment failure or the side effects thereof, remains unknown. From the literature review conducted, and experimental results generated we conclude that an optimal laser treatment for coronary artery disease (named heart disease) can be obtained if certain critical parameters are correctly measured and understood. These parameters include the laser power, the laser beam profile, the fluence rate, the treatment time, as well as the absorption and scattering coefficients of the target treatment tissue. Therefore, this paper proposes different, accurate methods for the measurement of these critical parameters to determine the optimal laser treatment of heart disease with a minimal risk of side effects. The results from the measurement of absorption and scattering properties can be used in a computer simulation package to predict the fluence rate. The computing technique is a program based on the random number (Monte Carlo) process and probability statistics to track the propagation of photons through a biological tissue.

  18. Assessment CANDU physics codes using experimental data - part 1: criticality measurement

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok; Jeong, Chang Joon

    2001-08-01

    In order to assess the applicability of MCNP-4B code to the heavy water moderated, light water cooled and pressure-tube type reactor, the MCNP-4B physics calculations has been carried out for the Deuterium Critical Assembly (DCA), and the results were compared with those of the experimental data. In this study, the key safety parameters like as the multiplication factor, void coefficient, local power peaking factor and bundle power distribution in the scattered core are simulated. In order to use the cross section data consistently for the fuels to be analyzed in the future, new MCNP libraries have been generated from ENDF/B-VI release 3. Generally, the MCNP-4B calculation results show a good agreement with experimental data of DCA core. After benchmarking MCNP-4B against available experimental data, it will be used as the reference tool to benchmark design and analysis codes for the advanced CANDU fuels

  19. Experimental study of low-titre critical two-phase flows

    International Nuclear Information System (INIS)

    Seynhaeve, Jean-Marie

    1980-02-01

    This report for engineering graduation addresses the analysis of two-phase critical flows obtained by expansion of a saturated or under-cooled liquid. For a titre greater than 0,1, theoretical studies give a rather good prediction of critical flow rates, whereas in the case of a lower titre, results obtained by published studies display some discrepancies, and the test duct geometry and important unbalances between phases seem to be at the origin of these discrepancies. In order to study these origins of discrepancies, three test campaigns have been performed: on a test duct provided by the CENG, on two long tubes, and on holes. Thus, after a bibliographical study which outlines drawbacks of previous studies, the author proposes a detailed description of experimental installations (creation of critical flows, measurement chain, measurement processing, measurement device calibration, quality and precision). Experimental results are then systematically explored, and differences are explained. The author then addresses the theoretical aspect of the determination of critical flow rates by reviewing calculation models and by comparing their results with experimental results. The validity of each model is thus discussed. The author then proposes a calculation model which can be applied to critical flows developed in holes. This model is notably inspired by experimental conclusions and gives very satisfying practical results

  20. A Systematic Approach to Analyse Critical Tribological Parameters in an Industrial Case Study of Progressive Die Sequence Production

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Nielsen, Chris V.; Bay, Niels

    the tribologically critical parameters in an industrial production line in which a progressive tool sequence is used. The current industrial case is based on multistage deep drawing followed by an ironing operation. Severe reduction in the ironing stage leads to high interface temperature and pressure. As a result......, subsequent lubricant film breakdown in the production line occurs. The methodology combines finite element simulations and experimental measurements to determine tribological parameters which will later be used in laboratory testing of possible tribology systems....

  1. Determination of Critical Parameters Based on the Intensity of Transmitted Light Around Gas-Liquid Interface: Critical Parameters of CO

    Science.gov (United States)

    Nakayama, Masaki; Katano, Hiroaki; Sato, Haruki

    2014-05-01

    A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( and ( kg m, respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.

  2. Critical parameters of hard-core Yukawa fluids within the structural theory

    Science.gov (United States)

    Bahaa Khedr, M.; Osman, S. M.

    2012-10-01

    A purely statistical mechanical approach is proposed to account for the liquid-vapor critical point based on the mean density approximation (MDA) of the direct correlation function. The application to hard-core Yukawa (HCY) fluids facilitates the use of the series mean spherical approximation (SMSA). The location of the critical parameters for HCY fluid with variable intermolecular range is accurately calculated. Good agreement is observed with computer simulation results and with the inverse temperature expansion (ITE) predictions. The influence of the potential range on the critical parameters is demonstrated and the universality of the critical compressibility ratio is discussed. The behavior of the isochoric and isobaric heat capacities along the equilibrium line and the near vicinity of the critical point is discussed in details.

  3. Reuse-centric Requirements Analysis with Task Models, Scenarios, and Critical Parameters

    Directory of Open Access Journals (Sweden)

    Cyril Montabert

    2007-02-01

    Full Text Available This paper outlines a requirements-analysis process that unites task models, scenarios, and critical parameters to exploit and generate reusable knowledge at the requirements phase. Through the deployment of a critical-parameter-based approach to task modeling, the process yields the establishment of an integrative and formalized model issued from scenarios that can be used for requirements characterization. Furthermore, not only can this entity serve as interface to a knowledge repository relying on a critical-parameter-based taxonomy to support reuse but its characterization in terms of critical parameters also allows the model to constitute a broader reuse solution. We discuss our vision for a user-centric and reuse-centric approach to requirements analysis, present previous efforts implicated with this line of work, and state the revisions brought to extend the reuse potential and effectiveness of a previous iteration of a requirements tool implementing such process. Finally, the paper describes the sequence and nature of the activities involved with the conduct of our proposed requirements-analysis technique, concluding by previewing ongoing work in the field that will explore the feasibility for designers to use our approach.

  4. Experimental critical parameters of enriched uranium solution in annular tank geometries

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all

  5. Experimental critical parameters of enriched uranium solution in annular tank geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  6. Order parameter fluctuations at a critical point - an exact result about percolation -

    International Nuclear Information System (INIS)

    Botet, Robert

    2011-01-01

    The order parameter of the system in the critical state, is expected to undergo large non-Gaussian fluctuations. However, almost nothing is known about the mathematical forms of the possible probability distributions of the order parameter. A remarkable exception is the site-percolation on the Bethe lattice, for which the complete order-parameter distribution has been recently derived at the critical point. Surprisingly, it appears to be the Kolmogorov-Smirnov distribution, well known in very different areas of mathematical statistics. In the present paper, we explain first how this special distribution could appear naturally in the context of the critical systems, under the assumption (still virtually unstudied) of the exponential distribution of the number of domains of a given size. In a second part, we present for the first time the complete derivation of the order-parameter distribution for the critical percolation model on the Bethe lattice, thus completing a recent publication announcing this result.

  7. Nuclear Criticality Experimental Research Center (NCERC) Overview

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes, David Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activities that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.

  8. Critical safety parameters: The logical approach to refresher training

    International Nuclear Information System (INIS)

    Johnson, A.R.; Pilkington, W.; Turner, S.

    1991-01-01

    Nuclear power plant managers must ensure that control room staff are able to perform effectively. This is of particular importance through the longer term after initial authorization. Traditionally refresher training has been based on delivery of fragmented training packages typically derived from the initial authorization training programs. Various approaches have been taken to provide a more integrated refresher training program. However, methods such as job and task analysis and subject matter expert derived training have tended to develop without a focused clear overall training objective. The primary objective of all control room staff training is to ensure a proper and safe response to all plant transients. At the Point Lepreau Nuclear Plant, this has defined the Critical Safety Parameter based refresher training program. The overall objective of the Critical Safety Parameter training program is to ensure that control room staff can monitor and control a discrete set of plant parameters. Maintenance of the selected parameters within defined boundaries assures adequate cooling of the fuel and containment of radioactivity. Control room staff need to be able to reliably respond correctly to plant transients under potentially high stress conditions,. utilizing the essential knowledge and skills to deal with such transients. The inference is that the knowledge and skills must be limited to that which can be reliably recalled. This paper describes how the Point Lepreau Nuclear Plant has developed a refresher training program on the basis of a limited number of Critical Safety Parameters. Through this approach, it has been possible to define the essential set of knowledge and skills which ensures a correct response to plant transients

  9. Critical parameters for isobutane determined by the image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Masui, G. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Honda, Y. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Uematsu, M. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan)]. E-mail: uematsu@mech.keio.ac.jp

    2006-12-15

    (p, {rho}, T) Measurements and visual observations of the meniscus for isobutane were carried out carefully in the critical region over the range of temperatures: -15 mK {<=} (T - T {sub c}) {<=} 35 mK, and of densities: -7.5 kg . m{sup -3} {<=} ({rho} - {rho} {sub c}) {<=} 7.5 kg . m{sup -3} by a metal-bellows volumometer with an optical cell. Vapor pressures were also measured at T = (310, 405, 406, 407, and 407.5) K. The critical point of T {sub c} and {rho} {sub c} was determined by the image analysis of the critical opalescence which is proposed in this study. The critical pressure p {sub c} was determined to be the pressure measurement at the critical point. Comparisons of the critical parameters with values given in the literature are presented.

  10. Critical parameters for isobutane determined by the image analysis

    International Nuclear Information System (INIS)

    Masui, G.; Honda, Y.; Uematsu, M.

    2006-01-01

    (p, ρ, T) Measurements and visual observations of the meniscus for isobutane were carried out carefully in the critical region over the range of temperatures: -15 mK ≤ (T - T c ) ≤ 35 mK, and of densities: -7.5 kg . m -3 ≤ (ρ - ρ c ) ≤ 7.5 kg . m -3 by a metal-bellows volumometer with an optical cell. Vapor pressures were also measured at T = (310, 405, 406, 407, and 407.5) K. The critical point of T c and ρ c was determined by the image analysis of the critical opalescence which is proposed in this study. The critical pressure p c was determined to be the pressure measurement at the critical point. Comparisons of the critical parameters with values given in the literature are presented

  11. Critical and subcritical parameters of the system simulating plutonium metal dissolution

    International Nuclear Information System (INIS)

    Vasilev, Yury Yu.; Ryazanov, Boris G.; Sviridov, Victor I.; Mozhayeva, Lubov I.

    2003-01-01

    Dissolution of plutonium metal was simulated using the Monte Carlo computer code to calculate criticality safety limits for the process. Calculations were made for the constant masses of plutonium charged to the dissolving vessel considering distribution of plutonium in metal and solution phases. Critical parameters and limits were calculated as a function of dissolving vessel volume and plutonium metal mass. 240 Pu content was assumed to be from 0% to 10% (mass). Critical parameters were evaluated for the system with a water reflector. Results of this paper may be used in the designing process equipment for plutonium metal dissolution. (author)

  12. Parameter space of experimental chaotic circuits with high-precision control parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Francisco F. G. de; Rubinger, Rero M. [Instituto de Física e Química, Universidade Federal de Itajubá, Itajubá, MG (Brazil); Sartorelli, José C., E-mail: sartorelli@if.usp.br [Universidade de São Paulo, São Paulo, SP (Brazil); Albuquerque, Holokx A. [Departamento de Física, Universidade do Estado de Santa Catarina, Joinville, SC (Brazil); Baptista, Murilo S. [Institute of Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen (United Kingdom)

    2016-08-15

    We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.

  13. A combined experimental and analytical approach for interface fracture parameters of dissimilar materials in electronic packages

    International Nuclear Information System (INIS)

    Kay, N.R.; Ghosh, S.; Guven, I.; Madenci, E.

    2006-01-01

    This study concerns the development of a combined experimental and analytical technique to determine the critical values of fracture parameters for interfaces between dissimilar materials in electronic packages. This technique utilizes specimens from post-production electronic packages. The mechanical testing is performed inside a scanning electron microscope while the measurements are achieved by means of digital image correlation. The measured displacements around the crack tip are used as the boundary conditions for the analytical model to compute the energy release rate. The critical energy release rate values obtained from post-production package specimens are obtained to be lower than those laboratory specimens

  14. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  15. Experimental Verification of Statistically Optimized Parameters for Low-Pressure Cold Spray Coating of Titanium

    Directory of Open Access Journals (Sweden)

    Damilola Isaac Adebiyi

    2016-06-01

    Full Text Available The cold spray coating process involves many process parameters which make the process very complex, and highly dependent and sensitive to small changes in these parameters. This results in a small operational window of the parameters. Consequently, mathematical optimization of the process parameters is key, not only to achieving deposition but also improving the coating quality. This study focuses on the mathematical identification and experimental justification of the optimum process parameters for cold spray coating of titanium alloy with silicon carbide (SiC. The continuity, momentum and the energy equations governing the flow through the low-pressure cold spray nozzle were solved by introducing a constitutive equation to close the system. This was used to calculate the critical velocity for the deposition of SiC. In order to determine the input temperature that yields the calculated velocity, the distribution of velocity, temperature, and pressure in the cold spray nozzle were analyzed, and the exit values were predicted using the meshing tool of Solidworks. Coatings fabricated using the optimized parameters and some non-optimized parameters are compared. The coating of the CFD-optimized parameters yielded lower porosity and higher hardness.

  16. Reflections on Critical Thinking: Lessons from a Quasi-Experimental Study

    Science.gov (United States)

    Grussendorf, Jeannie; Rogol, Natalie C.

    2018-01-01

    In a pre/post quasi-experimental study assessing the impact of a specific curriculum on critical thinking, the authors employed a critical thinking curriculum in two sections of a U.S. foreign policy class. The authors found that the interactive and scaffolded critical thinking curriculum yielded statistically significant critical thinking…

  17. Critical parameters for propane determined by the image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Y.; Sato, T. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Uematsu, M. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan)], E-mail: uematsu@mech.keio.ac.jp

    2008-02-15

    The (p, {rho}, T) measurements and visual observations of the meniscus for propane were carried out carefully in the critical region over the range of temperatures: -60 mK {<=} (T - T{sub c}) {<=} 40 mK and of densities: -4 kg . m{sup -3} {<=} ({rho} - {rho}{sub c}) {<=} 6 kg . m{sup -3} by a metal-bellows volumometer with an optical cell. Vapour pressures were also measured at T = (320.000, 343.132, 369.000, and 369.625) K. The critical point of T{sub c}, {rho}{sub c}, and p{sub c} was determined by the image analysis of the critical opalescence. Comparisons of the critical parameters with values given in the literature are presented.

  18. Critical parameters for propane determined by the image analysis

    International Nuclear Information System (INIS)

    Honda, Y.; Sato, T.; Uematsu, M.

    2008-01-01

    The (p, ρ, T) measurements and visual observations of the meniscus for propane were carried out carefully in the critical region over the range of temperatures: -60 mK ≤ (T - T c ) ≤ 40 mK and of densities: -4 kg . m -3 ≤ (ρ - ρ c ) ≤ 6 kg . m -3 by a metal-bellows volumometer with an optical cell. Vapour pressures were also measured at T = (320.000, 343.132, 369.000, and 369.625) K. The critical point of T c , ρ c , and p c was determined by the image analysis of the critical opalescence. Comparisons of the critical parameters with values given in the literature are presented

  19. Shift of the superconducting critical parameters due to correlated disorder

    International Nuclear Information System (INIS)

    Gitterman, M.; Shapiro, I.; Shapiro, B.Ya.

    2012-01-01

    Shift of the critical temperature and second critical magnetic field are calculated for a superconductor with Gaussian correlated disorder. All calculations have been performed in the framework of the stochastic Ginzburg-Landau equation. For uncorrelated disorder the macroscopic critical temperature is determined by the average of the local critical temperature across the sample, while for correlated disorder both the critical temperature and the upper critical magnetic field depend on disorder correlation length. In a nonuniform superconductor with randomly distributed local critical temperature both the macroscopic critical temperature and the upper critical magnetic field strongly depend on the characteristic correlation length ρ 0 of correlated disorder. The shift of the macroscopic critical parameters from those for non-correlated disorder, which does not exist for white noise, is obtained for small ρ 0 in the framework of the Ginzburg-Landau theory.

  20. Critical behavior of order-parameter fluctuations in liquid 4He near T/sub lambda/

    International Nuclear Information System (INIS)

    Lambert, B.; Perzynski, R.; Salin, D.

    1979-01-01

    We hve measured the critical attenuation of first sound in liquid 4 He from 550 to 1700 MHz. We can describe the attenuation due to the fluctuations of the order parameter up to 1.7 GHz, using experimental data at lower frequencies from various authors. Above T/sub lambda/, the fluctuations are the only phenomena and are analyzed with a scaling function of ωtau 2 with a characteristic time tau 2 = 2 x 10 -12 x t/sup -1.062/ sec, t = vertical-bar (T-T/sub lambda/)/T/sub lambda/vertical-bar. Below T/sub lambda/, several phenomena are present. In the range of 1 GHz, the main contribution is due to the fluctuations. We demonstrate experimentally that the fluctuation attenuation is not symmetric about T/sub lambda/. We fit our data with a scaling function of ωtau 2

  1. Estimation of Critical Parameters in Concrete Production Using Multispectral Vision Technology

    DEFF Research Database (Denmark)

    Hansen, Michael Edberg; Ersbøll, Bjarne Kjær; Carstensen, Jens Michael

    2005-01-01

    We analyze multispectral reflectance images of concrete aggregate material, and design computational measures of the important and critical parameters used in concrete production. The features extracted from the images are exploited as explanatory variables in regression models and used to predict...... aggregate type, water content, and size distribution. We analyze and validate the methods on five representative aggregate types, commonly used in concrete production. Using cross validation, the generated models proves to have a high performance in predicting all of the critical parameters....

  2. Experimental determination of mechanical parameters in sensorless ...

    Indian Academy of Sciences (India)

    V S S PAVAN KUMAR HARI

    pulse width modulation (PWM) selected. The three-phase .... and the simulation and experimental results are presented. ... between 0 and Ts due to the process of PWM. Hence, the .... MATLAB SIMULINK with the machine parameters in.

  3. Heat transfer critical conditions in two-plase flow

    International Nuclear Information System (INIS)

    Assis, M.C.V. de.

    1980-02-01

    The critical heat flux for forced-convection flow of water inside an uniformly heated circular channel is analysed, taking into account several flow patterns usually met in this type of investigation. Comments about nomenclature, experimental methods and influence of operational parameters used in the description of this phenomenon are made. The experimental results from 187 tests of critical heat flux at low pressure are presented. One empirical correlation between the critical heat flux and the independent parameters, was developed. Some correlations developed in other laboratories in the same range of parameters are mentioned and compared with present one. (Author) [pt

  4. Modernization of control system of the beam critical parameters at a lu-10 industrial electron accelerator

    International Nuclear Information System (INIS)

    Pomatsalyuk, R.I.; Uvarov, V.L.; Shevchenko, V.A.; Shlyakhov, I.N.

    2017-01-01

    Continuous control and monitoring of critical parameters of radiation processing of products is one of the requirements of the international standard ISO 11137. The current system to monitoring the parameters of radiation treatment of products at the LU-10 accelerator is being in operation for more than 15 years. The life-time of the mayor part of measuring modules is over, and those modules are no longer produced. Modernization of monitoring system with the use of the multi-functional USB modules, single-board mini-computers and EPICS control system (Experimental Physics and Industrial Control System) is considered. The architecture and software for a new monitoring system have been developed. Debugging and operation of the system in a test mode is performed

  5. An Improved Method to Control the Critical Parameters of a Multivariable Control System

    Science.gov (United States)

    Subha Hency Jims, P.; Dharmalingam, S.; Wessley, G. Jims John

    2017-10-01

    The role of control systems is to cope with the process deficiencies and the undesirable effect of the external disturbances. Most of the multivariable processes are highly iterative and complex in nature. Aircraft systems, Modern Power Plants, Refineries, Robotic systems are few such complex systems that involve numerous critical parameters that need to be monitored and controlled. Control of these important parameters is not only tedious and cumbersome but also is crucial from environmental, safety and quality perspective. In this paper, one such multivariable system, namely, a utility boiler has been considered. A modern power plant is a complex arrangement of pipework and machineries with numerous interacting control loops and support systems. In this paper, the calculation of controller parameters based on classical tuning concepts has been presented. The controller parameters thus obtained and employed has controlled the critical parameters of a boiler during fuel switching disturbances. The proposed method can be applied to control the critical parameters like elevator, aileron, rudder, elevator trim rudder and aileron trim, flap control systems of aircraft systems.

  6. Existing experimental criticality data applicable to nuclear-fuel-transportation systems

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1983-02-01

    Analytical techniques are generally relied upon in making criticality evaluations involving nuclear material outside reactors. For these evaluations to be accepted the calculations must be validated by comparison with experimental data for a known set of conditions having physical and neutronic characteristics similar to those conditions being evaluated analytically. The purpose of this report is to identify those existing experimental data that are suitable for use in verifying criticality calculations on nuclear fuel transportation systems. In addition, near term needs for additional data in this area are identified. Of the considerable amount of criticality data currently existing, that are applicable to non-reactor systems, those particularly suitable for use in support of nuclear material transportation systems have been identified and catalogued into the following groups: (1) critical assemblies of fuel rods in water; (2) critical assemblies of fuel rods in water containing soluble neutron absorbers; (3) critical assemblies containing solid neutron absorber; (4) critical assemblies of fuel rods in water with heavy metal reflectors; and (5) critical assemblies of fuel rods in water with irregular features. A listing of the current near term needs for additional data in each of the groups has been developed for future use in planning criticality research in support of nuclear fuel transportation systems. The criticality experiments needed to provide these data are briefly described and identified according to priority and relative cost of performing the experiments

  7. Economic incentives for additional critical experimentation applicable to fuel dissolution

    International Nuclear Information System (INIS)

    Mincey, J.F.; Primm, R.T. III; Waltz, W.R.

    1981-01-01

    Fuel dissolution operations involving soluble absorbers for criticality control are among the most difficult to establish economical subcritical limits. The paucity of applicable experimental data can significantly hinder a precise determination of a bias in the method chosen for calculation of the required soluble absorber concentration. Resorting to overly conservative bias estimates can result in excessive concentrations of soluble absorbers. Such conservatism can be costly, especially if soluble absorbers are used in a throw-away fashion. An economic scoping study is presented which demonstrates that additional critical experimentation will likely lead to reductions in the soluble absorber (i.e., gadolinium) purchase costs for dissolution operations. The results indicate that anticipated savings maybe more than enough to pay for the experimental costs

  8. Experimental determination of critical data of multi-component mixtures containing potential gasoline additives 2-butanol by a flow-type apparatus

    International Nuclear Information System (INIS)

    He, Maogang; Xin, Nan; Wang, Chengjie; Liu, Yang; Zhang, Ying; Liu, Xiangyang

    2016-01-01

    Graphical abstract: Experimental critical pressures of 2-butanol + hexane + heptane system. - Highlights: • Critical properties of six binary systems and two ternary systems were measured. • Six binary systems containing 2-butanol show non-ideal behavior in their T c –x 1 curves. • Non-ideal behavior of mixtures with 2-butanol relies on azeotropy. • Experimental data for binary systems were fitted well with Redlich–Kister equation. • Critical surfaces of ternary systems were plotted using the Cibulka’s expressions. - Abstract: In this work, we used a flow method for measurement of critical properties of six binary mixtures (2-butanol + cyclohexane, 2-butanol + hexane, 2-butanol + heptane, 2-butanol + octane, 2-butanol + nonane and 2-butanol + decane) and two ternary mixtures (2-butanol + hexane + heptane and 2-butanol + octane + decane). The critical properties were determined by observing the disappearance and reappearance of the gas–liquid phase meniscus in a quartz glass tube. The standard uncertainties of temperatures and pressures for both binary and ternary mixtures were estimated to be less than 0.2 K and 5.2 kPa, respectively. These critical data provide the boundaries of the two-phase regions of the related mixture systems. Six binary systems show non-ideal behaviors in the loci of critical temperatures. We used the Redlich–Kister equations to correlate the critical temperatures and pressures of these systems and listed the binary interaction parameters. The maximum average absolute deviation (AAD) of each binary system between experimental data and calculated results from Redlich–Kister equations is 0.038% for critical temperatures, and 0.244% for critical pressures. Moreover, the two ternary systems were newly reported and correlated by Cibulka’s and Singh’s expressions. The maximum AAD of critical temperatures and critical pressures are 0.103% and 0.433%, respectively.

  9. Experimental data and calculation studies of critical heat fluxes at local disturbances of geometry of WWER fuel assemblies

    International Nuclear Information System (INIS)

    Kobzar, L.L.; Oleksyuk, D.A.

    2001-01-01

    The results of experiments executed in RRC 'Kurchatov Institute on the thermal-physical critical facility SVD are presented herein. The experiments modeled the drawing of two fuel rods to each other till touching WWER-1000 reactor in FA. The experimental model is a 7-rod bundle with the heated length of 1 m. The primary goal of experiments was to acquire the quantitative factors of the reduction in the critical heat fluxes as contrasted to the basic model (without disturbances of FA geometry) at the expense of local disturbance of a rod bundle geometry. As it follows from the experiment, the effect of decrease of the critical heat rate depends on combination of regime parameters and it makes 15% in the most unfavorable case (Authors)

  10. Critical features of coupling parameter in synchronization of small world neural networks

    International Nuclear Information System (INIS)

    Li Yanlong; Ma Jun; Xu Wenke; Li Hongbo; Wu Min

    2008-01-01

    The critical features of a coupling parameter in the synchronization of small world neural networks are investigated. A power law decay form is observed in this spatially extended system, the larger linked degree becomes, the larger critical coupling intensity. There exists maximal and minimal critical coupling intensity for synchronization in the extended system. An approximate synchronization diagram has been constructed. In the case of partial coupling, a primary result is presented about the critical coupling fraction for various linked degree of networks

  11. Experimental investigation of the discharge valve dynamics in a reciprocating compressor for trans-critical CO2 refrigeration cycle

    International Nuclear Information System (INIS)

    Ma Yuan; He Zhilong; Peng Xueyuan; Xing Ziwen

    2012-01-01

    The self-acting valve has a significant influence on the efficiency and reliability of the reciprocating compressor. In the trans-critical CO 2 cycle, the large density and high pressure difference across the valve cause serious bending and impact stresses in the valve, offering great challenges for successful valve design. Experimental investigation of the valve dynamics is required in order to design a self-acting valve with a high efficiency and long life span for the trans-critical CO 2 compressor. A semi-hermetic reciprocating compressor was developed for application in CO 2 refrigeration, and a test system was incorporated into the compressor performance test rig, with a focus on investigating the dynamics of the discharge valves. With the experimental results, the movement of the valve was discussed in detail for the trans-critical CO 2 compressor, allowing for the study of the thermodynamic performance of the compressor. While varying design parameters such as pressure ratio, valve lift, spring stiffness and compressor speed, the movement of the discharge valve in the reciprocating CO 2 compressor was measured in order to investigate the major factors that influence the valve dynamics. The average valve speed increased from 0.71 m/s to 0.81 m/s as the discharge pressure changed from 7.8 MPa to 12 MPa. The experimental methods and results discussed in this paper could provide useful information for both valve testing and the optimization of their reliability in trans-critical CO 2 compressors.

  12. Experimental validation of TASS/SMR-S critical flow model for the integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si Won; Ra, In Sik; Kim, Kun Yeup [ACT Co., Daejeon (Korea, Republic of); Chung, Young Jong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    An advanced integral PWR, SMART (System- Integrated Modular Advanced ReacTor) is being developed in KAERI. It has a compact size and a relatively small power rating (330MWt) compared to a conventional reactor. Because new concepts are applied to SMART, an experimental and analytical validation is necessary for the safety evaluation of SMART. The analytical safety validation is being accomplished by a safety analysis code for an integral reactor, TASS/SMR-S developed by KAERI. TASS/SMR-S uses a lumped parameter one dimensional node and path modeling for the thermal hydraulic calculation and it uses point kinetics for the reactor power calculation. It has models for a general usage such as a core heat transfer model, a wall heat structure model, a critical flow model, component models, and it also has many SMART specific models such as an once through helical coiled steam generator model, and a condensate heat transfer model. To ensure that the TASS/SMR-S code has the calculation capability for the safety evaluation of SMART, the code should be validated for the specific models with the separate effect test experimental results. In this study, TASS/SMR-S critical flow model is evaluated as compared with SMD (Super Moby Dick) experiment

  13. Evaluated experimental database on critical heat flux in WWER FA models

    International Nuclear Information System (INIS)

    Artamonov, S.; Sergeev, V.; Volkov, S.

    2015-01-01

    The paper presents the description of the evaluated experimental database on critical heat flux in WWER FA models of new designs. This database was developed on the basis of the experimental data obtained in the years of 2009-2012. In the course of its development, the database was reviewed in terms of completeness of the information about the experiments and its compliance with the requirements of Rostekhnadzor regulatory documents. The description of the experimental FA model characteristics and experimental conditions was specified. Besides, the experimental data were statistically processed with the aim to reject incorrect ones and the sets of experimental data on critical heat fluxes (CHF) were compared for different FA models. As a result, for the fi rst time, the evaluated database on CHF in FA models of new designs was developed, that was complemented with analysis functions, and its main purpose is to be used in the process of development, verification and upgrading of calculation techniques. The developed database incorporates the data of 4183 experimental conditions obtained in 53 WWER FA models of various designs. Keywords: WWER reactor, fuel assembly, CHF, evaluated experimental data, database, statistical analysis. (author)

  14. Critical comparison of experimental data and theoretical predictions for N-d scattering below the breakup threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kievsky, A. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Rosati, S. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)]|[Pisa Univ. (Italy). Dipt. di Fisica; Tornow, W. [Duke Univ., Durham, NC (United States). Dept. of Physics; Viviani, M. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)

    1996-09-30

    The theoretical approaches for studying N-d processes using realistic, semi-phenomenological NN potentials have matured considerably during the last few years. Accurate calculations of scattering observables are now feasible. Recently, high-quality measurements of N-d scattering at energies below the deuteron breakup threshold became available. Therefore, a detailed comparison between theory and experimental data can now be performed. In this paper the various sets of experimental data for the N-d differential cross section, and the vector and tensor analyzing powers are examined in a critical way in the incident nucleon energy range from 1 to 3 MeV. In order to identify possible inadequacies of the interaction models adopted, phase-shift analyses were performed and compared to the theoretical parameters. (orig.).

  15. Numerical and experimental investigation of geometric parameters in projection welding

    DEFF Research Database (Denmark)

    Kristensen, Lars; Zhang, Wenqi; Bay, Niels

    2000-01-01

    parameters by numerical modeling and experimental studies. SORPAS, an FEM program for numerical modeling of resistance welding, is developed as a tool to help in the phase of product design and process optimization in both spot and projection welding. A systematic experimental investigation of projection...... on the numerical and experimental investigations of the geometric parameters in projection welding, guidelines for selection of the geometry and material combinations in product design are proposed. These will be useful and applicable to industry.......Resistance projection welding is widely used for joining of workpieces with almost any geometric combination. This makes standardization of projection welding impossible. In order to facilitate industrial applications of projection welding, systematic investigations are carried out on the geometric...

  16. Steady state and transient critical heat flux examinations

    International Nuclear Information System (INIS)

    Szabados, L.

    1978-02-01

    In steady state conditions within the P.W.R. parameter range the critical heat flux correlations based on local parameters reproduce the experimental data with less deviations than those based on system parameters. The transient experiments were restricted for the case of power transients. A data processing method for critical heat flux measurements has been developed and the applicability of quasi steady state calculation has been verified. (D.P.)

  17. An experimental study on effect of process parameters in deep ...

    African Journals Online (AJOL)

    The effects of various deep drawing process parameters were determined by experimental study with the use of Taguchi fractional factorial design and analysis of variance for AA6111 Aluminum alloy. The optimum process parameters were determined based on their influence on the thickness variation at different regions ...

  18. Single parameter controls for nuclear criticality safety at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Baker, J.S.; Peek, W.M.

    1995-01-01

    At the Oak Ridge Y-12 Plant, there are numerous situations in which nuclear criticality safety must be assured and subcriticality demonstrated by some method other than the straightforward use of the double contingency principle. Some cases are cited, and the criticality safety evaluation of contaminated combustible waste collectors is considered in detail. The criticality safety evaluation for combustible collectors is based on applying one very good control to the one controllable parameter. Safety can only be defended when the contingency of excess density is limited to a credible value based on process knowledge. No reasonable single failure is found that will result in a criticality accident. The historically accepted viewpoint is that this meets double contingency, even though there are not two independent controls on the single parameter of interest

  19. Critical parameters of Quark-Hadron phase transition with interacting and massive quarks

    International Nuclear Information System (INIS)

    Singh, C.P.; Patra, B.K.

    1994-06-01

    Current techniques to simulate the dynamical behaviour of Quark-Gluon Plasma (QGP) reveal that the order of the phase transition as well as the values of the critical parameters depend on the number of quark flavours as well as on the quark-masses included in the simulation. We attempt to show here the effects of the number of quark flavours and quark-masses on critical parameters by using the perturbative, finite temperature field theory to g 3 s order in the strong coupling g s . We treat the hadrons as particles with finite size and its implications on the equation of state for hadron gas are studied. We find that the critical temperature T c is lowered by 9 MeV as we move from two to three quark flavours. The nature of the phase transition always remains as first order. However, the inclusion of quark-masses in our calculation does not affect the result much. (author). 14 refs, 3 figs

  20. Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE) + alcohol and MTBE + alkane

    International Nuclear Information System (INIS)

    Han, Kewei; Xia, Shuqian; Ma, Peisheng; Yan, Fangyou; Liu, Tao

    2013-01-01

    Highlights: • The critical properties of seven binary mixtures related to gasoline were measured. • The critical properties of the five systems containing MTBE were reported for the first time. • Binary interaction parameters were fitted by experimental data using PR EOS with Wong–Sandler mixing rule. • Redlich–Kister equation was used to correlate the experimental data. -- Abstract: A set of high-pressure view apparatus was designed for determining the critical properties of chemicals. In order to check the reliability of the apparatus, the critical temperatures (T c ) and critical pressures (P c ) of pure n-heptane, cyclohexane, methanol, ethanol, 1-propanol, methyl tert-butyl ether (MTBE), and binary mixture n-hexane + ethanol were measured. The experimental data were in good agreement with the literature data, which proves the reliability of the apparatus used in the work. The critical temperatures and critical pressures of five binary mixtures containing gasoline additive (MTBE + n-heptane, MTBE + cyclohexane, MTBE + methanol, MTBE + ethanol, MTBE + 1-propanol) were measured using the high-pressure view cell with visual observation. The critical temperatures and critical pressures for the five binary mixtures were all reported for the first time. In addition, the critical temperatures and critical pressures of the binary mixture n-heptane + cyclohexane (two of main components in gasoline) were also measured. All the critical lines for the mixtures studied are continuous which connect the critical points of the two pure components, indicating their phase diagrams belong to type I proposed by Scott and van Konynenburg. The critical points of these systems were calculated by the Peng–Robinson equation of state with the Wong–Sandler mixing rule. This model could calculate the critical properties of the mixtures well with the binary interaction parameter k ij obtained by fitting the experimental critical data. And the experimental data were all

  1. Experimental comparison of the critical ionization velocity in atomic and molecular gases

    International Nuclear Information System (INIS)

    Axnaes, I.

    1978-08-01

    The critical ionization velocity usub(c) of Ne, Kr, Xe, Cl 2 , O 2 , CO, CO 2 , NH 3 and H 2 O is investigated experimentally in a coaxial plasma gun. Together with experimental data obtained in earlier experiments the present results make it possible to make a systematic comparison between the critical ionization velocity for atomic and molecular gases. It is found that atomic and molecular gases tend to have values of critical ionization velocity which are respectively smaller and larger than the theoretical values. The current dependence of usub(c) is found to be different for atomic and molecular gases. A number of atomic and molecular processes relevant to the experiment are discussed

  2. Methodological and Epistemological Criticism on Experimental Accounting Research Published in Brazil

    Directory of Open Access Journals (Sweden)

    Paulo Frederico Homero Junior

    2016-06-01

    Full Text Available In this article, I analyze 17 experimental studies published in Brazilian accounting journals between 2006 and 2015, in order to develop both critical and methodological criticism on these articles. First, we discuss the methodological characteristics of the experiments and the main validity threats they face, analyzing how the selected articles deal with these threats. Overall, this analysis shows a lack of consideration of the validity of the constructs used, difficulty to develop internally valid experiments and inability to express confidence in the applicability of the results to contexts other than the experimental. Then, I compare the positivist theoretical perspective these articles have in common with constructionist conceptions of the social sciences and criticize them, based on these notions. I maintain that these articles are characterized by a behaviorist approach, a reified notion of subjectivity, disregard of the cultural and historical specificities and axiological commitment to submission, instead of the emancipation of the people in relation to management control. The paper contributes to the Brazilian accounting literature in two ways: raising awareness on the challenges faced in conducting appropriate experimental designs and showing how the experimental accounting research can be problematic from an epistemological point of view, aiming to promote an interparadigmatic debate to arouse greater awareness on the subject and more robust consideration of such issues by future researchers.

  3. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio

    Science.gov (United States)

    Roquier, Gerard

    2017-06-01

    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  4. Sensitivity coefficients of reactor parameters in fast critical assemblies and uncertainty analysis

    International Nuclear Information System (INIS)

    Aoyama, Takafumi; Suzuki, Takayuki; Takeda, Toshikazu; Hasegawa, Akira; Kikuchi, Yasuyuki.

    1986-02-01

    Sensitivity coefficients of reactor parameters in several fast critical assemblies to various cross sections were calculated in 16 group by means of SAGEP code based on the generalized perturbation theory. The sensitivity coefficients were tabulated and the difference of sensitivity coefficients was discussed. Furthermore, the uncertainty of calculated reactor parameters due to cross section uncertainty were estimated using the sensitivity coefficients and cross section covariance data. (author)

  5. Critical parameters and saturated density of trifluoroiodomethane (CF{sub 3}I)

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y.Y.; Shi, L.; Zhu, M.S.; Han, L.Z. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    1999-05-01

    The vapor-liquid coexistence curve of trifluoroiodomethane (CF{sub 3}I) was measured by visual observation of the meniscus disappearance in an optical cell. Thirty-two saturated density data points were obtained along the vapor-liquid coexistence curve between 384.5 and 2024.9 kg/m{sup 3} in the temperature range from 301.02 K to the critical temperature. The experimental uncertainties in temperature and density were estimated to be within {+-}10 mK and {+-}0.5%, respectively. Measurements near the critical point were used to determine the critical temperature T{sub c} = 396.44 {+-} 0.01 K and the critical density {rho}{sub c} = 868 {+-} 3 kg/m{sup 3} for trifluoroiodomethane (CF{sub 3}I) on the basis of the meniscus disappearing level as well as the intensity of the critical opalescence. The critical pressure {rho}{sub c} = 3.953 {+-} 0.005 MPa was extrapolated from the existing vapor pressure equation proposed previously using the present {Tc} value. The critical exponent, {beta}, was also determined, and correlations of the saturated liquid and saturated vapor densities of CF{sub 3}I were developed.

  6. On the critical parameters that regulate the deformation behaviour of tooth enamel.

    Science.gov (United States)

    Xie, Zonghan; Swain, Michael; Munroe, Paul; Hoffman, Mark

    2008-06-01

    Tooth enamel is the hardest tissue in the human body with a complex hierarchical structure. Enamel hypomineralisation--a developmental defect--has been reported to cause a marked reduction in the mechanical properties of enamel and loss of dental function. We discover a distinctive difference in the inelastic deformation mechanism between sound and hypomineralised enamels that is apparently controlled by microstructural variation. For sound enamel, when subjected to mechanical forces the controlling deformation mechanism was distributed shearing within nanometre thick protein layer between its constituent mineral crystals; whereas for hypomineralised enamel microcracking and subsequent crack growth were more evident in its less densely packed microstructure. We develop a mechanical model that not only identifies the critical parameters, i.e., the thickness and shear properties of enamels, that regulate the mechanical behaviour of enamel, but also explains the degradation of hypomineralised enamel as manifested by its lower resistance to deformation and propensity for catastrophic failure. With support of experimental data, we conclude that for sound enamel an optimal microstructure has been developed that endows enamel with remarkable structural integrity for durable mechanical function.

  7. Presentation and comparison of experimental critical heat flux data at conditions prototypical of light water small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.S., E-mail: 1greenwoodms@ornl.gov; Duarte, J.P.; Corradini, M.

    2017-06-15

    Highlights: • Low mass flux and moderate to high pressure CHF experimental results are presented. • Facility uses chopped-cosine heater profile in a 2 × 2 square bundle geometry. • The EPRI, CISE-GE, and W-3 CHF correlations provide reasonable average CHF prediction. • Neural network analysis predicts experimental data and demonstrates utility of method. - Abstract: The critical heat flux (CHF) is a two-phase flow phenomenon which rapidly decreases the efficiency of the heat transfer performance at a heated surface. This phenomenon is one of the limiting criteria in the design and operation of light water reactors. Deviations of operating parameters greatly alters the CHF condition and must be experimentally determined for any new parameters such as those proposed in small modular reactors (SMR) (e.g. moderate to high pressure and low mass fluxes). Current open literature provides too little data for functional use at the proposed conditions of prototypical SMRs. This paper presents a brief summary of CHF data acquired from an experimental facility at the University of Wisconsin-Madison designed and built to study CHF at high pressure and low mass flux ranges in a 2 × 2 chopped cosine rod bundle prototypical of conceptual SMR designs. The experimental CHF test inlet conditions range from pressures of 8–16 MPa, mass fluxes of 500–1600 kg/m2 s, and inlet water subcooling from 250 to 650 kJ/kg. The experimental data is also compared against several accepted prediction methods whose application ranges are most similar to the test conditions.

  8. Experimental determination of heat transfer critical conditions in water forced convection at low pressure in a circular channel

    International Nuclear Information System (INIS)

    Fernandes, M.P.

    1973-02-01

    An experimental determination was made of heat transfer critical conditions in a circular channel, uniformly heated, and internally cooled by water in ascending forced convection, under a pressure slightly above atmospheric pressure. Measurements were made of water flow, pressure, electric power temperature and heating, and a systematic analysis was made of the system's parameters. The values obtained for the heat critical flux are circa 50% lower than those predicted by Becker and Biasi and this is accounted to flowing instabilities of thermo-hydrodynamic nature. It is suggested that the flowing channels of circuits aiming at the study of the boiling crisis phenomenon be expanded in its upper extremity, and that the coolant circulation be kept through a pump with a pressure X flow characteristic as vertical as possible

  9. Characterization of an erbium doped fiber amplifier starting from its experimental parameters

    International Nuclear Information System (INIS)

    Bello J, M.; Kuzin, E.A.; Ibarra E, B.; Tellez G, R.

    2007-01-01

    In this paper we describe a method to characterize the gain of an erbium-doped fiber amplifier (EDFA) through the numerical simulation of the signal beam along the amplifier. The simulation is based on a model constituted by the propagation and rate equations for an erbium-doped fiber. The manipulation of these equations allows us to regroup the parameters present in an EDFA, which we have named the A, B, C, D parameters, and they can be obtained experimentally from an erbium-doped fiber. Experimental results show that the measurement of these parameters allow us to estimate with very good correspondence the amplifier gain. (Author)

  10. An Experimental Study of the Local Parameters of a Damaged Cantilever

    DEFF Research Database (Denmark)

    Rytter, A.; Brincker, Rune; Kirkegaard, Poul Henning

    of results from experimental tests with six hollow section steel cantilevers containing a fatigue crack introduced from a narrow laser cut slot. The modal parameters have been identified for different size and location of a crack. The modal parameters have been estimated by mean of frequency domain and time...

  11. An Experimental Study of the Modal Parameters of a Damaged Cantilever

    DEFF Research Database (Denmark)

    Rytter, A.; Brincker, Rune; Kirkegaard, Poul Henning

    of results from experimental tests with six hollow section steel cantilevers containing a fatigue crack introduced from a narrow laser cut slot. The modal parameters have been identified for different size and location of a crack. The modal parameters have been estimated by mean of frequency domain and time...

  12. Effect of radiation on the critical Frank – Kamenetskii parameter of ...

    African Journals Online (AJOL)

    We investigate the effect radiation on the critical Frank-Kamenetskii parameter of thermal ignition in a combustible gas containing fuel droplets (furnaces, gas turbines and internal combustion engines). Previous works show that radiation delays ignition in a well stirred reactor. In this paper we show that, even in a ...

  13. Optimization of Multiple Seepage Piping Parameters to Maximize the Critical Hydraulic Gradient in Bimsoils

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-10-01

    Full Text Available Seepage failure in the form of piping can strongly influence the stability of block-in-matrix-soils (bimsoils, as well as weaken and affect the performance of bimsoil structures. The multiple-factor evaluation and optimization play a crucial role in controlling the seepage failure in bimsoil. The aim of this study is to improve the ability to control the piping seepage failure in bimsoil. In this work, the response surface method (RSM was employed to evaluate and optimize the multiple piping parameters to maximize the critical hydraulic gradient (CHG, in combination with experimental modeling based on a self-developed servo-controlled flow-erosion-stress coupled testing system. All of the studied specimens with rock block percentage (RBP of 30%, 50%, and 70% were produced as a cylindrical shape (50 mm diameter and 100 mm height by compaction tests. Four uncertain parameters, such as RBP, soil matrix density, confining pressure, and block morphology were used to fit an optimal response of the CHG. The sensitivity analysis reveals the influential order of the studied factors to CHG. It is found that RBP is the most sensitive factor, the CHG decreases with the increase of RBP, and CHG increases with the increase of confining pressure, soil matrix density, and block angularity.

  14. Influence of experimental parameters on the microencapsulation of a photopolymerizable phase.

    Science.gov (United States)

    Pernot, J M; Brun, H; Pouyet, B; Sergent, M; Phan-Tan-Luu, R

    1993-01-01

    Conditions of microencapsulation by in situ polycondensation, using melamine-formaldehyde as wall material, are influenced by the chemical nature of the core to encapsulate. In our study concerning the encapsulation of a photopolymerizable phase containing an electrically charged compound, it was necessary to modify the experimental process to obtain capsules of good quality. We used the factorial design method of screening by utilization of an asymmetric matrix, according to the collapsing principle of Addleman. The advantage of this method is that it allows determination of the simultaneous influences of the 11 experimental parameters involved in this preparation. The calculation method can be applied to more than two levels for some of the factors. The continuously varying parameters were altered between two extreme levels, chosen to allow encapsulation. For discontinuous factors, such as the molecular weight of the modifying system or nature of the aminoplast, we used the commercially available compounds, respectively three and four kinds. The results of the obtained capsules were determined by comparing microphotographic pictures. With 16 experiments we found four more factors influencing quality of capsules. We also determined the most favourable levels for the other seven parameters. The results allowed us to find optimal conditions in the experimental field. We obtained capsules of a satisfactory quality for this purpose, using only minimum experimentation.

  15. Influence of Parameters of Core Bingham Material on Critical Behaviour of Three-Layered Annular Plate

    Directory of Open Access Journals (Sweden)

    Pawlus Dorota

    2017-12-01

    Full Text Available The paper presents the dynamic response of annular three-layered plate subjected to loads variable in time. The plate is loaded in the plane of outer layers. The plate core has the electrorheological properties expressed by the Bingham body model. The dynamic stability loss of plate with elastic core is determined by the critical state parameters, particularly by the critical stresses. Numerous numerical observations show the influence of the values of viscosity constant and critical shear stresses, being the Bingham body parameters, on the supercritical viscous fluid plate behaviour. The problem has been solved analytically and numerically using the orthogonalization method and finite difference method. The solution includes both axisymmetric and asymmetric plate dynamic modes.

  16. Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents

    Energy Technology Data Exchange (ETDEWEB)

    Talantsev, Evgueni [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); Crump, Wayne P.; Tallon, Jeffery L. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)

    2017-12-15

    Key questions for any superconductor include: what is its maximum dissipation-free electrical current (its 'critical current') and can this be used to extract fundamental thermodynamic parameters? Present models focus on depinning of magnetic vortices and implicate materials engineering to maximise pinning performance. But recently we showed that the self-field critical current for thin films is a universal property, independent of microstructure, controlled only by the penetration depth. Here, using an extended BCS-like model, we calculate the penetration depth from the temperature dependence of the superconducting energy gap thus allowing us to fit self-field critical current data. In this way we extract from the T-dependent gap a set of key thermodynamic parameters, the ground-state penetration depth, energy gap and jump in electronic specific heat. Our fits to 79 available data sets, from zinc nanowires to compressed sulphur hydride with critical temperatures of 0.65 to 203 K, respectively, are excellent and the extracted parameters agree well with reported bulk values. Samples include thin films, wires or nanowires of single- or multi-band s-wave and d-wave superconductors of either type I or type II. For multiband or multiphase samples we accurately recover individual band contributions and phase fractions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Experimental study on transition characteristics of pulsating flow in narrow rectangular channel

    International Nuclear Information System (INIS)

    Zhang Chuan; Tan Sichao; Liu Yusheng; Gao Puzhen; Zhao Jianing; Zhang Hong

    2013-01-01

    Experimental study of flow characteristic in smooth narrow rectangular channel under harmonic pulsating flow which covers laminar to turbulent flow (Reynolds number 7504-450) was carried out. The experimental results show that the frictional factors in acceleration phase of pulsating flow are higher than that in steady state, but lower than that in deceleration phase. Womersley parameter has a significant influence on the critical Reynolds number. The critical Reynolds number decreases with the increase of Womersley parameter in acceleration phase and it is opposite in deceleration phase. An empirical correlation was developed to predict the critical Reynolds number based on the experimental data, and the correlation can fit with critical Reynolds number in steady state. (authors)

  18. Scaled equation of state parameters for gases in the critical region

    Science.gov (United States)

    Sengers, J. M. H. L.; Greer, W. L.; Sengers, J. V.

    1976-01-01

    In the light of recent theoretical developments, the paper presents an accurate characterization of anomalous thermodynamic behavior of xenon, helium 4, helium 3, carbon dioxide, steam and oxygen in the critical region. This behavior is associated with long range fluctuations in the system and the physical properties depend primarily on a single variable, namely, the correlation length. A description of the thermodynamic behavior of fluids in terms of scaling laws is formulated, and the two successfully used scaled equations of state (NBS equation and Linear Model parametric equation) are compared. Methods for fitting both equations to experimental equation of state data are developed and formulated, and the optimum fit for each of the two scaled equations of the above gases are presented and the results are compared. By extending the experimental data for the above one-component fluids to partially miscible binary liquids, superfluid liquid helium, ferromagnets and solids exhibiting order-disorder transitions, the principle of universality is concluded. Finally by using this principle, the critical regions for nine additional fluids are described.

  19. Critical issues and experimental examination on sawtooth and disruption physics

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.; Tsuji, S.

    1992-06-01

    The catastrophic phenomena which are associated with the major disruption and sawtooth contain three key processes: (1) Sudden acceleration of the growth of the helical deformation, (2) Central electron temperature crash, and (3) Rearrangement of the plasma current. Based on the theoretical model that the magnetic stochasticity plays a key role in these processes, the critical issues and possible experimental tests are proposed. Present experimental observations would be sufficient to study the detailed sequences and causes. Though models may not be complete the comparison with experiments improves understandings. (author)

  20. Methodology to estimate parameters of an excitation system based on experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra-Montes, A.J. [Carrera 80 No 65-223, Bloque M8 oficina 113, Escuela de Mecatronica, Universidad Nacional de Colombia, Medellin (Colombia); Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Ramirez-Scarpetta, J.M. [Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Malik, O.P. [2500 University Drive N.W., Electrical and Computer Engineering Department, University of Calgary, Calgary, Alberta (Canada)

    2011-01-15

    A methodology to estimate the parameters of a potential-source controlled rectifier excitation system model is presented in this paper. The proposed parameter estimation methodology is based on the characteristics of the excitation system. A comparison of two pseudo random binary signals, two sampling periods for each one, and three estimation algorithms is also presented. Simulation results from an excitation control system model and experimental results from an excitation system of a power laboratory setup are obtained. To apply the proposed methodology, the excitation system parameters are identified at two different levels of the generator saturation curve. The results show that it is possible to estimate the parameters of the standard model of an excitation system, recording two signals and the system operating in closed loop with the generator. The normalized sum of squared error obtained with experimental data is below 10%, and with simulation data is below 5%. (author)

  1. Radiometric parameters in freshwater samples of Centro Experimental Aramar (CTMSP/Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Marco Antonio P.V. [Laboratorio Radioecologico (LARE), Ipero, SP (Brazil). Dept. de Seguranca Nuclear; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Experimental results are described obtained with gamma spectrometry, alpha and beta gross counts, liquid scintillation and fluorometry techniques for the measurement of background radiation in surface water samples, collected in Centro Experimental Aramar and surroundings, from 1988 to 2009. The estimated average background radiation concentrations in water samples in this region are low, related to the low level detection limits of the techniques, and indicates good water quality parameters, and low interference in the environment in Centro Experimental Aramar and region. (author)

  2. Monte Carlo sampling on technical parameters in criticality and burn-up-calculations

    International Nuclear Information System (INIS)

    Kirsch, M.; Hannstein, V.; Kilger, R.

    2011-01-01

    The increase in computing power over the recent years allows for the introduction of Monte Carlo sampling techniques for sensitivity and uncertainty analyses in criticality safety and burn-up calculations. With these techniques it is possible to assess the influence of a variation of the input parameters within their measured or estimated uncertainties on the final value of a calculation. The probabilistic result of a statistical analysis can thus complement the traditional method of figuring out both the nominal (best estimate) and the bounding case of the neutron multiplication factor (k eff ) in criticality safety analyses, e.g. by calculating the uncertainty of k eff or tolerance limits. Furthermore, the sampling method provides a possibility to derive sensitivity information, i.e. it allows figuring out which of the uncertain input parameters contribute the most to the uncertainty of the system. The application of Monte Carlo sampling methods has become a common practice in both industry and research institutes. Within this approach, two main paths are currently under investigation: the variation of nuclear data used in a calculation and the variation of technical parameters such as manufacturing tolerances. This contribution concentrates on the latter case. The newly developed SUnCISTT (Sensitivities and Uncertainties in Criticality Inventory and Source Term Tool) is introduced. It defines an interface to the well established GRS tool for sensitivity and uncertainty analyses SUSA, that provides the necessary statistical methods for sampling based analyses. The interfaced codes are programs that are used to simulate aspects of the nuclear fuel cycle, such as the criticality safety analysis sequence CSAS5 of the SCALE code system, developed by Oak Ridge National Laboratories, or the GRS burn-up system OREST. In the following, first the implementation of the SUnCISTT will be presented, then, results of its application in an exemplary evaluation of the neutron

  3. Application of the annular dispersed flow model to two-phase critical flow calculation

    International Nuclear Information System (INIS)

    Ivandaev, A.I.; Nigmatulin, B.I.

    1977-01-01

    The application of the annular dispersed flow model with an effective monodisperse core to the calculation of vapour-liquid mixture maximum rates through long pipes is discussed. An effect of the main dominant parameters such as evaporation intensity, diameter of drops picked out from the film surface and initial drop diameter at the pipe inlet on the outlet critical condition formation process has been investigated. The corresponding model constants have been determined. The calculated and experimental values of critical rates and pressure profiles along the channel have been found to be in a satisfactory agreement in the studied range of parameters. The observed non-conformity of the calculated and experimental values of critical pressures and vapour contents can be due to inadequate accuracy of the experimental techniques

  4. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    Science.gov (United States)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  5. Static Magnetic Field Therapy: A Critical Review of Treatment Parameters

    Directory of Open Access Journals (Sweden)

    Agatha P. Colbert

    2009-01-01

    Full Text Available Static magnetic field (SMF therapy, applied via a permanent magnet attached to the skin, is used by people worldwide for self-care. Despite a lack of established SMF dosage and treatment regimens, multiple studies are conducted to evaluate SMF therapy effectiveness. Our objectives in conducting this review are to: (i summarize SMF research conducted in humans; (ii critically evaluate reporting quality of SMF dosages and treatment parameters and (iii propose a set of criteria for reporting SMF treatment parameters in future clinical trials. We searched 27 electronic databases and reference lists. Only English language human studies were included. Excluded were studies of electromagnetic fields, transcranial magnetic stimulation, magnets placed on acupuncture points, animal studies, abstracts, posters and editorials. Data were extracted on clinical indication, study design and 10 essential SMF parameters. Three reviewers assessed quality of reporting and calculated a quality assessment score for each of the 10 treatment parameters. Fifty-six studies were reviewed, 42 conducted in patient populations and 14 in healthy volunteers. The SMF treatment parameters most often and most completely described were site of application, magnet support device and frequency and duration of application. Least often and least completely described were characteristics of the SMF: magnet dimensions, measured field strength and estimated distance of the magnet from the target tissue. Thirty-four (61% of studies failed to provide enough detail about SMF dosage to permit protocol replication by other investigators. Our findings highlight the need to optimize SMF dosing parameters for individual clinical conditions before proceeding to a full-scale clinical trial.

  6. Experimental and Numerical Analysis of S-CO2 Critical Flow for SFR Recovery System Design

    International Nuclear Information System (INIS)

    Kim, Min Seok; Jung, Hwa-Young; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik

    2016-01-01

    This paper presents both numerical and experimental studies of the critical flow of S-CO 2 while special attention is given to the turbo-machinery seal design. A computational critical flow model is described first. The experiments were conducted to validate the critical flow model. Various conditions have been tested to study the flow characteristic and provide validation data for the model. The comparison of numerical and experimental results of S-CO 2 critical flow will be presented. In order to eliminate SWR, a concept of coupling the Supercritical CO 2 (S-CO 2 ) cycle with SFR has been proposed. It is known that for a closed system controlling the inventory is important for stable operation and achieving high efficiency. Since the S-CO 2 power cycle is a highly pressurized system, certain amount of leakage flow is inevitable in the rotating turbo-machinery via seals. To simulate the CO 2 leak flow in a turbo-machinery with higher accuracy in the future, the real gas effect and friction factor will be considered for the CO 2 critical flow model. Moreover, experimentally obtained temperature data were somewhat different from the numerically obtained temperature due to the insufficient insulation and large thermal inertia of the CO 2 critical flow facility. Insulation in connecting pipes and the low-pressure tank will be added and additional tests will be conducted

  7. Determination of criticality parameters in heterogeneous planar slabs by LTSN method

    International Nuclear Information System (INIS)

    Borges, Volnei

    2000-01-01

    The goal of this work consists in the used the LTS N method in criticality problems. This method consists basically in the application of the Laplace Transform in the system of ordinary differential equations generated by the S N approach, resulting in a system of symbolic algebraic equations dependents on the complex parameters. This system is solved and, then the solution is reconstructed by the inverse of the transformed of Laplace using the Schurr and diagonalization methods and the technique of expansion of Heaviside. This methodology is used in determination of K eff , critical thickness and the atomic density for a heterogeneous planar slab. This procedure leads to the solution of eigenvalue problem to the solution of a transcendental equation. Numerical results are reported. (author)

  8. Procedure for statistical analysis of one-parameter discrepant experimental data

    International Nuclear Information System (INIS)

    Badikov, Sergey A.; Chechev, Valery P.

    2012-01-01

    A new, Mandel–Paule-type procedure for statistical processing of one-parameter discrepant experimental data is described. The procedure enables one to estimate a contribution of unrecognized experimental errors into the total experimental uncertainty as well as to include it in analysis. A definition of discrepant experimental data for an arbitrary number of measurements is introduced as an accompanying result. In the case of negligible unrecognized experimental errors, the procedure simply reduces to the calculation of the weighted average and its internal uncertainty. The procedure was applied to the statistical analysis of half-life experimental data; Mean half-lives for 20 actinides were calculated and results were compared to the ENSDF and DDEP evaluations. On the whole, the calculated half-lives are consistent with the ENSDF and DDEP evaluations. However, the uncertainties calculated in this work essentially exceed the ENSDF and DDEP evaluations for discrepant experimental data. This effect can be explained by adequately taking into account unrecognized experimental errors. - Highlights: ► A new statistical procedure for processing one-parametric discrepant experimental data has been presented. ► Procedure estimates a contribution of unrecognized errors in the total experimental uncertainty. ► Procedure was applied for processing half-life discrepant experimental data. ► Results of the calculations are compared to the ENSDF and DDEP evaluations.

  9. Experimental evaluation of a modal parameter based system identification procedure

    Science.gov (United States)

    Yu, Minli; Feng, Ningsheng; Hahn, Eric J.

    2016-02-01

    Correct modelling of the foundation of a rotor bearing foundation system (RBFS) is an invaluable asset for the balancing and efficient running of turbomachinery. Numerical experiments have shown that a modal parameter based identification approach could be feasible for this purpose but there is a lack of experimental verification of the suitability of such a modal approach for even the simplest systems. In this paper the approach is tested on a simple experimental rig comprising a clamped horizontal bar with lumped masses. It is shown that apart from damping, the proposed approach can identify reasonably accurately the relevant modal parameters of the rig; and that the resulting equivalent system can predict reasonably well the frequency response of the rig. Hence, the proposed approach shows promise but further testing is required, since application to identifying the foundation of an RBFS involves the additional problem of accurately obtaining the force excitation from motion measurements.

  10. Experimental studies of the critical scattering of neutrons for large scattering vectors

    International Nuclear Information System (INIS)

    Ciszewski, R.

    1972-01-01

    The most recent results concerned with the critical scattering of neutrons are reviewed. The emphasis is on the so-called thermal shift, that is the shift of the main maximum in the intensity of critically scattered neutrons with temperature changes. Four theories of this phenomenon are described and their shortcomings are shown. It has been concluded that the situation is involved at present and needs further theoretical and experimental study. (S.B.)

  11. Experimental design optimisation: theory and application to estimation of receptor model parameters using dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Delforge, J.; Syrota, A.; Mazoyer, B.M.

    1989-01-01

    General framework and various criteria for experimental design optimisation are presented. The methodology is applied to estimation of receptor-ligand reaction model parameters with dynamic positron emission tomography data. The possibility of improving parameter estimation using a new experimental design combining an injection of the β + -labelled ligand and an injection of the cold ligand is investigated. Numerical simulations predict remarkable improvement in the accuracy of parameter estimates with this new experimental design and particularly the possibility of separate estimations of the association constant (k +1 ) and of receptor density (B' max ) in a single experiment. Simulation predictions are validated using experimental PET data in which parameter uncertainties are reduced by factors ranging from 17 to 1000. (author)

  12. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    Science.gov (United States)

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  13. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.

    Science.gov (United States)

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  14. Critical considerations when planning experimental in vivo studies in dental traumatology.

    Science.gov (United States)

    Andreasen, Jens O; Andersson, Lars

    2011-08-01

    In vivo studies are sometimes needed to understand healing processes after trauma. For several reasons, not the least ethical, such studies have to be carefully planned and important considerations have to be taken into account about suitability of the experimental model, sample size and optimizing the accuracy of the analysis. Several manuscripts of in vivo studies are submitted for publication to Dental Traumatology and rejected because of inadequate design, methodology or insufficient documentation of the results. The authors have substantial experience in experimental in vivo studies of tissue healing in dental traumatology and share their knowledge regarding critical considerations when planning experimental in vivo studies. © 2011 John Wiley & Sons A/S.

  15. Development and experimental qualification of the new safety-criticality CRISTAL package

    International Nuclear Information System (INIS)

    Mattera, Ch.

    1998-11-01

    This thesis is concerned with Criticality-Safety studies related to the French Nuclear Fuel Cycle. We first describe the steps in the nuclear fuel cycle and the specific characteristics of these studies compared with those performed in Reactor Physics. In order to respond to the future requirements of the French Nuclear Program, we have developed a new package CRISTAL based on a recent cross sections library (CEA 93) and the newest accurate codes (APOLLO 2, MORET 4, TRIPOLI 4). The CRISTAL system includes two calculations routes: a design route which will be used by French Industry (COGEMA/SGN) and a reference route. To transfer this package to the French industry, we have elaborated calculation schemes for fissile solutions, dissolver media, transport casks and storage pools. Afterwards, these schemes have been used for the CRISTAL experimental validation. We have also contributed to the CRISTAL experimental database by reevaluating a French storage pool experiment: the CRISTO II experiment. This revaluation has been submitted to the OECD working group in order that this experiment can be used by international criticality safety engineers to validate calculations methods. This work represents a large contribution to the recommendation of accurate calculation schemes and to the experimental validation of the CRISTAL package. These studies came up to the French Industry expectations. (author)

  16. Development and experimental testing of the new safety-criticality Cristal package

    International Nuclear Information System (INIS)

    Mattera, Ch.

    1998-01-01

    This thesis is concerned with Criticality-Safety studies related to the French Nuclear Fuel Cycle. We first describe the steps in the nuclear fuel cycle and the specific characteristics of these studies compared with those performed in Reactor Physics. In order to respond to the future requirements of the French Nuclear Program, we have developed a new package CRISTAL based on a recent cross sections library (CEA93) and the newest accurate codes (APOLLO2, MORET4, TRIPOLI4). The cristal system includes two calculations routes: a design route which will be used by French Industry (COGEMA/SGN) and a reference route.) To transfer this package to the French industry, we have elaborated calculation schemes for fissile solutions, dissolver media, transport casks and storage pools. Afterwards, these schemes have been used for the CRISTAL experimental validation. We have also contributed to the CRISTAL experimental database by reevaluating a French storage pool experiment: the CRISTO II experiment. This revaluation has been submitted to the OCDE working group in order that this experiment can be used by international criticality safety engineers to validate calculations methods. This work represents a large contribution to the recommendation of accurate calculation schemes and to the experimental validation of the CRISTAL package. These studies came up to the French Industry expectations. (author)

  17. Sensitivity analysis of parameters important to nuclear criticality safety of Castor X/28F spent nuclear fuel cask

    Energy Technology Data Exchange (ETDEWEB)

    Leotlela, Mosebetsi J. [Witwatersrand Univ., Johannesburg (South Africa). School of Physics; Koeberg Operating Unit, Johannesburg (South Africa). Regulations and Licensing; Malgas, Isaac [Koeberg Nuclear Power Station, Duinefontein (South Africa). Nuclear Engineering Analysis; Taviv, Eugene [ASARA consultants (PTY) LTD, Johannesburg (South Africa)

    2015-11-15

    In nuclear criticality safety analysis it is essential to ascertain how various components of the nuclear system will perform under certain conditions they may be subjected to, particularly if the components of the system are likely to be affected by environmental factors such as temperature, radiation or material composition. It is therefore prudent that a sensitivity analysis is performed to determine and quantify the response of the output to variation in any of the input parameters. In a fissile system, the output parameter of importance is the k{sub eff}. Therefore, in attempting to prevent reactivity-induced accidents, it is important for the criticality safety analyst to have a quantified degree of response for the neutron multiplication factor to perturbation in a given input parameter. This article will present the results of the perturbation of the parameters that are important to nuclear criticality safety analysis and their respective correlation equations for deriving the sensitivity coefficients.

  18. Summary of results for the SNEAK-9 series of critical experiments and conclusions for the accuracy of predicted physics parameters of the SNR-300

    International Nuclear Information System (INIS)

    Helm, F.

    1978-08-01

    In a series of critical assembles in SNEAK physics parameters of interest for the prototype fast reactor SNR-300 were investigated and compared to the results of calculations. Since a complete mock-up of the SNR-300 was not possible with the material supply available the measurements were performed in three different assemblies, each being adapted to the investigation of a particular set of problems. Work was concentrated on the following quantities: criticality, breeding ratio, Na-void effect, control rod worths and power distribution. The calculation were performed using the diffusion and transport methods available at KFK and as a data basis the KFKINER cross section set. Detailed descriptions of the assemblies, the majority of the results and extensive discussions of the experimental and calculational methods used can be found in separate KFK reports about each assembly which were already published. This report contains a summary of the results for each quantity investigated including a basic account of the methods used, and an evaluation of the significance of these data for the prediction of parameters of the SNR-300. (orig.) 891 RW [de

  19. Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni

    Science.gov (United States)

    Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.

    2018-04-01

    Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.

  20. Experimental kinetic parameters in the thermo-fluid-dynamic modelling of coal combustion

    International Nuclear Information System (INIS)

    Migliavacca, G.; Perini, M.; Parodi, E.

    2001-01-01

    The designing and the optimisation of modern and efficient combustion systems are nowadays frequently based on calculation tools for mathematical modelling, which are able to predict the evolution of the process starting from the first principles of physics. Otherwise, in many cases, specific experimental parameters are needed to describe the specific nature of the materials considered in the calculations. It is especially true in the modelling of coal combustion, which is a complex process strongly dependent on the chemical and physical features of the fuel. This paper describes some experimental techniques used to estimate the fundamental kinetic parameters of coal combustion and shows how this data may be introduced in a model calculation to predict the pollutant emissions from a real scale combustion plant [it

  1. Influence of several experimental parameters on As and Se leaching from coal fly ash samples

    International Nuclear Information System (INIS)

    Otero-Rey, Jose R.; Mato-Fernandez, Maria J.; Moreda-Pineiro, Jorge; Alonso-Rodriguez, Elia; Muniategui-Lorenzo, Soledad; Lopez-Mahia, Purificacion; Prada-Rodriguez, Dario

    2005-01-01

    Coal fly ash leaching process for As and Se is studied. Environmental parameters such as pH, temperature, solid-liquid ratio, particle size and leaching time are taken into account in order to simulate As and Se leaching process for disposal coal fly ash. Analysis of reference materials was carried out by using of hydride generation coupled to atomic fluorescence spectrometry. Plackett-Burman experimental design is used to know the significative parameters, and Box-Behnken experimental design is used to refine the results obtained for these significative parameters. pH and temperature shown a hardly influence in leaching process. Furthermore, leaching time was also significative. According our results, it may be assumed that percentage of As and Se leaching in experimental conditions tested is relatively low for acidic fly ashes

  2. Theoretical and experimental studies on critical heat flux in subcooled boiling and vertical flow geometry

    International Nuclear Information System (INIS)

    Staron, E.

    1996-01-01

    Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs

  3. Critical phenomena in quasi-two-dimensional vibrated granular systems.

    Science.gov (United States)

    Guzmán, Marcelo; Soto, Rodrigo

    2018-01-01

    The critical phenomena associated to the liquid-to-solid transition of quasi-two-dimensional vibrated granular systems is studied using molecular dynamics simulations of the inelastic hard sphere model. The critical properties are associated to the fourfold bond-orientational order parameter χ_{4}, which measures the level of square crystallization of the system. Previous experimental results have shown that the transition of χ_{4}, when varying the vibration amplitude, can be either discontinuous or continuous, for two different values of the height of the box. Exploring the amplitude-height phase space, a transition line is found, which can be either discontinuous or continuous, merging at a tricritical point and the continuous branch ends in an upper critical point. In the continuous transition branch, the critical properties are studied. The exponent associated to the amplitude of the order parameter is β=1/2, for various system sizes, in complete agreement with the experimental results. However, the fluctuations of χ_{4} do not show any critical behavior, probably due to crossover effects by the close presence of the tricritical point. Finally, in quasi-one-dimensional systems, the transition is only discontinuous, limited by one critical point, indicating that two is the lower dimension for having a tricritical point.

  4. Experimental determination of chosen document elements parameters from raster graphics sources

    Directory of Open Access Journals (Sweden)

    Jiří Rybička

    2010-01-01

    Full Text Available Visual appearance of documents and their formal quality is considered to be as important as the content quality. Formal and typographical quality of documents can be evaluated by an automated system that processes raster images of documents. A document is described by a formal model that treats a page as an object and also as a set of elements, whereas page elements include text and graphic object. All elements are described by their parameters depending on elements’ type. For future evaluation, mainly text objects are important. This paper describes the experimental determination of chosen document elements parameters from raster images. Techniques for image processing are used, where an image is represented as a matrix of dots and parameter values are extracted. Algorithms for parameter extraction from raster images were designed and were aimed mainly at typographical parameters like indentation, alignment, font size or spacing. Algorithms were tested on a set of 100 images of paragraphs or pages and provide very good results. Extracted parameters can be directly used for typographical quality evaluation.

  5. Determination of the criticality parameters in heterogeneous Slab by the LTSN method

    International Nuclear Information System (INIS)

    Borges, Volnei

    2001-01-01

    The goal of this work consists in the use of the LTS N method in criticality problems. This method consists basically in the application of the Laplace Transform to a system of ordinary differential equations generated by the SN approach, resulting in a system of symbolic algebraic equations dependent on the complex parameters. After solving the algebraic system by means of the Schurr and diagonalization methods, the angular fluxes are obtained performing the inverse Laplace transform, which is carried out using the Heaviside formula. This methodology is used in determination of K eff , critical thickness and the atomic density for a heterogeneous planar slab. This procedure leads the solution of eigenvalue problem to the solution of a transcendental equation. Numerical results are reported. (author)

  6. Experimental and Numerical Analysis of S-CO{sub 2} Critical Flow for SFR Recovery System Design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Jung, Hwa-Young; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-05-15

    This paper presents both numerical and experimental studies of the critical flow of S-CO{sub 2} while special attention is given to the turbo-machinery seal design. A computational critical flow model is described first. The experiments were conducted to validate the critical flow model. Various conditions have been tested to study the flow characteristic and provide validation data for the model. The comparison of numerical and experimental results of S-CO{sub 2} critical flow will be presented. In order to eliminate SWR, a concept of coupling the Supercritical CO{sub 2} (S-CO{sub 2}) cycle with SFR has been proposed. It is known that for a closed system controlling the inventory is important for stable operation and achieving high efficiency. Since the S-CO{sub 2} power cycle is a highly pressurized system, certain amount of leakage flow is inevitable in the rotating turbo-machinery via seals. To simulate the CO{sub 2} leak flow in a turbo-machinery with higher accuracy in the future, the real gas effect and friction factor will be considered for the CO{sub 2} critical flow model. Moreover, experimentally obtained temperature data were somewhat different from the numerically obtained temperature due to the insufficient insulation and large thermal inertia of the CO{sub 2} critical flow facility. Insulation in connecting pipes and the low-pressure tank will be added and additional tests will be conducted.

  7. Modelling Framework for the Identification of Critical Variables and Parameters under Uncertainty in the Bioethanol Production from Lignocellulose

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    This study presents the development of a systematic modelling framework for identification of the most critical variables and parameters under uncertainty, evaluated on a lignocellulosic ethanol production case study. The systematic framework starts with: (1) definition of the objectives; (2......, suitable for further analysis of the bioprocess. The uncertainty and sensitivity analysis identified the following most critical variables and parameters involved in the lignocellulosic ethanol production case study. For the operating cost, the enzyme loading showed the strongest impact, while reaction...

  8. Engineering Parameters in Bioreactor’s Design: A Critical Aspect in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Nasim Salehi-Nik

    2013-01-01

    Full Text Available Bioreactors are important inevitable part of any tissue engineering (TE strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  9. EXPERIMENTAL DETERMINATION OF DOUBLE VIBE FUNCTION PARAMETERS IN DIESEL ENGINES WITH BIODIESEL

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available A zero-dimensional, one zone model of engine cycle for steady-state regimes of engines and a simplified procedure for indicator diagrams analysis have been developed at the Laboratory for internal combustion engines, fuels and lubricants of the Faculty of Mechanical Engineering in Kragujevac. In addition to experimental research, thermodynamic modeling of working process of diesel engine with direct injection has been presented in this paper. The simplified procedure for indicator diagrams analysis has been applied, also. The basic problem, a selection of shape parameters of double Vibe function used for modeling the engine operation process, has been solved. The influence of biodiesel fuel and engine working regimes on the start of combustion, combustion duration and shape parameter of double Vibe was determined by a least square fit of experimental heat release curve.

  10. ANOVA parameters influence in LCF experimental data and simulation results

    Directory of Open Access Journals (Sweden)

    Vercelli A.

    2010-06-01

    Full Text Available The virtual design of components undergoing thermo mechanical fatigue (TMF and plastic strains is usually run in many phases. The numerical finite element method gives a useful instrument which becomes increasingly effective as the geometrical and numerical modelling gets more accurate. The constitutive model definition plays an important role in the effectiveness of the numerical simulation [1, 2] as, for example, shown in Figure 1. In this picture it is shown how a good cyclic plasticity constitutive model can simulate a cyclic load experiment. The component life estimation is the subsequent phase and it needs complex damage and life estimation models [3-5] which take into account of several parameters and phenomena contributing to damage and life duration. The calibration of these constitutive and damage models requires an accurate testing activity. In the present paper the main topic of the research activity is to investigate whether the parameters, which result to be influent in the experimental activity, influence the numerical simulations, thus defining the effectiveness of the models in taking into account of all the phenomena actually influencing the life of the component. To obtain this aim a procedure to tune the parameters needed to estimate the life of mechanical components undergoing TMF and plastic strains is presented for commercial steel. This procedure aims to be easy and to allow calibrating both material constitutive model (for the numerical structural simulation and the damage and life model (for life assessment. The procedure has been applied to specimens. The experimental activity has been developed on three sets of tests run at several temperatures: static tests, high cycle fatigue (HCF tests, low cycle fatigue (LCF tests. The numerical structural FEM simulations have been run on a commercial non linear solver, ABAQUS®6.8. The simulations replied the experimental tests. The stress, strain, thermal results from the thermo

  11. System Predicts Critical Runway Performance Parameters

    Science.gov (United States)

    Millen, Ernest W.; Person, Lee H., Jr.

    1990-01-01

    Runway-navigation-monitor (RNM) and critical-distances-process electronic equipment designed to provide pilot with timely and reliable predictive navigation information relating to takeoff, landing and runway-turnoff operations. Enables pilot to make critical decisions about runway maneuvers with high confidence during emergencies. Utilizes ground-referenced position data only to drive purely navigational monitor system independent of statuses of systems in aircraft.

  12. Effect of doping with magnetic 3D-elements on the thermal fluctuations and critical parameters of CaLaBaCu3-x(Ni,Co)xO7-δ superconductors

    International Nuclear Information System (INIS)

    Rojas Sarmiento, M.P.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2008-01-01

    Systematic measurements on conductivity fluctuation in the CaLaBaCu 3-x (Ni,Co) x O 7-δ system are reported. Samples with x=0, 0.03, 0.06, 0.09, 0.12, 0.15 and 0.18 were prepared by the standard solid-state reaction recipe. Results of resistivity measurements reveal a linear-like decreasing of the critical temperature T c with progressive substitution of magnetic elements Ni and Co into the Cu crystallographic sites. From the fluctuation analysis, above and close to T c , we found the occurrence of three- and two-dimensional Gaussian fluctuation regimes. Closer to T c , a genuinely critical regime is observed. On the Ginzburg-Landau formalism, from the reduced temperature of the three-dimensional Gaussian region and the mean field critical temperature, we have experimentally obtained the Ginzburg number for the CaLaBaCu 3-x (Ni,Co) x O 7-δ material. Then, critical magnetic field, critical current density and the jump in the specific heat at the critical temperature are calculated. Critical parameters are strongly affected by the doping with magnetic ions

  13. Identification of critical parameters for PEMFC stack performance characterization and control strategies for reliable and comparable stack benchmarking

    DEFF Research Database (Denmark)

    Mitzel, Jens; Gülzow, Erich; Kabza, Alexander

    2016-01-01

    This paper is focused on the identification of critical parameters and on the development of reliable methodologies to achieve comparable benchmark results. Possibilities for control sensor positioning and for parameter variation in sensitivity tests are discussed and recommended options for the ...

  14. An experimental study on the flow instabilities and critical heat flux under natural circulation

    International Nuclear Information System (INIS)

    Kim, Yun II; Chang, Soon Heung

    2004-01-01

    This study has been carried out to investigate the hydrodynamic stabilities and Critical Heat Flux (CHF) characteristics for the natural and forced circulation. A low pressure experimental loop was constructed, and experiments under various conditions have been performed. In the experiments of the natural circulation, flow oscillations has been observed and the average mass flux under flow oscillation have been measured. Several parameters such as heat flux, the inlet temperature of test section, friction valve opening and riser length have been varied in order to investigate their effects on the flow stability of the natural circulation system. And the CHF data from low flow experiments, namely the natural and forced circulation, have been compared with each other to identify the effects of the flow instabilities on the CHF for the natural circulation mode. The test conditions for the CHF experiments were a low flow of less than 70 kg/m 2 s of water in a vertical round tube with diameter of 0.008 m at near atmospheric pressure. (author)

  15. A systematic study of distribution characters of infiltration parameters in an experimental basin by nuclear methods

    International Nuclear Information System (INIS)

    Gu Weizu; Lu Jieju; Lu Mingjiang; Chen Tingyang

    1988-01-01

    A case study of spatial variability of Philip's infiltration parameters was carried out in a small experimental catchment with an area of 0.8 ha by nuclear monitoring methods. Relationships between sorptivity S, parameter A and the average initial soil water content within 0.5 m depth of soil profiles over the catchment have been plotted. A watershed infiltration parameter distribution curve is set up and fitted approximately by f/F=1-(1-S/S M ) n . The parameters of composite infiltration response related to whole catchment are suggested. The author has studied it on an experimental basin by combined method of nuclear technology and micro-geomorphic analysis. The results are satisfactory. (author). 6 refs, 11 figs, 2 tabs

  16. Statistical approach for uncertainty quantification of experimental modal model parameters

    DEFF Research Database (Denmark)

    Luczak, M.; Peeters, B.; Kahsin, M.

    2014-01-01

    Composite materials are widely used in manufacture of aerospace and wind energy structural components. These load carrying structures are subjected to dynamic time-varying loading conditions. Robust structural dynamics identification procedure impose tight constraints on the quality of modal models...... represent different complexity levels ranging from coupon, through sub-component up to fully assembled aerospace and wind energy structural components made of composite materials. The proposed method is demonstrated on two application cases of a small and large wind turbine blade........ This paper aims at a systematic approach for uncertainty quantification of the parameters of the modal models estimated from experimentally obtained data. Statistical analysis of modal parameters is implemented to derive an assessment of the entire modal model uncertainty measure. Investigated structures...

  17. Parachors in terms of critical temperature, critical pressure and acentric factor

    Energy Technology Data Exchange (ETDEWEB)

    Broseta, D.; Ragil, K.

    1995-12-31

    The method of parachors is widely used in conventional thermodynamic codes and reservoir simulators to calculate oil/gas interfacial tensions of complex hydrocarbon mixtures. In the low-to-moderate interfacial tension regime, a value p{approx}11/3 has previously been shown to be the {open_quotes}best{close_quotes} parachor exponent. This exponent is a critical exponent and its value is consistent with the values of critical exponents characterizing the liquid/vapor critical behavior. Therefore parachors may be viewed as critical amplitudes. By using critical scaling theory, parachors are related to other critical amplitudes and critical parameters that describe the bulk thermodynamic behavior of fluids. A simple expression relating the parachor of a pure compound to its critical temperature T{sub c}, critical pressure P{sub c}, and acentric factor {omega} is proposed: P= (0.85-0.19{omega})T{sub c}{sup 12/11}/P{sub c}{sup 9/11} where the parachor P is in units of (dyn/cm){sup 3/11}cm{sup 3}/mol, T{sub c} in K and P{sub c} in MPa. This equation matches (within experimental error) the known parachor values of normal fluids (e.g. alkanes, aromatics, CO{sub 2}, N{sub 2}, H{sub 2}S, etc...).

  18. Prevention of criticality accidents in a fuel cycle plant

    International Nuclear Information System (INIS)

    Gatti, A.M.; Canavese, S.I.; Capadona, N.M.

    1990-01-01

    This work reports the basic considerations on criticality accidents applied to an uranium dioxide fuel cycle production plant. The different fabrication stages are briefly described, with the identification of the neutronically isolated areas. Once the areas have been defined, an evaluation is made, setting up the control parameters to be used in each of them and their variation ranges; normal operation limitations based on experimental data or validating calculations, applied specifically to 5% enriched uranium, are established. Afterwards, defined parameters deviations are analyzed due to incidental conditions in order to prevent criticality accidents under normal conditions and maintenance operations. (Author) [es

  19. Critical properties and acentric factors of ionic liquids

    International Nuclear Information System (INIS)

    Shariati, Alireza; Ashrafmansouri, Seyedeh-Soghra; Osbuei, Maryam Haji; Hooshdaran, Bahar

    2013-01-01

    Since most ionic liquids (ILs) decompose before reaching their critical state, the experimental measurement of their critical properties are not possible. In this study, the critical temperatures, critical pressures and acentric factors of ten commonly investigated ILs were determined by making an optimum fit of the calculated vapor-liquid equilibrium data of binary mixtures of CO 2 +IL to the experimental values found in literature. For this purpose, the Peng-Robinson equation of state (PR EoS) and the differential evolution optimization method were used. The ILs considered were 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF 6 ]), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([emim][Tf 2 N]), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF 6 ]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf 2 N]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][BF 4 ]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF 6 ]), 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([hmim][Tf 2 N]), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF 4 ]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF 6 ]). To evaluate the ability of the determined parameters in predicting the phase behavior of systems other than the systems that were used for parameter optimization, both sets of parameters obtained in this work and that of Valderrama et al. were used to predict bubble-point pressures of CHF 3 +[bmim][PF 6 ] (by using the PR EoS and the Soave-Redlich-Kwong equation of state. The bubble-point pressures of CO 2 +IL systems optimized in this study by the PR EoS were also determined using the Soave-Redlich-Kwong equation of state (SRK EoS). In addition, liquid densities of pure ILs were predicted using a generalized correlation proposed by Valderrama and Abu-Shark. In all cases, the various predicted properties of

  20. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    Science.gov (United States)

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-10-01

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may

  1. Phase distribution phenomena in upward cocurrent bubbly flows. A critical review of the experimental and theoretical works

    International Nuclear Information System (INIS)

    Grossetete, C.

    1992-09-01

    The most important and challenging problems in two-phase bubbly flow today are related to the physical understanding and the modeling of multidimensional phenomena such as the distribution of phases in space. We present here a critical review of the available experimental and theoretical studies in gas-liquid adiabatic and non-reactive upward bubbly flows which have been carried out to define and improve the physical models needed to close the three-dimensional two-fluid model equations. It appears that: so far, the axial development of two-phase upward bubbly flows has not been handled thoroughly. Little is known about the way the pressure gradient as well as the gas-liquid mixing conditions affect the distribution of phases, the problems related to the closing of the two-fluid model equations are far from being solved. The physical models proposed seem often to be too much complex considering how little we know about the mechanisms involved, there are still very few multidimensional numerical models whose results have been compared with experimental data on bubbly flows. The boundary conditions introduced in the codes as well as the sensitivity of the results to the parameters of the codes are never precisely stated. To bridge some of those gaps, we propose to perform an experimental and numerical study of the axial development of two-phase air-water upward bubbly flows in vertical pipes

  2. Determination of low-energy parameters of neutron-proton scattering in the the shape-parameter approximation from present-day experimental data

    International Nuclear Information System (INIS)

    Babenko, V. A.; Petrov, N. M.

    2010-01-01

    On the basis of the total cross sections for neutron-proton scattering in the region of laboratory energies below 150 keV, the value of σ 0 = 20.4288(146) b was obtained for the total cross sections for neutron-proton scattering at zero energy. This value is in very good agreement with the experimental cross sections obtained by Houke and Hurst, but it is at odds with Dilg's experimental cross section. By using the value that we found for σ 0 and the experimental values of the neutron-proton coherent scattering length f, the deuteron binding energy ε t , the deuteron effective radius ρ t (-ε t , -ε t ), and the total cross section in the region of energies below 5 MeV, the following values were found in the shape-parameter approximation for the low-energy parameters of neutron-proton scattering in the spin-triplet and spin-singlet states: a t = 5.4114(27) fm, r 0t = 1.7606(35) fm, v 2t = 0.157 fm 3 , a s = -23.7154(80) fm, r 0s = 2.706(67) fm, and v 2s = 0.491 fm 3 .

  3. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  4. Modeling of FREYA fast critical experiments with the Serpent Monte Carlo code

    International Nuclear Information System (INIS)

    Fridman, E.; Kochetkov, A.; Krása, A.

    2017-01-01

    Highlights: • FREYA – the EURATOM project executed to support fast lead-based reactor systems. • Critical experiments in the VENUS-F facility during the FREYA project. • Characterization of the critical VENUS-F cores with Serpent. • Comparison of the numerical Serpent results to the experimental data. - Abstract: The FP7 EURATOM project FREYA has been executed between 2011 and 2016 with the aim of supporting the design of fast lead-cooled reactor systems such as MYRRHA and ALFRED. During the project, a number of critical experiments were conducted in the VENUS-F facility located at SCK·CEN, Mol, Belgium. The Monte Carlo code Serpent was one of the codes applied for the characterization of the critical VENUS-F cores. Four critical configurations were modeled with Serpent, namely the reference critical core, the clean MYRRHA mock-up, the full MYRRHA mock-up, and the critical core with the ALFRED island. This paper briefly presents the VENUS-F facility, provides a detailed description of the aforementioned critical VENUS-F cores, and compares the numerical results calculated by Serpent to the available experimental data. The compared parameters include keff, point kinetics parameters, fission rate ratios of important actinides to that of U235 (spectral indices), axial and radial distribution of fission rates, and lead void reactivity effect. The reported results show generally good agreement between the calculated and experimental values. Nevertheless, the paper also reveals some noteworthy issues requiring further attention. This includes the systematic overprediction of reactivity and systematic underestimation of the U238 to U235 fission rate ratio.

  5. Critical Zone Experimental Design to Assess Soil Processes and Function

    Science.gov (United States)

    Banwart, Steve

    2010-05-01

    experimental design studies soil processes across the temporal evolution of the soil profile, from its formation on bare bedrock, through managed use as productive land to its degradation under longstanding pressures from intensive land use. To understand this conceptual life cycle of soil, we have selected 4 European field sites as Critical Zone Observatories. These are to provide data sets of soil parameters, processes and functions which will be incorporated into the mathematical models. The field sites are 1) the BigLink field station which is located in the chronosequence of the Damma Glacier forefield in alpine Switzerland and is established to study the initial stages of soil development on bedrock; 2) the Lysina Catchment in the Czech Republic which is representative of productive soils managed for intensive forestry, 3) the Fuchsenbigl Field Station in Austria which is an agricultural research site that is representative of productive soils managed as arable land and 4) the Koiliaris Catchment in Crete, Greece which represents degraded Mediterranean region soils, heavily impacted by centuries of intensive grazing and farming, under severe risk of desertification.

  6. Discussion of the experimental methods of the estimation of the reaction impact parameter

    International Nuclear Information System (INIS)

    Muryn, B.; Dziunikowska, K.; Eskreys, A.; Coghen, T.

    1978-01-01

    Two methods of determination of the reaction impact parameter, the one proposed by Webber and other by Henyey and Pumplin, are compared and discussed. It is shown that the lower limits of the impact parameter bsub(L) obtained by means of these methods are comparable and are always very low (approximately < 0.5 fm). On the example of the Henyey - Pumplin method it is argued that the experimentally obtained values bsub(L) may be very unreliable estimates of the reaction impact parameter and that any comparison of different reactions or reactions channels may be meaningless. (author)

  7. Experimental determination and verification of the parameters used in a proton pencil beam algorithm

    International Nuclear Information System (INIS)

    Szymanowski, H.; Mazal, A.; Nauraye, C.; Biensan, S.; Ferrand, R.; Murillo, M.C.; Caneva, S.; Gaboriaud, G.; Rosenwald, J.C.

    2001-01-01

    We present an experimental procedure for the determination and the verification under practical conditions of physical and computational parameters used in our proton pencil beam algorithm. The calculation of the dose delivered by a single pencil beam relies on a measured spread-out Bragg peak, and the description of its radial spread at depth features simple specific parameters accounting individually for the influence of the beam line as a whole, the beam energy modulation, the compensator, and the patient medium. For determining the experimental values of the physical parameters related to proton scattering, we utilized a simple relation between Gaussian radial spreads and the width of lateral penumbras. The contribution from the beam line has been extracted from lateral penumbra measurements in air: a linear variation with the distance collimator-point has been observed. Analytically predicted radial spreads within the patient were in good agreement with experimental values in water under various reference conditions. Results indicated no significant influence of the beam energy modulation. Using measurements in presence of Plexiglas slabs, a simple assumption on the effective source of scattering due to the compensator has been stated, leading to accurate radial spread calculations. Dose measurements in presence of complexly shaped compensators have been used to assess the performances of the algorithm supplied with the adequate physical parameters. One of these compensators has also been used, together with a reference configuration, for investigating a set of computational parameters decreasing the calculation time while maintaining a high level of accuracy. Faster dose computations have been performed for algorithm evaluation in the presence of geometrical and patient compensators, and have shown good agreement with the measured dose distributions

  8. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    Science.gov (United States)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  9. Numerical simulation and experimental validation of internal heat exchanger influence on CO{sub 2} trans-critical cycle performance

    Energy Technology Data Exchange (ETDEWEB)

    Rigola, Joaquim; Ablanque, Nicolas; Perez-Segarra, Carlos D.; Oliva, Assensi [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), ETSEIAT, C. Colom 11, 08222 Terrassa (Barcelona) (Spain)

    2010-06-15

    The present paper is a numerical and experimental comparative study of the whole vapour compression refrigerating cycle in general, and reciprocating compressors in particular, with the aim of showing the possibilities that CO{sub 2} offers for commercial refrigeration, considering a single-stage trans-critical cycle using semi-hermetic reciprocating compressors under small cooling capacity systems. The present work is focussed on the influence of using an internal heat exchanger (IHX) in order to improve the cycle performance under real working conditions. In order to validate the numerical results, an experimental unit specially designed and built to analyze trans-critical refrigerating equipments considering IHX has been built. Both numerical results and experimental data show reasonable good agreement, while the comparative global values conclude the improvement of cooling capacity and COP when IHX is considered in the CO{sub 2} trans-critical cycle. (author)

  10. Stark broadening parameter regularities and interpolation and critical evaluation of data for CP star atmospheres research: Stark line shifts

    Science.gov (United States)

    Dimitrijevic, M. S.; Tankosic, D.

    1998-04-01

    In order to find out if regularities and systematic trends found to be apparent among experimental Stark line shifts allow the accurate interpolation of new data and critical evaluation of experimental results, the exceptions to the established regularities are analysed on the basis of critical reviews of experimental data, and reasons for such exceptions are discussed. We found that such exceptions are mostly due to the situations when: (i) the energy gap between atomic energy levels within a supermultiplet is equal or comparable to the energy gap to the nearest perturbing levels; (ii) the most important perturbing level is embedded between the energy levels of the supermultiplet; (iii) the forbidden transitions have influence on Stark line shifts.

  11. Inference of missing data and chemical model parameters using experimental statistics

    Science.gov (United States)

    Casey, Tiernan; Najm, Habib

    2017-11-01

    A method for determining the joint parameter density of Arrhenius rate expressions through the inference of missing experimental data is presented. This approach proposes noisy hypothetical data sets from target experiments and accepts those which agree with the reported statistics, in the form of nominal parameter values and their associated uncertainties. The data exploration procedure is formalized using Bayesian inference, employing maximum entropy and approximate Bayesian computation methods to arrive at a joint density on data and parameters. The method is demonstrated in the context of reactions in the H2-O2 system for predictive modeling of combustion systems of interest. Work supported by the US DOE BES CSGB. Sandia National Labs is a multimission lab managed and operated by Nat. Technology and Eng'g Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Intl, for the US DOE NCSA under contract DE-NA-0003525.

  12. A critical revisit of the key parameters used to describe microbial electrochemical systems

    International Nuclear Information System (INIS)

    Sharma, Mohita; Bajracharya, Suman; Gildemyn, Sylvia; Patil, Sunil A.; Alvarez-Gallego, Yolanda; Pant, Deepak; Rabaey, Korneel; Dominguez-Benetton, Xochitl

    2014-01-01

    Graphical abstract: - Abstract: Many microorganisms have the innate capability to discharge and/or receive electrons to and from solid state materials such as electrodes. This ability is now used towards innovative processes in wastewater treatment, power generation, production of fuels and biochemicals, bioremediation, desalination and resource recovery, among others. Despite being a dynamic field in science and technology, significant challenges remain towards industrial implementation which include representation of judicious performance indicators. This critical review outlines the progress in current density evaluated per projected surface area of electrodes, the most wide-spread performance indicator. It also proposes guidelines to correct current and exchange current per porous surface area, biofilm covered area, electrochemically- or bioelectrochemically- active surface area, of the electrodes. Recommendations for indicators to describe the environmental and electrochemical robustness of electrochemically-active biofilms are portrayed, including preservation of the predominant functionality as well as electrochemical mechanistic and phenomenological features. A few additional key elements for industrial processing are depicted. Whereas Microbial Fuel Cells (MFCs) are the main focus, some important parameters for reporting on cathodic bioproduction performance are also discussed. This critical revision aims to provide key parameters to compare the whole spectrum of microbial electrochemical systems in a consistent way

  13. Critical thickness of atomically ordered III-V alloys

    Energy Technology Data Exchange (ETDEWEB)

    France, R. M.; McMahon, W. E.; Guthrey, H. L. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States)

    2015-10-12

    The critical thickness model is modified with a general boundary energy that describes the change in bulk energy as a dislocation regularly alters the atomic structure of an ordered material. The model is evaluated for dislocations gliding through CuPt-ordered GaInP and GaInAs, where the boundary energy is negative and the boundary is stable. With ordering present, the critical thickness is significantly lowered and remains finite as the mismatch strain approaches zero. The reduction in critical thickness is most significant when the order parameter is greatest and the amount of misfit energy is low. The modified model is experimentally validated for low-misfit GaInP epilayers with varying order parameters using in situ wafer curvature and ex situ cathodoluminescence. With strong ordering, relaxation begins at a lower thickness and occurs at a greater rate, which is consistent with a lower critical thickness and increased glide force. Thus, atomic ordering is an important consideration for the stability of lattice-mismatched devices.

  14. Quantum Critical Higgs

    Science.gov (United States)

    Bellazzini, Brando; Csáki, Csaba; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John

    2016-10-01

    The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However, light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper, we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in anti-de Sitter space. For both of these models, we consider the processes g g →Z Z and g g →h h , which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.

  15. APS Quantum Critical Higgs

    CERN Document Server

    Bellazzini, Brando; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John

    2016-01-01

    The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in AdS space. For both of these models we consider the processes $gg\\to ZZ$ and $gg\\to hh$, which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.

  16. EXPERIMENTAL STUDY OF MAGNETIC FLUID SEAL

    Directory of Open Access Journals (Sweden)

    V. G. Bashtovoi

    2006-01-01

    Full Text Available Dependences of critical pressure drop, being held by magnetic fluid seal, on time in a static state and shaft rotation velocity in dynamics have been experimentally determined. The significant influence of particles’ redistribution in magnetic fluid on static parameters of magnetic fluid seal has been established.

  17. Experimental investigation on dependency of interparticle distance in Coulomb crystal on various parameters

    OpenAIRE

    Adachi, Satoshi; Takayanagi, Masahiro; 足立 聡; 高柳 昌弘

    2007-01-01

    Dependency of interparticle distance in Coulomb crystal on various parameters such as plasma density, electron temperature, plasma potential and the Debye length are experimentally investigated. From the investigation, it is found that the interparticle distance is proportional to the Debye length.

  18. Method for calculating the critical heat flux in mixed rod assemblies based on the tables of crisis in bundles

    International Nuclear Information System (INIS)

    Bobkov, V.P.

    2000-01-01

    The method for calculating the critical heat flux in the mixed rod assemblies, for example RBMK, containing three-four angle and peripheral macrocells, is presented. The method is based on generalization of experimental data in form of tables for the rods beams. It is recommended for the areas of parameters both provided for by experimental data and for others, where the data are absent. The advantages of the table method as follows: it is acceptable within a wide range of parameters and provides for smooth description of dependence of critical heat fluxes on these parameters; it is characterized by clearness, high reliability and accuracy and is easy in application [ru

  19. Critical experiments on enriched uranium graphite moderated cores

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Akino, Fujiyoshi; Kitadate, Kenji; Kurokawa, Ryosuke

    1978-07-01

    A variety of 20 % enriched uranium loaded and graphite-moderated cores consisting of the different lattice cells in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments systematically. In the present report, the experimental results for homogeneously or heterogeneously fuel loaded cores and for simulation core of the experimental reactor for a multi-purpose high temperature reactor are filed so as to be utilized for evaluating the accuracy of core design calculation for the experimental reactor. The filed experimental data are composed of critical masses of uranium, kinetic parameters, reactivity worths of the experimental control rods and power distributions in the cores with those rods. Theoretical analyses are made for the experimental data by adopting a simple ''homogenized cylindrical core model'' using the nuclear data of ENDF/B-III, which treats the neutron behaviour after smearing the lattice cell structure. It is made clear from a comparison between the measurement and the calculation that the group constants and fundamental methods of calculations, based on this theoretical model, are valid for the homogeneously fuel loaded cores, but not for both of the heterogeneously fuel loaded cores and the core for simulation of the experimental reactor. Then, it is pointed out that consideration to semi-homogeneous property of the lattice cells for reactor neutrons is essential for high temperature graphite-moderated reactors using dispersion fuel elements of graphite and uranium. (author)

  20. Reduction of Erosion Wear of Mean Pressure Cylinder of Steam Turbines Operating Beyond Critical Parameters

    Directory of Open Access Journals (Sweden)

    V. P. Kascheev

    2009-01-01

    Full Text Available The paper considers problems leading to erosion wear of flowing part of a mean pressure turbine cylinder operating beyond critical parameters. Explanation of erosion wear of flowing part of a mean pressure turbine cylinder which is proved in practice and recommendations for wear reduction are given in the paper

  1. Experimental investigation of defect criticality in FRP laminate composites

    Science.gov (United States)

    Joyce, Peter James

    1999-11-01

    This work examines the defect criticality of fiber reinforced polymer Composites. The objective is to determine the sensitivity of the finished composite to various process-induced defects. This work focuses on two different classes of process-induced defects; (1) fiber waviness in high performance carbon-fiber reinforced unidirectional composites and (2) void volume in low cost glass-fabric reinforced composites. The role of fiber waviness in the compressive response of unidirectional composites has been studied by a number of other investigators. Because of difficulties associated with producing real composites with varying levels of fiber waviness, most experimental studies of fiber waviness have evaluated composites with artificially induced fiber waviness. Furthermore, most experimental studies have been concentrated on the effects of out-of-plane fiber waviness. The objective of this work is to evaluate the effects of in-plane fiber waviness naturally occurring in autoclave consolidated thermoplastic laminates. The first phase of this project involved the development of a simple technique for measuring the resulting fiber waviness levels. An experimental investigation of the compression strength reduction in composites with in-plane fiber waviness followed. The experimental program included carbon-fiber reinforced thermoplastic composites manufactured from prepreg tape by hand layup, and carbon-fiber and glass-fiber reinforced composites manufactured from an experimental powder towpreg by filament winding and autoclave consolidation. The compression specimens exhibited kink band failure in the prepreg composite and varying amounts of longitudinal splitting and kink banding in the towpreg composites. The compression test results demonstrated the same trend as predicted by microbudding theory but the overall quantitative correlation was poor. The second thrust of this research evaluated void effects in resin transfer molded composites. Much of the existing

  2. A RE-INTRODUCTION TO ANOMALIES OF CRITICALITY

    International Nuclear Information System (INIS)

    Puigh, R.J.

    2009-01-01

    In 1974, a small innocuous document was submitted to the American Nuclear Society's Criticality Safety Division for publication that would have lasting impacts on this nuclear field The author was Duane Clayton, manager of the Battelle Pacific Northwest National Laboratory's Critical Mass Lab, the world's preeminent reactor critical experimenter with plutonium solutions. The document was entitled, 'Anomalies of Criticality'. 'Anomalies...' was a compilation of more than thirty separate and distinct examples of departures from what might be commonly expected in the field of nuclear criticality. Mr. Clayton's publication was the derivative of more than ten thousand experiments and countless analytical studies conducted world-wide on every conceivable reactor system imaginable: from fissile bearing solutions to solids, blocks to arrays of fuel rods, low-enriched uranium oxide systems to pure plutonium and highly enriched uranium systems. After publication, the document was commonly used within the nuclear fuel cycle and reactor community to train potential criticality/reactor analysts, experimenters and fuel handlers on important things for consideration when designing systems with critically 'safe' parameters in mind The purpose of this paper is to re-introduce 'Anomalies of Criticality' to the current Criticality Safety community and to add new 'anomalies' to the existing compendium. By so doing, it is the authors' hope that a new generation of nuclear workers and criticality engineers will benefit from its content and might continue to build upon this work in support of the nuclear renaissance that is about to occur

  3. An Empirical Study of Parameter Estimation for Stated Preference Experimental Design

    Directory of Open Access Journals (Sweden)

    Fei Yang

    2014-01-01

    Full Text Available The stated preference experimental design can affect the reliability of the parameters estimation in discrete choice model. Some scholars have proposed some new experimental designs, such as D-efficient, Bayesian D-efficient. But insufficient empirical research has been conducted on the effectiveness of these new designs and there has been little comparative analysis of the new designs against the traditional designs. In this paper, a new metro connecting Chengdu and its satellite cities is taken as the research subject to demonstrate the validity of the D-efficient and Bayesian D-efficient design. Comparisons between these new designs and orthogonal design were made by the fit of model and standard deviation of parameters estimation; then the best model result is obtained to analyze the travel choice behavior. The results indicate that Bayesian D-efficient design works better than D-efficient design. Some of the variables can affect significantly the choice behavior of people, including the waiting time and arrival time. The D-efficient and Bayesian D-efficient design for MNL can acquire reliability result in ML model, but the ML model cannot develop the theory advantages of these two designs. Finally, the metro can handle over 40% passengers flow if the metro will be operated in the future.

  4. Verification of kinetic parameters of coupled fast-thermal core HERBE

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.; Milosevic, M.; Nikolic, D.; Zavaljevski, N.; Milovanovic, S.; Ljubenov, V.

    1997-03-01

    The HERBE system is a new coupled fast-thermal core constructed in 1989 at the RB critical heavy water assembly at the VINCA Institute. It was designed with the aim to improve experimental possibilities in fast neutron fields and for experimental verification of reactor design-oriented methods. This paper overviews experiments for kinetic parameters verification carried out at HERBE system. Their short description and comparison of experimental and calculation results are included. A brief introduction to the computer codes used in the calculations is presented too. (author)

  5. Critical properties and acentric factors of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, Alireza; Ashrafmansouri, Seyedeh-Soghra; Osbuei, Maryam Haji; Hooshdaran, Bahar [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2013-01-15

    Since most ionic liquids (ILs) decompose before reaching their critical state, the experimental measurement of their critical properties are not possible. In this study, the critical temperatures, critical pressures and acentric factors of ten commonly investigated ILs were determined by making an optimum fit of the calculated vapor-liquid equilibrium data of binary mixtures of CO{sub 2}+IL to the experimental values found in literature. For this purpose, the Peng-Robinson equation of state (PR EoS) and the differential evolution optimization method were used. The ILs considered were 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF{sub 6}]), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([emim][Tf{sub 2}N]), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF{sub 4}]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF{sub 6}]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf{sub 2}N]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][BF{sub 4}]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF{sub 6}]), 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([hmim][Tf{sub 2}N]), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF{sub 4}]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF{sub 6}]). To evaluate the ability of the determined parameters in predicting the phase behavior of systems other than the systems that were used for parameter optimization, both sets of parameters obtained in this work and that of Valderrama et al. were used to predict bubble-point pressures of CHF{sub 3}+[bmim][PF{sub 6}] (by using the PR EoS and the Soave-Redlich-Kwong equation of state. The bubble-point pressures of CO{sub 2}+IL systems optimized in this study by the PR EoS were also determined using the Soave-Redlich-Kwong equation of state (SRK EoS). In addition, liquid densities of pure ILs were predicted using a generalized correlation proposed by Valderrama and Abu

  6. Correlating neutron yield and reliability for selecting experimental parameters for a plasma focus machine

    International Nuclear Information System (INIS)

    Pross, G.

    Possibilities of optimizing focus machines with a given energy content in the sense of high neutron yield and high reliability of the discharges are investigated experimentally. For this purpose, a focus machine of the Mather type with an energy content of 12 kJ was constructed. The following experimental parameters were varied: the material of the insulator in the ignition zone, the structure of the outside electrode, the length of the inside electrode, the filling pressure and the amount and polarity of the battery voltage. An important part of the diagnostic program consists of measurements of the azimuthal and axial current distribution in the accelerator, correlated with short-term photographs of the luminous front as a function of time. The results are given. A functional schematic has been drafted for focus discharge as an aid in extensive optimization of focus machines, combining findings from theory and experiments. The schematic takes into account the multiparameter character of the discharge and clarifies relationships between the experimental parameters and the target variables neutron yield and reliability

  7. Determination of the criticality parameters in heterogeneous Slab by the LTS{sub N} method

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Volnei [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Nuclear; Derivi, Alexandre Guimaraes [Universidade Regional Integrada (URI), Erechim, RS (Brazil)

    2001-07-01

    The goal of this work consists in the use of the LTS{sub N} method in criticality problems. This method consists basically in the application of the Laplace Transform to a system of ordinary differential equations generated by the SN approach, resulting in a system of symbolic algebraic equations dependent on the complex parameters. After solving the algebraic system by means of the Schurr and diagonalization methods, the angular fluxes are obtained performing the inverse Laplace transform, which is carried out using the Heaviside formula. This methodology is used in determination of K{sub eff}, critical thickness and the atomic density for a heterogeneous planar slab. This procedure leads the solution of eigenvalue problem to the solution of a transcendental equation. Numerical results are reported. (author)

  8. A comparative study of parameters used in design and operation of desalination experimental facility versus the process parameters in a commercial desalination plant

    International Nuclear Information System (INIS)

    Hanra, M.S.; Verma, R.K.; Ramani, M.P.S.

    1982-01-01

    Desalination Experimental Facility (DEF) based on multistage flash desalination process has been set up by the Desalination Division of the Bhabha Atomic Research Centre, Bombay. The design parameters of DEF and materials used for various equipment and parts of DEF are mentioned. DEF was operated for 2300 hours in six operational runs. The range of operational parameters maintained during operation and observations on the performance of the materials of construction are given. Detailed comparison has been made for the orocess parameters in DEF and those in a large size plant. (M.G.B.)

  9. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    Science.gov (United States)

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  10. Critical point measurement of some polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Nikitin, Eugene D.; Popov, Alexander P.

    2015-01-01

    Highlights: • Critical properties of five polycyclic aromatic hydrocarbons were measured. • These hydrocarbons decompose at near-critical temperatures. • Pulse-heating method with short residence times was used. - Abstract: The critical temperatures and the critical pressures of five polycyclic aromatic compounds, namely, acenaphthene, fluorene, anthracene, phenanthrene, and pyrene have been measured. All the compounds studied decompose at near-critical temperatures. A pulse-heating technique applicable to measuring the critical properties of thermally unstable compounds has been used. The times from the beginning of a heating pulse to the moment of reaching the critical temperature were from (0.06 to 0.85) ms. The short residence times provide little degradation of the substances in the course of the experiments. The experimental critical parameters of the polycyclic aromatic compounds have been compared with those estimated by five predictive methods. The acentric factors of polycyclic aromatic compounds studied have been calculated

  11. Experimental study and calculations of the near critical behavior of a synthetic fluid in nitrogen injection

    International Nuclear Information System (INIS)

    Coronado Parra, Carlos Alberto; Escobar Remolina, Juan Carlos M

    2005-01-01

    In recent years, the use of nitrogen has increased as gas injection to recover oil fluids near the critical point. The behavior of hydrocarbon mixture phases in the critical region shows very interesting complex phenomena when facing a recovery project with nitrogen. Therefore, it is important to have experimental information of the PVTx thermodynamic variable, often scarce, for this type of critical phenomena. This paper reports the experimental measures of the volumetric behavior and phases of synthetic fluid in a nitrogen injection process. The experiment was performed at laboratory scale, and it obtained variations on the saturation pressure, gas oil ratio, density and composition of the hydrocarbon phase when nitrogen was injected at molars of 10,20,30 and 40% on different volumetric portions of the mother sample. In addition, the data obtained experimentally was used to demonstrate the capacity of tune to compositional models. The data provided represents a valuable contribution to the understanding of phenomena associated with retrograde and near critical regions, as well as their use in tuning and developing more elaborate models such as Cubic Equations of State (EOS). It is worth highlighting the importance of this data in the potential processes of nitrogen, CO 2 , and lean gas injection, which require knowledge of the gas-oil ratio, saturation pressures, density and composition of the fluid in current production. The identification of the phenomena shown, represent a potential application to the modeling of displacements and maintaining the pressure in the improved recovery when scaling up the laboratory data to the field / reservoir conditions

  12. An overview of criticality safety research at the All-Russian Research Institute of Experimental Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kuvshinov, M.I.; Voinov, A.M.; Yuferev, V.I. [All-Russian Research Institute of Experimental Physics, Arzamas (Russian Federation)] [and others

    1997-06-01

    This paper presents a summary of experimental and calculational activities conducted at VNIIEF from the late 1940s to now to study the critical conditions of systems as part of a nuclear safety program. 9 refs., 1 tab.

  13. An overview of criticality safety research at the All-Russian Research Institute of Experimental Physics

    International Nuclear Information System (INIS)

    Kuvshinov, M.I.; Voinov, A.M.; Yuferev, V.I.

    1997-01-01

    This paper presents a summary of experimental and calculational activities conducted at VNIIEF from the late 1940s to now to study the critical conditions of systems as part of a nuclear safety program. 9 refs., 1 tab

  14. Experimental identification of shaft misalignment in a turbo ...

    Indian Academy of Sciences (India)

    Mohit Lal

    2018-05-15

    May 15, 2018 ... 1 Department of Industrial Design, National Institute of Technology Rourkela, Rourkela 769 008, India ... In the present study, multiple fault parameters (MFPs) of critical components of ... industries such as machine tools, automobiles, aeroplanes, .... presented an experimental work for rigid rotor case.

  15. An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters

    International Nuclear Information System (INIS)

    Cuce, Erdem; Cuce, Pinar Mert; Bali, Tulin

    2013-01-01

    Highlights: • R sh is rather sensitive to the variations in T c . • For higher G values, G ∗ is not affected from the variations in light intensity. • Ideality factor decreases linearly with increasing T c . • A linear decrease of R s and R sh has been observed with increasing T c . • Fill factor increases exponentially with G while it decreases linearly with T c . - Abstract: It is well known that accurate knowledge of photovoltaic cell parameters from the measured current–voltage characteristics is of vital importance for the quality control and the performance assessment of photovoltaic cells/modules. Although many attempts have been made so far for a thorough analysis of cell parameters, there are still significant discrepancies between the previously published results. In this regard, a detailed investigation of cell parameters through a comprehensive experimental and statistical work is important to elucidate the aforementioned contradictions. Therefore in the present work, effects of two main environmental factors on performance parameters of mono-crystalline and poly-crystalline silicon photovoltaic modules have been experimentally investigated. The experiments have been carried out under a calibrated solar simulator for various intensity levels and cell temperatures in the range 200–500 W/m 2 and 15–60 °C, respectively. The results indicated that light intensity has a dominant effect on current parameters. Photocurrent, short circuit current and maximum current increase linearly with increasing intensity level. A new term, solar intensity coefficient, has been defined first time to characterize the solar radiation dependency of current parameters. On the other hand, it has been observed that cell temperature has a dramatic effect on voltage parameters. Open circuit voltage and maximum voltage considerably decrease with increasing cell temperature. Temperature coefficients of voltage parameters have been calculated for each case. Shunt

  16. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models

    Science.gov (United States)

    Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.

    2011-01-01

    We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.

  17. Spin-fluctuation mechanism of high-Tc superconductivity and order-parameter symmetry

    International Nuclear Information System (INIS)

    Izyumov, Yurii A

    1999-01-01

    The notion that electrons in high-T c cuprates pair via antiferromagnetic spin fluctuations is discussed and the symmetry of the superconducting order parameter is analyzed. Three approaches to the problem, one phenomenological (with an experimental dynamic magnetic susceptibility) and two microscopic (involving, respectively, the Hubbard model and the tJ-model) are considered and it is shown that in each case strong-coupling theory leads to a d-wave order parameter with zeros at the Fermi surface. The review then proceeds to consider experimental techniques in which the d-symmetry of the order parameter may manifest itself. These include low-temperature thermodynamic measurements, measurements of the penetration depth and the upper critical field, Josephson junction experiments to obtain the phase of the superconducting order parameter, and various spectroscopic methods. The experimental data suggest that the order parameter in cuprates is d x 2 -y 2 -wave. Ginzburg-Landau theory for a superconductor with a d-wave order parameter is outlined and both an isolated vortex and a vortex lattice are investigated. Finally, some theoretical aspects of the effects of nonmagnetic impurities on a d-wave superconductor are considered. (reviews of topical problems)

  18. Experimental determination of lattice parameters for 2% enriched uranium heavy water reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Takac, S; Markovic, H; Bosevski, T [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1963-04-15

    Systematic measurements of the buckling, infinite multiplication factor and the thermal utilization factor were made on a series of lattices for 2% enriched uranium tubular fuel elements in heavy water. This work represents the first phase of experimental verification of standard theoretical methods used for the determination of reactor parameters.

  19. Propagation of a channelized debris-flow: experimental investigation and parameters identification for numerical modelling

    Science.gov (United States)

    Termini, Donatella

    2013-04-01

    Recent catastrophic events due to intense rainfalls have mobilized large amount of sediments causing extensive damages in vast areas. These events have highlighted how debris-flows runout estimations are of crucial importance to delineate the potentially hazardous areas and to make reliable assessment of the level of risk of the territory. Especially in recent years, several researches have been conducted in order to define predicitive models. But, existing runout estimation methods need input parameters that can be difficult to estimate. Recent experimental researches have also allowed the assessment of the physics of the debris flows. But, the major part of the experimental studies analyze the basic kinematic conditions which determine the phenomenon evolution. Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials (DICAM) - University of Palermo (Italy). The experiments, carried out in a laboratory flume appositely constructed, were planned in order to evaluate the influence of different geometrical parameters (such as the slope and the geometrical characteristics of the confluences to the main channel) on the propagation phenomenon of the debris flow and its deposition. Thus, the aim of the present work is to give a contribution to defining input parameters in runout estimation by numerical modeling. The propagation phenomenon is analyzed for different concentrations of solid materials. Particular attention is devoted to the identification of the stopping distance of the debris flow and of the involved parameters (volume, angle of depositions, type of material) in the empirical predictive equations available in literature (Rickenmanm, 1999; Bethurst et al. 1997). Bethurst J.C., Burton A., Ward T.J. 1997. Debris flow run-out and landslide sediment delivery model tests. Journal of hydraulic Engineering, ASCE, 123(5), 419-429 Rickenmann D. 1999. Empirical relationships

  20. An experimental study on the flow instabilities and critical heat flux under natural circulation

    International Nuclear Information System (INIS)

    Kim, Yun Il

    1993-02-01

    This study has been carried out to investigate the hydrodynamic stabilities of natural circulation and to analyze Critical Heat Flux (CHF) characteristics for the natural and forced circulation. A low pressure experimental loop was constructed, and experiments under various conditions have been performed. In the experiments of the natural circulation, flow oscillations and the average mass flux have been observed. Several parameters such as heat flux, the inlet temperature of test section, friction valve opening and riser length have been varied in order to investigate their effects on the flow stability of the natural circulation system. The results show that the flow instability has strongly dependent on geometric conditions and operating parameters, the inlet temperature and the heat flux of test section. It was found that unstable region for the heat flux and the inlet temperature exists between the single-phase stable region of low heat and low inlet temperature and the two-phase stable region of very high heat flux and high inlet temperature. The CHF data from the natural and forced circulation experiments have been compared each other to identify the effects of the flow instabilities on the CHF for the natural circulation mode. The test conditions were low flow less than 70 kg/m 2 s of water in vertical round tube with diameter of 0.008m at near atmospheric pressure. In this study, no difference in CHF values is observed between natural and fored circulation. Since low flow usually has the oscillation characteristic of relatively low amplitude and high frequency, the effect of the flow instabilities on the CHF seems to be negligible

  1. A study of fluid alkali metals in the critical region

    International Nuclear Information System (INIS)

    Balasubramanian, R.

    2006-01-01

    On the basis of the generalised van der Waals equation of state, Riedel's thermodynamic similarity parameter, a measure of the temperature dependence of vapour pressure in the critical region is determined for caesium, rubidium and potassium. This generalised equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. The results of determination of Riedel's thermodynamic similarity parameter of caesium, rubidium and potassium are in good agreement with experimental data. Moreover, the given generalised van der Waals equation of state yields a better fit with experimental data on Riedel's thermodynamic similarity parameter for fluid alkali metals when compared with other correlations such as Van Ness and Abbott equation, Pitzer expansion, Pitzer acentric factor correlation, modified Rackett technique, Lee-Kesler vapour pressure relation and Clausius-Clayperon equation

  2. The Numerical Calculation and Experimental Measurement of the Inductance Parameters for Permanent Magnet Synchronous Motor in Electric Vehicle

    Science.gov (United States)

    Jiang, Chao; Qiao, Mingzhong; Zhu, Peng

    2017-12-01

    A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.

  3. Effect of doping with magnetic 3D-elements on the thermal fluctuations and critical parameters of CaLaBaCu{sub 3-x}(Ni,Co){sub x}O{sub 7-{delta}} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Sarmiento, M.P.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia); Roa-Rojas, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia)], E-mail: jroar@unal.edu.co

    2008-07-15

    Systematic measurements on conductivity fluctuation in the CaLaBaCu{sub 3-x}(Ni,Co){sub x}O{sub 7-{delta}} system are reported. Samples with x=0, 0.03, 0.06, 0.09, 0.12, 0.15 and 0.18 were prepared by the standard solid-state reaction recipe. Results of resistivity measurements reveal a linear-like decreasing of the critical temperature T{sub c} with progressive substitution of magnetic elements Ni and Co into the Cu crystallographic sites. From the fluctuation analysis, above and close to T{sub c}, we found the occurrence of three- and two-dimensional Gaussian fluctuation regimes. Closer to T{sub c}, a genuinely critical regime is observed. On the Ginzburg-Landau formalism, from the reduced temperature of the three-dimensional Gaussian region and the mean field critical temperature, we have experimentally obtained the Ginzburg number for the CaLaBaCu{sub 3-x}(Ni,Co){sub x}O{sub 7-{delta}} material. Then, critical magnetic field, critical current density and the jump in the specific heat at the critical temperature are calculated. Critical parameters are strongly affected by the doping with magnetic ions.

  4. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal; Alshehri, Abdullah; Almansouri, Abdullah Saud Mohammed; Al-Turki, Abdullah Turki

    2017-01-01

    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  5. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal

    2017-05-13

    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  6. Measurements of the vapor-liquid coexistence curve and the critical parameters for 1,1,1,2-tetrafluoroethane

    Science.gov (United States)

    Kabata, Y.; Tanikawa, S.; Uematsu, M.; Watanabe, K.

    1989-05-01

    Measurements of the vapor-liquid coexistence curve in the critical region for 1,1,1,2-tetrafluoroethane (R134a; CH2FCF3), which is currently considered as a prospective substitute for conventional refrigerant R12, have been performed by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Twenty-seven saturated densities along the vapor-liquid coexistence curve between 208 and 999 kg·m-3 have been obtained in the temperature range 343 K to the critical temperature. The experimental uncertainties in temperature and density measurements have been estimated to be within ±10mK and ±0.55%, respectively. On the basis of these measurements near the critical point, the critical temperature and the critical density for 1,1,1,2-tetrafluoroethane were determined in consideration of the meniscus disappearing level as well as the intensity of the critical opalescence. In addition, the critical exponent ß along the vapor-liquid coexistence curve has been determined in accord with the difference between the density of the saturated liquid and that of the saturated vapor.

  7. Scaled parametric equation of state for steam in the critical region

    International Nuclear Information System (INIS)

    Murphy, T.A.; Sengers, J.V.

    1975-01-01

    The anomalous thermodynamic behavior of fluids near the critical point can be described in terms of scaling laws. In recent years a parametric equation of state, the so-called Linear Model, has been proposed that satisfies the scaling laws and contains only a small number of adjustable parameters. It is shown that the Linear Model yields a satisfactory representation of the experimental P-V-T data for steam in the critical region. (29 references)

  8. Critical experiment program of heterogeneous core composed for LWR fuel rods and low enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori; Yamamoto, Toshihiro; Watanabe, Shouichi; Nakamura, Takemi

    2003-01-01

    In order to stimulate the criticality characteristics of a dissolver in a reprocessing plant, a critical experiment program of heterogeneous cores is under going at a Static Critical Experimental Facility, STACY in Japan Atomic Energy Research Institute, JAERI. The experimental system is composed of 5w/o enriched PWR-type fuel rod array immersed in 6w/o enriched uranyl nitrate solution. First series of experiments are basic benchmark experiments on fundamental critical data in order to validate criticality calculation codes for 'general-form system' classified in the Japanese Criticality Safety Handbook, JCSHB. Second series of experiments are concerning the neutron absorber effects of fission products related to the burn-up credit Level-2. For demonstrating the reactivity effects of fission products, reactivity effects of natural elements such as Sm, Nd, Eu and 103 Rh, 133 Cs, solved in the nitrate solution are to be measured. The objective of third series of experiments is to validate the effect of gadolinium as a soluble neutron poison. Properties of temperature coefficients and kinetic parameters are also studied, since these parameters are important to evaluate the transient behavior of the criticality accident. (author)

  9. Calculating the parameters of experimental data Gauss distribution using the least square fit method and evaluation of their accuracy

    International Nuclear Information System (INIS)

    Guseva, E.V.; Peregudov, V.N.

    1982-01-01

    The FITGAV program for calculation of parameters of the Gauss curve describing experimental data is considered. The calculations are based on the least square fit method. The estimations of errors in the parameter determination as a function of experimental data sample volume and their statistical significance are obtained. The curve fit using 100 points occupies less than 1 s at the SM-4 type computer

  10. On the design of experimental separation processes for maximum accuracy in the estimation of their parameters

    International Nuclear Information System (INIS)

    Volkman, Y.

    1980-07-01

    The optimal design of experimental separation processes for maximum accuracy in the estimation of process parameters is discussed. The sensitivity factor correlates the inaccuracy of the analytical methods with the inaccuracy of the estimation of the enrichment ratio. It is minimized according to the design parameters of the experiment and the characteristics of the analytical method

  11. Phase transition with trivial quantum criticality in an anisotropic Weyl semimetal

    Science.gov (United States)

    Li, Xin; Wang, Jing-Rong; Liu, Guo-Zhu

    2018-05-01

    When a metal undergoes continuous quantum phase transition, the correlation length diverges at the critical point and the quantum fluctuation of order parameter behaves as a gapless bosonic mode. Generically, the coupling of this boson to fermions induces a variety of unusual quantum critical phenomena, such as non-Fermi liquid behavior and various emergent symmetries. Here, we perform a renormalization group analysis of the semimetal-superconductor quantum criticality in a three-dimensional anisotropic Weyl semimetal. Surprisingly, distinct from previously studied quantum critical systems, the anomalous dimension of anisotropic Weyl fermions flows to zero very quickly with decreasing energy, and the quasiparticle residue takes a nonzero value. These results indicate that the quantum fluctuation of superconducting order parameter is irrelevant at low energies, and a simple mean-field calculation suffices to capture the essential physics of the superconducting transition. We thus obtain a phase transition that exhibits trivial quantum criticality, which is unique comparing to other invariably nontrivial quantum critical systems. Our theoretical prediction can be experimentally verified by measuring the fermion spectral function and specific heat.

  12. Experimental study of the critical density of heat flux in open channels cooled with helium - II

    International Nuclear Information System (INIS)

    Pron'ko, V.G.; Gorokhov, V.V.; Saverin, V.N.

    1981-01-01

    Experimental values of the critical density of a heat flux qsub(cr) in uniformly heated open channels cooled with helium-2 are reported for the first time. The experimental test bench and experimental element are described. Experimental data are obtained in cylindrical channels of 12Kh18N1OT steel with inner diameter d=0.8, 1.8; 2.8 mm and ratio l/d=20.8, 44, 85. The channel orientation has varied from vertical to horizontal position, the immersion depth - from 100, to 600 mm. It has been found that the heat transfer crisis propagation over the whole length of the channel with He-2 occurs practically instantaneously. The qsub(cr) value depends essentially on the bath liquid temperature, angle of inclivnation and relative length (l/d) of the channel with qsub(cr) approximately (l/d)sup(-1.5) being independent of the depth of channel immersion. The obtained values of critical density of a heat flux in channels are papproximately by an order less than those found for a great bulk of He-2. The results presented may be used for designing various types of devices cooled with He-2 and development of heat exchange theory in it [ru

  13. Critical current density measurement of thin films by AC susceptibility based on the penetration parameter h

    DEFF Research Database (Denmark)

    Li, Xiao-Fen; Grivel, Jean-Claude; Abrahamsen, Asger B.

    2012-01-01

    We have numerically proved that the dependence of AC susceptibility χ of a E(J) power law superconducting thin disc on many parameters can be reduced to one penetration parameter h, with E the electric field and J the current density. Based on this result, we propose a way of measuring the critical...... current density Jc of superconducting thin films by AC susceptibility. Compared with the normally used method based on the peak of the imaginary part, our method uses a much larger range of the AC susceptibility curve, thus allowing determination of the temperature (T) dependence of Jc from a normally...

  14. Investigations on critical parameters, growth, structural and spectral studies of beta-alaninium picrate (BAP) single crystals

    International Nuclear Information System (INIS)

    Shanthi, D; Selvarajan, P; Perumal, S

    2014-01-01

    Beta-alaninium picrate (BAP) salt has been synthesized and the solubility of the synthesized sample in double distilled water was determined at different temperatures. Solution stability was studied by observing the metastable zone width by employing the polythermal method. Induction period values for different supersaturation ratios at room temperature were determined based on the isothermal method. The nucleation parameters such as critical radius, critical free energy change, interfacial tension, and nucleation rate have been estimated for BAP salt on the basis of the classical nucleation theory. The lattice parameters of the grown BAP crystal were determined using the x-ray diffraction (XRD) technique. The reflection planes of the sample were confirmed by the powder XRD study and diffraction peaks were indexed. Fourier transform infrared spectroscopy and Fourier transform–Raman studies were used to confirm the presence of various functional groups in the BAP crystal. The nonlinear optical property of the grown crystal was studied using the Kurtz–Perry powder technique. UV–visible spectral studies were carried out to understand optical transparency and the type of band gap of the grown BAP crystal. (paper)

  15. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  16. Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine

    Directory of Open Access Journals (Sweden)

    B. Nkakanou

    2011-01-01

    Full Text Available Experimental results for an ultra-wideband (UWB channel parameters in an underground mining environment over a frequency range of 3 GHz to 10 GHz are reported. The measurements were taken both in LOS and NLOS cases in two different size mine galleries. In the NLOS case, results were acquired for different corridor obstruction angles. The results were obtained during an extensive measurement campaign in the UWB frequency, and the measurement procedure allows both the large- and small-scale parameters such as the path loss exponent, coherence bandwidth, and so forth, to be quantified. The capacity of the UWB channel as a function of the physical depth of the mine gallery has also been recorded for comparison purposes.

  17. Nonlinearity Analysis and Parameters Optimization for an Inductive Angle Sensor

    Directory of Open Access Journals (Sweden)

    Lin Ye

    2014-02-01

    Full Text Available Using the finite element method (FEM and particle swarm optimization (PSO, a nonlinearity analysis based on parameter optimization is proposed to design an inductive angle sensor. Due to the structure complexity of the sensor, understanding the influences of structure parameters on the nonlinearity errors is a critical step in designing an effective sensor. Key parameters are selected for the design based on the parameters’ effects on the nonlinearity errors. The finite element method and particle swarm optimization are combined for the sensor design to get the minimal nonlinearity error. In the simulation, the nonlinearity error of the optimized sensor is 0.053% in the angle range from −60° to 60°. A prototype sensor is manufactured and measured experimentally, and the experimental nonlinearity error is 0.081% in the angle range from −60° to 60°.

  18. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    Science.gov (United States)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  19. Handbook on criticality. Vol. 1. Criticality and nuclear safety; Handbuch zur Kritikalitaet. Bd. 1. Kritikalitaet und nukleare Sicherheit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-04-15

    This handbook was prepared primarily with the aim to provide information to experts in industry, authorities or research facilities engaged in criticality-safety-related problems that will allow an adequate and rapid assessment of criticality safety issues already in the planning and preparation of nuclear facilities. However, it is not the intention of the authors of the handbook to offer ready solutions to complex problems of nuclear safety. Such questions have to remain subject to an in-depth analysis and assessment to be carried out by dedicated criticality safety experts. Compared with the previous edition dated December 1998, this handbook has been further revised and supplemented. The proven basic structure of the handbook remains unchanged. The handbook follows in some ways similar criticality handbooks or instructions published in the USA, UK, France, Japan and the former Soviet Union. The expedient use of the information given in this handbook requires a fundamental understanding of criticality and the terminology of nuclear safety. In Vol. 1, ''Criticality and Nuclear Safety'', therefore, first the most important terms and fundamentals are introduced and explained. Subsequently, experimental techniques and calculation methods for evaluating criticality problems are presented. The following chapters of Vol. 1 deal i. a. with the effect of neutron reflectors and absorbers, neutron interaction, measuring methods for criticality, and organisational safety measures and provide an overview of criticality-relevant operational experience and of criticality accidents and their potential hazardous impact. Vol. 2 parts 1 and 2 finally compile criticality parameters in graphical and tabular form. The individual graph sheets are provided with an initially explained set of identifiers, to allow the quick finding of the information of current interest. Part 1 includes criticality parameters for systems with {sup 235}U as fissile material, while part

  20. Critical sizes and critical characteristics of nanoclusters, nanostructures and nanomaterials

    International Nuclear Information System (INIS)

    Suzdalev, I.P.

    2005-01-01

    Full text: Critical sizes and characteristics of nanoclusters and nanostructures are introduced as the parameters of nanosystems and nanomaterials. The next critical characteristics are considered: atomic and electronic 'magic number', critical size of cluster nucleation, critical size of melting-freezing of cluster, critical size of quantum (laser) radiation, critical sizes for the single electron conductivity, critical energy and magnetic field for the magnetic tunneling, critical cluster sizes for the giant magnetic resistance, critical size of the first order magnetic phase transition. The critical characteristics are estimated by thermodynamic approaches, by Moessbauer spectroscopy, AFM, heat capacity, SQUID magnetometry and other technique, The influence of cluster-cluster interactions, cluster-matrix interactions and cluster defects on cluster atomic dynamics, cluster melting, cluster critical sizes, Curie or Neel points and the character of magnetic phase transitions were investigated. The applications of critical size and critical characteristic parameters for the nanomaterial characterization are considered

  1. Experimental estimations of the kinetics parameters of the IBR-2M reactor by stochastic noises

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tajybov, L.A.; Garibov, A.A.; Mekhtieva, R.N.

    2012-01-01

    Experimental investigations of stochastic fluctuations of pulse energy of the IBR-2M reactor have been carried out which allowed us to obtain some of the parameters of the reactor kinetics. At different levels of average power a sequence of values of pulse energy was recorded with the calculation of the distribution parameters. An ionization chamber with boron installed near the active zone was used as a neutron detector. The research results allowed us to estimate the average lifetime of prompt neutrons τ = (6.53±0.2)·10 -8 s, absolute power of the reactor and intensity of the source of spontaneous neutrons S sp ≤(6.72±0.12)·10 6 s -1 . It was shown that the experimental results are close to the calculated ones

  2. Alecto, criticality experiment on a plutonium solution. Experimental results. Vessel number 1 (φ = 324 mm)

    International Nuclear Information System (INIS)

    Bruna, J.; Brunet, J.F.; Caizergues, R.; Clouet D'orval, C.; Kremser, J.; Leclerc, J.; Verriere, P.

    1963-01-01

    ALECTO is a critical experiment intended for the neutronic study of homogeneous aqueous multiplying media. It essentially consists of a cylindrical tank, reflected or not, where can be made critical a solution of fissionable material fed into the tank from a geometrically subcritical storage. The studies effected on this assembly concern on one hand the determination of critical masses, on the other hand the nuclear parameters used in neutron calculations. The container tested in the first series of experiments hereby described is a cylindrical tank, 324 mm diameter with a convex bottom, water reflected on the sides and on the inferior part. The minimum critical mass of this tank was determined and was found to be: M cmin = 845 ± 7 g. The decay constant of prompt neutrons as a function of reactivity was determined by the pulsed neutron technique. At the critical state, it was found to be: α c = 73 ± 6 s -1 . Furthermore, from the study of this tank, were derived a number of safety regulations for plutonium solutions. (authors) [fr

  3. Experimental evaluation of a quasi-modal parameter based rotor foundation identification technique

    Science.gov (United States)

    Yu, Minli; Liu, Jike; Feng, Ningsheng; Hahn, Eric J.

    2017-12-01

    Correct modelling of the foundation of rotating machinery is an invaluable asset in model-based rotor dynamic study. One attractive approach for such purpose is to identify the relevant modal parameters of an equivalent foundation using the motion measurements of rotor and foundation at the bearing supports. Previous research showed that, a complex quasi-modal parameter based system identification technique could be feasible for this purpose; however, the technique was only validated by identifying simple structures under harmonic excitation. In this paper, such identification technique is further extended and evaluated by identifying the foundation of a numerical rotor-bearing-foundation system and an experimental rotor rig respectively. In the identification of rotor foundation with multiple bearing supports, all application points of excitation forces transmitted through bearings need to be included; however the assumed vibration modes far outside the rotor operating speed cannot or not necessary to be identified. The extended identification technique allows one to identify correctly an equivalent foundation with fewer modes than the assumed number of degrees of freedom, essentially by generalising the technique to be able to handle rectangular complex modal matrices. The extended technique is robust in numerical and experimental validation and is therefore likely to be applicable in the field.

  4. Optimizing experimental parameters for the projection requirement in HAADF-STEM tomography

    International Nuclear Information System (INIS)

    Aveyard, R.; Zhong, Z.; Batenburg, K.J.; Rieger, B.

    2017-01-01

    Highlights: • The extent to which HAADF-STEM meets the projection requirement has been studied. • Multislice simulations used to model beam propagation and study signal linearity. • Propagation in crystalline and amorphous materials considered. • Optimal experimental set-up for the projection requirement is discussed. - Abstract: Tomographic reconstruction algorithms offer a means by which a tilt-series of transmission images can be combined to yield a three dimensional model of the specimen. Conventional reconstruction algorithms assume that the measured signal is a linear projection of some property, typically the density, of the material. Here we report the use of multislice simulations to investigate the extent to which this assumption is met in HAADF-STEM imaging. The use of simulations allows for a systematic survey of a range of materials and microscope parameters to inform optimal experimental design. Using this approach it is demonstrated that the imaging of amorphous materials is in good agreement with the projection assumption in most cases. Images of crystalline specimens taken along zone-axes are found to be poorly suited for conventional linear reconstruction algorithms due to channelling effects which produce enhanced intensities compared with off-axis images, and poor compliance with the projection requirement. Off-axis images are found to be suitable for reconstruction, though they do not strictly meet the linearity requirement in most cases. It is demonstrated that microscope parameters can be selected to yield improved compliance with the projection requirement.

  5. Optimizing experimental parameters for the projection requirement in HAADF-STEM tomography

    Energy Technology Data Exchange (ETDEWEB)

    Aveyard, R., E-mail: r.a.aveyard@tudelft.nl [Department of Imaging Physics, Delft University of Technology, 2628CJ Delft (Netherlands); Zhong, Z.; Batenburg, K.J. [Centrum Wiskunde and Informatica, Science Park 123, NL-1098 XG Amsterdam (Netherlands); Rieger, B., E-mail: b.rieger@tudelft.nl [Department of Imaging Physics, Delft University of Technology, 2628CJ Delft (Netherlands)

    2017-06-15

    Highlights: • The extent to which HAADF-STEM meets the projection requirement has been studied. • Multislice simulations used to model beam propagation and study signal linearity. • Propagation in crystalline and amorphous materials considered. • Optimal experimental set-up for the projection requirement is discussed. - Abstract: Tomographic reconstruction algorithms offer a means by which a tilt-series of transmission images can be combined to yield a three dimensional model of the specimen. Conventional reconstruction algorithms assume that the measured signal is a linear projection of some property, typically the density, of the material. Here we report the use of multislice simulations to investigate the extent to which this assumption is met in HAADF-STEM imaging. The use of simulations allows for a systematic survey of a range of materials and microscope parameters to inform optimal experimental design. Using this approach it is demonstrated that the imaging of amorphous materials is in good agreement with the projection assumption in most cases. Images of crystalline specimens taken along zone-axes are found to be poorly suited for conventional linear reconstruction algorithms due to channelling effects which produce enhanced intensities compared with off-axis images, and poor compliance with the projection requirement. Off-axis images are found to be suitable for reconstruction, though they do not strictly meet the linearity requirement in most cases. It is demonstrated that microscope parameters can be selected to yield improved compliance with the projection requirement.

  6. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    Science.gov (United States)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  7. Statistical determination of significant curved I-girder bridge seismic response parameters

    Science.gov (United States)

    Seo, Junwon

    2013-06-01

    Curved steel bridges are commonly used at interchanges in transportation networks and more of these structures continue to be designed and built in the United States. Though the use of these bridges continues to increase in locations that experience high seismicity, the effects of curvature and other parameters on their seismic behaviors have been neglected in current risk assessment tools. These tools can evaluate the seismic vulnerability of a transportation network using fragility curves. One critical component of fragility curve development for curved steel bridges is the completion of sensitivity analyses that help identify influential parameters related to their seismic response. In this study, an accessible inventory of existing curved steel girder bridges located primarily in the Mid-Atlantic United States (MAUS) was used to establish statistical characteristics used as inputs for a seismic sensitivity study. Critical seismic response quantities were captured using 3D nonlinear finite element models. Influential parameters from these quantities were identified using statistical tools that incorporate experimental Plackett-Burman Design (PBD), which included Pareto optimal plots and prediction profiler techniques. The findings revealed that the potential variation in the influential parameters included number of spans, radius of curvature, maximum span length, girder spacing, and cross-frame spacing. These parameters showed varying levels of influence on the critical bridge response.

  8. Critical experiments carried out with a homogeneous plutonium solution. Experimental results. Theoretical interpretations

    International Nuclear Information System (INIS)

    Bouly, J.C.; Caizergues, R.; Deilgat, E.; Houelle, M.; Lecorche, P.

    1967-01-01

    This report groups together a series of experimental and theoretical studies on cylinders and plates of solution tried out at the Valduc Centre. a) Comparison of the theoretical and experimental results obtained on critical heights of solutions. b) Study of the effect of nitrogen, introduced in the form of the ion NO 3- , on the reactivity of fissile media. c) Study of the effect of 240 94 Pu on the reactivity of these media. d) Study of the influence of the dimensions of the inner cavity of annular cylinders, as well as of the influence of the moderator which may be introduced. Simple results were obtained which were easy to apply. An extrapolation to other geometries is made. (authors) [fr

  9. Heavy water critical experiments on plutonium lattice

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Shiba, Kiminori

    1975-06-01

    This report is the summary of physics study on plutonium lattice made in Heavy Water Critical Experiment Section of PNC. By using Deuterium Critical Assembly, physics study on plutonium lattice has been carried out since 1972. Experiments on following items were performed in a core having 22.5 cm square lattice pitch. (1) Material buckling (2) Lattice parameters (3) Local power distribution factor (4) Gross flux distribution in two region core (5) Control rod worth. Experimental results were compared with theoretical ones calculated by METHUSELAH II code. It is concluded from this study that calculation by METHUSELAH II code has acceptable accuracy in the prediction on plutonium lattice. (author)

  10. Order parameter effect critical fields and current of Y1–xPrx:123 superconductors

    Directory of Open Access Journals (Sweden)

    Sedky A.

    2018-03-01

    Full Text Available Fluctuation induced conductivity by Pr substitution at Y sites of Y1-xPrx:123 superconductors is reported. It is found that the mean field temperature Tcmf, deduced from the peak of dρ/dT versus T plot, gradually decreases by increasing Pr up to 0.40. The order parameter dimensionality (OPD is estimated from the slope of the logarithmic plot between excess conductivity Δσ and reduced temperature є. Interestingly, the crossover from 2D to 3D is obtained for samples with Pr = 0.00, 0.10 and 0.20, while with increasing Pr up to 0.40, the crossover from 0D to quasi-2D is obtained. On the other hand, the calculated values of interlayer coupling, coherence lengths, critical fields and critical current decrease with increasing Pr up to 0.20, but with the further increase of Pr, up to 0.40, they increase. The hole carriers/Cu ions anisotropy and G-L parameter gradually increase with Pr up to 0.40. Our results are discussed in terms of the effects of Pr substitution at Y site, such as oxygen rearrangements, anisotropy, hybridization and localization of holes in the overdoped region.

  11. A study of fluid alkali metals in the critical region

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, R. [Department of Physics, Kongu Engineering College, Perundurai, Erode 638 052, Tamil Nadu (India)]. E-mail: drrbala@yahoo.com

    2006-05-31

    On the basis of the generalised van der Waals equation of state, Riedel's thermodynamic similarity parameter, a measure of the temperature dependence of vapour pressure in the critical region is determined for caesium, rubidium and potassium. This generalised equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. The results of determination of Riedel's thermodynamic similarity parameter of caesium, rubidium and potassium are in good agreement with experimental data. Moreover, the given generalised van der Waals equation of state yields a better fit with experimental data on Riedel's thermodynamic similarity parameter for fluid alkali metals when compared with other correlations such as Van Ness and Abbott equation, Pitzer expansion, Pitzer acentric factor correlation, modified Rackett technique, Lee-Kesler vapour pressure relation and Clausius-Clayperon equation.

  12. Gas Bearing Control for Safe Operation in Critical Speed Regions - Experimental Verification

    DEFF Research Database (Denmark)

    Theisen, Lukas R. S.; Niemann, Hans H.; Galeazzi, Roberto

    2015-01-01

    supported by gas bearings to extend their operating range. Using H∞-design methods, active lubrication techniques are proposed to enhance the damping, which in turn reduces the vibrations to a desired safe level. The control design is validated experimentally on a laboratory test rig, and shown to allow...... and deceleration patterns and avoidance of operation near the critical speeds, which is a limiting factor during operation, specially during run-downs. An approach for reducing the vibrations is by feedback controlled lubrication. This paper addresses the challenge of reducing vibrations in rotating machines...

  13. Tabular method of critical heat flux description in square packing rod bundles

    International Nuclear Information System (INIS)

    Bobkov, V.P.; Smogalev, I.P.

    2003-01-01

    Elaborations of harnessing tabular method for the description and calculation of critical heat fluxes in square packing rod bundles are presented. The tabular method for fuel rod triangular assemblies derived from using basic table for critical heat fluxes in triangular fuel assemblies demonstrates good results. For the harnessing tabular method in square packing rod bundles correction functions reflecting specific geometry were found. Comparative evaluations of calculated values for the critical heat fluxes with experimental ones are presented. Good agreement of calculations with experiments is noted in all range of parameters [ru

  14. A study of calculation methodology and experimental measurements of the kinetic parameters for source driven subcritical systems

    International Nuclear Information System (INIS)

    Lee, Seung Min

    2009-01-01

    This work presents a theoretical study of reactor kinetics focusing on the methodology of calculation and the experimental measurements of the so-called kinetic parameters. A comparison between the methodology based on the Dulla's formalism and the classical method is made. The objective is to exhibit the dependence of the parameters on subcriticality level and perturbation. Two different slab type systems were considered: thermal one and fast one, both with homogeneous media. One group diffusion model was used for the fast reactor, and for the thermal system, two groups diffusion model, considering, in both case, only one precursor's family. The solutions were obtained using the expansion method. Also, descriptions of the main experimental methods of measurements of the kinetic parameters are presented in order to put a question about the compatibility of these methods in subcritical region. (author)

  15. Investigating dynamic parameters in HWZPR ased on the experimental and calculated results

    Energy Technology Data Exchange (ETDEWEB)

    Nasrazadani, Zahra; Behfamia, Manochehar; Khosandi, Jamshid; Mirvakili, Mohammad [Reactors Research School, Nuclear Science And Technology Research Institute, Atomic Energy Organization of Iran, Esfahan (Iran, Islamic Republic of)

    2016-10-15

    The neutron decay constant, α, and effective delayed neutron fraction, β{sub eff}, are important parameters for the control of the dynamic behavior of nuclear reactors. For the heavy water zero power reactor (HWZPR), this document describes the measurements of the neutron decay constant by noise analysis methods, including variance to mean (VTM) ratio and endogenous pulse source (EPS) methods. The measured α is successively used to determine the experimental value of the effective delayed neutron fraction as well. According to the experimental results, β{sub eff} of the HWZPR reactor under study is equal to 7.84e-3. This value is finally used to validate the calculation of the effective delayed neutron fraction by the Monte Carlo methods that are discussed in the document. Using the Monte Carlo N-Particle (MCNP)-4C code, a β{sub eff} value of 7.58e-3 was obtained for the reactor under study. Thus, the relative difference between the β{sub eff} values determined experimentally and by Monte Carlo methods was estimated to be < 4%.

  16. Calculation of the main neutron parameters of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Ojima, Mario Katsuhiko

    1977-01-01

    The main neutron parameters of the research reactor IEA-R1 were calculated using computer programs to generate cross sections and criticality calculations. A calculation procedure based on the programs available in the Processing Center Data of IEA was established and centered in the HAMMER and CITATION system. A study was done in order to verify the validity and accuracy of the calculation method comparing the results with experimental data. Some operating parameters of the reactor, namely the distribution of neutron flux, the critical mass, the variation of the reactivity with the burning of fuel, and the dead time of the reactor were determined

  17. Critical parameters and decay constants for one-speed neutrons in slabs and spheres with anisotropic scattering

    International Nuclear Information System (INIS)

    Yildiz, C.

    2001-01-01

    Time-dependent, one-speed neutron transport equations with strong forward and backward scattering together with isotropic scattering are studied in homogeneous slabs and spheres. First, a simple formal equivalence between the transport equations for a critical and for a time-decaying system is established. Then, the transport equation is converted into a more conventional one. The F N method of solving the resulting transport equation is applied to the calculation of the critical parameters and decay constants for the fundamental mode of the flux distribution and one-speed neutrons in spheres and infinite slabs. Numerical results are given for a number of significant figures and compared with those already available in the literature. (orig.) [de

  18. Effect of caffeine intake on critical power model parameters determined on a cycle ergometer

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Machado

    2010-01-01

    Full Text Available The aim of this study was to evaluate the effect of caffeine intake on critical power model parameters determined on a cycle ergometer. Eight male subjects participated in this study. A double-blind protocol consisting of the intake of pure caffeine (6 mg/kg or placebo (maltodextrin 60 min before testing was used. Subjects were submitted to four constant-load tests on a cycle ergometer. These tests were conducted randomly in the caffeine and placebo groups [checar] at intensities of 80, 90, 100 and 110% maximum power at a rate of 70 rpm until exhaustion to determine the critical power. As a criterion for stopping the test was adopted any rate fall without recovery by more than five seconds. The critical power and anaerobic work capacity were obtained by nonlinear regression and fitting of the curve to a hyperbolic power-time model. The Shapiro-Wilk test and paired Student t-test were used for statistical analysis. No significant differences in critical power were observed between the caffeine and placebo groups (192.9 ± 31.3 vs 197.7 ± 29.4 W, respectively. The anaerobic work capacity was significantly higher in the caffeine group (20.1 ± 5.2 vs 16.3 ± 4.2 W, p< 0.01. A high association (r2 was observed between the caffeine and placebo conditions (0.98 ± 0.02 and 0.99 ± 0.0, respectively. We conclude that caffeine intake did not improve critical power performance but increased anaerobic work capacity by influencing performance at loads of higher intensity and shorter duration.

  19. Analysis of JUPITER critical experiments by JENDL-3.2

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1996-01-01

    Applicability of the JENDL-3.2 library to large FBR cores was evaluated using JUPITER experimental data. The nuclear characteristics treated in the present report include criticality, reaction rate ratio, space dependency of C/E values, sodium void reactivity and Doppler reactivity. As a conclusion, JENDL-3.2 is judged to be a well-balanced library for prediction of large FBR core parameters. The unification of integral experimental information from JUPITER and differential nuclear data of JENDL-3.2 will enhance the accuracy and reliability of large FBR core design. (author)

  20. Determination of low-field critical parameters of superconducting niobium by small-angle neutron diffraction

    International Nuclear Information System (INIS)

    Christen, D.K.; Spooner, S.; Thorel, P.; Kerchner, H.R.

    1977-01-01

    The perfect double-crystal small-angle diffraction technique enables measurement of scattering angles to within 0.3 arc sec. accuracy. At a wavelength of 2.55 A, this provides a resolution of 3 x 10 -6 A -1 in the scattering vector. This technique has been used to study the anisotropic behavior of the critical parameters B 0 and H/sub c1/, characteristic of the first-order magnetic phase transition which occurs in low-kappa type-II superconductors. Magnetic fields were applied parallel to several crystal axes of a large single-crystal sphere of pure niobium, resulting in well-defined flux-line lattices (FLL). Measurement of the FLL cell area in the intermediate mixed state field region gives the equilibrium flux density B 0 , which results from an attractive interaction between fluxoids. In addition, field variation of the scattered neutron intensity allows measurement of the transition field between the mixed state and intermediate mixed state. This transition field is related to the lower critical field H/sub c1/ and enables its determination to a precision 0.2%. Data at T = 4.3 K display a small anisotropic effect of about 2% in B 0 and 1% in H/sub c1/. Although orientation effects of this magnitude are difficult to resolve by bulk measurements, the neutron data are in accord with magnetization data. Observations regarding the temperature dependence of these parameters also will be presented, and comparisons made with current theoretical models

  1. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    Science.gov (United States)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  2. Comparison of different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters: an animal model.

    Science.gov (United States)

    Panda, Shasanka Shekhar; Bajpai, Minu; Mallick, Saumyaranjan; Sharma, Mehar C

    2014-01-01

    The objective of the following study is to determine and to compare the different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters of rats. Unilateral upper ureteric obstruction was created in 60 adult Wistar rats that were reversed after predetermined intervals. Rats were sacrificed and ipsilateral kidneys were subjected for analysis of morphological parameters such as renal height, cranio-caudal diameter, antero-posterior diameter, lateral diameter, volume of the pelvis and average cortical thickness: Renal height. Renal height and cranio-caudal diameter of renal pelvis after ipsilateral upper ureteric obstruction started rising as early as 7 days of creating obstruction and were affected earlier than antero-posterior and lateral diameter and also were reversed earlier than other parameters after reversal of obstruction. Renal cortical thickness and volume of the pelvis were affected after prolonged obstruction (> 3 weeks) and were the late parameters to be reversed after reversal of obstruction. Cranio-caudal diameter and renal height were the early morphological parameters to be affected and reversed after reversal of obstruction in experimentally created ipsilateral upper ureteric obstruction.

  3. Critical heat flux of subcooled flow boiling in a narrow tube

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Nariai, Hideki; Shimura, Toshiya.

    1986-01-01

    The critical heat flux (CHF) of subcooled flow boiling in a narrow tube was investigated experimentally using water as a coolant. Experiments were conducted at nearly ambient pressure under the following conditions: tube inside diameter: 1 ∼ 3 mm, tube length: 10 ∼ 100 mm, and water mass velocity: 7000 - 20000 kg/(m 2 · s). The critical heat flux increases the shorter the tube length and the smaller the tube inside diameter, at the same water mass velocity and exit quality. Experimental data were compared with empirical correlations, such as the Griffel and Knoebel correlations for subcooled boiling at low pressure, the Tong correlation for subcooled boiling at high pressure, and the Katto correlation. The existence of two parameter regions was confirmed. The first is the low CHF region in which experimental data can be predicted well by Griffel and Knoebel correlations, and the second is the high CHF region in which experimental data are higher than the predictions by the above two correlations. (author)

  4. Fermion-induced quantum critical points.

    Science.gov (United States)

    Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong

    2017-08-22

    A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.

  5. Simultaneous estimation of experimental and material parameters

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2012-07-01

    Full Text Available to the experimental data. An inverse analysis is performed that determines material properties and boundary conditions simultaneously. This idea is investigated using virtual experimental data. The virtual experimental data is obtained by performing a finite element...

  6. Critical ignition conditions in exothermically reacting systems: first-order reactions

    Science.gov (United States)

    Filimonov, Valeriy Yu.

    2017-10-01

    In this paper, the comparative analysis of the thermal explosion (TE) critical conditions on the planes temperature-conversion degree and temperature-time was conducted. It was established that the ignition criteria are almost identical only at relatively small values of Todes parameter. Otherwise, the results of critical conditions analysis on the plane temperature-conversion degree may be wrong. The asymptotic method of critical conditions calculation for the first-order reactions was proposed (taking into account the reactant consumption). The degeneration conditions of TE were determined. The calculation of critical conditions for specific first-order reaction was made. The comparison of the analytical results obtained with the results of numerical calculations and experimental data showed that they are in good agreement.

  7. Critical ignition conditions in exothermically reacting systems: first-order reactions.

    Science.gov (United States)

    Filimonov, Valeriy Yu

    2017-10-01

    In this paper, the comparative analysis of the thermal explosion (TE) critical conditions on the planes temperature-conversion degree and temperature-time was conducted. It was established that the ignition criteria are almost identical only at relatively small values of Todes parameter. Otherwise, the results of critical conditions analysis on the plane temperature-conversion degree may be wrong. The asymptotic method of critical conditions calculation for the first-order reactions was proposed (taking into account the reactant consumption). The degeneration conditions of TE were determined. The calculation of critical conditions for specific first-order reaction was made. The comparison of the analytical results obtained with the results of numerical calculations and experimental data showed that they are in good agreement.

  8. The reaction between iodine and organic coatings under severe PWR accident conditions. An experimental parameter study

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, S; Funke, F; Greger, G U; Bleier, A; Morell, W [Siemens AG, Power Generation Group, Erlangen (Germany)

    1996-12-01

    An extensive experimental parameter study was performed on the deposition and on the resuspension kinetics in the reaction system iodine/organically coated surfaces. Both reactions in the gas phase and in the liquid phase were investigated and kinetic rate constants suitable for modelling were derived. Previous experimental studies on the reaction of iodine with organic coated surfaces were mostly limited to temperatures below 100{sup o}C. Thus, this parameter study aims at filling a gap and providing kinetic data on heterogeneous reactions with organic surfaces in the accident-relevant temperature range of 100-160{sup o}C. Two types of laboratory experiments carried out at Siemens/KWU using coatings representative for German power plants (epoxy-tape paint), namely gas phase tests and liquid phase tests. (author) 6 figs., 6 tabs., 5 refs.

  9. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    Science.gov (United States)

    Wagner, Brian J.; Harvey, Judson W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute

  10. Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system

    International Nuclear Information System (INIS)

    Ferrante, Patrizia; La Gennusa, Maria; Peri, Giorgia; Rizzo, Gianfranco; Scaccianoce, Gianluca

    2016-01-01

    The paper provides a contribution for populating database of three physical parameters needed to model energy performance of buildings with green roofs: “coverage ratio” (σ_f), leaf area index (LAI) and leaf temperature (T_f). On purpose, six plant species were investigated experimentally: Phyla nordiflora, Aptenia lancifolia, Mesembryanthenum barbatus, Gazania nivea, Gazania uniflora, and Sedum. Proper ranges of the cited parameters have been found for each species. The here indicated ranges of σ_f values refer to different growth levels of the species in the same lapse of time, that is four months. Single measured LAI values are also reported for the same plants. As for the T_f (upper and lower layer), ranges of revealed temperatures refer to those detected from 10:30 a.m. to 16:30 p.m. of a selected day. Additionally, the dependence of T_f on climatic parameters was investigated. A linear equation resulted the best fitting curve for all experimental T_f data and the corresponding solar radiation data (with autocorrelation coefficients between 0.80 and 0.98). Furthermore, the effect potentially produced on building energy consumption by these species was analyzed using a simulation tool. Estimated cooling energy savings range approximately between 8% and 20% depending on adopted plants. - Highlights: • Green roof modeling requires the knowledge of various physical parameters. • Coverage ratio, leaf area index and leaves temperatures were measured for six species. • A tentative correlation between leaf temperature and climatic parameters was shown. • A correlation between LAI and coverage ratio was checked and discussed. • Potential effects of studied species on building energy consumption were investigated.

  11. Experimental utilization of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Bitelli, U. d'Utra; Santos, A. dos; Jerez, R.; Diniz, R.; Fanaro, L.C.C.B.; Abe, A.Y.; Moreira, J.M.L.; Fer, N.; Giada, M.R.; Fuga, R.

    2003-01-01

    This paper aims to show the experimental utilization of the IPEN/MB-01 nuclear reactor during the last fourteen years. The IPEN/MB-01 is a zero-power critical assembly specially designed to measure integral and differential reactor physics parameters to validate calculational methodologies and related nuclear data libraries. Experiments involving determination of spectral indices, critical mass, relative abundance of delayed neutrons, the inversion point of the isothermal reactivity coefficient and burnable poison are considered the most important experiments. Current experiments at IPEN/MB-01 reactor are also commented. (author)

  12. Parameter estimation for lithium ion batteries

    Science.gov (United States)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  13. Study of the kinetics parameters for subcritical media driven by source

    International Nuclear Information System (INIS)

    Lee, S.M.; Maiorino, J.R.

    2009-01-01

    This paper presents a theoretical study of reactor kinetics focusing on the methodology of calculation and the experimental measurements of the so-called kinetic parameters. A comparison between the methodology based on the Dulla's formalism and the classical method is made. The objective is to exhibit the dependence of the parameters on sub criticality level and perturbation. Two different slab type systems were considered: thermal one and fast one, both with homogeneous media. One group diffusion model was used for the fast reactor, and for the thermal system, two group diffusion model, considering, in both case only one precursor's family. For reason of simplicity, several additional assumptions were made for calculation of two group method: no up-scattering, fission reaction occurring only in thermal group, etc. The solutions for subcritical systems were obtained using the expansion method, and for critical systems, the methods presented in classical textbooks of reactor physics were applied. The numerical results presented their dependence on sub criticality level and perturbation. (author)

  14. Criticality and avalanches in neural networks

    International Nuclear Information System (INIS)

    Zare, Marzieh; Grigolini, Paolo

    2013-01-01

    Highlights: • Temporal criticality is used as criticality indicator. • The Mittag–Leffler function is proposed as a proper form of temporal complexity. • The distribution of avalanche size becomes scale free in the supercritical state. • The scale-free distribution of avalanche sizes is an epileptic manifestation. -- Abstract: Experimental work, both in vitro and in vivo, reveals the occurrence of neural avalanches with an inverse power law distribution in size and time duration. These properties are interpreted as an evident manifestation of criticality, thereby suggesting that the brain is an operating near criticality complex system: an attractive theoretical perspective that according to Gerhard Werner may help to shed light on the origin of consciousness. However, a recent experimental observation shows no clear evidence for power-law scaling in awake and sleeping brain of mammals, casting doubts on the assumption that the brain works at criticality. This article rests on a model proposed by our group in earlier publications to generate neural avalanches with the time duration and size distribution matching the experimental results on neural networks. We now refine the analysis of the time distance between consecutive firing bursts and observe the deviation of the corresponding distribution from the Poisson statistics, as the system moves from the non-cooperative to the cooperative regime. In other words, we make the assumption that the genuine signature of criticality may emerge from temporal complexity rather than from the size and time duration of avalanches. We argue that the Mittag–Leffler (ML) exponential function is a satisfactory indicator of temporal complexity, namely of the occurrence of non-Poisson and renewal events. The assumption that the onset of criticality corresponds to the birth of renewal non-Poisson events establishes a neat distinction between the ML function and the power law avalanches generating regime. We find that

  15. Experimental determination of solubility parameters of oils as a function of pressure

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Duong, Diep; Andersen, Simon Ivar

    2005-01-01

    In this work, the solubility parameter of dead and live crude oils was measured at 303.15 K and up to 300 bar, using the internal pressure approach. An indirect technique was chosen, using thermal expansivities (determined from microcalorimetric measurements) and isothermal compressibilities (cal...... are measured and given as input. Therefore, a more appropriate characterization method should give better results....... (calculated from density measurements). This method was tested on seven pure compounds, and the deviation with literature data is method based on the refractive index was used to examine the validity of the results for the oils, and a deviation of ... parameter was also calculated from two cubic equations of state and compared to experimental results. In this case, the deviations are larger (up to 6.5 MPa1/2), whereas this approach gives accurate results for pure compounds. This might be due to the characterization procedure, because the volumes...

  16. Experimental study on critical breaking stress of float glass under elevated temperature

    International Nuclear Information System (INIS)

    Wang, Yu; Wang, Qingsong; Shao, Guangzheng; Chen, Haodong; Sun, Jinhua; He, Linghui; Liew, K.M.

    2014-01-01

    Highlights: • Critical breaking stresses of clear, ground and coated glass were measured. • Breaking stress and strain of smooth glass were measured from 25 °C to 400 °C. • At approximately 100 °C, critical stress reached the minimum value. • Surface treatment and ambient temperature have notable effects on glass breaking. - Abstract: Cracking and subsequent fallout of glass may significantly affect fire dynamics in compartments. Moreover, the breaking tensile stress of glass, a crucial parameter for breakage occurrence, is the least well known among mechanical properties. In this work, a series of experiments were conducted, through mechanical tensile tests, to directly measure the breaking stress of float glass using Material Testing System 810 apparatus. Clear, ground and coated glass samples with a thickness of 6 mm were measured under ambient conditions, with a room temperature of 25 °C. The breaking stress of smooth glass samples was also measured at 75 °C, 100 °C, 125 °C, 150 °C, 200 °C, 300 °C and 400 °C, respectively. The results show that surface treatment may decrease the critical tensile stress of glass panes. The average breaking stress also fluctuates considerably, from 26.60 to 35.72 MPa with the temperature variations investigated here. At approximately 100 °C, critical stress reached the minimum value at which glass breakage occurs more easily. In addition, the thermal expansion coefficient was established using a thermal dilatometer, to obtain the maximum temperature difference float glass can withstand. It is intended that these results will provide some practical guidelines for fire safety engineers

  17. Optimization of Experimental Model Parameter Identification for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Rosario Morello

    2013-09-01

    Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.

  18. Comparison of different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters: An animal model

    Directory of Open Access Journals (Sweden)

    Shasanka Shekhar Panda

    2014-01-01

    Full Text Available Background: The objective of the following study is to determine and to compare the different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters of rats. Materials and Methods: Unilateral upper ureteric obstruction was created in 60 adult Wistar rats that were reversed after predetermined intervals. Rats were sacrificed and ipsilateral kidneys were subjected for analysis of morphological parameters such as renal height, cranio-caudal diameter, antero-posterior diameter, lateral diameter, volume of the pelvis and average cortical thickness: Renal height. Results: Renal height and cranio-caudal diameter of renal pelvis after ipsilateral upper ureteric obstruction started rising as early as 7 days of creating obstruction and were affected earlier than antero-posterior and lateral diameter and also were reversed earlier than other parameters after reversal of obstruction. Renal cortical thickness and volume of the pelvis were affected after prolonged obstruction (> 3 weeks and were the late parameters to be reversed after reversal of obstruction. Conclusions: Cranio-caudal diameter and renal height were the early morphological parameters to be affected and reversed after reversal of obstruction in experimentally created ipsilateral upper ureteric obstruction.

  19. Changes in Critical Thinking Skills Following a Course on Science and Pseudoscience: A Quasi-Experimental Study

    Science.gov (United States)

    McLean, Carmen P.; Miller, Nathan A.

    2010-01-01

    We assessed changes in paranormal beliefs and general critical thinking skills among students (n = 23) enrolled in an experimental course designed to teach distinguishing science from pseudoscience and a comparison group of students (n = 30) in an advanced research methods course. On average, both courses were successful in reducing paranormal…

  20. Developing Critical Thinking Skills for Effective Communication : Citizenship Education and an Experimental English Lesson

    OpenAIRE

    KATO, Yuko

    2009-01-01

    Promoting critical thinking skills is one of several important learning skills necessary for effective communication in English. These abilities are crucial in developing the students' wider views of the world, working with others, and finding out better ideas and solutions. This study describes some key characteristics of these skills and how they are introduced in Citizenship Education in England and in Scandinavian countries. In addition, an experimental English lesson aiming at developing...

  1. Critical parameters in the production of ceramic pot filters for household water treatment in developing countries.

    Science.gov (United States)

    Soppe, A I A; Heijman, S G J; Gensburger, I; Shantz, A; van Halem, D; Kroesbergen, J; Wubbels, G H; Smeets, P W M H

    2015-06-01

    The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study's objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions. Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture. The main conclusions: larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10-20 L/hour without a significant decrease in bacterial removal efficiency.

  2. Experimental investigation on the effect of injection conditions on spray and atomization of a centrifugal nozzle

    Science.gov (United States)

    Fan, Wei; Song, Haoyi; Fan, Zhencen; Zhao, Lin

    2013-05-01

    The effects of injection parameters on atomization of aviation kerosene (RP-3) were studied using a laser diffraction particle size analyzing system. The test results indicated that Sauter mean diameter (SMD) decreased with the increase of injection temperature. There was a critical temperature for flash evaporation, at which SMD had a sharp decrease. The critical temperature fell at first and then rose with the increase of injection pressure; however, the diameter of a centrifugal nozzle had little influence on the critical temperature. Sauter mean diameter didn't follow the conventional law after flash evaporation. A simple and empirical correlation between critical temperature for flash evaporation and injection parameters was developed from the experimental data, which can be used to evaluate critical temperature for flash evaporation.

  3. A method for development of efficient 3D models for neutronic calculations of ASTRA critical facility using experimental information

    Energy Technology Data Exchange (ETDEWEB)

    Balanin, A. L.; Boyarinov, V. F.; Glushkov, E. S.; Zimin, A. A.; Kompaniets, G. V.; Nevinitsa, V. A., E-mail: Neviniza-VA@nrcki.ru; Moroz, N. P.; Fomichenko, P. A.; Timoshinov, A. V. [National Research Center Kurchatov Institute (Russian Federation); Volkov, Yu. N. [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    The application of experimental information on measured axial distributions of fission reaction rates for development of 3D numerical models of the ASTRA critical facility taking into account azimuthal asymmetry of the assembly simulating a HTGR with annular core is substantiated. Owing to the presence of the bottom reflector and the absence of the top reflector, the application of 2D models based on experimentally determined buckling is impossible for calculation of critical assemblies of the ASTRA facility; therefore, an alternative approach based on the application of the extrapolated assembly height is proposed. This approach is exemplified by the numerical analysis of experiments on measurement of efficiency of control rods mockups and protection system (CPS).

  4. A method for development of efficient 3D models for neutronic calculations of ASTRA critical facility using experimental information

    International Nuclear Information System (INIS)

    Balanin, A. L.; Boyarinov, V. F.; Glushkov, E. S.; Zimin, A. A.; Kompaniets, G. V.; Nevinitsa, V. A.; Moroz, N. P.; Fomichenko, P. A.; Timoshinov, A. V.; Volkov, Yu. N.

    2016-01-01

    The application of experimental information on measured axial distributions of fission reaction rates for development of 3D numerical models of the ASTRA critical facility taking into account azimuthal asymmetry of the assembly simulating a HTGR with annular core is substantiated. Owing to the presence of the bottom reflector and the absence of the top reflector, the application of 2D models based on experimentally determined buckling is impossible for calculation of critical assemblies of the ASTRA facility; therefore, an alternative approach based on the application of the extrapolated assembly height is proposed. This approach is exemplified by the numerical analysis of experiments on measurement of efficiency of control rods mockups and protection system (CPS).

  5. French safety and criticality testing programmes

    International Nuclear Information System (INIS)

    Barbry, F.; Leclerc, J.; Manaranche, J.C.; Maubert, L.

    1982-01-01

    This article underlines the need to include experimental safety-criticality programmes in the French nuclear effort. The means and methods used at the Section of Experimental Nuclear Safety and Criticality Research, attached to the CEA Valduc Centre, are described. Three experimental programmes are presented: safety-criticality of the PWR fuel cycle, neutron poisoning of plutonium solutions by gadolinium and safety-criticality of slightly enriched and slightly moderated uranium oxide. Criticality accidents studies in solution are then described [fr

  6. A critical flow model for the Cathena thermalhydraulic code

    International Nuclear Information System (INIS)

    Popov, N.K.; Hanna, B.N.

    1990-01-01

    The calculation of critical flow rate, e.g., of choked flow through a break, is required for simulating a loss of coolant transient in a reactor or reactor-like experimental facility. A model was developed to calculate the flow rate through the break for given geometrical parameters near the break and fluid parameters upstream of the break for ordinary water, as well as heavy water, with or without non- condensible gases. This model has been incorporated in the CATHENA, one-dimensional, two-fluid thermalhydraulic code. In the CATHENA code a standard staggered-mesh, finite-difference representation is used to solve the thermalhydraulic equations. This model compares the fluid mixture velocity, calculated using the CATHENA momentum equations, with a critical velocity. When the mixture velocity is smaller than the critical velocity, the flow is assumed to be subcritical, and the model remains passive. When the fluid mixture velocity is higher than the critical velocity, the model sets the fluid mixture velocity equal to the critical velocity. In this paper the critical velocity at a link (momentum cell) is first estimated separately for single-phase liquid, two- phase, or single-phase gas flow condition at the upstream node (mass/energy cell). In all three regimes non-condensible gas can be present in the flow. For single-phase liquid flow, the critical velocity is estimated using a Bernoulli- type of equation, the pressure at the link is estimated by the pressure undershoot method

  7. ASCERTAINMENT OF THE EQUIVALENT CIRCUIT PARAMETERS OF THE ASYNCHRONOUS MACHINE

    Directory of Open Access Journals (Sweden)

    V. S. Safaryan

    2015-01-01

    Full Text Available The article considers experimental and analytical determination of the asynchronous machine equivalent-circuit parameters with application of the reference data. Transient processes investigation of the asynchronous machines necessitates the equivalent circuit parameters (resistance impedance, inductances and coefficient of the stator-rotor contours mutual inductance that help form the transitory-process mathematical simulation model. The reference books do not provide those parameters; they instead give the rated ones (active power, voltage, slide, coefficient of performance and capacity coefficient as well as the ratio of starting and nominal currents and torques. The noted studies on the asynchronous machine equivalent-circuits parametrization fail to solve the problems ad finem or solve them with admissions. The paper presents experimental and analytical determinations of the asynchronous machine equivalent-circuit parameters: the experimental one based on the results of two measurements and the analytical one where the problem boils down to solving a system of nonlineal algebraic equations. The authors investigate the equivalent asynchronous machine input-resistance properties and adduce the dependence curvatures of the input-resistances on the slide. They present a symbolic model for analytical parameterization of the asynchronous machine equivalent-circuit that represents a system of nonlineal equations and requires one of the rotor-parameters arbitrary assignment. The article demonstrates that for the asynchronous machine equivalent-circuit experimental parameterization the measures are to be conducted of the stator-circuit voltage, current and active power with two different slides and arbitrary assignment of one of the rotor parameters. The paper substantiates the fact that additional measurement does not discard the rotor-parameter choice arbitrariness. The authors establish that in motoring mode there is a critical slide by which the

  8. An inverse analysis of weak structural plane parameters for a limestone foundation pit based on critical stability

    Science.gov (United States)

    yan, LIU Jun; hua, SONG Xiang; Yan, LIU

    2017-11-01

    The article uses the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) to make an analysis of the deformation characteristics of the structural plane, which is based on a real rock foundation pit in Jinan city. It makes an inverse analysis of the strength of the surface structure and the occurrence of the parameters by Mohr-Coulomb strength criterion value criterion in the way of numerical simulation, which explores the change of stress field of x-z oblique section of pit wall and the relation between the exposed height of structural plane and the critical cohesion, the exposed height and critical inclination angle of the structure surface. We can find that when the foundation pit is in the critical stable state and the inclination angle of the structural plane is constant, the critical cohesive force of the structural plane increases with the increase of the exposed surface height. And when the foundation pit in the critical stability of the situation and the structural surface of the cohesive force is constant, the structural surface exposed height increases and the structural angle of inclination is declining. The conclusion can provide theoretical basis for the design and construction of the rock foundation pit with structural plane.

  9. Water coning. An empirical formula for the critical oil-production rate

    Energy Technology Data Exchange (ETDEWEB)

    Schols, R S

    1972-01-01

    The production of oil through a well that partly penetrates an oil layer underlain by water causes the oil/water interface to deform into a bell shape, usually referred to as water coning. To prevent water- breakthrough as a result of water coning, a knowledge of critical rates is necessary. Experiments are described in which critical rates were measured as a function of the relevant parameters. The experiments were conducted in Hele Shaw models, suitable for radial flow. From the experimental data, an empirical formula for critical rates was derived in dimensionless form. Approximate theoretical solutions for the critical rate appear in literature. A comparison of critical rates calculated according to these solutions with those from the empirical formula shows that these literature data give either too high or too low values for the critical rates.

  10. Upper critical field of NbN film

    International Nuclear Information System (INIS)

    Ashkin, M.; Gavaler, J.R.

    1978-01-01

    It is proposed and experimentally verified that the anomalously high superconducting critical field normal to the surface of NbN films possessing a column-void microstructure is H/sub c3/, the field appropriate for surface superconductivity. It is also proposed that because the coherence length is much less than the lateral column dimension that the resistivity of the column and not the film enters calculations of the Maki parameter α. A previously noted discrepancy in α is removed by these proposals

  11. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    International Nuclear Information System (INIS)

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    2016-01-01

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study. Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2 /H 2 O binary mixtures are computationally studied here for the first time and their critical parameters are reported.

  12. A Pre-normative study on the cyclic oxidation behaviour of PM chromium: the effect of experimental parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Y.P.; Haanappel, V.A.C.; Stroosnijder, M.F. [Commission of the European Communities, Ispra (Italy). Joint Research Centre; Caudron, E.; Buscail, H. [Lab. Vellave sur l' Elaboration et l' Etude des Materiaux, Equipe locale Univ. Blaise-Pascal Clermont-Fd 2 (France)

    2001-07-01

    In this study the importance of experimental parameters for the cyclic oxidation behaviour of chromium is discussed. In particular, the effect of different batches, sample geometry, maximum temperature during cyclic oxidation tests, and the effect of isothermal hold-time in relation to the oxidation behaviour are investigated in more detail. It is shown that small differences in the experimental method or material properties could already significantly influence the oxidation kinetics of the material under investigation. Consequently, poorly chosen and/or characterised experimental conditions can cause misleading results and even wrong conclusions. (orig.)

  13. Parameter and state estimation of experimental chaotic systems using synchronization

    Science.gov (United States)

    Quinn, John C.; Bryant, Paul H.; Creveling, Daniel R.; Klein, Sallee R.; Abarbanel, Henry D. I.

    2009-07-01

    We examine the use of synchronization as a mechanism for extracting parameter and state information from experimental systems. We focus on important aspects of this problem that have received little attention previously and we explore them using experiments and simulations with the chaotic Colpitts oscillator as an example system. We explore the impact of model imperfection on the ability to extract valid information from an experimental system. We compare two optimization methods: an initial value method and a constrained method. Each of these involves coupling the model equations to the experimental data in order to regularize the chaotic motions on the synchronization manifold. We explore both time-dependent and time-independent coupling and discuss the use of periodic impulse coupling. We also examine both optimized and fixed (or manually adjusted) coupling. For the case of an optimized time-dependent coupling function u(t) we find a robust structure which includes sharp peaks and intervals where it is zero. This structure shows a strong correlation with the location in phase space and appears to depend on noise, imperfections of the model, and the Lyapunov direction vectors. For time-independent coupling we find the counterintuitive result that often the optimal rms error in fitting the model to the data initially increases with coupling strength. Comparison of this result with that obtained using simulated data may provide one measure of model imperfection. The constrained method with time-dependent coupling appears to have benefits in synchronizing long data sets with minimal impact, while the initial value method with time-independent coupling tends to be substantially faster, more flexible, and easier to use. We also describe a method of coupling which is useful for sparse experimental data sets. Our use of the Colpitts oscillator allows us to explore in detail the case of a system with one positive Lyapunov exponent. The methods we explored are easily

  14. Experimental study of multilayer solid epitaxy: two-dimensional critical behavior of a quantum solid/superfluid interface

    International Nuclear Information System (INIS)

    Ramesh, S.

    1985-01-01

    This thesis constitutes the first precise, quantitative experimental study of layering transitions, two-dimensional critical temperatures, and their relation to surface roughening. The experiments used superfluid fourth sound to probe the liquid solid 4 He interface, by coupling with surface waves unique to this interface. An annular resonator with electric transducers was used to measure the fourth sound velocity c 4 in an exfoliated graphite (Grafoil) superleak. Measurements of the pressure dependence of the fourth sound resonance frequencies (and attenuation) from ∼6 bar to ∼26 bar were made along eight isotherms from 1.0 K to 1.7 K. Plots of fourth sound resonance frequency versus coverage clearly indicate layer-by-layer solid nucleation and epitaxal growth of hcp solid 4 He on the basal plane of graphite. Further analysis yielded solid adsorption isotherms and a kinetic growth coefficient for the 4 He crystal surface and also indicated the existence of a critical temperature region and also indicated the existence of a critical temperature region around 1.0-1.2 K (the region of a bulk roughening transition). The acoustical theory for the experimental system was worked out using a parallel waveguide model; Landau's thermohydrodynamic equations were reformulated by including the mass- and heat-exchange effects occurring in the system; the equations were solved to obtain expressions for the velocity of sound propagation and attenuation

  15. Effect of parameters of a high-temperature superconductor levitation system on the lateral force

    International Nuclear Information System (INIS)

    Yang Yong; Zheng Xiaojing

    2008-01-01

    The lateral forces on a rectangular permanent magnet above a cylindrical high-temperature superconductor during lateral traverses are simulated in two cooling conditions. The simulation is based on the finite element method and critical state model of Bean. The calculations agree well with the previous experimental data, on the basis of which the effect of initial cooling conditions, physical parameters, levitating height during lateral traverses and geometrical parameters on the lateral force is presented

  16. Comparison of CFD simulations with experimental Jet Erosion Tests results

    OpenAIRE

    Mercier, F.; Bonelli, S.; Pinettes, P.; Golay, F.; Anselmet, F.; Philippe, P.

    2014-01-01

    The Jet Erosion Test (JET) is an experimental device increasingly used to quantify the resistance of soils to erosion. This resistance is characterised by two geotechnical parameters: the critical shear stress and the erosion coefficient. The JET interpretation model of Hanson and Cook (2004) provides an estimation of these erosion parameters. But Hanson's model is simplified, semi-empirical and several assumed hypotheses can be discussed. Our aim is to determine the relevance of the JET inte...

  17. An experimental study of symmetric and asymmetric peak-fitting parameters for alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Martin Sanchez, A.; Vera Tome, F.; Caceres Marzal, D.; Bland, C.J.

    1994-01-01

    A pulse-height spectrum of alpha-particle emissions at discrete energies can be fitted by the peak-shape functions generated by combining asymmetric truncated exponential functions with a symmetric Gaussian distribution. These functions have been applied successfully by several workers. A correlation was previously found between the variance of the symmetric Gaussian portion of the fitting function, and the parameter characterising the principal exponential tailing function. The results of a more detailed experimental study are reported, which involve varying the angle and the distance between the source and the detector. This analysis shows that the parameters of the symmetric and asymmetric parts of the fitted functions seem to depend on either the detector or the source. These parameters are influenced by the energy loss suffered by the alpha-particles as well as by the efficiency of charge collection in the solid-state detector. (orig.)

  18. Dynamical susceptibility near a long-wavelength critical point with a nonconserved order parameter

    Science.gov (United States)

    Klein, Avraham; Lederer, Samuel; Chowdhury, Debanjan; Berg, Erez; Chubukov, Andrey

    2018-04-01

    We study the dynamic response of a two-dimensional system of itinerant fermions in the vicinity of a uniform (Q =0 ) Ising nematic quantum critical point of d - wave symmetry. The nematic order parameter is not a conserved quantity, and this permits a nonzero value of the fermionic polarization in the d - wave channel even for vanishing momentum and finite frequency: Π (q =0 ,Ωm)≠0 . For weak coupling between the fermions and the nematic order parameter (i.e., the coupling is small compared to the Fermi energy), we perturbatively compute Π (q =0 ,Ωm)≠0 over a parametrically broad range of frequencies where the fermionic self-energy Σ (ω ) is irrelevant, and use Eliashberg theory to compute Π (q =0 ,Ωm) in the non-Fermi-liquid regime at smaller frequencies, where Σ (ω )>ω . We find that Π (q =0 ,Ω ) is a constant, plus a frequency-dependent correction that goes as |Ω | at high frequencies, crossing over to |Ω| 1 /3 at lower frequencies. The |Ω| 1 /3 scaling holds also in a non-Fermi-liquid regime. The nonvanishing of Π (q =0 ,Ω ) gives rise to additional structure in the imaginary part of the nematic susceptibility χ″(q ,Ω ) at Ω >vFq , in marked contrast to the behavior of the susceptibility for a conserved order parameter. This additional structure may be detected in Raman scattering experiments in the d - wave geometry.

  19. Evaluation of Critical Parameters to Improve Slope Drainage System

    Directory of Open Access Journals (Sweden)

    Yong Weng Long

    2017-01-01

    Full Text Available This study focuses on identifying and evaluating critical parameters of various drainage configurations, arrangement, and filter which affect the efficiency of water draining system in slopes. There are a total of seven experiments with different types of homogeneous soil, drainage envelope, filter material, and quantity of pipes performed utilizing a model box with a dimension of 0.8 m × 0.8 m × 0.6 m. The pipes were orientated at 5 degrees from the horizontal. Rainfall event was introduced via a rainfall simulator with rainfall intensity of 434.1 mm/h. From the experiments performed, the expected outcomes when utilizing double pipes and geotextile as envelope filter were verified in this study. The results obtained from these experiments were reviewed and compared with Chapter 14 “Subsurface Drainage Systems” of DID’s Irrigation and Agricultural Drainage Manual of Malaysia and the European standard. It is recommended that the pipe installed in the slope could be wrapped with geotextile and in tandem with application of granular filter to minimize clogging without affecting the water discharge rate. Terzaghi’s filter criteria could be followed closely when deciding on new materials to act as aggregate filter. A caging system could be introduced as it could maintain the integrity of the drainage system and could ease installation.

  20. SIMCRI: a simple computer code for calculating nuclear criticality parameters

    International Nuclear Information System (INIS)

    Nakamaru, Shou-ichi; Sugawara, Nobuhiko; Naito, Yoshitaka; Katakura, Jun-ichi; Okuno, Hiroshi.

    1986-03-01

    This is a user's manual for a simple criticality calculation code SIMCRI. The code has been developed to facilitate criticality calculation on a single unit of nuclear fuel. SIMCRI makes an extensive survey with a little computing time. Cross section library MGCL for SIMCRI is the same one for the Monte Carlo criticality code KENOIV; it is, therefore, easy to compare the results of the two codes. SIMCRI solves eigenvalue problems and fixed source problems based on the one space point B 1 equation. The results include infinite and effective multiplication factor, critical buckling, migration area, diffusion coefficient and so on. SIMCRI is comprised in the criticality safety evaluation code system JACS. (author)

  1. Neutronic and thermal hydraulic assessment of fast reactor cooling by water of super critical parameters

    International Nuclear Information System (INIS)

    Baranaev, Yu. D.; Glebov, A. P.; Ukraintsev, V. F.; Kolesov, V. V.

    2007-01-01

    Necessity of essential improvement of competitiveness for reactors on light water determines development of new generation power reactors on water of super critical parameters. The main objective of these projects is reaching of high efficiency coefficients while decreasing of investment to NPP and simplification of thermal scheme and high safety level. International programme of IV generation in which super critical reactors present is already started. In the frame of this concept specific Super Critical Fast Reactor with tight lattice of pitch is developing by collaboration of the FEI and IATE. In present article neutronic and thermal hydraulic assessment of fast reactor with plutonium MOX fuel and a core with a double-path of super critical water cooling is presented (SCFR-2X). The scheme of double path of coolant via the core in which the core is divided by radius on central and periphery parts with approximately equal number of fuel assemblies is suggested. Periferia part is cooling while down coming coolant movement. At the down part of core into the mix chamber flows from the periphery assemblies joining and come to the inlet of the central part which is cooling by upcoming flow. Eight zone of different content of MOX fuel are used (4 in down coming and 4 in upcoming) sub zones. Calculation of fuel burn-up and approximate scheme of refueling is evaluated. Calculation results are presented and discussed

  2. Determination of D2O - 2% enriched uranium lattice parameters by means of a critical system

    International Nuclear Information System (INIS)

    Raisic, N.; Takac, S.; Markovic, H.; Bosevski, T.

    1963-01-01

    In order to specify experimental procedures for few standard measurements sufficient to provide consistent set of lattice parameters, a series of experiments were performed at the RB reactor using 2% enriched tubular fuel elements. Obtained results were compared to standard two-group diffusion calculation indicating high degree of accuracy for a broad variety of reactor lattice configurations

  3. Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration

    Science.gov (United States)

    Khan, M. M. A.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F.

    2011-02-01

    This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855-930 W and 4.50-4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800-840 W and increased to 4.75-5.37 m/min, respectively, to obtain stronger and better welds.

  4. Experimental determination of critical data of liquid molybdenum

    International Nuclear Information System (INIS)

    Seydel, U.; Fucke, W.

    1978-01-01

    The submicrosecond resistive pulse heating of wire-shaped metallic samples in a highly incompressible medium leads to a thermodynamic state very close to the critical point of the liquid metal. The additional application of a static pressure may result in a critical or supercritical transition. First results on the critical data of molybdenum are reported: Tsub(c) = (11 150 +- 550) K, psub(c) = (5460 +- 1160) bar, vsub(c) = (36.5 +- 3.5) cm 3 mol -1 . (author)

  5. Critical parameters for degenerate quark stars

    International Nuclear Information System (INIS)

    Patel, Divyesh J.; Vinodkumar, P.C.; Ray, Asim K.

    1999-01-01

    The possibility of a phase transition between nuclear matter and quark matter has been of recent interest from the point of view of experimental as well as theoretical consideration. Astrophysical implications of such stars in the evolution of heavy neutron stars to black holes are also discussed

  6. Study of environmental pollution by heavy metals in Sepetiba Bay and Paraiba do Sul River - Guandu River by analysis of critical parameters

    International Nuclear Information System (INIS)

    Pfeiffer, W.C.; Fiszman, M.; Malm, O.; Lima, N.R.W.; Azcue, J.M.

    The heavy metal pollution in Sepetiba Bay and Paraiba do Sul River - Guandu River is studied by analysis of critical parameters. This ones are employed in environmental impact determination of nuclear installations. Three critic metals (Cr, Zn, Cd) and four (Pb, Cu, Zn, Cr) ones are lauched by the industrial park of Sepetiba Bay and Paraiba Vale respectively. (M.A.C.) [pt

  7. The measurement and calculation of the kinetic parameter {beta}{sub eff}/{Lambda} of a small high-temperature like, critical system

    Energy Technology Data Exchange (ETDEWEB)

    Wallerbos, E.J.M.; Hoogenboom, J.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands)

    1998-01-01

    This paper demonstrates that it is well possible to determine the kinetic parameter {beta}{sub eff}/{Lambda} in a neutronically very slow system by means of noise measurements in the critical state. The advantages of this technique are that it can be conducted in a critical reactor directly, and that no special measurement equipment is needed. The comparison to calculated values for four configurations, which differ in the amount of moderation in the core region, shows a satisfactory agreement. (author)

  8. Experimental study of dual fuel engine performance using variable LPG composition and engine parameters

    International Nuclear Information System (INIS)

    Elnajjar, Emad; Selim, Mohamed Y.E.; Hamdan, Mohammad O.

    2013-01-01

    Highlights: • The effect of using variable LPG is studied. • Five fuels with propane to butane % volume ratio are: 100-70-55-25-0. • 100% Propane composition shows the highest noise levels with similar performance. • At 45° BTDC injection timing 55% Propane LPG the only fuel experience knocking. • LPG fuels gave similar engine performance, with differences in levels of noise. - Abstract: The present work investigates experimentally the effect of LPG fuel with different composition and engine parameters on the performance of a dual compression engine. Five different blends of LPG fuels are used with Propane to Butane volume ratio of 100:0, 70:30, 55:45, 25:75, and 0:100. A single cylinder, naturally aspirated, four strokes, indirectly injected, water cooled modified Ricardo E6 engine, is used in this study. The study is carried out by measuring the cylinder pressure, engine load, engine speed, crank angle, and the fuel’s flow rate. The engine performance under variable LPG fuel composition, engine load, pilot fuel injection timing, compression ratio, pilot fuel mass and engine speed, are estimated by comparing the following engine parameters: the cylinder maximum pressure, the indicated mean effective pressure, the maximum rate of pressure rise, and the thermal efficiency. The experimental data indicates that the engine parameters are playing a major role on the engine’s performance. Different LPG fuel composition did not show a major effect on the engine efficiency but directly impacted the levels of generated combustion noise

  9. Construction of fast experimental reactor 'Joyo' from start of construction to criticality

    International Nuclear Information System (INIS)

    Sakata, Hajime

    1977-01-01

    The fast experimental reactor ''Joyo'' is a sodium-cooled, fast neutron reactor using mixed oxide of uranium and plutonium, the first in Japan. The purposes of its construction are to experience and solve the various technical problems expected in the constructions of the prototype reactor ''Monju'' and future practical reactors, and to use as the irradiation facility for developing the fuel and material for fast breeder reactors in Japan after the completion. The construction finished by the end of 1974, and the synthetic functional test was carried out for about two years thereafter. The whole installation was handed over to PNC on March 8, 1977. The reactor attained the criticality on April 24, 1977. The outline of the construction works is described. ''Guidance to the structural design of sodium machinery for Joyo'' was compiled, and the analysis was made according to it. Moreover, various inspection standards regarding welding, electrical machinery, fuel and others were made. The revision of the design for improving the safety and performance was made during the construction at all times. The synthetic functional test was carried out for about two years on 266 items, and subsequently, the criticality test was completed satisfactorily. (Kako, I.)

  10. Model of twelve properties of a set of organic solvents with graph-theoretical and/or experimental parameters.

    Science.gov (United States)

    Pogliani, Lionello

    2010-01-30

    Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.

  11. Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh—Rose neuron model

    Science.gov (United States)

    Jia, Bing

    2014-03-01

    A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.

  12. Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh—Rose neuron model

    International Nuclear Information System (INIS)

    Jia Bing

    2014-01-01

    A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces

  13. Optimization of the representativeness and transposition approach, for the neutronic design of experimental programs in critical mock-up

    International Nuclear Information System (INIS)

    Dos-Santos, N.

    2013-01-01

    The work performed during this thesis focused on uncertainty propagation (nuclear data, technological uncertainties, calculation biases,...) on integral parameters, and the development of a novel approach enabling to reduce this uncertainty a priori directly from the design phase of a new experimental program. This approach is based on a multi-parameter multi-criteria extension of representativeness and transposition theories. The first part of this PhD work covers an optimization study of sensitivity and uncertainty calculation schemes to different modeling scales (cell, assembly and whole core) for LWRs and FBRs. A degraded scheme, based on standard and generalized perturbation theories, has been validated for the calculation of uncertainty propagation to various integral quantities of interest. It demonstrated the good a posteriori representativeness of the EPICURE experiment for the validation of mixed UOX-MOX loadings, as the importance of some nuclear data in the power tilt phenomenon in large LWR cores. The second part of this work was devoted to methods and tools development for the optimized design of experimental programs in ZPRs. Those methods are based on multi-parameters representativeness using simultaneously various quantities of interest. Finally, an original study has been conducted on the rigorous estimation of correlations between experimental programs in the transposition process. The coupling of experimental correlations and multi-parametric representativeness approach enables to efficiently design new programs, able to answer additional qualification requirements on calculation tools. (author) [fr

  14. Experimental study of critical heat flux in inclined rectangular gap

    International Nuclear Information System (INIS)

    Kim, S.J.; Kim, Y.H.; Noh, S.W.; Suh, K.Y.; Rempe, J.L.; Cheung, F.B.; Kim, S.B.

    2003-01-01

    In the TMI-2 accident, the lower part of the reactor pressure vessel was overheated and then rather rapidly cooled down, as was later found out in a vessel investigation project. This accounted for the possibility of gap cooling feasibility. For this reason, a great deal of investigations was performed to determine the critical heat flux (CHF) from the standpoint of in-vessel retention (IVR). As part of a joint Korean-U.S. International Nuclear Energy Research Initiative (INERI) project, Tests were conducted to examine the critical heat flux (CHF) on the one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under the atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10 mm, and the surface orientation angles from the downward-facing position (180deg) to the vertical position (90deg), respectively. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. However, in downward-facing position (180deg), somewhat differing results were detected relative to previous reports. For a certain gap size having a similar dimension with vapor layer thickness, more efficient heat transfer was detected and this may be interpreted by characteristic property such as the vapor layer thickness of water. In consistency with several studies reported in the literature, it was found that there exists a transition angle above that the CHF changes with a rapid slope. (author)

  15. Critical asymmetry in renormalization group theory for fluids.

    Science.gov (United States)

    Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun

    2013-06-21

    The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.

  16. Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters

    Science.gov (United States)

    Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2017-04-01

    A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.

  17. Structural identifiability of systems biology models: a critical comparison of methods.

    Directory of Open Access Journals (Sweden)

    Oana-Teodora Chis

    Full Text Available Analysing the properties of a biological system through in silico experimentation requires a satisfactory mathematical representation of the system including accurate values of the model parameters. Fortunately, modern experimental techniques allow obtaining time-series data of appropriate quality which may then be used to estimate unknown parameters. However, in many cases, a subset of those parameters may not be uniquely estimated, independently of the experimental data available or the numerical techniques used for estimation. This lack of identifiability is related to the structure of the model, i.e. the system dynamics plus the observation function. Despite the interest in knowing a priori whether there is any chance of uniquely estimating all model unknown parameters, the structural identifiability analysis for general non-linear dynamic models is still an open question. There is no method amenable to every model, thus at some point we have to face the selection of one of the possibilities. This work presents a critical comparison of the currently available techniques. To this end, we perform the structural identifiability analysis of a collection of biological models. The results reveal that the generating series approach, in combination with identifiability tableaus, offers the most advantageous compromise among range of applicability, computational complexity and information provided.

  18. Experimental study on the critical heat flux in a varying acceleration field, (1)

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Yokomura, Takeyoshi; Otsuji, Tomoo; Ikawa, Masahiro; Kurosawa, Akira.

    1988-12-01

    It is very important for the thermohydraulic design and for the safety assesement of marine reactors, to understand the effect of varying acceleration induced by ship motion on critical heart flux. The purpose of this joint study is to examine quantitatively the influence of varying acceleration on the behavior of bubbles. In the experiment, FREON-113 was used as working fluid. This report describes some experimental results; measurements of void fraction and bubble velocity near the heat transfer surface, measurement of bubble size under stationary acceleration field and observation of bubble behavior under varying acceleration field. (author)

  19. The influence of tensile strain to critical current of Bi2223 composite tape

    International Nuclear Information System (INIS)

    Mukai, Y.; Shin, J.K.; Ochiai, S.; Okuda, H.; Sugano, M.; Osamura, K.

    2008-01-01

    As the stress-induced damage evolution is different from position to position in the sample, the local critical current is scattered in a sample, affecting on the overall current. The present work aimed to describe the distribution of local critical current and its relation to overall critical current under tensile stress for Bi2223/Ag superconducting composite tape. In the experiment, seven voltage probes were attached in a step of 10 mm. The local critical current and n-value at 77 K under various applied stress levels were measured for a voltage probe distance 10 mm and the overall ones for a probe distance 60 mm. Main results are summarized as follows. The overall critical current and n-value were described well by using the voltage summation model in which the sample was regarded as a one dimensional series circuit. For the low applied stress, the distribution of local critical current was described with the three parameter Weibull distribution function. Using the measured distribution of the local critical current, an experimental relation of critical current to n-value and the voltage summation model, and applying the Monte Carlo method, the overall critical current was predicted, which was in good agreement with the experimental results. Based on these results, the sample length dependence of critical current of the sample damaged by tensile stress was discussed

  20. Exponential and Critical Experiments Vol. II. Proceedings of the Symposium on Exponential and Critical Experiments

    International Nuclear Information System (INIS)

    1964-01-01

    In September 1963 the International Atomic Energy Agency organized the Symposium on Exponential and Critical Experiments in Amsterdam, Netherlands, at the invitation of the Government of the Netherlands. The Symposium enabled scientists from Member States to discuss the results of such experiments which provide the physics data necessary for the design of power reactors. Great advances made in recent years in this field have provided scientists with highly sophisticated and reliable experimental and theoretical methods. This trend is reflected in the presentation, at the Symposium, of many new experimental techniques resulting in more detailed and accurate information and a reduction of costs. Both the number of experimental parameters and their range of variation have been extended, and a closer degree of simulation of the actual power reactor has been achieved, for example, by means of high temperature critical assemblies. Basic types of lattices have continued to be the objective of many investigations, and extensive theoretical analyses have been carried out to provide a more thorough understanding of the neutron physics involved. Twenty nine countries and 3 international organizations were represented by 198 participants. Seventy one papers were presented. These numbers alone show the wide interest which the topic commands in the field of reactor design. We hope that this publication, which includes the papers presented at the Symposium and a record of the discussions, will prove useful as a work of reference to scientists working in this field

  1. Animal experimentation.

    Science.gov (United States)

    Kolar, Roman

    2006-01-01

    Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation.

  2. Technological parameter and experimental set-up influences on latch-up triggering level in bulk CMOS device

    International Nuclear Information System (INIS)

    Dubuc, J.P.; Azais, B.; Murcia, M. de

    1994-01-01

    This paper deals with experimental and simulation results on latch-up triggered by an electrical or X-rays pulse in CMOS/bulk devices. Test condition influences as well as the great importance of process parameters on latch-up immunity are emphasized. (author). 10 refs., 19 figs., 1 tab

  3. Measurement and correlation of critical properties for binary mixtures and ternary mixtures containing gasoline additives

    International Nuclear Information System (INIS)

    Wang, Lipu; Han, Kewei; Xia, Shuqian; Ma, Peisheng; Yan, Fangyou

    2014-01-01

    Highlights: • A high-pressure view cell was used to measure the critical properties of mixtures. • Three binary mixtures’ and three ternary mixtures’ critical properties were reported. • The experimental data of each system covered the whole mole fraction range. • The critical properties of the ternary mixtures were predicted with the PR–WS model. • Empirical equations were used to correlate the experimental results. - Abstract: The critical properties of three binary mixtures and three ternary mixtures containing gasoline additives (including methanol + 1-propanol, heptane + ethanol, heptane + 1-propanol, methanol + 1-propanol + heptane, methanol + 1-propanol + methyl tert-butyl ether (MTBE), and ethanol + heptane + MTBE) were determined by a high-pressure cell. All the critical lines of binary mixtures belong to the type I described by Scott and van Konynenburg. The system of methanol + 1-propanol showed little non-ideal behavior due to their similar molecular structures. The heptane + ethanol and heptane + 1-propanol systems showed visible non-ideal behavior for their great differences in molecular structure. The Peng–Robinson equation of state combined with the Wong–Sandler mixing rule (PR–WS) was applied to correlate the critical properties of binary mixtures. The critical points of the three ternary mixtures were predicted by the PR–WS model with the binary interaction parameters using the procedure proposed by Heidemann and Khalil. The predicted critical temperatures were in good agreement with the experimental values, while the predicted critical pressures differed from the measured values. The experimental values of binary mixtures were fitted well with the Redlich–Kister equation. The critical properties of ternary mixtures were correlated with the Cibulka’s equation, and the critical surfaces were plotted using the Cibulka’s equations

  4. Modeling and Simulation of the Thermal Runaway Behavior of Cylindrical Li-Ion Cells—Computing of Critical Parameters

    Directory of Open Access Journals (Sweden)

    Andreas Melcher

    2016-04-01

    Full Text Available The thermal behavior of Li-ion cells is an important safety issue and has to be known under varying thermal conditions. The main objective of this work is to gain a better understanding of the temperature increase within the cell considering different heat sources under specified working conditions. With respect to the governing physical parameters, the major aim is to find out under which thermal conditions a so called Thermal Runaway occurs. Therefore, a mathematical electrochemical-thermal model based on the Newman model has been extended with a simple combustion model from reaction kinetics including various types of heat sources assumed to be based on an Arrhenius law. This model was realized in COMSOL Multiphysics modeling software. First simulations were performed for a cylindrical 18650 cell with a L i C o O 2 -cathode to calculate the temperature increase under two simple electric load profiles and to compute critical system parameters. It has been found that the critical cell temperature T crit , above which a thermal runaway may occur is approximately 400 K , which is near the starting temperature of the decomposition of the Solid-Electrolyte-Interface in the anode at 393 . 15 K . Furthermore, it has been found that a thermal runaway can be described in three main stages.

  5. Investigation of the interactions of critical scale-up parameters (pH, pO2 and pCO2) on CHO batch performance and critical quality attributes.

    Science.gov (United States)

    Brunner, Matthias; Fricke, Jens; Kroll, Paul; Herwig, Christoph

    2017-02-01

    Understanding process parameter interactions and their effects on mammalian cell cultivations is an essential requirement for robust process scale-up. Furthermore, knowledge of the relationship between the process parameters and the product critical quality attributes (CQAs) is necessary to satisfy quality by design guidelines. So far, mainly the effect of single parameters on CQAs was investigated. Here, we present a comprehensive study to investigate the interactions of scale-up relevant parameters as pH, pO 2 and pCO 2 on CHO cell physiology, process performance and CQAs, which was based on design of experiments and extended product quality analytics. The study used a novel control strategy in which process parameters were decoupled from each other, and thus allowed their individual control at defined set points. Besides having identified the impact of single parameters on process performance and product quality, further significant interaction effects of process parameters on specific cell growth, specific productivity and amino acid metabolism could be derived using this method. Concerning single parameter effects, several monoclonal antibody (mAb) charge variants were affected by process pCO 2 and pH. N-glycosylation analysis showed positive correlations between mAb sialylation and high pH values as well as a relationship between high mannose variants and process pH. This study additionally revealed several interaction effects as process pH and pCO 2 interactions on mAb charge variants and N-glycosylation pattern. Hence, through our process control strategy and multivariate investigation, novel significant process parameter interactions and single effects were identified which have to be taken into account especially for process scale-up.

  6. Process Damping Parameters

    International Nuclear Information System (INIS)

    Turner, Sam

    2011-01-01

    The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.

  7. Comparative parameters of solar cells for power generation: test stand implementation using DSP

    International Nuclear Information System (INIS)

    Álvarez López, Ramón Antonio; García Angarita, Maritza Andrea

    2014-01-01

    The technologies used in solar modules are distinguished mainly by th eenergy conversion efficiency. Consequently, the module selection is critic to the long term performance of photovoltaic generating facility. Therefore, the selection must be supported by experimental results obtained under a specific operation condition. The article implements an experimentally test for obtain the characteristic parameters of a solar module, we analyze the energy conversion efficiency and other correlated parameters that directly affect the performance of a photovoltaic generator. The results show that the use of a rapid prototyping system using open hardware, such as TMS320F28335 development kit makes it easy to build a test photovoltaic generation systems. Latter justified by the low cost of such devices and ease of programming. (author)

  8. Experimental investigation on local parameter measurement using optical probes in two-phase flow under rolling condition

    International Nuclear Information System (INIS)

    Tian Daogui; Sun Licheng; Yan Changqi; Liu Guoqiang

    2013-01-01

    In order to get more local interfacial information as well as to further comprehend the intrinsic mechanism of two-phase flow under rolling condition, a method was proposed to measure the local parameters by using optical probes under rolling condition in this paper. An experimental investigation of two-phase flow under rolling condition was conducted using the probe fabricated by the authors. It is verified that the probe method is feasible to measure the local parameters in two'-phase flow under rolling condition. The results show that the interfacial parameters distribution near wall region has a distinct periodicity due to the rolling motion. The averaged deviation of the void fraction measured by the probe from that obtained from measured pressure drop is about 8%. (authors)

  9. Strain dependence of the critical current and critical field in multifilamentary Nb3Sn composites

    International Nuclear Information System (INIS)

    Ekin, J.W.

    1979-01-01

    High-J/sub c/ multifilamentary Nb 3 Sn superconductors with widely varying amounts of prestrain and critical field values can be characterized fairly accurately by a single normalized critical field-strain relationship. Such a relationship permits first order prediction of critical-current degradation at arbitrary magnetic field magnitudes with knowledge of only two parameters for any conductor, the prestrain and the maximum critical field. Some of the conductor-fabrication factors affecting the parameters are considered

  10. Computer controlled automated assay for comprehensive studies of enzyme kinetic parameters.

    Directory of Open Access Journals (Sweden)

    Felix Bonowski

    Full Text Available Stability and biological activity of proteins is highly dependent on their physicochemical environment. The development of realistic models of biological systems necessitates quantitative information on the response to changes of external conditions like pH, salinity and concentrations of substrates and allosteric modulators. Changes in just a few variable parameters rapidly lead to large numbers of experimental conditions, which go beyond the experimental capacity of most research groups. We implemented a computer-aided experimenting framework ("robot lab assistant" that allows us to parameterize abstract, human-readable descriptions of micro-plate based experiments with variable parameters and execute them on a conventional 8 channel liquid handling robot fitted with a sensitive plate reader. A set of newly developed R-packages translates the instructions into machine commands, executes them, collects the data and processes it without user-interaction. By combining script-driven experimental planning, execution and data-analysis, our system can react to experimental outcomes autonomously, allowing outcome-based iterative experimental strategies. The framework was applied in a response-surface model based iterative optimization of buffer conditions and investigation of substrate, allosteric effector, pH and salt dependent activity profiles of pyruvate kinase (PYK. A diprotic model of enzyme kinetics was used to model the combined effects of changing pH and substrate concentrations. The 8 parameters of the model could be estimated from a single two-hour experiment using nonlinear least-squares regression. The model with the estimated parameters successfully predicted pH and PEP dependence of initial reaction rates, while the PEP concentration dependent shift of optimal pH could only be reproduced with a set of manually tweaked parameters. Differences between model-predictions and experimental observations at low pH suggest additional protonation

  11. Nonlinear Dynamics and Nucleation Kinetics in Near-Critical Liquids

    Science.gov (United States)

    Patashinski, Alexander Z.; Ratner, Mark A.; Pines, Vladimir

    1996-01-01

    The objective of our study is to model the nonlinear behavior of a near-critical liquid following a rapid change of the temperature and/or other thermodynamic parameters (pressure, external electric or gravitational field). The thermodynamic critical point is manifested by large, strongly correlated fluctuations of the order parameter (particle density in liquid-gas systems, concentration in binary solutions) in the critical range of scales. The largest critical length scale is the correlation radius r(sub c). According to the scaling theory, r(sub c) increases as r(sub c) = r(sub 0)epsilon(exp -alpha) when the nondimensional distance epsilon = (T - T(sub c))/T(sub c) to the critical point decreases. The normal gravity alters the nature of correlated long-range fluctuations when one reaches epsilon approximately equal to 10(exp -5), and correspondingly the relaxation time, tau(r(sub c)), is approximately equal to 10(exp -3) seconds; this time is short when compared to the typical experimental time. Close to the critical point, a rapid, relatively small temperature change may perturb the thermodynamic equilibrium on many scales. The critical fluctuations have a hierarchical structure, and the relaxation involves many length and time scales. Above the critical point, in the one-phase region, we consider the relaxation of the liquid following a sudden temperature change that simultaneously violates the equilibrium on many scales. Below T(sub c), a non-equilibrium state may include a distribution of small scale phase droplets; we consider the relaxation of such a droplet following a temperature change that has made the phase of the matrix stable.

  12. Digital Storytelling for Enhancing Student Academic Achievement, Critical Thinking, and Learning Motivation: A Year-Long Experimental Study

    Science.gov (United States)

    Yang, Ya-Ting C.; Wu, Wan-Chi I.

    2012-01-01

    The purpose of this study was to explore the impact of Digital storytelling (DST) on the academic achievement, critical thinking, and learning motivation of senior high school students learning English as a foreign language. The one-year study adopted a pretest and posttest quasi-experimental design involving 110 10th grade students in two English…

  13. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)

    2017-07-01

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  14. Determination of D{sub 2}O - 2% enriched uranium lattice parameters by means of a critical system

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Takac, S; Markovic, H; Bosevski, T [Boris Kidric Institute of Nuclear Sciences Belgrade (Yugoslavia)

    1963-07-01

    In order to specify experimental procedures for few standard measurements sufficient to provide consistent set of lattice parameters, a series of experiments were performed at the RB reactor using 2% enriched tubular fuel elements. Obtained results were compared to standard two-group diffusion calculation indicating high degree of accuracy for a broad variety of reactor lattice configurations.

  15. Electrodialytic desalination of brackish water: determination of optimal experimental parameters using full factorial design

    Science.gov (United States)

    Gmar, Soumaya; Helali, Nawel; Boubakri, Ali; Sayadi, Ilhem Ben Salah; Tlili, Mohamed; Amor, Mohamed Ben

    2017-12-01

    The aim of this work is to study the desalination of brackish water by electrodialysis (ED). A two level-three factor (23) full factorial design methodology was used to investigate the influence of different physicochemical parameters on the demineralization rate (DR) and the specific power consumption (SPC). Statistical design determines factors which have the important effects on ED performance and studies all interactions between the considered parameters. Three significant factors were used including applied potential, salt concentration and flow rate. The experimental results and statistical analysis show that applied potential and salt concentration are the main effect for DR as well as for SPC. The effect of interaction between applied potential and salt concentration was observed for SPC. A maximum value of 82.24% was obtained for DR under optimum conditions and the best value of SPC obtained was 5.64 Wh L-1. Empirical regression models were also obtained and used to predict the DR and the SPC profiles with satisfactory results. The process was applied for the treatment of real brackish water using the optimal parameters.

  16. Experimental and numerical investigations of oscillations in extracted material parameters for finite Bragg stacks using the NRW method

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau; Arslanagic, Samel; Breinbjerg, Olav

    2012-01-01

    A 1D dielectric finite Bragg stack situated in a rectangular waveguide and illuminated by the fundamental TE10 mode is examined analytically, numerically, and experimentally. Calculated as well as measured scattering parameters are used to extract the effective/equivalent material parameters...... for three specific configurations of its constituent unit cell. Particular attention is devoted to the absence/presence of certain oscillations in the extracted material parameters, depending on the unit cell configuration. The results for the finite Bragg stack are further verified to agree with those...... of an infinite Bragg stack, for which the dispersion equation is used in conjunction with the Floquet-Bloch harmonics expansion to extract the material parameters. It is shown that the extracted material parameters for the finite and infinite Bragg stacks agree for the symmetric unit cell configuration....

  17. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Vanderlan, Michael [ORNL; Atchley, Jerald Allen [ORNL

    2012-12-01

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  18. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data.

    Science.gov (United States)

    Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F

    2016-10-25

    This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Experimental parameters differentially affect the humoral response of the cholera-toxin-based murine model of food allergy

    DEFF Research Database (Denmark)

    Kroghsbo, S.; Christensen, Hanne Risager; Frøkiær, Hanne

    2003-01-01

    Background: Recent studies have developed a murine model of IgE-mediated food allergy based on oral coadministration of antigen and cholera toxin (CT) to establish a maximal response for studying immunopathogenic mechanisms and immunotherapeutic strategies. However, for studying subtle...... interested in characterizing the individual effects of the parameters in the CT-based model: CT dose, antigen type and dose, and number of immunizations. Methods: BALB/c mice were orally sensitized weekly for 3 or 7 weeks with graded doses of CT and various food antigens (soy-trypsin inhibitor, ovalbumin...... of the antibody response depended on the type of antigen and number of immunizations. Conclusions: The critical parameters of the CT-based murine allergy model differentially control the intensity and kinetics of the developing immune response. Adjustment of these parameters could be a key tool for tailoring...

  20. Critical experiments on low enriched uranyl nitrate solution with STACY

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori

    1996-01-01

    As the STACY started steady operations, systematic criticality data on low enriched uranyl nitrate solution system could be accumulated. Main experimental parameters for the cylindrical tank of 60 cm in diameter were uranium concentration and the reflector condition. Basic data on a simple geometry will be helpful for the validation of the standard criticality safety codes, and for evaluating the safety margin included in the criticality designs. Experiments on the reactivity effects of structural materials such as borated concrete and polyethylene are on schedule next year as the second series of experiments using 10 wt% enriched uranyl solution. Furthermore, neutron interacting experiments with two slab tanks will be performed to investigate the fundamental properties of neutron interaction effects between core tanks. These data will be useful for making more reasonable calculation models and for evaluating the safety margin in the criticality designs for the multiple unit system. (J.P.N.)

  1. New Comment on Gibbs Density Surface of Fluid Argon: Revised Critical Parameters, L. V. Woodcock, Int. J. Thermophys. (2014) 35, 1770-1784

    Science.gov (United States)

    Umirzakov, I. H.

    2018-01-01

    The author comments on an article by Woodcock (Int J Thermophys 35:1770-1784, 2014), who investigates the idea of a critical line instead of a single critical point using the example of argon. In the introduction, Woodcock states that "The Van der Waals critical point does not comply with the Gibbs phase rule. Its existence is based upon a hypothesis rather than a thermodynamic definition". The present comment is a response to the statement by Woodcock. The comment mathematically demonstrates that a critical point is not only based on a hypothesis that is used to define values of two parameters of the Van der Waals equation of state. Instead, the author argues that a critical point is a direct consequence of the thermodynamic phase equilibrium conditions resulting in a single critical point. It is shown that the thermodynamic conditions result in the first and second partial derivatives of pressure with respect to volume at constant temperature at a critical point equal to zero which are usual conditions of an existence of a critical point.

  2. Some necessary parameters for a critical velocity interaction between the ionospheric plasma and a xenon cloud

    International Nuclear Information System (INIS)

    Axnaes, I.

    1979-12-01

    The conditions for an experiment to study the critical ionization velocity effect in the interaction between a Xenon cloud, released from a satellite, and the ionospheric plasma are investigated. The model used is based on the assumption that there exists an effective process that transfers the energy, that is available in the relative motion, to the electrons. Some necessary conditions to obtain significant heating or deceleration of the plasma penetrating the cloud are calculated. The conditions are mainly given by the energy available in the relative motion and the rates of the different binary collision processes involved. As the released gas cloud expands the possibilities for a critical velocity interaction will exist only within a certain range of cloud radii. It is shown that the charge transfer collision cross section between the ionospheric ions and the cloud atoms is an important parameter and that Xenon is a very suitable gas in that respect. (author)

  3. Improvement of nursing students' critical thinking skills through problem-based learning in the People's Republic of China: a quasi-experimental study.

    Science.gov (United States)

    Yuan, Haobin; Kunaviktikul, Wipada; Klunklin, Areewan; Williams, Beverly A

    2008-03-01

    A quasi-experimental, two-group pretest-post-test design was conducted to examine the effect of problem-based learning on the critical thinking skills of 46 Year 2 undergraduate nursing students in the People's Republic of China. The California Critical Thinking Skills Test Form A, Chinese-Taiwanese version was used as both a pretest and as a post-test for a semester-long nursing course. There was no significant difference in critical thinking skills at pretest, whereas, significant differences in critical thinking skills existed between the problem-based learning and lecture groups at post-test. The problem-based learning students had a significantly greater improvement on the overall California Critical Thinking Skills Test, analysis, and induction subscale scores compared with the lecture students. Problem-based learning fostered nursing students' critical thinking skills.

  4. Critical State of Sand Matrix Soils

    Science.gov (United States)

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  5. Investigation of some critical parameters of buffer conditions for the development of quantum dots-based optical sensors

    International Nuclear Information System (INIS)

    Yuan Jipei; Guo Weiwei; Wang Erkang

    2008-01-01

    The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ. Dozens folds elevation of the quenching extents were observed with the increase of concentrations of H + and sodium citrate, and the quenching mechanisms were also fundamentally different with the changes of the surrounding buffer solutions. The quenching models were proposed and analyzed at different buffer conditions. Taking pH values for example, QDs quenching obeyed the sphere of effective quenching model with the sphere radii of 8.29 nm at pH 8.0, the linear Stern-Volmer equation with Stern-Volmer constant of 2.0 x 10 3 mol -1 L at pH 7.0, and the two binding site static quenching model at basic conditions. The elucidation of parameters for assay performance was important in the development of QDs-based optical sensors

  6. Experimental Platform for measuring the parameters of magnetization of a transformer in a quasi-static transitional regime

    International Nuclear Information System (INIS)

    Milovanski, Vasil; , Blagoevgrad (Bulgaria))" data-affiliation=" (HMS “Acad. S. P. Corolov, Blagoevgrad (Bulgaria))" >Stoyanov, Krasimir; Milovanska, Stefani

    2013-01-01

    Some opportunities for development of an experimental module for magnetic research have been examined in the current paper. The goal is to attain a more accurate reading of the measured electrical signals which are directly related to the magnetic parameters and characteristics of the ferromagnetic material

  7. Classical algorithms for automated parameter-search methods in compartmental neural models - A critical survey based on simulations using neuron

    International Nuclear Information System (INIS)

    Mutihac, R.; Mutihac, R.C.; Cicuttin, A.

    2001-09-01

    Parameter-search methods are problem-sensitive. All methods depend on some meta-parameters of their own, which must be determined experimentally in advance. A better choice of these intrinsic parameters for a certain parameter-search method may improve its performance. Moreover, there are various implementations of the same method, which may also affect its performance. The choice of the matching (error) function has a great impact on the search process in terms of finding the optimal parameter set and minimizing the computational cost. An initial assessment of the matching function ability to distinguish between good and bad models is recommended, before launching exhaustive computations. However, different runs of a parameter search method may result in the same optimal parameter set or in different parameter sets (the model is insufficiently constrained to accurately characterize the real system). Robustness of the parameter set is expressed by the extent to which small perturbations in the parameter values are not affecting the best solution. A parameter set that is not robust is unlikely to be physiologically relevant. Robustness can also be defined as the stability of the optimal parameter set to small variations of the inputs. When trying to estimate things like the minimum, or the least-squares optimal parameters of a nonlinear system, the existence of multiple local minima can cause problems with the determination of the global optimum. Techniques such as Newton's method, the Simplex method and Least-squares Linear Taylor Differential correction technique can be useful provided that one is lucky enough to start sufficiently close to the global minimum. All these methods suffer from the inability to distinguish a local minimum from a global one because they follow the local gradients towards the minimum, even if some methods are resetting the search direction when it is likely to get stuck in presumably a local minimum. Deterministic methods based on

  8. Sensitivity study of experimental measures for the nuclear liquid-gas phase transition in the statistical multifragmentation model

    Science.gov (United States)

    Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.

    2018-05-01

    The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.

  9. Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

    Directory of Open Access Journals (Sweden)

    Douglas Domingues Bueno

    2008-01-01

    Full Text Available This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.

  10. Self-adaptive Green-Ampt infiltration parameters obtained from measured moisture processes

    Directory of Open Access Journals (Sweden)

    Long Xiang

    2016-07-01

    Full Text Available The Green-Ampt (G-A infiltration model (i.e., the G-A model is often used to characterize the infiltration process in hydrology. The parameters of the G-A model are critical in applications for the prediction of infiltration and associated rainfall-runoff processes. Previous approaches to determining the G-A parameters have depended on pedotransfer functions (PTFs or estimates from experimental results, usually without providing optimum values. In this study, rainfall simulators with soil moisture measurements were used to generate rainfall in various experimental plots. Observed runoff data and soil moisture dynamic data were jointly used to yield the infiltration processes, and an improved self-adaptive method was used to optimize the G-A parameters for various types of soil under different rainfall conditions. The two G-A parameters, i.e., the effective hydraulic conductivity and the effective capillary drive at the wetting front, were determined simultaneously to describe the relationships between rainfall, runoff, and infiltration processes. Through a designed experiment, the method for determining the G-A parameters was proved to be reliable in reflecting the effects of pedologic background in G-A type infiltration cases and deriving the optimum G-A parameters. Unlike PTF methods, this approach estimates the G-A parameters directly from infiltration curves obtained from rainfall simulation experiments so that it can be used to determine site-specific parameters. This study provides a self-adaptive method of optimizing the G-A parameters through designed field experiments. The parameters derived from field-measured rainfall-infiltration processes are more reliable and applicable to hydrological models.

  11. Critical opalescence and the true dielectric state in a Coulomb system

    Science.gov (United States)

    Bobrov, V. B.; Trigger, S. A.

    2015-04-01

    To study the critical opalescence effect in a two-component Coulomb system consisting of single-type electrons and nuclei, we consider the limit relations for static structure factors and analyze the singularities of the dielectric permittivity. We show that the critical opalescence effect can be observed not only at the critical point corresponding to the gas-liquid phase transition but also near the true dielectric state with zero static conductivity. With the available experimental data taken into account, we assume that the true dielectric state is the limit state of the liquid-liquid phase transition accompanied by sharp variations in the electrical conduction of the substances. We find that if the thermodynamic parameters correspond to the true dielectric state, then the critical opalescence effect can arise in the case where the squared fluctuation in the total number of electrons and nuclei in a two-component Coulomb system becomes infinite, as this occurs at the critical point corresponding to the gas-liquid phase transition.

  12. A benchmark on the calculation of kinetic parameters based on reactivity effect experiments in the CROCUS reactor

    International Nuclear Information System (INIS)

    Paratte, J.M.; Frueh, R.; Kasemeyer, U.; Kalugin, M.A.; Timm, W.; Chawla, R.

    2006-01-01

    Measurements in the CROCUS reactor at EPFL, Lausanne, are reported for the critical water level and the inverse reactor period for several different sets of delayed supercritical conditions. The experimental configurations were also calculated by four different calculation methods. For each of the supercritical configurations, the absolute reactivity value has been determined in two different ways, viz.: (i) through direct comparison of the multiplication factor obtained employing a given calculation method with the corresponding value for the critical case (calculated reactivity: ρ calc ); (ii) by application of the inhour equation using the kinetic parameters obtained for the critical configuration and the measured inverse reactor period (measured reactivity: ρ meas ). The calculated multiplication factors for the reference critical configuration, as well as ρ calc for the supercritical cases, are found to be in good agreement. However, the values of ρ meas produced by two of the applied calculation methods differ appreciably from the corresponding ρ calc values, clearly indicating deficiencies in the kinetic parameters obtained from these methods

  13. Experimental research on heat transfer performance of supercritical water in vertical tube

    International Nuclear Information System (INIS)

    Wang Fei; Yang Jue; Li Hongbo; Lu Donghua; Gu Hanyang; Zhao Meng

    2013-01-01

    Experimental research under supercritical pressure conditions was carried out on heat transfer performance in vertical tube of φ10 mm with a wide range of experimental parameters. The impacts of heat flux, mass flow rate and pressure on wall temperature and heat transfer coefficient were investigated. The experimental parameters are following: The pressures are 23, 25, 26 MPa, the mass flow rate range is 450 1200 kg/(m 2 ·s), and the heat flux range is 200-1200 kW/m 2 . Experimental results indicate that the wall temperature gradually increases with the bulk temperature, and heat transfer enhancement exists near the critical temperature as the drastic changes in physical properties. The increase in heat flux and the decrease in mass flow rate reduce heat transfer enhancement and lead to deterioration of heat transfer. The main effects of pressure are reflected in the difference of heat flux and bulk temperature of the start point where heat transfer deterioration and enhancement occur. (authors)

  14. Critical parameters and measurement methods for post closure monitoring: A review of the state of the art and recommendations for further studies

    International Nuclear Information System (INIS)

    Morrison, H.F.; Majer, E.L.; Tsang, C.F.

    1987-05-01

    Both NRC and EPA regulations require programs of post closure monitoring to detect substantial and detrimental deviations from expected performance. The unexpected in this case would involve anomalous stress changes that might rupture the canisters or changes in the hydrologic regime that might accelerate corrosion. In the event of leakage brought about by any means transport of radionuclides to the accessible environment could occur through unexpected changes in the hydrologic flow regime caused either by the long term effects of the thermal loading by the waste or by changes in regional stress or hydrology. Studies of performance confirmation have identified six parameters or conditions that should be monitored that are associated with the thermal, mechanical and hydrologic phenomena introduced by the waste heat: temperature, stress, displacement, pore pressure, groundwater velocity and permeability. Since it is the thermal load that continues to increase after decommissioning, and which continues to alter the stress field and the hydrological regime, these same six parameters remain the critical ones in post closure monitoring. At two of the repository sites fractures have been clearly shown to be critical in modelling and performance confirmation; at the tuff site fluid saturation is also a critical parameter and for all the sites estimates of the groundwater velocity through the site are very important. Changes in fracture properties, saturation and fluid flow are thus of continuing importance in post closure monitoring. 14 refs., 19 figs

  15. Experimental investigation of pool boiling heat transfer and critical heat flux on a downward facing surface

    International Nuclear Information System (INIS)

    Gocmanac, M.; Luxat, J.C.

    2012-01-01

    A separate effects experimental study of heat transfer and Critical Heat Flux (CHF) on a downward facing plate in subcooled water pool boiling is described. Two geometries of downwards facing surfaces are studied. The first is termed the 'confined' study in which bubble motion is restricted to the heated surface. The second is termed the 'unconfined' study where individual bubbles are free to move along the heated surface and vent in any direction. The method used in the confined study is novel and involves the placement of a lip surrounding the heated surface. The CHF as a function of angle of inclination of the surface is presented and is in good agreement with other experimental data from somewhat different test geometries. (author)

  16. Governing parameters and dynamics of turbulent spray atomization from modern GDI injectors

    International Nuclear Information System (INIS)

    Moon, Seoksu; Li, Tianyun; Sato, Kiyotaka; Yokohata, Hideaki

    2017-01-01

    Understanding the governing parameters and dynamics of turbulent spray atomization is essential for the advancement of fuel injection technologies, but no concrete understandings have been derived previously. The current study investigates the governing parameters and dynamics of turbulent spray atomization by experimental observations of near-nozzle spray phenomena using an X-ray imaging technique. The effects of critical injection parameters such as fuel property, injection pressure and ambient density on near-nozzle liquid feature size and velocity distributions were extensively studied using three injection nozzles having different levels of initial flow turbulence and dispersion. Based on the results, the governing parameters and dynamics of turbulent spray atomization and the issues on the advanced fuel injection control of modern engines were thoroughly discussed. The results showed that fuel and injection pressure effects on spray atomization became insignificant from a critical Weber number which decreased upon the increase in initial flow turbulence and dispersion. The increase in ambient density increased the resultant droplet size at downstream due to the faster deceleration of spray which brought the atomization termination location closer to the nozzle exit. The spray atomization was terminated at the location of ca. 72% exit velocity regardless of the injection condition. - Highlights: • Governing parameters and dynamics of turbulent spray atomization are investigated. • Fuel and injection pressure effects on atomization are saturated from critical We. • High ambient density increases drop sizes due to faster termination of atomization. • Atomization terminates when the spray velocity decays to ca. 72% of exit velocity. • Strategies for improvement of current injection technologies are discussed.

  17. Experimental critical loadings and control rod worths in LWR-PROTEUS configurations compared with MCNPX results

    International Nuclear Information System (INIS)

    Plaschy, M.; Murphy, M.; Jatuff, F.; Seiler, R.; Chawla, R.

    2006-01-01

    The PROTEUS research reactor at the Paul Scherrer Inst. (PSI) has been operating since the sixties and has already permitted, due to its high flexibility, investigation of a large range of very different nuclear systems. Currently, the ongoing experimental programme is called LWR-PROTEUS. This programme was started in 1997 and concerns large-scale investigations of advanced light water reactors (LWR) fuels. Until now, the different LWR-PROTEUS phases have permitted to study more than fifteen different configurations, each of them having to be demonstrated to be operationally safe, in particular, for the Swiss safety authorities. In this context, recent developments of the PSI computer capabilities have made possible the use of full-scale SD-heterogeneous MCNPX models to calculate accurately different safety related parameters (e.g. the critical driver loading and the shutdown rod worth). The current paper presents the MCNPX predictions of these operational characteristics for seven different LWR-PROTEUS configurations using a large number of nuclear data libraries. More specifically, this significant benchmarking exercise is based on the ENDF/B6v2, ENDF/B6v8, JEF2.2, JEFF3.0, JENDL3.2, and JENDL3.3 libraries. The results highlight certain library specific trends in the prediction of the multiplication factor k eff (e.g. the systematically larger reactivity calculated with JEF2.2 and the smaller reactivity associated with JEFF3.0). They also confirm the satisfactory determination of reactivity variations by all calculational schemes, for instance, due to the introduction of a safety rod pair, these calculations having been compared with experiments. (authors)

  18. Experimental investigation of critical velocity in a parallel plate research reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alfredo J.A.; Scuro, Nikolas L.; Andrade, Delvonei A., E-mail: ajcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The fuel elements of a MTR (Material Testing Reactor) type nuclear reactor are mostly composed of aluminum coated fuel plates containing the core of uranium silica (U{sub 3}Si{sub 2}) dispersed in an aluminum matrix. These plates have a thickness of the order of millimeters and are much longer in relation to their thickness. They are arranged in parallel in the assembly of the fuel element to form channels between them a few millimeters in thickness, through which there is a flow of the coolant. This configuration, combined with the need for a flow at high flow rates to ensure the cooling of the fuel element in operation, may create problems of mechanical failure of fuel plate due to the vibration induced by the flow in the channels. In the case of critical velocity excessive permanent deflections of the plates can cause blockage of the flow channel in the reactor core and lead to overheating in the plates. For this study an experimental bench capable of high volume flows and a test section that simulates a plate-like fuel element with three cooling channels were developed. The dimensions of the test section were based on the dimensions of the Fuel Element of the Brazilian Multipurpose Reactor (RMB), whose project is being coordinated by the National Commission of Nuclear Energy (CNEN). The experiments performed attained the objective of reaching Miller's critical velocity condition. The critical velocity was reached with 14.5 m/s leading to the consequent plastic deformation of the flow channel plates. (author)

  19. TSOAK-M1: a computer code to determine tritium reaction/adsorption/release parameters from experimental results of air-detritiation tests

    International Nuclear Information System (INIS)

    Land, R.H.; Maroni, V.A.; Minkoff, M.

    1979-01-01

    A computer code has been developed which permits the determination of tritium reaction (T 2 to HTO)/adsorption/release and instrument correction parameters from enclosure (building) - detritiation test data. The code is based on a simplified model which treats each parameter as a normalized time-independent constant throughout the data-unfolding steps. Because of the complicated four-dimensional mathematical surface generated by the resulting differential equation system, occasional local-minima effects are observed, but these effects can be overcome in most instances by selecting a series of trial guesses for the initial parameter values and observing the reproducibility of final parameter values for cases where the best overall fit to experimental data is achieved. The code was then used to analyze existing small-cubicle test data with good success, and the resulting normalized parameters were employed to evaluate hypothetical reactor-building detritiation scenarios. It was concluded from the latter evaluation that the complications associated with moisture formation, adsorption, and release, particularly in terms of extended cleanup times, may not be as great as was previously thought. It is recommended that the validity of the TSOAK-M1 model be tested using data from detritiation tests conducted on large experimental enclosures (5 to 10 cm 3 ) and, if possible, actual facility buildings

  20. Finite element modeling and experimentation of bone drilling forces

    International Nuclear Information System (INIS)

    Lughmani, W A; Bouazza-Marouf, K; Ashcroft, I

    2013-01-01

    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling. The model incorporates the dynamic characteristics involved in the process along with the accurate geometrical considerations. The average critical thrust forces and torques obtained using FE analysis, for set of machining parameters are found to be in good agreement with the experimental results

  1. Stress evaluation of metallic material under steady state based on nonlinear critically refracted longitudinal wave

    Science.gov (United States)

    Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng

    2018-06-01

    This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.

  2. Processing and benchmarking of evaluated nuclear data file/b-viii.0β4 cross-section library by analysis of a series of critical experimental benchmark using the monte carlo code MCNP(X and NJOY2016

    Directory of Open Access Journals (Sweden)

    Kabach Ouadie

    2017-12-01

    Full Text Available To validate the new Evaluated Nuclear Data File (ENDF/B-VIII.0β4 library, 31 different critical cores were selected and used for a benchmark test of the important parameter keff. The four utilized libraries are processed using Nuclear Data Processing Code (NJOY2016. The results obtained with the ENDF/B-VIII.0β4 library were compared against those calculated with ENDF/B-VI.8, ENDF/B-VII.0, and ENDF/B-VII.1 libraries using the Monte Carlo N-Particle (MCNP(X code. All the MCNP(X calculations of keff values with these four libraries were compared with the experimentally measured results, which are available in the International Critically Safety Benchmark Evaluation Project. The obtained results are discussed and analyzed in this paper.

  3. Benchmark assemblies of the Los Alamos critical assemblies facility

    International Nuclear Information System (INIS)

    Dowdy, E.J.

    1986-01-01

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described. (author)

  4. Benchmark assemblies of the Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    Dowdy, E.J.

    1985-01-01

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described

  5. Benchmark assemblies of the Los Alamos critical assemblies facility

    International Nuclear Information System (INIS)

    Dowdy, E.J.

    1985-01-01

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described

  6. Nuclear criticality predictability

    International Nuclear Information System (INIS)

    Briggs, J.B.

    1999-01-01

    As a result of lots of efforts, a large portion of the tedious and redundant research and processing of critical experiment data has been eliminated. The necessary step in criticality safety analyses of validating computer codes with benchmark critical data is greatly streamlined, and valuable criticality safety experimental data is preserved. Criticality safety personnel in 31 different countries are now using the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. Much has been accomplished by the work of the ICSBEP. However, evaluation and documentation represents only one element of a successful Nuclear Criticality Safety Predictability Program and this element only exists as a separate entity, because this work was not completed in conjunction with the experimentation process. I believe; however, that the work of the ICSBEP has also served to unify the other elements of nuclear criticality predictability. All elements are interrelated, but for a time it seemed that communications between these elements was not adequate. The ICSBEP has highlighted gaps in data, has retrieved lost data, has helped to identify errors in cross section processing codes, and has helped bring the international criticality safety community together in a common cause as true friends and colleagues. It has been a privilege to associate with those who work so diligently to make the project a success. (J.P.N.)

  7. Specifications, Pre-Experimental Predictions, and Test Plate Characterization Information for the Prometheus Critical Experiments

    International Nuclear Information System (INIS)

    ML Zerkle; ME Meyers; SM Tarves; JJ Powers

    2006-01-01

    This report provides specifications, pre-experimental predictions, and test plate characterization information for a series of molybdenum (Mo), niobium (Nb), rhenium (Re), tantalum (Ta), and baseline critical experiments that were developed by the Naval Reactors Prime Contractor Team (NRPCT) for the Prometheus space reactor development project. In March 2004, the Naval Reactors program was assigned the responsibility to develop, design, deliver, and operationally support civilian space nuclear reactors for NASA's Project Prometheus. The NRPCT was formed to perform this work and consisted of engineers and scientists from the Naval Reactors (NR) Program prime contractors: Bettis Atomic Power Laboratory, Knolls Atomic Power Laboratory (KAPL), and Bechtel Plant Machinery Inc (BPMI). The NRPCT developed a series of clean benchmark critical experiments to address fundamental uncertainties in the neutron cross section data for Mo, Nb, Re, and Ta in fast, intermediate, and mixed neutron energy spectra. These experiments were to be performed by Los Alamos National Laboratory (LANL) using the Planet vertical lift critical assembly machine and were designed with a simple, geometrically clean, cylindrical configuration consisting of alternating layers of test, moderator/reflector, and fuel materials. Based on reprioritization of missions and funding within NASA, Naval Reactors and NASA discontinued their collaboration on Project Prometheus in September 2005. One critical experiment and eighteen subcritical handstacking experiments were completed prior to the termination of work in September 2005. Information on the Prometheus critical experiments and the test plates produced for these experiments are expected to be of value to future space reactor development programs and to integral experiments designed to address the fundamental neutron cross section uncertainties for these refractory metals. This information is being provided as an orderly closeout of NRPCT work on Project

  8. Fissile material holdup monitoring in the PREPP [Process Experimental Pilot Plant] process

    International Nuclear Information System (INIS)

    Becker, G.K.; Pawelko, R.J.

    1989-01-01

    The Process Experimental Pilot Plant (PREPP) is an incineration system designed to thermally process mixed transuranic (TRU) waste and TRU contaminated low-level waste. The TRU isotopic composition is that of weapons grade plutonium (Pu) which necessitates that criticality prevention measures by incorporated into the plant design and operation. Criticality safety in the PREPP process is assured through the utilization of mass and moderation control in conjunction with favorable vessel geometries. The subject of this paper concerns the Pu mass holdup instrumentation system which is an integral part of the inprocess mass control strategy. Plant vessels and components requiring real-time mass holdup measurements were selected based on their evaluated potential for achieving physically credible Pu mass loadings and associated parameters which could lead to a criticality event. If the parameters requisite to a criticality occurrence could not physically be achieved under credible plant conditions, the particular location only required periodic portable holdup monitoring. Based on these analyses five real-time holdup monitoring locations were identified for criticality assurance purposes. An additional real-time instrument is part of the system but serves primarily in the capacity of providing operational support data. 1 fig

  9. Critical sustainability parameters in defluoridation of drinking water

    DEFF Research Database (Denmark)

    Bregnhøj, Henrik

    to be critical since fluorosis is not always considered as the main problem of concern and improvements are not always visible for a number of years. Appropiate and cheap technique is always a must in poor villages. Finally the organisation of supporting functions that may include quality control, technical...

  10. Experimental parameters for quantitative surface analysis by medium energy ion scattering, ch. 1

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Kersten, H.H.; Colenbrander, B.G.; Jongh, A.P. de; Saris, F.W.

    1976-01-01

    A new UHV chamber for surface and surface layer analysis by collision spectroscopy of backscattered ions at medium energies is described. Experimental parameters like energy, angular and depth resolution, crystal alignment and background pressure are discussed. Formulae based on the use of an electrostatic energy analyser show that the analysis can be quantitative. Effects of beam induced build-up of a hydro-carbon layer, sputter cleaning and creation of radiation damage have been investigated for Cu (110) and Ni (110). Detection sensitivity for Carbon, Oxygen and Sulfur on Cu and Ni has been found to be 0.2, 0.1 and 0.03 of a monolayer respectively

  11. Critical Parameters of Complex Geometry Intersecting Cylinders Containing Uranyl Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Robert Emil; Briggs, Joseph Blair

    1999-06-01

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a "tree") having long, thin arms (or "branches") extending up to four directions off the column. Arms are equally spaced from one another in vertical planes; and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves when each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

  12. Gas-cooled fast reactors. Motivation and presentation of the ENIGMA program in the MASURCA experimental critical facility

    International Nuclear Information System (INIS)

    Tommasi, Jean; Jacqmin, Robert; Mellier, Frederic

    2005-01-01

    This paper describes a new experimental physics program in support of gas cooled fast reactor (GCFR) design studies, called ENIGMA, to be performed in the MASURCA critical facility at CEA-Cadarache, France. The prospective GCFR design studies at CEA are presented, as well as the specific neutronics features needing an extension of the validation of calculation tools and nuclear data. The relevant existing experiments are briefly reviewed and the need for new experimental data is pointed out. The first phase of the proposed new experiments includes a reference core with a representative spectrum, and a series of central core substitutions involving spectrum shifts, streaming studies, low-grade Pu substitutions, innovative material (Si, Zr) substitutions. Reflector substitution zones will include elements foreseen for the reflectors (Si, Zr, C). Subsequent phases will involve larger amounts of low-grade Pu or innovative materials, and configurations representative of experimental and demonstration GCFRs. (author)

  13. Measurements of the critical parameters for {l_brace}xNH{sub 3} + (1 - x)H{sub 2}O{r_brace} with x = (0.9098, 0.7757, 0.6808)

    Energy Technology Data Exchange (ETDEWEB)

    Sakabe, A.; Arai, D. [Centre for Multiscale Mechanics and Mechanical Systems, Keio University, Yokohama 223-8522 (Japan); Miyamoto, H. [Department of Mechanical Systems Engineering, Toyama Prefectural University, Imizu 939-0398 (Japan)], E-mail: miyamoto@pu-toyama.ac.jp; Uematsu, M. [Centre for Multiscale Mechanics and Mechanical Systems, Keio University, Yokohama 223-8522 (Japan)

    2008-10-15

    Measurements of the critical parameters for {l_brace}xNH{sub 3} + (1 - x)H{sub 2}O{r_brace} with x = (0.9098, 0.7757, 0.6808) were carried out by using a metal-bellows variable volumometer with an optical cell. The expanded uncertainties (k = 2) in temperature, pressure, density, and composition measurements have been estimated to be less than 3.2 mK, 3.2 kPa, 0.3 kg . m{sup -3}, and 8.8 . 10{sup -4}, respectively. In each mole fraction, the critical temperature T{sub c} was first determined on the basis of the intensity of the critical opalescence. The critical pressure p{sub c} and critical density {rho}{sub c} were then determined as the point at which the meniscus disappears on the isotherm at T = T{sub c}. The expanded uncertainties (k = 2) in the present critical parameters have also been estimated. Comparisons of the present values with the literature data as well as the calculated values afforded using the equation of state are also presented.

  14. Experimental determination of the x-ray atomic fundamental parameters of nickel

    Science.gov (United States)

    Ménesguen, Y.; Lépy, M.-C.; Hönicke, P.; Müller, M.; Unterumsberger, R.; Beckhoff, B.; Hoszowska, J.; Dousse, J.-Cl; Błachucki, W.; Ito, Y.; Yamashita, M.; Fukushima, S.

    2018-02-01

    The x-ray atomic properties of nickel (Ni) were investigated in a unique approach combining different experimental techniques to obtain new, useful and reliable values of atomic fundamental parameters for x-ray spectrometric purposes and for comparison with theoretical predictions. We determined the mass attenuation coefficients in an energy range covering the L- and K-absorption edges, the K-shell fluorescence yield and the Kβ/Kα and Kβ1, 3/Kα1, 2 transition probability ratios. The obtained line profiles and linewidths of the Kα and Kβ transitions in Ni can be considered as the contribution of the satellite lines arising from the [KM] shake processes suggested by Deutsch et al (1995 Phys. Rev. A 51 283) and Ito et al (2016 Phys. Rev. A 94 042506). Comparison of the new data with several databases showed good agreement, but also discrepancies were found with existing tabulated values.

  15. Experimental design for parameter estimation of two time-scale model of photosynthesis and photoinhibition in microalgae

    Czech Academy of Sciences Publication Activity Database

    Papáček, Š.; Čelikovský, Sergej; Rehák, Branislav; Štys, D.

    2010-01-01

    Roč. 80, č. 6 (2010), s. 1302-1309 ISSN 0378-4754 R&D Projects: GA ČR(CZ) GA102/08/0186 Institutional research plan: CEZ:AV0Z10750506 Keywords : Photosynthetic factory * Experimental design * Parameter estimation * Two-scale modeling Subject RIV: BC - Control Systems Theory Impact factor: 0.812, year: 2010 http://library.utia.cas.cz/separaty/2010/TR/celikovsky-0341543.pdf

  16. Critical experiments facility and criticality safety programs at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Miyoshi, Yoshinori; Nomura, Yasushi

    1985-10-01

    The nuclear criticality safety is becoming a key point in Japan in the safety considerations for nuclear installations outside reactors such as spent fuel reprocessing facilities, plutonium fuel fabrication facilities, large scale hot alboratories, and so on. Especially a large scale spent fuel reprocessing facility is being designed and would be constructed in near future, therefore extensive experimental studies are needed for compilation of our own technical standards and also for verification of safety in a potential criticality accident to obtain public acceptance. Japan Atomic Energy Research Institute is proceeding a construction program of a new criticality safety experimental facility where criticality data can be obtained for such solution fuels as mainly handled in a reprocessing facility and also chemical process experiments can be performed to investigate abnormal phenomena, e.g. plutonium behavior in solvent extraction process by using pulsed colums. In FY 1985 detail design of the facility will be completed and licensing review by the government would start in FY 1986. Experiments would start in FY 1990. Research subjects and main specifications of the facility are described. (author)

  17. On tests of local realism by CP-violation parameters of K0 mesons

    International Nuclear Information System (INIS)

    Genovese, M.

    2005-01-01

    Recently various papers have proposed to test local realism (LR) by considering electroweak CP-violation parameters values in neutral pseudoscalar meson systems. Considering the large interest for a conclusive test of LR and the experimental accessibility to these tests, in this paper we critically consider these results showing how they, albeit that they are very interesting, require anyway additional assumptions and therefore cannot be considered conclusive tests of LR. (orig.)

  18. Specific feature of critical fields of inhomogeneous superconducting films

    International Nuclear Information System (INIS)

    Glazman, L.I.; Dmitrenko, I.M.; Kolin'ko, A.E.; Pokhila, A.S.; Fogel', N.Ya.; Cherkasova, V.G.

    1988-01-01

    Experimental studies on thin vanadium films (d=250-400 A) have revealed anomaly in the temperature dependence of the upper critical field H cparallel (T), when H is parallel to the sample plane. At certain temperature T 0 the dependence H cparallel 2 (T) has a sharp kink separating two linear portions. The anomalous behaviour of H cparallel (T) of thin V films can be accounted for assuming the film separation into two parallel layers having different parameters (critical temperature T c , coherence length ξ, thickness d). At temperatures above and lower T 0 the dependence H cparallel (T) is mainly dependent on the characteristics of only one layer. The kink in the dependence H cparallel 2 (T) is due to a jump-like transition of the superconducting nucleus from one layer to the other at T c . The anomalous behaviour of the dependence H cparallel (T) is also observed in sandwiches consisting of two identical films separated with a high (about 30 A) dielectric interlayer; however, the transition from one linear portion to the other is smooth. In the case of identical films a specific crossover occurs if at T-T c the critical field H cparallel (T) coinsides with that for the layer of doubled thickness, then at lowering temperature H cparallel (T) asymptotically approaches the critical field of one layer. The calculation within the model described provides a good description for the experimental results

  19. Experimental Research and Mathematical Modeling of Parameters Effecting on Cutting Force and SurfaceRoughness in CNC Turning Process

    Science.gov (United States)

    Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.

    2018-01-01

    In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.

  20. Study of the conditions affecting the critical speed of a rotating pump shaft

    International Nuclear Information System (INIS)

    Fardeau, P.; Huet, J.L.; Axisa, F.

    1983-01-01

    Knowing the parameters conditioning the critical speed of a pump shaft is important, both for safety and design purposes, since the shafts are often to operate beyond the first critical speed. These aims led CEA, associated with NOVATOME and FRAMATOME (with the cooperation of JEUMONT-SCHNEIDER) to carry out a test program on critical speeds of a full scale nuclear pump shaft. Fluid-structure interaction plays an important part in the setting of critical speed. Due to the coupling between the rotative fluid flow and the transverse vibrations of the shaft, inertial and stiffness forces are created, which are non conservative and proportional to the added mass of the fluid. The hydrostatic bearing effect and the influence of the water carried along by the pump wheel were also investigated, but proved unimportant in the case of the shaft studied. Experimental results are compared with calculations of critical speed. (orig.)

  1. An experimental and analytical study of fluid flow and critical heat flux in PWR fuel elements

    International Nuclear Information System (INIS)

    Bowditch, F.H.; Mogford, D.J.

    1987-02-01

    This report describes experiments that have been carried out at the Winfrith Establishment of the United Kingdom Atomic Energy Authority to determine the critical heat flux characteristics of pressurized water reactor fuel elements over an unusually wide range of coolant flow conditions that are relevant to both normal and fault conditions of reactor operation. The experiments were carried out in the TITAN loop using an electrically heated bundle of 25 rods of 9.5 mm diameter on a 12.7 mm pitch fitted with plain grids in order to provide a generic base for code validation. The fully tabulated experimental data for critical heat flux, pressure drop and sub-channel mixing are encompassed by ranges of pressure between 20 and 160 Bar, coolant flow between 150 and 3600 Kg/m 2 s, and coolant inlet temperature between 150 and 320 0 C. The results of the experiments are compared with predicted data based upon several established critical heat flux correlations. It is concluded that the extrapolation of some correlations to conditions beyond their intended range of application can lead to dangerous over estimates of critical heat flux, but the Winfrith WSC-2 and the EPRI NP-2609 correlations perform well over the whole data range and correlate all data with RMS errors of 9% and 6% respectively. (author)

  2. Crossover phenomena in the critical range near magnetic ordering transition

    Science.gov (United States)

    Köbler, U.

    2018-05-01

    Among the most important issues of Renormalization Group (RG) theory are crossover events and relevant (or non-relevant) interactions. These terms are unknown to atomistic theories but they will be decisive for future field theories of magnetism. In this experimental study the importance of these terms for the critical dynamics above and below magnetic ordering transition is demonstrated on account of new analyses of published data. When crossover events are overlooked and critical data are fitted by a single power function of temperature over a temperature range including a crossover event, imprecise critical exponents result. The rather unsystematic and floating critical exponents reported in literature seem largely to be due to this problem. It is shown that for appropriate data analyses critical exponents are obtained that are to a good approximation rational numbers. In fact, rational critical exponents can be expected when spin dynamics is controlled by the bosons of the continuous magnetic medium (Goldstone bosons). The bosons are essentially magnetic dipole radiation generated by the precessing spins. As a result of the here performed data analyses, critical exponents for the magnetic order parameter of β = 1/2, 1/3, 1/4 and 1/6 are obtained. For the critical paramagnetic susceptibility the exponents are γ = 1 and γ = 4/3.

  3. Statistical analysis of the distribution of critical current and the correlation of n value to the critical current of bent Bi2223 composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Matsubayashi, H; Okuda, H; Osamura, K; Otto, A; Malozemoff, A

    2009-01-01

    Distributions of local and overall critical currents and correlation of n value to the critical current of bent Bi2223 composite tape were studied from the statistical viewpoint. The data of the local and overall transport critical currents and n values of the Bi2223 composite tape specimens were collected experimentally for a wide range of bending strain (0-1.1%) by using the specimens, designed so as to characterize the local and overall critical currents and n values. The measured local and overall critical currents were analyzed with various types of Weibull distribution function. Which of the Weibull distribution functions is suitable for the description of the distribution of local and overall critical currents at each bending strain, and also how much the Weibull parameter values characterizing the distribution vary with bending strain, were revealed. Then we attempted to reproduce the overall critical current distribution and correlation of the overall n value to the overall critical current from the distribution of local critical currents and the correlation of the local n value to the local critical current by a Monte Carlo simulation. The measured average values of critical current and n value at each bending strain and the correlation of n value to critical current were reproduced well by the present simulation, while the distribution of critical current values was reproduced fairly well but not fully. The reason for this is discussed.

  4. Superconducting critical temperature under pressure

    Science.gov (United States)

    González-Pedreros, G. I.; Baquero, R.

    2018-05-01

    The present record on the critical temperature of a superconductor is held by sulfur hydride (approx. 200 K) under very high pressure (approx. 56 GPa.). As a consequence, the dependence of the superconducting critical temperature on pressure became a subject of great interest and a high number of papers on of different aspects of this subject have been published in the scientific literature since. In this paper, we calculate the superconducting critical temperature as a function of pressure, Tc(P), by a simple method. Our method is based on the functional derivative of the critical temperature with the Eliashberg function, δTc(P)/δα2F(ω). We obtain the needed coulomb electron-electron repulsion parameter, μ*(P) at each pressure in a consistent way by fitting it to the corresponding Tc using the linearized Migdal-Eliashberg equation. This method requires as input the knowledge of Tc at the starting pressure only. It applies to superconductors for which the Migdal-Eliashberg equations hold. We study Al and β - Sn two weak-coupling low-Tc superconductors and Nb, the strong coupling element with the highest critical temperature. For Al, our results for Tc(P) show an excellent agreement with the calculations of Profeta et al. which are known to agree well with experiment. For β - Sn and Nb, we found a good agreement with the experimental measurements reported in several works. This method has also been applied successfully to PdH elsewhere. Our method is simple, computationally light and gives very accurate results.

  5. Investigation of the influence of some experimental parameters on the position of the deposition zone in a temperature-gradient tube

    International Nuclear Information System (INIS)

    Helas, G.; Hoffmann, P.; Bachmann, K.

    1978-01-01

    An investigation of the influence of some experimental parameters on thermochromatographic separations has been carried out. It is shown that the position of the deposition zone depends on separation time, purity of the inert gas, and on type and amount of the chlorinating agent. The gas flow rate and the amount of the transported compounds have no influence within the limits of experimental conditions. From the experimental results it can be concluded that in some cases the deposited compounds react with the surface or with the excess gas. (author)

  6. Microtraps for neutral atoms using superconducting structures in the critical state

    International Nuclear Information System (INIS)

    Emmert, A.; Brune, M.; Raimond, J.-M.; Nogues, G.; Lupascu, A.; Haroche, S.

    2009-01-01

    Recently demonstrated superconducting atom chips provide a platform for trapping atoms and coupling them to solid-state quantum systems. Controlling these devices requires a full understanding of the supercurrent distribution in the trapping structures. For type-II superconductors, this distribution is hysteretic in the critical state due to the partial penetration of the magnetic field in the thin superconducting film through pinned vortices. We report here an experimental observation of this memory effect. Our results are in good agreement with the predictions of the Bean model of the critical state without adjustable parameters. The memory effect allows to write and store permanent currents in micron-sized superconducting structures and paves the way toward engineered trapping potentials.

  7. Refined Dummy Atom Model of Mg(2+) by Simple Parameter Screening Strategy with Revised Experimental Solvation Free Energy.

    Science.gov (United States)

    Jiang, Yang; Zhang, Haiyang; Feng, Wei; Tan, Tianwei

    2015-12-28

    Metal ions play an important role in the catalysis of metalloenzymes. To investigate metalloenzymes via molecular modeling, a set of accurate force field parameters for metal ions is highly imperative. To extend its application range and improve the performance, the dummy atom model of metal ions was refined through a simple parameter screening strategy using the Mg(2+) ion as an example. Using the AMBER ff03 force field with the TIP3P model, the refined model accurately reproduced the experimental geometric and thermodynamic properties of Mg(2+). Compared with point charge models and previous dummy atom models, the refined dummy atom model yields an enhanced performance for producing reliable ATP/GTP-Mg(2+)-protein conformations in three metalloenzyme systems with single or double metal centers. Similar to other unbounded models, the refined model failed to reproduce the Mg-Mg distance and favored a monodentate binding of carboxylate groups, and these drawbacks needed to be considered with care. The outperformance of the refined model is mainly attributed to the use of a revised (more accurate) experimental solvation free energy and a suitable free energy correction protocol. This work provides a parameter screening strategy that can be readily applied to refine the dummy atom models for metal ions.

  8. The impact of confinement scaling on ITER [International Thermonuclear Experimental Reactor] parameters

    International Nuclear Information System (INIS)

    Reid, R.L.; Galambos, J.D.; Peng, Y.K.M.

    1988-09-01

    Energy confinement scaling is a major concern in the design of the International Thermonuclear Experimental Reactor (ITER). The existing database for tokamaks can be fitted with a number of different confinement scaling expressions that have similar degrees of approximation. These scaling laws predict confinement times for ITER that vary by over an order of magnitude. The uncertainties in the form and magnitude of these scaling laws must be substantially reduced before the plasma performance of ITER can be predicted with adequate reliability. The TETRA systems code is used to calculate the dependence of major ITER parameters on the scaling laws currently in use. Design constraints of interest in the present phase of ITER consideration are used, and the minimum-cost devices arising from these constraints are reviewed. 9 refs., 13 figs., 4 tabs

  9. Critical parameters near the ferromagnetic-paramagnetic phase transition in La0.7A0.3(Mn1-xbx)O3 (A=Sr; B=Ti and Al; x=0.0 and 0.05) compounds

    International Nuclear Information System (INIS)

    Khiem, N.V.; Phong, P.T.; Bau, L.V.; Nam, D.N.H.; Hong, L.V.; Phuc, N.X.

    2009-01-01

    The critical parameters provide important information concerning the interaction mechanisms near the paramagnetic-to-ferromagnetic transition. In this paper, we present a thorough study for the critical behavior of La 0.7 A 0.3 (Mn 1-x B x )O 3 (A=Sr; B=Ti and Al; x=0.0 and 0.05) polycrystalline samples near ferromagnetic-paramagnetic phase transition temperature by analyzing isothermal magnetization data. We have analyzed our dc-magnetization data near the transition temperature with the help of the modified Arrot plot, Kouvel-Fisher method. We have determined the critical temperature T C and the critical parameters β, γ and δ. With the values of T C , β and γ, we plot Mx(1-T/T C ) -β vs. Hx(1-T/T C ) -γ . All the data collapse on one of the two curves. This suggests that the data below and above T C obey scaling, following a single equation of state. Critical parameters for x=0 and x Ti =0.05 samples are between those predicted for a 3D-Heisenberg model and mean-field theory and for x Al =0.05 samples the values obtained for the critical parameters are close to those predicted by the mean-field theory.

  10. Experimental determination of thermodynamic equilibrium in biocatalytic transamination

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Jensen, Jacob Skibsted; Kroutil, Wolfgang

    2012-01-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones....... Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore...

  11. On determination of microphone response and other parameters by a hybrid experimental and numerical method

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Jacobsen, Finn; Rasmussen, Knud

    2008-01-01

    to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distributions can be used together with a numerical formulation such as the Boundary Element Method for estimating the microphone response and other parameters...... such as the acoustic centres. In this work, a hybrid method is presented. The velocity distributions of condenser Laboratory Standard microphones were measured using a laser vibrometer. This measured velocity distribution was used for estimating the microphone responses and parameters. The agreement with experimental......Typically, numerical calculations of the pressure, free-field and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel...

  12. Changes in the basic experimental parameters of capillary gas chromatography in the 20th century.

    Science.gov (United States)

    Berezkin, V G; Viktorova, E N

    2003-01-24

    Studies of qualitative changes in capillary gas chromatography are of significant practical and scientific interest. This paper analyzes the evolution of the most important experimental chromatographic parameters over the last three decades and is based on the use of a new approach to scientometrical research that is referred to as applied scientometry. One essential feature of this approach is that it looks at the entire contents of each paper rather than only taking account its title, abstract. and references (as is typical for conventional scientometry). In this paper, we monitor how the most important chromatographic parameters, such as column length and diameter, layer thickness, stationary liquid phases, separation temperature mode. etc., have been evolving over the period 1970-2000. We used data from the following journals: Chromatographia, Journal of Chromatography, and Journal of High Resolution Chromatography and Chromatography Communications.

  13. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  14. Experimental evaluation of local bubble parameters of subcooled boiling flow in a pressurized vertical annulus channel

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In-Cheol, E-mail: chuic@kaeri.re.kr; Lee, Seung-Jun; Youn, Young Jung; Park, Jong Kuk; Choi, Hae Seob; Euh, Dong-Jin; Song, Chul-Hwa

    2017-02-15

    Experiments were performed to quantify the local bubble parameters such as void fraction, bubble velocity, interfacial area concentration, and Sauter mean diameter for the subcooled boiling flow of a refrigerant R-134a in a pressurized vertical annulus channel. Optical fiber void probe and double pressure boundary visualization windows were installed at four measurement stations with different elevations, thus enabling the quantification of local bubble parameters and observation of global boiling structure. Using high-resolution traverse systems for the optical fiber void probes and the heating tube, the radial profiles of the bubble parameters and their axial propagation can be evaluated at any elevation of the whole heating region. At this first phase of the experiments, three tests were conducted by varying the pressure, heat flux, mass flux, and local liquid subcooling. The radial profiles of the bubble parameters were obtained at seven elevations. The pressure condition of the present experiments covered the normal operating pressure of PWRs according to the similarity criteria. The present experimental data will be useful for thorough validation and improvement of the CMFD (Computation Multi-Fluid Dynamics) codes and constitutive relations.

  15. Machine learning of the reactor core loading pattern critical parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2007-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employed a recently introduced machine learning technique, Support Vector Regression (SVR), which has a strong theoretical background in statistical learning theory. Superior empirical performance of the method has been reported on difficult regression problems in different fields of science and technology. SVR is a data driven, kernel based, nonlinear modelling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modelling. The starting set of experimental data for training and testing of the machine learning algorithm was obtained using a two-dimensional diffusion theory reactor physics computer code. We illustrate the performance of the solution and discuss its applicability, i.e., complexity, speed and accuracy, with a projection to a more realistic scenario involving machine learning from the results of more accurate and time consuming three-dimensional core modelling code. (author)

  16. Design Parameters of Vortex Pumps: A Meta-Analysis of Experimental Studies

    Directory of Open Access Journals (Sweden)

    Angela Gerlach

    2017-01-01

    Full Text Available Vortex pumps can impel solid-containing fluids and are therefore widely applied, from wastewater transport to the food industry. Despite constant efforts to improve vortex pumps, however, they have remained relatively inefficient compared to conventional centrifugal pumps. To find an optimized design of vortex pumps, this paper provides a systematic analysis on experimental studies that investigated how variations in geometric parameters influence vortex pump characteristics, in particular the pump head, the pressure coefficient and the efficiency for best point operation. To this end, an extensive literature search was conducted, and eighteen articles with 53 primary investigations were identified and meta-integrated. This showed that it is not yet clarified how vortex pumps operate. Two different assumptions of the underlying operating principle of a vortex pump lead to diverging design principles. From the results of this meta-analysis, we deduce recommendations for a more efficient design of a vortex pump and emphasize further aspects on the underlying operating principle of a vortex pump.

  17. Drop-on-Demand System for Manufacturing of Melt-based Solid Oral Dosage: Effect of Critical Process Parameters on Product Quality.

    Science.gov (United States)

    Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V

    2016-04-01

    The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.

  18. Study of experimentally undetermined neutrino parameters in the light of baryogenesis considering type I and type II Seesaw models

    International Nuclear Information System (INIS)

    Kalita, Rupam

    2017-01-01

    We study to connect all the experimentally undetermined neutrino parameters namely lightest neutrino mass, neutrino CP phases and baryon asymmetry of the Universe within the framework of a model where both type I and type II seesaw mechanisms can contribute to tiny neutrino masses. In this work we study the effects of Dirac and Majorana neutrino phases in the origin of matter-antimatter asymmetry through the mechanism of leptogenesis. Type I seesaw mass matrix considered to a tri-bimaximal (TBM) type neutrino mixing which always gives non zero reactor mixing angle. The type II seesaw mass matrix is then considered in such a way that the necessary deviation from TBM mixing and the best fit values of neutrino parameters can be obtained when both type I and type II seesaw contributions are taken into account. We consider different contribution from type I and type II seesaw mechanism to study the effects of neutrino CP phases in the baryon asymmetry of the universe. We further study to connect all these experimentally undetermined neutrino parameters by considering various contribution of type I and type II seesaw. (author)

  19. Critical current degradation in superconducting niobium-titanium alloys in external magnetic fields under loading

    International Nuclear Information System (INIS)

    Bojko, V.S.; Lazareva, M.B.; Starodubov, Ya.D.; Chernyj, O.V.; Gorbatenko, V.M.

    1992-01-01

    The effect of external magnetic fields on the stress at which the critical current starts to degrade (the degradation threshold σ 0 e ) under mechanical loads in superconducting Nb-Ti alloys is studied and a possible mechanism of realization of the effect observed is proposed.It is assumed that additional stresses on the transformation dislocation from the external magnetic fields are beneficial for the growth of martensite inclusions whose superconducting parameters (critical current density j k and critical temperature T k ) are lower then those in the initial material.The degradation threshold is studied experimentally in external magnetic fields H up to 7 T.The linear dependence σ 0 e (H) is observed.It is shown that external magnetic fields play an important role in the critical current degradation at the starting stages of deformation.This fact supports the assumption that the degradation of superconducting parameters under loading are due to the phenomenon of superelasticity,i.e. a reversible load-induced change in the martensite inclusions sizes rather than the reversible mechanical twinning.The results obtained are thought to be important to estimating superconducting solenoid stability in a wide range of magnetic fields

  20. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.

    Directory of Open Access Journals (Sweden)

    Silvia Scarpetta

    Full Text Available We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain. Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.

  1. Solliton-like order parameter distributions in the critical region

    Directory of Open Access Journals (Sweden)

    A.V.Babich

    2006-01-01

    Full Text Available Some exact one-component order parameter distributions for the Michelson thermodynamic potential are obtained. The phase transition of second kind in Ginzburg-Landau type model is investigated. The exact partial distribution of the order parameter in the form of Jakobi elliptic function is obtained. The energy of this distribution is lower at some temperature interval than for the best known models.

  2. Dynamical Quantum Phase Transitions in Spin Chains with Long-Range Interactions: Merging Different Concepts of Nonequilibrium Criticality

    Science.gov (United States)

    Žunkovič, Bojan; Heyl, Markus; Knap, Michael; Silva, Alessandro

    2018-03-01

    We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α , which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α ≤2 . The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α ≤2 . We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.

  3. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    Science.gov (United States)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  4. Criticality calculations for homogeneous mixtures of uranium and plutonium

    International Nuclear Information System (INIS)

    Spiegelberg, R. de S.H.

    1981-05-01

    Critical parameters were calculated using the one-dimensional multigroup transport theory. Calculations have been performed for water mixture of uranium metal and uranium oxides and plutonium nitrates to determine the dimensions of simple critical geometries (sphere and cylinder). The results of the calculations were plotted showing critical parameters (volume, radius or critical mass). The critical values obtained in Handbuch zur Kritikalitat were used to compare with critical parameters. A sensitivity study for the influences of mesh space size, multigroup structure and order of the S sub(n) approximation on the critical radius was carried out. The GAMTEC-II code was used to generate multigroup cross sections data. Critical radius were calculated using the one-dimensional multigroup transport code DTF-IV. (Author) [pt

  5. Program of nuclear criticality safety experiment at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Ohnishi, Nobuaki

    1983-11-01

    JAERI is promoting the nuclear criticality safety research program, in which a new facility for criticality safety experiments (Criticality Safety Experimental Facility : CSEF) is to be built for the experiments with solution fuel. One of the experimental researches is to measure, collect and evaluate the experimental data needed for evaluation of criticality safety of the nuclear fuel cycle facilities. Another research area is a study of the phenomena themselves which are incidental to postulated critical accidents. Investigation of the scale and characteristics of the influences caused by the accident is also included in this research. The result of the conceptual design of CSEF is summarized in this report. (author)

  6. Experimental study on characteristics of interfacial parameter distribution for upward bubbly flow in inclined tube

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Liu Jingyu

    2013-01-01

    Experimental study on characteristics of interfacial parameter distribution for air-water bubbly flow in an inclined circular tube was performed by using the double sensor probe method. Parameters including radial distributions of local void fraction, bubble passing frequency, interfacial area concentration and bubble equivalent diameter were measured using the probe. The inner diameter of test section is 50 mm, and the liquid superficial velocity is 0.144 m/s, with the gas superficial velocity ranging from 0 to 0.054 m/is. The results show that bubbles obviously move toward the upper wall and congregate. The local interfacial area concentration, bubble passing frequency and void fraction have similar radial distribution profiles. Different from the vertical condition, for a cross-sectional area of the test section, the peak value near the upper side increases, while decreases or even disappears near the underside. The local parameter increases as the radial positions change from lower to upper location, and the increased slope becomes larger as the inclination angles increase. The equivalent bubble diameter doesn't vary with radial position, superficial gas velocity and inclination angle, and bubble aggregation and breaking up nearly doesn't occur. The mechanism of effects of inclination on local parameter distribution for bubbly flow is explained by analyzing the transverse force governing the bubble motion. (authors)

  7. Reactor physics studies in the steam flooded GCFR-Phase II critical assembly

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.

    1978-08-01

    A possible accident scenario in a Gas-Cooled Fast Reactor (GCFR) is the leakage of secondary steam into the core. Considerable analytical effort has gone into the study of the effects of such an accidental steam entry. The work described represents the first full scale experimental study of the steam-entry phenomenon in GCFRs. The reference GCFR model used for the study was the benchmark GCFR Phase II assembly, and polyethylene foam was used to provide a very homogeneous steam simulation. The reactivity worth of steam entry was measured for three different steam densities. In addition, a set of integral physics parameters were measured in the largest steam density (0.008 g/cm 3 ) configuration. The corresponding parameters were also measured in dry reference GCFR critical assembly for comparison. The experiments were analyzed using ENDF/B-IV data and two-dimensional diffusion theory methods. As in earlier GCFR critical experiments analysis, the Benoist method was used to treat the problem of neutron streaming

  8. Experimental constraints on transport from dimensionless parameter scaling studies

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.

    1998-02-01

    The scalings of heat transport with safety factor (q), normalized collisionality (v), plasma beta (β), and relative gyroradius (ρ*) have been measured on the DIII-D tokamak. The measured ρ* β and v scalings of heat transport indicate that E x B transport from drive wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χ eff ∝ q 2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τ th ∝ q -2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q 0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τ th ∝ q 95 -1.43±0.23 . This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ*, β, v and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensionless) parameters with the exception of weaker power degradation

  9. Experimental parameters research for oxides of synthesis by microwave

    Energy Technology Data Exchange (ETDEWEB)

    Ratmann, Ezequiel Cafumann; Moreira, Mário Lúcio; Ratmann, Cristiane Raubach; Cava, Sergio da Silva, E-mail: ezequiel.ratmann@gmail.com [Universidade Federal de Pelotas (UFPEL), RS (Brazil)

    2016-07-01

    Full text: The objective of this study is to investigate the influence of experimental parameter of zinc oxide (ZnO) in the structural and optical properties obtained by a microwave-assisted solvo thermal method. The method consists in obtaining ZnO at temperatures from 90 - 140 °C and subsequently characterized structurally and verify possible variations in optical characteristics through photoluminescence measurements. The characterizations were performed by X-ray diffraction, scanning electron microscopy and photoluminescence measurements. The results show that the change in temperature of synthesis does not affect the crystal structure of ZnO. The photoluminescence measurements show a shift only in the sample obtained at 120 °C temperature. A more detailed study on the 120°C system is necessary to be able to say that the effect observed in the optical property is due to the method of synthesis. References: [1] S. R. Pinnell, D. Fairhurst, R. Gillies, M. A. Mitchnick, and N. Kollias. Microfine zinc oxide is a superior sunscreen ingredient to microfine titanium dioxide, Dermatologic surgery, vol. 26, no. 4, pp. 309-314, 2000; [2] Efracio M. Flores. Influência do solvente nas propriedades estruturais e ópticas de sistema ZnO@ZnS core-shell, obtidos pelo método solvotérmico assistido por microondas. Dissertação de Mestrado. 2015. (author)

  10. Criticality in the brain

    Science.gov (United States)

    de Arcangelis, L.; Lombardi, F.; Herrmann, H. J.

    2014-03-01

    Spontaneous brain activity has been recently characterized by avalanche dynamics with critical features for systems in vitro and in vivo. In this contribution we present a review of experimental results on neuronal avalanches in cortex slices, together with numerical results from a neuronal model implementing several physiological properties of living neurons. Numerical data reproduce experimental results for avalanche statistics. The temporal organization of avalanches can be characterized by the distribution of waiting times between successive avalanches. Experimental measurements exhibit a non-monotonic behaviour, not usually found in other natural processes. Numerical simulations provide evidence that this behaviour is a consequence of the alternation between states of high and low activity, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homoeostatic mechanisms. Interestingly, the same homoeostatic balance is detected for neuronal activity at the scale of the whole brain. We finally review the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules and the learning dynamics exhibits universal features as a function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  11. Criticality in the brain

    International Nuclear Information System (INIS)

    De Arcangelis, L; Lombardi, F; Herrmann, H J

    2014-01-01

    Spontaneous brain activity has been recently characterized by avalanche dynamics with critical features for systems in vitro and in vivo. In this contribution we present a review of experimental results on neuronal avalanches in cortex slices, together with numerical results from a neuronal model implementing several physiological properties of living neurons. Numerical data reproduce experimental results for avalanche statistics. The temporal organization of avalanches can be characterized by the distribution of waiting times between successive avalanches. Experimental measurements exhibit a non-monotonic behaviour, not usually found in other natural processes. Numerical simulations provide evidence that this behaviour is a consequence of the alternation between states of high and low activity, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homoeostatic mechanisms. Interestingly, the same homoeostatic balance is detected for neuronal activity at the scale of the whole brain. We finally review the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules and the learning dynamics exhibits universal features as a function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow. (paper)

  12. Critical experiments simulating accidental water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Glushkov, L.S.

    2003-01-01

    The paper focuses on experimental analysis of nuclear criticality safety at accidental water immersion of fuel elements of the Russian TOPAZ-2 space nuclear power system reactor. The structure of water-moderated heterogeneous critical assemblies at the NARCISS facility is described in detail, including sizes, compositions, densities of materials of the main assembly components for various core configurations. Critical parameters of the assemblies measured for varying number of fuel elements, height of fuel material in fuel elements and their arrangement in the water moderator with a uniform or variable spacing are presented. It has been found from the experiments that at accidental water immersion of fuel elements involved, the minimum critical mass equal to approximately 20 kg of uranium dioxide is achieved at 31-37 fuel elements. The paper gives an example of a physical model of the water-moderated heterogeneous critical assembly with a detailed characterization of its main components that can be used for calculations using different neutronic codes, including Monte Carlo ones. (author)

  13. International conference on sub-critical accelerator driven systems. Proceedings

    International Nuclear Information System (INIS)

    Litovkina, L.P.; Titarenko, Yu.E.

    1999-01-01

    The International Meeting on Sub-Critical Accelerator Driven Systems was organized by the State Scientific Center - Institute for Theoretical and Experimental Physics with participation of Atomic Ministry of RF. The Meeting objective was to analyze the recent achievements and tendencies of the accelerator-driven systems development. The Meeting program covers a broad range of problems including the accelerator-driven systems (ADS) conceptual design; analyzing the ADS role in nuclear fuel cycle; accuracy of modeling the main parameters of ADS; conceptual design of high-current accelerators. Moreover, the results of recent experimental and theoretical studies on nuclear data accumulation to support the ADS technologies are presented. About 70 scientists from the main scientific centers of Russia, as well as scientists from USA, France, Belgium, India, and Yugoslavia, attended the meeting and presented 44 works [ru

  14. A study on critical heat flux in gap

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Jeong, Ji Whan; Cho, Young Ro; Chang, Young Cho; Kang, Kyung Ho; Kim, Jong Whan; Kim, Sang Baik; Kim, Hee Dong

    1999-04-01

    The scope and content of this study is to perform the test on critical heat flux in hemispherical narrow gaps using distilled water and Freon R-113 as experimental parameters, such as system pressure from 1 to 10 atm and gap thickness of 0.5, 1.0, 2.0, and 5.0 mm. The CHFG test results have shown that the measured values of critical power are much lower than the predictions made by empirical CHF correlations applicable to flat plate gaps and annuli. The pressure effect on the critical power was found to be much milder than predictions by those CHF correlations. The values and the pressure trend of the critical powers measured in the present experiments are close to the values converted from the CCFL data. This confirms the claim that a CCFL brings about local dryout and finally, global dryout in hemispherical narrow gaps. Increases in the gap thickness lead to increase in critical power. The measured critical power using R-113 in hemispherical narrow gaps are 60 % lower than that using water due to the lower boiling point, which is different from the pool boiling condition. The CCFL (counter counter flow limit) test facility was constructed and the test is being performed to estimate the CCFL phenomena and to evaluate the CHFG test results on critical power in hemispherical narrow gaps. (Author). 35 refs., 2 tabs., 19 figs.

  15. A study on critical heat flux in gap

    International Nuclear Information System (INIS)

    Park, Rae Joon; Jeong, Ji Whan; Cho, Young Ro; Chang, Young Cho; Kang, Kyung Ho; Kim, Jong Whan; Kim, Sang Baik; Kim, Hee Dong

    1999-04-01

    The scope and content of this study is to perform the test on critical heat flux in hemispherical narrow gaps using distilled water and Freon R-113 as experimental parameters, such as system pressure from 1 to 10 atm and gap thickness of 0.5, 1.0, 2.0, and 5.0 mm. The CHFG test results have shown that the measured values of critical power are much lower than the predictions made by empirical CHF correlations applicable to flat plate gaps and annuli. The pressure effect on the critical power was found to be much milder than predictions by those CHF correlations. The values and the pressure trend of the critical powers measured in the present experiments are close to the values converted from the CCFL data. This confirms the claim that a CCFL brings about local dryout and finally, global dryout in hemispherical narrow gaps. Increases in the gap thickness lead to increase in critical power. The measured critical power using R-113 in hemispherical narrow gaps are 60 % lower than that using water due to the lower boiling point, which is different from the pool boiling condition. The CCFL (counter counter flow limit) test facility was constructed and the test is being performed to estimate the CCFL phenomena and to evaluate the CHFG test results on critical power in hemispherical narrow gaps. (Author). 35 refs., 2 tabs., 19 figs

  16. Numerical calculation procedure for criticality parameters of the two-zone reflected reactor with flat central zone

    International Nuclear Information System (INIS)

    Bosevski, T.; Strugar, P.

    1966-10-01

    In determining the criticality parameters of a two-zone reactor with flat central zone one encounters a numerical problem requiring the solution of a system of two non-linear equations. To solve them the Newton method, which proved convenient, was used n this work. By comparing our results with those reported one obtains about 5% smaller values of both the radius of the flat zone and of the radial buckling of the outer zone. This discrepancy probably results from some approximations used in solving the same system of equations used in solving the same system of equations where the procedure form was applied, whereas the calculation time is by one order of magnitude smaller

  17. Standard problem exercise to validate criticality codes for spent LWR fuel transport container calculations

    International Nuclear Information System (INIS)

    Whitesides, G.H.; Stephens, M.E.

    1984-01-01

    During the past two years, a Working Group established by the Organization for Economic Co-Operation and Development's Nuclear Energy Agency (OECD-NEA) has been developing a set of criticality benchmark problems which could be used to help establish the validity of criticality safety computer programs and their associated nuclear data for calculation of ksub(eff) for spent light water reactor (LWR) fuel transport containers. The basic goal of this effort was to identify a set of actual critical experiments which would contain the various material and geometric properties present in spent LWR transport contrainers. These data, when used by the various computational methods, are intended to demonstrate the ability of each method to accurately reproduce the experimentally measured ksub(eff) for the parameters under consideration

  18. Critical thermodynamic evaluation and optimization of the Fe–B, Fe–Nd, B–Nd and Nd–Fe–B systems

    International Nuclear Information System (INIS)

    Van Ende, Marie-Aline; Jung, In-Ho

    2013-01-01

    Highlights: ► Complete critical evaluation of all available phase diagram and thermodynamic data for the Fe–Nd–B system for the first time. ► Thermodynamic database of optimized model parameters has been developed. ► Gibbs energies of binary and ternary solid and liquid phases were properly described. ► All reliable thermodynamic and phase diagram data were properly reproduced. ► Liquidus projection of the Fe–Nd–B system is properly predicted for the first time. - Abstract: All experimental data on phase equilibria and thermodynamic properties of the Fe–B, Fe–Nd and Nd–B binary and Fe–Nd–B ternary systems in literature were reviewed and critically examined. A set of optimized model parameters for all solid stoichiometric compounds, solid solutions and liquid phase was built to reproduce all available reliable thermodynamic properties and phase diagram data within experimental error limits. The solid solutions were modeled using the Compound Energy Formalism. The Modified Quasichemical Model in the pair approximation was used to describe the thermodynamic properties of the liquid solution accurately. The database of the model parameters can be used, along with the software for Gibbs energy minimization, to calculate any type of phase diagram section. Unexplored liquidus projection of the Fe–Nd–B ternary system was predicted from the thermodynamic models and optimized parameters.

  19. Evaluation of the effect of conventionally prepared swarna makshika bhasma on different bio-chemical parameters in experimental animals

    Directory of Open Access Journals (Sweden)

    Sudhaldev Mohapatra

    2011-01-01

    Full Text Available Swarna makshika (chalcopyrite bhasma (SMB has been used for different therapeutic purposes since long in Ayurveda. The present study is conducted to evaluate the effect of conventionally prepared SMB on different bio-chemical parameters in experimental animals, for providing scientific data base for its logical use in clinical practice. The genuine SMB was prepared by following classical techniques of shodhana and marana most commonly used by different Ayurvedic drug manufacturers. Shodhana was done by roasting raw swarna makshika with lemon juice for three days and marana was performed by 11 putas . The experimental animals (rats were divided into two groups. SMB mixed with diluted honey was administered orally in therapeutic dose to Group SMB and diluted honey only was administered to vehicle control Group, for 30 days. The blood samples were collected twice, after 15 days and after 30 days of drug administration and different biochemical investigations were done. Biochemical parameters were chosen based on references from Ayurvedic classics and contemporary medicine. It was observed that Hb% was found significantly increased and LDL and VLDL were found significantly decreased in Group SMB when compared with vehicle control group. This experimental data will help the clinician for the logical use of SMB in different disease conditions with findings like low Hb% and high LDL, VLDL levels.

  20. Experimental study and numerical simulation of the plastic deformation of zirconium single crystals

    International Nuclear Information System (INIS)

    Lebon, C.

    2011-01-01

    There is only few experimental data in the literature on the zirconium single crystals and no constitutive laws for this single crystal material are provided. The goal of this work is then to create an experimental database like the Critical Resolved Shear Stress (CRSS) for the prismatic slip, the strain-hardening, the activation of the prismatic glide system and the activation volumes. We determine theses parameters from image correlation method. Then, we develop a new multi-scale approach using dislocations dynamics concept and finite element computations. Finally, a first single crystal constitutive law for the zirconium is proposed and a good agreement with the experimental data is obtained. (author) [fr

  1. A continuum self organized critically model of turbulent heat transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Tangri, V; Das, A; Kaw, P; Singh, R [Institute for Plasma Research, Gandhinagar (India)

    2003-09-01

    Based on the now well known and experimentally observed critical gradient length (R/L{sub Te} = RT/{nabla}T) in tokamaks, we present a continuum one dimensional model for explaining self organized heat transport in tokamaks. Key parameters of this model include a novel hysteresis parameter which ensures that the switch of heat transport coefficient {chi} upwards and downwards takes place at two different values of R/L{sub Te}. Extensive numerical simulations of this model reproduce many features of present day tokamaks such as submarginal temperature profiles, intermittent transport events, 1/f scaling of the frequency spectra, propagating fronts, etc. This model utilises a minimal set of phenomenological parameters, which may be determined from experiments and/or simulations. Analytical and physical understanding of the observed features has also been attempted. (author)

  2. Impact of a critical care postgraduate certificate course on nurses' self-reported competence and confidence: A quasi-experimental study.

    Science.gov (United States)

    Baxter, Rebecca; Edvardsson, David

    2018-06-01

    Postgraduate education is said to support the development of nurses' professional competence and confidence, essential to the delivery of safe and effective care. However, there is a shortness of empirical evidence to demonstrate an increase to nurses' self-reported confidence and competence on completion of critical care postgraduate certificate-level education. To explore the impact of a critical care postgraduate certificate course on nurses' self-reported competence and confidence. To explore the psychometric properties and performance of the Critical Care Competence and Confidence Questionnaire. A quasi-experimental pre/post-test design. A total population sample of nurses completing a critical care postgraduate certificate course at an Australian University. The Critical Care Competence and Confidence Questionnaire was developed for this study to measure nurses' self-reported competence and confidence at baseline and follow up. Descriptive and inferential statistics were used to explore sample characteristics and changes between baseline and follow-up. Reliability of the questionnaire was explored using Cronbach's Alpha and item-total correlations. There was a statistically significant increase in competence and confidence between baseline and follow-up across all questionnaire domains. Satisfactory reliability estimates were found for the questionnaire. Completion of a critical care postgraduate certificate course significantly increased nurses' perceived competence and confidence. The Critical Care Competence and Confidence Questionnaire was found to be psychometrically sound for measuring nurses' self-reported competence and confidence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. On Input Vector Representation for the SVR model of Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    Determination and optimization of reactor core loading pattern is an important factor in nuclear power plant operation. The goal is to minimize the amount of enriched uranium (fresh fuel) and burnable absorbers placed in the core, while maintaining nuclear power plant operational and safety characteristics. The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. Recently, we proposed a new method for fast loading pattern evaluation based on general robust regression model relying on the state of the art research in the field of machine learning. We employed Support Vector Regression (SVR) technique. SVR is a supervised learning method in which model parameters are automatically determined by solving a quadratic optimization problem. The preliminary tests revealed a good potential of the SVR method application for fast and accurate reactor core loading pattern evaluation. However, some aspects of model development are still unresolved. The main objective of the work reported in this paper was to conduct additional tests and analyses required for full clarification of the SVR applicability for loading pattern evaluation. We focused our attention on the parameters defining input vector, primarily its structure and complexity, and parameters defining kernel functions. All the tests were conducted on the NPP Krsko reactor core, using MCRAC code for the calculation of reactor core loading pattern critical parameters. The tested input vector structures did not influence the accuracy of the models suggesting that the initially tested input vector, consisted of the number of IFBAs and the k-inf at the beginning of the cycle, is adequate. The influence of kernel function specific parameters (σ for RBF kernel

  4. Application of Finite Element Method to Analyze the Influences of Process Parameters on the Cut Surface in Fine Blanking Processes by Using Clearance-Dependent Critical Fracture Criteria

    Directory of Open Access Journals (Sweden)

    Phyo Wai Myint

    2018-04-01

    Full Text Available The correct choice of process parameters is important in predicting the cut surface and obtaining a fully-fine sheared surface in the fine blanking process. The researchers used the value of the critical fracture criterion obtained by long duration experiments to predict the conditions of cut surfaces in the fine blanking process. In this study, the clearance-dependent critical ductile fracture criteria obtained by the Cockcroft-Latham and Oyane criteria were used to reduce the time and cost of experiments to obtain the value of the critical fracture criterion. The Finite Element Method (FEM was applied to fine blanking processes to study the influences of process parameters such as the initial compression, the punch and die corner radii and the shape and size of the V-ring indenter on the length of the sheared surface. The effects of stress triaxiality and punch diameters on the cut surface produced by the fine blanking process are also discussed. The verified process parameters and tool geometry for obtaining a fully-fine sheared SPCC surface are described. The results showed that the accurate and stable prediction of ductile fracture initiation can be achieved using the Oyane criterion.

  5. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    OpenAIRE

    Tourchi, Saeed; Hamidi, Amir

    2015-01-01

    A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rul...

  6. Numerical and Experimental Investigation on the Structural Behaviour of a Horizontal Stabilizer under Critical Aerodynamic Loading Conditions

    Directory of Open Access Journals (Sweden)

    R. Sepe

    2017-01-01

    Full Text Available The aim of the proposed research activity is to investigate the mechanical behaviour of a part of aerospace horizontal stabilizer, made of composite materials and undergoing static loads. The prototype design and manufacturing phases have been carried out in the framework of this research activity. The structural components of such stabilizer are made of composite sandwich panels (HTA 5131/RTM 6 with honeycomb core (HRH-10-1/8-4.0; the sandwich skins have been made by means of Resin Transfer Moulding (RTM process. In order to assess the mechanical strength of this stabilizer, experimental tests have been performed. In particular, the most critical inflight recorded aerodynamic load has been experimentally reproduced and applied on the stabilizer. A numerical model, based on the Finite Element Method (FEM and aimed at reducing the experimental effort, has been preliminarily developed to calibrate amplitude, direction, and distribution of an equivalent and simpler load vector to be used in the experimental test. The FEM analysis, performed by using NASTRAN code, has allowed modelling the skins of the composite sandwich plates by definition of material properties and stack orientation of each lamina, while the honeycomb core has been modelled by using an equivalent orthotropic plate. Numerical and experimental results have been compared and a good agreement has been achieved.

  7. Condensed Fraction of an Atomic Bose Gas Induced by Critical Correlations

    International Nuclear Information System (INIS)

    Smith, Robert P.; Tammuz, Naaman; Campbell, Robert L. D.; Hadzibabic, Zoran; Holzmann, Markus

    2011-01-01

    We study the condensed fraction of a harmonically trapped atomic Bose gas at the critical point predicted by mean-field theory. The nonzero condensed fraction f 0 is induced by critical correlations which increase the transition temperature T c above T c MF . Unlike the T c shift in a trapped gas, f 0 is sensitive only to the critical behavior in the quasiuniform part of the cloud near the trap center. To leading order in the interaction parameter a/λ 0 , where a is the s-wave scattering length and λ 0 the thermal wavelength, we expect a universal scaling f 0 ∝(a/λ 0 ) 4 . We experimentally verify this scaling using a Feshbach resonance to tune a/λ 0 . Further, using the local density approximation, we compare our measurements with the universal result obtained from Monte Carlo simulations for a uniform system, and find excellent quantitative agreement.

  8. Inverse Problems in Systems Biology: A Critical Review.

    Science.gov (United States)

    Guzzi, Rodolfo; Colombo, Teresa; Paci, Paola

    2018-01-01

    Systems Biology may be assimilated to a symbiotic cyclic interplaying between the forward and inverse problems. Computational models need to be continuously refined through experiments and in turn they help us to make limited experimental resources more efficient. Every time one does an experiment we know that there will be some noise that can disrupt our measurements. Despite the noise certainly is a problem, the inverse problems already involve the inference of missing information, even if the data is entirely reliable. So the addition of a certain limited noise does not fundamentally change the situation but can be used to solve the so-called ill-posed problem, as defined by Hadamard. It can be seen as an extra source of information. Recent studies have shown that complex systems, among others the systems biology, are poorly constrained and ill-conditioned because it is difficult to use experimental data to fully estimate their parameters. For these reasons was born the concept of sloppy models, a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. Furthermore the concept of sloppy models contains also the concept of un-identifiability, because the models are characterized by many parameters that are poorly constrained by experimental data. Then a strategy needs to be designed to infer, analyze, and understand biological systems. The aim of this work is to provide a critical review to the inverse problems in systems biology defining a strategy to determine the minimal set of information needed to overcome the problems arising from dynamic biological models that generally may have many unknown, non-measurable parameters.

  9. Experimental First Order Pairing Phase Transition in Atomic Nuclei

    International Nuclear Information System (INIS)

    Moretto, L G; Larsen, A C; Giacoppo, F; Guttormsen, M; Siem, S

    2015-01-01

    The natural log of experimental nuclear level densities at low energy is linear with energy. This can be interpreted in terms of a nearly 1st order phase transition from a superfluid to an ideal gas of quasi particles. The transition temperature coincides with the BCS critical temperature and yields gap parameters in good agreement with the values extracted from even- odd mass differences from rotational states. This converging evidence supports the relevance of the BCS theory to atomic nuclei

  10. Nuclear relaxation and critical fluctuations in membranes containing cholesterol

    Science.gov (United States)

    McConnell, Harden

    2009-04-01

    Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.

  11. Critical Dynamics : The Expansion of the Master Equation Including a Critical Point

    NARCIS (Netherlands)

    Dekker, H.

    1980-01-01

    In this thesis it is shown how to solve the master equation for a Markov process including a critical point by means of successive approximations in terms of a small parameter. A critical point occurs if, by adjusting an externally controlled quantity, the system shows a transition from normal

  12. Calculation of the major material parameters of heat carriers for cryogenic heat pipes

    International Nuclear Information System (INIS)

    Molt, W.

    1976-07-01

    In order to make predictions on the efficiency of cryogenic heat pipes, the material parameters of the heat carrier such as surface tension, viscosity, evaporation heat and density of the liquid should be known. The author therefore investigates suitable interpolation methods and equations which enable the calculation of the desired material parameter at a certain temperature from other known quantities or which require that 1 to 3 material parameters at different temperatures are known. The calculations are limited to the temperature between critical temperature and triple point, since this is the only temperature region in which the heat carrier is in its liquid phase. The applicability and exactness of the equations is tested using known experimental data on N 2 , O 2 , CH 4 and partly on CF 4 . (orig./TK) [de

  13. Experimental constraints on transport from dimensionless parameter scaling studies

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.; Ballet, B.; Carlstrom, T.N.; Cordey, J.G.; DeBoo, J.C.; Gohil, P.; Groebner, R.J.; Rice, B.W.; Thomas, D.M.; Wade, M.R.; Waltz, R.E.

    1998-01-01

    The scalings of heat transport with safety factor (q), normalized collisionality (ν), plasma beta (β), and relative gyroradius (ρ * ) have been measured on the DIII-D tokamak [Fusion Technol. 8, 441 (1985)]. The measured ρ * , β and ν scalings of heat transport indicate that ExB transport from drift wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χ eff ∝q 2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τ th ∝q -2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q 0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τ th ∝q 95 -1.43±0.23 . This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ * , β , ν and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensional) parameters with the exception of weaker power degradation. copyright 1998 American Institute of Physics

  14. Critical Parameters of Complex Geometries of Intersecting Cylinders Containing Uranyl Nitrate Solution

    International Nuclear Information System (INIS)

    Rothe, R. E.

    1999-01-01

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a ''tree'') having long, thin arms (or ''branches'') extending up to four directions off the column. Arms are equally spaced from one another in vertical planes, and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves with each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year

  15. Transport critical current density in flux creep model

    International Nuclear Information System (INIS)

    Wang, J.; Taylor, K.N.R.; Russell, G.J.; Yue, Y.

    1992-01-01

    The magnetic flux creep model has been used to derive the temperature dependence of the critical current density in high temperature superconductors. The generally positive curvature of the J c -T diagram is predicted in terms of two interdependent dimensionless fitting parameters. In this paper, the results are compared with both SIS and SNS junction models of these granular materials, neither of which provides a satisfactory prediction of the experimental data. A hybrid model combining the flux creep and SNS mechanisms is shown to be able to account for the linear regions of the J c -T behavior which are observed in some materials

  16. Neutron Spectrum Parameters In Inner Irradiation Channel Of The Nigeria Research Reactor-1 (NIRR-1) For Use In Absolute And KO-NAA Methods

    International Nuclear Information System (INIS)

    Jonah, S.A; Balogun, G.I; Mayaki, M.C.

    2004-01-01

    In Nigeria, the first Nuclear Reactor achieved critically on February 03, 2004 at about 11:35 GMT and has been commissioned or training and research. It is a Miniature Neutron Source Reactor (MNSR), code-named Nigeria Research Reactor-1 (NIRR-1). NIRR-1 has a tan-in-pool structural configuration and a nominal thermal power rating of 30 Kw. With a built-in clean old core excess reactivity of 3.77 mk determined during the on-site zero and critically experimental, the reactor can operate for a n.cm-2 .s-1 in the inner irradiation channels). Under these conditions, the reactor can operate with the same fuel loading for over ten years with a burn-up of <1%. A detailed description of operating characteristics for NIRR-1, measured during the on-site zero-power and criticality experiments has been given elsewhere. In order to extend its utilization to include absolute and ko-NAA methods, the neutron spectrum parameters in the irradiation channels: power and critically experiments has been given elsewhere. In order to extend it's the irradiation channels: thermal-to-epithermal flux ration, F; and epithermal flux shape factor, a in both the inner and outer irradiation channels must be determined experimentally. In this work, we have developed and experimental procedure for monitoring the neutron spectrum parameters in an inner irradiation channel based on irradiation and gamma-ray counting of detector foils via (n,y), (n,p) and (n,a) dosimetry reactions. Results obtained indicate that a thermal neutron flux of (5.14+-0.02) x 1011 n/c m2.s determined by foil activation method in the inner irradiation channel, B2, at a power level of 15.5 kw corresponds to the flux indicators on the control console and the micro-computer control system respectively. Other parameters of the neutron spectrum determined for inner irradiation channel B2, are: a -0.0502+0.003; 18.92+-0.14; F = 3.87=0.23. The method was validated through the comparison of our result with published neutron spectrum

  17. Influence of a productive solution of uranium on some biochemical parameters of blood of an organism at experimental animals

    International Nuclear Information System (INIS)

    Svambaev, Z.A.; Svambaev, E.A.; Sultanbekov, G.A; Tusupbekova, S.T.

    2010-01-01

    In the work authors inform results on studying influence of a productive solution of uranium on some biochemical parameters of blood of an organism at experimental animals. It is established that all samples of a productive solution of uranium possesses high toxicity and causes destruction of experimental animals with infringement of a picture of blood. Experiments on influence on biochemical and hematology defined parameters of blood on chickens - broilers and on which female quails from daily age raised on cellular batteries in communities on 50 heads in conditions adequate to the requirement. Fed in plenty with the dry forages prepared according to 'Recommendations on the normalized feeding an agricultural bird' (1996), recipes 5-2; 6-1. To chickens in plenty allowed water from auto drinking bowls. Conditions of a micro climate corresponded to hygienic requirements. At carrying out of experiences studied the following parameters: preservation of a livestock, the reason of a withdrawal, weight of a body - weekly up to the end of experience, consumption of a forage, an expense of a forage for 1 kg of a gain have established weight of a body the methods standard in poultry farming. After application of a productive solution took blood from under wings of a vein and in blood have established maintenance of hemoglobin, quantity of red cells, leukocytes and a leukocyte of the formula, the maintenance of calcium and phosphorus. An application of a productive solution for experimental birds for the fifth day has caused clinical symptoms of a poisoning and destruction in groups. At the survived birds in blood it has been established changes biochemical and hematology. Week age chickens of skilled group lagged behind in growth development in comparison with control group on 30 % and at the end of the skilled period skilled have lagged behind in growth and development on 62 %. Among a livestock of chickens of skilled group of a case was more on 53 % on comparisons with the

  18. Systematics of criticality data of special actinide nuclides deduced through the Trombay criticality formula

    International Nuclear Information System (INIS)

    Srinivasan, M.; SubbaRao, K.; Garg, S.B.; Acharya, G.V.

    1989-01-01

    The authors describe a number of interesting systematics and correlations deduced by analyzing the criticality data of special actinide nuclides using concepts embodied in the Trombay critically formula (TCF). The κ ∞ of fast metal actinide nuclides gives a remarkable linear correlation with the fissility parameter Z 2 /A. The neutron leakage probability of all fast metal cores characterized using a constant parameter σ std enables computation of the critical mass value of any unknown fissile nuclide knowing only its Z 2 /A value. Since the neutron leakage probability from dilute fissile solutions is primarily governed by the scattering/slowing down properties of the hydrogen present in water, critical masses and subcritical limits can be predicted for any water-reflected system at any specified hydrogen-to-actinide atomic ratio knowing only the κ ∞ value of the given fissile solution

  19. Wilson's theory of critical phenomena. Higher order corrections to critical exponents

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1973-01-01

    The Wilson's theory of critical phenomena is presented, in the context of renormalized field theory in d dimension and of the Callan-Symanzik equations. This theory allows in particular to compute critical exponents that govern the behavior of some correlation functions near the critical temperature, as power series in epsilon=4-d, using the standard perturbation theory. Owing to the large value of the expansion parameter epsilon, whose physical value is one, it is very important to perform higher order calculations [fr

  20. Analysis of critical neutron- scattering data from iron and dynamical scaling theory

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1970-01-01

    Experimental three- axis spectrometer data of critical neutron- scattering data from Fe are reanalyzed and compared with the recent theoretical prediction by P. Resibois and C. Piette. The reason why the spin- diffusion parameter did not obey the prediction of dynamical scaling theory is indicated....... Double- axis spectrometer data have previously been interpreted in terms of a non- Lorentzian susceptibility. It is shown that with proper corrections for the inelasticity of the scattering the data are consistent with a Lorentzian form of susceptibility....

  1. A sEMG model with experimentally based simulation parameters.

    Science.gov (United States)

    Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P

    2010-01-01

    A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.

  2. Systematic of delayed neutron parameters

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, V.M.

    2000-01-01

    The experimental studies of the energy dependence of the delayed neutron (DN) parameters for various fission systems has shown that the behaviour of a some combination of delayed neutron parameters has a similar features. On the basis of this findings the systematics of delayed neutron experimental data for thorium, uranium, plutonium and americium isotopes have been investigated with the purpose to find a correlation of DN parameters with characteristics of fissioning system as well as a correlation between the delayed neutron parameters themselves. It was presented the preliminary results which were obtained during study the physics interpretation of the results [ru

  3. Pseudo-cubic thin-plate type Spline method for analyzing experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Crecy, F de

    1994-12-31

    A mathematical tool, using pseudo-cubic thin-plate type Spline, has been developed for analysis of experimental data points. The main purpose is to obtain, without any a priori given model, a mathematical predictor with related uncertainties, usable at any point in the multidimensional parameter space. The smoothing parameter is determined by a generalized cross validation method. The residual standard deviation obtained is significantly smaller than that of a least square regression. An example of use is given with critical heat flux data, showing a significant decrease of the conception criterion (minimum allowable value of the DNB ratio). (author) 4 figs., 1 tab., 7 refs.

  4. Pseudo-cubic thin-plate type Spline method for analyzing experimental data

    International Nuclear Information System (INIS)

    Crecy, F. de.

    1993-01-01

    A mathematical tool, using pseudo-cubic thin-plate type Spline, has been developed for analysis of experimental data points. The main purpose is to obtain, without any a priori given model, a mathematical predictor with related uncertainties, usable at any point in the multidimensional parameter space. The smoothing parameter is determined by a generalized cross validation method. The residual standard deviation obtained is significantly smaller than that of a least square regression. An example of use is given with critical heat flux data, showing a significant decrease of the conception criterion (minimum allowable value of the DNB ratio). (author) 4 figs., 1 tab., 7 refs

  5. Study of reactor parameters on the critical systems. Phase I; Ispitivanje reaktorskih parametara na kriticnim sistemima, I faza

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N et al [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1962-08-15

    Phase 1 of the report on reactor parameters study describes the preparation of the RB reactor for operation including the following tasks: Completing and verification of reactor safety system; arranging dosimetry instruments; formation of fuel elements with 2% enriched fuel and aluminium holders; improvement of the heavy water level-meter; mounting the horizontal experimental channel; formation of reactor lattice with 16 cm pitch; testing the reactor system; filling the tank with heavy water and preparing the safety report.

  6. Fine structure of critical opalescence spectra

    Science.gov (United States)

    Sushko, M. Ya.

    2007-09-01

    The effect of the 1.5-scattering mechanism on the time and temperature behavior of the electric field autocorrelation function for the light wave scattered from fluids has been studied for the case where the order-parameter fluctuations obey the diffusion-like kinetics with spatially-dependent kinetic coefficient. The leading contributions to the relevant static correlation functions of the order-parameter fluctuations were obtained by using the Ginzburg-Landau model with a cubic term, and then evaluated with the use of the Gaussian uncoupling for many-point correlation functions and the Ornstein-Zernicke form for the pair correlation function. It is shown that the presence of the 1.5-scattering effects in the overall scattering pattern may be detected in the form of a small but noticeable deviation from exponential decay of the total electric field autocorrelation function registered experimentally near the critical point. Obtained with the standard methods of analysis, the effective half-width of the corresponding spectrum can reveal a stronger temperature dependence and a multiplicative renormalization as compared to the half-width of the spectrum of the pair correlator.

  7. Critical Parameters of Complex Geometries of Intersecting Cylinders Containing Uranyl Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    J. B. Briggs (INEEL POC); R. E. Rothe

    1999-06-14

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a ''tree'') having long, thin arms (or ''branches'') extending up to four directions off the column. Arms are equally spaced from one another in vertical planes, and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves with each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

  8. Experimental studies of flooding in nearly horizontal pipes

    International Nuclear Information System (INIS)

    Choi, Ki Yong

    1993-02-01

    To investigate the flooding phenomenon in nearly horizontal pipes the experimental studies are performed in the facility with the length of 2160mm, with three different inner diameters of 40mm, 60mm, and 70mm, and with the various inclination angles. Air and water approximately at room temperature and at atmospheric pressure are used as test fluids. The local void factions are measured by the three conductance probes located at the inlet, middle, and exit of water flow, respectively. Two mechanisms governing the transition to flooding are proposed. The effects of pipe end geometry, pipe diameter, and inclination angle are investigated and the comparisons with the slug formation models are conducted. It is found in this study that the transition to flooding is originated from two mechanisms i.e. 'wave instability' and 'high head flooding', and two regions (sub-critical and super-critical) coexist if the air flow increases up to a criticalvalue. It is observed that large roll waves are grown to the critical amplitude in the sub-critical region, does not show any dustive growth phenomenon. When the void fraction in the sub-critical region is used as the parameter for the flooding criterion, Ishii's slug formation model predicts the data without systematid errors. On the other hand, when the voide fraction in the super-critical region is selected as the parameter, Taitel's slug formation model best fitsthe data. Data obtained in the condition of high head flooding are not in good agreement with the results predicted by the slug formation models. Also, the transition criterion to the onset of flooding is very sensitive to the inclination angle, and the effect of pipe end geometry on the onset of flooding is negligible

  9. To problem of experimental determination of parameters of μ-atom charge-exchange process of hydrogen isotopes on He nuclei

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Stolupin, V.A.

    1990-01-01

    The kinetics of μ-atomic and μ-molecular processes occuring in hydrogen isotopes-helium mixture is observed. The expressions are obtained to determine the parameters of a process of the muon transition from hydrogen isotope μ atoms to helium nuclei with the use of different experimental methods. 18 refs.; 3 figs.; 1 tab

  10. WIPP Compliance Certification Application calculations parameters. Part 1: Parameter development

    International Nuclear Information System (INIS)

    Howarth, S.M.

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico has been studied as a transuranic waste repository for the past 23 years. During this time, an extensive site characterization, design, construction, and experimental program was completed, which provided in-depth understanding of the dominant processes that are most likely to influence the containment of radionuclides for 10,000 years. Nearly 1,500 parameters were developed using information gathered from this program; the parameters were input to numerical models for WIPP Compliance Certification Application (CCA) Performance Assessment (PA) calculations. The CCA probabilistic codes frequently require input values that define a statistical distribution for each parameter. Developing parameter distributions begins with the assignment of an appropriate distribution type, which is dependent on the type, magnitude, and volume of data or information available. The development of the parameter distribution values may require interpretation or statistical analysis of raw data, combining raw data with literature values, scaling of lab or field data to fit code grid mesh sizes, or other transformation. Parameter development and documentation of the development process were very complicated, especially for those parameters based on empirical data; they required the integration of information from Sandia National Laboratories (SNL) code sponsors, parameter task leaders (PTLs), performance assessment analysts (PAAs), and experimental principal investigators (PIs). This paper, Part 1 of two parts, contains a discussion of the parameter development process, roles and responsibilities, and lessons learned. Part 2 will discuss parameter documentation, traceability and retrievability, and lessons learned from related audits and reviews

  11. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    Science.gov (United States)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  12. Multi-Response Optimization of WEDM Process Parameters Using Taguchi Based Desirability Function Analysis

    Science.gov (United States)

    Majumder, Himadri; Maity, Kalipada

    2018-03-01

    Shape memory alloy has a unique capability to return to its original shape after physical deformation by applying heat or thermo-mechanical or magnetic load. In this experimental investigation, desirability function analysis (DFA), a multi-attribute decision making was utilized to find out the optimum input parameter setting during wire electrical discharge machining (WEDM) of Ni-Ti shape memory alloy. Four critical machining parameters, namely pulse on time (TON), pulse off time (TOFF), wire feed (WF) and wire tension (WT) were taken as machining inputs for the experiments to optimize three interconnected responses like cutting speed, kerf width, and surface roughness. Input parameter combination TON = 120 μs., TOFF = 55 μs., WF = 3 m/min. and WT = 8 kg-F were found to produce the optimum results. The optimum process parameters for each desired response were also attained using Taguchi’s signal-to-noise ratio. Confirmation test has been done to validate the optimum machining parameter combination which affirmed DFA was a competent approach to select optimum input parameters for the ideal response quality for WEDM of Ni-Ti shape memory alloy.

  13. Onset of local ordering in some copper-based alloys: critical solute concentration vis-a-vis various solutionhardening parameters

    Science.gov (United States)

    Butt, Muhammad Zakria; Noshi, Mozina; Bashir, Farooq

    2008-12-01

    The mode of planar distribution of solute atoms in Cu single crystals alloyed with 0.5 to 8.0 at.%Ge has been investigated via the temperature dependence of the critical resolved shear stress of these alloys. It is found that there exists a critical solute concentration c m ≈ 5 at.%Ge below which the distribution of solute atoms in the crystal is random, and above which some local ordering occurs. This together with such data available in the literature for Cu-Zn, Cu-Al and Cu-Mn alloys, i.e. c m ≈7 at. %Zn, 7 at.%Al and 1 at.%Mn, when examined as a function of the size-misfit factor δ = (1/ b)(d b/d c)of a given binary alloy system, shows that the value of c m strongly depends on δ; the smaller the magnitude of δ, the greater the value of c m and vice versa. Also, the value of c m is found to correlate well with the electron-to-atom ratio ( e/a)of the Cu-Zn, Cu-Al, Cu-Ge and Cu-Mn alloys with the solute concentration c = c m . However, no systematic correlation exists between the critical solute concentration c m for the onset of local ordering and the modulus-mismatch parameter η = (1/ G)(d G/d c).

  14. Neutronic parameters characterization of the TRIGA IPR-R1 using scale 6.0 (KENO VI)

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Victor; Miro, Rafael; Verdu, Gumersindo; Barrachina, Teresa [Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politecnica de València (Spain); Silva, Clarysson A. Mello da; Pereira, Claubia [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Dalle, Hugo Moura [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    KENO-VI is a Monte Carlo based transport code used to obtain the criticality of a nuclear system. A model built using this code in the SCALE6.0 software system was developed for the characterization of neutronic parameters of the IPR-R1 TRIGA research reactor. A comparison with experimental values and those calculated with a MCNP code model could be then attained with the purpose to validate this methodology. (author)

  15. Neutronic parameters characterization of the TRIGA IPR-R1 using scale 6.0 (KENO VI)

    International Nuclear Information System (INIS)

    Faria, Victor; Miro, Rafael; Verdu, Gumersindo; Barrachina, Teresa; Silva, Clarysson A. Mello da; Pereira, Claubia

    2011-01-01

    KENO-VI is a Monte Carlo based transport code used to obtain the criticality of a nuclear system. A model built using this code in the SCALE6.0 software system was developed for the characterization of neutronic parameters of the IPR-R1 TRIGA research reactor. A comparison with experimental values and those calculated with a MCNP code model could be then attained with the purpose to validate this methodology. (author)

  16. Experimental determination of thermodynamic equilibrium in biocatalytic transamination.

    Science.gov (United States)

    Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M

    2012-08-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics. Copyright © 2012 Wiley Periodicals, Inc.

  17. Forecast of criticality experiments and experimental programs needed to support nuclear operations in the United States of America: 1994-1999

    International Nuclear Information System (INIS)

    Rutherford, D.

    1995-01-01

    This Forecast is generated by the Chair of the Experiment Needs Identification Workgroup (ENIWG), with input from Department of Energy and the nuclear community. One of the current concerns addressed by ENIWG was the Defense Nuclear Facilities Safety Board's Recommendation 93-2. This Recommendation delineated the need for a critical experimental capability, which includes (1) a program of general-purpose experiments, (2) improving the information base, and (3) ongoing departmental programs. The nuclear community also recognizes the importance of criticality theory, which, as a stepping stone to computational analysis and safety code development, needs to be benchmarked against well-characterized critical experiments. A summary projection of the Department's needs with respect to criticality information includes (1) hands-on training, (2) criticality and nuclear data, (3) detector systems, (4) uranium- and plutonium-based reactors, and (5) accident analysis. The Workgroup has evaluated, prioritized, and categorized each proposed experiment and program. Transportation/Applications is a new category intended to cover the areas of storage, training, emergency response, and standards. This category has the highest number of priority-1 experiments (nine). Facilities capable of performing experiments include the Los Alamos Critical Experiment Facility (LACEF) along with Area V at Sandia National Laboratory. The LACEF continues to house the most significant collection of critical assemblies in the Western Hemisphere. The staff of this facility and Area V are trained and certified, and documentation is current. ENIWG will continue to work with the nuclear community to identify and prioritize experiments because there is an overwhelming need for critical experiments to be performed for basic research and code validation

  18. Forecast of criticality experiments and experimental programs needed to support nuclear operations in the United States of America: 1994--1999

    International Nuclear Information System (INIS)

    Rutherford, D.

    1994-03-01

    This Forecast is generated by the Chair of the Experiment Needs Identification Workgroup (ENIWG), with input from Department of Energy and the nuclear community. One of the current concerns addressed by ENIWG was the Defense Nuclear Facilities Safety Board's Recommendation 93-2. This Recommendation delineated the need for a critical experimental capability, which includes (1) a program of general-purpose experiments, (2) improving the information base, and (3) ongoing departmental programs. The nuclear community also recognizes the importance of criticality theory, which, as a stepping stone to computational analysis and safety code development, needs to be benchmarked against well-characterized critical experiments. A summary project of the Department's needs with respect to criticality information includes (1) hands-on training, (2) criticality and nuclear data, (3) detector systems, (4) uranium- and plutonium-based reactors, and (5) accident analysis. The Workgroup has evaluated, prioritized, and categorized each proposed experiment and program. Transportation/Applications is a new category intended to cover the areas of storage, training, emergency response, and standards. This category has the highest number of priority-1 experiments (nine). Facilities capable of performing experiments include the Los Alamos Critical Experiment Facility (LACEF) along with Area V at Sandia National Laboratory. The LACEF continues to house the most significant collection of critical assemblies in the Western Hemisphere. The staff of this facility and Area V are trained and certified, and documentation is current. ENIWG will continue to work with the nuclear community to identify and prioritize experiments because there is an overwhelming need for critical experiments to be performed for basic research and code validation

  19. Experimental verification of different parameters influencing the fatigue S/N-curve

    International Nuclear Information System (INIS)

    Roos, E.; Maile, K.; Herter, K.-H.; Schuler, X.

    2005-01-01

    For the construction, design and operation of nuclear components the appropriate technical codes and standards provide detailed stress analysis procedures, material data and a design philosophy which guarantees a reliable behavior throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various (specified or measured) loading histories which are of mechanical and/or thermal origin and the geometric complexities of the components. In order to fully understand the background of the fatigue analysis included in the codes and standards as well as of the fatigue design curves used as a limiting criteria (to determine the fatigue life usage factor), it is important to understand the history, background as well as the methodologies which are important for the design engineers to get reliable results. The design rules according to the technical codes and standards provide for explicit consideration of cyclic operation, using design fatigue curves of allowable alternating loads (allowable stress or strain amplitudes) vs. number of loading cycles (S/N-curves), specific rules for assessing the cumulative fatigue damage (cumulative fatigue life usage factor) caused by different specified or monitored load cycles. The influence of different factors like welds, environment, surface finish, temperature, mean stress and size must be taken into consideration. In the paper parameters influencing the S/N-curves used within a fatigue analysis, like different type of material, the surface finish, the temperature, the difference between unwelded and welded areas, the strain rate as well as the influences of notches are verified on the basis of experimental results obtained by specimens testing in the LCF regime for high strain amplitudes. Thus safety margins relevant for the assessment of fatigue life depending on the different influencing parameters are

  20. Critical parameters in the sputter-deposition of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hakuraku, Y.; Yokoyama, N.; Doi, T.; Inoue, T. [Faculty of Engineering, Kagoshima University, Koorimoto, Kagoshima 890, (Japan); Mori, Z.; Koba, S. [Yatsushiro National College of Technology, Yatsushiro 866 (Japan)

    1999-08-01

    A superconducting thin film of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (NBCO) was prepared on an MgO(100) substrate by dc magnetron sputtering. Superconducting properties as well as features such as resistivity at room temperature and surface morphology were improved by optimizing the composition of sputtering target and critical parameters such as substrate temperature and oxidation gas pressure. A highly c-axis oriented thin film with T{sub c} (zero resistance temperature) = 95.2 K was obtained reproducibly with NdBa{sub 2}Cu{sub 3.2}O{sub 7-{delta}} off-stoichiometric target sputtering. T{sub c} = 95.2 K was 8 K higher than that deposited by stoichiometric target sputtering. Critical current density was 1x10{sup 6} A cm{sup -2} at 77 K, and surface roughness was 35 nm. (author)

  1. Criticality calculation by the LTSN method

    International Nuclear Information System (INIS)

    Batistela, Claudia H.F.; Vilhena, Marco T. de; Borges, Volnei

    1997-01-01

    This work evaluates criticality parameters (multiplication factor and critical thickness) by the LTS N method in unidimensional slabs homogeneous and heterogeneous considering one-group model and isotropic scattering. The idea of the LTS N method encompasses the following steps: application of the Laplace transform into a set of discrete ordinates equations, analytical solution of the algebraic linear system for the transformed angular fluxes and their reconstruction by the Heaviside expansion technique. The novel feature of the proposed method is based upon the criticality parameters determination by solving a transcendental equation. Numerical results are reported. 12 refs., 2 tabs

  2. Critical Kondo destruction and the violation of the quantum-to-classical mapping of quantum criticality

    International Nuclear Information System (INIS)

    Kirchner, Stefan; Si Qimiao

    2009-01-01

    Antiferromagnetic heavy fermion metals close to their quantum critical points display a richness in their physical properties unanticipated by the traditional approach to quantum criticality, which describes the critical properties solely in terms of fluctuations of the order parameter. This has led to the question as to how the Kondo effect gets destroyed as the system undergoes a phase change. In one approach to the problem, Kondo lattice systems are studied through a self-consistent Bose-Fermi Kondo model within the extended dynamical mean field theory. The quantum phase transition of the Kondo lattice is thus mapped onto that of a sub-Ohmic Bose-Fermi Kondo model. In the present article we address some aspects of the failure of the standard order-parameter functional for the Kondo-destroying quantum critical point of the Bose-Fermi Kondo model.

  3. Critical superheats upon boiling of dissociating liquids

    International Nuclear Information System (INIS)

    Kolykhan, L.I.; Solov'ev, V.N.

    1985-01-01

    The experimental data on critical superheats of dissociating liquids, i.e. nitrogen tetroxide and nitrine are presented (nitrine is the solution of nitrogen oxide in nitrogen tetroxide). The experiments with boiling N 2 O 4 have been carried out in the pressure range 0.1-3.0 MPa and with boiling nitrine within the pressure range 0.2-9.0 MPa. The experiments have revealed an anomalous dependence of critical superheats on pressure P, thus at P>=2.5 MPa the critical superheat values exceed the limiting ones, and at P=4.5 MPa this excess amounts to more than 16 K, essentially exceeding the errors of the experiments. The results for N 2 O 4 critical superheats agree with experimental data of other authors. Complex phenomena observed upon boiling of dissociating liquids require further theoretical and experimental studies

  4. Guide Actor-Critic for Continuous Control

    OpenAIRE

    Tangkaratt, Voot; Abdolmaleki, Abbas; Sugiyama, Masashi

    2017-01-01

    Actor-critic methods solve reinforcement learning problems by updating a parameterized policy known as an actor in a direction that increases an estimate of the expected return known as a critic. However, existing actor-critic methods only use values or gradients of the critic to update the policy parameter. In this paper, we propose a novel actor-critic method called the guide actor-critic (GAC). GAC firstly learns a guide actor that locally maximizes the critic and then it updates the polic...

  5. Experimental research on dispersion parameters of ground water around the area of CIAE

    International Nuclear Information System (INIS)

    Yu Jun

    1993-01-01

    The dispersion are important parameters in modeling the migration of pollutant in the ground water. Due to the complexity of geological media, variant dispersion is expected according to the difference of the geological media. Three parts are included in physical simulation in the laboratory column, tracer experiment in the field and the prediction of dispersion using the stochastic model. Experimental results show that the dispersion obtained in the column are three orders of magnitude smaller than that obtained in the field. Using the field values of conductivity and stochastic theory, the calculated asymptotic longitudinal and lateral dispersion are 370 and 0.45 meters respectively and the correlation length is 400 meters approximately. Using the dispersion obtained from the formula in the paper can enhance the precision of the model prediction, the distance heeded to reach the Fick's dispersion is 6 km approximately

  6. Experimental Research on The Deformability of a Geological Material: Initial Characterisation and Identification of Parameters

    International Nuclear Information System (INIS)

    Villar, M.V.; Udias, A.; Canamon, I.; Robles, J.

    2006-01-01

    This document reflects the work performed at CIEMAT (Engineered and Geological Barriers Group) in the framework of the RTD Project BTE2002-04244-C02-02 (DEF-NOSAT). The first phase of the project consisted on the selection and characterisation of a geological material fitted for unsaturated triaxial testing. The result obtained during this phase gave place to the selection of a silty clay from Alcala de Henares (Madrid, Spain). Compaction and permeability tests were performed as well as studies on mixtures of this soil with sand. With the selected mixtures (70/30 and 50/50 percent sand/soil) isotropic compression tests were carried out in the saturated sample. The results of these tests have allowed the determination of some of the parameters needed to model the mechanical behaviour of the soil. The report includes also a brief description of a methodology developed in the Department of Applied Mathematics and Computer Methods of the Universidad Politecnica de Madrid for getting these parameters by optimisation of the experimental results, as well as the results obtained. (Author) 25 refs

  7. A pattern recognition approach to transistor array parameter variance

    Science.gov (United States)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  8. Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis

    Directory of Open Access Journals (Sweden)

    Shanmugarajan B.

    2016-08-01

    Full Text Available Creep strength enhanced ferritic (CSEF steels are used in advanced power plant systems for high temperature applications. P92 (Cr–W–Mo–V steel, classified under CSEF steels, is a candidate material for piping, tubing, etc., in ultra-super critical and advanced ultra-super critical boiler applications. In the present work, laser welding process has been optimised for P92 material by using Taguchi based grey relational analysis (GRA. Bead on plate (BOP trials were carried out using a 3.5 kW diffusion cooled slab CO2 laser by varying laser power, welding speed and focal position. The optimum parameters have been derived by considering the responses such as depth of penetration, weld width and heat affected zone (HAZ width. Analysis of variance (ANOVA has been used to analyse the effect of different parameters on the responses. Based on ANOVA, laser power of 3 kW, welding speed of 1 m/min and focal plane at −4 mm have evolved as optimised set of parameters. The responses of the optimised parameters obtained using the GRA have been verified experimentally and found to closely correlate with the predicted value.

  9. Numerical and Experimental Investigations of Humping Phenomena in Laser Micro Welding

    Science.gov (United States)

    Otto, Andreas; Patschger, Andreas; Seiler, Michael

    The Humping effect is a phenomenon which is observed approximately since 50 years in various welding procedures and is characterized by droplets due to a pile-up of the melt pool. It occurs within a broad range of process parameters. Particularly during micro welding, humping effect is critical due to typically high feed rates. In the past, essentially two approaches (fluid-dynamic approach of streaming melt within the molten pool and the Plateau-Rayleigh instability of a liquid jet) were discussed in order to explain the occurrence of the humping effect. But none of both can fully explain all observed effects. For this reason, experimental studies in micro welding of thin metal foils were performed in order to determine the influence of process parameters on the occurrence of humping effects. The experimental observations were compared with results from numerical multi-physical simulations (incorporating beam propagation, incoupling, heat transfer, fluid dynamics etc.) to provide a deeper understanding of the causes for hump formation.

  10. What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation.

    Science.gov (United States)

    Xiao, Qianxiang; Liu, Yawei; Guo, Zhenjiang; Liu, Zhiping; Frenkel, Daan; Dobnikar, Jure; Zhang, Xianren

    2017-12-22

    The process of homogeneous bubble nucleation is almost impossible to probe experimentally, except near the critical point or for liquids under large negative tension. Elsewhere in the phase diagram, the bubble nucleation barrier is so high as to be effectively insurmountable. Consequently, there is a severe lack of experimental studies of homogenous bubble nucleation under conditions of practical importance (e.g., cavitation). Here we use a simple geometric relation to show that we can obtain information about the homogeneous nucleation process from Molecular Dynamics studies of bubble formation in solvophobic nanopores on a solid surface. The free energy of pinned nanobubbles has two extrema as a function of volume: one state corresponds to a free-energy maximum ("the critical nucleus"), the other corresponds to a free-energy minimum (the metastable, pinned nanobubble). Provided that the surface tension does not depend on nanobubble curvature, the radius of the curvature of the metastable surface nanobubble is independent of the radius of the pore and is equal to the radius of the critical nucleus in homogenous bubble nucleation. This observation opens the way to probe the parameters that determine homogeneous bubble nucleation under experimentally accessible conditions, e.g. with AFM studies of metastable nanobubbles. Our theoretical analysis also indicates that a surface with pores of different sizes can be used to determine the curvature corrections to the surface tension. Our conclusions are not limited to bubble nucleation but suggest that a similar approach could be used to probe the structure of critical nuclei in crystal nucleation.

  11. Review of studies on criticality safety evaluation and criticality experiment methods

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Yamamoto, Toshihiro; Misawa, Tsuyoshi; Yamane, Yuichi

    2013-01-01

    Since the early 1960s, many studies on criticality safety evaluation have been conducted in Japan. Computer code systems were developed initially by employing finite difference methods, and more recently by using Monte Carlo methods. Criticality experiments have also been carried out in many laboratories in Japan as well as overseas. By effectively using these study results, the Japanese Criticality Safety Handbook was published in 1988, almost the intermediate point of the last 50 years. An increased interest has been shown in criticality safety studies, and a Working Party on Nuclear Criticality Safety (WPNCS) was set up by the Nuclear Science Committee of Organisation Economic Co-operation and Development in 1997. WPNCS has several task forces in charge of each of the International Criticality Safety Benchmark Evaluation Program (ICSBEP), Subcritical Measurement, Experimental Needs, Burn-up Credit Studies and Minimum Critical Values. Criticality safety studies in Japan have been carried out in cooperation with WPNCS. This paper describes criticality safety study activities in Japan along with the contents of the Japanese Criticality Safety Handbook and the tasks of WPNCS. (author)

  12. Bubble Entropy: An Entropy Almost Free of Parameters.

    Science.gov (United States)

    Manis, George; Aktaruzzaman, Md; Sassi, Roberto

    2017-11-01

    Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors. Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation

  13. Validation of KENO V.a: Comparison with critical experiments

    International Nuclear Information System (INIS)

    Jordan, W.C.; Landers, N.F.; Petrie, L.M.

    1986-12-01

    Section 1 of this report documents the validation of KENO V.a against 258 critical experiments. Experiments considered were primarily high or low enriched uranium systems. The results indicate that the KENO V.a Monte Carlo Criticality Program accurately calculates a broad range of critical experiments. A substantial number of the calculations showed a positive or negative bias in excess of 1 1/2% in k-effective (k/sub eff/). Classes of criticals which show a bias include 3% enriched green blocks, highly enriched uranyl fluoride slab arrays, and highly enriched uranyl nitrate arrays. If these biases are properly taken into account, the KENO V.a code can be used with confidence for the design and criticality safety analysis of uranium-containing systems. Sections 2 of this report documents the results of investigation into the cause of the bias observed in Sect. 1. The results of this study indicate that the bias seen in Sect. 1 is caused by code bias, cross-section bias, reporting bias, and modeling bias. There is evidence that many of the experiments used in this validation and in previous validations are not adequately documented. The uncertainty in the experimental parameters overshadows bias caused by the code and cross sections and prohibits code validation to better than about 1% in k/sub eff/. 48 refs., 19 figs., 19 tabs

  14. Uncertainty analysis in Monte Carlo criticality computations

    International Nuclear Information System (INIS)

    Qi Ao

    2011-01-01

    Highlights: ► Two types of uncertainty methods for k eff Monte Carlo computations are examined. ► Sampling method has the least restrictions on perturbation but computing resources. ► Analytical method is limited to small perturbation on material properties. ► Practicality relies on efficiency, multiparameter applicability and data availability. - Abstract: Uncertainty analysis is imperative for nuclear criticality risk assessments when using Monte Carlo neutron transport methods to predict the effective neutron multiplication factor (k eff ) for fissionable material systems. For the validation of Monte Carlo codes for criticality computations against benchmark experiments, code accuracy and precision are measured by both the computational bias and uncertainty in the bias. The uncertainty in the bias accounts for known or quantified experimental, computational and model uncertainties. For the application of Monte Carlo codes for criticality analysis of fissionable material systems, an administrative margin of subcriticality must be imposed to provide additional assurance of subcriticality for any unknown or unquantified uncertainties. Because of a substantial impact of the administrative margin of subcriticality on economics and safety of nuclear fuel cycle operations, recently increasing interests in reducing the administrative margin of subcriticality make the uncertainty analysis in criticality safety computations more risk-significant. This paper provides an overview of two most popular k eff uncertainty analysis methods for Monte Carlo criticality computations: (1) sampling-based methods, and (2) analytical methods. Examples are given to demonstrate their usage in the k eff uncertainty analysis due to uncertainties in both neutronic and non-neutronic parameters of fissionable material systems.

  15. Critical factors in SEM 3D stereo microscopy

    International Nuclear Information System (INIS)

    Marinello, F; Savio, E; Bariani, P; Horsewell, A; De Chiffre, L

    2008-01-01

    This work addresses dimensional measurements performed with the scanning electron microscope (SEM) using 3D reconstruction of surface topography through stereo-photogrammetry. The paper presents both theoretical and experimental investigations, on the effects of instrumental variables and measurement parameters on reconstruction accuracy. Investigations were performed on a novel sample, specifically developed and implemented for the tests. The description is based on the model function introduced by Piazzesi and adapted for eucentrically tilted stereopairs. Two main classes of influencing factors are recognized: the first one is related to the measurement operation and the instrument set-up; the second concerns the quality of scanned images and represents the major criticality in the application of SEMs for 3D characterizations

  16. Evaluation and validation of criticality codes for fuel dissolver calculations

    International Nuclear Information System (INIS)

    Santamarina, A.; Smith, H.J.; Whitesides, G.E.

    1991-01-01

    During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P IC method developed to treat this latter effect permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism to account for 238 U resonance mutual self-shielding in the pellet-fissile liquor interaction. The benchmark exercise has resolved a potentially dangerous inadequacy in dissolver calculations. (author)

  17. Additive-manufactured sandwich lattice structures: A numerical and experimental investigation

    Science.gov (United States)

    Fergani, Omar; Tronvoll, Sigmund; Brøtan, Vegard; Welo, Torgeir; Sørby, Knut

    2017-10-01

    The utilization of additive-manufactured lattice structures in engineered products is becoming more and more common as the competitiveness of AM as a production technology has increased during the past several years. Lattice structures may enable important weight reductions as well as open opportunities to build products with customized functional properties, thanks to the flexibility of AM for producing complex geometrical configurations. One of the most critical aspects related to taking AM into new application areas—such as safety critical products—is currently the limited understanding of the mechanical behavior of sandwich-based lattice structure mechanical under static and dynamic loading. In this study, we evaluate manufacturability of lattice structures and the impact of AM processing parameters on the structural behavior of this type of sandwich structures. For this purpose, we conducted static compression testing for a variety of geometry and manufacturing parameters. Further, the study discusses a numerical model capable of predicting the behavior of different lattice structure. A reasonably good correlation between the experimental and numerical results was observed.

  18. Generation of integral experiment covariance data and their impact on criticality safety validation

    Energy Technology Data Exchange (ETDEWEB)

    Stuke, Maik; Peters, Elisabeth; Sommer, Fabian

    2016-11-15

    The quantification of statistical dependencies in data of critical experiments and how to account for them properly in validation procedures has been discussed in the literature by various groups. However, these subjects are still an active topic in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECDNEA Nuclear Science Committee. The latter compiles and publishes the freely available experimental data collection, the International Handbook of Evaluated Criticality Safety Benchmark Experiments, ICSBEP. Most of the experiments were performed as series and share parts of experimental setups, consequently leading to correlation effects in the results. The correct consideration of correlated data seems to be inevitable if the experimental data in a validation procedure is limited or one cannot rely on a sufficient number of uncorrelated data sets, e.g. from different laboratories using different setups. The general determination of correlations and the underlying covariance data as well as the consideration of them in a validation procedure is the focus of the following work. We discuss and demonstrate possible effects on calculated k{sub eff}'s, their uncertainties, and the corresponding covariance matrices due to interpretation of evaluated experimental data and its translation into calculation models. The work shows effects of various modeling approaches, varying distribution functions of parameters and compares and discusses results from the applied Monte-Carlo sampling method with available data on correlations. Our findings indicate that for the reliable determination of integral experimental covariance matrices or the correlation coefficients a detailed study of the underlying experimental data, the modeling approach and assumptions made, and the resulting sensitivity analysis seems to be inevitable. Further, a Bayesian method is discussed to include integral experimental covariance data when estimating an

  19. Generation of integral experiment covariance data and their impact on criticality safety validation

    International Nuclear Information System (INIS)

    Stuke, Maik; Peters, Elisabeth; Sommer, Fabian

    2016-11-01

    The quantification of statistical dependencies in data of critical experiments and how to account for them properly in validation procedures has been discussed in the literature by various groups. However, these subjects are still an active topic in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECDNEA Nuclear Science Committee. The latter compiles and publishes the freely available experimental data collection, the International Handbook of Evaluated Criticality Safety Benchmark Experiments, ICSBEP. Most of the experiments were performed as series and share parts of experimental setups, consequently leading to correlation effects in the results. The correct consideration of correlated data seems to be inevitable if the experimental data in a validation procedure is limited or one cannot rely on a sufficient number of uncorrelated data sets, e.g. from different laboratories using different setups. The general determination of correlations and the underlying covariance data as well as the consideration of them in a validation procedure is the focus of the following work. We discuss and demonstrate possible effects on calculated k eff 's, their uncertainties, and the corresponding covariance matrices due to interpretation of evaluated experimental data and its translation into calculation models. The work shows effects of various modeling approaches, varying distribution functions of parameters and compares and discusses results from the applied Monte-Carlo sampling method with available data on correlations. Our findings indicate that for the reliable determination of integral experimental covariance matrices or the correlation coefficients a detailed study of the underlying experimental data, the modeling approach and assumptions made, and the resulting sensitivity analysis seems to be inevitable. Further, a Bayesian method is discussed to include integral experimental covariance data when estimating an application

  20. Comparison of the transient behavior of lead-based advanced critical and sub-critical reactors

    International Nuclear Information System (INIS)

    Wang Gang; Gu Zhixing; Wang Zhen; Jin Ming; Bai Yunqing

    2014-01-01

    A lead-based reactor developed by FDS Team is proposed in 2011 and designed to be 10 MW. It is a pool type reactor and the primary coolant is driven by natural circulation. The reactor has two operation modes, which are a lead-based critical fast reactor mode and a lead-based sub-critical reactor mode. The conceptual designs of the two modes are both completed by 2013. In this paper, four transient accidents were simulated for both the critical and sub-critical reactors above by NTC-2D code, which is developed by FDS Team for advanced reactor safety analysis. The four accidents were protected and unprotected loss of heat sink accidents (PLOHS and ULOHS), protected and unprotected transient overpower accidents (PTOP and UTOP). The simulation results of the two reactors were compared and analyzed. The results showed that during PLOHS and PTOP accidents for both the two modes, all the key parameters (core power, fuel, cladding and coolant temperatures in the hottest channel) decreased to very small values after the reactor scrammed, which meant the reactors under the two modes were both safe. For ULOHS, the fuel, cladding and coolant temperatures of the sub-critical reactor increased bigger than those of the critical one. For UTOP, the parameters above of the critical fast reactor were much bigger than those of the sub-critical one. The analysis results showed different safety advantages of the lead-based critical fast and sub-critical reactors during different transient accidents. (author)

  1. Application of the van der Waals equation of state to polymers .4. Correlation and prediction of lower critical solution temperatures for polymer solutions

    DEFF Research Database (Denmark)

    Goncalves, Ana Saraiva; Kontogeorgis, Georgios; Harismiadis, Vassilis I.

    1996-01-01

    The van der Waals equation of state is used for the correlation and the prediction of the lower critical solution behavior or mixtures including a solvent and a polymer. The equation of state parameters for the polymer are estimated from experimental volumetric data at low pressures. The equation...

  2. Educational Reform: Critiquing the Critics.

    Science.gov (United States)

    Reid, Charles R.

    1990-01-01

    Reviews Walter Feinberg's criticisms of educational critics Allan Bloom and E. D. Hirsch. Supports Feinberg's argument that experimentation is the only course still open in education, but argues that his views are informed by the traditional obscurantism of the educational establishment. (FMW)

  3. Forecast of criticality experiments and experimental programs needed to support nuclear operations in the United States of America: 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, D.

    1994-03-01

    This Forecast is generated by the Chair of the Experiment Needs Identification Workgroup (ENIWG), with input from Department of Energy and the nuclear community. One of the current concerns addressed by ENIWG was the Defense Nuclear Facilities Safety Board`s Recommendation 93-2. This Recommendation delineated the need for a critical experimental capability, which includes (1) a program of general-purpose experiments, (2) improving the information base, and (3) ongoing departmental programs. The nuclear community also recognizes the importance of criticality theory, which, as a stepping stone to computational analysis and safety code development, needs to be benchmarked against well-characterized critical experiments. A summary project of the Department`s needs with respect to criticality information includes (1) hands-on training, (2) criticality and nuclear data, (3) detector systems, (4) uranium- and plutonium-based reactors, and (5) accident analysis. The Workgroup has evaluated, prioritized, and categorized each proposed experiment and program. Transportation/Applications is a new category intended to cover the areas of storage, training, emergency response, and standards. This category has the highest number of priority-1 experiments (nine). Facilities capable of performing experiments include the Los Alamos Critical Experiment Facility (LACEF) along with Area V at Sandia National Laboratory. The LACEF continues to house the most significant collection of critical assemblies in the Western Hemisphere. The staff of this facility and Area V are trained and certified, and documentation is current. ENIWG will continue to work with the nuclear community to identify and prioritize experiments because there is an overwhelming need for critical experiments to be performed for basic research and code validation.

  4. Characterization of an erbium doped fiber amplifier starting from its experimental parameters; Caracterizacion de un amplificador de fibra dopada con erbio a partir de sus parametros experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Bello J, M.; Kuzin, E.A.; Ibarra E, B. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis Enrique Erro No. 1, TonantzintIa, 72000 Puebla (Mexico); Tellez G, R. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No 152, Delegacion Gustavo A. Madero, 07730 Mexico D.F. (Mexico)]. e-mail: mabello@inaoep.mx

    2007-07-01

    In this paper we describe a method to characterize the gain of an erbium-doped fiber amplifier (EDFA) through the numerical simulation of the signal beam along the amplifier. The simulation is based on a model constituted by the propagation and rate equations for an erbium-doped fiber. The manipulation of these equations allows us to regroup the parameters present in an EDFA, which we have named the A, B, C, D parameters, and they can be obtained experimentally from an erbium-doped fiber. Experimental results show that the measurement of these parameters allow us to estimate with very good correspondence the amplifier gain. (Author)

  5. Critical Need for Family-Based, Quasi-Experimental Designs in Integrating Genetic and Social Science Research

    Science.gov (United States)

    Lahey, Benjamin B.; Turkheimer, Eric; Lichtenstein, Paul

    2013-01-01

    Researchers have identified environmental risks that predict subsequent psychological and medical problems. Based on these correlational findings, researchers have developed and tested complex developmental models and have examined biological moderating factors (e.g., gene–environment interactions). In this context, we stress the critical need for researchers to use family-based, quasi-experimental designs when trying to integrate genetic and social science research involving environmental variables because these designs rigorously examine causal inferences by testing competing hypotheses. We argue that sibling comparison, offspring of twins or siblings, in vitro fertilization designs, and other genetically informed approaches play a unique role in bridging gaps between basic biological and social science research. We use studies on maternal smoking during pregnancy to exemplify these principles. PMID:23927516

  6. Construction of an experimental simplified model for determining of flow parameters in chemical reactors, using nuclear techniques

    International Nuclear Information System (INIS)

    Araujo Paiva, J.A. de.

    1981-03-01

    The development of a simplified experimental model for investigation of nuclear techniques to determine the solid phase parameters in gas-solid flows is presented. A method for the measurement of the solid phase residence time inside a chemical reactor of the type utilised in the cracking process of catalytic fluids is described. An appropriate radioactive labelling technique of the solid phase and the construction of an eletronic timing circuit were the principal stages in the definition of measurement technique. (Author) [pt

  7. Development and experimental qualification of the new safety-criticality CRISTAL package; Developpement et qualification experimentale du nouveau formulaire de surete-criticite Cristal

    Energy Technology Data Exchange (ETDEWEB)

    Mattera, Ch

    1998-11-01

    This thesis is concerned with Criticality-Safety studies related to the French Nuclear Fuel Cycle. We first describe the steps in the nuclear fuel cycle and the specific characteristics of these studies compared with those performed in Reactor Physics. In order to respond to the future requirements of the French Nuclear Program, we have developed a new package CRISTAL based on a recent cross sections library (CEA 93) and the newest accurate codes (APOLLO 2, MORET 4, TRIPOLI 4). The CRISTAL system includes two calculations routes: a design route which will be used by French Industry (COGEMA/SGN) and a reference route. To transfer this package to the French industry, we have elaborated calculation schemes for fissile solutions, dissolver media, transport casks and storage pools. Afterwards, these schemes have been used for the CRISTAL experimental validation. We have also contributed to the CRISTAL experimental database by reevaluating a French storage pool experiment: the CRISTO II experiment. This revaluation has been submitted to the OECD working group in order that this experiment can be used by international criticality safety engineers to validate calculations methods. This work represents a large contribution to the recommendation of accurate calculation schemes and to the experimental validation of the CRISTAL package. These studies came up to the French Industry expectations. (author)

  8. A Monte Carlo simulation on critical current distribution of bent-damaged multifilamentary Bi2223 composite tape

    International Nuclear Information System (INIS)

    Ochiai, S.; Okuda, H.; Fujimoto, M.; Shin, J.K.; Oh, S.S.; Ha, D.W.

    2011-01-01

    We simulate critical current distribution of bent-damaged Bi2223 composite tape. We use a Monte Carlo method and a damage evolution model for simulation. With the present simulation approach, experimental results are described well. Critical current distribution stems mainly from difference in damage evolution. It was attempted to reproduce the measured critical current (I c ) distributions of the Bi2223 composite tape bent by 0-0.833% by simulation. Simulation was carried out with a Monte Carlo method in combination with a model that correlates the critical current to damage evolution. Two variables that differ from specimen to specimen were input in the simulation. One was the damage strain parameter, with which the difference in extent of damage among specimens was expressed. Another was the original critical current (I c0 ) values at zero bending strain. With the present simulation approach, the measured distributions of critical current at various bending strains, and the measured variations of average and coefficient of variation of critical current values with increasing bending strain were reproduced well.

  9. Experimental investigation of cutting parameters influence on ...

    Indian Academy of Sciences (India)

    429–445. c Indian Academy of Sciences ... This is employed for the manufacture of helicopter rotor blades and forging dies. ..... bij Xi X j +. ∑k i=1 bii X2 i ,. (2) where b0 is the free term of the regression equation, the .... Figure 1. Effect of cutting speed on surface roughness at various feed rates. ..... Experimental run order.

  10. Critically ill neonates displayed stable vital parameters and reduced metabolic acidosis during neonatal emergency airborne transport in Sweden.

    Science.gov (United States)

    Frid, Ingrid; Ågren, Johan; Kjellberg, Mattias; Normann, Erik; Sindelar, Richard

    2018-02-26

    This study evaluated the medical quality of acute airborne transports carried out by a neonatal emergency transport service in a Swedish healthcare region from 2012 to 2015. The transport charts and patient records of all infants transported to the regional centre were reviewed for transport indications and vital parameters and outcomes. We identified 187 acute airborne transports and the main indications for referral were therapeutic hypothermia after perinatal asphyxia, extremely preterm birth and respiratory failure. There were 37 deaths, but none of these occurred during transport and none of the deaths that occurred within 24 hours after transport were found to be related to the transport per se. No differences were found in vital parameters or ventilator settings before and after transport, except for an improvement in blood pH (7.22 ± 0.13 versus 7.27 ± 0.13, mean ± SD, p < 0.01), due to a decrease in base deficit (-8.0 ± 6.8 versus -5.4 ± 6.3 mmol, p < 0.001), while the partial pressure of carbon dioxide remained unchanged. During air transport, critically ill neonates displayed stable vital parameters and reduced metabolic acidosis. No transport-related mortality was found, but the high number of extremely preterm infants transported indicates the potential for improving in-utero transport. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  11. [Experimental rationale for the parameters of a rapid method for oxidase activity determination].

    Science.gov (United States)

    Butorina, N N

    2010-01-01

    Experimental rationale is provided for the parameters of a rapid (1-2-min) test to concurrently determine the oxidase activity of all bacteria grown on the membrane filter after water filtration. Oxidase reagents that are the aqueous solutions of tetramethyl-p-phenylenediamine dihydrochloride and demethyl-p-phenylenediamine dihydrochloride have been first ascertained to exert no effect on the viability and enzymatic activity of bacteria after one-hour contact. An algorithm has been improved for the rapid oxidase activity test: the allowable time for bacteria to contact oxidase reagents and procedures for minimizing the effect on bacterial biochemical activity following the contact. An accelerated method based on lactose medium with tergitol 7 and Endo agar has been devised to determine coliform bacteria, by applying the rapid oxidase test: the time of a final response is 18-24 hours. The method has been included into GOST 52426-2005.

  12. Experimental and numerical analysis of a small-scale turbojet engine

    International Nuclear Information System (INIS)

    Badami, M.; Nuccio, P.; Signoretto, A.

    2013-01-01

    Highlights: • A theoretical and experimental activity was performed on a small scale turbojet. • The small turbojet shows the typical CO, UHC and NO x trends of aero-engines emissions. • The comparison between the CFD and experimental results show a quite good agreement. • The CFD analysis permitted to interpret some unexpected behaviour of thermodynamic parameters. • This essential knowledge of the research will be applied in a subsequent research on the use of alternative fuels. - Abstract: Since experimental activities on real aeronautical turbines can be very complex and expensive, the use of parts of real engines or small-size turbojets can be very useful for research activities. The present paper describes the results of an experimental and numerical activity that was conducted on a research turbojet engine, with a nominal thrust of 80 N at 80,000 rpm. The aim of the research was to obtain detailed information on the thermodynamic cycle and performance of the engine in order to use it in subsequent activities on the benefits of using alternative fuels in gas turbine engines. A specific characterization of each component of the engine has been performed by means of thermodynamics and CFD analyses and several measured parameters have been critically analyzed and compared with theoretical ones, with the purpose of increasing the knowledge of these kinds of small turbo-engines

  13. Bi-based superconducting fibers with high critical parameters

    International Nuclear Information System (INIS)

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  14. Contributions to the qualification of the ''CRISTAL'' criticality calculi scheme: interpretation of critical experiments. Elaboration of a characterization system of neutronic configurations

    International Nuclear Information System (INIS)

    Gagnier, E.

    1999-06-01

    This thesis work is about the validation of the new criticality-safety package CRISTAL and contributes to the modernization and the improvement of the computational tools. The first part presents neutronic elements, the objectives of safety criticality studies and the package CRISTAL. Then, the validation work concerned two series of experiments involving uranyl solutions (UO 2 F 2 ) and UO 2 powders. For these experiments, the differences between the computation results and the experimental results were analysed. It was highlighted interesting physical phenomena such of the compensations of errors between the approximate representation by the 99 energy group structure on the first resonance of oxygen and the anisotropy of the diffusion simulation as well as the influence of uranium 234 in high enriched solutions in uranium 235. Once the work of the experimental qualification carried out, raises the question of the use the base of qualification and the ''calculation-experiment'' variations which are referred to it. It is often difficult to establish the link between the ''studied configuration'' and the experiments of the base of qualification. The presented characterisation system proposes to answer in a way automatic and quantified this difficulty: - in bringing an answer on the package qualification for the studied configuration, - in giving an estimate of the package bias. To answer these points, it was defined a set of 35 characteristic neutronic parameters representing the behaviour of the medium. To process the information brought by these parameters and to use it to answer the objectives of the system, we called upon statistical methods (Principal Components Analysis and Sliced Inverse Regression). The results obtained in the feasibility studies showed the relevance of these methods for the considered objectives. (author)

  15. Parameter Optimization for Quantitative Signal-Concentration Mapping Using Spoiled Gradient Echo MRI

    Directory of Open Access Journals (Sweden)

    Gasser Hathout

    2012-01-01

    Full Text Available Rationale and Objectives. Accurate signal to tracer concentration maps are critical to quantitative MRI. The purpose of this study was to evaluate and optimize spoiled gradient echo (SPGR MR sequences for the use of gadolinium (Gd-DTPA as a kinetic tracer. Methods. Water-gadolinium phantoms were constructed for a physiologic range of gadolinium concentrations. Observed and calculated SPGR signal to concentration curves were generated. Using a percentage error determination, optimal pulse parameters for signal to concentration mapping were obtained. Results. The accuracy of the SPGR equation is a function of the chosen MR pulse parameters, particularly the time to repetition (TR and the flip angle (FA. At all experimental values of TR, increasing FA decreases the ratio between observed and calculated signals. Conversely, for a constant FA, increasing TR increases this ratio. Using optimized pulse parameter sets, it is possible to achieve excellent accuracy (approximately 5% over a physiologic range of concentration tracer concentrations. Conclusion. Optimal pulse parameter sets exist and their use is essential for deriving accurate signal to concentration curves in quantitative MRI.

  16. Spontaneous neuronal activity as a self-organized critical phenomenon

    Science.gov (United States)

    de Arcangelis, L.; Herrmann, H. J.

    2013-01-01

    Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally found in vitro and in vivo, and exhibit a robust critical behaviour. Avalanche activity can be modelled within the self-organized criticality framework, including threshold firing, refractory period and activity-dependent synaptic plasticity. The size and duration distributions confirm that the system acts in a critical state, whose scaling behaviour is very robust. Next, we discuss the temporal organization of neuronal avalanches. This is given by the alternation between states of high and low activity, named up and down states, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homeostatic mechanisms. Finally, we verify if a system with no characteristic response can ever learn in a controlled and reproducible way. Learning in the model occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. Learning is a truly collective process and the learning dynamics exhibits universal features. Even complex rules can be learned provided that the plastic adaptation is sufficiently slow.

  17. Upper critical and irreversibility fields in Ni- and Co-doped pnictide bulk superconductors

    Science.gov (United States)

    Nikolo, Martin; Singleton, John; Solenov, Dmitry; Jiang, Jianyi; Weiss, Jeremy; Hellstrom, Eric

    2018-05-01

    A comprehensive study of upper critical and irreversibility magnetic fields in Ba(Fe0.95Ni0.05)2As2 (large grain and small grain samples), Ba(Fe0.94Ni0.06)2As2, Ba(Fe0.92Co0.08)2As2, and Ba(Fe0.92Co0.09)2As2 polycrystalline bulk pnictide superconductors was made in pulsed fields of up to 65 T. The full magnetic field-temperature (H-T) phase diagrams, starting at 1.5 K, were measured. The higher temperature, upper critical field Hc2 data are well described by the one-band Werthamer, Helfand, and Hohenberg (WHH) model. At low temperatures, the experimental data depart from the fitted WHH curves, suggesting an emergence of a new phase that could be attributed to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. The large values of the Maki fitting parameter α indicate that the Zeeman pair breaking dominates over the orbital pair breaking and spin-paramagnetic pair-breaking effect is significant in these materials. Possible multi-band structure of these materials is lumped into effective parameters of the single-band model. Table of measured physical parameters allows us to compare these pnictide superconductors for different Co- and Ni- doping levels and granularity.

  18. A study on physics parameters and flux behaviour for a fast critical facility using ''Baker'' model

    International Nuclear Information System (INIS)

    Abu-Leilah, M.M.; Hussein, A.Z.; Gaafar, M.A.; Hamouda, I.F.

    1983-01-01

    Comparative study was performed to emphasize the effects of using different nuclear data systems and methods on the various parameters of the fast reactor. Multigroup libraries as 11 (ANL-5800) and 26 (BNAB-64) energy group systems of nuclear data constants were used in the present work. The calculations were carried out for both infinite dilution (self-shielding factor F= 1) and self-shielded cross sections. Various computer codes were elaborated and derived to meet the conditional requirements for such calculations. The important output of these calculations are the neutron spectra, neutron balance, fission and capture rate distributions, critical mass, breeding ratio in each region and total breeding ratio of the reactor. Five different cases of study were considered employing two systems of constants, infinite dilution and self-shielded cross-sections and treating stainless steel of the reactor as to be substituted by iron. Moreover, calculations have been concerned for averaged one group nuclear data constants which were condensed from the 11 and 26 group systems. Comparisons of the multigroup results with those of the group were made. The condensation process for averaging to one group was done to estimate the effect of such physical simplification on the calculated parameters. The present work results have been compared with many published works. Fair agreements are obtained, which varified the consistance and completeness of the methods implemented and used

  19. Parameters study on the growth of GaAs nanowires on indium tin oxide by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Tang, Xiaohong, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn; Li, Xianqiang [OPTIMUS, Photonics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wang, Kai, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, 1088 Xueyuan Avenue, Shenzhen 518055 (China); Olivier, Aurelien [CINTRA UMI 3288, School of Electrical and Electronic Engineering, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore (Singapore)

    2016-03-07

    After successful demonstration of GaAs nanowire (NW) epitaxial growth on indium tin oxide (ITO) by metal organic chemical vapor deposition, we systematically investigate the effect of growth parameters' effect on the GaAs NW, including temperature, precursor molar flow rates, growth time, and Au catalyst size. 40 nm induced GaAs NWs are observed with zinc-blende structure. Based on vapor-liquid-solid mechanism, a kinetic model is used to deepen our understanding of the incorporation of growth species and the role of various growth parameters in tuning the GaAs NW growth rate. Thermally activated behavior has been investigated by variation of growth temperature. Activation energies of 40 nm Au catalyst induced NWs are calculated at different trimethylgallium (TMGa) molar flow rates about 65 kJ/mol. The GaAs NWs growth rates increase with TMGa molar flow rates whereas the growth rates are almost independent of growth time. Due to Gibbs-Thomson effect, the GaAs NW growth rates increase with Au nanoparticle size at different temperatures. Critical radius is calculated as 2.14 nm at the growth condition of 430 °C and 1.36 μmol/s TMGa flow rate. It is also proved experimentally that Au nanoparticle below the critical radius such as 2 nm cannot initiate the growth of NWs on ITO. This theoretical and experimental growth parameters investigation enables great controllability over GaAs NWs grown on transparent conductive substrate where the methodology can be expanded to other III–V material NWs and is critical for potential hybrid solar cell application.

  20. Experimental and ab initio study of the hyperfine parameters of ZnFe {sub 2}O{sub 4} with defects

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, J. Melo; Salcedo Rodríguez, K. L.; Pasquevich, G. A.; Zélis, P. Mendoza; Stewart, S. J., E-mail: stewart@fisica.unlp.edu.ar; Rodríguez Torres, C. E.; Errico, L. A. [Universidad Nacional de La Plata, IFLP-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67 (Argentina)

    2016-12-15

    We present a combined Mössbauer and ab initio study on the influence of oxygen-vacancies on the hyperfine and magnetic properties of the ZnFe {sub 2}O{sub 4} spinel ferrite. Samples with different degree of oxygen-vacancies were obtained from zinc ferrite powder that was thermally treated at different temperatures up to 650 {sup ∘}C under vacuum.Theoretical calculations of the hyperfine parameters, magnetic moments and magnetic alignment have been carried out considering different defects such as oxygen vacancies and cation inversion. We show how theoretical and experimental approaches are complementary to characterize the local structure around Fe atoms and interpret the observed changes in the hyperfine parameters as the level of defects increases.

  1. Critical stroke rate as a parameter for evaluation in swimming

    Directory of Open Access Journals (Sweden)

    Marcos Franken

    2013-12-01

    Full Text Available The purpose of this study was to investigate the critical stroke rate (CSR compared to the average stroke rate (SR when swimming at the critical speed (CS. Ten competitive swimmers performed five 200 m trials at different velocities relative to their CS (90, 95, 100, 103 and 105% in front crawl. The CSR was significantly higher than the SR at 90% of the CS and lower at 105% of the CS. Stroke length (SL at 103 and 105% of the CS were lower than the SL at 90, 95, and 100% of the CS. The combination of the CS and CSR concepts can be useful for improving both aerobic capacity/power and technique. CS and CSR could be used to reduce the SR and increase the SL, when swimming at the CS pace, or to increase the swimming speed when swimming at the CSR.

  2. Data bank of critical heat flux

    International Nuclear Information System (INIS)

    Balino, J.L.; Ruival, M.H.

    1985-01-01

    More than 13.000 measurements of critical heat flux are classified in a data bank. From each experiment the following information can be obtained: cooling medium (light water, freon 12 or freon 21), geometry of the test section and thermalhydraulic parameters. The data management is performed by a computer program called CHFTRAT. A brief study of the influence of different parameters in the critical heat flux is presented, as an example of how to use the program. (M.E.L.) [es

  3. Magnetization as a critical defining parameter for strand in precision dipole applications implications for field error and F-J stability

    CERN Document Server

    Collings, E W; Lee, E

    2001-01-01

    In hadron accelerators, between low energy particle injection and beam accumulation, the guiding dipoles are ramped at some rate dB/dt. Both at injection and during ramping the static and dynamic magnetizations of the magnet windings introduce multipolar distortions into the beam-line field. Dynamic magnetization, controllable by cable design, is estimated and used to provide a criterion against which to evaluate the allowable magnitude of static (persistent-current) magnetization, M, from a field-quality standpoint. The it is of NbTi and advanced Nb/sub 3/Sn conductors are compared and with regard to the latter the question of flux-jump stability is explored. A magnetization criterion for such stability is presented and compared to experiment. It is noted that since Delta M is proportional to critical current density, J/sub c/, and the strand's effective filament diameter, d/sub eff/, the latter has frequently been specified as a critical parameter, although it will need to be re-specified with every increas...

  4. The nuclear criticality information system's project to archive unpublished critical experiment data

    International Nuclear Information System (INIS)

    Koponen, B.L.; Doherty, A.L.; Clayton, E.D.

    1991-01-01

    Critical experiment facilities produced a large amount of important data during the past forty-five years. However, much useful data remains unpublished. The unpublished material exists in the form of experimenters' logbooks, notes, photographs, material descriptions, etc. These data could be important for computer code validation, understanding the physics of criticality, facility design, or for setting process limits. In the past, criticality specialists have been able to obtain unpublished details by direct contact with the experimenters. The closure of facilities and the loss of personnel is likely to lead to the loss of the facility records unless an effort is made to ensure that the records are preserved. It has been recognized for some time that the unpublished records of critical experiment facilities comprise a valuable resource, thus the Nuclear Criticality Information System (NCIS) is working to ensure that the records are preserved and made available via NCIS. As a first step in the archiving project, we identified criteria to help judge which series of experiments should be considered for archiving. Data that are used for validating calculations or the basis for subcritical limits in standards, handbooks, and guides are of particular importance. In this paper we will discuss the criteria for archiving, the priority list of experiments for archiving, and progress in developing an NCIS image database using current CD-ROM technology. (Author)

  5. Development of a safety parameter supervision system for Angra-1

    International Nuclear Information System (INIS)

    Silva, R.A. da; Thome Filho, Z.D.; Schirru, R.; Martinez, A.S.; Oliveira, L.F.S. de

    1986-01-01

    The Safety Parameter Supervision System (SSPS) which is a computerized system for monitoring essential parameters in real time, determining the safety status and emergency procedures for returning normal reactor operation, in case of an anomaly occurrence, is presented. The SSPS consists of three sub-systems: Integrated parameter monitoring system which gives to operators an integrated vision of values of a parameter set, able to detect any deviation of normal reactor operation; safety critical function system which evaluates safety status in terms of a safety critical function set appointed in advance, and in case of violation of any critical function, it initiates the adequate emergency procedure to return normal operation; and safety parameter computer system which carries out the arquirement of analogic and digital control signals of nuclear power plant. (M.C.K.) [pt

  6. Impact parameter determination in experimental analysis using neural network

    International Nuclear Information System (INIS)

    Haddad, F.; David, C.; Freslier, M.; Aichelin, J.; Haddad, F.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Natowitz, J.B.; Wada, R.; Xiao, B.

    1997-01-01

    A neural network is used to determine the impact parameter in 40 Ca + 40 Ca reactions. The effect of the detection efficiency as well as the model dependence of the training procedure have been studied carefully. An overall improvement of the impact parameter determination of 25 % is obtained using this technique. The analysis of Amphora 40 Ca+ 40 Ca data at 35 MeV per nucleon using a neural network shows two well separated classes of events among the selected 'complete' events. (authors)

  7. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    Science.gov (United States)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  8. Superconductor-insulator transitions in 2D: the experimental situation

    International Nuclear Information System (INIS)

    Markovic, N.; Christiansen, C.; Mack, A.; Goldman, A.M.

    2000-01-01

    Superconductor-insulator (SI) transitions in ultrathin films have attracted significant attention over the last decade because of the possibility that they are quantum phase transitions. Magnetic field, film thickness, or carrier concentration can be used as control parameters. The bosonic pictures of these transitions proposed some years ago are only in qualitative agreement with experiment. In particular, the critical resistance appears not to be universal, and there are variations in the values of critical exponents. It has been concluded that in real films fermionic degrees of freedom must be taken into account. There are also indications that the phase diagram may include a significant metallic phase separating the superconducting and insulating phases, and that the transition may have a significant percolative aspect. The experimental situation will be broadly reviewed with attention paid to issues relating to materials and measurements. (orig.)

  9. Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Zander, Kathryn; Osofsky, M S; Kim, Heungsoo; Saha, Shanta; Greene, R L; Smolyaninov, Igor I

    2014-12-04

    A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

  10. Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials

    Science.gov (United States)

    Smolyaninova, Vera N.; Yost, Bradley; Zander, Kathryn; Osofsky, M. S.; Kim, Heungsoo; Saha, Shanta; Greene, R. L.; Smolyaninov, Igor I.

    2014-12-01

    A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

  11. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    Directory of Open Access Journals (Sweden)

    Saeed Tourchi

    2015-04-01

    Full Text Available A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rule and yield criterion to take into account the role of suction. Also, according to previous studies, an increase in temperature causes a reduction in specific volume. A reduction in suction (wetting for a given confining stress may induce an irreversible volumetric compression (collapse. Thus an increase in suction (drying raises a specific volume i.e. the movement of normal consolidation line (NCL to higher values of void ratio. However, some experimental data confirm the assumption that this reduction is dependent on the stress level of soil element. A generalized approach considering the effect of stress level on the magnitude of clays thermal dependency in compression plane is proposed in this study. The number of modeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitate the usefulness of model for practical applications. A step-by-step procedure used for parameter calibration is also described. The model is finally evaluated using a comprehensive set of experimental data for the thermo-mechanical behavior of unsaturated soils.

  12. Criticality experiments with fast flux test facility fuel pins

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1990-11-01

    A United States Department of Energy program was initiated during the early seventies at the Hanford Critical Mass Laboratory to obtain experimental criticality data in support of the Liquid Metal Fast Breeder Reactor Program. The criticality experiments program was to provide basic physics data for clean well defined conditions expected to be encountered in the handling of plutonium-uranium fuel mixtures outside reactors. One task of this criticality experiments program was concerned with obtaining data on PuO 2 -UO 2 fuel rods containing 20--30 wt % plutonium. To obtain this data a series of experiments were performed over a period of about twelve years. The experimental data obtained during this time are summarized and the associated experimental assemblies are described. 8 refs., 7 figs

  13. Third-order gas-liquid phase transition and the nature of Andrews critical point

    Directory of Open Access Journals (Sweden)

    Tian Ma

    2011-12-01

    Full Text Available The main objective of this article is to study the nature of the Andrews critical point in the gas-liquid transition in a physical-vapor transport (PVT system. A dynamical model, consistent with the van der Waals equation near the Andrews critical point, is derived. With this model, we deduce two physical parameters, which interact exactly at the Andrews critical point, and which dictate the dynamic transition behavior near the Andrews critical point. In particular, it is shown that 1 the gas-liquid co-existence curve can be extended beyond the Andrews critical point, and 2 the transition is first order before the critical point, second-order at the critical point, and third order beyond the Andrews critical point. This clearly explains why it is hard to observe the gas-liquid phase transition beyond the Andrews critical point. Furthermore, the analysis leads naturally the introduction of a general asymmetry principle of fluctuations and the preferred transition mechanism for a thermodynamic system. The theoretical results derived in this article are in agreement with the experimental results obtained in (K. Nishikawa and T. Morita, Fluid behavior at supercritical states studied by small-angle X-ray scattering, Journal of Supercritical Fluid, 13 (1998, pp. 143-148. Also, the derived second-order transition at the critical point is consistent with the result obtained in (M. Fisher, Specific heat of a gas near the critical point, Physical Review, 136:6A (1964, pp. A1599-A1604.

  14. Partial solvation parameters and LSER molecular descriptors

    International Nuclear Information System (INIS)

    Panayiotou, Costas

    2012-01-01

    Graphical abstract: The one-to-one correspondence of LSER molecular descriptors and partial solvation parameters (PSPs) for propionic acid. Highlights: ► Quantum-mechanics based development of a new QSPR predictive method. ► One-to-one correspondence of partial solvation parameters and LSER molecular descriptors. ► Development of alternative routes for the determination of partial solvation parameters and solubility parameters. ► Expansion and enhancement of solubility parameter approach. - Abstract: The partial solvation parameters (PSP) have been defined recently, on the basis of the insight derived from modern quantum chemical calculations, in an effort to overcome some of the inherent restrictions of the original definition of solubility parameter and expand its range of applications. The present work continues along these lines and introduces two new solvation parameters, the van der Waals and the polarity/refractivity ones, which may replace both of the former dispersion and polar PSPs. Thus, one may use either the former scheme of PSPs (dispersion, polar, acidic, and basic) or, equivalently, the new scheme (van der Waals, polarity/refractivity, acidic, basic). The new definitions are made in a simple and straightforward manner and, thus, the strength and appeal of the widely accepted concept of solubility parameter is preserved. The inter-relations of the various PSPs are critically discussed and their values are tabulated for a variety of common substances. The advantage of the new scheme of PSPs is the bridge that makes with the corresponding Abraham’s LSER descriptors. With this bridge, one may exchange information between PSPs, LSER experimental scales, and quantum mechanics calculations such as via the COSMO-RS theory. The proposed scheme is a predictive one and it is applicable to, both, homo-solvated and hetero-solvated compounds. The new scheme is tested for the calculation of activity coefficients at infinite dilution, for octanol

  15. Critical adsorption profiles around a sphere and a cylinder in a fluid at criticality: Local functional theory

    Science.gov (United States)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-01

    We study universal critical adsorption on a solid sphere and a solid cylinder in a fluid at bulk criticality, where preferential adsorption occurs. We use a local functional theory proposed by Fisher et al. [M. E. Fisher and P. G. de Gennes, C. R. Acad. Sci. Paris Ser. B 287, 207 (1978); M. E. Fisher and H. Au-Yang, Physica A 101, 255 (1980), 10.1016/0378-4371(80)90112-0]. We calculate the mean order parameter profile ψ (r ) , where r is the distance from the sphere center and the cylinder axis, respectively. The resultant differential equation for ψ (r ) is solved exactly around a sphere and numerically around a cylinder. A strong adsorption regime is realized except for very small surface field h1, where the surface order parameter ψ (a ) is determined by h1 and is independent of the radius a . If r considerably exceeds a , ψ (r ) decays as r-(1 +η ) for a sphere and r-(1 +η )/2 for a cylinder in three dimensions, where η is the critical exponent in the order parameter correlation at bulk criticality.

  16. Experimental research on safety assurance of advanced WWER fuel cycles

    International Nuclear Information System (INIS)

    Krainov, Ju.; Kukushkin, Ju.

    2002-01-01

    The paper presents the results of experimental investigations on substantiation of implementation of a modernized butt joint for the WWER-440 reactor, carried out in the critical test facility 'P' in the RRC 'Kurchatov Institute'. The comparison results of the calculation and experimental data obtained in the physical startup of Volgodonsk NPP-1 with the WWER-1000 are also given. In the implementation of four-year fuel cycle in the WWER-440 with the average enrichment of fuel makeup 3.82% it was solved to conduct experimental research of power distribution in the vicinity of control rod butt junction. Moreover, it was assumed that adequate actions should be applied to eliminate inadmissible power jumps, if necessary. It is not available to measure their values in NPP conditions. Therefore, the power distribution near the butt joint was studied in a 19-rod bank installed in the critical test facility 'P' first for the normal design of the joint when surrounding fuel assemblies enrichment goes up. Then a set of calculation and tests was fulfilled to optimize a butt junction design. On the base of this research the composition of a butt junction was advanced by placing Hf plates into the junction. The effectiveness of modernized butt joint design was experimentally confirmed. In Volgodonsk NPP-1 with WWER-1000 the four-year fuel cycle is being implemented. During the physical startup of the reactor the measurements of the reactivity effects and coefficients were measured at the minimum controlled flux level, and the parameters of a number of critical states were recorded. The data obtained were compared with the calculation. The validity of the certified code package for forecasting the neutronic characteristics of WWER-1000 cores in the implementation of a four year fuel cycle has been supported (Authors)

  17. Development and experimental testing of the new safety-criticality Cristal package; Developpement et qualification experimentale du nouveau formulaire de surete-criticite Cristal

    Energy Technology Data Exchange (ETDEWEB)

    Mattera, Ch

    1998-11-10

    This thesis is concerned with Criticality-Safety studies related to the French Nuclear Fuel Cycle. We first describe the steps in the nuclear fuel cycle and the specific characteristics of these studies compared with those performed in Reactor Physics. In order to respond to the future requirements of the French Nuclear Program, we have developed a new package CRISTAL based on a recent cross sections library (CEA93) and the newest accurate codes (APOLLO2, MORET4, TRIPOLI4). The cristal system includes two calculations routes: a design route which will be used by French Industry (COGEMA/SGN) and a reference route.) To transfer this package to the French industry, we have elaborated calculation schemes for fissile solutions, dissolver media, transport casks and storage pools. Afterwards, these schemes have been used for the CRISTAL experimental validation. We have also contributed to the CRISTAL experimental database by reevaluating a French storage pool experiment: the CRISTO II experiment. This revaluation has been submitted to the OCDE working group in order that this experiment can be used by international criticality safety engineers to validate calculations methods. This work represents a large contribution to the recommendation of accurate calculation schemes and to the experimental validation of the CRISTAL package. These studies came up to the French Industry expectations. (author) 70 refs.

  18. Criticality experiment for No.2 core of DF-VI fast neutron criticality facility

    International Nuclear Information System (INIS)

    Yang Lijun; Liu Zhenhua; Yan Fengwen; Luo Zhiwen; Chu Chun; Liang Shuhong

    2007-01-01

    At the completion of the DF-VI fast neutron criticality facility, its core changed, and it was restarted and a series of experiments and measurements were made. According to the data from 29 criticality experiments, the criticality element number and mass were calculated, the control rod reactivity worth were measured by period method and rod compensate method, reactivity worth of safety rod and safety block were measured using reactivity instrument; the reactivity worth of outer elements and radial distribution of elements were measured too. Based on all the measurements mentioned above, safety operation parameters for core 2 in DF-VI fast neutron criticality facility were conformed. (authors)

  19. Testing the new stochastic neutronic code ANET in simulating safety important parameters

    International Nuclear Information System (INIS)

    Xenofontos, T.; Delipei, G.-K.; Savva, P.; Varvayanni, M.; Maillard, J.; Silva, J.; Catsaros, N.

    2017-01-01

    Highlights: • ANET is a new neutronics stochastic code. • Criticality calculations in both subcritical and critical nuclear systems of conventional design were conducted. • Simulations of thermal, lower epithermal and fast neutron fluence rates were performed. • Axial fission rate distributions in standard and MOX fuel pins were computed. - Abstract: ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development Monte Carlo code for simulating both GEN II/III reactors as well as innovative nuclear reactor designs, based on the high energy physics code GEANT3.21 of CERN. ANET is built through continuous GEANT3.21 applicability amplifications, comprising the simulation of particles’ transport and interaction in low energy along with the accessibility of user-provided libraries and tracking algorithms for energies below 20 MeV, as well as the simulation of elastic and inelastic collision, capture and fission. Successive testing applications performed throughout the ANET development have been utilized to verify the new code capabilities. In this context the ANET reliability in simulating certain reactor parameters important to safety is here examined. More specifically the reactor criticality as well as the neutron fluence and fission rates are benchmarked and validated. The Portuguese Research Reactor (RPI) after its conversion to low enrichment in U-235 and the OECD/NEA VENUS-2 MOX international benchmark were considered appropriate for the present study, the former providing criticality and neutron flux data and the latter reaction rates. Concerning criticality benchmarking, the subcritical, Training Nuclear Reactor of the Aristotle University of Thessaloniki (TNR-AUTh) was also analyzed. The obtained results are compared with experimental data from the critical infrastructures and with computations performed by two different, well established stochastic neutronics codes, i.e. TRIPOLI-4.8 and MCNP5. Satisfactory agreement

  20. Comparison of Instrumentation and Control Parameters Based on Simulation and Experimental Data for Reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Anith Khairunnisa Ghazali; Mohd Sabri Minhat

    2015-01-01

    Reactor TRIGA PUSPATI (RTP) undergoes safe operation for more than 30 years and the only research reactor in Malaysia. The main safety feature of Instrumentation and Control (I and C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. There are no best models for RTP simulation was designed for study and research. Therefore, the comparison for I&C parameters are very essential, to design the best RTP model using MATLAB/ Simulink as close as the RTP. The simulation of TRIGA reactor type already develop using desktop reactor simulator such as Personal Computer Transient Analyzer (PCTRAN). The experimental data from RTP and simulation of PCTRAN shows some similarities and differences due to certain limitation. Currently, the structured RTP simulation was designed using MATLAB and Simulink tool that consist of ideal fission chamber, controller, control rod position, height to worth and RTP model. The study on this paper focus on comparison between real data from RTP and simulation result from PCTRAN on I&C parameters such as water level, fuel temperature, bulk temperature, power rated and rod position. The error analysis due to some similarities and differences of I&C parameters shall be obtained and analysed. The result will be used as reference for proposed new structured of RTP model. (author)

  1. Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: A comparison study

    International Nuclear Information System (INIS)

    Vaziri, Nima; Hojabri, Alireza; Erfani, Ali; Monsefi, Mehrdad; Nilforooshan, Behnam

    2007-01-01

    Critical heat flux (CHF) is an important parameter for the design of nuclear reactors. Although many experimental and theoretical researches have been performed, there is not a single correlation to predict CHF because it is influenced by many parameters. These parameters are based on fixed inlet, local and fixed outlet conditions. Artificial neural networks (ANNs) have been applied to a wide variety of different areas such as prediction, approximation, modeling and classification. In this study, two types of neural networks, radial basis function (RBF) and multilayer perceptron (MLP), are trained with the experimental CHF data and their performances are compared. RBF predicts CHF with root mean square (RMS) errors of 0.24%, 7.9%, 0.16% and MLP predicts CHF with RMS errors of 1.29%, 8.31% and 2.71%, in fixed inlet conditions, local conditions and fixed outlet conditions, respectively. The results show that neural networks with RBF structure have superior performance in CHF data prediction over MLP neural networks. The parametric trends of CHF obtained by the trained ANNs are also evaluated and results reported

  2. Metabolic Desynchronization in Critical Conditions: Experimental Study

    Directory of Open Access Journals (Sweden)

    G. V. Livanov

    2006-01-01

    Full Text Available Objective. To conduct an experimental study of the impact of the time of administration of succinic acid preparations on central nervous system (CNS function and gas exchange while simulating metabolic therapy for severe poisoning by ethyl alcohol. The study was performed on 74 male albino rats weighing 140—180 g. Acute severe and very severe intoxication was simulated, by intraabdominally administering 30% ethanol to the rats. Cytoflavin was used to simulate experimental therapy. The rate of gas exchange was estimated by the oxygen uptake determined by the closed chamber method in a Regnault apparatus (Germany. Spontaneous bioelectrical activity was recorded in the frontooccipital lead by the routine procedure. External pain stimulation and rhythmical photostimulation were employed to evaluate cerebral responsiveness. Heterodirectional EEG changes in the «early» and «late» administration of succinate were not followed by the similar alterations of gas exchange: oxygen consumption in both the «early» and «late» administration of succinate remained significantly lower than in the control animals. With the late administration of succinate to the animals with mixed (toxic and hypoxic coma, the so-called discrepancy between the noticeably increased energy production and brutally diminished metabolism occurred. It may be just the pathological mechanism that was the basis for higher mortality in the late succinate administration group. The findings and their analysis make it possible to advance a hypothesis that succinate may cause metabolic desynchronization if activation of metabolic processes takes place under severe tissue respiratory tissue depression. In these cases, there is a severe damage to tissue and chiefly the brain. This manifests itself as EEG epileptiform activity splashes preceding the animals’ death. Therefore, resuscitation aimed at restoring the transport of oxygen and its involvement in tissue energy processes should

  3. Parameters critical to the morphology of fluidization craters

    Science.gov (United States)

    Siegal, B. S.; Gold, D. P.

    1973-01-01

    In order to study further the role of fluidization on the moon, a laboratory investigation was undertaken on two particulate material size fractions to determine the effect of variables, such as, duration of gas streaming, gas pressure, and 'regolith' thickness on the morphology of fluidization craters. A 3.175-mm cylindrical vent was used to simulate a gas streaming conduit. Details of the fluidization chamber are discussed together with questions of experimental control, aspects of nomenclature, crater measurements, and the effect of variables.

  4. Frustration and quantum criticality

    Science.gov (United States)

    Vojta, Matthias

    2018-06-01

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality.

  5. Influence of core model parameters on the characteristics of neutron beams of the research reactor

    Directory of Open Access Journals (Sweden)

    N. A. Khafizova

    2013-12-01

    Full Text Available IRT MEPhI reactor is equipped with a number of facilities at horizontal experimental channels (HEC. Knowing of parameters influencing spatio-angular distribution of irradiation fields is essential for each application area. The research for neutron capture therapy (NCT facility at HEC of the reactor was made. Calculation methods have been used to estimate how the reactor core parameters influence neutron beam characteristics at the HEC output. The impact of neutron source model in Monte Carlo calculations by MCNP code on the parameters of neutron and secondary photon field at the output of irradiation beam tubes of research reactor is estimated. The study shows that specifying neutron source with fission reaction rate distribution in SDEF option gives almost the same results as criticality calculation considered the most accurate. Our calculations show that changes of the core operational parameters have insignificant influence on characteristics of neutron beams at HEC output.

  6. Time: A Critical Parameter in Satellite Navigation and Positioning ...

    African Journals Online (AJOL)

    The applications of space-borne satellites are increasing in many aspects of human endeavours; the most among them being the provision of guaranteed access to users of precise time and location services. An investigation was therefore carried out through a review process mechanism to determine the orbit parameter ...

  7. Critical parameters for maize yield under irrigation farming in the ...

    African Journals Online (AJOL)

    This study examines the critical variables that determine maize yield under irrigation farming in the savanna ecological zone of Kwara State. Seventy-five soil samples were randomly collected from irrigation farm of Oke-Oyi irrigation project of the Lower Niger River Basin Development Authority Ilorin and bulked into 15 ...

  8. Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography.

    Science.gov (United States)

    Deng, Bin; Lundqvist, Mats; Fang, Qianqian; Carp, Stefan A

    2018-03-01

    largest deterioration due to cross-talk between signal channels. However, errors in optical images could be effectively controlled when experimental parameters were properly estimated during data acquisition and accounted for in the image processing procedure. Finally, optical images recovered using structural priors were, in general, less susceptible to experimental errors; however, lesion contrasts were more sensitive to errors when tumor locations were used as a priori info. Findings in this simulation study can provide guidelines for system design and operation in optical breast imaging studies.

  9. Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Jae-Yong Lim

    2012-01-01

    Full Text Available Basic experiments on the accelerator-driven system (ADS at the Kyoto University Critical Assembly are carried out by combining a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at the location of the target. Here, a comparison between the measured and calculated eigenvalues reveals a relative difference of around 10% in C/E values. A special mention is made of the fact that the reaction rate analyses in the subcritical systems demonstrate apparently the actual effect of moving the tungsten target into the core on neutron multiplication. A series of further ADS experiments with 100 MeV protons needs to be carried out to evaluate the accuracy of subcritical multiplication parameters.

  10. Experimental Validation of the LHC Helium Relief System Flow Modeling

    CERN Document Server

    Fydrych, J; Riddone, G

    2006-01-01

    In case of simultaneous resistive transitions in a whole sector of magnets in the Large Hadron Collider, the helium would be vented from the cold masses to a dedicated recovery system. During the discharge the cold helium will eventually enter a pipe at room temperature. During the first period of the flow the helium will be heated intensely due to the pipe heat capacity. To study the changes of the helium thermodynamic and flow parameters we have simulated numerically the most critical flow cases. To verify and validate numerical results, a dedicated laboratory test rig representing the helium relief system has been designed and commissioned. Both numerical and experimental results allow us to determine the distributions of the helium parameters along the pipes as well as mechanical strains and stresses.

  11. Internal transport barriers: critical physics issues?

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X [Association Euratom-CEA, DSM, Departement de Recherches sur La Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2006-05-15

    Plasmas regimes with improved core energy confinement properties, i.e. with internal transport barriers (ITB), provide a possible route towards simultaneous high fusion performance and continuous tokamak reactor operation in a non-inductive current drive state. High core confinement regimes should be made compatible with a dominant fraction of the plasma current self-generated (pressure-driven) by the bootstrap effect while operating at high normalized pressure and moderate current. Furthermore, ITB regimes with 'non-stiff' plasma core pressure break the link observed in standard inductive operation between fusion performances and plasma pressure at the edge, thus offering a new degree of freedom in the tokamak operational space. Prospects and critical issues for using plasmas with enhanced thermal core insulation as a basis for steady tokamak reactor operation are reviewed in the light of the encouraging experimental and modelling results obtained recently (typically in the last two years). An extensive set of data from experiments carried out worldwide has been gathered on ITB regimes covering a wide range of parameters (q-profile, T{sub i}/T{sub e}, gradient length, shaping, normalized toroidal Larmor radius, collisionality, Mach number, etc). In the light of the progress made recently, the following critical physics issues relevant to the extrapolation of ITB regimes to next-step experiments, such as ITER, are addressed: 1. conditions for ITB formation and existence of a power threshold,; 2. ITB sustainment at T{sub i} {approx} T{sub e}, with low toroidal torque injection, low central particle fuelling but at high density and low impurity concentration,; 3. control of confinement for sustaining wide ITBs that encompass a large volume at high {beta}{sub N},; 4. real time profile control (q and pressure) with high bootstrap current and large fraction of alpha-heating and; 5. compatibility of core with edge transport barriers or with external core

  12. Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, I.A.

    2006-07-01

    studied how the interplay of precession and damping affects various thermodynamic and transport quantities. We found that the susceptibility {chi}={delta}M/{delta}B is the thermodynamic quantity which shows the most significant change upon approaching the quantum critical point and which gives experimental access to the (dangerously irrelevant) spin-spin interactions. Finally, we studied the quantum critical behaviour of two-dimensional antiferromagnetic metals. Going beyond an order parameter theory, we included the electronic quasiparticles as well as the fluctuating magnetization in a functional Renormalization Group calculation. Preliminary results indicate a divergence in the fRG-equations already at a finite distance from the quantum critical point. this is incompatible with the Hertz-Millis picture. (orig.)

  13. Selection and verification of safety parameters in safety parameter display system for nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Yuangfang

    1992-02-01

    The method and results for safety parameter selection and its verification in safety parameter display system of nuclear power plants are introduced. According to safety analysis, the overall safety is divided into six critical safety functions, and a certain amount of safety parameters which can represent the integrity degree of each function and the causes of change are strictly selected. The verification of safety parameter selection is carried out from the view of applying the plant emergency procedures and in the accident man oeuvres on a full scale nuclear power plant simulator

  14. Design and construction of a fast critical facility

    International Nuclear Information System (INIS)

    Kato, W.Y.; Dates, L.R.

    1962-01-01

    Design and construction of a fast critical facility. In a fast-power-reactor development programme, a critical facility is found to be a highly useful tool to ascertain calculational techniques, to verify neutron cross-section sets, and to obtain integral reactor-physics parameters necessary for the nuclear design of a power system. Since it is primarily a physics instrument, the design of a fast critical facility itself poses a number of different problems not found in the design of a power reactor. In addition to usual questions of site, containment, core design and instrumentation , there arise such problems as: how to obtain a large degree of flexibility consistent with safety, the determination of the size and type of facility to meet the experimental physics requirements, the determination of the number and location of control and safety rods minimizing perturbation effects and the specification of the reproducibility of control rods and other movable components to obtain the accuracy required in reactivity measurements. These are some of the problems which are discussed in this paper based on recent experience at the Argonne National Laboratory which has under construction a fast critical facility, ZPR-VI at its Lemont, Illinois site for fast-reactor-physics studies. The ZPR-VI is a movable half- or split-table-type machine similar to ZPR-III. It has a matrix about two and a half times the volume of the earlier machine and will be used to investigate the physics of large, highly dilute, metal and cermet, unmoderated and partially moderated systems having core volumes up to about 1500 l. A detailed description of the ZPR-VI with a discussion on the criteria used in the design of its various components from the point of view of reactor physics is presented. In addition, such topics as management and operating procedures, potential hazards during operation, experimental techniques to be used and construction costs are also included. (author) [fr

  15. Theoretical and experimental studies on critical heat flux in subcooled boiling and vertical flow geometry; Badania teoretyczne i eksperymentalne kryzysu wrzenia w warunkach wrzenia przechlodzonego w przeplywie w kanale pionowym

    Energy Technology Data Exchange (ETDEWEB)

    Staron, E. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1996-12-31

    Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs.

  16. Theoretical and experimental studies on critical heat flux in subcooled boiling and vertical flow geometry; Badania teoretyczne i eksperymentalne kryzysu wrzenia w warunkach wrzenia przechlodzonego w przeplywie w kanale pionowym

    Energy Technology Data Exchange (ETDEWEB)

    Staron, E [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1997-12-31

    Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs.

  17. Critical thinking of registered nurses in a fellowship program.

    Science.gov (United States)

    Zori, Susan; Kohn, Nina; Gallo, Kathleen; Friedman, M Isabel

    2013-08-01

    Critical thinking is essential to nursing practice. This study examined differences in the critical thinking dispositions of registered nurses (RNs) in a nursing fellowship program. Control and experimental groups were used to compare differences in scores on the California Critical Thinking Disposition Inventory (CCTDI) of RNs at three points during a fellowship program: baseline, week 7, and month 5. The control group consisted of RNs who received no education in critical thinking. The experimental group received education in critical thinking using simulated scenarios and reflective journaling. CCTDI scores examined with analysis of variance showed no significant difference within groups over time or between groups. The baseline scores of the experimental group were slightly higher than those of the control group. Chi-square analysis of demographic variables between the two groups showed no significant differences. Critical thinking dispositions are a combination of attitudes, values, and beliefs that make up one's personality based on life experience. Lack of statistical significance using a quantitative approach did not capture the development of the critical thinking dispositions of participants. A secondary qualitative analysis of journal entries is being conducted. Copyright 2013, SLACK Incorporated.

  18. Status of criticality safety research at NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Two critical facilities, named STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility), at the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) started their hot operations in 1995. Since then, basic experimental data for criticality safety research have been accumulated using STACY, and supercritical experiments for the study of criticality accident in a reprocessing plant have been performed using TRACY. In this paper, the outline of those critical facilities and the main results of TRACY experiments are presented. (author)

  19. A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation

    International Nuclear Information System (INIS)

    Ram, J. Prasanth; Babu, T. Sudhakar; Dragicevic, Tomislav; Rajasekar, N.

    2017-01-01

    Highlights: • A new Bee Pollinator Flower Pollination Algorithm (BPFPA) is proposed for Solar PV Parameter extraction. • Standard RTC France data is used for the experimentation of BPFPA algorithm. • Four different PV modules are successfully tested via double diode model. • The BPFPA method is highly convincing in accuracy to convergence at faster rate. • The proposed BPFPA provides the best performance among the other recent techniques. - Abstract: The inaccurate I-V curve generation in solar PV modeling introduces less efficiency and on the other hand, accurate simulation of PV characteristics becomes a mandatory obligation before experimental validation. Although many optimization methods in literature have attempted to extract accurate PV parameters, all of these methods do not guarantee their convergence to the global optimum. Hence, the authors of this paper have proposed a new hybrid Bee pollinator Flower Pollination Algorithm (BPFPA) for the PV parameter extraction problem. The PV parameters for both single diode and double diode are extracted and tested under different environmental conditions. For brevity, the I_0_1, I_0_2, I_p_v for double diode and I_0_,I_p_v for single diode models are calculated analytically where the remaining parameters ‘R_s, R_p, a_1, a_2’ are optimized using BPFPA method. It is found that, the proposed Bee Pollinator method has all the scope to create exploration and exploitation in the control variable to yield a less RMSE value even under lower irradiated conditions. Further for performance validation, the parameters arrived via BPFPA method is compared with Genetic Algorithm (GA), Pattern Search (PS), Harmony Search (HS), Flower Pollination Algorithm (FPA) and Artificial Bee Swarm Optimization (ABSO). In addition, various outcomes of PV modeling and different parameters influencing the accurate PV modeling are critically analyzed.

  20. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.

    Directory of Open Access Journals (Sweden)

    Tim Wehner

    Full Text Available Numerous experimental fracture healing studies are performed on rats, in which different experimental, mechanical parameters are applied, thereby prohibiting direct comparison between each other. Numerical fracture healing simulation models are able to predict courses of fracture healing and offer support for pre-planning animal experiments and for post-hoc comparison between outcomes of different in vivo studies. The aims of this study are to adapt a pre-existing fracture healing simulation algorithm for sheep and humans to the rat, to corroborate it using the data of numerous different rat experiments, and to provide healing predictions for future rat experiments. First, material properties of different tissue types involved were adjusted by comparing experimentally measured callus stiffness to respective simulated values obtained in three finite element (FE models. This yielded values for Young's moduli of cortical bone, woven bone, cartilage, and connective tissue of 15,750 MPa, 1,000 MPa, 5 MPa, and 1 MPa, respectively. Next, thresholds in the underlying mechanoregulatory tissue differentiation rules were calibrated by modifying model parameters so that predicted fracture callus stiffness matched experimental data from a study that used rigid and flexible fixators. This resulted in strain thresholds at higher magnitudes than in models for sheep and humans. The resulting numerical model was then used to simulate numerous fracture healing scenarios from literature, showing a considerable mismatch in only 6 of 21 cases. Based on this corroborated model, a fit curve function was derived which predicts the increase of callus stiffness dependent on bodyweight, fixation stiffness, and fracture gap size. By mathematically predicting the time course of the healing process prior to the animal studies, the data presented in this work provides support for planning new fracture healing experiments in rats. Furthermore, it allows one to transfer and