WorldWideScience

Sample records for experiment liquid lithium

  1. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  2. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Capece, A.; Koel, B.; Roszell, J. [Princeton University, Princeton, New Jersey 08544 (United States); Biewer, T. M.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  3. Liquid lithium limiter experiments in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Jardin, S.; Kaita, R.; Gray, T.; Marfuta, P.; Spaleta, J.; Timberlake, J.; Zakharov, L.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Soukhanovskii, V.; Maingi, R.; Finkenthal, M.; Stutman, D.; Rodgers, D.

    2005-01-01

    Recent experiments in the Current Drive eXperiment - Upgrade provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R=34 cm, a=22 cm, B toroidal 2 kG, I P =100 kA, T e (0)∼100 eV, n e (0)∼ 5 x 10 19 m -3 ) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium tray limiter with an area of 2000 cm 2 (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium limited discharges are consistent with Z effective <1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced. (author)

  4. Liquid Lithium Limiter Experiments in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Jardin, S.; Kaita, R.; Gray, T.; Marfuta, P.; Spaleta, J.; Timberlake, J.; Zakharov, L.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Soukhanovskii, V.; Maingi, R.; Finkenthal, M.; Stutman, D.; Rodgers, D.

    2004-01-01

    Recent experiments in the Current Drive Experiment-Upgrade provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R = 34 cm, a = 22 cm, B toroidal = 2 kG, I P = 100 kA, T e (0) = 100 eV, n e (0) ∼ 5 x 10 19 m -3 ) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium tray limiter with an area of 2000 cm 2 (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium-limited discharges are consistent with Z effective < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced

  5. Liquid Lithium Wall Experiments in CDX-U

    International Nuclear Information System (INIS)

    Doerner, R.; Kaita, R.; Majeski, R.; Luckhardt, S.

    1999-01-01

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. Sputtering and erosion tests are currently underway in the PISCES device at the University of California at San Diego (UCSD). To complement this effort, plasma interaction questions in a toroidal plasma geometry will be addressed by a proposed new groundbreaking experiment in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The CDX-U plasma is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used for the first time with a toroidal plasma. Since CDX-U is a small ST, only approximately1 liter or less of lithium is required to produce a toroidal liquid lithium limiter target, leading to a quick and cost-effective experiment

  6. Recent Liquid Lithium Limiter Experiments in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Jardin, S.; Kaita, R.; Gray, T.; Marfuta, P.; Spaleta, J.; Timberlake, J.; Zakharov, L.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Soukhanovskii, V.; Maingi, R.; Finkenthal, M.; Stutman, D.; Rodgers, D.; Angelini, S.

    2005-01-01

    Recent experiments in the Current Drive eXperiment-Upgrade (CDX-U) provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R=34 cm, a=22 cm, B toroidal = 2 kG, I P =100 kA, T e (0) ∼ 100 eV, n e (0) ∼ 5 x 10 19 m -3 ) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium pool limiter with an area of 2000 cm 2 (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium pool limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium limited discharges are consistent with Z effective < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced

  7. Diagnostics for liquid lithium experiments in CDX-U

    International Nuclear Information System (INIS)

    Kaita, R.; Efthimion, P.; Hoffman, D.; Jones, B.; Kugel, H.; Majeski, R.; Munsat, T.; Raftopoulos, S.; Taylor, G.; Timberlake, J.; Soukhanovskii, V.; Stutman, D.; Iovea, M.; Finkenthal, M.; Doerner, R.; Luckhardt, S.; Maingi, R.; Causey, R.

    2000-01-01

    A flowing liquid lithium first wall or diverter target could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls in fusion reactors. To investigate the interaction of a spherical torus plasma with liquid lithium limiters, large area diverter targets, and walls, discharges will be established in the Current Drive Experiment-Upgrade (CDX-U) where the plasma-wall interactions are dominated by liquid lithium surfaces. Among the unique CDX-U lithium diagnostics is a multi-layer mirror (MLM) array, which will monitor the 135 (angstrom) LiIII line for core lithium concentrations. Additional spectroscopic diagnostics include a grazing incidence XUV spectrometer (STRS) and a filterscope system to monitor D α and various impurity lines local to the lithium limiter. Profile data will be obtained with a multichannel tangential bolometer and a multipoint Thomson scattering system configured to give enhanced edge resolution. Coupons on th e inner wall of the CDX-U vacuum vessel will be used for surface analysis. A 10,000 frame per second fast visible camera and an IR camera will also be available

  8. Status of National Spherical Torus Experiment Liquid Lithium Divertor

    Science.gov (United States)

    Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.

    2009-11-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  9. Experiments with liquid metal walls: Status of the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, Robert, E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlake, John [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2010-11-15

    Abstarct: Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The lithium tokamak experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the current drive experiment-upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in ohmically heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy (CHERS). Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  10. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Kaita, Robert; Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlak, John

    2010-01-01

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  11. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    OpenAIRE

    Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Kozub, Thomas; Berzak, Laura; Hammett, Gregory; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Jacobson, Craig M.; Lucia, Matthew; Jones, Andrew; Lundberg, Daniel; Timberlake, John; Majeski, Richard

    2010-01-01

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas wa...

  12. Experiments for liquid metal embrittlement of fusion reactor materials by liquid lithium

    International Nuclear Information System (INIS)

    Grundmann, M.; Borgstedt, H.U.

    1984-10-01

    The liquid metal embrittlement behaviour of two martensitic-ferritic steels [X22CrMoV121 (Nr. 1.4923) and X18CrMoVNb 121 (Nr. 1,4914)] and one austenite chromium-nickel-steel X5CrNi189 (Nr. 1.4301) was investigated. Tensile tests in liquid lithium at 200 and 250 0 C with two different strain rates on precorroded samples (1000 h at 550 0 C in lithium) were carried out. Reference values were gained from tensile tests in air (RT, 250 0 C). It is concluded that there is sufficient compatibility of the austenitic steel with liquid lithium. The use of the ferritic-martensitic steels in liquid lithium on the other hand, especially at temperatures of about 550 0 C, seems to be problematic. The experimental results led to a better understanding of LME, applying the theory of this material failure. (orig./IHOE) [de

  13. FTU cooled liquid lithium upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Iafrati, M., E-mail: matteo.iafrati@enea.it [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Apicella, M.L.; Boncagni, L. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Lyublinski, I. [JSC “RED STAR”, Moscow (Russian Federation); Mazzitelli, G. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Vertkov, A. [JSC “RED STAR”, Moscow (Russian Federation)

    2017-04-15

    In the framework of the liquid lithium limiter experiment in Frascati a new auxiliary system was developed in order to provide a better control of the energy fluid vector. The cooled liquid lithium system (CLL) was installed for the first time at the end of 2013, it uses overheated water to heat the lithium and to extract, at the same time, the heat from the metal surface when it gets wet by the plasma. A first version of the system, developed and presented in previous papers, has been modified to optimize the heat flux measurement on the liquid lithium surface. The changes include a new power supply logic for the heating system, new sensors and new read-out electronics compatible with the implementation of a real time control system. The prototype was updated with the aim of achieving a low cost and versatile control system.

  14. Physics design requirements for the National Spherical Torus Experiment liquid lithium divertor

    International Nuclear Information System (INIS)

    Kugel, H.; Bell, M.; Berzak, L.; Brooks, A.; Ellis, R.; Gerhardt, S.P.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.K.; Menard, J.; Stotler, D.; Zakharov, L.E.; Maingi, Rajesh; Nygren, R.E.; Soukhanovskii, V.; Wakeland, P.

    2009-01-01

    Recent National Spherical Tokamak Experiment (NSTX) high-power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components (PFCs) to the performance of divertor plasmas in both L- and H-mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15 25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW 1), to enable ne scan capability (2) in the H-mode, to test the ability to operate at significantly lower density (e.g., ne/nGW = 0.25), for future reactor designs based on the Spherical Tokamak, and eventually to investigate high heat-flux power handling (10 MW/m2) with long pulse discharges (>1.5 s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  15. Spectroscopic diagnostics for liquid lithium divertor studies on National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Soukhanovskii, V. A.; Roquemore, A. L.; Bell, R. E.; Kaita, R.; Kugel, H. W.

    2010-01-01

    The use of lithium-coated plasma facing components for plasma density control is studied in the National Spherical Torus Experiment (NSTX). A recently installed liquid lithium divertor (LLD) module has a porous molybdenum surface, separated by a stainless steel liner from a heated copper substrate. Lithium is deposited on the LLD from two evaporators. Two new spectroscopic diagnostics are installed to study the plasma surface interactions on the LLD: (1) A 20-element absolute extreme ultraviolet (AXUV) diode array with a 6 nm bandpass filter centered at 121.6 nm (the Lyman-α transition) for spatially resolved divertor recycling rate measurements in the highly reflective LLD environment, and (2) an ultraviolet-visible-near infrared R=0.67 m imaging Czerny-Turner spectrometer for spatially resolved divertor D I, Li I-II, C I-IV, Mo I, D 2 , LiD, CD emission and ion temperature on and around the LLD module. The use of photometrically calibrated measurements together with atomic physics factors enables studies of recycling and impurity particle fluxes as functions of LLD temperature, ion flux, and divertor geometry.

  16. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, W.; Bell, M.; Berzak,L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren,R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov L. E.

    2008-09-26

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with longpulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  17. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    International Nuclear Information System (INIS)

    Kugel, W.; Bell, M.; Berzak, L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren, R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov, L. E.

    2008-01-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW∼1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with long pulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization

  18. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  19. Liquid lithium blanket processing studies

    International Nuclear Information System (INIS)

    Talbot, J.B.; Clinton, S.D.

    1979-01-01

    The sorption of tritium on yttrium from flowing molten lithium and the subsequent release of tritium from yttrium for regeneration of the metal sorbent were investigated to evaluate the feasibility of such a tritium-recovery process for a fusion reactor blanket of liquid lithium. In initial experiments with the forced convection loop, yttrium samples were contacted with lithium at 300 0 C. A mass transfer coefficient of 2.5 x 10 - cm/sec, which is more than an order of magnitude less than the value measured in earlier static experiments, was determined for the flowing lithium system. Rates of tritium release from yttrium samples were measured to evaluate possible thermal regeneration of the sorbent. Values for diffusion coefficients at 505, 800, and 900 0 C were estimated to be 1.1 x 10 -13 , 4.9 x 10 -12 , and 9.3 x 10 -10 cm 2 /sec, respectively. Tritium release from yttrium was investigated at higher temperatures and with hydrogen added to the argon sweep gas to provide a reducing atmosphere

  20. First experiments with a liquid-lithium based high-intensity 25-keV neutron source

    International Nuclear Information System (INIS)

    Paul, M.

    2014-01-01

    A high-intensity neutron source based on a Liquid-Lithium Target (LiLiT) and the 7 Li(p,n) reaction was developed at SARAF (Soreq Applied Research Accelerator Facility, Israel) and is used for nuclear astrophysics experiments. The setup was commissioned with a 1.3 mA proton beam at 1.91 MeV, producing a neutron yield of ~ 2 ×10 10 n/s, more than one order of magnitude larger than conventional 7 Li(p,n)-based neutron sources and peaked at ~25 keV. The LiLiT device consists of a high-velocity (> 4 m/s) vertical jet of liquid lithium (~200 °C) whose free surface is bombarded by the proton beam. The lithium jet acts both as the neutron-producing target and as a power beam dump. The target dissipates a peak power areal density of 2.5 kW/cm 2 and peak volume density of 0.5 MW/cm 3 with no change of temperature or vacuum regime in the vacuum chamber. Preliminary results of Maxwellian-averaged cross section measurements for stable isotopes of Zr and Ce, performed by activation in the neutron flux of LiLiT, and nuclear-astrophysics experiments in planning will be described. (author)

  1. Experiments on 18-8 stainless steels exposed to liquid lithium. I. 1,100-hour corrosion tests in lithium of 400, 500 and 6000C in natural circulation type testing apparatus

    International Nuclear Information System (INIS)

    Nihei, I.; Sumiya, I.; Fukaya, Y.; Yamazaki, Y.

    The Japan Atomic Energy Research Institute has planned and started to carry out a series of experiments concerning fusion reactor materials. This report gives the results of the first experiments. The first test materials selected were 18-8 stainless steels, and the experiments were designed to test their behavior when exposed to liquid lithium. Natural circulation type corrosion testing devices (pots) were used as the testing apparatus, and the tests were conducted with lithium temperatures up to 600 0 C

  2. Deuterium retention in liquid lithium

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.; Luckhardt, S.C.; Conn, R.W.

    2002-01-01

    Measurements of deuterium retention in samples of lithium exposed in the liquid state to deuterium plasma are reported. Retention was measured as a function of plasma ion dose in the range 6x10 19 -4x10 22 D atoms and exposure temperature between 523 and 673 K using thermal desorption spectrometry. The results are consistent with the full uptake of all deuterium ions incident on the liquid metal surface and are found to be independent of the temperature of the liquid lithium over the range explored. Full uptake, consistent with very low recycling, continues until the sample is volumetrically converted to lithium deuteride. This occurs for exposure temperatures where the gas pressure during exposure was both below and slightly above the corresponding decomposition pressure for LiD in Li. (author)

  3. Preliminary experimental study of liquid lithium water interaction

    International Nuclear Information System (INIS)

    You, X.M.; Tong, L.L.; Cao, X.W.

    2015-01-01

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  4. Preliminary experimental study of liquid lithium water interaction

    Energy Technology Data Exchange (ETDEWEB)

    You, X.M.; Tong, L.L.; Cao, X.W., E-mail: caoxuewu@sjtu.edu.cn

    2015-10-15

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  5. Solubility of lithium deuteride in liquid lithium

    International Nuclear Information System (INIS)

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1977-01-01

    The solubility of LiD in liquid lithium between the eutectic and monotectic temperatures was measured using a direct sampling method. Solubilities were found to range from 0.0154 mol.% LiD at 199 0 C to 3.32 mol.% LiD at 498 0 C. The data were used in the derivation of an expression for the activity coefficient of LiD as a function of temperature and composition and an equation relating deuteride solubility and temperature, thus defining the liquidus curve. Similar equations were also derived for the Li-LiH system using the existing solubility data. Extrapolation of the liquidus curves yielded the eutectic concentrations (0.040 mol.% LiH and 0.035 mol.% LiD) and the freezing point depressions (0.23 0 C for Li-LiH and 0.20 0 C for Li-LiD) at the eutectic point. The results are compared with the literature data for hydrogen and deuterium. The implications of the relatively high solubility of hydrogen isotopes in lithium just above the melting point are discussed with respect to the cold trapping of tritium in fusion reactor blankets. (Auth.)

  6. NSTX plasma operation with a Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H.W., E-mail: hkugel@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, West Lafayette, IN 47907 (United States); Bell, M.G.; Bell, R.E.; Diallo, A.; Ellis, R.; Gerhardt, S.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, IN 47907 (United States); Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R.; McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Ono, M.; Paul, S.F. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer NSTX 2010 experiments tested the effectiveness of maintaining the deuterium retention properties of a static liquid lithium molybdenum divertor surface when refreshed by lithium evaporation as an approximation to a flowing liquid lithium surface. Black-Right-Pointing-Pointer Noteworthy improvements in plasma performance with the plasma strike point on the liquid lithium molybdenum divertor were obtained similar to those obtained previously with lithiated graphite. The role of lithium impurities in this result is discussed. Black-Right-Pointing-Pointer Inspection of the liquid lithium molybdenum divertor after the Campaign indicated mechanical damage to supports, and other hardware resulting from forces following plasma current disruptions. - Abstract: NSTX 2010 experiments were conducted using a molybdenum Liquid Lithium Divertor (LLD) surface installed on the outer part of the lower divertor. This tested the effectiveness of maintaining the deuterium retention properties of a static liquid lithium surface when refreshed by lithium evaporation as an approximation to a flowing liquid lithium surface. The LLD molybdenum front face has a 45% porosity to provide sufficient wetting to spread 37 g of lithium, and to retain it in the presence of magnetic forces. Lithium Evaporators were used to deposit lithium on the LLD surface. At the beginning of discharges, the LLD lithium surface ranged from solid to liquefied depending on the amount of applied and plasma heating. Noteworthy improvements in plasma performance were obtained similar to those obtained previously with lithiated graphite, e.g., ELM-free, quiescent edge, H-modes. During these experiments with the plasma outer strike point on the LLD, the rate of deuterium retention in the LLD, as indicated by the fueling needed to achieve and maintain stable plasma conditions, was the about the same as that for solid lithium coatings on the graphite prior to the installation of the

  7. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  8. Testing of Liquid Lithium Limiters in CDX-U

    Energy Technology Data Exchange (ETDEWEB)

    R. Majeski; R. Kaita; M. Boaz; P. Efthimion; T. Gray; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; R. Maingi; M. Maiorano; S. Smith; D. Rodgers

    2004-07-30

    Part of the development of liquid metals as a first wall or divertor for reactor applications must involve the investigation of plasma-liquid metal interactions in a functioning tokamak. Most of the interest in liquid-metal walls has focused on lithium. Experiments with lithium limiters have now been conducted in the Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory. Initial experiments used a liquid-lithium rail limiter (L3) built by the University of California at San Diego. Spectroscopic measurements showed some reduction of impurities in CDX-U plasmas with the L3, compared to discharges with a boron carbide limiter. While no reduction in recycling was observed with the L3, which had a plasma-wet area of approximately 40 cm2, subsequent experiments with a larger area fully toroidal lithium limiter demonstrated significant reductions in both recycling and in impurity levels. Two series of experiments with the toroidal limiter have now be en performed. In each series, the area of exposed, clean lithium was increased, until in the latest experiments the liquid-lithium plasma-facing area was increased to 2000 cm2. Under these conditions, the reduction in recycling required a factor of eight increase in gas fueling in order to maintain the plasma density. The loop voltage required to sustain the plasma current was reduced from 2 V to 0.5 V. This paper summarizes the technical preparations for lithium experiments and the conditioning required to prepare the lithium surface for plasma operations. The mechanical response of the liquid metal to induced currents, especially through contact with the plasma, is discussed. The effect of the lithium-filled toroidal limiter on plasma performance is also briefly described.

  9. Testing of Liquid Lithium Limiters in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Kaita, R.; Boaz, M.; Efthimion, P.; Gray, T.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; Post-Zwicker, A.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Maingi, R.; Maiorano, M.; Smith, S.; Rodgers, D.

    2004-01-01

    Part of the development of liquid metals as a first wall or divertor for reactor applications must involve the investigation of plasma-liquid metal interactions in a functioning tokamak. Most of the interest in liquid-metal walls has focused on lithium. Experiments with lithium limiters have now been conducted in the Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory. Initial experiments used a liquid-lithium rail limiter (L3) built by the University of California at San Diego. Spectroscopic measurements showed some reduction of impurities in CDX-U plasmas with the L3, compared to discharges with a boron carbide limiter. While no reduction in recycling was observed with the L3, which had a plasma-wet area of approximately 40 cm2, subsequent experiments with a larger area fully toroidal lithium limiter demonstrated significant reductions in both recycling and in impurity levels. Two series of experiments with the toroidal limiter have now be en performed. In each series, the area of exposed, clean lithium was increased, until in the latest experiments the liquid-lithium plasma-facing area was increased to 2000 cm2. Under these conditions, the reduction in recycling required a factor of eight increase in gas fueling in order to maintain the plasma density. The loop voltage required to sustain the plasma current was reduced from 2 V to 0.5 V. This paper summarizes the technical preparations for lithium experiments and the conditioning required to prepare the lithium surface for plasma operations. The mechanical response of the liquid metal to induced currents, especially through contact with the plasma, is discussed. The effect of the lithium-filled toroidal limiter on plasma performance is also briefly described

  10. Testing of liquid lithium limiters in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Kaita, R.; Boaz, M.; Efthimion, P.; Gray, T.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; Post-Zwicker, A.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Maingi, R.; Maiorano, M.; Smith, S.; Rodgers, D.; Soukhanovskii, V.

    2004-01-01

    Part of the development of liquid metals as a first wall or divertor for reactor applications must involve the investigation of plasma-liquid metal interactions in a functioning tokamak. Most of the interest in liquid metal walls has focused on lithium. Experiments with lithium limiters have now been conducted in the Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory. Initial experiments used a liquid lithium rail limiter (L3) built by the University of California at San Diego. Spectroscopic measurements showed some reduction of impurities in CDX-U plasmas with the L3, compared to discharges with a boron carbide limiter. While no reduction in recycling was observed with the L3, which had a plasma-wet area of approximately 40 cm 2 , subsequent experiments with a larger area fully toroidal lithium limiter demonstrated significant reductions in both recycling and in impurity levels. Two series of experiments with the toroidal limiter have now been performed. In each series, the area of exposed, clean lithium was increased, until in the latest experiments, the liquid lithium plasma-facing area was increased to 2000 cm 2 . Under these conditions, the reduction in recycling required a factor of eight increase in gas fueling in order to maintain the plasma density. The loop voltage required to sustain the plasma current was reduced from 2 V to 0.5 V. This paper summarizes the technical preparations for lithium experiments and the conditioning required to prepare the lithium surface for plasma operations. The mechanical response of the liquid metal to induced currents, especially through contact with the plasma, is discussed. The effect of the lithium-filled toroidal limiter on plasma performance is also briefly described

  11. D-shaped configurations in FTU for testing liquid lithium limiter: Preliminary studies and experiments

    Directory of Open Access Journals (Sweden)

    G. Ramogida

    2017-08-01

    A possible alternative connection of the poloidal field coils in FTU is here proposed, with the aim of achieving a true X-point configuration with a magnetic single null well inside the plasma chamber and strike points on the lithium limiter. A preliminary assessment of this design allowed estimating the required power supply upgrade and showed its compatibility with the existing mechanical structure and cooling system, at least for plasmas with current up to 300 kA and flat-top duration up to 4s.

  12. Control of nitrogen concentration in liquid lithium by hot trapping

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    Nitrogen concentration in liquid lithium was controlled by the method of hot trapping. V-Ti alloy and chromium were used as nitrogen gettering materials. Chromium is known to form ternary nitride with lithium. Gettering experiments were conducted at 823 K for 0.8-2.2 Ms. Under high nitrogen concentration in liquid lithium, above 10 -2 mass%, nitrogen gettering effect of chromium was found to be larger than that of V-10at.% Ti alloy. Nitrogen gettering by chromium at 823 K reached a limit at about 6.5x10 -3 mass% of nitrogen concentration in liquid lithium. Instability of ternary nitride of chromium and lithium below this nitrogen concentration in liquid lithium was considered to be the reason for this limit. The composition of the ternary nitride that was formed in this study was considered to be Li 6 Cr(III) 3 N 5 . In addition, immersion experiments of yttrium with V-10at.% Ti alloy were performed. It was found that nitriding of yttrium in liquid lithium is controlled by nitrogen gettering effect of V-10at.% Ti alloy

  13. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  14. Kinetics of liquid lithium reaction with oxygen-nitrogen mixtures

    International Nuclear Information System (INIS)

    Gil, T.K.; Kazimi, M.S.

    1986-01-01

    A series of experiments have been conducted in order to characterize the kinetics of lithium chemical reaction with a mixture of oxygen and nitrogen. Three mixed gas compositions were used; 80% N 2 and 20% O 2 , 90% N 2 and 10% O 2 , and 95% N 2 and 5% O 2 . The reaction rate was obtained as a function of lithium temperature and the oxygen fraction. Liquid lithium temperature varied from 400 to 1100 0 C. By varying the composition, the degree of inhibition of the lithium-nitrogen reaction rate due to the presence of oxygen was observed. The results indicate that the lithium-nitrogen reaction rate depended on both the fraction of oxygen present and lithium temperature. The lithium nitride layer formed from the reaction also had a significant inhibition effect on the lithium-nitrogen reaction rate while the lithium-oxygen reaction rate was not as greatly hindered. LITFIRE, a computer code which simulates temperature and pressure history in a containment building following lithium spills, was modified by including (1) an improved model for the lithium-nitrogen reaction rate and (2) a model for the lithium-CO 2 reaction. LITFIRE was used to simulate HEDL's LC-2 and LA-5 experiments, and the predicted temperatures and pressures were in a reasonable agreement. Furthermore, LITFIRE was applied to a prototypical fusion reactor containment in order to simulate the consequences of a lithium spill accident. The result indicated that if nitrogen was used as containment building gas during the accident, the consequences of the accident would be less severe than those with air. The pressure rise in the building was found to be reduced by 50% and the maximum temperature of the combustion zone was limited to 900 0 C instead of 1200 0 C in the case of air

  15. Experimental lithium system experience

    International Nuclear Information System (INIS)

    Atwood, J.M.; Berg, J.D.; Kolowith, R.; Miller, W.C.

    1984-01-01

    The Experimental Lithium System is a test loop built to support design and operation of the Fusion Materials Irradiation Test Facility. ELS has achieved over 15,000 hours of safe and reliable operation. An extensive test program has demonstrated satisfactory performance of the system components, including an electromagnetic pump, lithium jet target, and vacuum system. Data on materials corrosion and behavior of lithium impurities are also presented. (author)

  16. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    Energy Technology Data Exchange (ETDEWEB)

    R. Kaita; R. Majeski; R. Doerner; G. Antar; M. Baldwin; R. Conn; P. Efthimion; M. Finkenthal; D. Hoffman; B. Jones; S. Krashenninikov; H. Kugel; S. Luckhardt; R. Maingi; J. Menard; T. Munsat; D. Stutman; G. Taylor; J. Timberlake; V. Soukhanovskii; D. Whyte; R. Woolley; L. Zakharov

    2002-10-15

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors.

  17. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Baldwin, M.; Conn, R.; Efthimion, P.; Finkenthal, M.; Hoffman, D.; Jones, B.; Krashenninikov, S.; Kugel, H.; Luckhardt, S.; Maingi, R.; Menard, J.; Munsat, T.; Stutman, D.; Taylor, G.; Timberlake, J.; Soukhanovskii, V.; Whyte, D.; Woolley, R.; Zakharov, L.

    2002-01-01

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors

  18. Liquid lithium limiter effects on tokamak plasmas and plasma-liquid surface interactions

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.

    2003-01-01

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors. (author)

  19. Design of liquid lithium pumps for FMIT

    International Nuclear Information System (INIS)

    Adkins, H.E.

    1983-01-01

    In the Fusion Materials Irradiation Test (FMIT) facility, a jet of liquid lithium is bombarded by accelerated deuterons to generate high energy neutrons for materials testing. The lithium system will include two electromagnetic pumps, a 750 gpm main pump and a 10 gpm auxiliary pump. The larger pump was designed and built in 1982, following extensive testing of a similar pump in the Experimental Lithium System. Design of the auxiliary pump has been completed, but fabrication has not started. This paper discusses the design considerations leading to selection of the Annular Linear Induction Pump (ALIP) concept for these applications. Design parameters, fabrication procedures, and results of pump testing are also reviewed

  20. Hydrogen extraction from liquid lithium-lead alloy by gas-liquid contact method

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Hou Jianping; Yang Guangling; Zeng Jun

    2013-01-01

    Hydrogen extraction experiment from liquid lithium-lead alloy by gas-liquid contact method has been carried out in own liquid lithium-lead bubbler (LLLB). Experimental results show that, He is more suitable than Ar as carrier gas in the filler tower. The higher temperature the tower is, the greater hydrogen content the tower exports. Influence of carrier gas flow rate on the hydrogen content in the export is jagged, no obvious rule. Although the difference between experimental results and literature data, but it is feasible that hydrogen isotopes extraction experiment from liquid lithium-lead by gas-liquid contact method, and the higher extraction efficiency increases with the growth of the residence time of the alloy in tower. (authors)

  1. Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1979-06-01

    This report describes the facilities and experiments and presents test results of a program being conducted at the hanford Engineering Development Laboratory (HEDL) in support of the fusion reactor development effort. This experimental program is designed to characterize the interaction of liquid lithium with various atmospheres, concretes, and insulating materials. Lithium-atmosphere reaction tests were conducted in normal humidity air, pure nitrogen, and carbon dioxide. These tests are described and their results, such as maximum temperatures, aerosol generated, and reaction rates measured, are reported. Initial lithium temperatures for these tests ranged between 224 0 C and 843 0 C. A lithium-concrete reaction test, using 10 kg of lithium at 327 0 C, and lithium-insulating materials reaction tests, using a few grams of lithium at 350 0 C and 600 0 C, are also described and results are presented. In addition, a lithium-aerosol filter loading test was conducted to determine the mass loading capacity of a commercial high efficiency particulate air (HEPA) filter. The aerosol was characterized, and the loading-capacity-versus-pressure-buildup across the filter is reported

  2. A new facility for studying plasma interacting with flowing liquid lithium surface

    International Nuclear Information System (INIS)

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.

    2014-01-01

    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  3. The Liquid Lithium Limiter control system on FTU

    International Nuclear Information System (INIS)

    Bertocchi, A.; Panella, M.; Vitale, V.; Sinibaldi, S.

    2006-01-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system configuration was installed for testing on the FTU tokamak. The liquid lithium flows through capillaries from a reservoir to the side facing the plasma to form a thin liquid lithium film. The system is composed of three stainless steel sections, which contain two thermocouples each. A heating system brings the Li temperature to about 200 o C allowing the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. [M. Apicella, G. Mazzitelli et al., First experiment with Lithium Limiter on FTU, 17 o International Conference on Plasma Surface Interaction in Controlled Fusion Devices, 22 - 26 May 2006, Hefei Anhui, China]. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22 TM modules and a CORBA/PHP/MySQL software architecture [A. Bertocchi, S. Podda, V. Vitale, Fusion Eng. Des. 74 (2005) 787-791]. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLab and Java environments respectively to monitor the lithium temperature coming from thermocouples - have been also implemented. The control system allows regulating the heater temperature in each section of the LLL to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During plasma operations the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink TM tool - has been realized. (author)

  4. The Liquid Lithium Limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A; Panella, M; Vitale, V [Associazione EURATOM- ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Sinibaldi, S [Rome University ' ' Tor Vergata ' ' , Informatics, Systems and Production Dept., Via del Politecnico 1, 00133 Rome (Italy)

    2006-07-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system configuration was installed for testing on the FTU tokamak. The liquid lithium flows through capillaries from a reservoir to the side facing the plasma to form a thin liquid lithium film. The system is composed of three stainless steel sections, which contain two thermocouples each. A heating system brings the Li temperature to about 200 {sup o}C allowing the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. [M. Apicella, G. Mazzitelli et al., First experiment with Lithium Limiter on FTU, 17{sup o} International Conference on Plasma Surface Interaction in Controlled Fusion Devices, 22 - 26 May 2006, Hefei Anhui, China]. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture [A. Bertocchi, S. Podda, V. Vitale, Fusion Eng. Des. 74 (2005) 787-791]. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLab and Java environments respectively to monitor the lithium temperature coming from thermocouples - have been also implemented. The control system allows regulating the heater temperature in each section of the LLL to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During plasma operations the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized. (author)

  5. Effects of Large Area Liquid Lithium Limiters on Spherical Torus Plasmas

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Boaz, M.; Efthimion, P.; Gettelfinger, G.; Gray, T.; Hoffman, D.; Jardin, S.; Kugel, H.; Marfuta, P.; Munsat, T.; Neumeyer, C.; Raftopoulos, S.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Delgado-Aparicio, L.; Seraydarian, R.P.; Antar, G.; Doerner, R.; Luckhardt, S.; Baldwin, M.; Conn, R.W.; Maingi, R.; Menon, M.; Causey, R.; Buchenauer, D.; Ulrickson, M.; Jones, B.; Rodgers, D.

    2004-01-01

    Use of a large-area liquid lithium surface as a first wall has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter

  6. Effects of large area liquid lithium limiters on spherical torus plasmas

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Boaz, M.; Efthimion, P.; Gettelfinger, G.; Gray, T.; Hoffman, D.; Jardin, S.; Kugel, H.; Marfuta, P.; Munsat, T.; Neumeyer, C.; Raftopoulos, S.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Delgado-Aparicio, L.; Seraydarian, R.P.; Antar, G.; Doerner, R.; Luckhardt, S.; Baldwin, M.; Conn, R.W.; Maingi, R.; Menon, M.; Causey, R.; Buchenauer, D.; Ulrickson, M.; Jones, B.; Rodgers, D.

    2005-01-01

    Use of a large-area liquid lithium surface as a limiter has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter

  7. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-01-01

    of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid

  8. The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Majeski, R.; Kugel, H.; Kaita, R.; Avasarala, S.; Bell, M.G.; Bell, R.E.; Berzak, L.; Beiersdorfer, P.; Gerhardt, S.P.; Gransted, E.; Gray, T.; Jacobson, C.; Kallman, J.; Kaye, S.; Kozub, T.; LeBlanc, B.P.; Lepson, J.; Lundberg, D.P.; Maingi, R.; Mansfield, D.; Paul, S.F.; Pereverzev, G.V.; Schneider, H.; Soukhanovskii, V.; Strickler, T.; Stotler, D.; Timberlake, J.; Zakharov, L.E.

    2010-01-01

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both L- and H-mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500-600 degrees C to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to Operate at reactor-relevant temperatures. The engineering of LTX will be discussed.

  9. Experimental system design of liquid lithium-lead alloy bubbler for DFLL-TBM

    International Nuclear Information System (INIS)

    Xie Bo; Li Junge; Xu Shaomei; Weng Kuiping

    2011-01-01

    The liquid lithium-lead alloy bubbler is a very important composition in the tritium unit of Chinese Dual-Functional Lithium Lead Test Blanket Module (DFLL-TBM). In order to complete the construction and run of the bubbler experimental system,overall design of the system, main circuit design and auxiliary system design have been proposed on the basis of theoretical calculations for the interaction of hydrogen isotope with lithium-lead alloy and experiment for hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle. The key of this design is gas-liquid exchange packed column, to achieve the measurement and extraction of hydrogen isotopes from liquid lithium-lead alloy. (authors)

  10. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Deshpande, Anirudh; Banerjee, Soumik; Dutta, Prashanta

    2015-01-01

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy + (N-methyl-N-propyl pyrrolidinium) cation and TFSI − (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  11. Spectroscopic measurements of lithium influx from an actively water-cooled liquid lithium limiter on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Apruzzese, G.M., E-mail: gerarda.apruzzese@enea.it; Apicella, M.L.; Maddaluno, G.; Mazzitelli, G.; Viola, B.

    2017-04-15

    Since 2006, experiments using a liquid lithium limiter (LLL) were successfully performed on FTU, pointing out the problem of the quantity of lithium in the plasma, especially in conditions of strong evaporation due to the high temperature of limiter surface. In order to avoid the strong evaporation it is necessary to control the temperature by removing the heat from the limiter during the plasma exposure. To explore this issue a new actively cooled lithium limiter (CLL) has been installed and tested in FTU. Suitable monitors to detect the presence of lithium in the plasma are the spectroscopic diagnostics in the visible range that permit to measure the flux of lithium, coming from the limiter surface, through the brightness of the LiI spectral lines. For this aim an Optical Multichannel Analyser (OMA) spectrometer and a single wavelength impurities monitor have been used. The analysis of the Li influx signals has permitted to monitor the effects of interaction between the plasma and the limiter connected to the thermal load. Particular attention has been paid on the possible occurrence of sudden rise of the signals, which is an index of a strong interaction that could lead to a disruption. On the other hand, the appearance of significant signals gives useful indication if the interaction with the plasma has taken place.

  12. Results and future plans of the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Schmitt, J.C.; Abrams, T.; Baylor, L.R.; Berzak Hopkins, L.; Biewer, T.; Bohler, D.; Boyle, D.; Granstedt, E.; Gray, T.; Hare, J.; Jacobson, C.M.; Jaworski, M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D.P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.

    2013-01-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with the unique capability of studying the low-recycling regime by coating nearly 90% of the first wall with lithium in either solid or liquid form. Several grams of lithium are evaporated onto the plasma-facing side of the first wall. Without lithium coatings, the plasma discharge is limited to less than 5 ms and only 10 kA of plasma current, and the first wall acts as a particle source. With cold lithium coatings, plasma discharges last up to 20 ms with plasma currents up to 70 kA. The lithium coating provides a low-recycling first wall condition for the plasma and higher fueling rates are required to realize plasma densities similar to that of pre-lithium walls. Traditional puff fueling, supersonic gas injection, and molecular cluster injection (MCI) are used. Liquid lithium experiments will begin in 2012

  13. Results and future plans of the Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J.C., E-mail: jschmitt@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Baylor, L.R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Berzak Hopkins, L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Biewer, T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bohler, D.; Boyle, D.; Granstedt, E. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Gray, T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hare, J.; Jacobson, C.M.; Jaworski, M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D.P.; Lucia, M. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Majeski, R.; Merino, E. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); and others

    2013-07-15

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with the unique capability of studying the low-recycling regime by coating nearly 90% of the first wall with lithium in either solid or liquid form. Several grams of lithium are evaporated onto the plasma-facing side of the first wall. Without lithium coatings, the plasma discharge is limited to less than 5 ms and only 10 kA of plasma current, and the first wall acts as a particle source. With cold lithium coatings, plasma discharges last up to 20 ms with plasma currents up to 70 kA. The lithium coating provides a low-recycling first wall condition for the plasma and higher fueling rates are required to realize plasma densities similar to that of pre-lithium walls. Traditional puff fueling, supersonic gas injection, and molecular cluster injection (MCI) are used. Liquid lithium experiments will begin in 2012.

  14. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX

    International Nuclear Information System (INIS)

    Tritz, Kevin; Finkenthal, Michael; Stutman, Dan; Bell, Ronald E; Boyle, Dennis; Kaita, Robert; Kozub, Tom; Lucia, Matthew; Majeski, Richard; Merino, Enrique; Schmitt, John; Beiersdorfer, Peter; Clementson, Joel; Kubota, Shigeyuki

    2014-01-01

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in the form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. These new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments. (paper)

  15. Investigations on interactions between the flowing liquid lithium limiter and plasmas

    International Nuclear Information System (INIS)

    Ren, J.; Zuo, G.Z.; Hu, J.S.; Sun, Z.; Li, J.G.; Zakharov, L.E.; Ruzic, D.N.; Xu, W.Y.

    2016-01-01

    Two different designs of flowing liquid lithium limiter were first tested for power exhaust and particle removal in HT-7 in 2012 autumn campaign. During the experiments, the reliability and compatibility of the limiters within Tokamak were experimentally demonstrated, and some positive results were achieved. It was found that the flowing liquid lithium limiter was effective for suppressing H concentration and led to a low ratio of H/(H + D). O impurity was slightly decreased by using limiters as well as when using a Li coating. A significant increase of the wall retention ratio was also observed which resulted from the outstanding D particles pumping ability of flowing liquid lithium limiters. The strong interaction between plasma and lithium surface could cause lithium ejection into plasma and lead to disruptions. The stable plasmas produced by uniform Li flow were in favor of lithium control. While the limiters were applied with a uniform Li flow, the normal plasma was easy to be obtained, and the energy confinement time increased from ∼0.025 s to 0.04 s. Furthermore, it was encouraging to note that the application of flowing liquid lithium limiters could further improve the confinement of plasma by ∼10% on the basis of Li coating. These remarkable results will help for the following design of flowing liquid lithium limiter in EAST to improve the plasma operation.

  16. Control of beryllium-7 in liquid lithium

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Brehm, W.F.; Baldwin, D.L.; Bevan, J.L.

    1978-12-01

    Radiation fields created by the production of 7 Be in lithium of the Fusion Materials Irradiation Test (FMIT) Facility can be sufficiently high to prevent contact maintenance of system components. Preliminary experiments have shown that 7 Be will adhere strongly to the FMIT piping and components and a good control method for 7 Be must be developed. The initial experiments have been conducted in static stainless steel capsules and a Modified Thermal Convection Loop (MTCL). The average lithium film thickness on stainless steel was found to be 11 μm in the temperature range 495 0 to 571 0 K from the capsule experiments. The diffusion coefficient for 7 Be in stainless steel at 543 0 K was calculated to be 5.31 x 10 -15 cm 2 /sec. The cold leg of the MTCL picked up much of the 7 Be activity released into the loop. The diffusion trap, located in the cold leg of the MTCL, was ineffective in removing 7 Be from lithium, at the very slow flow rates ( -4 m 3 /s) used in the MTCL. Pure iron has been shown to be superior to coblat and nickel as a getter material for 7 Be

  17. Hydrogen and helium recycling from stirred liquid lithium under steady state plasma bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Yoshi, E-mail: hirooka.yoshihiko@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Zhou, Haishan [The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Ono, Masa [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2014-12-15

    For improved core performance via edge plasma-wall boundary control, solid and liquid lithium has been used as a plasma-facing material in a number of confinement experiments over the past several decades. Unfortunately, it is unavoidable that lithium is saturated in the surface region with implanted hydrogenic species as well as oxygen-containing impurities. For steady state operation, a flowing liquid lithium divertor with forced convection would probably be required. In the present work, the effects of liquid stirring to simulate forced convection have been investigated on the behavior of hydrogen and helium recycling from molten lithium at temperatures up to ∼350 °C. Data indicate that liquid stirring reactivates hydrogen pumping via surface de-saturation and/or uncovering impurity films, but can also induce helium release via surface temperature change.

  18. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Boaz, M.; Efthimion, P.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; Post-Zwicker, A.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Antar, G.; Doerner, R.; Luckhardt, S.; Maingi, R.; Maiorano, M.; Smith, S.

    2002-01-01

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance

  19. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    Energy Technology Data Exchange (ETDEWEB)

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  20. Lithium conducting ionic liquids based on lithium borate salts

    Energy Technology Data Exchange (ETDEWEB)

    Zygadlo-Monikowska, E.; Florjanczyk, Z.; Sluzewska, K.; Ostrowska, J.; Langwald, N.; Tomaszewska, A. [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2010-09-15

    The simple reaction of trialkoxyborates with butyllithium resulted in the obtaining of new lithium borate salts: Li{l_brace}[CH{sub 3}(OCH{sub 2}CH{sub 2}){sub n}O]{sub 3}BC{sub 4}H{sub 9}{r_brace}, containing oxyethylene substituents (EO) of n=1, 2, 3 and 7. Salts of n {>=} 2 show properties of room temperature ionic liquid (RTIL) of low glass transition temperature, T{sub g} of the order from -70 to -80 C. The ionic conductivity of the salts depends on the number of EO units, the highest conductivity is shown by the salt with n = 3; in bulk its ambient temperature conductivity is 2 x 10{sup -5} S cm{sup -1} and in solution in cyclic propylene sulfite or EC/PC mixture, conductivity increases by an order of magnitude. Solid polymer electrolytes with borate salts over a wide concentration range, from 10 to 90 mol.% were obtained and characterized. Three types of polymeric matrices: poly(ethylene oxide) (PEO), poly(trimethylene carbonate) (PTMC) and two copolymers of acrylonitrile and butyl acrylate p(AN-BuA) were used in them as polymer matrices. It has been found that for systems of low salt concentration (10 mol.%) the best conducting properties were shown by solid polymer electrolytes with PEO, whereas for systems of high salt concentration, of the polymer-in-salt type, good results were achieved for PTMC as polymer matrix. (author)

  1. Operational Characteristics of Liquid Lithium Divertor in NSTX

    Science.gov (United States)

    Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2010-11-01

    Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

  2. Corrosion of ferrous alloys in nitrogen contaminated liquid lithium

    International Nuclear Information System (INIS)

    Olson, D.L.; Bradley, W.L.

    1976-01-01

    Liquid lithium penetration of 304L stainless steel and Armco iron grain boundaries has been studied. The penetration kinetics for the 304L stainless steel was found to be diffusion controlled. The measured temperature dependent delay time has been associated with the initial formation of the corrosion product at the grain boundary. Nitrogen in the stainless steel or the liquid lithium has been found to accelerate the rate of attack without changing the apparent activation energy. Grain boundary grooving of Armco iron in liquid lithium indicates that the controlling mass transport is also through a corrosion product present as a surface film. Stresses as small as 12 MPa have been found to give rise to a fifty-fold increase in the rate of penetration of Armco iron by liquid lithium

  3. Liquid Crystals of Lithium Dodecylbenzenesulfonate for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Kuzmin, Andrey Vasil’evich; Yurtov, Evgeny V.

    2016-01-01

    Ionic lyotropic liquid crystals based on lithium dodecylbenzenesulfonate were used as electrolytes for electric double layer capacitors with carbon fibrous electrodes. The capacitors were tasted by cyclic voltammetry, galvanostatic charge and discharge, and impedance spectroscopy. The highest specific capacitance was achieved for electrical double layer capacitor equipped with ionic lyotropic liquid crystal of lithium dodecylbenzenesulfonate 35 wt% in water. The specific capacitance of capacitor was calculated from galvanostatic discharge curves – 15 F/g of carbon fibrous material

  4. Extraction of tritium from liquid lithium by permeation

    International Nuclear Information System (INIS)

    Alire, R.M.

    1978-01-01

    This paper assesses a method for extracting tritium from liquid lithium for specific application to the conceptual laser fusion reactor that uses a continuous lithium ''waterfall.'' The tritium diffuses through a refractory metal that contains a getter and is then stored in a hydride-forming alloy. There are various uncertainties with this method including helium-4 extraction, unknown impurities that may accumulate in liquid lithium, the effects of these impurities on tritium separation, and the maintenance of tritium-contaminated equipment. Our study indicates that major tritium losses will occur during equipment maintenance rather than as a result of permeation losses through the primary vessel

  5. Preparation and transport properties of novel lithium ionic liquids

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Tabata, Sei-Ichiro; Watanabe, Masayoshi

    2004-01-01

    Novel lithium salts of borates having two electron-withdrawing groups (either 1,1,1,3,3,3-hexafluoro-2-propoxy or pentafluorophenoxy group) and two methoxy-oligo(ethylene oxide) groups (number of repeating unit: n = 3, 4, 7.2) were prepared by successive substitution-reactions from LiBH 4 . The obtained lithium salts were clear and colorless liquids at room temperature. The density, thermal property, viscosity, and ionic conductivity were measured for the lithium ionic liquids. The pulsed-gradient spin-echo NMR (PGSE-NMR) method was used to independently determine self-diffusion coefficients of the lithium cation ( 7 Li NMR) and the anion ( 19 F NMR) in the bulk. The ionic conductivity of the new lithium salts was 10 -5 to 10 -4 S cm -1 at 30 deg. C, which was lower than that of typical ionic liquids by two orders of magnitude. However, the degree of self-dissociation of the lithium ionic liquids; the ratio of the molar conductivity determined by the complex impedance method to that calculated from the self-diffusion coefficients and the Nernst-Einstein equation, ranged from 0.1 to 0.4, which are comparable values to those of a highly dissociable salt in an aprotic polar solvent and of typical ionic liquids. The main reason for the meager conductivity was high viscosities of the lithium ionic liquids. It should be noted that the lithium ionic liquids have self-dissociation ability and conduct the ions in the absence of organic solvents

  6. Plasma interaction with liquid lithium: Measurements of retention and erosion

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.J. E-mail: mbaldwin@ferp.ucsd.edu; Doerner, R.P.; Luckhardt, S.C.; Seraydarian, R.; Whyte, D.G.; Conn, R.W

    2002-11-01

    This paper reports on recent studies of high flux deuterium and helium plasma interaction with liquid lithium in the Pisces-B edge plasma simulator facility. Deuterium retention is explored as a function of plasma ion fluence in the range 6x10{sup 19}-4x10{sup 22} atoms cm{sup -2} and exposure temperatures of 523-673 K. The results are consistent with full uptake of the deuterium ions incident on the liquid metal surface, independent of the temperature of the liquid lithium. Full uptake continues until the sample is volumetrically converted to lithium deuteride. Helium retention is not observed for fluences up to 5x10{sup 21} He atoms cm{sup -2}. Measurements of the erosion of lithium are found to be consistent with physical sputtering for the lithium solid phase. However, a mechanism that provides an increased evaporative-like yield and is related to ion impact events on the surface, dominates during the liquid phase leading to an enhanced loss rate for liquid lithium that is greater than the expected loss rate due to evaporation at elevated temperatures. Further, the material loss rate is found to depend linearly on the incident ion flux, even at very high temperature.

  7. Chemical processing of liquid lithium fusion reactor blankets

    International Nuclear Information System (INIS)

    Weston, J.R.; Calaway, W.F.; Yonco, R.M.; Hines, J.B.; Maroni, V.A.

    1979-01-01

    A 50-gallon-capacity lithium loop constructed mostly from 304L stainless steel has been operated for over 6000 hours at temperatures in the range from 360 to 480 0 C. This facility, the Lithium Processing Test Loop (LPTL), is being used to develop processing and monitoring technology for liquid lithium fusion reactor blankets. Results of tests of a molten-salt extraction method for removing impurities from liquid lithium have yielded remarkably good distribution coefficients for several of the more common nonmetallic elements found in lithium systems. In particular, the equilibrium volumetric distribution coefficients, D/sub v/ (concentration per unit volume of impurity in salt/concentration per unit volume of impurity in lithium), for hydrogen, deuterium, nitrogen and carbon are approx. 3, approx. 4, > 10, approx. 2, respectively. Other studies conducted with a smaller loop system, the Lithium Mini-Test Loop (LMTL), have shown that zirconium getter-trapping can be effectively used to remove selected impurities from flowing lithium

  8. Factors influencing the thermodynamic isotope effect of lithium in polyetherlithium liquid-liquid extraction systems

    International Nuclear Information System (INIS)

    Fu Lian; Fang Shengqiang; Yao Zhongqi; Gao Zhichang; Tan Ganzhu

    1989-01-01

    The published data up to now concerning polyether-lithium liquid-liquid extraction systems, can be summarized by the equation, ε p = (α-1)/[1 + 0.46(1-P)], where α denotes the isotope separation factor; P - the ratio of the lithium concentration in the organic phase to the initial concentration of crown ethers; ε p -the enrichment coefficient as P = 100%. Based on the changes in ε p , P, α and D(distribution ratio), the functions of factors such as polyether's structure, polyether's side group, polyether's concentration, organic solvent, negative ion of lithium salt and lithium salt's concentration, are discussed and reported

  9. Spectral emission measurements of lithium on the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gray, T. K.; Biewer, T. M.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Boyle, D. P.; Granstedt, E. M.; Kaita, R.; Majeski, R. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-10-15

    There has been a long-standing collaboration between ORNL and PPPL on edge and boundary layer physics. As part of this collaboration, ORNL has a large role in the instrumentation and interpretation of edge physics in the lithium tokamak experiment (LTX). In particular, a charge exchange recombination spectroscopy (CHERS) diagnostic is being designed and undergoing staged testing on LTX. Here we present results of passively measured lithium emission at 5166.89 A in LTX in anticipation of active spectroscopy measurements, which will be enabled by the installation of a neutral beam in 2013. Preliminary measurements are made in transient LTX plasmas with plasma current, I{sub p} < 70 kA, ohmic heating power, P{sub oh}{approx} 0.3 MW and discharge lifetimes of 10-15 ms. Measurements are made with a short focal length spectrometer and optics similar to the CHERS diagnostics on NSTX [R. E. Bell, Rev. Sci. Instrum. 68(2), 1273-1280 (1997)]. These preliminary measurements suggest that even without the neutral beam for active spectroscopy, there is sufficient passive lithium emission to allow for line-of-sight profile measurements of ion temperature, T{sub i}; toroidal velocity and v{sub t}. Results show peak T{sub i} = 70 eV and peak v{sub t} = 45 km/s were reached 10 ms into the discharge.

  10. Mechanical Design of the NSTX Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    R. Ellis, R. Kaita, H. Kugel, G. Paluzzi, M. Viola and R. Nygren

    2009-02-19

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuumcompatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  11. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  12. Mechanical Design of the NSTX Liquid Lithium Divertor

    International Nuclear Information System (INIS)

    Ellis, R.; Kaita, R.; Kugel, H.; Paluzzi, G.; Viola, M.; Nygren, R.

    2009-01-01

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuum compatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  13. Performance Projections For The Lithium Tokamak Experiment (LTX)

    International Nuclear Information System (INIS)

    Majeski, R.L.; Berzak, T.; Gray, R.; Kaita, T.; Kozub, F.; Levinton, D.P.; Lundberg, J.; Manickam, G.V.; Pereverzev, K.; Snieckus, V.; Soukhanovskii, J.; Spaleta, D.; Stotler, T.; Strickler, J.; Timberlake, J.; Zakharov, L.; Zakharov, Y.

    2009-01-01

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fueling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized

  14. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying; Das, Shyamal K.; Moganty, Surya S.; Archer, Lynden A.

    2012-01-01

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes

  15. Trace hydrogen extraction from liquid lithium tin alloy

    International Nuclear Information System (INIS)

    Xie Bo; Hu Rui; Xie Shuxian; Weng Kuiping

    2010-01-01

    In order to finish the design of tritium extraction system (TES) of fusion fission hybrid reactor (FFHR) tritium blanket, involving the dynamic mathematical model of liquid metal in contact with a gaseous atmosphere, approximate mathematical equation of tritium in lithium tin alloy was deduced. Moreover, carrying process used for trace hydrogen extraction from liquid lithium tin alloy was investigated with hydrogen being used to simulate tritium in the study. The study results indicate that carrying process is effective way for hydrogen extraction from liquid lithium tin alloy, and the best flow velocity of carrier gas is about 4 L/min under 1 kg alloy temperatures and carrying numbers are the main influencing factors of hydrogen number. Hydrogen extraction efficiency can reach 85% while the alloy sample is treated 6 times at 823 K. (authors)

  16. Results of neutron irradiation of liquid lithium saturated with deuterium

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Mazzitelli, Giuseppe

    2017-01-01

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(−144/RT). • The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10 −13 cm −2 s −1 . The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(-144/RT). The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  17. The liquid lithium limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A. [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)], E-mail: bertocchi@frascati.enea.it; Di Donna, M [Department of Informatics, Systems and Productions, University of Rome Tor Vergata, Rome (Italy); Panella, M; Vitale, V [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)

    2007-10-15

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB{sup TM} and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized.

  18. The liquid lithium limiter control system on FTU

    International Nuclear Information System (INIS)

    Bertocchi, A.; Di Donna, M.; Panella, M.; Vitale, V.

    2007-01-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22 TM modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB TM and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink TM tool - has been realized

  19. Characterization of fueling NSTX H-mode plasmas diverted to a liquid lithium divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R., E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Kugel, H.W.; Abrams, T. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, West Lafayette, IN 47907 (United States); Bell, M.G.; Bell, R.E.; Diallo, A.; Gerhardt, S.P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, IN 47907 (United States); Jaworski, M.A., E-mail: mjaworsk@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Kallman, J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mansfield, D. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Ono, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); and others

    2013-07-15

    Deuterium fueling experiments were conducted with the NSTX Liquid Lithium Divertor (LLD). Lithium evaporation recoated the LLD surface to approximate flowing liquid Li to sustain D retention. In the first experiment with the diverted outer strike point on the LLD, the difference between the applied D gas input and the plasma D content reached very high values without disrupting the plasma, as would normally occur in the absence of Li pumping, and there was also little change in plasma D content. In the second experiment, constant fueling was applied, as the LLD temperature was varied to change the surface from solid to liquid. The D retention was relatively constant, and about the same as that for solid Li coatings on graphite, or twice that achieved without Li PFC coatings. Contamination of the LLD surface was also possible due to compound formation and erosion and redeposition from carbon PFCs.

  20. Liquid jet experiments: relevance to inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1981-01-01

    In order to try to find a reactor design which offered protection against neutron damage, studies were undertaken at LLNL (the Lawrence Livermore National Laboratory) of self-healing, renewable liquid-wall reactor concepts. In conjuction with these studies, were done a seris of small-scale aer jet experiments were done over the past several years at UCD (University of California, Davis Campus) to simulate the behavior of liquid lithium (or lithium-lead) jets in these liquid-wall fusion reactor concepts. Extropolating the results of these small-scale experiments to the large-scale lithium jets, tentatively concluded that the lithium jet can be re-established after the microexplosion, and with careful design the jets should not breakup due to instabilities during the relatively quiscent period between MICROEXPLOSIONS

  1. CDX-U Operation with a Large Area Liquid Lithium Limiter

    International Nuclear Information System (INIS)

    R. Majeski; M. Boaz; D. Hoffman; B. Jones; R. Kaita; H. Kugel; T. Munsat; J. Spaleta; V. Soukhanovskii; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R.W. Conn; M. Finkenthal; D. Stutman; R. Maingi; M. Ulrickson

    2002-01-01

    The Current Drive experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory has begun experiments with a fully toroidal liquid lithium limiter. CDX-U is a compact [R = 34 cm, a = 22 cm, B(subscript)toroidal = 2 kG, I(subscript)P = 100 kA, T(subscript)e(0) ∼ 100 eV, n(subscript)e(0) ∼ 5 x 10 19 m -3 ] short-pulse (<25 msec) spherical torus with extensive diagnostics. The limiter, which consists of a shallow circular stainless steel tray of radius 34 cm and width 10 cm, can be filled with lithium to a depth of a few millimeters, and forms the lower limiting surface for the discharge. Heating elements beneath the tray are used to liquefy the lithium prior to the experiment. Surface coatings are evident on part of the lithium. Despite the surface coatings, tokamak discharges operated in contact with the lithium-filled tray show evidence of reduced impurities and recycling. The reduction in recycling is largest when the lithium is liquefied by heating to 250 degrees Celsius

  2. The solubility of carbon in low-nitrogen liquid lithium

    International Nuclear Information System (INIS)

    Yonco, R.M.; Homa, M.I.

    1986-01-01

    The solubility of carbon in liquid lithium containing 0 C and compared with the solubility in lithium containing proportional 2600 wppm nitrogen in that same temperature range. A direct sampling method was employed in which filtered samples of the saturated solution were taken at randomly selected temperatures. The entire sample was analyzed for carbon by the acetylene evolution method. The analytical method was examined critically and it was found that (1) all of the carbon in solution, including carbon introduced as lithium cyanamide is detected and (2) ethylene and ethane must also be measured and included with the acetylene to get complete recovery of the carbon content of the sample. The solubility of carbon in low-nitrogen lithium can be expressed by the equations ln S=6.731-8617T -1 and log Ssup(*)=7.459-3740T -1 , where S is the mole percent Li 2 C 2 and Ssup(*) is in weight parts per million carbon. The presence of proportional 2600 wppm nitrogen does not affect the solubility of carbon in lithium at temperatures above proportional 350 0 C, but at lower temperatures it increased the solubility by as much as an order of magnitude compared to the solubility in low-nitrogen lithium. (orig.)

  3. Deuterium trapping in liquid lithium irradiated by deuterium plasma

    International Nuclear Information System (INIS)

    Pisarev, A.; Moshkunov, K.; Vizgalov, I.; Gasparyan, Yu.

    2013-01-01

    Liquid lithium was irradiated by deuterium plasma to a low fluence of 10 22 –10 23 D/m 2 , cooled down to room temperature, and then slowly heated. The temperature and release rate were measured during heating. Two plateaus on the temperature–time dependence were observed at 180 °C and 660 °C. The first one corresponds to melting of Li and the second one – either to melting or to decomposition of solid LiD. Features of deuterium release in TDS were interpreted in terms of decomposition of lithium deuterides formed during plasma irradiation

  4. Lithium-lead/water interaction. Large break experiments

    International Nuclear Information System (INIS)

    Savatteri, C.; Gemelli, A.

    1991-01-01

    One current concept in fusion blanket module design is to utilize water as coolant and liquid lithium-lead as breeding/neutron-multiplier material. Considering the possibility of certain off-normal events, it is possible that water leakage into the liquid metal may occur due to a tube rupture. The lithium-lead/water contact can lead to a thermal and chemical reaction which should provoke an intolerable pressure increase in the blanket module. For realistic simulation of such in-blanket events, the Blanket Safety Test (BLAST) facility has been built. It simulates the transient event by injecting subcooled water under high pressure into a stagnant pool of about 500 kg liquid Pb-17Li. Eight fully instrumented large break tests were carried out under different conditions. The aim of the experiments is to study the chemical and thermal process and particularly: The pressurization history of the reaction vessel, the formation and deposition of the reaction products, the identification and propagation of the reaction zones and the temperature transient in the liquid metal. In this paper the results of all tests performed are presented and discussed. (orig.)

  5. Tritium breeding experiments with lithium titanate in thermal-type mockups

    International Nuclear Information System (INIS)

    Klix, Axel; Takahashi, Akito; Ochiai, Kentaro; Nishitani, Takeo

    2004-01-01

    Lithium titanate, an advanced tritium breeding material, is currently investigated in integral mock-up experiments at FNS. A method was developed which allows to measure low tritium concentrations directly in this material. The local tritium production rate was obtained by small lithium titanate pellet detectors inserted into the breeding layers which are dissolved after irradiation of the assemblies, and the accumulated tritium was counted by liquid scintillation techniques. The measurement method was applied in mock0-up experiments with candidate materials for the future DEMO reactor breeding blanket. Experimental assemblies consisted of sheets of low activation ferritic steel F82H, lithium titanate, and berylium. Tritium production rate profiles were obtained and compared with results from calculations with the Monte Carlo neutron transport code MCNP-4C. In case of the mock-ups with 95% enriched lithium titanate, the C/E ratios were within the error estimate while larger discrepancies were observed in case of 40% enriched lithium titanate. (author)

  6. Electrical detection of liquid lithium leaks from pipe joints

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2014-11-15

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  7. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.

    Science.gov (United States)

    Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano

    2015-03-18

    In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.

  8. Results of neutron irradiation of liquid lithium saturated with deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Mazzitelli, Giuseppe [ENEA, RC Frascati, Frascati (Italy)

    2017-04-15

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(−144/RT). • The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10{sup −13} cm{sup −2} s{sup −1}. The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(-144/RT). The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  9. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  10. A new versatile facility: Vehicle-1 for innovative PFC concepts evaluation and its first experiments on hydrogen recycling from solid and liquid lithium

    International Nuclear Information System (INIS)

    Hirooka, Y.; Ohgaki, H.; Ohtsuka, Y.; Nishikawa, M.

    2005-01-01

    A new plasma facility: Vehicle-1 has been built for the evaluation of innovative plasma-facing component concepts. This facility can conduct experiments in such a way that standing liquids in a tray are exposed to vertically flowing plasmas, or that flowing liquids on a slope are bombarded with horizontally directed plasmas. Vehicle-1 can generate steady state hydrogen plasmas with densities of the order of 10 10 cm -3 and electron temperatures around 4 eV. Hydrogen recycling behavior has been observed in Vehicle-1, and the Arrhenius plot of rate constants exhibits a break at around 300 deg. C. The activation energies are -0.0096 eV and 0.17 eV, respectively, below and above the break. To understand the kinetics of hydrogen recycling, particles sticking coefficients have been measured. Results indicate that at temperatures below the break the sticking process appears to be rate-limiting, whereas above the break surface recombination is important. The sticking coefficients for plasma species have been found to be orders of magnitude larger than those for hydrogen molecules

  11. Solutions of group IV elements in liquid lithium

    International Nuclear Information System (INIS)

    Dadd, A.T.; Hubberstey, P.; Roberts, P.G.

    1982-01-01

    The solubilities of tin (0.00 = 22 Sn 5 . A simple thermochemical cycle is used to demonstrate that, whereas carbon dissolves endothermically in both liquid lithium and liquid sodium, the heavier Group IV elements dissolve exothermically. A similar cycle is used to derive solvation enthalpies (for the neutral gaseous species) for all Group IV elements in the two solvents. The trend in solvation enthalpy: C > Si > Ge > Sn > Pb is indicative of a diminishing affinity of solvent for solute and is attributed to the increasing metallic character of the solute as the Group is descended. (author)

  12. Advanced Liquid Feed Experiment

    Science.gov (United States)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  13. A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes

    Science.gov (United States)

    Lourenço, Tuanan C.; Zhang, Yong; Costa, Luciano T.; Maginn, Edward J.

    2018-05-01

    Classical molecular dynamics simulations were performed on twelve different ionic liquids containing aprotic heterocyclic anions doped with Li+. These ionic liquids have been shown to be promising electrolytes for lithium ion batteries. Self-diffusivities, lithium transference numbers, densities, and free volumes were computed as a function of lithium concentration. The dynamics and free volume decreased with increasing lithium concentration, and the trends were rationalized by examining the changes to the liquid structure. Of those examined in the present work, it was found that (methyloxymethyl)triethylphosphonium triazolide ionic liquids have the overall best performance.

  14. Extremely low recycling and high power density handling in CDX-U lithium experiments

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Gray, T.; Kugel, H.; Lynch, T.; Maingi, R.; Mansfield, D.; Soukhanovskii, V.; Spaleta, J.; Timberlake, J.; Zakharov, L.

    2007-01-01

    The mission of the Current Drive eXperiment-Upgrade (CDX-U) spherical tokamak is to investigate lithium as a plasma-facing component (PFC). The latest CDX-U experiments used a combination of a toroidal liquid lithium limiter and lithium wall coatings applied between plasma shots. Recycling coefficients for these plasmas were deduced to be 30% or below, and are the lowest ever observed in magnetically-confined plasmas. The corresponding energy confinement times showed nearly a factor of six improvement over discharges without lithium PFC's. An electron beam (e-beam) for evaporating lithium from the toroidal limiter was one of the techniques used to create lithium wall coatings in CDX-U. The evaporation was not localized to the e-beam spot, but occurred only after the entire volume of lithium in toroidal limiter was liquefied. This demonstration of the ability of lithium to handle high heat loads can have significant consequences for PFC's in future burning plasma devices

  15. Control of the nitrogen concentration in liquid lithium by the hot trap method

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    The nitrogen concentration in liquid lithium was controlled by the hot-trap method. Titanium, vanadium and a V-Ti alloy were used as nitrogen gettering materials. Gettering experiments were conducted at 673, 773 and 823 K for 0.4-2.8 Ms. After immersion, the nitrogen concentration increased in titanium and V-Ti were tested at 823 K. Especially the nitrogen gettering effect by the V-10at.%Ti alloy was found to be large. Nitrogen was considered to exist mainly as solid solution in the V-10at.%Ti alloy. The decrease of the nitrogen concentration in liquid lithium by the V-Ti gettering was also confirmed

  16. Electromagnetic pumping of liquid lithium in inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Baker, R.S.; Blink, J.A.; Tessier, M.J.

    1983-01-01

    The basic operating principles and geometries of ten electromagnetic pumps are described. Two candidate pumps, the annular-linear-induction pump and the helical-rotor electromagnetic pump, are compared for possible use in a full-scale liquid-lithium inertial confinement fusion reactor. A parametric design study completed for the helical-rotor pump is shown to be valid when applied to an experimental sodium pump. Based upon the preliminary HYLIFE requirements for a lithium flow rate per pump of 8.08 m 3 /s at a head of 82.5 kPa, a complete set of 70 variables are specified for a helical-rotor pump with either a normally conducting or a superconducting winding. The two alternative designs are expected to perform with efficiencies of 50 and 60%, respectively

  17. Advantages and Challenges of Radiative Liquid Lithium Divertor

    Science.gov (United States)

    Ono, Masayuki

    2017-10-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid Li divertor (RLLD) concept and its variant, the active liquid Li divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest Li-loop could provide a possible solution for the outstanding fusion reactor technology issues such as divertor heat flux mitigation and real time dust removal, while potentially improving the reactor plasma performance. Laboratory tests are also planned to investigate the Li-T recover efficiency and other relevant research topics of the RLLD. This work supported by DoE Contract No. DE-AC02-09CH11466.

  18. Response of NSTX liquid lithium divertor to high heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Kallman, J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Foley, E.L. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kugel, H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Levinton, F. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2013-07-15

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ∼1.5 MW/m{sup 2} for 1–3 s. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the “bare” sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface.

  19. Measurement of free-surface of liquid metal lithium jet for IFMIF target

    International Nuclear Information System (INIS)

    Hiroo Kondo; Nobuo Yamaoka; Takuji Kanemura; Seiji Miyamoto; Hiroshi Horiike; Mizuho Ida; Hiroo Nakamura; Izuru Matsushita; Takeo Muroga

    2006-01-01

    This reports an experimental study on flow characteristics of a lithium target flow of International Fusion Materials Irradiation Facility (IFMIF). Surface shapes of the target were tried to measure by pattern projection method that is a three dimensional image measurement method. Irregularity of the surface shape caused by surface wakes was successfully measured by the method. IFMIF liquid lithium target is formed a flat plane jet of 25 mm in depth and 260 mm in width, and flows in a flow velocity range of 10 to 20 m/s. Aim of this study is to develop measurement techniques for monitoring of the target when IFMIF is in operation. The lithium target flow is high speed jet and the temperature high is more than 500 K. Also, light is not transmitted into liquid metal lithium. Therefore, almost of all flow measurement techniques developed for water are not used for lithium flow. In this study, pattern projection method was employed to measure the surface irregularity of the target. In the method, stripe patterns are projected onto the flow surface. The projected patterns are deformed according the surface shape. Three-dimensional surface shape is measured by analyzing the deformed patterns recorded using a CCD camera. The method uses the property that lithium dose not transmit visible lights. The experiments were carried out using a lithium loop at Osaka University. In this facility, lithium plane jet of 10 mm in depth and 70 mm width is obtained in the velocity range of less than 15 m/s using a two contractions nozzle. The pattern projection method was used to measure the amplitude of surface irregularity caused by surface wakes. The surface wakes were generated from small damaged at the nozzle edge caused by erosion, and those were successfully measured by the method. The measurement results showed the amplitude of the surface wakes were approximately equal to a size of damage of a nozzle. The amplitude was decreasing with distance to down stream and with decreasing

  20. Conductivity of liquid lithium electrolytes with dispersed mesoporous silica particles

    International Nuclear Information System (INIS)

    Sann, K.; Roggenbuck, J.; Krawczyk, N.; Buschmann, H.; Luerßen, B.; Fröba, M.; Janek, J.

    2012-01-01

    Highlights: ► The conductivity of disperse lithium electrolytes with mesoporous fillers is studied. ► In contrast to other investigations in literature, no conductivity enhancement could be observed for standard battery electrolytes and typical mesoporous fillers in various combinations. ► Disperse electrolytes can become relevant in terms of battery safety. ► Dispersions of silicas and electrolyte with LiPF 6 as conducting salt are not stable, although the silicas were dried prior to preparation and the electrolyte water content was controlled. Surface modification of the fillers improved the stability. ► The observed conductivity decrease varied considerably for various fillers. - Abstract: The electrical conductivity of disperse electrolytes was systematically measured as a function of temperature (0 °C to 60 °C) and filler content for different types of fillers with a range of pore geometry, pore structure and specific surface area. As fillers mesoporous silicas SBA-15, MCM-41 and KIT-6 with pore ranges between 3 nm and 15 nm were dispersed in commercially available liquid lithium electrolytes. As electrolytes 1 M of lithium hexafluorophosphate (LiPF 6 ) in a mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) at the ratio 3:7 (wt/wt) and the same solvent mixture with 0.96 M lithium bis(trifluoromethanesulfon)imide (LiTFSI) were used. No conductivity enhancement could be observed, but with respect to safety aspects the highly viscous disperse pastes might be useful. The conductivity decrease varied considerably for the different fillers.

  1. Ionic liquids and derived materials for lithium and sodium batteries.

    Science.gov (United States)

    Yang, Qiwei; Zhang, Zhaoqiang; Sun, Xiao-Guang; Hu, Yong-Sheng; Xing, Huabin; Dai, Sheng

    2018-03-21

    The ever-growing demand for advanced energy storage devices in portable electronics, electric vehicles and large scale power grids has triggered intensive research efforts over the past decade on lithium and sodium batteries. The key to improve their electrochemical performance and enhance the service safety lies in the development of advanced electrode, electrolyte, and auxiliary materials. Ionic liquids (ILs) are liquids consisting entirely of ions near room temperature, and are characterized by many unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. These properties create the possibilities of designing batteries with excellent safety, high energy/power density and long-term stability, and also provide better ways to synthesize known materials. IL-derived materials, such as poly(ionic liquids), ionogels and IL-tethered nanoparticles, retain most of the characteristics of ILs while being endowed with other favourable features, and thus they have received a great deal of attention as well. This review provides a comprehensive review of the various applications of ILs and derived materials in lithium and sodium batteries including Li/Na-ion, dual-ion, Li/Na-S and Li/Na-air (O 2 ) batteries, with a particular emphasis on recent advances in the literature. Their unique characteristics enable them to serve as advanced resources, medium, or ingredient for almost all the components of batteries, including electrodes, liquid electrolytes, solid electrolytes, artificial solid-electrolyte interphases, and current collectors. Some thoughts on the emerging challenges and opportunities are also presented in this review for further development.

  2. Direct tritium measurement in lithium titanate for breeding blanket mock-up experiments with D-T neutrons

    International Nuclear Information System (INIS)

    Klix, A.; Ochiai, K.; Nishitani, T.; Takahashi, A.

    2004-01-01

    At Fusion Neutronics Source (FNS) of JAERI, tritium breeding experiments with blanket mock-ups consisting of advanced fusion reactor materials are in progress. The breeding zones are thin layers of lithium titanate which is one of the candidate tritium breeder materials for the DEMO fusion power reactor. It is anticipated that the application of small pellet-shaped lithium titanate detectors manufactured from the same material as the breeding layer will reduce experimental uncertainties arising from necessary corrections due to different isotopic lithium volume concentrations in breeding material and detector. Therefore, a method was developed to measure the local tritium production by means of lithium titanate pellet detectors and a liquid scintillation counting technique. The lithium titanate pellets were dissolved in concentrated hydrochloric acid solution and the resulting acidic solution was neutralized. Two ways of further processing were followed: direct incorporation into a liquid scintillation cocktail and distillation of the solution followed by mixing with liquid scintillator. Two types of lithium titanate pellets were investigated with different 6 Li enrichment and manufacturing procedure. It was found that lithium titanate is suitable for tritium production measurements. However some discrepancies in the measurement accuracy remained with one of the investigated pellet detectors when compared with a well-established lithium carbonate measurement technique and this issue needs further investigation

  3. Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M.A., E-mail: mjaworsk@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Brooks, A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Lopes-Cardozo, N. [TU/Eindhoven, Eindhoven (Netherlands); Menard, J.; Ono, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Rindt, P. [TU/Eindhoven, Eindhoven (Netherlands); Tresemer, K. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2016-11-15

    Highlights: • An upgrade path for the NSTX-U tokamak is proposed that maintains scientific productivity while enabling exploration of novel, liquid metal PFC. • Pre-filled liquid metal divertor targets are proposed as an intermediate step that mitigates technical and scientific risks associated with liquid metal PFC. • Analysis of leading edge features show a strong link between engineering design considerations and expected performance as a PFC. • A method for optimizing porous liquid metal targets restrained by capillary forces is provided indicating pore-sizes well within current technical capabilities. - Abstract: Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physics and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. Two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.

  4. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    International Nuclear Information System (INIS)

    Choi, Nam-Soon; Koo, Bonjae; Yeon, Jin-Tak; Lee, Kyu Tae; Kim, Dong-Won

    2011-01-01

    Highlights: · Synthesis of a dimeric ionic liquid. · Gel polymer electrolytes providing uniform lithium deposit pathway. · An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. · The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  5. Laboratory studies of H retention and LiH formation in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Rojo, A.B. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); UC3M Madrid, 126, 28903 Getafe (Spain); Oyarzabal, E. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); U.N.E.D. Ciudad Universitaria, S/N, 28040, Madrid Spain (Spain); Tabarés, F.L., E-mail: tabares@ciemat.es [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain)

    2014-12-15

    Highlights: • Absorption and thermal desorption experiments of hydrogen isotopes in liquid lithium have been performed at exposure temperatures up to 400 °C. • The kinetics of the involved processes indicate a two-stage mechanism for hydride production. • TDS peaks at temperatures well below the expected one for thermal decomposition of the hydride were systematically recorded, although only a small fraction of the absorbed gas was released during the TDS cycle. • The absorption of H{sub 2} in a D{sub 2}-loaded sample was investigated at two temperatures, and no obvious influence of the preexisting species in the rate of absorption of H{sub 2} was seen. • Deuterium absorption takes place at a higher rate than that of hydrogen. - Abstract: Laboratory experiments on H/D retention on liquid lithium followed by thermal desorption spectrometry (TDS) have been performed at Ciemat. Two different experimental set ups were used in order to expose liquid Li to hydrogen gas or to hydrogen glow discharge plasmas at temperatures up to 673 K. In the present work the results concerning the gas phase absorption are addressed. Two different kinetics of absorption were identified from the time evolution of the uptake. Alternate exposures to H{sub 2} and D{sub 2} were carried out in order to study the isotope exchange and its possible use for tritium retention control in Fusion Reactor. Although important differences were found in the absorption kinetics of both species, the total retention seems to be governed by the total sum of hydrogenic isotopes, and only small differences were found in the corresponding TDS spectra, on which evidence of some isotope exchange is observed. The results are discussed in relation to the potential use of liquid lithium walls in a Fusion Reactor.

  6. Laboratory studies of H retention and LiH formation in liquid lithium

    International Nuclear Information System (INIS)

    Martín-Rojo, A.B.; Oyarzabal, E.; Tabarés, F.L.

    2014-01-01

    Highlights: • Absorption and thermal desorption experiments of hydrogen isotopes in liquid lithium have been performed at exposure temperatures up to 400 °C. • The kinetics of the involved processes indicate a two-stage mechanism for hydride production. • TDS peaks at temperatures well below the expected one for thermal decomposition of the hydride were systematically recorded, although only a small fraction of the absorbed gas was released during the TDS cycle. • The absorption of H 2 in a D 2 -loaded sample was investigated at two temperatures, and no obvious influence of the preexisting species in the rate of absorption of H 2 was seen. • Deuterium absorption takes place at a higher rate than that of hydrogen. - Abstract: Laboratory experiments on H/D retention on liquid lithium followed by thermal desorption spectrometry (TDS) have been performed at Ciemat. Two different experimental set ups were used in order to expose liquid Li to hydrogen gas or to hydrogen glow discharge plasmas at temperatures up to 673 K. In the present work the results concerning the gas phase absorption are addressed. Two different kinetics of absorption were identified from the time evolution of the uptake. Alternate exposures to H 2 and D 2 were carried out in order to study the isotope exchange and its possible use for tritium retention control in Fusion Reactor. Although important differences were found in the absorption kinetics of both species, the total retention seems to be governed by the total sum of hydrogenic isotopes, and only small differences were found in the corresponding TDS spectra, on which evidence of some isotope exchange is observed. The results are discussed in relation to the potential use of liquid lithium walls in a Fusion Reactor

  7. Improved liquid-lithium target for the FMIT facility

    International Nuclear Information System (INIS)

    Miles, R.R.; Greenwell, R.K.; Hassberger, J.A.; Ingham, J.G.

    1982-11-01

    An improved target for the Fusion Materials Irradiation Testing Facility was designed. The purpose of the target is to produce a high neutron flux (10 19 n/m 2 sec) for testing of candidate first wall materials for fusion reactors. The neutrons are produced through a Li(d,n) stripping reaction between accelerated deuterons (35 MeV, 0.1A) and a thin jet of flowing liquid lithium. The target consists of a high speed (approx. 17 m/s), free surface wall jet which is exposed to the high (10 -4 Pa) accelerator vacuum. The energy deposited by the deuteron beam in the lithium is sufficient to heat the jet internally to a maximum temperature of roughly 740 0 C, 430 0 C greater than the saturation temperature at the jet free surface. For this reason, the jet flows along a curved wall which provides the pressurization required to prevent sperheat internal to the jet. Supporting hardware for the jet and a drain line which controls the jet beyond the beam intercept region

  8. Design data, liquid distributors and condenser for a distillation column to enrich tritium in metallic lithium

    International Nuclear Information System (INIS)

    Barnert, E.

    1984-01-01

    Tritium, one fuel component of the fusion reactor is bred from the reactors blanket material lithium. Before extracting the tritium from, for instance, metallic lithium by permeation it has to be enriched in the lithium by high temperature distillation. In this report design data for a column for high temperature distillation are given. About the testing of two distributors for small liquid quantities and of a condenser is reported. (orig.) [de

  9. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    Science.gov (United States)

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Particle control and plasma performance in the Lithium Tokamak eXperiment

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); and others

    2013-05-15

    The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.

  11. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Strickler, T.; Majeski, R.; Kaita, R.; LeBlanc, B.

    2008-01-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ∼ 3.4kG, IP ∼ 400kA, and pulse length ∼ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited 'line of sight' access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  12. The design of a liquid lithium lens for a muon collider

    International Nuclear Information System (INIS)

    Balbekov, V.; Geer, S.; Hassanein, A.; Holtkamp, N.; Lebrun, P.; Neuffer, D.; Norem, J.; Palmer, R.; Reed, C.; Silvestrov, G.; Spentzouris, P.; Tollestrup, A.; Vsevolozhskaya, T. A.

    1999-01-01

    The last stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system uses a large (approximately0.5 MA) pulsed current through liquid lithium to focus the beam while energy loss in the lithium removes momentum which is replaced by linacs. The beam optics are designed to maximize the 6 dimensional transmission from one lens to the next while minimizing emittance growth. The mechanical design of the lithium vessel is constrained by a pressure pulse due to the sudden ohmic heating, and the stress on the Be window. The authors describe beam optics, the liquid lithium pressure vessel, pumping, power supplies, as well as the overall optimization of the system

  13. Evaluation of compatibility of flowing liquid lithium curtain for blanket with core plasma in fusion reactors

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua; Peng Lilin; Yan Jiancheng

    2003-01-01

    A global model analysis of the compatibility of flowing liquid lithium curtain for blanket with core plasma has been performed. The relationships between the surface temperature of lithium curtain and mean effective plasma charges, fuel dilution and produced fusion power have been obtained. Results show that under normal circumstances, the evaporation of liquid lithium does not affect Z eff seriously, but affects fuel dilution and fusion power sensitively. The authors have investigated the relationships between the flow velocity of liquid lithium and its surface temperature rise based on the conditions of the option II of the fusion experimental breeder (FEB-E) design with reversed shear configuration and fairly high power density. The authors concluded that the effects of evaporation from liquid lithium curtain for FEB-E on plasma are negligible even if the flow velocity of liquid lithium is as low as 0.5 m·s -1 . Finally, the sputtering yield of liquid lithium saturated by hydrogen isotopes is briefly discussed

  14. Numerical analysis of high-speed liquid lithium free-surface flow

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Heinzel, Volker; Stieglitz, Robert

    2012-01-01

    Highlights: ► The free surface behavior of a high speed lithium jet is investigated by means of a CFD LES analysis. ► The study is aiming to validate adequate LES technique. ► The Osaka University experiments with liquid lithium jet have been simulated. ► Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. ► Calculation results show a good qualitative and a quantitative agreement with the experimental data. - Abstract: The free-surface stability of the target of the International Fusion Material Irradiation Facility (IFMIF) is one of the crucial issues, since the spatio-temporal behavior of the free-surface determines the neutron flux to be generated. This article investigates the relation between the evolution of a wall boundary layer in a convergent nozzle and the free surface shape of a high speed lithium jet by means of a CFD LES analysis using the Osaka University experiments. The study is aiming to validate adequate LES technique to analyze the individual flow phenomena observed. Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. First analyses of calculation results show that the simulation exhibits a good qualitative and a quantitative agreement with the experimental data, which allows in the future a more realistic prediction of the IFMIF target behavior.

  15. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    International Nuclear Information System (INIS)

    Shi, Chenglong; Jia, Yongzhong; Zhang, Chao; Liu, Hong; Jing, Yan

    2015-01-01

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C 4 mim][PF 6 ]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO 4 and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO 4 − amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO 4 − )/n(Li + ) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C 4 mim][PF 6 ] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising

  16. Hydrophobic ionic liquids based on the 1-butyl-3-methylimidazolium cation for lithium/seawater batteries

    Science.gov (United States)

    Zhang, Yancheng; Urquidi-Macdonald, Mirna

    Two hydrophobic ionic liquids (room temperature molten salts) based on 1-butyl-3-methylimidazolium cation (BMI +), BMI +PF 6- and BMI +Tf 2N -, were used in developing a highly efficient lithium anode system for lithium/seawater batteries. The lithium anode system was composed of lithium metal/ionic liquid/Celgard membrane. Both BMI +PF 6-and BMI +Tf 2N - maintained high apparent anodic efficiency (up to 100%) under potentiostatic polarization (at +0.5 V versus open-circuit potential (OCP)) in a 3% NaCl solution. Eventually, traces of water contaminated the ionic liquid and a bilayer film (LiH and LiOH) on the lithium surface was formed, decreasing the rate of lithium anodic reaction and hence the discharge current density. BMI +Tf 2N - prevented traces of water from reaching the lithium metal surface longer than BMI +PF 6- (60 h versus 7 h). However, BMI +PF 6- was better than BMI +Tf 2N - in keeping a constant current density (˜0.2 mA cm -2) before the traces of water contaminated the lithium surface due to the non-reactivity of BMI +PF 6- with the lithium metal that kept the bare lithium surface. During the discharge process, BMI +PF 6- and BMI +Tf 2N - acted as ion transport media of Li +, Cl -, OH - and H 2O, but did not react with them because of the excellent chemical stability, high conductivity, and high hydrophobicity of these two ionic liquids. Both BMI +PF 6- and BMI +Tf 2N - gels were tentative approaches used to delay the traces of water coming in contact with the lithium surface.

  17. Ion transport properties of lithium ionic liquids and their ion gels

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Susan, Md. Abu Bin Hasan; Watanabe, Masayoshi

    2005-01-01

    A new series of lithium ionic liquids were prepared by introducing of two electron-withdrawing trifluoroacetyl groups in borate salts containing two methoxy-oligo(ethylene oxide) groups in the structures. Successive substitution reactions of oligo-ethylene glycol monomethyl ether and trifluroacetic acid from LiBH 4 yielded the lithium salts, which were clear and colorless liquids at room temperature. The fundamental physicochemical properties, such as density, thermal property, viscosity, ionic conductivity, self-diffusion coefficients, and electrochemical stability, were measured. The lithium ionic liquids had self-dissociation ability and conducted ions even in the absence of organic solvents. New polymer electrolytes, named 'ion gels', were prepared by radical cross-linking reactions of a poly(ethylene oxide-co-propylene oxide)tri-acrylate macromonomer in the presence the lithium ionic liquid. An increase in the glass transition temperatures (T g ) of the ion gels was very small even with increasing lithium ionic liquid concentration, and the T g 's were lower than that of the ionic liquid itself. The ionic conductivity of the ion gels surpassed that of the lithium ionic liquid in the bulk at certain compositions

  18. Knight shift of 23Na and 7Li nuclei in liquid sodium-lithium alloys

    International Nuclear Information System (INIS)

    Feitsma, P.D.

    1977-01-01

    The Knight shift of 23 Na and 7 Li nuclei in liquid sodium-lithium alloys has been measured. Some aspects of the theoretical interpretation of the Knight shift within the diffraction model, are clarified

  19. Some safety considerations of liquid lithium as a fusion breeder material

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.

    1986-01-01

    Test results and conclusions are presented for the reaction of steam with a high temperature lithium pool and for the reaction of high temperature lithium spray with a nitrogen atmosphere. The reactions are characterized and evaluated in regard to the potential for mobilization of radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. These evaluations include measured lithium temperature responses, atmosphere temperature and pressure responses, gas consumption and generation, aerosol quantities and particle size characterization, and potentially radioactive species releases. Conclusions are made as to the consequences of these safety considerations for the use of lithium as a fusion reactor breeder material

  20. Interactions between drops of a molten aluminum-lithium alloy and liquid water

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1994-01-01

    In certain hypothesized nuclear reactor accident scenarios, 1- to 10-g drops of molten aluminum-lithium alloys might contact liquid water. Because vigorous steam explosions have occurred when large amounts of molten aluminum-lithium alloys were released into water or other coolants, it becomes important to know whether there will be explosions if smaller amounts of these molten alloys similarly come into contact with water. Therefore, the authors released drops of molten Al-3.1 wt pct Li alloy into deionized water at room temperature. The experiments were performed at local atmospheric pressure (0.085 MPa) without pressure transient triggers applied to the water. The absence of these triggers allowed them to (a) investigate whether spontaneous initiation of steam explosions would occur with these drops and (b) study the alloy-water chemical reactions. The drop sizes and melt temperatures were chosen to simulate melt globules that might form during the hypothesized melting of the aluminum-lithium alloy components

  1. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying

    2012-07-12

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes. The electrolytes are demonstrated in full cell studies using both high-energy Li/MoS2 and high-power Li/TiO2 secondary batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Corrosion resistance investigation of vanadium alloys in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Borovitskaya, I. V., E-mail: symp@imet.ac.ru [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Lyublinskiy, I. E. [JSC Red Star (Russian Federation); Bondarenko, G. G. [National Research University Higher School of Economics (Russian Federation); Paramonova, V. V. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Korshunov, S. N.; Mansurova, A. N. [National Research Center Kurchatov Institute (Russian Federation); Lyakhovitskiy, M. M. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Zharkov, M. Yu. [JSC Red Star (Russian Federation)

    2016-12-15

    A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10{sup –3} wt %) of vanadium and vanadium alloys (V–1.86Ga, V–3.4Ga–0.62Si, V–4.81Ti–4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 10{sup 22} m{sup –2} at an irradiation temperature of ~400°C. The degree of corrosion was estimated by measuring the changes in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.

  3. Diagnostics of high-speed liquid lithium jet for IFMIF/EVEDA lithium test loop

    International Nuclear Information System (INIS)

    Kanemura, Takuji; Kondo, Hiroo; Furukawa, Tomohiro; Sugiura, Hirokazu; Horiike, Hiroshi; Yamaoka, Nobuo; Ida, Mizuho; Nakamura, Kazuyuki; Matsushita, Izuru

    2011-01-01

    Regarding R and Ds on the International Fusion Materials Irradiation Facility (IFMIF), hydraulic stability of the liquid Li jet simulating the IFMIF Li target is planned to be validated using EVEDA Li Test Loop (ELTL). IFMIF is an accelerator-based deuteron-lithium (Li) neutron source for research and development of fusion reactor materials. The stable Li target is required in IFMIF to maintain the quality of the neutron fluence and integrity of the Li target itself. This paper presents diagnostics of the Li jet to be implemented in validation tests of the jet stability in ELTL, and those specifications and methodologies are introduced. In the tests, the following physical parameters need to be measured; thickness of the jet; surface structure (height, length/width and frequency of free-surface waves); local flow velocity at the free surface; and Li evaporation rate. With regard to measurement of jet thickness and the surface wave height, a contact-type liquid level sensor is to be used. As for measurement of wave velocity and visual understanding of detailed free-surface structure, a high-speed video camera is to be leveraged. With respect to Li evaporation measurement, weight change of specimens installed near the free surface and frequency change of a crystal quartz are utilized. (author)

  4. Development of windowless liquid lithium targets for fragmentation and fission of 400-kW uranium beams

    CERN Document Server

    Nolen, J A; Hassanein, A; Novick, V J; Plotkin, P; Specht, J R

    2003-01-01

    The driver linac of the proposed rare isotope accelerator facility is designed to deliver 2x10 sup 1 sup 3 uranium ions per second at 400 MeV/u on target for radionuclide production via the fission and fragmentation mechanisms. The ion optics of the large acceptance, high-resolution fragment separators that follow the production target require primary beam spot widths of 1 mm. To cope with the resulting high power densities, windowless liquid lithium targets are being developed. The present designs build on existing experience with liquid lithium and liquid sodium systems that have been used for fusion and fission applications. However, no completely windowless systems have been developed or tested to date. For the beam power indicated above (400 kW), the flow requirements are up to about 20 m/s and 10 l/s linear and volume flow rates, respectively. The required target thickness is 1-1.5 g/cm sup 2 (2-3 cm lithium thickness). At this time a prototype windowless system with a lithium thickness of 1-2 cm is und...

  5. High-power liquid-lithium jet target for neutron production

    OpenAIRE

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-01-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as ...

  6. Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte

    International Nuclear Information System (INIS)

    Plashnitsa, Larisa S.; Kobayashi, Eiji; Okada, Shigeto; Yamaki, Jun-ichi

    2011-01-01

    Lithium vanadium fluorophosphate, LiVPO 4 F, was utilized as both cathode and anode for fabrication of a symmetric lithium-ion LiVPO 4 F//LiVPO 4 F cell. The electrochemical evolution of the LiVPO 4 F//LiVPO 4 F cell with the commonly used organic electrolyte LiPF 6 /EC-DMC has shown that this cell works as a secondary battery, but exhibits poor durability at room temperature and absolutely does not work at increased operating temperatures. To improve the performance and safety of this symmetric battery, we substituted a non-flammable ionic liquid (IL) LiBF 4 /EMIBF 4 electrolyte for the organic electrolyte. The symmetric battery using the IL electrolyte was examined galvanostatically at different rates and operating temperatures within the voltage range of 0.01-2.8 V. It was demonstrated that the IL-based symmetric cell worked as a secondary battery with a Coulombic efficiency of 77% at 0.1 mA cm -2 and 25 o C. It was also found that the use of the IL electrolyte instead of the organic one resulted in the general reduction of the first discharge capacity by about 20-25% but provided much more stable behavior and a longer cycle life. Moreover, an increase of the discharge capacity of the IL-based symmetric battery up to 120 mA h g -1 was observed when the operating temperature was increased up to 80 o C at 0.1 mA cm -2 . The obtained electrochemical behavior of both symmetric batteries was confirmed by complex-impedance measurements at different temperatures and cycling states. The thermal stability of LiVPO 4 F with both the IL and organic electrolytes was also examined.

  7. Extraction of lithium ion from alkaline aqueous media by a liquid surfactant membrane

    International Nuclear Information System (INIS)

    Kinugasa, Takumi; Ono, Yuri; Kawamura, Yuko; Watanabe, Kunio; Takeuchi, Hiroshi.

    1995-01-01

    Extraction of lithium ion from aqueous alkaline media by a liquid surfactant membrane was performed using a mixture of LIX54 and TOPO as the extractant. Stripping of lithium from the kerosene solution to the acid solution was suppressed with increasing content of polyamine (ECA) surfactant. The extraction rate of lithium by the liquid membrane could be interpreted taking account of an interfacial resistance due to ECA. It was confirmed that swelling of the (W/O) emulsion drops by water permeation through the liquid membrane is evaluated in terms of a change in osmotic pressure gradient between the external and internal aqueous phases during the lithium extraction. In the present operation, the extraction ratio of Li + from the external feed and the uptake into the internal phase reached as high as 95%. (author)

  8. Size effects on the transport coefficient of liquid lithium, sodium and potassium using a soft sphere potential

    International Nuclear Information System (INIS)

    Adebayo, G.A.; Anusionwu, B.C.

    2004-08-01

    The dependence of the self diffusion coefficient of atoms in liquid Lithium, Sodium and Potassium, interacting through a soft sphere potential, on the number of atoms have been investigated using Molecular Dynamics Simulation at various temperatures. Our calculations predict non-linear relationship between the diffusion coefficient and the number of particles at high densities and medium or low temperatures. The radial distribution function obtained agrees well with experiment. (author)

  9. Ferrous alloy metallurgy, liquid lithium corrosion and welding. Final report, April 1, 1973-March 31, 1984

    International Nuclear Information System (INIS)

    Olson, D.L.; Matlock, D.K.

    1984-01-01

    This research program consists of two parts: an evaluation of the corrosion behavior of ferrous alloys in liquid lithium, and a study of microstructure development and properties of dissimilar metal weldments. A ten-year overview of the research accomplishments made is presented. The effects of liquid lithium on both uniform corrosion and grain boundary penetration in ferrous alloys has been investigated as a function of time, temperature, base metal alloy content, and liquid lithium nitrogen content. Kinetic equations for the various corrosion processes have been developed and analyzed with respect to models for corrosion and corrosion product development. The effects of liquid lithium on mechanical properties, particularly fatigue, have been studied. Results have shown that in both austenitic stainless steels and ferritic steels, liquid lithium significantly reduces the mechanical integrity of all materials by inducing liquid metal embrittlement. A model for liquid metal embrittlement induced damage during fatigue was developed and shown to correlate with the experimental results. Microstructural development in austenitic weld metal, with particular emphasis on new grades with reduced chromium contents, has been investigated. The microstructures have been correlated with alloy content and the basics of a thermodynamic model for predicting weld metal microstructure has been developed. The high temperature mechanical behavior of dissimilar metal weldments (austenitic stainless steel to ferritic steel) has been investigated with the impression-creep test technique. Observed microstructural changes with position across the weldment are shown to correlate directly with creep behavior. A model based on deformation of composite materials was developed

  10. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    International Nuclear Information System (INIS)

    Jung, S.; Christenson, M.; Curreli, D.; Bryniarski, C.; Andruczyk, D.; Ruzic, D.N.

    2014-01-01

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m 2 and 0.43 ± 0.01 GW/m 2 . A few ways to further increase the plasma heat flux for LiMIT experiments are discussed

  11. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: jung73@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)

    2014-12-15

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  12. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    Science.gov (United States)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance

  13. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  14. A conceptual composite blanket design for the Tokamak type of thermonuclear reactor incorporating thermoelectric pumping of liquid lithium

    International Nuclear Information System (INIS)

    Dutta Gupta, P.B.

    1981-01-01

    The conceptual liquid lithium blanket design for the tokamak type of thermonuclear reactor put forward is a modification of the initial simple but novel design concept enunciated earlier that exploits the availability of suitably oriented magnetic fields and temperature gradients within the blanket to pump the liquid as has been shown feasible by laboratory model experiments. The modular construction of the blanket cells is retained but the earlier simple back to back double spiralling channel module is replaced by a composite unit of three radially nested layer-structures to optimise heat and tritium extraction from the blanket. The layer-structure at the first wall generates liquid lithium circulation by thermoelectric magnetohydrodynamic forces and the segregated double spiralling channels serve as inlet-outlet driving devices. The outermost layer-structure is cooled by helium. Liquid lithium in the intermediate layer-structure is pumped at a very slow rate. The choice of the relative dimensional proportions of the three layer-structure and the channel cross-section, material property and the spiralling contour is of critical importance for the design. This paper presents the design data for a conceptual design of such a blanket with a 5000 MW (th) rating. (author)

  15. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  16. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Directory of Open Access Journals (Sweden)

    Ruisi Zhang

    2015-05-01

    Full Text Available Application of gel polymer electrolytes (GPE in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol % were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  17. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  18. Verification of the hydraulic design of the FMIT liquid lithium target

    International Nuclear Information System (INIS)

    Miles, R.R.; Annese, C.E.; Ingham, J.G.

    1983-01-01

    A liquid lithium target is being developed to generate a neutron flux for material testing in a fusion-like environment. The target consists of a thin, high speed, curved wall jet of lithium which is formed by an asymmetric nozzle. A prototype target was designed using potential flow analysis and was tested in water. Measurements of jet thickness and velocity in water and thickness in lithium were compared with isothermal design predictions and were shown to match within 1% for thickness and 5% for jet velocity

  19. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  20. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chenglong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Jia, Yongzhong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); Zhang, Chao [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Liu, Hong [Qinghai Salt Chemical Products Supervision and Inspection Center, 816000 Golmud (China); Jing, Yan, E-mail: 1580707906@qq.com [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China)

    2015-01-15

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO{sub 4} and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO{sub 4}{sup −} amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO{sub 4}{sup −})/n(Li{sup +}) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C{sub 4}mim][PF{sub 6}] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising.

  1. Self-pinched lithium beam transport experiments on SABRE

    International Nuclear Information System (INIS)

    Hanson, D.L.; Olson, C.L.; Poukey, J.W.; Shokir, I.; Cuneo, M.E.; Menge, P.R.; Johnston, R.R.; Welch, D.R.

    1996-01-01

    Self-pinched transport of ion beams has many advantages for ion-driven ICF applications involving high yield and energy production. The authors are currently preparing for a self-pinched lithium beam transport experiment on the SABRE accelerator. There are three transport elements that must eventually be demonstrated: (1) efficient lithium beam generation and ballistic transport to a focus at the self-pinched transport channel entrance; (2) self-pinched transport in the channel, requiring optimized injection conditions and gas breakdown; and (3) self-pinched transport of the equilibrated beam from the channel into free space, with associated aiming and stability considerations. In the present experiment, a hollow annular lithium beam from an applied-B extraction ion diode will be focused to small radius (r ≤ 2 cm) in a 60 cm long ballistic focus section containing argon gas at a pressure of a few Torr. The self-pinched transport channel will contain a low pressure background gas of 10--40 mTorr argon to allow sufficient net current to confine the beam for long distance transport. IPROP simulations are in progress to optimize the design of the ballistic and self-pinched transport sections. Progress on preparation of this lithium self-pinched transport experiment, including a discussion of transport system design, important gas breakdown issues, and diagnostics, will be presented

  2. Stationary Flowing Liquid Lithium (SFLiLi) systems for tokamaks

    Science.gov (United States)

    Zakharov, Leonid; Gentile, Charles; Roquemore, Lane

    2013-10-01

    The present approach to magnetic fusion which relies on high recycling plasma-wall interaction has exhausted itself at the level of TFTR, JET, JT-60 devices with no realistic path to the burning plasma. Instead, magnetic fusion needs a return to its original idea of insulation of the plasma from the wall, which was the dominant approach in the 1970s and upon implementations has a clear path to the DEMO device with PDT ~= 100 MW and Qelectric > 1 . The SFLiLi systems of this talk is the technology tool for implementation of the guiding idea of magnetic fusion. It utilizes the unique properties of flowing LiLi to pump plasma particles and, thus, insulate plasma from the walls. The necessary flow rate, ~= 1 g3/s, is very small, thus, making the use of lithium practical and consistent with safety requirements. The talk describes how chemical activity of LiLi, which is the major technology challenge of using LiLi in tokamaks, is addressed by SFLiLi systems at the level of already performed (HT-7) experiment, and in ongoing implementations for a prototype of SFLiLi for tokamak divertors and the mid-plane limiter for EAST tokamak (to be tested in the next experimental campaign). This work is supported by US DoE contract No. DE-AC02-09-CH11466.

  3. Lithium

    Science.gov (United States)

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  4. Theoretical study and experimental detection of cavitation phenomena in Liquid Lithium Target Facility for IFMIF

    International Nuclear Information System (INIS)

    Orco, G. Dell; Horiike, H.; Ida, M.; Nakamura, H.

    2006-01-01

    In the IFMIF (International Fusion Materials Irradiation Facility) testing facility, the required high energy neutrons emission will be produced by reaction of two D + beams with a free surface liquid Lithium jet target flowing along concave back-wall at 20 m/s. The Lithium height in the experimental loop and its relevant static pressure, the high flow velocities and the presence of several devices for the flow control and the pressure reduction increase the risk of cavitation onset in the target system. Special attention has to be taken in the primary pump, in the flow straightener, in the nozzle and their interconnections where the local pressure decreases and/or velocity increases or flow separations could promote the emission of cavitation vapour bubbles. The successive bubble re-implosions, in the higher pressure liquid bulk, could activate material erosion and transportation of activated particulates. These bubbles, if emitted close to the free jet flow, could also procure hydraulic instability and disturbance of the neutron field in the D + beams-Lithium target zone. Therefore, the cavitation risk must be properly foreseen along the whole IFMIF Lithium target circuit and its occurrence at different operating condition should be also monitored by special instrumentation. ENEA, in close cooperation with JAEA, has demonstrated the capability to detect the onset of the cavitation noises in liquid Lithium, by using the ENEA patented accelerometric gauge called CASBA-2000, during hydraulic test campaigns carried-out at Osaka University Lithium facility on a straight mock-up of the IFMIF back plate target. Comparison with the Thoma' cavitation similitude criteria have also determined the critical threshold limit for the estimation of the onset. Theoretical study on the conditions of cavitations generation in the IFMIF Lithium Target Circuit were also launched between ENEA and JAEA aiming at analysing the risk of the cavitation occurrence in the Lithium flow by

  5. The production of lithium oxide microspheres from the disintegration of a liquid jet

    International Nuclear Information System (INIS)

    Al-Ubaidi, M.R.; Anno, J.N.

    1989-01-01

    Microspheres of lithium hydroxide (LiOH) were produced from in-flight solidification of droplets formed by the disintegration of an acoustically driven, mechanically vibrated cylindrical liquid jet of molten LiOH. The molten material at 470 to 480 degrees C was fed through a 25-gauge (0.0267-cm bore diameter) nozzle, interiorly electroplated with silver, under ∼27.6-kPa (4-psig) pressure, and at a mechanical vibration frequency of 10 Hz. The resulting jet issued into a 5.5-cm-diam vertical glass drop tube entraining a 94.5 cm 3 /s (12 ft 3 /h) argon gas stream at 75 degrees C. The 100-cm-long drop tube was sufficient to allow the droplets of molten LiOH resulting from jet disintegration to solidify in-flight without catastrophic thermal shock, being then collected a solid microspheres. These LiOH microspheres were then vacuum processed to lithium oxide (Li 2 O). Preliminary experiments resulted in microspheres with diameters varying from 120 to 185 μm, but with evidence of impurity contamination occurring during the initial stages of the process

  6. Thermal Aging of Anions in Ionic Liquids containing Lithium Salts by IC/ESI-MS

    International Nuclear Information System (INIS)

    Pyschik, Marcelina; Kraft, Vadim; Passerini, Stefano; Winter, Martin; Nowak, Sascha

    2014-01-01

    Highlights: • Thermal aging investigation of TFSI- and FSI- based ionic liquids and their mixtures with Li salts. • PYR 13 FSI shows thermal decomposition when mixed with LiPF 6 and LiClO 4 . • PYR 13 TFSI does not show any decomposition products with the electrolyte salts. • LiPF 6 dissolved in ionic liquids suffers of thermal aging as in conventional Li-ion battery electrolytes. - Abstract: The stability of 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR 13 TFSI) and 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (PYR 13 FSI) ionic liquids at elevated temperatures (60 °C) is investigated by ion chromatography. Additionally, the influence of the electrolyte salts, lithium hexafluorophosphate (LiPF 6 ), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium perchlorate (LiClO 4 ), on the decomposition of both the ionic liquids was analysed over a long term stability study. It has been found out that TFSI has a much higher thermal stability than FSI. The addition of LiTFSI did not show any effect on the aging of both ionic liquid anions. However, PYR 13 FSI degraded when mixed with the electrolyte salts LiPF 6 and LiClO 4 , while PYR 13 TFSI did not. Finally, LiPF 6 forms the same hydrolysis products in the investigated ionic liquids as in the commonly used electrolytes based on organic solvents in lithium-ion batteries

  7. Design, calculation and experimental studies for liquid metal system main parameters in support of the liquid lithium fusion reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.

    2001-01-01

    A new concept of a Liquid Lithium Fusion Reactor and the first experimental results were presented at the 16th IAEA Conference on Fusion Energy. During the past two years theoretical estimations have been made, and calculated and experimental results have been obtained in confirmation of this concept and supporting its progress. The main results of this work are given in the paper. (author)

  8. Design, calculation and experimental studies for liquid metal system main parameters in support of the liquid lithium fusion reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.

    1999-01-01

    A new concept of a Liquid Lithium Fusion Reactor and the first experimental results were presented at the 16th IAEA Conference on Fusion Energy. During the past two years theoretical estimations have been made, and calculated and experimental results have been obtained in confirmation of this concept and supporting its progress. The main results of this work are given in the paper. (author)

  9. Compatibility of yttria (Y{sub 2}O{sub 3}) with liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuyama, Takaaki; Yoneoka, Toshiaki; Terai, Takayuki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Compatibility of Y{sub 2}O{sub 3} sintered specimens with liquid lithium was tested at 773K. No configuration change was observed with a slight increase of thickness for 1419 hr. Lithium-yttrium complex oxide (LiYO{sub 2}) was formed on the surface, and the inner part changed to gray or black nonstoichiometric Y{sub 2}O{sub 3-X} with lower electrical resistibility. It is concluded that Y{sub 2}O{sub 3} has a possibility as a ceramic coating material for liquid blankets if it can be made into a dense coating on the surface of piping materials. (author)

  10. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  11. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  12. Research and development of lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi

    2013-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6 Li. In Japan, new lithium isotope separation technique using ionic-liquid impregnated organic membranes have been developed. The improvement in the durability of the ionic-liquid impregnated organic membrane is one of the main issues for stable, long-term operation of electrodialysis cells while maintaining good performance. Therefore, we developed highly-durable ionic-liquid impregnated organic membrane. Both ends of the ionic-liquid impregnated organic membrane were covered by a nafion 324 overcoat to prevent the outflow of the ionic liquid. The transmission of Lithium aqueous solution after 10 hours under the highly-durable ionic-liquid impregnated organic membrane is almost 13%. So this highly-durable ionic-liquid impregnated organic membrane for long operating of electrodialysis cells has been developed through successful prevention of ion liquid dissolution. (J.P.N.)

  13. Hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle

    International Nuclear Information System (INIS)

    Xie Bo; Yang Tongzai; Guan Rui; Weng Kuiping

    2010-01-01

    The technology of tritium extraction from lithium-lead alloy has been simulated, hydrogen extraction from lithium-lead alloy by bubbling with rotational jet nozzle being used to simulate tritium in the study based on the introduction of fluid dynamics to establish algebraic model. The results show that the higher than lithium-lead melting temperature, the higher cumulative hydrogen extraction efficiency, and gas holdup of bubble column is little affected by the impeller diameter. Gas holdup when using small aperture is slightly higher when using large aperture only at a high helium flow rate, but the smaller the aperture, the greater the bubble surface area, and a marked increase in intensity of flow circulation for liquid lithium-lead with the increase of helium flow rate, hydrogen extraction rate increases too. Moreover, influence of the jet rotational velocity on hydrogen extraction is limited. (authors)

  14. Tritium permeation barriers in contact with liquid lithium-lead eutectic (Pb-17Li)

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.

    1995-01-01

    The permeation of deuterium through coated stainless steel tubes containing liquid lithium-lead eutectic (Pb-17Li) has been studied and compared to measurements through tubes without the lithium compound. The measurements form part of an investigation into the effect of a potential tritium breeder material on permeation barriers for fusion reactors. The coatings studied were CVD TiC and Al 2 O 3 and a pack aluminised layer. Without the lithium-lead, the CVD coatings reduced the permeation rate up to 1 order of magnitude, and the aluminised layer up to 2 orders of magnitude. A CVD layer was unaffected by Pb-17Li whilst in the case of the aluminised tube, the lithium-lead completely removed the permeation barrier, presumably by attacking the surface oxide. Furthermore, the aluminised sample presented a large number of cracks and poor adheren ce to the substrate. ((orig.))

  15. Acquisition of Co metal from spent lithium-ion battery using emulsion liquid membrane technology and emulsion stability test

    Science.gov (United States)

    Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.

  16. Liquid-liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Sun Xiaoli; Zhou Wen; Gu Lin; Qiu Dan; Ren Donghong; Gu Zhiguo; Li Zaijun

    2015-01-01

    A novel liquid-liquid extraction system was investigated for the selective separation of lithium isotopes using ionic liquids (ILs = C 8 mim + PF 6 - , C 8 mim + BF 4 - , and C 8 mim + NTf 2 - ) as extraction solvent and 2,2'-binaphthyldiyl-17-crown-5 (BN-17-5) as extractant. The effects of the concentration of lithium salt, counter anion of lithium salt, initial pH of aqueous phase, extraction temperature, and time on the lithium isotopes separation were discussed. Under optimized conditions, the maximum single-stage separation factor α of 6 Li/ 7 Li obtained in the present study was 1.046 ± 0.002, indicating the lighter isotope 6 Li was enriched in IL phase while the heavier isotope 7 Li was concentrated in the solution phase. The formation of 1:1 complex Li(BN-17-5) + in the IL phase was determined on the basis of slope analysis method. The large value of the free energy change (-ΔG° = 92.89 J mol -1 ) indicated the high separation capability of the Li isotopes by BN-17-5/IL system. Lithium in Li(BN-17-5) + complex was stripped by 1 mol L -1 HCl solution. The extraction system offers high efficiency, simplicity, and green application prospect to lithium isotope separation. (author)

  17. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Liquid lithium surface control and its effect on plasma performance in the HT-7 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, G.Z.; Ren, J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, J.S., E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Z.; Yang, Q.X.; Li, J.G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zakharov, L.E. [Princeton University Plasma Physics Laboratory Princeton, NJ 08543 (United States); Ruzic, David N. [University of Illinois, Urbana, IL 61801 (United States)

    2014-12-15

    Highlights: • Strong interaction between plasma and Li would cause strong Li emission and lead to disruptive plasmas, and probable reasons were analyzed. • Serious Li would be emitted from the free statics surface mainly due to J × B force leading to plasma instable and disruptions. • CPS surface would partially suppress the emission and be beneficial for plasma operation. • Li emission from flowing LLLs on free surfaces on SS trenches and on SS plate were compared. - Abstract: Experiments with liquid lithium limiters (LLLs) have been successfully performed in HT-7 since 2009 and the effects of different limiter surface structures on the ejection of Li droplets have been studied and compared. The experiments have demonstrated that strong interaction between the plasma and the liquid surface can cause intense Li efflux in the form of ejected Li droplets – which can, in turn, lead to plasma disruptions. The details of the LLL plasma-facing surface were observed to be extremely important in determining performance. Five different LLLs were evaluated in this work: two types of static free-surface limiters and three types of flowing liquid Li (FLLL) structures. It has been demonstrated that a FLLL with a slowly flowing thin liquid Li film on vertical flow plate which was pre-treated with evaporated Li was much less susceptible to Li droplet ejection than any of the other structures tested in this work. It was further observed that the plasmas run against this type of limiter were reproducibly well-behaved. These results provide technical references for the design of FLLLs in future tokamaks so as to avoid strong Li ejection and to decrease disruptive plasmas.

  19. Development of aluminide coatings on vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, D.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3/5 at.% dissolved aluminum in sealed V and V-20 wt.% Ti capsules at temperatures between 775 and 880 degrees C. After each test, the capsules were opened and the samples were examined by optical microscopy and scanning electron microscopy (SEM), and analyzed by electron-energy-dispersive spectroscopy (EDS) and X-ray diffraction. Hardness of the coating layers and bulk alloys was determined by microidentation techniques. The nature of the coatings, i.e., surface coverage, thickness, and composition, varied with exposure time and temperature, solute concentration in lithium, and alloy composition. Solute elements that yielded adherent coatings on various substrates can provide a means of developing in-situ electrical insulator coatings by reaction of the reactive layers with dissolved nitrogen in liquid lithium

  20. High-power liquid-lithium jet target for neutron production

    Science.gov (United States)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ˜200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm2 and volume power density of ˜2 MW/cm3 at a lithium flow of ˜4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  1. Testing of the prototype FMIT target with liquid lithium

    International Nuclear Information System (INIS)

    Miller, W.C.; Annese, C.E.; Berg, J.D.; Miles, R.R.

    1984-01-01

    Testing of a molten lithium target was performed to evaluate hydraulic stability, determine surface evaporation rates, and map the detailed contour of the high speed, free surface wall jet. The results confirmed predictions by demonstrating acceptable performance of a prototype target

  2. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  3. Dissolved nitrogen in liquid lithium - a problem in fusion reactor chemistry

    International Nuclear Information System (INIS)

    Hubberstey, P.

    1984-01-01

    When dissolved in liquid lithium, nitrogen adopts the role filled by oxygen in liquid sodium systems, reacting readily with stainless steel containment materials to form Li 9 CrN 5 as a surface product; extended reaction leads to pronounced corrosion and embrittlement problems. It also interacts with both carbon and silicon impurities forming Li 2 NCN and Li 5 SiN 3 , respectively; it is inert, however, to oxygen impurity. Although dissolved nitrogen reacts with neither the tritium generated in the breeding process nor the lead added to act as a neutron multiplier, its presence may seriously influence tritium recovery processes since it reacts with and hence may poison the majority of the transition metals (Y,Ti,Zr) presently being considered as tritium getter materials. Its reactivity with these metals forms the basis of the hot trapping technique used to remove dissolved nitrogen from liquid lithium systems; cold trapping is ineffective because of its large solubility even at temperatures just above the melting point of pure lithium (453.6K). Whenever possible, the chemistry of nitrogen dissolved in liquid lithium is rationalised using the thermodynamic concepts and its significance to fusion reactor technology stressed. (author)

  4. Properties and Structure of the LiCl-films on Lithium Anodes in Liquid Cathodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hennesø, Erik

    2016-01-01

    Lithium anodes passivated by LiCl layers in different types of liquid cathodes (catholytes) based on LiAlCl4 in SOCl2 or SO2 have been studied by means of impedance spectroscopy. The impedance spectra have been fitted with two equivalent circuits using a nonlinear least squares fit program...

  5. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    Science.gov (United States)

    McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.

    2013-07-01

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  6. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A.G., E-mail: mclean@fusion.gat.com [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gan, K.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Ahn, J.-W.; Gray, T.K.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Abrams, T.; Jaworski, M.A.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2013-07-15

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of T{sub surface} near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q{sub ⊥,peak} = 5 MW/m{sup 2} inter-ELM and up to 10 MW/m{sup 2} during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  7. Lithium beam characterization of cylindrical PBFA II hohlraum experiments

    International Nuclear Information System (INIS)

    Moats, A.R.; Derzon, M.S.; Chandler, G.A.; Haill, T.A.; Johnson, D.J.; Leeper, R.J.; Ruiz, C.L.; Wenger, D.F.

    1995-01-01

    Sandia National Laboratories is actively engaged in exploring indirect-drive inertial confinement fusion on the Particle Beam Fusion Accelerator (PBFA II) with pulsed-power accelerated lithium ions as the driver. Experiments utilizing cylindrical hohlraum targets were conducted in 1994. Using the incoming ion beam-induced line radiation from titanium wires surrounding these hohlraums, beam profiles during these experiments have been measured and characterized. These data, their comparison/cross-correlation with particle-based beam diagnostics, and an analysis of the beam parameters that most significantly influence target temperature are presented

  8. Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer

    International Nuclear Information System (INIS)

    Lee, Yoon-Sung; Kim, Dong-Won

    2013-01-01

    Highlights: • Gel polymer electrolytes were synthesized by in situ polymerization of ionic liquid in the lithium polymer cells. • Flammability of the electrolyte was significantly reduced by polymerizing electrolyte containing a non-flammable ionic liquid monomer. • The cells assembled with polymeric ionic liquid-based electrolytes exhibited reversible cycling behavior with good capacity retention. -- Abstract: Lithium polymer cells composed of a lithium negative electrode and a LiCoO 2 positive electrode were assembled with a gel polymer electrolyte obtained by in situ polymerization of an electrolyte solution containing an ionic liquid monomer with vinyl groups. The polymerization of the electrolyte solution containing the non-flammable ionic liquid monomer resulted in a significant reduction of the flammability of the gel polymer electrolytes. The lithium polymer cell assembled with the stable gel polymer electrolyte delivered a discharge capacity of 134.3 mAh g −1 at ambient temperature and exhibited good capacity retention

  9. LEVIS lithium ion source experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Tisone, G.C.; Adams, R.G.; Lopez, M.; Clark, B.F.; Schroeder, J.; Bailey, J.E.; Filuk, A.B.; Carlson, A.L.

    1992-01-01

    PBFA-II is a pulsed power generator designed to apply up to a 25 MV, 20 ns pulse to a focusing 15 cm-radius Applied-B ion diode for inertial confinement fusion applications. Several different approaches have been pursued to produce a high-purity (> 90%), high-current density (5--10 kA/cm 2 ) singly ionized lithium ion source for acceleration in this diode. In addition to having high source purity, such a source should be active, i.e. the ions should be produced before the power pulse arrives, to provide better electrical coupling from the accelerator to the diode. In the LEVIS (Laser EVaporation Ion Source) process, energy from two lasers impinges on a thin (500 nm) lithium or lithium-bearing film on an insulating substrate. The authors will discuss a new series of LEVIS experiments, with a number of improvements: (1) the laser distribution cone was redesigned, resulting in a more uniform illumination of the 4 cm-tall Li-producing surface; (2) the anode surface is being slow-heated to 120--150 C to help drive off contaminants; and (3) they have expanded the number of source and beam diagnostics

  10. New Polymer and Liquid Electrolytes for Lithium Batteries

    International Nuclear Information System (INIS)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-01-01

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3 SO 3- . The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10 -3 Scm -1 . The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2 O 4 cells

  11. Shielding consideration for a deuteron activated liquid lithium system

    International Nuclear Information System (INIS)

    Huang, S.T.; Shapiro, A.M.; Lee, J.B.; Miller, W.C.

    1979-09-01

    A parametric study was conducted to evaluate the potential shielding implication due to the 7 Be plateout on the lithium piping in the FMIT facility. Various parameters such as plateout percentage, hot flush efficiency and 7 Be trapping efficiency were varied to assess the overall shielding requirement relationship. The 7 Be plateout was found to place severe limitations on the hands-on maintenance access. Hot flush and 7 Be traps are effective ways of minimizing the 7 Be plateout. To be effective in reducing local shielding requirements, the combined 7 Be trapping and hot flush efficiency shall be greater than 95%

  12. Turbulent Liquid Metal Dynamo Experiments

    International Nuclear Information System (INIS)

    Forest, Cary

    2007-01-01

    The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.

  13. Ferrous alloy metallurgy - liquid lithium corrosion and welding. Progress report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Olson, D.L.; Matlock, D.K.

    1980-01-01

    Fatigue crack growth has been used to evaluate the interaction between liquid lithium and an imposed stress. Fatigue crack growth data on type 304L stainless steel at 700C and 2 1/4Cr-1Mo steel between 500 and 700C show that for all imposed test conditions (i.e. frequency, temperature, and nitrogen content in the lithium) the interaction of lithium with the strain at the crack tip results in enhanced crack growth rates. The enhanced growth rates result from the effects of either enhanced grain boundary penetration or a change in crack propagation mechanism due to liquid metal embrittlement. Auger spectroscopy of grain boundary penetrated specimen shows that a lithium-oxygen compound forms at the grain boundary. Moessbauer evaluations of the ferrite layer of corroded type 304 stainless steel are being used to develop a model for weight loss in liquid lithium. The welding research in progress is directed to characterize the influence of variations of the austenitic weld metal composition on the microstructural and mechanical properties of dissimilar metal weldments. Weldments of 2 1/4Cr-1Mo steel to 316 stainless steel have been investigated for fusion microstructure, thermal expansion impact strength and characterization of specific long time in-service failures. Modification of weld metal microstructures by microalloy additions is being investigated as a concept to improve weld metal properties. The behavior of a strip electrode in a gas metal arc is being investigated to determine the feasibility of gas metal arc weld strip overlay cladding

  14. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    International Nuclear Information System (INIS)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-01-01

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form

  15. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  16. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  17. Development of liquid lithium divertor for fusion reactor

    International Nuclear Information System (INIS)

    Evtihkin, V. A.; Lyublinskij, I. E.; Vertkov, A.V.; Chumanov, A.V.; Shpolyanskij, V.N.

    2000-01-01

    Development of divertor is one of the most acute problems of the tokamak fusion reactor. The use of such materials as tungsten, beryllium, graphite and CFC's enabled to solve the problem to a certain extent fulfilling the need of the ITER project. The problem still rests unsolved for the DEMO-type reactors. Lithium if used as a material for high heat flux components may provide a successful solution of the problem. A concept of Li divertor based on the use of capillary-pore structures (CPS) is proposed and is being validated by a complex of experimental research and engineering developments. An optional concept of Li divertor for power removal at 400 MW in steady-state (DEMO-S project) is presented. The complex of experimental research is under way to prove the serviceability of the Li CPS in different conditions that would be realized in divertor

  18. Collective dynamics in liquid lithium, sodium, and aluminum

    International Nuclear Information System (INIS)

    Singh, Shaminder; Tankeshwar, K.

    2003-01-01

    Inelastic x-ray scattering data of liquid Li, Na, and Al for dynamical structure factors have been analyzed by proposing a semiempirical model. The model is based on the extension of the hydrodynamic model to the viscoelastic region so that it satisfies the first four nonvanishing sum rules. It has been found that the semiempirical model fits well with the x-ray scattering data for liquid metals investigated here. The physical meaning of the parameters is also discussed

  19. Study on the electrochemical of the metal deposition from ionic liquids for lithium, titanium and dysprosium

    International Nuclear Information System (INIS)

    Berger, Claudia A.

    2017-01-01

    The thesis was aimed to the characterization of electrochemically deposited film of lithium, titanium and dysprosium on Au(111) from different ionic liquids, finally dysprosium on neodymium-iron-boron magnate for industrial applications. The investigation of the deposits were performed using cyclic voltametry, in-situ scanning tunneling microscopy, electrochemical quartz microbalance, XPS and Auger electron spectroscopy. The sample preparation is described in detail. The deposition rate showed a significant temperature dependence.

  20. Lithium bis(fluorosulfonyl)imide-PYR14TFSI ionic liquid electrolyte compatible with graphite

    Czech Academy of Sciences Publication Activity Database

    Nádherná, Martina; Reiter, Jakub; Moškon, J.; Dominko, R.

    2011-01-01

    Roč. 196, č. 18 (2011), s. 7700-7706 ISSN 0378-7753 R&D Projects: GA AV ČR(CZ) KJB200320801; GA AV ČR KJB200320901; GA MŠk(CZ) LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : Graphite * Ionic liquid * Bis(fluorosulfonyl)imide * Lithium -ion battery * Solid electrolyte interface Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.951, year: 2011

  1. A liquid-nitrogen monitor for lithium-drifted germanium detectors

    International Nuclear Information System (INIS)

    Andeweg, A.H.

    1977-11-01

    An instrument has been developed that makes use of a load cell to monitor the liquid nitrogen in the Dewar flask of a lithium-drifted germaniun detector. The contents are recorded on a chart recorder, and an alarm is sounded when the previously set content has been reached. A signal switches off the high-voltage power supply 30 minutes after the alarm is triggered. The calibration of the load-cell monitor is described in an appendix [af

  2. Control of nitrogen concentration in liquid lithium by iron-titanium alloy

    International Nuclear Information System (INIS)

    Hirakane, Shinji; Yoneoka, Toshiaki; Tanaka, Satoru

    2006-01-01

    Reducing the nitrogen concentration in liquid lithium is one of the most important steps in creating a liquid lithium blanket system. In this study, in order to verify the nitrogen gettering performance of Fe-Ti alloy, the variation in the nitrogen concentration in liquid lithium, into which Fe-10 at.% Ti or Fe-5 at.% Ti getter was immersed, was examined. The results confirmed a gettering performance of Fe-Ti alloy comparable to that of V-Ti alloy, although the effects were not durable in either the Fe-Ti or the V-Ti alloy. After the immersion test, the existing states of nitrogen absorbed in the gettering material were analyzed by means of XRD, XMA and XPS. TiN and some nitrogen dissolved in α-Fe without forming TiN were observed. It was indicated that nitrogen gettering is prevented not only by the surface nitrides, but also by the internal diffusion barriers originating from the absorbed nitrogen

  3. Extraction of lanthanide elements and bismuth in molten lithium chloride-liquid bismuth-lithium alloy system

    International Nuclear Information System (INIS)

    Harada, Makoto; Adachi, Motonari; Kai, Yuichi; Koike, Kenichi

    1987-01-01

    The equilibrium distributions of neodymium and samarium between molten LiCl and liquid Bi-Li alloy were measured in a wide range of Li-mole fraction in the alloy phase, X Li . These lanthanide elements were extracted through redox reactions. In high X Li range, X Li > 0.03, the distributions of neodymium and bismuth in the salt phase increased markedly. The anomalous increase is attributed to the formation of the compound comprized of Nd, Li, Bi and oxygen in the salt phase. The reaction processes in samarium and neodymium were very fast and the extraction rates are controlled by the diffusion processes of the solutes and metallic lithium. (author)

  4. Reaction rates and electrical resistivities of the hydrogen isotopes with, and their solubilities in, liquid lithium

    International Nuclear Information System (INIS)

    Pulham, R.J.; Adams, P.F.; Hubberstey, P.; Parry, G.; Thunder, A.E.

    1976-01-01

    The rate of reaction, k, of hydrogen and of deuterium with liquid lithium have been determined up to pressures of 20kNm -2 and at temperatures between 230 and 270 0 C. The reaction is first order with an apparent activation energy of 52.8 and 55.2 kJmol -1 for hydrogen and deuterium, respectively. The deuterium isotope effect, k/sub H/k/sub D/, decreases from 2.95 at 230 to 2.83 at 270 0 C. Tritium is predicted to react even more slowly than deuterium. The freezing point of lithium is depressed by 0.082 and 0.075 0 C, respectively, by dissolved hydride and deuteride giving eutectics at 0.016 mol percent H and 0.012 mol percent D in the metal-salt phase diagrams. The depression and eutectic concentration are expected to be less for tritium. The increase in the resistivity of liquid lithium caused by dissolved hydrogen isotopes is linear and relatively large, 5 x 10 -8 Ωm (mol percent H or D) -1 . The solubility of lithium hydride and deuteride was determined from the marked change in resistivity on saturation. The liquidus of the metal-salt phase diagram rises steeply from the eutectic point to meet the two-immiscible liquid region. Tritium is expected to be less soluble than deuterium. The partial molar enthalpies of solution are 44.2 and 55.0 kJmol -1 for hydrogen and deuterium, respectively. These values are used to calculate the solvation enthalpies of the isotope anions in the metal

  5. Progress in design and development of series liquid lithium-lead expeirmental loops in China

    International Nuclear Information System (INIS)

    Wu Yican; Huang Qunying; Zhu Zhiqiang; Gao Sheng; Song Yong; Li Chunjing; Peng Lei; Liu Shaojun; Wu qingsheng; Liu Songlin; Chen Hongli; Bai Yunqing; Jin Ming; Lv Ruojun; Wang Weihua; Guo Zhihui; Chen Yaping; Ling Xinzhen; Zhang Maolian; Wang Yongliang; Wu Zhaoyang; Wang Hongyan

    2009-01-01

    Liquid LiPb (lithium-lead) experimental loops are the important platforms to investigate the key technologies of liquid LiPb breeder blankets for fusion reactors. Based on the development strategy for liquid LiPb breeder blankets, the technologies development of liquid LiPb experimental loops have been explored by the FDS Team for years, and a series of LiPb experimental loops named DRAGON have been designed and developed, which have independence intellectual property and multi-functional parameters. In this paper, the development route suggestion of Chinese LiPb experimental loops was elaborated, and some information for the senes experimental loops were introduced, such as the design principles, structural features, functions and related experimental researches, etc. (authors)

  6. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    Science.gov (United States)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  7. Susceptibility of 2 1/4 Cr-1Mo steel to liquid metal induced embrittlement by lithium-lead solutions

    International Nuclear Information System (INIS)

    Eberhard, B.A.; Edwards, G.R.

    1984-08-01

    An investigation has been conducted on the liquid metal induced embrittlement susceptibility of 2 1/4Cr-1Mo steel exposed to lithium and 1a/o lead-lithium at temperatures between 190 0 C and 525 0 C. This research was part of an ongoing effort to evaluate the compatibility of liquid lithium solutions with potential fusion reactor containment materials. Of particular interest was the microstructure present in a weld heat-affected zone, a microstructure known to be highly susceptible to corrosive attack by liquid lead-lithium solutions. Embrittlement susceptibility was determined by conducting tension tests on 2 1/4Cr-1Mo steel exposed to an inert environment as well as to a lead-lithium liquid and observing the change in tensile behavior. The 2 1/4Cr-1Mo steel was also given a base plate heat treatment to observe its embrittlement susceptibility to 1a/o lead-lithium. The base plate microstructure was severely embrittled at temperatures less than 500 0 C. Tempering the base plate was effective in restoring adequate ductility to the steel

  8. Thermodynamic analysis of chromium solubility data in liquid lithium containing nitrogen: Comparison between experimental data and computer simulation

    International Nuclear Information System (INIS)

    Krasin, Valery P.; Soyustova, Svetlana I.

    2015-01-01

    The mathematical formalism for description of solute interactions in dilute solution of chromium and nitrogen in liquid lithium have been applied for calculating of the temperature dependence of the solubility of chromium in liquid lithium with the various nitrogen contents. It is shown that the derived equations are useful to provide understanding of a relationship between thermodynamic properties and local ordering in the Li–Cr–N melt. Comparison between theory and data reported in the literature for solubility of chromium in nitrogen-contaminated liquid lithium, was allowed to explain the reasons of the deviation of the experimental semi-logarithmic plot of chromium content in liquid lithium as a function of the reciprocal temperature from a straight line. - Highlights: • The activity coefficient of chromium in ternary melt can be obtained by means of integrating the Gibbs–Duhem equation. • In lithium with the high nitrogen content, the dependence of a logarithm of chromium solubility as a function of the reciprocal temperature has essentially nonlinear character. • At temperatures below a certain threshold, the process of dissolution of chromium in lithium will be controlled by the equilibrium concentration of nitrogen required for the formation of ternary nitride Li_9CrN_5at a given temperature.

  9. Shock compression experiments on Lithium Deuteride single crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  10. A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation

    Science.gov (United States)

    Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David

    2017-10-01

    A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.

  11. Soft X-ray emission spectroscopy of liquids and lithium battery materials

    International Nuclear Information System (INIS)

    Augustsson, Andreas

    2004-01-01

    Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular

  12. Liquid lithium loop system to solve challenging technology issues for fusion power plant

    Science.gov (United States)

    Ono, M.; Majeski, R.; Jaworski, M. A.; Hirooka, Y.; Kaita, R.; Gray, T. K.; Maingi, R.; Skinner, C. H.; Christenson, M.; Ruzic, D. N.

    2017-11-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor concept and its variant, the active liquid lithium divertor concept, taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~1 l s-1 is envisioned. We examined two key technology issues: (1) dust or solid particle removal and (2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust/impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~1 l s-1 LL flow, even a small 0.1% dust content by weight (or 0.5 g s-1) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~3 GW fusion power) fusion power plant, about 0.5 g s-1 of tritium is needed to maintain the fusion fuel cycle

  13. The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Kugel, H.; Bell, M.; Ahn, J.W.; Bush, C.E.; Maingi, R.

    2008-01-01

    National Spherical Torus Experiment (which M. Ono, Nucl. Fusion 40, 557 (2000)) high-power divertor plasma experiments have shown, for the first time, that benefits from lithium coatings applied to plasma facing components found previously in limited plasmas can occur also in high-power diverted configurations. Lithium coatings were applied with pellets injected into helium discharges, and also with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium oven depositions from a few milligrams to 1 g have been applied between discharges. Benefits from the lithium coatings were sometimes, but not always, seen. These benefits sometimes included decreases in plasma density, inductive flux consumption, and edge-localized mode occurrence, and increases in electron temperature, ion temperature, energy confinement, and periods of edge and magnetohydrodynamic quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  14. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2012-12-01

    Full Text Available A liquid electrolyte lithium/sulfur (Li/S cell is a liquid electrochemical system. In discharge, sulfur is first reduced to highly soluble Li2S8, which dissolves into the organic electrolyte and serves as the liquid cathode. In solution, lithium polysulfide (PS undergoes a series of complicated disproportionations, whose chemical equilibriums vary with the PS concentration and affect the cell’s performance. Since the PS concentration relates to a certain electrolyte/sulfur (E/S ratio, there is an optimized E/S ratio for the cyclability of each Li/S cell system. In this work, we study the optimized E/S ratio by measuring the cycling performance of Li/S cells, and propose an empirical method for determination of the optimized E/S ratio. By employing an electrolyte of 0.25 m LiSO3CF3-0.25 m LiNO3 dissolved in a 1:1 (wt:wt mixture of dimethyl ether (DME and 1,3-dioxolane (DOL in an optimized E/S ratio, we show that the Li/S cell with a cathode containing 72% sulfur and 2 mg cm−2 sulfur loading is able to retain a specific capacity of 780 mAh g−1 after 100 cycles at 0.5 mA cm−2 between 1.7 V and 2.8 V.

  15. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z. [Soreq NRC, Yavne 81800 (Israel); Paul, M., E-mail: paul@vms.huji.ac.il; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-05-15

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  16. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A study on liquid lithium flow in rectangular duck perpendicular to a intense magnetic field

    International Nuclear Information System (INIS)

    Shen Xiuzhong; Chen Ke; Liu Yang; Zhang Qinshun

    2001-01-01

    A research on high-speed liquid-metal lithium flow through a non-expanding rectangular duck under uniform intense magnetic field is presented. A equations set with Poisson equation and Helmholtz equation, which control the electrical field and flow field respectively, has been deduced by analysis and PHsolver, a program to solve the equations set, has also been finished. The current density distribution and flow field in the non-expanding rectangular channel with intense magnetic field have been obtained from PHsolver by applying the wall-function in the boundary wall. The velocity profile in the duck appears M-shaped

  18. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m 2 ) up to 200 dpa and a sufficient irradiation volume (500 cm 3 ) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  19. Liquid jets for experiments on complex fluids

    International Nuclear Information System (INIS)

    Steinke, Ingo

    2015-02-01

    The ability of modern storage rings and free-electron lasers to produce intense X-ray beams that can be focused down to μm and nm sizes offers the possibility to study soft condensed matter systems on small length and short time scales. Gas dynamic virtual nozzles (GDVN) offer the unique possibility to investigate complex fluids spatially confined in a μm sized liquid jet with high flow rates, high pressures and shear stress distributions. In this thesis two different applications of liquid jet injection systems have been studied. The influence of the shear flow present in a liquid jet on colloidal dispersions was investigated via small angle X-ray scattering and a coherent wide angle X-ray scattering experiment on a liquid water jet was performed. For these purposes, liquid jet setups that are capable for X-ray scattering experiments have been developed and the manufacturing of gas dynamic virtual nozzles was realized. The flow properties of a liquid jet and their influences on the liquid were studied with two different colloidal dispersions at beamline P10 at the storage ring PETRA III. The results show that high shear flows present in a liquid jet lead to compressions and expansions of the particle structure and to particle alignments. The shear rate in the used liquid jet could be estimated to γ ≥ 5.4 . 10 4 Hz. The feasibility of rheology studies with a liquid jet injection system and the combined advantages is discussed. The coherent X-ray scattering experiment on a water jet was performed at the XCS instrument at the free-electron laser LCLS. First coherent single shot diffraction patterns from water were taken to investigate the feasibility of measuring speckle patterns from water.

  20. Lithium capillary porous system behavior as PFM in FTU Tokamak experiments

    International Nuclear Information System (INIS)

    Apichela, M.L.; Mazzitelli, G.; Lyublinski, I.E.; Lazarev, V.; Mirnov, S.; Vertkov, A.

    2007-01-01

    Full text of publication follows: Liquid lithium use on the base of capillary porous systems (CPS) application as plasma facing material (PFM) of tokamaks is advanced way to solve the problems of plasma contamination with high Z impurity, PFM degradation and tritium retention. In frame of joint program between ENEA (Italy) and FSUE 'Red Star' and TRINITI (RF) started at the end of 2005 die test of liquid lithium limiter (LLL) with CPS in a high field, medium size, carbon free tokamak FTU have been performed successfully. The LLL has been inserted in ohmic plasma discharges and at additional heating with LH and ECR at power levels in the MW range without any particular problem (BT = 6 T, Ip = 0.5- 0.9 MA, n e = 0.2 -2.6x10 20 m -3 , t = 1.5 s, P∼ 2-5 MW/m 2 at a normal discharge). The behavior of lithium CPS based on stainless steel wire mesh and its surface modification in normal discharges and at disruptions has been studied. Results of microscopic analyses of CPS structure after experimental campaigns are presented. The possibility to withstand heat load exceeding 5 MW/m 2 without damage, lithium surface renewal, mechanical stabilization of liquid lithium against MHD forces have been confirmed. Application of W, Mo as the base material and possible structure types of CPS have been considered for operating parameters improvement of long-living plasma facing components. (authors)

  1. Ionic diffusion and salt dissociation conditions of lithium liquid crystal electrolytes.

    Science.gov (United States)

    Saito, Yuria; Hirai, Kenichi; Murata, Shuuhei; Kishii, Yutaka; Kii, Keisuke; Yoshio, Masafumi; Kato, Takashi

    2005-06-16

    Salt dissociation conditions and dynamic properties of ionic species in liquid crystal electrolytes of lithium were investigated by a combination of NMR spectra and diffusion coefficient estimations using the pulsed gradient spin-echo NMR techniques. Activation energies of diffusion (Ea) of ionic species changed with the phase transition of the electrolyte. That is, Ea of the nematic phase was lower than that of the isotropic phase. This indicates that the aligned liquid crystal molecules prepared efficient conduction pathways for migration of ionic species. The dissociation degree of the salt was lower compared with those of the conventional electrolyte solutions and polymer gel electrolytes. This is attributed to the low concentration of polar sites, which attract the dissolved salt and promote salt dissociation, on the liquid crystal molecules. Furthermore, motional restriction of the molecules due to high viscosity and molecular oriented configuration in the nematic phase caused inefficient attraction of the sites for the salt. With a decreased dissolved salt concentration of the liquid crystal electrolyte, salt dissociation proceeded, and two diffusion components attributed to the ion and ion pair were detected independently. This means that the exchange rate between the ion and the ion pair is fairly slow once the salt is dissociated in the liquid crystal electrolytes due to the low motility of the medium molecules that initiate salt dissociation.

  2. Scientific opportunities at SARAF with a liquid lithium jet target neutron source

    Science.gov (United States)

    Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.

  3. Liquid metal magnetohydrodynamic flows in manifolds of dual coolant lead lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Mistrangelo, C., E-mail: chiara.mistrangelo@kit.edu; Bühler, L.

    2014-10-15

    Highlights: • MHD flows in model geometries of DCLL blanket manifolds. • Study of velocity, pressure distributions and flow partitioning in parallel ducts. • Flow partitioning affected by 3D MHD pressure drop and velocity distribution in the expanding zone. • Reduced pressure drop in a continuous expansion compared to a sudden expansion. - Abstract: An attractive blanket concept for a fusion reactor is the dual coolant lead lithium (DCLL) blanket where reduced activation steel is used as structural material and a lead lithium alloy serves both to produce tritium and to remove the heat in the breeder zone. Helium is employed to cool the first wall and the blanket structure. Some critical issues for the feasibility of this blanket concept are related to complex induced electric currents and 3D magnetohydrodynamic (MHD) phenomena that occur in distributing and collecting liquid metal manifolds. They can result in large pressure drop and undesirable flow imbalance in parallel poloidal ducts forming blanket modules. In the present paper liquid metal MHD flows are studied for different design options of a DCLL blanket manifold with the aim of identifying possible sources of flow imbalance and to predict velocity and pressure distributions.

  4. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    Science.gov (United States)

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; Carter, Emily A.

    2016-01-01

    Because of lithium’s possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. We predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDβ , β =0.25 , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid-solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. We also observe formation of some D2 molecules at high D concentrations.

  5. The use of lithium as a marker for the retention of liquids in the oral cavity after rinsing.

    Science.gov (United States)

    Hanning, Sara M; Kieser, Jules A; Ferguson, Martin M; Reid, Malcolm; Medlicott, Natalie J

    2014-01-01

    The aim of this study was to validate the use of lithium as a marker to indicate the retention of simple liquids in the oral cavity and use this to determine how much liquid is retained in the oral cavity following 30 s of rinsing. This is a validation study in which saliva was spiked with known concentrations of lithium. Twenty healthy participants then rinsed their mouths with either water or a 1 % w/v carboxymethylcellulose (CMC) solution for 30 s before expectorating into a collection cup. Total volume and concentration of lithium in the expectorant were then measured, and the percentage of liquid retained was calculated. The mean amount of liquid retained was 10.4 ± 4.7 % following rinsing with water and 15.3 ± 4.1 % following rinsing with 1 % w/v CMC solution. This difference was significant (p < 0.01). Lithium was useful as a marker for the retention of liquids in the oral cavity, and a value for the amount of water and 1 % w/v CMC solution remaining in the oral cavity following a 30-s rinse was established. The present study quantifies the retention of simple fluids in the oral cavity, validating a technique that may be applied to more complex fluids such as mouth rinses. Further, the application of this method to specific population groups such as those with severe xerostomia may assist in developing effective saliva substitutes.

  6. A Next-Generation Apparatus for Lithium Optical Lattice Experiments

    Science.gov (United States)

    Keshet, Aviv

    Quantum simulation is emerging as an ambitious and active subfield of atomic physics. This thesis describes progress towards the goal of simulating condensed matter systems, in particular the physics of the Fermi-Hubbard model, using ultracold Lithium atoms in an optical lattice. A major goal of the quantum simulation program is to observe phase transitions of the Hubbard model, into Neal antiferromagnetic phases and d-wave superfluid phases. Phase transitions are generally accompanied by a change in an underlying correlation in a physical system. Such correlations may be most amenable to probing by looking at fluctuations in the system. Experimental techniques for probing density and magnetization fluctuations in a variety of atomic Fermi systems are developed. The suppression of density fluctuations (or atom "shot noise") in an ideal degenerate Fermi gas is observed by absorption imaging of time-of-flight expanded clouds. In-trap measurements of density and magnetization fluctuations are not easy to probe with absorption imaging, due to their extremely high attenuation. A method to probe these fluctuations based on speckle patterns, caused by fluctuations in the index of refraction for a detuned illumination beam, is developed and applied first to weakly interacting and then to strongly interacting in-trap gases. Fluctuation probes such as these will be a crucial tool in future quantum simulation of condensed matter systems. The quantum simulation experiments that we want to perform require a complex sequence of precisely timed computer controlled events. A distributed GUI-based control system designed with such experiments in mind, The Cicero Word Generator, is described. The system makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature allows this to be extended to other output

  7. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Jaworski, M A; Khodak, A; Kaita, R

    2013-01-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m −2 , no macroscopic ejection events were observed. The stability can be understood from a Rayleigh–Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments. (paper)

  8. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    Science.gov (United States)

    Jaworski, M. A.; Khodak, A.; Kaita, R.

    2013-12-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.

  9. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  10. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  11. Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2017-04-15

    Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety concerns (Federici et al., 2001) . It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance (Ono et al., 2013, 2014) . The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium (LL) divertor (RLLD) concept (Ono et al., 2013) and its variant, the active liquid lithium divertor concept (ARLLD) (Ono et al., 2014) , taking advantage of the enhanced non-coronal Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/s of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤450 °C than the first wall ∼600–700 °C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ∼1 l/s (l/s) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust/impurities are removed by relatively simple filter and cold/hot trap systems. Using a

  12. The solid-liquid extraction separation of lithium isotopes by porous composite materials doped with ionic liquids and 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Xiao-Li Sun; Ling Gu; Dan Qiu; Dong-Hong Ren; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2015-01-01

    A green and efficient solid-liquid extraction method of lithium isotopes separation by porous composite materials doped with imidazolium ionic liquids and 2,2'-binaphthyldiyl-17-crown-5 has been reported in this paper. The composite materials of mesoporous silica and impregnated resin were synthesized by sol-gel and direct impregnation process, respectively. Various extraction parameters such as the concentration of lithium salt, anion of lithium salt, initial pH, time and temperature were investigated. Under optimized conditions, the maximum single-stage separation factor of 6 Li/ 7 Li was 1.048 ± 0.002, the maximum extraction efficiency was 15.86 %. The sorbents can be regenerated easily with HCl solution and reused repeatedly. (author)

  13. Green and efficient extraction strategy to lithium isotope separation with double ionic liquids as the medium and ionic associated agent

    International Nuclear Information System (INIS)

    Xu Jingjing; Li Zaijun; Gu Zhiguo; Wang Guangli; Liu Junkang

    2013-01-01

    The paper reported a green and efficient extraction strategy to lithium isotope separation. A 4-methyl-10-hydroxybenzoquinoline (ROH), hydrophobic ionic liquid-1,3-di(isooctyl)imidazolium hexafluorophosphate ([D(i-C 8 )IM][PF 6 ]), and hydrophilic ionic liquid-1-butyl-3-methylimidazolium chloride (ILCl) were used as the chelating agent, extraction medium and ionic associated agent. Lithium ion (Li + ) first reacted with ROH in strong alkali solution to produce a lithium complex anion. It then associated with IL + to form the Li(RO) 2 IL complex, which was rapidly extracted into the organic phase. Factors for effect on the lithium isotope separation were examined. To obtain high extraction efficiency, a saturated ROH in the [D(i-C 8 )IM][PF 6 ] (0.3 mol l -1 ), mixed aqueous solution containing 0.3 mol l -1 lithium chloride, 1.6 mol l -1 sodium hydroxide and 0.8 mol l -1 ILCl and 3:1 were selected as the organic phase, aqueous phase and phase ratio (o/a). Under optimized conditions, the single-stage extraction efficiency was found to be 52 %. The saturated lithium concentration in the organic phase was up to 0.15 mol l -1 . The free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) of the extraction process were -0.097 J mol -1 , -14.70 J mol K -1 and -48.17 J mol -1 K -1 , indicating a exothermic process. The partition coefficients of lithium will enhance with decrease of the temperature. Thus, a 25 deg C of operating temperature was employed for total lithium isotope separation process. Lithium in Li(RO) 2 IL was stripped by the sodium chloride of 5 mol l -1 with a phase ratio (o/a) of 4. The lithium isotope exchange reaction in the interface between organic phase and aqueous phase reached the equilibrium within 1 min. The single-stage isotope separation factor of 7 Li- 6 Li was up to 1.023 ± 0.002, indicating that 7 Li was concentrated in organic phase and 6 Li was concentrated in aqueous phase. All chemical reagents used can be well recycled

  14. Effect of lithium tetrafluoroborate on the solubility of carbon dioxide in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate

    NARCIS (Netherlands)

    Durano Arno, S.; Lucas, S.; Shariati - Sarabi, A.; Peters, C.J.

    2012-01-01

    In this work, the phase behavior of the ternary system of carbon dioxide +1-butyl-3-methylimidazolium tetrafluoroborate + lithium tetrafluoroborate has been investigated. Mixtures of known concentrations of the salt, ionic liquid and carbon dioxide were prepared and their bubble point pressures were

  15. SISAK liquid-liquid extraction experiments with preseparated 257Rf

    International Nuclear Information System (INIS)

    Omtvedt, Jon Petter; Alstad, J.; Breivik, H.; Dyve, J.E.; Eberhardt, K.; Folden III, C.M.; Ginter, T.; Gregorich, K.E.; Hult, E.A.; Johansson, M.; Kirbach, U.W.; Lee, D.M.; Mendel, M.; Nahler, A.; Ninov, V.; Omtvedt, L.A.; Patin, J.B.; Skarnemark, G.; Stavsetra, L.; Sudowe, R.; Wiehl, N.; Wierczinski, B.; Wilk, P.A.; Zielinski, P.M.; Kratz, J.V.; Trautmann, N.; Nitsche, H.; Hoffman, D.C.

    2002-01-01

    The SISAK liquid-liquid extraction system was used to extract 4.0-s 257Rf. The 257Rf was produced in the reaction 208Pb(50Ti, 1n)257Rf with 237-MeV beam energy on target, separated in the Berkeley Gas-filled Separator (BGS) and transferred to a gas jet using the Recoil Transfer Chamber (RTC). The activity delivered by the gas jet was dissolved in 6-M HNO3 and Rf was extracted into 0.25-M dibutyl-phosphoric acid in toluene. This was the first time a transactinide, i.e., an element with Z >= 104, was extracted and unequivocally identified by the SISAK system. Thus, this pilot experiment demonstrates that the fast liquid-liquid extraction system SISAK, in combination with liquidscintillation detectors, can be used for investigating the chemical properties of the transactinides. The extraction result is in accordance with the behaviour shown by the Rf group IV homologues Zr and Hf

  16. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  17. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  18. Tribology experiment. [journal bearings and liquid lubricants

    Science.gov (United States)

    Wall, W. A.

    1981-01-01

    A two-dimensional concept for Spacelab rack 7 was developed to study the interaction of liquid lubricants and surfaces under static and dynamic conditions in a low-gravity environment fluid wetting and spreading experiments of a journal bearing experiments, and means to accurately measure and record the low-gravity environment during experimentation are planned. The wetting and spreading process of selected commercial lubricants on representative surface are to the observes in a near-zero gravity environment.

  19. Gelled Electrolyte Containing Phosphonium Ionic Liquids for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mélody Leclère

    2018-06-01

    Full Text Available In this work, new gelled electrolytes were prepared based on a mixture containing phosphonium ionic liquid (IL composed of trihexyl(tetradecylphosphonium cation combined with bis(trifluoromethanesulfonimide [TFSI] counter anions and lithium salt, confined in a host network made from an epoxy prepolymer and amine hardener. We have demonstrated that the addition of electrolyte plays a key role on the kinetics of polymerization but also on the final properties of epoxy networks, especially thermal, thermo-mechanical, transport, and electrochemical properties. Thus, polymer electrolytes with excellent thermal stability (>300 °C combined with good thermo-mechanical properties have been prepared. In addition, an ionic conductivity of 0.13 Ms·cm−1 at 100 °C was reached. Its electrochemical stability was 3.95 V vs. Li0/Li+ and the assembled cell consisting in Li|LiFePO4 exhibited stable cycle properties even after 30 cycles. These results highlight a promising gelled electrolyte for future lithium ion batteries.

  20. Selective solid-liquid extraction of lithium halide salts using a ditopic macrobicyclic receptor.

    Science.gov (United States)

    Mahoney, Joseph M; Beatty, Alicia M; Smith, Bradley D

    2004-11-29

    A ditopic salt receptor that is known to bind and extract solid NaCl, KCl, NaBr, and KBr into organic solution as their contact ion pairs is now shown by NMR and X-ray crystallography to bind and extract solid LiCl and LiBr as water-separated ion pairs. The receptor can transport these salts from an aqueous phase through a liquid organic membrane with a cation selectivity of K+ > Na+ > Li+. However, the selectivity order is strongly reversed when the receptor extracts solid alkali metal chlorides and bromides into organic solution. For a three-component mixture of solid LiCl, NaCl, and KCl, the ratio of salts extracted and complexed to the receptor in CDCl3 was 94:4:2, respectively. The same strong lithium selectivity was also observed in the case of a three-component mixture of solid LiBr, NaBr, and KBr where the ratio of extracted salts was 92:5:3. This observation is attributed to the unusually high solubility of lithium salts in organic solvents. The study suggests that ditopic receptors with an ability to extract solid salts as associated ion pairs may have application in separation processes.

  1. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  2. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  3. Tensile property of low activation vanadium alloy after liquid lithium exposure

    International Nuclear Information System (INIS)

    Nagasaka, Takuya; Muroga, Takeo; Li, Meimei; Hoelzer, David T.; Zinkle, Steven J.; Grossbeck, Martin L.; Matsui, Hideki

    2005-10-01

    A candidate low activation vanadium (V) alloy, V-4Cr-4Ti (NIFS-HEAT-2), was exposed to liquid lithium (Li) at 973 and 1073 K for up to 1963 hr. Contamination by carbon (C) and nitrogen (N) from the Li on the order of thousands of wppm were observed. Oxygen (O) levels were reduced to the several 10 wppm level by Li exposure at 1073 K, but not at 973 K. The Li exposure caused strength degradation as measured by tensile tests at 973 and 1073 K. On the other hand, good ductility was demonstrated after the Li exposure even with the significant contamination of C and N. From microstructural observations, C and N are likely to be scavenged by Ti-C-N type precipitates. Reduction of O was attributed to disappearance of Ti-C-O type precipitates. (author)

  4. Safety Analysis of the US Dual Coolant Liquid Lead-Lithium ITER Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2006-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium (DCLL) DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER Test Blanket Module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER International Team (IT) to address specific reactor safety concerns, such as VV pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system, and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  5. Structure and electrical resistivity of alkali-alkali and lithium-based liquid binary alloys

    International Nuclear Information System (INIS)

    Mishra, A.K.; Mukherjee, K.K.

    1990-01-01

    Harmonic model potential, developed and used for simple metals is applied here to evaluate hardsphere diameters, which ensure minimum interionic pair potential for alkali-alkali (Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs) and lithium-based (Li-Na, Li-Mg, Li-In, Li-Tl) liquid binary alloys as a function of composition for use in the determination of their partial structure factors. These structure factors are then used to calculate electrical resistivities of alloys considered. The computed values of electrical resistivity as a function of composition agree both, in magnitude and gradient reasonably well with experimental values in all cases except in Cs systems, where the disagreement is appreciable. (author)

  6. Self-consistent description of local density dynamics in simple liquids. The case of molten lithium.

    Science.gov (United States)

    Mokshin, A V; Galimzyanov, B N

    2018-02-28

    The dynamic structure factor is the quantity, which can be measured by means of Brillouin light-scattering as well as by means of inelastic scattering of neutrons and x-rays. The spectral (or frequency) moments of the dynamic structure factor define directly the sum rules of the scattering law. The theoretical scheme formulated in this study allows one to describe the dynamics of local density fluctuations in simple liquids and to obtain the expression of the dynamic structure factor in terms of the spectral moments. The theory satisfies all the sum rules, and the obtained expression for the dynamic structure factor yields correct extrapolations into the hydrodynamic limit as well as into the free-particle dynamics limit. We discuss correspondence of this theory with the generalized hydrodynamics and with the viscoelastic models, which are commonly used to analyze the data of inelastic neutron and x-ray scattering in liquids. In particular, we reveal that the postulated condition of the viscoelastic model for the memory function can be directly obtained within the presented theory. The dynamic structure factor of liquid lithium is computed on the basis of the presented theory, and various features of the scattering spectra are evaluated. It is found that the theoretical results are in agreement with inelastic x-ray scattering data.

  7. Self-consistent description of local density dynamics in simple liquids. The case of molten lithium

    Science.gov (United States)

    Mokshin, A. V.; Galimzyanov, B. N.

    2018-02-01

    The dynamic structure factor is the quantity, which can be measured by means of Brillouin light-scattering as well as by means of inelastic scattering of neutrons and x-rays. The spectral (or frequency) moments of the dynamic structure factor define directly the sum rules of the scattering law. The theoretical scheme formulated in this study allows one to describe the dynamics of local density fluctuations in simple liquids and to obtain the expression of the dynamic structure factor in terms of the spectral moments. The theory satisfies all the sum rules, and the obtained expression for the dynamic structure factor yields correct extrapolations into the hydrodynamic limit as well as into the free-particle dynamics limit. We discuss correspondence of this theory with the generalized hydrodynamics and with the viscoelastic models, which are commonly used to analyze the data of inelastic neutron and x-ray scattering in liquids. In particular, we reveal that the postulated condition of the viscoelastic model for the memory function can be directly obtained within the presented theory. The dynamic structure factor of liquid lithium is computed on the basis of the presented theory, and various features of the scattering spectra are evaluated. It is found that the theoretical results are in agreement with inelastic x-ray scattering data.

  8. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  9. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  10. Effect of lithium salts addition on the ionic liquid based extraction of essential oil from Farfarae Flos.

    Science.gov (United States)

    Li, Zhen-Yu; Zhang, Sha-Sha; Jie-Xing; Qin, Xue-Mei

    2015-01-01

    In this study, an ionic liquids (ILs) based extraction approach has been successfully applied to the extraction of essential oil from Farfarae Flos, and the effect of lithium chloride was also investigated. The results indicated that the oil yields can be increased by the ILs, and the extraction time can be reduced significantly (from 4h to 2h), compared with the conventional water distillation. The addition of lithium chloride showed different effect according to the structures of ILs, and the oil yields may be related with the structure of cation, while the chemical compositions of essential oil may be related with the anion. The reduction of extraction time and remarkable higher efficiency (5.41-62.17% improved) by combination of lithium salt and proper ILs supports the suitability of the proposed approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-03-20

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

  12. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-01-01

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter

  13. Characterization of reactive tracers for C-wells field experiments 1: Electrostatic sorption mechanism, lithium

    International Nuclear Information System (INIS)

    Fuentes, H.R.; Polzer, W.L.; Essington, E.H.; Newman, B.D.

    1989-11-01

    Lithium (Li + ) was introduced as lithium bromide (LiBr), as a retarded tracer for experiments in the C-wells complex at Yucca Mountain, Nevada Test Site, Nevada. The objective was to evaluate the potential of lithium to sorb predominately by physical forces. lithium was selected as a candidate tracer on the basis of high solubility, good chemical and biological stability, and relatively low sorptivity; lack of bioaccumulation and exclusion as a priority pollutant in pertinent federal environmental regulations; good analytical detectability and low natural background concentrations; and a low cost Laboratory experiments were performed with suspensions of Prow Pass cuttings from drill hole UE-25p number-sign 1 at depths between 549 and 594 m in J-13 water at a pH of approximately 8 and in the temperature range of 25 degree C to 45 degree C. Batch equilibrium and kinetics experiments were performed; estimated thermodynamic constants, relative behavior between adsorption and desorption, and potentiometric studies provided information to infer the physical nature of lithium sorption

  14. Lithium fall reactor concept: the question of jet stability, with recommendations for further experiments

    International Nuclear Information System (INIS)

    Kang, S.W.

    1978-01-01

    The stability of a liquid-lithium jet flow is of importance in a laser fusion reactor design. In this report we analyze and discuss jet stability with respect to fluid dynamics, delineating physical factors that may affect the jet breakup and performing some simple calculations to determine quantitatively the relative influences of various parameters. We define areas of uncertainty and recommend possible experimental verification, theoretical analysis, or both

  15. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    Science.gov (United States)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the

  16. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.

    Science.gov (United States)

    Yang, Chunpeng; Fu, Kun; Zhang, Ying; Hitz, Emily; Hu, Liangbing

    2017-09-01

    High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Wetted foam liquid fuel ICF target experiments

    International Nuclear Information System (INIS)

    Olson, R E; Leeper, R J; Yi, S A; Kline, J L; Zylstra, A B; Peterson, R R; Shah, R; Braun, T; Biener, J; Kozioziemski, B J; Sater, J D; Biener, M M; Hamza, A V; Nikroo, A; Hopkins, L Berzak; Ho, D; LePape, S; Meezan, N B

    2016-01-01

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR∼15), but will become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation. (paper)

  18. A 20 kw beam-on-target test of a high-power liquid lithium target for RIA

    International Nuclear Information System (INIS)

    Reed, Claude B.; Nolen, Jerry A.; Specht, James R.; Novick, Vincent J.; Plotkin, Perry

    2004-01-01

    The high-power heavy-ion beams produced by the Rare Isotope Accelerator (RIA) driver linac have large energy deposition density in solids and in many cases no solid materials would survive the full beam power. Liquid lithium technology has been proposed to solve this problem in RIA. Specifically, a windowless target for the production of radioactive ions via fragmentation, consisting of a jet of about 3 cm thickness of flowing liquid lithium, exposed to the beamline vacuum [1,2] is being developed. To demonstrate that power densities equivalent to a 200-kW RIA uranium beam, deposited in the first 4 mm of a flowing lithium jet, can be handled by the windowless target design, a high power 1 MeV Dynamitron was leased and a test stand prepared to demonstrate the target's capability of absorbing and carrying away a 20kW heat load without disrupting either the 5 mm x 10 mm flowing lithium jet target or the beam line vacuum

  19. New Ether-functionalized Morpholinium- and Piperidinium-based Ionic Liquids as Electrolyte Components in Lithium and Lithium-Ion Batteries.

    Science.gov (United States)

    Navarra, Maria Assunta; Fujimura, Kanae; Sgambetterra, Mirko; Tsurumaki, Akiko; Panero, Stefania; Nakamura, Nobuhumi; Ohno, Hiroyuki; Scrosati, Bruno

    2017-06-09

    Here, two ionic liquids, N-ethoxyethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (M 1,2O2 TFSI) and N-ethoxyethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (P 1,2O2 TFSI) were synthesized and compared. Fundamental relevant properties, such as thermal and electrochemical stability, density, and ionic conductivity were analyzed to evaluate the effects caused by the presence of the ether bond in the side chain and/or in the organic cation ring. Upon lithium salt addition, two electrolytes suitable for lithium batteries applications were found. Higher conducting properties of the piperidinium-based electrolyte resulted in enhanced cycling performances when tested with LiFePO 4 (LFP) cathode in lithium cells. When mixing the P 1,2O2 TFSI/LiTFSI electrolyte with a tailored alkyl carbonate mixture, the cycling performance of both Li and Li-ion cells greatly improved, with prolonged cyclability delivering very stable capacity values, as high as the theoretical one in the case of Li/LFP cell configurations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  1. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  2. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; Auburn University, AL; Hansen, C.

    2017-01-01

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge (> 200 eV) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with density after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.

  3. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries

    Science.gov (United States)

    Cheruvally, Gouri; Kim, Jae-Kwang; Choi, Jae-Won; Ahn, Jou-Hyeon; Shin, Yong-Jo; Manuel, James; Raghavan, Prasanth; Kim, Ki-Won; Ahn, Hyo-Jun; Choi, Doo Seong; Song, Choong Eui

    A new class of polymer electrolytes (PEs) based on an electrospun polymer membrane incorporating a room-temperature ionic liquid (RTIL) has been prepared and evaluated for suitability in lithium cells. The electrospun poly(vinylidene fluoride- co-hexafluoropropylene) P(VdF-HFP) membrane is activated with a 0.5 M solution of LiTFSI in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) or a 0.5 M solution of LiBF 4 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF 4). The resulting PEs have an ionic conductivity of 2.3 × 10 -3 S cm -1 at 25 °C and anodic stability at >4.5 V versus Li +/Li, making them suitable for practical applications in lithium cells. A Li/LiFePO 4 cell with a PE based on BMITFSI delivers high discharge capacities when evaluated at 25 °C at the 0.1 C rate (149 mAh g -1) and the 0.5 C rate (132 mAh g -1). A very stable cycle performance is also exhibited at these low current densities. The properties decrease at the higher, 1 C rate, when operated at 25 °C. Nevertheless, improved properties are obtained at a moderately elevated temperature of operation, i.e. 40 °C. This is attributed to enhanced conductivity of the electrolyte and faster reaction kinetics at higher temperatures. At 40 °C, a reversible capacity of 140 mAh g -1 is obtained at the 1 C rate.

  4. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S Y; Lee, H

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  5. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1975-07-01

    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)

  6. CaO insulator coatings on a vanadium-base alloy in liquid 2 at.% calcium-lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Kassner, T.F.

    1996-01-01

    The electrical resistance of CaO coatings produced on V-4%Cr-4%Ti and V-15%Cr-5%Ti by exposure of the alloy (round bottom samples 6-in. long by 0.25-in. dia.) to liquid lithium that contained 2 at.% dissolved calcium was measured as a function of time at temperatures between 300-464 degrees C. The solute element, calcium in liquid lithium, reacted with the alloy substrate at these temperatures for 17 h to produce a calcium coating ∼7-8 μm thick. The calcium-coated vanadium alloy was oxidized to form a CaO coating. Resistance of the coating layer on V-15Cr-5Ti, measured in-situ in liquid lithium that contained 2 at.% calcium, was 1.0 x 10 10 Ω-cm 2 at 300 degrees C and 400 h, and 0.9 x 10 10 Ω-cm 2 at 464 degrees C and 300 h. Thermal cycling between 300 and 464 degrees C changed the resistance of the coating layer, which followed insulator behavior. Examination of the specimen after cooling to room temperature revealed no cracks in the CaO coating. The coatings were evaluated by optical microscopy, scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and X-ray analysis. Adhesion between CaO and vanadium alloys was enhanced as exposure time increased

  7. Characterization studies of lithium vapour generated in heat pipe oven for the Plasma Wakefield Accelerator Experiment

    International Nuclear Information System (INIS)

    Mohandas, K.K.; Mahavar, Kanchan; Ajai Kumar; Kumar, Ravi A.V.

    2013-01-01

    Characterization and optimization studies of lithium vapor by white light as well as UV laser absorption were carried out as part of generation of photo ionized Li plasma for the Plasma Wake Field Acceleration Experiment. Temperature and buffer gas pressure dependency of the neutral density of lithium vapor was studied in detail. The line integrated neutral density of Li(n o L) was found to be of the order of 10 17 -10 18 cm -2 at heat pipe oven temperatures in the range from 600-800℃ which is sufficient to obtain the required 1013-1014 cm -3 plasma densities by photo ionization. (author)

  8. Recent progress of NSTX lithium program and opportunities for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Ahn, J.-W. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Allain, J.P.; Battaglia, D. [Purdue University, West Lafayette, IN 47907 (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Ding, S. [Academy of Science Institute of Plasma Physics, Hefei (China); Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Guttenfelder, W.; Hosea, J.; Jaworski, M.A.; Kallman, J.; Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Mansfield, D.K. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer In this paper, we review the recent progress on the NSTX lithium research. Black-Right-Pointing-Pointer We summarize positive features of lithium effects on plasma. Black-Right-Pointing-Pointer We also point out unresolved issues and unanswered questions on the lithium research. Black-Right-Pointing-Pointer We describe a possible closed liquid lithium divertor tray concept. Black-Right-Pointing-Pointer We note opportunities and challenges of lithium applications for magnetic fusion. - Abstract: Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last six years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a dual lithium evaporation system which can evaporate up to {approx}160 g of lithium onto the lower divertor plates between re-loadings. The unique feature of the NSTX lithium research program is that it can investigate the effects of lithium coated plasma-facing components in H-mode divertor plasmas. This lithium evaporation system has produced many intriguing and potentially important results. In 2010, the NSTX lithium program has focused on the effects of liquid lithium divertor (LLD) surfaces including the divertor heat load, deuterium pumping, impurity control, electron thermal confinement, H-mode pedestal physics, and enhanced plasma performance. To fill the LLD with lithium, 1300 g of lithium was evaporated into the NSTX vacuum vessel during the 2010 operations. The routine use of lithium in 2010 has significantly improved the plasma shot availability resulting in a record number of plasma shots in any given year. In this paper, as a follow-on paper from the 1st lithium symposium [1], we review the recent progress toward developing fundamental understanding of the NSTX lithium experimental observations as well as the opportunities and associated R and D required

  9. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    Science.gov (United States)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  10. Review of JAEA activities on the IFMIF liquid lithium target in FY2006

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Miyashita, Makoto; Sugimoto, Masayoshi; Chida, Teruo; Furuya, Kazuyuki; Yoshida, Eiichi; Hirakawa, Yasuhi; Miyake, Osamu; Hirabayashi, Masaru; Ara, Kuniaki

    2008-03-01

    Engineering Validation Design and Engineering Design Activity (EVEDA) of the International Fusion Materials Irradiation Facility (IFMIF) is under going. IFMIF is an accelerator-based Deuterium-Lithium (D-Li) neutron source to produce intense high energy neutrons and a sufficient irradiation volume for testing candidate materials for fusion reactors. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid Li flow with a speed of 20 m/s. In target system, nuclear heating due to neutron causes thermal stress especially on a back-wall of the target assembly. In addition, radioactive species such as beryllium-7, tritium and activated corrosion products are generated. In this report, thermal stress analyses of the back-wall, mechanical tests on weld specimen made of the back-wall material, estimations of beryllium-7 behavior and worker dose at the IFMIF Li loop and consideration on major EVEDA tasks are summarized. (author)

  11. Accessibility evaluation of the IFMIF liquid lithium loop considering activated erosion/corrosion materials deposition

    International Nuclear Information System (INIS)

    Nakamura, H.; Takemura, M.; Yamauchi, M.; Fischer, U.; Ida, M.; Mori, S.; Nishitani, T.; Simakov, S.; Sugimoto, M.

    2005-01-01

    This paper presents an evaluation of accessibility of the Li loop piping considering activated corrosion product. International Fusion Materials Irradiation Facility (IFMIF) is a deuteron-lithium (Li) stripping reaction neutron source for fusion materials testing. Target assembly and back wall are designed as fully remote maintenance component. Accessibility around the Li loop piping will depend on activation level of the deposition materials due to the back wall erosion/corrosion process under liquid Li flow. Activation level of the corrosion products coming from the AISI 316LN back wall is calculated by the ACT-4 of the THIDA-2 code system. The total activities after 1 day, 1 week, 1 month and 1 year cooling are 3.1 x 10 14 , 2.8 x 10 14 , 2.3 x 10 14 and 7.5 x 10 13 Bq/kg, respectively. Radiation dose rate around the Li loop pipe is calculated by QAD-CGGP2R code. Activated area of the back wall is 100 cm 2 . Corrosion rate is assumed 1 μm/year. When 10% of the corrosion material is supposed to be deposited on the inner surface of the pipe, the dose rate is calculated to be less than a permissible level of 10 μSv/h for hands-on maintenance, therefore, the maintenance work is assessed to be possible

  12. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    Science.gov (United States)

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  13. Comparison of lithium and the eutectic lead lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets

    International Nuclear Information System (INIS)

    Malang, S.; Mattas, R.

    1994-06-01

    Liquid metals are attractive candidates for both near-term and long-term fusion applications. The subjects of this comparison are the differences between the two candidate liquid metal breeder materials Li and LiPb for use in breeding blankets in the areas of neutronics, magnetohydrodynamics, tritium control, compatibility with structural materials, heat extraction system, safety, and required R ampersand D program. Both candidates appear to be promising for use in self-cooled breeding blankets which have inherent simplicity with the liquid metal serving as both breeders and coolant. The remaining feasibility question for both breeder materials is the electrical insulation between liquid metal and duct walls. Different ceramic coatings are required for the two breeders, and their crucial issues, namely self-healing of insulator cracks and radiation induced electrical degradation are not yet demonstrated. Each liquid metal breeder has advantages and concerns associated with it, and further development is needed to resolve these concerns

  14. The Effects of Temperature and Oxidation on Deuterium Retention in Solid and Liquid Lithium Films on Molybdenum Plasma-Facing Components

    Science.gov (United States)

    Capece, Angela

    2014-10-01

    Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.

  15. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiancai [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zuo, Guizhong; Ren, Jun; Xu, Wei; Sun, Zhen; Huang, Ming [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Wangyu [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Hu, Jiansheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)

    2016-11-15

    Investigation of corrosion behavior of stainless steel served as one kind of structure materials exposed to liquid lithium (Li) is one of the keys to apply liquid Li as potential plasma facing materials (PFM) or blanket coolant in the fusion device. Corrosion experiments of 304 austenite stainless steel (304 SS) were carried out in static liquid Li at 600 K and up to1584 h at high vacuum with pressure less than 4 × 10{sup −4} Pa. After exposure to liquid Li, it was found that the weight of 304 SS slightly decreased with weight loss rate of 5.7 × 10{sup −4} g/m{sup 2}/h and surface hardness increased by about 50 HV. Lots of spinel-like grains and holes were observed on the surface of specimens measured by SEM. By further EDS, XRD and metallographic analyzing, it was confirmed that the main compositions of spinel-like grains were M{sub 23}C{sub 6} carbides, and 304 SS produced a non-uniform corrosion behavior by preferential grain boundary attack, possibly due to the easy formation of M{sub 23}C{sub 6} carbides and/or formation of Li compound at grain boundaries.

  16. Liquid lithium corrosion research. Progress report, April 1, 1975--December 31, 1975

    International Nuclear Information System (INIS)

    Olson, D.L.; Bradley, W.L.

    1975-01-01

    Kinetics for grain boundary penetration and weight loss were determined for 304L stainless steel in Ti-gettered liquid Li. Empirical weight loss rate coefficient expressions were determined as function of both N content and temperature which predict the weight loss behavior of stainless steel for Li with high N content. Capillarity was eliminated as a possible driving force for grain boundary penetration of Fe by Li with the evidence of a grain boundary groove. Coupled ionic diffusion in a corrosion product surface film is suggested as the controlling mechanism for grain boundary grooving of Fe in N-contaminated liquid Li. Stress-enhanced grain boundary penetration showed that the penetration of stressed Fe is a function of t sup 1/3 rather than t sup 1/2, suggesting that primary creep of the Fe is continually breaking the protective corrosion product in the grain boundaries. A new purification procedure and systems were designed and constructed to achieve very low N contents in the liquid Li (less than 300 ppM N). A gas purification train, based on a molten Al bubbler for the removal of O and N, was designed and built, and vacuum melting of as-received Li and gettering are being initiated. Experiments designed to determine the role of Cr in stainless steel resistance are in progress. Also experiments have been designed which will investigate how liquid metal corrosion is a function of the contact potential between the metals

  17. Development and implementation of flowing liquid lithium limiter control system for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, XiaoLin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230031 (China); Chen, Yue [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, JianSheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, JianGang; Zuo, GuiZhong; Ren, Jun; Zhou, Yue; Li, ChangZheng; Sun, Zheng; Xu, Wei; Meng, XianCai; Huang, Ming; Zheng, XingWei; Yao, Xingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Development of a FLiLi remote control system for EAST. • Intelligent instruments are used to realize FLiLi remote control. • Good operating results of the control system were obtained in the EAST campaign. - Abstract: A control system of a flowing liquid lithium (FLiLi) limiter for the Experimental Advanced Superconducting Tokamak (EAST) was developed and implemented. The control system is not only able to control the direct current (DC) electromagnetic pump and heating power but can also set scanning parameters, receive the shot number, acquire the temperature, etc. The system consists of multifunctional LAN eXtensions for Instrumentation (LXI) instrument, temperature-acquisition module, programmable DC power supply, and programmable logic controller (PLC). The multi-range DC power supply is programmed to meet the operational requirements of the DC electromagnetic pump. The LXI instrument and temperature-acquisition module are used to obtain temperature data. The PLC is adopted to control the temperature of the FLiLi limiter. A safety interlock and protection function was developed for the FLiLi limiter control system. The software was designed by using LabVIEW to achieve data interaction between multiple protocols. The FLiLi limiter control system can acquire experimental data at a speed of 100 S/s and store it for later analysis. The control system was successfully applied to a FLiLi limiter to study the interaction between plasma and a fixed wall in the EAST campaign. This paper presents the framework, the implementation details, and results of the control system.

  18. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability

    International Nuclear Information System (INIS)

    Miffre, A.

    2005-06-01

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, α = (24.33 ± 0.16)*10 -30 m 3 , improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  19. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

    2013-10-15

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

  20. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    International Nuclear Information System (INIS)

    Wei, Ying; Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2013-01-01

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery

  1. Exposure of liquid lithium confined in a capillary structure to high plasma fluxes in PILOT-PSI—Influence of temperature on D retention

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rojo, A.B., E-mail: anabmr2010@hotmail.com [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain); Oyarzabal, E. [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain); Fundación UNED Guzman el Bueno, 133, 28003 Madrid (Spain); Morgan, T.W. [FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN, Nieuwegein (Netherlands); Tabarés, F.L. [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain)

    2017-04-15

    Experiments on deuterium retention on liquid lithium confined in a capillary structure followed by ex-situ thermal desorption spectrometry (TDS) at high plasma fluxes (∼10{sup 23} m{sup 2} s{sup −1}) and high temperatures (440 °C and 580 °C) have been performed. Deuterium plasmas were generated at the PILOT-PSI linear plasma device and the targets were a 30 mm diameter stainless steel disc, 5 mm thick, covered with a porous mesh and filled with lithium. The settings (current) of the plasma source were varied in order to get different sample surface temperatures during irradiation. The targets were kept at floating potential during the exposure. Hydrogen and Li emission signals were monitored during the plasma exposure and TDS analysis was made afterwards in a separated system. Decreased retention at high exposure temperatures was deduced from the analysis of the hydrogen emission signals. Nevertheless, the results from TDS signal analysis were not conclusive.

  2. The effect of lead concentration on the corrosion susceptibility of 2 1/4Cr-1Mo steel in a lead-lithium liquid

    International Nuclear Information System (INIS)

    Wilkinson, B.D.; Edwards, G.R.; Hoffman, N.J.

    1982-01-01

    The intergranular penetration of 21/4Cr-1Mo steel by lead-lithium liquids containing 0, 17.6, and 53 w/o lead has been investigated at temperatures from 300 0 C to 600 0 C for times up to 1000 hours. Limited tests using a 99.3 w/o lead-lithium liquid were also conducted. Tempering was found to remove the susceptibility of as-quenched 21/4Cr-1Mo steel to penetration at 500 0 C by lead-lithium liquids containing up to 53 w/o lead. Penetration by the 99.3 w/o lead-lithium liquid in 1000 hours at 500 0 C was found to be negligible even when the steel was in the as-quenched condition. An Arrhenius analysis yielded the same low initial activation energy (approx. equal to25 kJ/mole) for liquids containing 0, 17.6, and 53 w/o lead. The initial penetration rate for lead-free lithium was significantly greater than that for the lead-bearing liquids, a factor thought to be related to the effect of lead on the wettability of the liquid. The same secondary activation energy (approx. equal to120 kJ/mole) was also found for the three liquids. Furthermore, the secondary penetration rate was found to be insensitive to lead content. Anomalous behavior at 500 0 C, observed in this study as well as in previous studies, is discussed, and a hypothetical explanation for the behavior is presented. (orig.)

  3. A green strategy for lithium isotopes separation by using mesoporous silica materials doped with ionic liquids and benzo-15-crown-5

    International Nuclear Information System (INIS)

    Wen Zhou; Xiao-Li Sun; Lin Gu; Fei-Fei Bao; Xin-Xin Xu; Chun-Yan Pang; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2014-01-01

    Three new mesoporous silica materials IL15SGs (HF15SG, TF15SG and DF15SG) doped with benzo-15-crown-5 and imidazolium based ionic liquids (C 8 mim + PF 6 - , C 8 mim + BF 4 - or C 8 mim + NTf 2 - ) have been prepared by a simple approach to separating lithium isotopes. The formed mesoporous structures of silica gels have been confirmed by transmission electron microscopy image and N 2 gas adsorption-desorption isotherm. Imidazolium ionic liquids acted as templates to prepare mesoporous materials, additives to stabilize extractant within silica gel, and synergetic agents to separate the lithium isotopes. Factors such as lithium salt concentration, initial pH, counter anion of lithium salt, extraction time, and temperature on the lithium isotopes separation were examined. Under optimized conditions, the extraction efficiency of HF15SG, TF15SG and DF15SG were found to be 11.43, 10.59 and 13.07 %, respectively. The heavier isotope 7 Li was concentrated in the solution phase while the lighter isotope 6 Li was enriched in the gel phase. The solid-liquid extraction maximum single-stage isotopes separation factor of 6 Li- 7 Li in the solid-liquid extraction was up to 1.046 ± 0.002. X-ray crystal structure analysis indicated that the lithium salt was extracted into the solid phase with crown ether forming [(Li 0.5 ) 2 (B 15 ) 2 (H 2 O)] + complexes. IL15SGs were also easily regenerated by stripping with 20 mmol L -1 HCl and reused in the consecutive removal of lithium ion in five cycles. (author)

  4. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    Science.gov (United States)

    Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.

    2010-02-01

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  5. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kheswa, N.Y., E-mail: kheswa@tlabs.ac.z [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa); Papka, P.; Buthelezi, E.Z.; Lieder, R.M.; Neveling, R.; Newman, R.T. [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa)

    2010-02-11

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ({sup nat}Ca), lithium-6 ({sup 6}Li) and molybdenum-97 ({sup 97}Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  6. Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius.

    Science.gov (United States)

    Lin, X; Kavian, R; Lu, Y; Hu, Q; Shao-Horn, Y; Grinstaff, M W

    2015-11-13

    Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature.

  7. Thermospheric neutral wind profile in moonlit midnight by Lithium release experiments in Japan

    Science.gov (United States)

    Yamamoto, M. Y.; Watanabe, S.; Abe, T.; Kakinami, Y.; Habu, H.; Yamamoto, M.

    2015-12-01

    Neutral wind profiles were observed in lower thermosphere at about between 90 km and 130 km altitude by using resonance scattering light of moonlit Lithium (Li) vapor released from sounding rockets in midnight (with almost full-moon condition) in 2013 in Japan. As a target of the Daytime Dynamo campaign, Li release experiment was operated at Wallops Flight Facility (WFF) of NASA, U.S.A. in July, 2013 (Pfaff et al., 2015, this meeting), while the same kind of rocket-ground observation campaign in midnight was carried out by using S-520-27/S-310-42 sounding rockets in Uchinoura Space Center (USC) of JAXA, Kagoshima, Japan, also in July 2013.Since imaging signal-to-noise (S/N) condition of the experiment was so severe, we conducted to apply airborne observation for imaging the faint moonlit Li tracers so as to reduce the illuminating intensity of the background skies as an order of magnitude. Two independent methods for calculating the wind profile were applied to the Lithium emission image sequences successfully obtained by the airborne imaging by special Li imagers aboard the airplanes in order to derive precise information of Li tracers motion under the condition of single observation site on a moving aircraft along its flight path at about 12 km altitude in lower stratosphere. Slight attitude-feedback motion of the aircraft's 3-axes attitude changes (rolling, yawing and pitching) was considered for obtaining precise coordinates on each snapshot. Another approach is giving a simple mathematic function for wind profile to resolve the shape displacement of the imaged Li tracers. As a result, a wind profile in moonlit thermosphere was calculated in a range up to about 150 m/s with some fluctuated parts possibly disturbed by wind shears. In the same experiment, another sounding rocket S-310-42 with a TMA canister was also launched from USC/JAXA at about 1 hour before the rocket with carrying the Lithium canisters, thus, we can derive the other 2 profiles determined by

  8. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  9. Preliminary assessment of interactions between the FMIT deuteron beam and liquid-lithium target

    International Nuclear Information System (INIS)

    Hassberger, J.A.

    1983-03-01

    Scoping calculations were performed to assess the limit of response of the FMIT lithium target to the deuteron-beam interactions. Results indicate that most response modes have acceptably minor impacts on the lithium-target behavior. Individual modes of response were studied separately to assess sensitivity of the target to various phenomena and to identify those needing detailed evaluation. A few responses are of sufficient magnitude to warrant further investigation. Potential for several different responses combining additively is identified as the major area requiring further consideration

  10. Liquid loading experiments with tube wall modifications

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Schiferli, W.; Veltin, J.; Veeken, K.

    2011-01-01

    This paper discusses the multiphase flow mechanism responsible for gas-well liquid loading. It demonstrates that the conventional idea of droplet flow reversal (Turner et al. (1)) does not capture reality and that actual observations are better described by film flow reversal phenomenon. The

  11. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  12. Ionic liquids and green chemistry : a lab experiment

    NARCIS (Netherlands)

    Stark, A.; Ott-Reinhardt, D.; Kralisch, D.; Kreisel, G.; Ondruschka, B.

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few

  13. Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid.

    Science.gov (United States)

    Bai, Yu; Zhang, Jing; Wang, Yinghui; Zhang, Min; Wang, Peng

    2011-04-19

    Lithium ions are known for their potent function in modulating the energy alignment at the oxide semiconductor/dye/electrolyte interface in dye-sensitized solar cells (DSCs), offering the opportunity to control the associated multichannel charge-transfer dynamics. Herein, by optimizing the lithium iodide content in 1-ethyl-3-methylimidazolium dicyanamide-based ionic liquid electrolytes, we present a solvent-free DSC displaying an impressive 8.4% efficiency at 100 mW cm(-2) AM1.5G conditions. We further scrutinize the origins of evident impacts of lithium ions upon current density-voltage characteristics as well as photocurrent action spectra of DSCs based thereon. It is found that, along with a gradual increase of the lithium content in ionic liquid electrolytes, a consecutive diminishment of the open-circuit photovoltage arises, primarily owing to a noticeable downward movement of the titania conduction band edge. The conduction band edge displacement away from vacuum also assists the formation of a more favorable energy offset at the titania/dye interface, and thereby leads to a faster electron injection rate and a higher exciton dissociation yield as implied by transient emission measurements. We also notice that the adverse influence of the titania conduction band edge downward shift arising from lithium addition upon photovoltage is partly compensated by a concomitant suppression of the triiodide involving interfacial charge recombination. © 2011 American Chemical Society

  14. Comparative studies of H absorption/desorption kinetics and evaporation of liquid lithium in different porous systems and free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzabal, E., E-mail: eider.oyarzabal@externos.ciemat.es [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Calle de Guzmán el Bueno, 133, 28003 Madrid (Spain); Martín-Rojo, A.B. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Calle de Guzmán el Bueno, 133, 28003 Madrid (Spain); Tabarés, F.L. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain)

    2017-04-15

    In the present work, a study of the two most relevant properties of liquid lithium with respect to its suitability as a Plasma Facing Component (PFC) element in a Reactor, namely, its evaporation rate and the uptake/release of hydrogen, eventually leading to the formation of a stable hydride was carried out for Li in different porous systems and Li as a free surface. These properties were characterized in a temperature range of 200–500 °C. The H{sub 2} absorption kinetics at low pressure (<1torr) were measured for the different studied porous systems and then outgassed. Particle balance and chemical analysis were used to assess the retention properties of lithium for each case. Thermal Desorption Spectroscopy (TDS) analysis was used for the assessment of possible hydride formation. Evaporation rates were determined by using a Quartz Microbalance (QMB). A significant reduction of the evaporation rate was observed when Li was trapped in a microstructure of sintered stainless steel with a characteristic porous size of 5–10 μm. On the other hand, a negligible rate of H{sub 2} uptake was found at temperatures above 500 °C in all cases.

  15. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  16. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    International Nuclear Information System (INIS)

    Nitti, F.S.; Ibarra, A.; Ida, M.; Favuzza, P.; Furukawa, T.; Groeschel, F.; Heidinger, R.; Kanemura, T.; Knaster, J.; Kondo, H.; Micchiche, G.; Sugimoto, M.; Wakai, E.

    2015-01-01

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  17. Shock compression experiments on Lithium Deuteride (LiD) single crystals

    Science.gov (United States)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.

    2016-12-01

    Shock compression experiments in the few hundred GPa (multi-Mbar) regime were performed on Lithium Deuteride single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ˜190 and 570 GPa along the Principal Hugoniot—the locus of end states achievable through compression by large amplitude shock waves—as well as pressure and density of reshock states up to ˜920 GPa. The experimental measurements are compared with density functional theory calculations, tabular equation of state models, and legacy nuclear driven results that have been reanalyzed using modern equations of state for the shock wave standards used in the experiments.

  18. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids

    Science.gov (United States)

    Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi

    2018-05-01

    Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.

  19. Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Division of Advanced Materials Engineering, Kongju National University, 1223–24, Cheonan-daero, Cheonan, Chungnam, 31080 (Korea, Republic of); Ryou, Myung-Hyun [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Lee, Yong Min, E-mail: yongmin.lee@hanbat.ac.kr [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Cho, Kuk Young, E-mail: kycho@hanyang.ac.kr [Department of Materials Science and Chemical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, 15588 (Korea, Republic of)

    2016-08-05

    Ceramic composite separators (CCSs) play a critical role in ensuring safety for lithium-ion batteries (LIBs), especially for mid- and large-sized devices. However, production of CCSs using organic solvents has some cost and environmental concerns. An aqueous process for fabricating CCSs is attractive because of its cost-effectiveness and environmental-friendliness because organic solvents are not used. The success of an aqueous coating system for LIBs is dependent upon minimizing moisture content, as moisture has a negatively impact on LIB performance. In this study, CCSs were fabricated using an aqueous coating solution containing Al{sub 2}O{sub 3} and an acrylic binder. Compared with polyethylene (PE) separators, CCSs coated with an aqueous coating solution showed improved thermal stability, electrolyte uptake, puncture strength, ionic conductivity, and rate capability. In addition, our new approach of introducing a small amount of an oily liquid to the aqueous coating solution reduced the water adsorption by 11.7% compared with coatings that do not contain the oily liquid additive. - Highlights: • Ceramic composite separator is fabricated using aqueous coating process. • Coated separator showed enhanced mechanical and thermal stability. • Liquid oil additive in coating solution reduce moisture reabsorption of separator. • Oil additive in aqueous coating solution does not deteriorate LIB performance.

  20. Study of interactions between liquid lead-lithium alloy and austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Simon, N.

    1992-06-01

    In the framework of Fusion Technology, the behaviour of structural materials in presence of liquid alloy Pb17Li is investigated. First, the diffusion coefficients of Fe and Cr have been determined at 500 deg C. Then mass transfer experiments in Pb17Li have been conducted in an anisothermal container with pure metals (Fe, Cr, Ni), Fe-Cr steels and austenitic steels. These experiments showed a very high loss of Nickel, which is an accordance with its high solubility, and Cr showed mass-losses one order of magnitude higher than for pure iron, as the diffusion coefficient of Cr is three orders of magnitude higher than for pure Fe. The corrosion rate of binary Fe-Cr and pure Fe are identical. In austenitic steels, the gamma lattice allows a higher mass-transfer of Cr than the alpha lattice, the presence of Cr slows downs the dissolution of Ni, and the porosity of corrosion layers results of losses of Cr and Ni. Finally, a review of our results and those of other laboratories allowed an identification of the corrosion limiting step. In the case of 1.4914 martensitic steel it is the diffusion of Fe in Pb17Li, while in the case of 316L austenitic steel it is the diffusion of Cr in Pb17Li

  1. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Binbin; Li, Cuihua; Zhou, Junhui; Liu, Jianhong; Zhang, Qianling

    2014-01-01

    Highlights: • New ionic liquid electrolytes composed by PYR 13 TFSI and EC/DMC-5%VC. • Mixed electrolyte for use in high-safety lithium-ion batteries. • LiTFSI concentration in IL electrolyte greatly affects the rate capability of the cell. • The optimal mixed electrolyte is ideal for applications at high temperature. - Abstract: In this paper, we report on the physicochemical properties of mixed electrolytes based on an ionic liquid N-propyl-N-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PYR 13 TFSI), organic additives, and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) for high safety lithium-ion batteries. The proposed optimal content of ionic liquid in the mixed electrolyte is 65 vol%, which results in non- flammability, high thermal stability, a wide electrochemical window of 4.8 V, low viscosity, low bulk resistance and the lowest interface resistance to lithium anode. The effects of the concentration of LiTFSI in the above electrolyte are critical to the rate performance of the LiFePO 4 -based battery. We have found the suitable LiTFSI concentration (0.3 M) for good capacity retention and rate capability

  2. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  3. Experimental study of gaseous lithium deuterides and lithium oxides. Implications for the use of lithium and Li2O as breeding materials in fusion reactor blankets

    International Nuclear Information System (INIS)

    Ihle, H.R.; Wu, C.H.; Kudo, H.

    1980-01-01

    In addition to LiH, which has been studied extensively by optical spectroscopy, the existence of a number of other stable lithium hydrides has been predicted theoretically. By analysis of the saturated vapour over dilute solutions of the hydrogen isotopes in lithium, using Knudsen effusion mass spectrometry, all lithium hydrides predicted to be stable were found. Solutions of deuterium in lithium were used predominantly because of practical advantages for mass spectrometric measurements. The heats of dissociation of LiD, Li 2 D, LiD 2 and Li 2 D 2 , and the binding energies of their singly charged positive ions were determined, and the constants of the gas/liquid equilibria were calculated. The existence of these lithium deuterides in the gas phase over solutions of deuterium in lithium leads to enrichment of deuterium in the gas above 1240 K. The enrichment factor, which increases exponentially with temperature and is independent of concentration for low concentrations of deuterium in the liquid, was determined by Rayleigh distillation experiments. It was found that it is thermodynamically possible to separate deuterium from lithium by distillation. One of the alternatives to the use of lithium in (D,T)-fusion reactors as tritium-breeding blanket material is to employ solid lithium oxide. This has a high melting point, a high lithium density and still favourable tritium-breeding properties. Because of its rather high volatility, an experimental study of the vaporization of Li 2 O was undertaken by mass spectrometry. It vaporizes to give lithium and oxygen, and LiO, Li 2 O, Li 3 O and Li 2 O 2 . The molecule Li 3 O was found as a new species. Heats of dissociation, binding energies of the various ions and the constants of the gas/solid equilibria were determined. The effect of using different materials for the Knudsen cells and the relative thermal stabilities of lithium-aluminium oxides were also studied. (author)

  4. Nuclear quantum effects in ab initio dynamics: Theory and experiments for lithium imide

    Science.gov (United States)

    Ceriotti, Michele; Miceli, Giacomo; Pietropaolo, Antonino; Colognesi, Daniele; Nale, Angeloclaudio; Catti, Michele; Bernasconi, Marco; Parrinello, Michele

    2010-11-01

    Owing to their small mass, hydrogen atoms exhibit strong quantum behavior even at room temperature. Including these effects in first-principles calculations is challenging because of the huge computational effort required by conventional techniques. Here we present the first ab initio application of a recently developed stochastic scheme, which allows to approximate nuclear quantum effects inexpensively. The proton momentum distribution of lithium imide, a material of interest for hydrogen storage, was experimentally measured by inelastic neutron-scattering experiments and compared with the outcome of quantum thermostatted ab initio dynamics. We obtain favorable agreement between theory and experiments for this purely quantum-mechanical property, thereby demonstrating that it is possible to improve the modeling of complex hydrogen-containing materials without additional computational effort.

  5. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments

    International Nuclear Information System (INIS)

    Su, Laisuo; Zhang, Jianbo; Wang, Caijuan; Zhang, Yakun; Li, Zhe; Song, Yang; Jin, Ting; Ma, Zhao

    2016-01-01

    Highlights: • The effect of seven principal factors on the aging behavior of lithium ion cells is studied. • Orthogonal design of experiments is used to reduce the experiment units. • Capacity fades linearly during the initial 10% capacity fading period. • Statistical methods are used to compare the significance of each principal factor. • A multi-factor statistical model is developed to predict the aging rate of cells. - Abstract: The aging rate under cycling conditions for lithium-ion cells is affected by many factors. Seven principal factors are systematically examined using orthogonal design of experiments, and statistical analysis was used to identify the order of principal factors in terms of strength in causing capacity fade. These seven principal factors are: the charge and discharge currents (i_1, i_2) during the constant current regime, the charge and discharge cut-off voltages (V_1, V_2) and the corresponding durations (t_1, t_2) during the constant voltage regime, and the ambient temperature (T). An orthogonal array with 18 test units was selected for the experiments. The test results show that (1) during the initial 10% capacity fading period, the capacity faded linearly with Wh-throughput for all the test conditions; (2) after the initial period, certain cycling conditions exacerbated aging rates, while the others remain the same. The statistical results show that: (1) except for t_1, the other six principal factors significantly affect the aging rate; (2) the strength of the principal factors was ranked as: i_1 > V_1 > T > t_2 > V_2 > i_2 > t_1. Finally, a multi-factor statistical aging model is developed to predict the aging rate, and the accuracy of the model is validated.

  6. New approaches to the design of polymer and liquid electrolytes for lithium batteries

    Science.gov (United States)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they do not interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference, and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in poly(ethylene oxide) (PEO)-based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation complexing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach, since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion complexing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3SO 3-. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane-based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2 M LiF solutions in DME, an increase in solubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6×10 -3 S cm -1. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2O 4 cells.

  7. A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries

    International Nuclear Information System (INIS)

    Kimura, Kento; Matsumoto, Hidetoshi; Hassoun, Jusef; Panero, Stefania; Scrosati, Bruno; Tominaga, Yoichi

    2015-01-01

    Highlights: • A quaternary PEC-LiTFSI-Pyr 14 TFSI-Silica fiber electrolyte was prepared by a solvent casting method. • Both electrochemical and mechanical properties were improved by the presence of the Silica fiber. • The electrolyte showed a t Li+ value of 0.36 with an anodic stability extended up to 4.5 V vs. Li/Li + . • A prototype Li/LiFePO 4 polymer cell delivered a discharge capacity of about 100 mAh g −1 (75 °C, C/15). - Abstract: Poly(ethylene carbonate) (PEC) is known as an alternating copolymer derived from carbon dioxide (CO 2 ) and an epoxide as monomers. Here, we describe a new quaternary PEC-based composite electrolyte containing lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, N-n-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (Pyr 14 TFSI) ionic liquid, and an electrospun silica (SiO 2 ) fiber (SiF) with a submicron diameter in view of its possible applications in solid-state Li polymer batteries. A free-standing electrolyte membrane is prepared by a solvent casting method. The Pyr 14 TFSI ionic liquid enhances the ionic conductivity of the electrolyte as a result of its plasticizing effect. The electrochemical properties, such as ionic conductivity and Li transference number (t Li+ ), as well as mechanical strength of the electrolyte, are further improved by the SiF. We show that the quaternary electrolyte has a conductivity of the order of 10 −7 S cm −1 at ambient temperature and a high t Li+ value of 0.36 with an excellent flexibility. A prototype Li polymer cell using LiFePO 4 as a cathode material is assembled and tested. We demonstrate that this battery delivers a reversible charge-discharge capacity close to 100 mAh g −1 at 75 °C and C/15 rate. We believe that this work may pave the road to utilize CO 2 as a carbon source for highly-demanded, functional battery materials in future

  8. Hydraulics and heat transfer in the IFMIF liquid lithium target: CFD calculations

    OpenAIRE

    Peña, A.; Esteban, G.A.; Sancho, J.; Kolesnik, V.; Abánades Velasco, Alberto

    2009-01-01

    CFD (Computational fluid dynamics) calculation turns out to be a good approximation to the real behavior of the lithium (Li) flow of the target of the international fusion materials irradiation facility (IFMIF). A three-dimensional (3D) modelling of the IFMIF design Li target assembly, made with the CFD commercial code ANSYS-FLUENT has been carried out. The simulation by a structural mesh is focused on the thermal-hydraulic analysis inside the Li jet flow. For, this purpose, the two deuteron ...

  9. Investigation of wetting property between liquid lead lithium alloy and several structural materials for Chinese DEMO reactor

    Science.gov (United States)

    Lu, Wei; Wang, Weihua; Jiang, Haiyan; Zuo, Guizhong; Pan, Baoguo; Xu, Wei; Chu, Delin; Hu, Jiansheng; Qi, Junli

    2017-10-01

    The dual-cooled lead lithium (PbLi) blanket is considered as one of the main options for the Chinese demonstration reactor (DEMO). Liquid PbLi alloy is used as the breeder material and coolant. Reduced activation ferritic/martensitic (RAFM) steel, stainless steel and the silicon carbide ceramic matrix composite (SiCf) are selected as the substrate materials for different use. To investigate the wetting property and inter-facial interactions of PbLi/RAFM steel, PbLi/SS316L, PbLi/SiC and PbLi/SiCf couples, in this paper, the special vacuum experimental device is built, and the 'dispensed droplet' modification for the classic sessile droplet technique is made. Contact angles are measured between the liquid PbLi and the various candidate materials at blanket working temperature from 260 to 480 °C. X-ray photoelectron spectroscopy (XPS) is used to characterize the surface components of PbLi droplets and substrate materials, in order to study the element trans-port and corrosion mechanism. Results show that SiC composite (SiCf) and SiC ceramic show poor wetting properties with the liquid PbLi alloy. Surface roughness and testing temperature only provide tiny improvements on the wetting property below 480 °C. RAFM steel performs better wetting properties and corrosion residence when contacted with molten PbLi, while SS316L shows low corrosion residence above 420 °C for the decomposition of protective surface film mainly consisted of chromic sesquioxide. The results could provide meaningful compatibility database of liquid PbLi alloy and valuable reference in engineering design of candidate structural and functional materials for future fusion blanket.

  10. Spreading of lithium on a stainless steel surface at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Capece, A.M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Roszell, J.P.; Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, NJ 08540 (United States)

    2016-01-15

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E{sub des} = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E{sub des} = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium–lithium bonding.

  11. Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium.

    Science.gov (United States)

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-05-01

    Electromembrane extraction was used for simultaneous sample cleanup and preconcentration of lithium from untreated human body fluids. The sample of a body fluid was diluted 100 times with 0.5 mM Tris solution and lithium was extracted by electromigration through a supported liquid membrane composed of 1-octanol into 100 mM acetic acid acceptor solution. Matrix compounds, such as proteins, red blood cells, and other high-molecular-weight compounds were efficiently retained on the supported liquid membrane. The liquid membrane was anchored in pores of a short segment of a polypropylene hollow fiber, which represented a low cost, single use, disposable extraction unit and was discarded after each use. Acceptor solutions were analyzed using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4) D) and baseline separation of lithium was achieved in a background electrolyte solution consisting of 18 mM L-histidine and 40 mM acetic acid at pH 4.6. Repeatability of the electromembrane extraction-CE-C(4) D method was evaluated for the determination of lithium in standard solutions and real samples and was better than 0.6 and 8.2% for migration times and peak areas, respectively. The concentration limit of detection of 9 nM was achieved. The developed method was applied to the determination of lithium in urine, blood serum, blood plasma, and whole blood at both endogenous and therapeutic concentration levels. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Liquid oxygen LOX compatibility evaluations of aluminum lithium (Al-Li) alloys: Investigation of the Alcoa 2090 and MMC weldalite 049 alloys

    Science.gov (United States)

    Diwan, Ravinder M.

    1989-01-01

    The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.

  13. Method of producing spherical lithium aluminate particles

    International Nuclear Information System (INIS)

    Yang, L.; Medico, R.R.; Baugh, W.A.

    1983-01-01

    Spherical particles of lithium aluminate are formed by initially producing aluminium hydroxide spheroids, and immersing the spheroids in a lithium ion-containing solution to infuse lithium ions into the spheroids. The lithium-infused spheroids are rinsed to remove excess lithium ion from the surface, and the rinsed spheroids are soaked for a period of time in a liquid medium, dried and sintered to form lithium aluminate spherical particles. (author)

  14. Novel Pyrrolinium-based Ionic Liquids for Lithium Ion Batteries: Effect of the Cation on Physicochemical and Electrochemical Properties

    International Nuclear Information System (INIS)

    Kim, Hyung-Tae; Kwon, Oh Min; Mun, Junyoung; Oh, Seung M.; Yim, Taeeun; Kim, Young Gyu

    2017-01-01

    Lithium ion batteries (LIBs) are one of the most promising energy conversion/storage systems, but the low thermal stability of the current electrolytes in LIBs should be improved to expand their potential applications. To enhance the safety properties of LIBs, novel pyrrolinium-based ionic liquids (ILs) were proposed as an alternative electrolyte to the current carbonate electrolyte, which have some task-specific functional groups, i.e., a planar C=N double bond, a C-O ether linkage, and no unstable C-H bond, designed to improve their electrochemical performances as well as the physicochemical properties. As a result, the pyrrolinium-based ILs exhibited much improved physicochemical and electrochemical properties compared to those of the known ILs. Among the prepared ILs, N-allyl-2-methoxypyrrolinium bis(fluorosulfonyl)imide (A(OMe)Pyrl-FSI, 4) showed the high ionic conductivity (10.2 mS cm −1 ), the very good cycling performance (99.3% of retention ratio after 50 cycles) with a LiFePO 4 electrode, and the much improved lithium ion transference number (0.19). IL 4 also had the remarkable rate capability at 5 C-rate with the retention ratio of 81.2% (124.8 mA h g −1 ), compared to the initial discharge capacity of 153.7 mA h g −1 at 0.1 C-rate. In addition, both their high thermal stability and non-flammability were also confirmed.

  15. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  16. NSTX plasma response to lithium coated divertor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Allain, J.P.; Bell, R.E.; Ding, S.; Gerhardt, S.P.; Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.M.; LeBlanc, B.P.; Maingi, Rajesh; Majeski, R.; Maqueda, R.J.; Mansfield, D.K.; Mueller, D.; Nygren, R.E.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.A.; Taylor, C.N.; Timberlake, J.; Wampler, W.R.; Zakharov, L.E.; Zweben, S.J.

    2011-01-01

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma-facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, < 0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  17. Field experiment with liquid manure and enhanced biochar

    Science.gov (United States)

    Dunst, Gerald

    2017-04-01

    Field experiments with low amounts of various liquid manure enhanced biochars. In 2016 a new machine was developed to inject liquid biochar based fertilizer directly into the crop root zone. A large-scale field experiment with corn and oil seed pumpkin was set-up on 42 hectares on 15 different fields in the south East of Austria. Three treatments were compared: (1) surface spreading of liquid manure as control (common practice), (2) 20 cm deep root zone injection with same amount of liquid manure, and (3) 20 cm deep root zone injection with same amount of liquid manure mixed with 1 to 2 tons of various nutrient enhanced biochars. The biochar were quenched with the liquid phase from a separated digestate from a biogas plant (feedstock: cow manure). From May to October nitrate and ammonium content was analyzed monthly from 0-30cm and 30-60cm soil horizons. At the end of the growing season the yield was determined. The root zone injection of the liquid manure reduced the nitrate content during the first two months at 13-16% compared to the control. When the liquid manure was blended with biochar, Nitrate soil content was lowest (reduction 40-47%). On average the root zone injection of manure-biochar increased the yield by 7% compared to the surface applied control and 3% compared to the root zone injected manure without biochar. The results shows, that biochar is able to reduce the Nitrate load in soils and increase the yield of corn at the same time. The nutrient efficiency of organic liquid fertilizers can be increased.

  18. Tritium extraction mechanisms from lithium aluminates during in pile irradiation experiments

    International Nuclear Information System (INIS)

    Briec, M.; Roth, E.

    1987-04-01

    The principal aim was to determine ranges of parameters governing tritium release from γ lithium aluminates within which acceptable rates for their contemplated usage as tritium breeder material in a fusion reactor blanket could be obtained. in the first place values of every quantity involved should be known as well as possible. Reproducible results should be a criterium of validity of the selected parameters. It is shown from a description of a series of experiments that processes limiting tritium release rates are not the same in different temperature ranges. By varying the composition of purge gases used for tritium extraction, the level of irradiation fluxes, and by studying simultaneously samples of different textures, results were obtained and an assignment of the respective role of defect formation, texture, surface effect is attempted to interpret them

  19. The FUBR-1B experiment, irradiation of lithium ceramics to high burnups under large temperature gradients

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Knight, R.C.; Densley, P.J.; Pember, L.A.; Johnson, C.E.; Poeppel, R.B.; Yang, L.

    1985-01-01

    Solid breeder materials used for supplying the tritium for fueling fusion power reactors will be required to withstand a variety of severe environmental conditions such as irradiation damage, thermal stresses and chemical reactions while continuing to produce tritium and not interfering with other essential components in the complex blanket region. In the FUBR-1B experiment several solid breeder candidates are being subjected to the most hostile conditions foreseen in a fusion reactor's blanket. Some material, such as Li 2 O, Li 8 ZrO 6 , and Li 4 SiO 4 , possess high lithium atom densities which are reflected in high tritium breeding ratios. Other material, such as LiAlO 2 and Li 2 ZrO 3 , appear to have exceptional irradiation stability. Verifying the magnitude of these differences will allow national selection between design options

  20. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  1. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    Science.gov (United States)

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  2. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xianlai; Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn

    2014-04-01

    Highlights: • Manual dismantling is superior in spent high-power LiBs recycling. • Heated ionic liquid can effectively separate Al and cathode materials. • Fourier’s law was adopted to determine the heat transfer mechanism. • The process of spent LiBs recycling with heated ionic liquid dismantling was proposed. - Abstract: Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier’s law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180 °C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling.

  3. Intermetallic and electrical insulator coatings on high-temperature alloys in liquid-lithium environments

    International Nuclear Information System (INIS)

    Park, J.H.

    1994-06-01

    In the design of liquid-metal cooling systems for fusion-reactor blanket, applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural wall, and Be-V intermetallic coatings for first-wall components that face the plasma. Vanadium and V-base alloys are leading candidate materials for structural applications in a fusion reactor. Various intermetallic films were produced on V-alloys and on Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 2 at temperatures of 500--1030 degree C. CaO electrical insulator coatings were produced by reaction of the oxygen-rich layer with <5 at. % Ca dissolved in liquid Li at 400--700 degree C. The reaction converted the oxygen-rich layer to an electrically insulating film. This coating method is applicable to reactor components because the liquid metal can be used over and over; only the solute within the liquid metal is consumed. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid Li at high temperatures

  4. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  5. Numerical study of the flow conditioner for the IFMIF liquid lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S., E-mail: sergej.gordeev@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany); Gröschel, F. [KIT Fusion Program, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany); Heinzel, V.; Hering, W.; Stieglitz, R. [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: • A detailed numerical analysis of the flow conditioner efficiency has been performed. • The calculations show that the present design of the flow conditioner cannot suppress swirl motions emerging from the bend. • The transient simulation reveals flow instabilities between the separation zone and the accelerated outer region. • Calculation shows that pitched guide vanes upstream the elbow reduces a generation of backflow areas downstream. - Abstract: IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based deuteron–lithium (D–Li) neutron source to simulate the neutron irradiation field in a fusion reactor. The target assembly of the IFMIF consists of the flow conditioners and the nozzle, which has to form a stable lithium jet. This work focuses on a numerical study of the flow conditioner efficiency, in which two different types of flow conditioners are compared by means of a detailed numerical analysis with respect to specific hydraulic effects in the pipe elbow and the inflow conditioners. The adequateness of three different turbulence models to simulate a flow through a 90° bend of circular cross section has been examined. The calculations show that a honeycomb-screen combination is not capable to suppress effectively large scale swirl motions emerging from the bend. An increasing number of screens improves the flow uniformity downstream, but increases the pressure drop. In order to detect any transient effects in the separation area a flow straightener configuration consisting of a honeycomb with a subsequent screen has been analyzed by means of a detached eddy simulation (DES). A frequency analysis of the normalized static pressure amplitude conducted by means of a detached eddy simulation (DES) reveals instabilities in the shear layer between the separation zone and the accelerated outer region, which additionally increase the inhomogeneity of the axial velocity distribution. A set of six circumferentially

  6. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong

    2017-12-01

    Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.

  7. Startup of Experimental Lithium System

    International Nuclear Information System (INIS)

    McCauley, D.L.

    1980-06-01

    The Experimental Lithium System (ELS) is designed for full-scale testing of targets and other lithium system components for the Fusion Materials Irradiation Test (FMIT) Facility. The system also serves as a test bed for development of lithium purification and characterization equipment, provides experience in operation of large lithium systems, and helps guide FMIT design

  8. Pyrrolidinium FSI and TFSI-Based Polymerized Ionic Liquids as Electrolytes for High-Temperature Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Manfred Kerner

    2018-02-01

    Full Text Available Promising electrochemical and dynamical properties, as well as high thermal stability, have been the driving forces behind application of ionic liquids (ILs and polymerized ionic liquids (PILs as electrolytes for high-temperature lithium-ion batteries (HT-LIBs. Here, several ternary lithium-salt/IL/PIL electrolytes (PILel have been investigated for synergies of having both FSI and TFSI anions present, primarily in terms of physico-chemical properties, for unique application in HT-LIBs operating at 80 °C. All of the electrolytes tested have low Tg and are thermally stable ≥100 °C, and with TFSI as the exclusive anion the electrolytes (set A have higher thermal stabilities ≥125 °C. Ionic conductivities are in the range of 1 mS/cm at 100 °C and slightly higher for set A PILel, which, however, have lower oxidation stabilities than set B PILel with both FSI and TFSI anions present: 3.4–3.7 V vs. 4.2 V. The evolution of the interfacial resistance increases for all PILel during the first 40 h, but are much lower for set B PILel and generally decrease with increasing Li-salt content. The higher interfacial resistances only influence the cycling performance at high C-rates (1 C, where set B PILel with high Li-salt content performs better, while the discharge capacities at the 0.1 C rate are comparable. Long-term cycling at 0.5 C, however, shows stable discharge capacities for 100 cycles, with the exception of the set B PILel with high Li-salt content. Altogether, the presence of both FSI and TFSI anions in the PILel results in lower ionic conductivities and decreased thermal stabilities, but also higher oxidation stabilities and reduced interfacial resistances and, in total, result in an improved rate capability, but compromised long-term capacity retention. Overall, these electrolytes open for novel designs of HT-LIBs.

  9. Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries

    International Nuclear Information System (INIS)

    Li, Mingtao; Wang, Lu; Yang, Bolun; Du, Tingting; Zhang, Ying

    2014-01-01

    Graphical abstract: (A) The main components of PIL electrolytes, (B) A PIL electrolyte sample. - Highlights: • A new polymer electrolyte incorporating a DEME-TFSI liquid is prepared. • The ionic conductivity of the electrolytes reaches 7.58 × 10 −4 S cm −1 at 60 °C. • Batteries discharge 130 mAh g −1 at 0.1 C rates with good capacity retention. - Abstract: The polymer electrolytes based on a novel poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) polymeric ionic liquid (PIL) as polymer host and containing DEME-TFSI ionic liquid, LiTFSI salt and nano silica are prepared. The polymer electrolyte is chemically stable even at a higher temperature of 60 °C in contact with lithium anode. Particularly, the electrolyte exhibits high lithium ion conductivity, wide electrochemical stability window and good lithium stripping/plating performance. When the IL content reaches 60% (the weight ratio of DEME-TFSI/PIL), the PIL electrolyte presents a higher ionic conductivity, and it is 7.58 × 10 −4 S cm −1 at 60 °C. Preliminary battery tests show that Li/LiFePO 4 cells with the PIL electrolytes are capable to deliver above 130 mAh g −1 at 60 °C with very good capacity retention

  10. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials

    International Nuclear Information System (INIS)

    Wang, Yadong; Zaghib, K.; Guerfi, A.; Bazito, Fernanda F.C.; Torresi, Roberto M.; Dahn, J.R.

    2007-01-01

    Using accelerating rate calorimetry (ARC), the reactivity between six ionic liquids (with and without added LiPF 6 ) and charged electrode materials is compared to the reactivity of standard carbonate-based solvents and electrolytes with the same electrode materials. The charged electrode materials used were Li 1 Si, Li 7 Ti 4 O 12 and Li 0.45 CoO 2 . The experiments showed that not all ionic liquids are safer than conventional electrolytes/solvents. Of the six ionic liquids tested, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMI-FSI) shows the worst safety properties, and is much worse than conventional electrolyte. 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI) and 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (Py13-FSI) show similar reactivity to carbonate-based electrolyte. The three ionic liquids 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (BMMI-TFSI), 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide (Pp14-TFSI) and N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide (TMBA-TFSI) show similar reactivity and are much safer than the conventional carbonate-based electrolyte. A comparison of the reactivity of ionic liquids with common anions and cations shows that ionic liquids with TFSI - are safer than those with FSI - , and liquids with EMI + are worse than those with BMMI + , Py13 + , Pp14 + and TMBA +

  11. Diffraction and signal processing experiments with a liquid crystal microdisplay

    International Nuclear Information System (INIS)

    MartInez, Jose Luis; Moreno, Ignacio; Ahouzi, Esmail

    2006-01-01

    In this work, we show some diffraction experiments performed with a liquid crystal display (LCD) that shows how useful this device can be to teach and experience diffraction optics and signal processing experiments. The LCD acts as a programmable pixelated diffractive mask. The Fourier spectrum of the image displayed in the LCD is visualized through a simple free propagation diffraction experiment. This optical system allows easy testing of different diffractive elements. As a demonstration we include experimental results with well-known diffractive elements like diffraction gratings or Fresnel lenses, and with more complicated elements like computer-generated holograms

  12. Diffraction and signal processing experiments with a liquid crystal microdisplay

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Jose Luis [Departamento de Ciencia y TecnologIa de Materiales, Universidad Miguel Hernandez de Elche, Alicante (Spain); Moreno, Ignacio [Departamento de Ciencia y TecnologIa de Materiales, Universidad Miguel Hernandez de Elche, Alicante (Spain); Ahouzi, Esmail [Institut National des Postes et Telecomunications (INTP), Madinat Al Irfane, Rabat (Morocco)

    2006-09-01

    In this work, we show some diffraction experiments performed with a liquid crystal display (LCD) that shows how useful this device can be to teach and experience diffraction optics and signal processing experiments. The LCD acts as a programmable pixelated diffractive mask. The Fourier spectrum of the image displayed in the LCD is visualized through a simple free propagation diffraction experiment. This optical system allows easy testing of different diffractive elements. As a demonstration we include experimental results with well-known diffractive elements like diffraction gratings or Fresnel lenses, and with more complicated elements like computer-generated holograms.

  13. Liquid nitrogen - water interaction experiments for fusion reactor accident scenarios

    International Nuclear Information System (INIS)

    Duckworth, R.; Murphy, J.; Pfotenhauer, J.; Corradini, M.

    2001-01-01

    With the implementation of superconducting magnets in fusion reactors, the possibility exists for the interaction between water and cryogenic systems. The interaction between liquid nitrogen and water was investigated experimentally and numerically. The rate of pressurization and peak pressure were found to be driven thermodynamically by the expansion of the water and the boil-off of the liquid nitrogen and did not have a vapor explosion nature. Since the peak pressure was small in comparison to previous work with stratified geometries, the role of the geometry of the interacting fluids has been shown to be significant. Comparisons of the peak pressure and the rate of pressurization with respect to the ratio of the liquid nitrogen mass to water mass reveal no functional dependence as was observed in the liquid helium-water experiments. A simple thermodynamic model provides a fairly good description of the pressure rise data. From the data, the model will allow one to extract the interaction area of the water. As with previous liquid helium-water interaction experiments, more extensive investigation of the mass ratio and interaction geometry is needed to define boundaries between explosive and non-explosive conditions. (authors)

  14. The significance of elemental sulfur dissolution in liquid electrolyte lithium sulfur batteries

    NARCIS (Netherlands)

    Harks, Peter Paul R.M.L.; Robledo, Carla B.; Verhallen, Tomas W.; Notten, Peter H.L.; Mulder, Fokko M.

    2017-01-01

    It is shown that the dissolution of elemental sulfur into, and its diffusion through, the electrolyte allows cycling of lithium–sulfur batteries in which the sulfur is initially far removed and electrically insulated from the current collector. These findings help to understand why liquid

  15. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse.

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs

  16. Thermal hydraulic and power cycle analysis of liquid lithium blanket designs

    International Nuclear Information System (INIS)

    Misra, B.; Stevens, H.C.; Maroni, V.A.

    1977-01-01

    Thermal hydraulic and power cycle analyses were performed for the first-wall and blanket systems of tokamak-type fusion reactors under a typical set of design and operating conditions. The analytical results for lithium-cooled blanket cells show that with stainless steel as construction material and with no divertor present, the maximum allowable neutron wall loading is approximately 2 MW/m 2 and is limited by thermal stress criteria. With vanadium alloy as construction material and no divertor present, the maximum allowable neutron wall loading is approximately 8 MW/m 2 and is limited by an interplay of constraints imposed on the maximum allowable structural temperature and the minimum allowable coolant inlet temperature. With a divertor these wall loadings can be increased by from 40 to 90 percent. The cost of the vanadium system is found to be competitive with the stainless steel system because of the higher allowable structural temperatures and concomitant higher thermal efficiencies afforded by the vanadium alloys

  17. Thermoelectric Efficiency Improvement in Vacuum Tubes of Decomposing Liquid Lithium-Ammonia Solutions

    International Nuclear Information System (INIS)

    Lee, Jungyoon; Kim, Miae; Shim, Kyuchol; Kim, Jibeom; Jeon, Joonhyeon

    2013-01-01

    Lithium-ammonia (Li-NH 3 ) solutions are possible to be successfully made under the vacuum condition but there still remains a problem of undergoing stable and reliable decomposition in vacuum for high-efficiency thermoelectric power generation. This paper describes a new method for improving the thermoelectric conversion efficiency of Li-NH 3 solutions in vacuum. The proposed method uses a ‘U’-shaped Pyrex vacuum tube for the preparation and decomposition of pure fluid Li-NH 3 solutions. The tube is shaped so that a gas passageway (‘U’) connecting both legs of the ‘U’ helps to balance pressure inside both ends of the tube (due to NH 3 gasification) during decomposition on the hot side. Thermoelectric experimental results show that solution reaction in the ‘U’-shaped tube proceeds more stably and efficiently than in the ‘U’-shaped tube, and consequently, thermoelectric conversion efficiency is improved. It is also proved that the proposed method can provide a reversible reaction, which can rotate between synthesis and decomposition in the tube, for deriving the long-time, high-efficiency thermoelectric power

  18. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.

    Science.gov (United States)

    Zeng, Xianlai; Li, Jinhui

    2014-04-30

    Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier's law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180°C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Tribological Behavior of Si3N4/Ti3SiC2 Contacts Lubricated by Lithium-Based Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Haizhong Wang

    2014-01-01

    Full Text Available The tribological performance of Si3N4 ball sliding against Ti3SiC2 disc lubricated by lithium-based ionic liquids (ILs was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (RT and elevated temperature (100°C. Glycerol and the conventional imidazolium-based IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonylimide (L-F106 were used as references under the same experimental conditions. The results show that the lithium-based ILs had higher thermal stabilities than glycerol and lower costs associated with IL preparation than L-F106. The tribotest results show that the lithium-based ILs were effective in reducing the friction and wear of Si3N4/Ti3SiC2 contacts. [Li(urea]TFSI even produced better tribological properties than glycerol and L-F106 both at RT and 100°C. The SEM/EDS and XPS results reveal that the excellent tribological endurance of Si3N4/Ti3SiC2 contacts lubricated by lithium-based ILs was mainly attributed to the formation of surface protective films composed of various tribochemical products.

  20. The use of a long chain ionic liquid in an LiMn2O4 based lithium ion cell

    International Nuclear Information System (INIS)

    Sutto, Thomas E.; Duncan, Teresa T.

    2012-01-01

    A long chain substituted imidazolium ionic liquid, 1,2-dimethyl-3-octylimidazolium bis(trifluoromethanesulfonyl)imide (MMOITFSI), is used as the electrolyte for reversible intercalation of Li into LiMn 2 O 4 . Ionic conductivity measurements indicate that in spite of the longer chain attached to the imidazolium ring, the conductivity for the pure liquid and with 0.5 M LiTFSI present, remains above 1 mS/cm. Cyclic voltammetry revealed high reversibility of Li + into LiMn 2 O 4 in this ionic liquid. Charge/discharge experiments indicated reversible capacity of 115 mAHr/g at a discharge rate of C/6 for 0.5 M Li in MMOITFSI. Higher discharge rates (C/3) resulted in lower capacities (below 100 mAHr/g), most likely due to the higher viscosity of the long chain ionic liquid. Improved discharge rates, of 111 mAHr/g at a higher discharge rate of C/3, were observed when 10 wt% of a short chain ionic liquid, 1,2-dimethyl-3-propylimidazolium bis(trifluoromethanesulfonyl)imide (MMPITFSI), was added to the MMOITFSI. For both the pure MMOITFSI and the ionic liquid blend of MMOITFSI with MMPITFSI, cycle lifetimes showed minimal degradation due to intercalation by the imidazolium cation into the graphite used to enhance the conductivity of the cathode material.

  1. Lithium vapor trapping at a high-temperature lithium PFC divertor target

    Science.gov (United States)

    Jaworski, Michael; Abrams, T.; Goldston, R. J.; Kaita, R.; Stotler, D. P.; de Temmerman, G.; Scholten, J.; van den Berg, M. A.; van der Meiden, H. J.

    2014-10-01

    Liquid lithium has been proposed as a novel plasma-facing material for NSTX-U and next-step fusion devices but questions remain on the ultimate temperature limits of such a PFC during plasma bombardment. Lithium targets were exposed to high-flux plasma bombardment in the Magnum-PSI experimental device resulting in a temperature ramp from room-temperature to above 1200°C. A stable lithium vapor cloud was found to form directly in front of the target and persist to temperature above 1000°C. Consideration of mass and momentum balance in the pre-sheath region of an attached plasma indicates an increase in the magnitude of the pre-sheath potential drop with the inclusion of ionization sources as well as the inclusion of momentum loss terms. The low energy of lithium emission from a surface measured in previous experiments (Contract DE-AC02-09CH11466.

  2. Investigation on utilization of liquid propellant in ballistic range experiments

    Energy Technology Data Exchange (ETDEWEB)

    Saso, Akihiro; Oba, Shinji; Takayama, Kazuyoshi [Tohoku University, Sendai (Japan)

    1999-10-31

    Experiments were conducted in a ballistic range using a HAN (hydroxylammonium nitrate)-based liquid monopropellant, LP1846. In a 25-mm-bore single-stage gun, using bulk-loaded propellant of 10 to 35 g, a muzzle speed up to 1.0 km/s was obtained. Time variations of propellant chamber pressures and in-tube projectile velocity profiles were measured. The liquid propellant combustion was initiated accompanying a delay time which was created due to the pyrolysis of the propellant. In order to obtain reliable ballistic range performance, the method of propellant loading was revealed to be critical. Since the burning rate of the liquid propellant is relatively low, the peak acceleration and the muzzle speed strongly depend on the rupture pressure of a diaphragm that was inserted between the launch tube and the propellant chamber. (author)

  3. Large liquid-scintillator trackers for neutrino experiments

    CERN Document Server

    Benussi, L; D'Ambrosio, N; Déclais, Y; Dupraz, J P; Fabre, Jean-Paul; Fanti, V; Forton, E; Frekers, D; Frenkel, A; Girerd, C; Golovkin, S V; Grégoire, G; Harrison, K; Jonkmans, G; Jonsson, P; Katsanevas, S; Kreslo, I; Marteau, J; Martellotti, G; Martínez, S; Medvedkov, A M; Moret, G; Niwa, K; Novikov, V; Van Beek, G; Penso, G; Vasilchenko, V G; Vuilleumier, J L; Wilquet, G; Zucchelli, P; Kreslo, I E

    2002-01-01

    Results are given on tests of large particle trackers for the detection of neutrino interactions in long-baseline experiments. Module prototypes have been assembled using TiO$_2$-doped polycarbonate panels. These were subdivided into cells of $\\sim 1$~cm$^2$ cross section and 6~m length, filled with liquid scintillator. A wavelength-shifting fibre inserted in each cell captured a part of the scintillation light emitted when a cell was traversed by an ionizing particle. Two different fibre-readout systems have been tested: an optoelectronic chain comprising an image intensifier and an Electron Bombarded CCD (EBCCD); and a hybrid photodiode~(HPD). New, low-cost liquid scintillators have been investigated for applications in large underground detectors. Testbeam studies have been performed using a commercially available liquid scintillator. The number of detected photoelectrons for minimum-ionizing particles crossing a module at different distances from the fibre readout end was 6 to 12 with the EBCCD chain and ...

  4. Dynamics of a radially expanding liquid sheet: Experiments

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh

    2017-11-01

    A recent theory predicts that sinuous waves generated at the center of a radially expanding liquid sheet grow spatially even in absence of a surrounding gas phase. Unlike flat liquid sheets, the thickness of a radially expanding liquid sheet varies inversely with distance from the center of the sheet. To test the predictions of the theory, experiments were carried out on a horizontal, radially expanding liquid sheet formed by collision of a single jet on a solid impactor. The latter was placed on a speaker-vibrator with controlled amplitude and frequency. The growth of sinuous waves was determined by measuring the wave surface inclination angle using reflected laser light under both atmospheric and sub-atmospheric pressure conditions. It is shown that the measured growth rate matches with the predictions of the theory over a large range of Weber numbers for both pressure conditions suggesting that the thinning of the liquid sheet plays a dominant role in setting the growth rate of sinuous waves with minimal influence of the surrounding gas phase on its dynamics. IIT Bombay.

  5. An approach of ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergistic extraction for two coumarins preparation from Cortex fraxini.

    Science.gov (United States)

    Liu, Zaizhi; Gu, Huiyan; Yang, Lei

    2015-10-23

    Ionic liquids/lithium salts solvent system was successfully introduced into the separation technique for the preparation of two coumarins (aesculin and aesculetin) from Cortex fraxini. Ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergy extraction (ILSMP-UMSE) procedure was developed and optimized for the sufficient extraction of these two analytes. Several variables which can potentially influence the extraction yields, including pretreatment time and temperature, [C4mim]Br concentration, LiAc content, ultrasound-microwave synergy extraction (UMSE) time, liquid-solid ratio, and UMSE power were optimized by Plackett-Burman design. Among seven variables, UMSE time, liquid-solid ratio, and UMSE power were the statistically significant variables and these three factors were further optimized by Box-Behnken design to predict optimal extraction conditions and find out operability ranges with maximum extraction yields. Under optimum operating conditions, ILSMP-UMSE showed higher extraction yields of two target compounds than those obtained by reference extraction solvents. Method validation studies also evidenced that ILSMP-UMSE is credible for the preparation of two coumarins from Cortex fraxini. This study is indicative of the proposed procedure that has huge application prospects for the preparation of natural products from plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  7. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    International Nuclear Information System (INIS)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  8. SISAK liquid-liquid extraction experiments with preseparated {sup 257}Rf

    Energy Technology Data Exchange (ETDEWEB)

    Omtvedt, Jon Petter; Alstad, J.; Breivik, H. [University of Oslo, Department of Chemistry, Oslo (NO)] (and others)

    2002-06-01

    The SISAK liquid-liquid extraction system was used to extract 4.0-s {sup 257}Rf. The {sup 257}Rf was produced in the reaction {sup 208}Pb({sup 50}Ti, 1n){sup 257}Rf with 237-MeV beam energy on target, separated in the Berkeley Gas-filled Separator (BGS) and transferred to a gas jet using the Recoil Transfer Chamber (RTC). The activity delivered by the gas jet was dissolved in 6-M HNO{sub 3} and Rf was extracted into 0.25-M dibutyl-phosphoric acid in toluene. This was the first time a transactinide, i.e., an element with Z{>=}104, was extracted and unequivocally identified by the SISAK system. Thus, this pilot experiment demonstrates that the fast liquid-liquid extraction system SISAK, in combination with liquid-scintillation detectors, can be used for investigating the chemical properties of the transactinides. The extraction result is in accordance with the behaviour shown by the Rf group IV homologues Zr and Hf. (author)

  9. Experiment of decontamination of radioactive liquid by a biological method

    International Nuclear Information System (INIS)

    Wormser, G.

    1962-01-01

    The author reports experiments of treatment of radioactive liquid effluents by percolation on a bacterial bed like the one used for the treatment of sewer wastewaters. He also reports results obtained in other countries in terms of reduction of effluent radioactivity for various radioactive ions. The installation is described and results are presented in terms of variation of contamination of an effluent with respect to its recycling on a bacterial bed [fr

  10. VUJE experience with cementation of liquid and wet radioactive waste

    International Nuclear Information System (INIS)

    Kravarik, Kamil; Holicka, Zuzana; Pekar, Anton; Zatkulak, Milan

    2011-01-01

    Liquid and wet LLW generated during operation as well as decommissioning of NPPs is treated with different methods and fixed in a suitable fixation matrix so that a final product meets required criteria for its disposal in a final repository. Cementation is an important process used for fixation of liquid and wet radioactive waste such as concentrate, spent resins and sludge. Active cement grout is also used for fixation of low level solid radioactive waste loaded in final packing containers. VUJE Inc. has been engaged in research of cementation for long. The laboratory for analyzing radioactive waste properties, prescription of cementation formulation and estimation of final cement product properties has been established. Experimental, semi-production cementation plant has been built to optimize operation parameters of cementation. VUJE experience with cementation of liquid and wet LLW is described in the presented paper. VUJE has assisted in commissioning of Jaslovske Bohunice Treatment Centre. Cement formulations for treatment of concentrate, spent resins and sludge have been developed. Research studies on the stability of a final concrete packaging container for disposal in repository have been performed. Gained experience has been further utilized for design and manufacture of several cementation plants for treatment of various liquid and wet LLW. Their main technological and technical parameters as well as characterization of treated waste are described in the paper. Applications include the Mochovce Final Treatment Centre, Movable Cementation Facility utilizing in-drum mixing for treatment of sludge, Cementation Facility for treatment of tritiated water in Latvia and Cementation Facility for fixation of liquid and solid institutional radioactive waste in Bulgaria, which utilizes lost stirrer mixer. (author)

  11. High pressure stability of lithium metatitanate and metazirconate: Insight from experiments & ab-initio calculations

    Science.gov (United States)

    Chitnis, Abhishek; Chakraborty, B.; Tripathi, B. M.; Tyagi, A. K.; Garg, Nandini

    2018-02-01

    Lithium metatitanate (LTO) and lithium metazirconate (LZO) are lithium rich ceramics which can be used as tritium breeder materials for thermonuclear reactors. In-situ x-ray diffraction and ab-initio studies at high pressure show that LTO has a higher bulk modulus than that of LZO. In fact these studies indicate that they are the least compressible of the known lithium rich ceramics like Li2O or Li4SiO4, which are potential candidates for blanket materials. These studies show that the TiO6 octahedra are responsible for the higher bulk modulus of LTO when compared to that of LZO. It has also been shown that the compressibility and distortion of the softer LiO6 octahedra can be controlled by altering the stacking sequence of the more rigid covalently bonded octahedra. This knowledge can be used by chemists to design new lithium based ceramics with higher bulk modulus. It was observed that LTO was stable upto 34 GPa. Ab initio DFT calculations helped to understand the anisotropy in compressibility of both LZO and LTO. This study also shows, that even though the empirical potentials developed by Vijaykumar et al. successfully determine the ambient pressure structure of lithium metatitanate, they cannot be used at non ambient conditions like high pressure [1].

  12. On the Development of Hydrogen Isotope Extraction Technologies for a Full LiMIT-Style PFC Liquid Lithium Loop

    Science.gov (United States)

    Christenson, Michael; Szott, Matthew; Stemmley, Steven; Mettler, Jeremy; Wendeborn, John; Moynihan, Cody; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David

    2017-10-01

    Lithium has proven over numerous studies to improve core confinement, allowing access to operational regimes previously unattainable when using solid, high-Z divertor and limiter modules in magnetic confinement devices. Lithium readily absorbs fuel species, and while this is advantageous, it is also detrimental with regards to tritium inventory and safety concerns. As such, extraction technologies for the recovery of hydrogenic isotopes captured by lithium require development and testing in the context of a larger lithium loop recycling system. Proposed reclamation technologies at the University of Illinois at Urbana-Champaign (UIUC) will take advantage of the thermophysical properties of the lithium-hydrogen-lithium hydride system as the driving force for recovery. Previous work done at UIUC indicates that hydrogen release from pure lithium hydride reaches a maximum of 7 x 1018 s-1 at 665 °C. While this recovery rate is appreciable, reactor-scale scenarios will require isotope recycling to happen on an even faster timescale. The ratio of isotope dissolution to hydride precipitate formation must therefore be determined, along with the energy needed to recoup trapped hydrogen isotopes. Extraction technologies for use with a LiMIT-style loop system will be discussed and results will be presented. DOE/ALPS DE-FG02-99ER54515.

  13. Melde's Experiment on a Vibrating Liquid Foam Microchannel

    Science.gov (United States)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2017-12-01

    We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties. At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial dilatancy that is accounted for by a new Bernoulli-like relation.

  14. Experiment of decontamination of radioactive liquid by a biological method; Experience de decontamination de liquides radioactifs far voie biologique

    Energy Technology Data Exchange (ETDEWEB)

    Wormser, G.

    1962-07-01

    The author reports experiments of treatment of radioactive liquid effluents by percolation on a bacterial bed like the one used for the treatment of sewer wastewaters. He also reports results obtained in other countries in terms of reduction of effluent radioactivity for various radioactive ions. The installation is described and results are presented in terms of variation of contamination of an effluent with respect to its recycling on a bacterial bed [French] Dans le monde entier, on se preoccupe des moyens de decontamination pour des liquides radioactifs. Les experiences de l'auteur ont confirme qu'un lit bacterien neuf peut donner de bons resultats: il est a noter que ce procede biologique se montre selectif a l'egard des divers ions radioactifs. (auteur)

  15. Determination of tritium generation and release parameters at lithium CPS under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponkratov, Yuriy, E-mail: ponkratov@nnc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Skakov, Mazhyn; Kulsartov, Timur; Tazhibayeva, Irina; Gordienko, Yuriy; Zaurbekova, Zhanna; Tulubayev, Yevgeniy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Chikhray, Yevgeniy [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Lyublinski, Igor [JSC “Star”, Moscow (Russian Federation); NRNU “MEPhI”, Moscow (Russian Federation); Vertkov, Alexey [JSC “Star”, Moscow (Russian Federation)

    2016-11-01

    Highlights: • The main parameters of tritium generation and release from lithium capillary-porous system (CPS) under neutron irradiation at the IVG.1 M research reactor is described in paper. • In the experiments a very small tritium release was fixed likely due to its high solubility in liquid lithium. • If the lithium CPS will be used as a plasma facing material in temperature range up to 773 K under neutron irradiation only helium will release from lithium CPS into a vacuum chamber. - Abstract: This paper describes the main parameters of tritium generation and release from lithium capillary-porous system (CPS) under neutron irradiation at the IVG.1 M research reactor. The experiments were carried out using the method of mass-spectrometric registration of released gases and using a specially constructed ampoule device. Irradiation was carried out at different reactor thermal powers (1, 2 and 6 MW) and sample temperatures from 473 to 773 K. In the experiments a very small tritium release was detected likely due to its high solubility in liquid lithium. It can be caused by formation of lithium tritide during tritium diffusion to the lithium surface.

  16. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  17. Comprehensive diagnostic set for intense lithium ion hohlraum experiments on PBFA II

    International Nuclear Information System (INIS)

    Leeper, R.J.; Bailey, J.E.; Carlson, A.L.

    1994-01-01

    A review of the comprehensive diagnostic package developed at Sandia National Laboratories for intense lithium ion hohlraum target experiments on PBFA II will be presented. This package contains an extensive suite of x-ray spectral and imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics, time-integrated and time-resolved grazing incidence spectrographs, a transmission grating spectrography, an elliptical crystal spectrograph, a bolometer array, an eleven element x-ray diode (XRD) array, and an eleven element PIN diode detector array. A hohlraum temperature measurement technique under development is a shock breakout diagnostic that measures the radiation pressure at the hohlraum wall. The incident Li beam symmetry and an estimate of incident Li beam power density are measured from ion beam-induced characteristic x-ray line and neutron emissions. An attempt to measure the Li beam intensity directly on target used Rutherford scattered ions into an ion movie camera and a magnetic spectrograph. The philosophy used in designing all the diagnostics in the set has emphasized redundant and independent measurements of fundamental physical quantities relevant to the performance of the target. Details of each diagnostic, its integration, data reduction procedures, and recent PBFA-II data will be discussed

  18. Examination results on reaction of lithium

    International Nuclear Information System (INIS)

    Asada, Takashi

    2000-12-01

    Before the material corrosion tests in lithium, the reactions of lithium with air and ammonia that will be used for lithium cleaning were examined, and the results were as follows. 1. When lithium put into air, surface of lithium changes to black first but soon to white, and the white layer becomes gradually thick. The first black of lithium surface is nitride (Li 3 N) and it changes to white lithium hydroxide (LiOH) by reaction with water in air, and it grows. The growth rate of the lithium hydroxide is about 1/10 in the desiccator (humidity of about 10%) compare with in air. 2. When lithium put into nitrogen, surface of lithium changes to black, and soon changes to brown and cracks at surface. At the same time with this cracking, weight of lithium piece increases and nitridation progresses respectively rapidly. This nitridation completed during 1-2 days on lithium rod of 10 mm in diameter, and increase in weight stopped. 3. Lithium melts in liquid ammonia and its melting rate is about 2-3 hour to lithium of 1 g. The liquid ammonia after lithium melting showed dark brown. (author)

  19. Influence of operational condition on lithium plating for commercial lithium-ion batteries – Electrochemical experiments and post-mortem-analysis

    International Nuclear Information System (INIS)

    Ecker, Madeleine; Shafiei Sabet, Pouyan; Sauer, Dirk Uwe

    2017-01-01

    Highlights: •Investigation of lithium plating to support reliable system integration. •Influence of operational conditions at low temperature on lithium plating. •Comparison of different lithium-ion battery technologies. •Large differences in low-temperature behaviour for different technologies. •Post-mortem analysis reveals inhomogeneous deposition of metallic lithium. -- Abstract: The lifetime and safety of lithium-ion batteries are key requirements for successful market introduction of electro mobility. Especially charging at low temperature and fast charging, known to provoke lithium plating, is an important issue for automotive engineers. Lithium plating, leading both to ageing as well as safety risks, is known to play a crucial role in system design of the application. To gain knowledge of different influence factors on lithium plating, low-temperature ageing tests are performed in this work. Commercial lithium-ion batteries of various types are tested under various operational conditions such as temperature, current, state of charge, charging strategy as well as state of health. To analyse the ageing behaviour, capacity fade and resistance increase are tracked over lifetime. The results of this large experimental survey on lithium plating provide support for the design of operation strategies for the implementation in battery management systems. To further investigate the underlying degradation mechanisms, differential voltage curves and impedance spectra are analysed and a post-mortem analysis of anode degradation is performed for a selected technology. The results confirm the deposition of metallic lithium or lithium compounds in the porous structure and suggest a strongly inhomogeneous deposition over the electrode thickness with a dense deposition layer close to the separator for the considered cell. It is shown that this inhomogeneous deposition can even lead to loss of active material. The plurality of the investigated technologies

  20. Improvement in Plasma Performance with Lithium Coatings in NSTX

    International Nuclear Information System (INIS)

    Kaita, R.

    2009-01-01

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  1. The design of a heat transfer liquid metal MHD experiment for ALEX [Argonne Liquid-Metal Experiment

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.; Lavine, A.S.

    1988-01-01

    An experiment to study heat transfer in liquid metal MHD flow, under conditions relevant to coolant channels for tokamak first wall and high heat flux devices, is described. The experimental configuration is a rectangular duct in a transverse magnetic field, heated on one wall parallel to the field. The specific objective of the experiment is to resolve important issues related to the presence and heat transfer characteristics of wall jets and flow instabilities in MHD flows in rectangular duct with electrically conducting walls. Available analytical tools for MHD thermal hydraulics have been used in the design of the test article and its instrumentation. Proposed tests will cover a wide range of Peclet and Hartmann numbers and interaction parameters. 14 refs., 3 figs., 1 tab

  2. Ionic liquids-lithium salts pretreatment followed by ultrasound-assisted extraction of vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside and vitexin from Phyllostachys edulis leaves.

    Science.gov (United States)

    Hou, Kexin; Chen, Fengli; Zu, Yuangang; Yang, Lei

    2016-01-29

    An efficient method for the extraction of vitexin, vitexin-4″-O-glucoside, and vitexin-2″-O-rhamnoside from Phyllostachys edulis leaves comprises heat treatment using an ionic liquid-lithium salt mixture (using 1-butyl-3-methylimidazolium bromide as the solvent and lithium chloride as the additive), followed by ultrasound-assisted extraction. To obtain higher extraction yields, the effects of the relevant experimental parameters (including heat treatment temperature and time, relative amounts of 1-butyl-3-methylimidazolium bromide and lithium chloride, power and time of the ultrasound irradiation, and the liquid-solid ratio) are evaluated and response surface methodology is used to optimize the significant factors. The morphologies of the treated and untreated P. edulis leaves are studied by scanning electron microscopy. The improved extraction method proposed provides high extraction yield, good repeatability and precision, and has wide potential applications in the analysis of plant samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Coalescence of liquid drops: Different models versus experiment

    KAUST Repository

    Sprittles, J. E.

    2012-01-01

    The process of coalescence of two identical liquid drops is simulated numerically in the framework of two essentially different mathematical models, and the results are compared with experimental data on the very early stages of the coalescence process reported recently. The first model tested is the "conventional" one, where it is assumed that coalescence as the formation of a single body of fluid occurs by an instant appearance of a liquid bridge smoothly connecting the two drops, and the subsequent process is the evolution of this single body of fluid driven by capillary forces. The second model under investigation considers coalescence as a process where a section of the free surface becomes trapped between the bulk phases as the drops are pressed against each other, and it is the gradual disappearance of this "internal interface" that leads to the formation of a single body of fluid and the conventional model taking over. Using the full numerical solution of the problem in the framework of each of the two models, we show that the recently reported electrical measurements probing the very early stages of the process are better described by the interface formation/disappearance model. New theory-guided experiments are suggested that would help to further elucidate the details of the coalescence phenomenon. As a by-product of our research, the range of validity of different "scaling laws" advanced as approximate solutions to the problem formulated using the conventional model is established. © 2012 American Institute of Physics.

  4. Liquid-Solid-Solution Assembly of CoFe2O4/Graphene Nanocomposite as a High-Performance Lithium-Ion Battery Anode

    International Nuclear Information System (INIS)

    Zhu, Yanfang; Lv, Xingbin; Zhang, Lili; Guo, Xiaodong; Liu, Daijun; Chen, Jianjun; Ji, Junyi

    2016-01-01

    Graphical abstract: CoFe 2 O 4 /rGO composites are fabricated via a liquid-solid-solution assemble strategy with a well controlled CoFe 2 O 4 size, the composite exhibits a high rate performance for lithium ion batteries anode. - Highlights: • Crumpled CoFe 2 O 4 @graphene composite with uniform CoFe 2 O 4 nanoparticles intimately anchored on graphene sheets was fabricated. • The novel fabrication strategy: liquid-solid-solution strategy where the CoFe 2 O 4 are nucleation and controlled growth at the oil/water interface. • High reversible specific capacity of 1102 mAh g −1 after 100 cycles and high rate capability of 410 mAh g −1 within 230 s charging. - Abstract: CoFe 2 O 4 /graphene composites were fabricated via a novel one-pot liquid-solid-solution (LSS) hydrothermal process. Through ions electrostatic adsorption onto graphene sheets and oil microemulsion encapsulation, CoFe 2 O 4 nanoparticles can be uniformly anchored on crumpled graphene sheets without aggregation, and the size distribution of CoFe 2 O 4 particles can be controlled by the microemulsion shell in the range of 50–100 nm. With the synergistic effect between CoFe 2 O 4 and graphene, the CoFe 2 O 4 /graphene hybrid exhibits a high reversible specific capacity of 1102 mAh g −1 at 0.2 A g −1 after 100 cycles, and a good cycling stability as well. Moreover, the composite has good rate capability. The specific capacity can reach a high value of 410 mAh g −1 even under a high current density of 6.4 A g −1 (corresponds to a charge time of ∼230 s), indicating its promising application as an anode material for lithium ion batteries.

  5. Neutron and gamma-ray transport experiments in liquid air

    International Nuclear Information System (INIS)

    Farley, W.E.

    1976-01-01

    Accurate estimates of neutron and gamma radiations from a nuclear explosion and their subsequent transport through the atmosphere are vital to nuclear-weapon employment studies: i.e., for determining safety radii for aircraft crews, casualty and collateral-damage risk radii for tactical weapons, and the kill range from a high-yield defensive burst for a maneuvering reentry vehicle. Radiation transport codes, such as the Laboratory's TARTNP, are used to calculate neutron and gamma fluences. Experiments have been performed to check and update these codes. Recently, a 1.3-m-radius liquid-air (21 percent oxygen) sphere, with a pulsed source of 14-MeV neutrons at its center, was used to measure the fluence and spectra of emerging neutrons and secondary gamma rays. Comparison of measured radiation dose with TARTNP showed agreement within 10 percent

  6. The liquid argon TPC for the ICARUS experiment

    CERN Document Server

    Arneodo, F

    1997-01-01

    The ICARUS project aims at the realisation of a large liquid argon TPC to be run at the Underground Laboratories of Gran Sasso in Italy. An intense R&D; activity has put on firm grounds this new detector technology and experimentally confirmed its feasibility on a few ton scale. Based on these solid achievements, the collaboration is now confident of being able to build and safely operate a multi-kton detector. The reseach program of the experiment involves the systematic study of a wide spectrum of physical phenomena covering many orders of magnitude in the energy deposited in the detector: from the few MeV of solar neutrino interactions, to the about one GeV of the proton decay and atmospheric neutrinos, up to the higher energies of neutrinos from accelerators.

  7. Enriched lithium collection from lithium plasma flow

    International Nuclear Information System (INIS)

    Karchevsky, A.I.; Laz'ko, V.S.; Muromkin, Y.A.; Pashkovsky, V.G.; Ustinov, A.L.; Dolgolenko, D.A.

    1994-01-01

    In order to understand the physical processes concerned with the selective heating by ion cyclotron resonance and with the subsequent collection of heated particles, experiments were carried out with the extraction of lithium samples, enriched with 6 Li isotopes. Probe and integral extractors allow to collect enriched Li at the end of the selective heating region. Surface density distribution on the collector and local isotopic content of lithium are measured, as a function of the screen height and the retarding potential. Dependence of the collected amount of lithium and of its isotopic content on the value of the magnetic field is also measured. 4 figs., 2 tabs., 5 refs

  8. Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials.

    Science.gov (United States)

    Strehlau, Jenny; Weber, Till; Lürenbaum, Constantin; Bornhorst, Julia; Galla, Hans-Joachim; Schwerdtle, Tanja; Winter, Martin; Nowak, Sascha

    2017-10-01

    A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place. Graphical abstract Schematic setup for the investigation of toxicity of lithium ion battery electrolytes.

  9. Structure and crystallization of SiO2 and B2O3 doped lithium disilicate glasses from theory and experiment.

    Science.gov (United States)

    Erlebach, Andreas; Thieme, Katrin; Sierka, Marek; Rüssel, Christian

    2017-09-27

    Solid solutions of SiO 2 and B 2 O 3 in Li 2 O·2SiO 2 are synthesized and characterized for the first time. Their structure and crystallization mechanisms are investigated employing a combination of simulations at the density functional theory level and experiments on the crystallization of SiO 2 and B 2 O 3 doped lithium disilicate glasses. The remarkable agreement of calculated and experimentally determined cell parameters reveals the preferential, kinetically controlled incorporation of [SiO 4 ] and [BO 4 ] at the Li + lattice sites of the Li 2 O·2SiO 2 crystal structure. While the addition of SiO 2 increases the glass viscosity resulting in lower crystal growth velocities, glasses containing B 2 O 3 show a reduction of both viscosities and crystal growth velocities. These observations could be rationalized by a change of the chemical composition of the glass matrix surrounding the precipitated crystal phase during the course of crystallization, which leads to a deceleration of the attachment of building units required for further crystal growth at the liquid-crystal interface.

  10. Ultracold lithium-6 atoms in the BEC-BCS crossover: experiments and the construction of a new apparatus; Atomes de lithium-6 ultra froids dans la transition BEC-BCS: experiences et construction d'un montage experimental

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, M

    2007-09-15

    We use a fermionic gas of Lithium-6 as a model system to study superfluidity. The limiting cases of superfluidity are Bose-Einstein condensation (BEC) and superconductivity, described by the theory by Bardeen, Cooper and Schrieffer (BCS). In Lithium-6 gases, we can explore the whole range between the two cases, known as the BEC-BCS crossover, using a Feshbach resonance. We study the change of the momentum distribution of the gas in this cross-over and compare to theoretical models. We also investigate the hydrodynamic expansion, characteristic for a superfluid gas. We observe a sudden change of the ellipticity of the gas close to the transition to the superfluid phase. Moreover, we localized heteronuclear Feshbach resonances between {sup 6}Li and {sup 7}Li. We are currently constructing a second generation of the experimental setup. An new laser system, based on high power laser diodes, was developed. Changes in the vacuum chamber, including a complete reconstruction of the Zeeman slower, have increased the atomic flux, allowing us to increase the repetition rate of our experiment. Modifications of the geometry of the magnetic traps lead to a higher number of trapped atoms. (author)

  11. Ultracold lithium-6 atoms in the BEC-BCS crossover: experiments and the construction of a new apparatus; Atomes de lithium-6 ultra froids dans la transition BEC-BCS: experiences et construction d'un montage experimental

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, M

    2007-09-15

    We use a fermionic gas of Lithium-6 as a model system to study superfluidity. The limiting cases of superfluidity are Bose-Einstein condensation (BEC) and superconductivity, described by the theory by Bardeen, Cooper and Schrieffer (BCS). In Lithium-6 gases, we can explore the whole range between the two cases, known as the BEC-BCS crossover, using a Feshbach resonance. We study the change of the momentum distribution of the gas in this cross-over and compare to theoretical models. We also investigate the hydrodynamic expansion, characteristic for a superfluid gas. We observe a sudden change of the ellipticity of the gas close to the transition to the superfluid phase. Moreover, we localized heteronuclear Feshbach resonances between {sup 6}Li and {sup 7}Li. We are currently constructing a second generation of the experimental setup. An new laser system, based on high power laser diodes, was developed. Changes in the vacuum chamber, including a complete reconstruction of the Zeeman slower, have increased the atomic flux, allowing us to increase the repetition rate of our experiment. Modifications of the geometry of the magnetic traps lead to a higher number of trapped atoms. (author)

  12. Biaxial nematic liquid crystals theory, simulation and experiment

    CERN Document Server

    Luckhurst, Geoffrey R

    2015-01-01

    Liquid Crystals are a state of matter that have properties between those of conventional liquid and those of a solid crystal. Thermotropic liquid crystals react to changes in temperature or, in some cases, pressure. The reaction of lyotropic liquid crystals, which are used in the manufacture of soaps and detergents, depends on the type of solvent they are mixed with. Since the accidental discovery of the chiral nematic (ordered) phase in 1888 many liquid crystal phases have been found, sometimes by chance and sometimes by design. The existence of one such phase was predicted by Freiser in 197

  13. The experience of liquid radwaste evaporator performance improvement

    International Nuclear Information System (INIS)

    Kwon, S. H.

    1997-01-01

    Ulchin NPP has only one monobloc evaporation column which treated all radwaste liquid for two units. Since commercial operation in 1988 the evaporator performance is very poor. I think that the bad condition of evaporator is because of the bad quality of liquid radwaste, the large volume of liquid radwaste to treated, the poor skill of operation and some mistake in equipment design. Because of above conditions the average released activity by liquid radwaste is 35.153mCi/year in last eight years(1988∼1995). So it is necessary that we have to improve the evaporator performance and to reduce the liquid radwaste volume to evaporate

  14. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  15. Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H.W., E-mail: hkugel@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Schneider, H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47907 (United States); Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington, Seattle, WA 98195 (United States); Sabbagh, S. [Columbia University, New York, NY 10027 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    NSTX high power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following the wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a liquid lithium divertor surface on the outer part of the lower divertor.

  16. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Schneider, H.; Allain, J.P.; Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D.; Nygen, R.E.; Maingi, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S.; Raman, R.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Timberlake, J.; Zakharov, L.E.; NSTX Research Team

    2010-01-01

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  17. Comparison of MHD pressure losses of liquid-lithium flows in coaxial and parallel ducts, passing through strong transverse magnetic fields

    International Nuclear Information System (INIS)

    Trommer, G.

    1979-08-01

    This report deals with theoretical calculations of MHD pressure losses of liquid-lithium flows in tubes of circular cross-section exposed to strong magnetic fields. Some simplifying assumptions were introduced, yielding an analytical solution which allows the pressure drop and losses in double tubes of coaxial geometry to be compared with those in normal flow pipes. The investigations show that coaxial ducts require much more pumping power than normal ones under similar conditions. This great difference of the properties of the two duct types will decrease if the pipes are embedded in materials of good electrical conductivity. In this case the normal duct will afford a drastic increase in the pressure drop, while the coaxial one will be nearly unaffected. But even under these conditions the losses of the latter will dominate. (orig.)

  18. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    Science.gov (United States)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  19. Molecular beam epitaxy growth of niobium oxides by solid/liquid state oxygen source and lithium assisted metal-halide chemistry

    Science.gov (United States)

    Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan

    2015-09-01

    In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.

  20. Imidazolium ionic liquid induced one-step synthesis of -Fe2O3 nanorods and nanorod assemblies for lithium-ion battery

    Directory of Open Access Journals (Sweden)

    Shuting Xie

    2016-12-01

    Full Text Available α-Fe2O3 nanorods and nanorod assemblies are prepared via a facile one-step method with the assistance of imidazolium-based ionic liquid. The aspect ratio of synthesized nanorods is determined by the alkyl chain length of [Cnmim]+. The inter-molecular π−π interaction and intra-molecular dipole-dipole interaction among imidazole rings of [C4mim]+[PhCOO]− play critical roles in both nucleation and assembly processes of α-Fe2O3 nanorods. The α-Fe2O3 nanorod assemblies show an excellent performance in lithium-ion batteries with a reversible capacity of 1007.3 mA h g−1 at the rate of 500 mA g−1 after 150 cycles.

  1. Ultracold lithium-6 atoms in the BEC-BCS crossover: experiments and the construction of a new apparatus

    International Nuclear Information System (INIS)

    Teichmann, M.

    2007-09-01

    We use a fermionic gas of Lithium-6 as a model system to study superfluidity. The limiting cases of superfluidity are Bose-Einstein condensation (BEC) and superconductivity, described by the theory by Bardeen, Cooper and Schrieffer (BCS). In Lithium-6 gases, we can explore the whole range between the two cases, known as the BEC-BCS crossover, using a Feshbach resonance. We study the change of the momentum distribution of the gas in this cross-over and compare to theoretical models. We also investigate the hydrodynamic expansion, characteristic for a superfluid gas. We observe a sudden change of the ellipticity of the gas close to the transition to the superfluid phase. Moreover, we localized heteronuclear Feshbach resonances between 6 Li and 7 Li. We are currently constructing a second generation of the experimental setup. An new laser system, based on high power laser diodes, was developed. Changes in the vacuum chamber, including a complete reconstruction of the Zeeman slower, have increased the atomic flux, allowing us to increase the repetition rate of our experiment. Modifications of the geometry of the magnetic traps lead to a higher number of trapped atoms. (author)

  2. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    International Nuclear Information System (INIS)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienaymé, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-01-01

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] 7 Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) 7 Be (which burns to 7 Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  3. Thermal convection loop experiments and analysis of mass transport process in Lithium/Fe-12Cr-1MoVW systems

    International Nuclear Information System (INIS)

    Bell, G.E.C.

    1988-01-01

    Lithium is an attractive coolant and breeder material for first- generation fusion reactor blankets. The compatibility of lithium with structural alloys, in the form of mass transport and deposition, may impose restrictions on blanket operating parameters such as temperature and lithium purity. A ferritic steel, such as Fe-12CrlMoVW, is a candidate for use as a structural alloy in a self-cooled lithium blanket design. Experimental data on mass transport in lithium/Fe-12CrlMoVW were obtained from two thermal convection loops which spanned the fusion relevant temperature range; one operated from 360 to 505/degree/C for 3040 hours and the other from 525 to 655/degree/C for 2510 hours. The experimental effort was supported by analysis of the mechanisms and processes of mass transport and deposition. It was found that mass transport and deposition, as measured by specimen weight change, were not simple functions of temperature for the entire temperature range investigated. The mass transfer behavior and surface morphology at low temperatures were dominated by impurity reactions of nitrogen and carbon in the lithium with the steel. In the experiment between 360 and 505/degree/C, nitrogen levels were sufficient below 450/degree/C to allow the formation of the adherent, protective corrosion product Li 9 CrN 5 . Weight losses in the 360 to 505/degree/C experiment were insensitive to temperature below 450/degree/C. Between 450 and 505/degree/C, the precipitation of carbon in the form of chromium-rich M 23 C 6 (M = Fe or Cr) carbides, due to the formation of Li 9 CrN 5 and corresponding release of carbon, resulted in weight gains for the highest temperature specimens in the experiment. 98 refs., 83 figs., 9 tabs

  4. Financing Structure and Liquidity Risk: Lesson from Malaysian Experience

    Directory of Open Access Journals (Sweden)

    Abdul-Rahman Aisyah

    2017-05-01

    Full Text Available This study examines the relationship between financing structure and bank liquidity risk. We compare the findings between Islamic and conventional banks for the case of Malaysia. We adopt four measures to represent financing structure; namely 1 real estate financing, 2 financing concentration, 3 stability of short-term financing structure and 4 stability of medium-term financing structure. Two BASEL III liquidity risk measures are tested; namely, liquidity coverage ratio (LCR and the net stable funding ratio (NSFR to measure short- and long-term liquidity risk, respectively. Based on panel data regression comprising 27 conventional and 17 Islamic banks from 1994 to 2014, our findings show that real estate financing and stability of short-term financing structure for Islamic banks are positively related to both liquidity risk measures. This implies that an increasing number of real estate financing and a stable short-term financing structure may increase Islamic banks’ short- and long-term liquidity risks. However, although real estate financing does not affect conventional banks’ liquidity risks, a stable short-term financing structure and increasing financing concentration can positively influence bank long-term liquidity risk. Our findings shed light crucial policy implications for regulatory bodies and market players in the context of liquidity risk management framework as well as the need to develop a separate framework between conventional and Islamic banking institutions.

  5. A liquid argon scintillation veto for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Results of Phase I have been published in summer 2013. Currently Gerda is being upgraded to a second phase. To reach the aspired background index of ≤ 10{sup -3} cts/(keV . kg . yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. This talk focusses on the light instrumentation which is being installed in GERDA. Photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) are combined to maximize the photoelectron-yield with respect to various background sources. Monte Carlo simulations have been performed to optimize the design for background suppression and low self-induced background. First results of the prototypes and the progress of installation are reported.

  6. Wetted Foam Liquid DT Layer ICF Experiments at the NIF

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.

    2016-10-01

    A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12hot spot and the low adiabat cold fuel during the stagnation process and can allow for a fundamentally different (and potentially more robust) process of hot spot formation. This new experimental platform is currently being used in a series of experiments to discover a range of CR's at which DT layered implosions will have understandable performance - providing a sound basis from which to determine the requirements for ICF ignition. This work was performed under the auspices of the U. S. DOE by LANL under contract DE-AC52-06NA25396.

  7. Study of the possibility of solving cosmological lithium problem in an accelerator experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bystritsky, V. M., E-mail: bystvm@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Varlachev, V. A.; Dudkin, G. N. [National Research Tomsk Polytechnic University (Russian Federation); Krylov, A. R. [Joint Institute for Nuclear Research (Russian Federation); Gazi, S.; Guran, J. [Slovak Academy of Sciences, Institute of Electrical Engineering (Slovakia); Nechaev, B. A.; Padalko, V. N. [National Research Tomsk Polytechnic University (Russian Federation); Sadovsky, A. B. [Joint Institute for Nuclear Research (Russian Federation); Tuleushev, Yu. Zh. [Ministry of Energy of the Republic of Kazakhstan, Nuclear Physics Institute (Kazakhstan); Filipowicz, M. [AGH University of Science and Technology, Faculty of Energy and Fuels (Poland); Philippov, A. V. [Joint Institute for Nuclear Research (Russian Federation)

    2017-03-15

    Within the standar dmodel of Big Bang Nucleosynthesis (BBN), there is a cosmological lithium problem, which consists in a substantial difference between calculated data on the abundances of the isotopes {sup 6}Li and {sup 7}Li and those that were found from observational astronomy. An attempt at measuring the cross section for the main 6Li production reaction {sup 2}H({sup 4}He, γ){sup 6}Li induced by the interaction of {sup 4}He{sup +} ions with deuterons at collision energies less than the lower boundary of the BBN energy range was made in the present study. Upper limits on the cross sections for the reaction in question were set.

  8. A Neutral Beam for the Lithium Tokamak eXperiment Upgrade (LTX-U)

    Science.gov (United States)

    Merino, Enrique; Majeski, Richard; Kaita, Robert; Kozub, Thomas; Boyle, Dennis; Schmitt, John; Smirnov, Artem

    2015-11-01

    Neutral beam injection into tokamaks is a proven method of plasma heating and fueling. In LTX, high confinement discharges have been achieved with low-recycling lithium walls. To further improve plasma performance, a neutral beam (NB) will be installed as part of an upgrade to LTX (LTX-U). The NB will provide core plasma fueling with up to 700 kW of injected power. Requirements for accommodating the NB include the addition of injection and beam-dump ports onto the vessel and enhancement of the vacuum vessel pumping capability. Because the NB can also serve as a source of neutrals for charge-exchange recombination spectroscopy, ``active'' spectroscopic diagnostics will also be developed. An overview of these plans and other improvements for upgrading LTX to LTX-U will be presented. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  9. Lithium pellet injection experiments on the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, Darren Thomas [Univ. of California, Berkeley, CA (United States)

    1996-06-01

    A pellet enhanced performance mode, showing significantly reduced core transport, is regularly obtained after the injection of deeply penetrating lithium pellets into Alcator C-Mod discharges. These transient modes, which typically persist about two energy confinement times, are characterized by a steep pressure gradient (ℓp ℓ a/5) in the inner third of the plasma, indicating the presence of an internal transport barrier. Inside this barrier, particle and energy diffusivities are greatly reduced, with ion thermal diffusivity dropping to near neoclassical values. Meanwhile, the global energy confinement time shows a 30% improvement over ITER89-P L-mode scaling. The addition of ICRF auxiliary heating shortly after the pellet injection leads to high fusion reactivity with neutron rates enhanced by an order of magnitude over L-mode discharges with similar input powers. A diagnostic system for measuring equilibrium current density profiles of tokamak plasmas, employing high speed lithium pellets, is also presented. Because ions are confined to move along field lines, imaging the Li+ emission from the toroidally extended pellet ablation cloud gives the direction of the magnetic field. To convert from temporal to radial measurements, the 3-D trajectory of the pellet is determined using a stereoscopic tracking system. These measurements, along with external magnetic measurements, are used to solve the Grad-Shafranov equation for the magnetic equilibrium of the plasma. This diagnostic is used to determine the current density profile of PEP modes by injection of a second pellet during the period of good confinement. This measurement indicates that a region of reversed magnetic shear exists at the plasma core. This current density profile is consistent with TRANSP calculations for the bootstrap current created by the pressure gradient. MHD stability analysis indicates that these plasmas are near the n = ∞ and the n = 1 marginal stability limits.

  10. Lithium pellet injection experiments on the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Garnier, D.T.

    1996-06-01

    A pellet enhanced performance mode, showing significantly reduced core transport, is regularly obtained after the injection of deeply penetrating lithium pellets into Alcator C-Mod discharges. These transient modes, which typically persist about two energy confinement times, are characterized by a steep pressure gradient (ell p ≤ a/5) in the inner third of the plasma, indicating the presence of an internal transport barrier. Inside this barrier, particle and energy diffusivities are greatly reduced, with ion thermal diffusivity dropping to near neoclassical values. Meanwhile, the global energy confinement time shows a 30% improvement over ITER89-P L-mode scaling. The addition of ICRF auxiliary heating shortly after the pellet injection leads to high fusion reactivity with neutron rates enhanced by an order of magnitude over L-mode discharges with similar input powers. A diagnostic system for measuring equilibrium current density profiles of tokamak plasmas, employing high speed lithium pellets, is also presented. Because ions are confined to move along field lines, imaging the Li + emission from the toroidally extended pellet ablation cloud gives the direction of the magnetic field. To convert from temporal to radial measurements, the 3-D trajectory of the pellet is determined using a stereoscopic tracking system. These measurements, along with external magnetic measurements, are used to solve the Grad-Shafranov equation for the magnetic equilibrium of the plasma. This diagnostic is used to determine the current density profile of PEP modes by injection of a second pellet during the period of good confinement. This measurement indicates that a region of reversed magnetic shear exists at the plasma core. This current density profile is consistent with TRANSP calculations for the bootstrap current created by the pressure gradient. MHD stability analysis indicates that these plasmas are near the n = ∞ and the n = 1 marginal stability limits

  11. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  12. The Liquid Krypton Calorimeter Cryogenics for the NA48 Experiment

    CERN Document Server

    Bremer, J; Dauvergne, J P; Gonidec, A; Kesseler, G; Kubischta, Werner; Linser, G; Schinzel, D; Taureg, Hans; Wertelaers, Piet

    1998-01-01

    The NA48 cryogenic system has to provide stable thermal conditions (120 K) in a 9000 liter liquid krypton calorimeter, and has to ensure safe and loss free storage of the liquid during idle periods. Direct cooling of the krypton by nitrogen is used in emergency cases, while an intermediate cooler, containing saturated liquid argon at around 10 bar (117 K) is used under normal operation conditions when high thermal stability is needed. The krypton pressure is, during data taking, regulated to a value of (1.05 ± 0.01) bar for a period of about 8 months of continuous operation of the calorimeter.

  13. Liquid metal cooled reactors: Experience in design and operation

    International Nuclear Information System (INIS)

    2007-12-01

    on key fast reactor technology aspects in an integrative sense useful to engineers, scientists, managers, university students and professors. This publication has been prepared to contribute toward the IAEA activity to preserve the knowledge gained in the liquid metal cooled fast reactor (LMFR) technology development. This technology development and experience include aspects addressing not only experimental and demonstration reactors, but also all activities from reactor construction to decommissioning. This publication provides a survey of worldwide experience gained over the past five decades in LMFR development, design, operation and decommissioning, which has been accumulated through the IAEA programmes carried out within the framework of the TWG-FR and the Agency's INIS and NKMS

  14. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  15. Treatment of LL and ML liquid radwaste. The SGN experience

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Roux, P.

    1993-01-01

    SGN (Societe Generale pour les Techniques Nouvells) with considerable know-how and thirty years of feed-back in industrial management of liquid effluents from the entire French nuclear industry, has accordingly completed many low- and medium-level liquid radwaste treatment, relying on two major industrially proven technologies: evaporation and chemical coprecipitation. The low level and medium level radwaste in France and evaluated

  16. Optimization of Charging Strategy by Prevention of Lithium Deposition on Anodes in high-energy Lithium-ion Batteries – Electrochemical Experiments

    International Nuclear Information System (INIS)

    Waldmann, Thomas; Kasper, Michael; Wohlfahrt-Mehrens, Margret

    2015-01-01

    The study evaluates the capacity fade of commercial 3.25 Ah 18650-type cells with NCA cathodes and graphite anodes quantitatively for different temperatures and charging strategies. For standard constant current / constant voltage (CC-CV) charging, the aging rate for cells cycled at 0.5C is increased with decreasing temperature in the range of 25 °C to 0 °C. Interestingly, no accelerated aging is observed for CC-CV charging in the temperature range of 25 °C to 60 °C at 0.5C. The observed behavior indicates lithium deposition on anodes for temperatures up to ∼25 °C and is further investigated by reconstruction of anode and cathode from the commercial 18650-type cells into full cells with an additional lithium metal reference electrode. The reconstruction method is scrutinized regarding its validity. Measurements with the reconstructed cells at 25 °C reveal the quantitative dependency of the anode potential vs. Li/Li"+ from the charge C-rate and cell voltage. This allows deriving charging strategies involving strictly positive anode potentials to avoid lithium deposition and preventing the corresponding capacity fade.

  17. Small scale lithium-lead/water-interaction studies

    International Nuclear Information System (INIS)

    Kranert, O.; Kottowski, H.

    1991-01-01

    One current concept in fusion blanket design is to utilize water as the coolant and liquid lithium-lead as the breeding/neutron multiplier material. Considering the complex design of the blanket module, it is likely that a water leakage into the liquid alloy may occur due to a tube rupture provoking an intolerable pressure increase in the blanket module. The pressure increase is caused by the combined chemical and thermohydraulic reaction of lithium-lead with water. Experiments which simulate such a transient event are necessary to obtain information which is important for the blanket module design. The interaction has been investigated by conducting small-scale experiments at various injection pressures, alloy- and coolant temperatures. Besides using eutectic Li 17 Pb 83 , Li 7 Pb 2 , lithium and lead have been used. Among other results, the experiments indicate increasing chemical reaction with increasing lithium concentration. At the same time, the chemical reaction inhibits violent thermohydaulic reactions due to the attenuating effect of the hydrogen produced. The preliminary epxerimental results from Li 17 Pb 83 and Li 7 Pb 2 reveal that the pressure- and temperature transients caused by the chemical and thermohydraulic reactions lie within technically manageable limits. (orig.)

  18. Le concept d'électrodes liquides de carbone appliqué au domaine des batteries en flux : étude et application aux matériaux d'intercalation du lithium

    OpenAIRE

    Parant , Hélène

    2017-01-01

    This project deals with flow batteries, which are very promising technologies for large scale energy storage, especially for intermittent energies. This work aims at developing new types of electrolytes with carbon particles to enhance power of batteries. This concept is called "liquid electrode" and is implemented in flow batteries with redox lithium intercalation particles in aqueous media. The first objective is to formulate the carbon electrolyte, with a good electronic conductivity (1-4 ...

  19. Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment

    International Nuclear Information System (INIS)

    Stapleton, M.W.; McKiernan, A.P.; Mosnier, J.-P.

    2005-01-01

    The gas dynamics and atomic kinetics of a laser ablation plume of lithium, expanding adiabatically in vacuum, are included in a numerical model, using isothermal and isentropic self-similar analytical solutions and steady-state collisional radiative equations, respectively. Measurements of plume expansion dynamics using ultrafast imaging for various laser wavelengths (266-1064 nm), fluences (2-6.5 J cm -2 ), and spot sizes (50-1000 μm) are performed to provide input parameters for the model and, thereby, study the influence of laser spot size, wavelength, and fluence, respectively, on both the plume expansion dynamics and atomic kinetics. Target recoil pressure, which clearly affects plume dynamics, is included in the model. The effects of laser wavelength and spot size on plume dynamics are discussed in terms of plasma absorption of laser light. A transition from isothermal to isentropic behavior for spot sizes greater than 50 μm is clearly evidenced. Equilibrium conditions are found to exist only up to 300 ns after the plume creation, while complete local thermodynamic equilibrium is found to be confined to the very early parts of the expansion

  20. Enhanced Alignment Techniques for the Thomson Scattering Diagnostic on the Lithium Tokamak eXperiment (LTX)

    Science.gov (United States)

    Merino, Enrique; Kozub, Tom; Boyle, Dennis; Lucia, Matthew; Majeski, Richard; Kaita, Robert; Schmitt, John C.; Leblanc, Benoit; Diallo, Ahmed; Jacobson, C. M.

    2014-10-01

    The Thomson Scattering (TS) System in LTX is used to measure electron temperature and density profiles of core and edge plasmas. In view of TS measurements showing low signal-to-noise and high stray light, numerous improvements were performed in recent months. These will allow for better measurements. Due to the nature of LTX's lithium coated walls, a particular challenge was presented by alignment procedures which required insertion and precise positioning of equipment in the vacuum vessel without breaking vacuum. To overcome these difficulties, the laser flight tubes were removed and an alignment probe setup placed along the beam line on a differentially pumped assembly. The probe was then driven into the vacuum vessel and back-illumination of the viewing optics on it allowed for alignment and spatial calibration. Other upgrades included better bracing of flight tubes and viewing optics as well as a redesigned beam dump. An overview of these improvements will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  1. New airtight transfer box for SEM experiments: Application to lithium and sodium metals observation and analyses.

    Science.gov (United States)

    Stephant, Nicolas; Grissa, Rabeb; Guillou, Fanch; Bretaudeau, Mickaël; Borjon-Piron, Yann; Guillet, Jacques; Moreau, Philippe

    2018-04-18

    The surface of some materials reacts very quickly on contact with air, either because it is oxidized or because it gets humidity from the air. For the sake of original surface observation by scanning electron microscopy (SEM), we conceived an airtight transfer box to keep the samples under vacuum from the place of manufacturing to the SEM chamber. This object is designed to fit in all the models of SEM including those provided with an airlock chamber. The design is voluntarily simplified to allow the manufacturing of the object by a standard mechanical workshop. The transfer box can be easily opened by gravity inside the SEM and allows the preservation of the best vacuum inside, before opening. SEM images and energy dispersive spectroscopy (EDX) analyses of metallic lithium and sodium samples are presented prior and after exposure to the air. X-ray Photoelectron Spectroscopy (XPS) analyses of all samples are also discussed in order to investigate the chemical environments of the detected elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  3. System of liquid thermostatic control for jet experiments on NMR

    International Nuclear Information System (INIS)

    Selivanov, S.I.; Bogatkin, R.A.; Ershov, B.A.

    1983-01-01

    The system of liquid thermostating of a sensor of NMR spectrometer, used as a registering device in the method of continuous and interrupting stream, is described. Such method of thermostating permits to make kinetic measurements in the temperature range from -40 to +60 deg C with the accuracy +-0.1 deg C and removes the necessity for applying secondary temperature NMR standards

  4. Viscosity of liquids theory, estimation, experiment, and data

    CERN Document Server

    Viswanath, Dabir S; Prasad, Dasika HL; Dutt, Nidamarty VK; Rani, Kalipatnapu Y

    2007-01-01

    Single comprehensive book on viscosity of liquids, as opposed to most of the books in this area which are data books, i.e., a compilation of viscosity data from the literature, where the information is scattered and the description and analysis of the experimental methods and governing theory are not readily available in a single place.

  5. Moving liquid droplets with inertia : Experiment, simulation, and theory

    NARCIS (Netherlands)

    Kim, H.

    2013-01-01

    This thesis is a work on a contact line instability at a finite Reynolds number, 0 < Re < O(100). This problem corresponds to an immersion droplet applied in a liquid- immersion lithography machine. We perform extensive works to understand this instability problem by means of experimental,

  6. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  7. Liquid Structures and Physical Properties -- Ground Based Studies for ISS Experiments

    Science.gov (United States)

    Kelton, K. F.; Bendert, J. C.; Mauro, N. A.

    2012-01-01

    Studies of electrostatically-levitated supercooled liquids have demonstrated strong short- and medium-range ordering in transition metal and alloy liquids, which can influence phase transitions like crystal nucleation and the glass transition. The structure is also related to the liquid properties. Planned ISS experiments will allow a deeper investigation of these results as well as the first investigations of a new type of coupling in crystal nucleation in primary crystallizing liquids, resulting from a linking of the stochastic processes of diffusion with interfacial-attachment. A brief description of the techniques used for ground-based studies and some results relevant to planned ISS investigations are discussed.

  8. Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1,1,2,2-tetrafluoroethyl ether

    International Nuclear Information System (INIS)

    Lu, Hai; Zhang, Kai; Yuan, Yan; Qin, Furong; Zhang, Zhian; Lai, Yanqing; Liu, Yexiang

    2015-01-01

    Highlights: • Electrolyte based on fluorinated ether of ETFE is used in Li/S battery. • ETFE improves cycling, rate and self-discharging performances of Li/S battery. • Surface film on Li anode modified by ETFE inhibits the shuttle of polysulfides. - Abstract: Fluorinated ether of ethyl 1,1,2,2-tetrafluoroethyl ether (ETFE) was selected as electrolyte solvent for lithium/sulfur battery, and the influence of ETFE in electrolyte on cell properties was first investigated. The enhanced stability of electrolyte/anode interface and improved electrochemical performances (cycling, rate and self-discharging) of the Li/S cell are presented by using ETFE-containing electrolyte, especially for complete replacement of tetraethylene glycol dimethyl ether (TEGDME) by ETFE in combine with 1,3-dioxolane (DOL). It is found that ETFE plays a key role in modifying the surface composition and structure of the metallic Li, forming a strengthened protective film on the anode during cycling. Besides, ETFE is considered to decrease the dissolution of polysulfides in the electrolyte. These factors together restrict the contact and reaction between polysulfides and Li anode

  9. Federal Financial Incentives to Induce Early Experience Producing Unconventional Liquid Fuels

    National Research Council Canada - National Science Library

    Camm, Frank; Bartis, James T; Bushman, Charles J

    2008-01-01

    This technical report explains an analytic way to design and assess packages of financial incentives that the government can use to cost effectively promote early experience with coal-to-liquids (CTL...

  10. Infrared studies of PVC-based electrolytes incorporated with lithium triflate and 1-butyl-3-methyl imidazolium trifluoromethanesulfonate as ionic liquid

    Science.gov (United States)

    Zulkepeli, Nik A. S. Nik; Winie, Tan; Subban, R. H. Y.

    2017-09-01

    In this work, 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMCF3SO3) is employed as ionic liquid in PVC-based polymer electrolyte system with lithium triflate (LiCF3SO3) as doping salt. The samples in film form were prepared by quantitatively varying the concentration of BMIMCF3SO3 to a fixed ratio of PVC-LiCF3SO3 using solution cast technique. The highest room temperature ionic conductivity of 1.120 × 10-7 Scm-1 was exhibited by PVC-LiCF3SO3-BMIMCF3SO3 containing 3 wt. % BMIMCF3SO3. FTIR spectra of the polymer electrolytes were examined to study the complexation of the PVC-based polymer electrolytes. Intensity of free ions, ion pairs, and ion aggregates were obtained from FTIR deconvolution in an attempt to correlate with ionic conductivity results. The intensity of free ions was found to be high for sample with 3 wt. % BMIMCF3SO3.

  11. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    Science.gov (United States)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  12. Study of the experimental conditions of measurement of the μ capture ratio in liquid hydrogen by mean of the lifetime method. Application to a total capture in lithium

    International Nuclear Information System (INIS)

    Martino, Jacques.

    1977-01-01

    The method comparing μ+ and μ - lifetimes is shown to be a possible interesting method for measuring the capture rate of μ - in liquid hydrogen. The first part of the report is dealing with a study of the initial state of the μp system and a calculation of the capture rate, then with the μp system interaction with impurities, and the interest lying in a comparative study of neutron capture. The second part is dealing with the experimental unit: target, electron counters and neutron detectors. The total capture rates in two lithium isotopes were obtained by the method. The values obtained are 4678 +- 104 s -1 with 6 Li and 2260 +- 104s -1 for 7 Li. The interest of the method envisaged lies in the fact that it involves only time measurements on the nuon decay electrons and positrons. No precise knowledge of the neutron detector efficiency is required (an essential limitation to previous measurements). The 3% accuracy obtained for the capture rate is an important improvement. The initial condition investigation allowed the permissible impurity contaminations in liquid hydrogen to be determined, in the event of a measurement beginning 1.5 μs after the end of the beam pulse. Nitrogen and rare gases must not, overcome 8.10 -9 concentration (Pd filter). The deuterium concentration must be lower than 3.10 -6 (use of very pure hydrogen 'protium'). The system measured is the pμp molecule the event of an ortho-para transition of this molecule being badly known, a measurement of the time distribution of the capture neutrons makes the phenomenon clearer, without the neutron detector efficiency being accurately known [fr

  13. Diffusion in a liquid alloy - theories and experiments

    International Nuclear Information System (INIS)

    Chastang, C.

    1997-01-01

    Different theories concerning the calculation of diffusion coefficients in liquid metals, as well for auto as for hetero-diffusion are presented and some experimental procedures using tracer techniques in shear cells and capillary tubes are described. Diffusion curves are calculated with the TRIO-EF code. Calculated and measured values of diffusion coefficients are compared and discussed with regard to various diffusion mechanisms. Copper gadolinium mixtures have been investigated in more detail. (C.B.)

  14. Experimental lithium system. Final report

    International Nuclear Information System (INIS)

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m 3 lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion

  15. First liquid-layer implosion experiments at the NIF

    Science.gov (United States)

    Zylstra, Alex

    2017-10-01

    Replacing the standard ice layer in an ignition design with a liquid layer allows fielding the target with a higher central vapor pressure, leading to reduced implosion convergence ratio (CR). At lower CR, the implosions are expected to be more robust to instabilities and asymmetries than standard ice-layer designs, and are also unique in that the hot spot can be primarily formed from material originating in the central fuel vapor. The first liquid-layer implosions on the National Ignition Facility (NIF) have been performed by wicking the liquid fuel into a supporting foam that lines the inside surface of the capsule. A series of shots has been conducted between CR of 12 and 20 using a HDC ablator driven by a 3-shock pulse in a near-vacuum Au hohlraum. At the lowest CR the implosion performance is well predicted by 2-D radiation-hydrodynamics calculations. However, as the CR is increased the nominal simulations do not capture the experimentally observed trends. Data-based models suggest that the hot spot formation is unexpectedly suppressed at higher convergence. The data could be explained by reduced hydrodynamic coupling efficiency, or an anomalously enhanced thermal conductivity in the mixed DT/foam material. We show that the latter hypothesis can explain observed trends in several experimental metrics, including the yield, ion temperature, and burn duration. This work was performed under the auspices of the U.S. DoE by LANL under contract DE-AC52-06NA52396.

  16. On the role of quantum ion dynamics for the anomalous melting of lithium

    Science.gov (United States)

    Elatresh, Sabri; Bonev, Stanimir

    2011-03-01

    Lithium has attracted a lot of interest in relation to a number of counterintuitive electronic and structural changes that it exhibits under pressure. One of the most remarkable properties of dense lithium is its anomalous melting. This behavior was first predicted theoretically based on first-principles molecular dynamics (FPMD) simulations, which treated the ions classically. The lowest melting temperature was determined to be about 275~K at 65~GPa. Recent experiments measured a melting temperature about 100~K lower at the same pressure. In this talk, we will present FPMD calculations of solid and liquid lithium free energies up to 100 GPa that take into account ion quantum dynamics. We examine the significance of the quantum effects for the finite-temperature phase boundaries of lithium and, in particular, its melting curve. Work supported by NSERC, Acenet, and LLNL under Contract DE-AC52-07NA27344.

  17. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    Lithium is a commonly prescribed treatment for bipolar affective disorder. However, treatment is complicated by lithium's narrow therapeutic index and the influence of kidney function, both of which increase the risk of toxicity. Therefore, careful attention to dosing, monitoring, and titration...... is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...

  18. A homopolar disc dynamo experiment with liquid metal contacts

    OpenAIRE

    Avalos-Zúñiga, R. A.; Priede, J.; Bello-Morales, C. E.

    2017-01-01

    We present experimental results of a homopolar disc dynamo constructed at CICATA-Quer\\'etaro in Mexico. The device consists of a flat, multi-arm spiral coil which is placed above a fast-spinning metal disc and connected to the latter by sliding liquid-metal electrical contacts. Theoretically, self-excitation of the magnetic field is expected at the critical magnetic Reynolds number Rm~45, which corresponds to a critical rotation rate of about 10 Hz. We measured the magnetic field above the di...

  19. General directions and recently test modelling results of lithium capillary-pore systems as plasma facing components for tokamak-reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.; Azizov, E.A.; Mirnov, S.V.; Lazaret, V.B.; Safronov, V.M.

    2003-01-01

    Full text: At present the most promising principal solution of the divertor problem appears to be the use of liquid metals and primarily of lithium Capillary-Pore Systems (CPS) as of plasma facing material. A solid CPS filled with liquid lithium will have high resistance to surface and volume damage because of neutron radiation effects, melting, splashing and thermal stress induced cracking in steady state and during plasma transitions (disruptions, ELMs, VDEs, runaways) to provide the normal operation of divertor target plates and first wall protection elements. These materials would not be the sources of impurities inducing the raise of Z eff and they will not be collected as dust in the divertor area and in ducts. The key directions of experimental investigation of lithium CPS behaviour in first wall and divertor operation simulating conditions are considered. Experiments with lithium CPS in plasma disruption simulation conditions on the hydrogen plasma accelerator MK-200UG (∼10-15 MJ/m 2 , ∼50 μs) have been performed. Shielding lithium plasma layer formation and high stability of these systems have been shown. The new lithium limiter with a thermal regulation system tests on up graded T-11M tokamak (plasma current up to 100 kA, pulse length ∼0.3 s) have been performed. Sorption and desorption of plasma-forming gas, lithium emission into discharge, lithium erosion, limiter deposited power are investigated in this tests

  20. Lithium vapor/aerosol studies. Interim summary report

    International Nuclear Information System (INIS)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.; Wilson, W.L.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538 0 C (1000 0 F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases in lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation

  1. Evaluation of thermal conductivity for liquid lead lithium alloys at various Li concentrations based on measurement and evaluation of density, thermal diffusivity and specific heat of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Nakajima, Yuu; Tsuji, Mitsuyo [Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Nozawa, Takashi [Japan Atomic Energy Agency, Rokkasyo-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Graphical abstract: Thermal diffusivities and thermal conductivities of liquid Pb–Li alloys (Pb–5Li, Pb–11Li and Pb–17Li). - Highlights: • The densities and specific heats of liquid Pb–Li alloys are evaluated based on the previous studies, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal diffusivities of liquid Pb–Li alloys (i.e., Pb–5Li, Pb–11Li and Pb–17Li) are obtained by laser flash method, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal conductivities of liquid Pb–Li alloys were evaluated and mathematically expressed in the equations with the functions of temperature and Li concentration. - Abstract: The thermophysical properties of lead lithium alloy (Pb–Li) are essential for the design of liquid Pb–Li blanket system. The purpose of the present study is to make clear the density, the thermal diffusivity and the heat conductivity of the alloys as functions of temperature and Li concentration. The densities of the solid alloys were measured by means of the Archimedean method. The densities of the alloys at 300 K as a function of Li concentration (0 at% < χ{sub Li} < 28 at%) were obtained in the equation as ρ{sub (300} {sub K)} [g/cm{sup 3}] = −6.02 × 10{sup −2} × χ{sub Li} + 11.3. The density of the liquid alloys was formulated as functions of temperature and Li concentration (0 at% < χ{sub Li} < 30 at%), and expressed in the equation as ρ [g/cm{sup 3}] = (9.00 × 10{sup −6} × T − 7.01 × 10{sup −2}) × χ{sub Li} + 11.4 − 1.19 × 10{sup −3}T. The thermal diffusivity of Pb, Pb–5Li, Pb–11Li and Pb–17Li were measured by means of laser flash method. The thermal diffusivity of Pb–17Li was obtained in the equation as α{sub Pb–17Li} [cm{sup 2}/s] = 3.46 × 10{sup −4}T + 1.05 × 10{sup −1} for the temperature range between 573 K and 773 K. The thermal conductivity of

  2. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery

    International Nuclear Information System (INIS)

    Zhao, Jiateng; Rao, Zhonghao; Li, Yimin

    2015-01-01

    Highlights: • A new kind of cooling method for cylindrical batteries based on mini-channel liquid cooled cylinder (LCC) is proposed. • The capacity of reducing the T max is limited through increasing the mass flow rate. • The capability of heat dissipation is enhanced first and then weaken along with the rising of entrance size. - Abstract: Battery thermal management is a very active research focus in recent years because of its great essentiality for electric vehicles. In order to maintain the maximum temperature and local temperature difference in appropriate range, a new kind of cooling method for cylindrical batteries which is based on mini-channel liquid cooled cylinder is proposed in this paper. The effects of channel quantity, mass flow rate, flow direction and entrance size on the heat dissipation performance were investigated numerically. The results showed that the maximum temperature can be controlled under 40 °C for 42,110 cylindrical batteries when the number of mini-channel is no less than four and the inlet mass flow rate is 1 × 10 −3 kg/s. Considering both the maximum temperature and local temperature difference, the cooling style by liquid cooled cylinder can demonstrate advantages compared to natural convection cooling only when the channel number is larger than eight. The capability of reducing the maximum temperature is limited through increasing the mass flow rate. The capacity of heat dissipation is enhanced first and then weakened along with the rising of entrance size, when the inlet mass flow rate is constant

  3. Study of the mixed alkali effect in lithium and sodium metaphosphate glass-forming liquids by photon correlation spectroscopy

    International Nuclear Information System (INIS)

    Changstrom, J R; Sidebottom, D L

    2008-01-01

    We report results of an extensive study of the structural relaxation occurring in mixed alkali metaphosphate liquids obtained by photon correlation spectroscopy. Values for the glass transition temperature, the fragility index, and the heterogeneity parameter (also known as the Kohlrausch exponent) are extracted from the measurements and are all shown to exhibit a mixed alkali effect wherein nonlinear variations with mixing occur. The depression in the glass transition temperature is shown to be the direct result of mechanical relaxations, present in the solid, which prematurely loosen the glass structure. A minimum in the fragility index is believed to be an artifact of the resulting depression of the glass transition temperature

  4. Ultradense Nuclear Fusion in Metallic Lithium Liquid. A report on research performed at the R and D Center, Sakaguchi E.H VOC Co. under the auspices of the Swedish Energy Agency

    International Nuclear Information System (INIS)

    Ikegami, Hidetsugu; Pettersson, Roland

    2006-10-01

    This report is concerned with research and development on a new fusion scheme, 'chemonuclear fusion'. In this scheme, lithium or deuterium ions are implanted in liquid lithium whereby huge reaction rate enhancements, as much as up to 10 15 compared to what is expected for a free two-body deuterium-lithium interaction, are obtained. The enhancement is suggested to be a result of nuclear, atomic and chemical reactions taking place cooperatively. Experimental studies on the Li - D chemonuclear fusion is supported financially by the Swedish Energy Agency and were initiated at the Dept. of Analytical Chemistry, Uppsala University. The studies were continued in a collaboration with the R and D Centre, Sakaguchi E.H VOC Co. in Tokyo where a new and modified setup was constructed. Here, besides the Li - D chemonuclear fusion, the Li - Li fusion and the D 2 - 2Li molecular chemonuclear fusion were developed. In 2005 at the R and D Centre, molecular ions D 2 + of energies 30keV were implanted on a surface of metallic Li liquid. Product alpha particles were identified and measured by a single solid state detector. The energies were around 7.6MeV corresponding to what would be expected for the reaction 7 Li + D → 2x 4 He + n. Under some conditions of the Li liquid, the reaction rate was intermittently so high that the particle detector was saturated and stopped counting simultaneously with an appreciable temperature rise in the Li liquid. The results were discussed in March at the University of Tokyo and in October at the Royal Swedish Academy of Sciences, The Royal Swedish Engineering Academy of Sciences and at Uppsala University. This report presents a full description of the results. It also contains more recent results where an additional detector setup, a ΔE-E detector was used for validation of the results in particular the identity of the alpha particles

  5. Study on high speed lithium jet for neutron source of boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mak, Michael; Stefanica, Jiri; Dostal, Vaclav; Zhao Wei

    2012-01-01

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively. (author)

  6. Nonlinear polarization of ionic liquids: theory, simulations, experiments

    Science.gov (United States)

    Kornyshev, Alexei

    2010-03-01

    Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.

  7. NEXAFS spectroscopy of ionic liquids: experiments versus calculations.

    Science.gov (United States)

    Fogarty, Richard M; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt-Talbot, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Bourne, Richard A; Chamberlain, Thomas W; Vander Hoogerstraete, Tom; Thompson, Paul B J; Hunt, Patricia A; Besley, Nicholas A; Lovelock, Kevin R J

    2017-11-29

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra are reported for 12 ionic liquids (ILs) encompassing a range of chemical structures for both the sulfur 1s and nitrogen 1s edges and compared with time-dependent density functional theory (TD-DFT) calculations. The energy scales for the experimental data were carefully calibrated against literature data. Gas phase calculations were performed on lone ions, ion pairs and ion pair dimers, with a wide range of ion pair conformers considered. For the first time, it is demonstrated that TD-DFT is a suitable method for simulating NEXAFS spectra of ILs, although the number of ions included in the calculations and their conformations are important considerations. For most of the ILs studied, calculations on lone ions in the gas phase were sufficient to successfully reproduce the experimental NEXAFS spectra. However, for certain ILs - for example, those containing a protic ammonium cation - calculations on ion pairs were required to obtain a good agreement with experimental spectra. Furthermore, significant conformational dependence was observed for the protic ammonium ILs, providing insight into the predominant liquid phase cation-anion interactions. Among the 12 investigated ILs, we find that four have an excited state that is delocalised across both the cation and the anion, which has implications for any process that depends on the excited state, for example, radiolysis. Considering the collective experimental and theoretical data, we recommend that ion pairs should be the minimum number of ions used for the calculation of NEXAFS spectra of ILs.

  8. Lithium Batteries

    Science.gov (United States)

    National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional thin-film lithium batteries for a variety of technological applications. These batteries have high essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for

  9. Electrochemical performance of Si@TiN composite anode synthesized in a liquid ammonia for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Jiguo; Wang, Wei [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jiao, Shuqiang, E-mail: sjiao@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Hou, Jungang; Huang, Kai [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Hongmin, E-mail: hzhu@metall.ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-10-15

    High-efficiency Si@TiN composite anode was synthesized by a homogeneous reduction reaction in the liquid ammonia, then calcinated at 950 Degree-Sign C for 2 h in vacuum. The crystal structure and morphology of the obtained in-situ coated composites were characterized by XRD, FESEM. The results showed that the micron-sized Si particles were almost coated by the TiN nanoparticles with the average size of 50 nm, while the morphology of Si@TiN composite was almost unchanged over 50 discharge-charge cycles. The electrochemical performances of Si@TiN composite anode were studied by galvanostatic discharge-charge tests, cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CV curves showed that the two redox peaks remained stable and were attributed to the alloying/dealloying process of Li with active Si particles. It could be seen from the EIS curves that the charge transfer resistance (R{sub ct}) for fresh was larger than that for the 50th cycle, which was mainly because the electrons and Li ions conducted on the electrode surface more difficultly for fresh. The cycle stability of the as-prepared Si@TiN composite anode was investigated, with the result showing that the cycling performance was stable and optimal at a rate of 0.2 C. The initial charge capacity was as high as 3226.99 mAh g{sup -1}, which was kept as 467.02 mAh g{sup -1} over 50 cycles. -- Highlights: Black-Right-Pointing-Pointer Si@TiN composite anode was synthesized in-situ in a liquid ammonia. Black-Right-Pointing-Pointer The size of TiN nanoparticles was about 50 nm. Black-Right-Pointing-Pointer The initial charge capacity was as high as 3226.99 mAh g{sup -1}.

  10. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

    Science.gov (United States)

    Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou

    2017-01-25

    The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm -2 ) present superior cycling stability (727.4 mAh g -1 after 500 cycles at 0.2 C) and high rate capability (814 mAh g -1 at 2 C) and power density (∼10 mW cm -2 ), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm -2 ) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.

  11. Experience on the removal of impurities from liquid metal systems by cold-trapping

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J. A.

    1963-10-15

    Experience in impurity removal by cold-trapping, which was obtained on DFR and its associated liquid metal rigs, is reviewed. The development of the present DFR cold-trapping system is outlined, and the operation of the additional pumped loops, which were required in order to control the reactor impurity levels, are described. Operation of the liquid metal rigs ancillary to the reactor project is discussed with particular reference to the control of impurity levels. (auth)

  12. A large liquid scintillator detector for a long baseline neutrino oscillation experiment

    International Nuclear Information System (INIS)

    Border, P.; Cushman, P.; Heller, K.; Maxam, D.; Nelson, J.K.; Ruddick, K.; Rusack, R.; Schwienhorst, R.; Berg, T.; Chase, T.; Hansen, M.; Bower, C.; Hatcher, R.; Heinz, R.; Miller, L.; Mufson, S.

    2001-01-01

    We present the concept and design of a liquid scintillator detector for a long-baseline neutrino oscillation experiment. Neutrinos interact in 2.5 cm thick steel plates alternating with 2.0 cm thick planes of liquid scintillator. The scintillator is contained in multicell PVC extrusions containing individual 2 cmx3 cm cells up to 8 m long. Readout of the scintillation light is via wavelength-shifting fibers which transport light to pixellated photodetectors at one end of the cells

  13. Temperature dependence of liquid lithium film formation and deuterium retention on hot W samples studied by LID-QMS. Implications for future fusion reactors

    Science.gov (United States)

    de Castro, A.; Sepetys, A.; González, M.; Tabarés, F. L.

    2018-04-01

    Liquid metal (LM) divertor concepts explore an alternative solution to the challenging power/particle exhaust issues in future magnetic fusion reactors. Among them, lithium (Li) is the most promising material. Its use has shown important advantages in terms of improved H-mode plasma confinement and heat handling capabilities. In such scenario, a possible combination of tungsten (W) on the first wall and liquid Li on the divertor could be an acceptable solution, but several issues related to material compatibility remain open. In particular, the co-deposition of Li and hydrogen isotopes on W components could increase the associated tritium retention and represent a safety risk, especially if these co-deposits can uncontrollably grow in remote/plasma shadowed zones of the first wall. In this work, the retention of Li and deuterium (D) on tungsten at different surface temperature (200 °C-400 °C) has been studied by exposing W samples to Li evaporation under several D2 gaseous environments. Deuterium retention in the W-Li films has been quantified by using laser induced desorption-mass spectrometry (LID-QMS). Additional techniques as thermal desorption spectroscopy, secondary ion mass spectrometry, profilemetry and flame atomic emission spectroscopy were implemented to corroborate the retention results and for the qualitative and quantitative characterization of the films. The results showed a negligible (below LID sensibility) D uptake at T surface  =  225 °C, when the W-Li layer is exposed to simultaneous Li evaporation and D2 gas exposition (0.67 Pa). Pre-lithiated samples were also exposed to higher D2 pressures (133.3 Pa) at different temperatures (200 °C-400 °C). A non-linear drastic reduction in the D retention with increasing temperatures was found on the W-Li films, presenting a D/Li atomic ratio at 400 °C lower than 0.1 at.% on a thin film of  ≈100 nm thick. These results bode well (in terms of tritium inventory) for the potential

  14. Atomic charges of sulfur in ionic liquids: experiments and calculations.

    Science.gov (United States)

    Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J

    2017-12-14

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.

  15. Operating experience using venturi flow meters at liquid helium temperature

    International Nuclear Information System (INIS)

    Wu, K.C.

    1992-01-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench

  16. Evaluation of 2 1/4 Cr-1 Mo steel for liquid lithium containment. II. Effects of post-weld heat treatment and niobium content. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.L.; Edwards, G.R.

    1979-01-01

    The lithium corrosion resistance of the regular grade of 2 1/4 Cr-1 Mo steel can be vastly improved with a proper postweld heat treatment, but even greater improvements are needed. Results indicate that if weldments were tempered sufficiently long at 760C to remove all Mo/sub 2/C from the microstructure, even greater resistance to attack by low nitrogen lithium could be achieved. Corrosion tests should eventually be performed on regular grade 2 1/4 Cr-1 Mo steel weldments which have been given a long-term (> 25 h) post-weld temper at 760C. Lithium corrosion resistance of regular grade 2 1/4 Cr-1 Mo steel may also be improved by employing a quench and temper heat treatment. Quenched microstructures have more homogenous distribution of carbides than isothermally annealed microstructures, and if properly tempered, should provide excellent lithium corrosion resistance. Furthermore, the toughness of such a lower bainite microstructure should be better than that of the ferrite-bainitic microstructure created by an isothermal anneal. Numerous parameters, all potentially deleterious to the lithium corrosion resistance of 2 1/4 Cr-1 Mo steel, remain to be investigated; two such variables are velocity effects and lead content in the lithium.

  17. Evaluation of 2 1/4 Cr-1 Mo steel for liquid lithium containment. II. Effects of post-weld heat treatment and niobium content. Annual report, 1979

    International Nuclear Information System (INIS)

    Anderson, T.L.; Edwards, G.R.

    1979-01-01

    The lithium corrosion resistance of the regular grade of 2 1/4 Cr-1 Mo steel can be vastly improved with a proper postweld heat treatment, but even greater improvements are needed. Results indicate that if weldments were tempered sufficiently long at 760C to remove all Mo 2 C from the microstructure, even greater resistance to attack by low nitrogen lithium could be achieved. Corrosion tests should eventually be performed on regular grade 2 1/4 Cr-1 Mo steel weldments which have been given a long-term (> 25 h) post-weld temper at 760C. Lithium corrosion resistance of regular grade 2 1/4 Cr-1 Mo steel may also be improved by employing a quench and temper heat treatment. Quenched microstructures have more homogenous distribution of carbides than isothermally annealed microstructures, and if properly tempered, should provide excellent lithium corrosion resistance. Furthermore, the toughness of such a lower bainite microstructure should be better than that of the ferrite-bainitic microstructure created by an isothermal anneal. Numerous parameters, all potentially deleterious to the lithium corrosion resistance of 2 1/4 Cr-1 Mo steel, remain to be investigated; two such variables are velocity effects and lead content in the lithium

  18. Lithium neurotoxicity.

    Science.gov (United States)

    Suraya, Y; Yoong, K Y

    2001-09-01

    Inspite of the advent of newer antimanic drugs, lithium carbonate remains widely used in the treatment and prevention of manic-depressive illness. However care has to be exercised due to its low therapeutic index. The central nervous system and renal system are predominantly affected in acute lithium intoxication and is potentially lethal. The more common side effect involves the central nervous system. It occurs early and is preventable. We describe three cases of lithium toxicity admitted to Johor Bahru Hospital, with emphasis on its neurological preponderance.

  19. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    Science.gov (United States)

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement

  20. Hydrogen retention in lithium on metallic walls from “in vacuo” analysis in LTX and implications for high-Z plasma-facing components in NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R., E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Lucia, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Allain, J.P.; Bedoya, F. [Department of Nuclear, Plasma, & Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Bell, R.; Boyle, D. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Capece, A. [Department of Physics, The College of New Jersey, Ewing, NJ (United States); Jaworski, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Koel, B.E. [Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ (United States); Majeski, R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Roszell, J. [Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ (United States); Schmitt, J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Scotti, F. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-04-15

    The application of lithium to plasma-facing components (PFCs) has long been used as a technique for wall conditioning in magnetic confinement devices to improve plasma performance. Determining the characteristics of PFCs at the time of exposure to the plasma, however, is difficult because they can only be analyzed after venting the vacuum vessel and removing them at the end of an operational period. The Materials Analysis and Particle Probe (MAPP) addresses this problem by enabling PFC samples to be exposed to plasmas, and then withdrawn into an analysis chamber without breaking vacuum. The MAPP system was used to introduce samples that matched the metallic PFCs of the Lithium Tokamak Experiment (LTX). Lithium that was subsequently evaporated onto the walls also covered the MAPP samples, which were then subject to LTX discharges. In vacuo extraction and analysis of the samples indicated that lithium oxide formed on the PFCs, but improved plasma performance persisted in LTX. The reduced recycling this suggests is consistent with separate surface science experiments that demonstrated deuterium retention in the presence of lithium oxide films. Since oxygen decreases the thermal stability of the deuterium in the film, the release of deuterium was observed below the lithium deuteride dissociation temperature. This may explain what occurred when lithium was applied to the surface of the NSTX Liquid Lithium Divertor (LLD). The LLD had segments with individual heaters, and the deuterium-alpha emission was clearly lower in the cooler regions. The plan for NSTX-U is to replace the graphite tiles with high-Z PFCs, and apply lithium to their surfaces with lithium evaporation. Experiments with lithium coatings on such PFCs suggest that deuterium could still be retained if lithium compounds form, but limiting their surface temperatures may be necessary.

  1. Experiences with mobile units for liquid raw management in slovak and czech nuclear power plants

    International Nuclear Information System (INIS)

    Rapant, T.; Tatransky, P.; Vasko, M.; Hlavacka, R.

    2015-01-01

    Text describes the experience from multiple projects of retrieval, pre-treatment and final treatment of liquid radioactive waste in Slovak and Czech NPPs during last 20 years. The purpose of these projects was to retrieve RAW (sludge, used resins, crystalline sediments, other types of liquid RAW) from operational tanks or technological systems, its pre-treatment and its solidification into 200 l or 60 l drums. Slovak and Czech NPPs are WWER 440 type (except Bohunice A1 NPP) where operational liquid RAW should be stored in large capacity tanks during the whole operational period. Volume of tanks placed in auxiliary buildings is from 460 to 550 m 3 , usually they are situated in rooms with limited access and minimal handling space. The liquid RAW management process is described. (authors)

  2. Simulation of complete neutron scattering experiments: from model systems to liquid germanium

    International Nuclear Information System (INIS)

    Hugouvieux, V.

    2004-11-01

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  3. Type B liquid package technical issues -- Experience with LR-56 safety analysis

    International Nuclear Information System (INIS)

    Smith, A.C.; Alstine, M.N. van; Gromada, R.J.; Hensel, S.J.; Gupta, N.K.

    1997-01-01

    In the course of the development of nuclear industry in France, shipment of Type B quantities (i.e., quantities having significant radiological consequences) of radioactive liquids between different, sites became necessary. Based on the experience acquired at the Commissariat a l'Energie Atomique (CEA) nuclear centers, a series of tanker trailers has been developed to meet this need. Similarly, as part of the ongoing program to process wastes to stable end forms, a need exists to move radioactive liquids at several DOE sites. The LR-56, developed by CEA to transport liquids of medium to high activity, was selected for these US applications, based on its design features and successful operating experience in France. No comparable Type B liquid packages are certified in the US Packages employed in transport of Type B quantities of liquids are either only suitable for small volumes, or are used within site boundaries with extensive administrative controls employed to insure that an adequate level of safety is maintained. The requirement is to provide safety equivalent to the level established by federal regulations in 10 CFR 71. Type B radioactive materials packages (RAM packages) are typically simple, rugged containers which are designed and fabricated in accordance with the ASME Boiler and Pressure Vessel Code to provide containment under the normal conditions of transport (NCT) and hypothetical accident conditions (HAC) established by the regulations. Packages designed for liquid contents must address a number of technical issues which are not common to packages for solid contents. This paper reviews the technical issues associated with Type B liquid packages from the perspective of the experience gained from the evaluation of the LR-56 for use at DOE sites

  4. The uranium liquid argon calorimeter of the D0 experiment: Experience in realizing a large system

    International Nuclear Information System (INIS)

    Guryn, W.

    1991-01-01

    The major aspects in realizing the calorimeter system of the D OE experiment are discussed. They include: technologies developed for calorimeter production, schedule, and experience with module production

  5. High Performance Liquid Chromatography of Some Analgesic Compounds: An Instrumental Analysis Experiment.

    Science.gov (United States)

    Haddad, Paul; And Others

    1983-01-01

    Background information, procedures, and results are provided for an experiment demonstrating techniques of solvent selection, gradient elution, pH control, and ion-pairing in the analysis of an analgesic mixture using reversed-phase liquid chromatography on an octadecylsilane column. Although developed using sophisticated/expensive equipment, less…

  6. Microgravity Science Experiment of Marangoni Convection occurred in Larger Liquid Bridge on KIBO

    Science.gov (United States)

    Matsumoto, Satoshi; Yoda, Shinichi; Tanaka, Tetsuo

    Marangoni convection is a fluid motion induced by local variations of surface tension along a free surface which is caused by temperature and/or concentration differences. Marangoni convection plays important roll in such applications as crystal growth from melt, welding, con-tainerless material processing, and so on. One of the promising techniques to grow a high quality crystal is a floating-zone method which exists cylindrical melting part at heated region. This liquid part like a column is sustained between solid rods and it has free surface on the side. For investigation of Marangoni convection, a liquid bridge configuration with heated top and cooled bottom is often employed to simplify phenomena. Much work has been performed on Marangoni convection in the past, both experimentally and theoretically. Most of the ex-perimental investigations were conducted in normal gravity but some results from microgravity experiments are now available. However, problems to be solved are still remained in scientific view point. The effect of liquid bridge size on critical Marangoni number to determine the onset of oscillatory flow is one of important subjects. To investigate size effect, the experiment with changing wide range of diameter is needed. Under terrestrial conditions, large size of liquid bridge enhances to induce buoyancy convection. Much larger liquid bridge is deformed its shape or finally liquid bridge could not keep between disks because of its self-weight. So, microgravity experiment is required to make clear the size effect and to obtain precise data. We carried out Marangoni experiment under microgravity condition in Japanese Experiment Module "KIBO". A 50 mm diameter liquid bridge was formed and temperature difference between supporting rods was imposed to induce thermocapillary flow. Convective motion was observed in detail using several cameras, infrared camera and temperature sensors. Silicone oil of 5cSt was employed as a working fluid, which Prandtl

  7. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  8. A simple laboratory experiment to measure the surface tension of a liquid in contact with air

    International Nuclear Information System (INIS)

    Riba, Jordi-Roger; Esteban, Bernat

    2014-01-01

    A simple and accurate laboratory experiment to measure the surface tension of liquids has been developed, which is well suited to teach the behaviour of liquids to first- or second-year students of physics, engineering or chemistry. The experimental setup requires relatively inexpensive equipment usually found in physics and chemistry laboratories, since it consists of a used or recycled burette, an analytical balance and a stereoscopic microscope or a micrometer. Experimental data and error analysis show that the surface tension of distilled water, 1-butanol and glycerol can be determined with accuracy better than 1.4%. (paper)

  9. Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.

    Science.gov (United States)

    Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald

    2017-06-01

    Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Corrosion experiment in the first liquid metal LiPb loop of China

    International Nuclear Information System (INIS)

    Huang Qunying; Zhang Maolian; Zhu Zhiqiang; Gao Sheng; Wu Yican; Li Yanfen; Song Yong; Li Chunjing; Kong Mingguang

    2007-01-01

    The liquid metal LiPb blanket design is one of the most promising designs for future fusion power reactors and under wide research in the world. The first liquid metal LiPb loop in China named DRAGON-I was built in 2005 in order to do research on characteristics of liquid metal LiPb such as its corrosion to structural materials of the blankets and so on. The first corrosion experiment in flowing LiPb with a speed of 0.08 m/s at 480 deg. C for 500 h was done in October 2005 on CLAM (China low activation martensitic) steel and 316L stainless steel for comparison. The weights and compositions, etc. of the specimens before and after corrosion experiment were tested and analyzed, the microstructures of the specimens were also inspected by SEM. The results show that the corrosion of CLAM steel is relatively slight, while that for 316L is obvious and very serious. Further study on corrosion behavior of CLAM for longer time experiment in liquid LiPb at different temperatures and flow speeds will be carried out in the near future

  11. Lithium isotopic separation: preliminary studies

    International Nuclear Information System (INIS)

    Macedo, Sandra Helena Goulart de

    1998-01-01

    In order to get the separation of natural isotopes of lithium by electrolytic amalgamation, an electrolytic cell with a confined mercury cathode was used to obtain data for the design of a separation stage. The initial work was followed by the design of a moving mercury cathode electrolytic cell and three experiments with six batches stages were performed for the determination of the elementary separation factor. The value obtained, 1.053, was ill agreement: with the specialized literature. It was verified in all experiments that the lithium - 6 isotope concentrated in the amalgam phase and that the lithium - 7 isotope concentrated in the aqueous phase. A stainless-steel cathode for the decomposition of the lithium amalgam and the selective desamalgamation were also studied. In view of the results obtained, a five stages continuous scheme was proposed. (author)

  12. The potential use of lithium as a marker for the assessment of the sources of dietary salt : cooking studies and physiological experiments in men

    NARCIS (Netherlands)

    Sanchez-Castillo, C P; Seidell, J; James, W.P.T.

    Lithium was investigated for its possible use as a marker for identifying the various sources of NaCl in the diet. Micromolar concentrations of lithium can be detected in various vegetables, tap water and also in urine specimens of adult volunteers. The lithium content of vegetables varied from 6.1

  13. Measuring fast neutrons with large liquid scintillation detector for ultra-low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); College of Sciences, China Three Gorges University, Yichang 443002 (China); Mei, D.-M., E-mail: dongming.mei@usd.edu [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Davis, P.; Woltman, B. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Gray, F. [Department of Physics and Computational Science, Regis University, Denver, CO 80221 (United States)

    2013-11-21

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron–gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  14. Preliminary optimization experiments of coupled liquid hydrogen moderator for KENS-II

    International Nuclear Information System (INIS)

    Watanabe, N.; Kiyanagi, Y.; Inoue, K.; Furusaka, M.; Ikeda, S.; Arai, M.; Iwasa, H.

    1989-01-01

    As a preliminary optimization experiment on the cold-neutron source for KENS-II, energy and time distributions of cold neutrons emanating from coupled liquid-hydrogen moderators with and without a premoderator in a graphite reflector were measured and compared with those from a decoupled liquid-hydrogen moderator. The results showed that the energy spectra from the coupled liquid-hydrogen moderators are almost the same as those from a decoupled one. Relative gain of the former to the latter is fairly high, more than 5, and further increases with increasing wavelength. The broadening of the neutron pulse width in coupled moderators at the cold-neutron region is not so significant and only 1.5 times compared to the solid methane moderator presently operated at KENS-II. 2 refs., 12 figs., 1 tab

  15. Numerical analysis of experiments with gas injection into liquid metal coolant

    International Nuclear Information System (INIS)

    Usov, E V; Lobanov, P D; Pribaturin, N A; Mosunova, N A; Chuhno, V I; Kutlimetov, A E

    2016-01-01

    Presented paper contains results of a numerical analysis of experiments with gas injection in water and liquid metal which have been performed at the Institute of Thermophysics Russian Academy of Science (IT RAS). Obtained experimental data are very important to predict processes that take place in the BREST-type reactor during the hypothetical accident with damage of the steam generator tubes, and may be used as a benchmark to validate thermo-hydraulic codes. Detailed description of models to simulate transport of gas phase in a vertical liquid column is presented in a current paper. Two-fluid model with closing relation for wall friction and interface friction coefficients was used to simulate processes which take place in a liquid during injection of gaseous phase. It has being shown that proposed models allow obtaining a good agreement between experimental data and calculation results. (paper)

  16. Hydrodynamic model experiments for stabilized liquid liners with annular piston drive

    International Nuclear Information System (INIS)

    Burton, R.L.; Turchi, P.J.; Jenkins, D.J.; Cooper, A.L.

    1977-01-01

    The achievement of megagauss-level magnetic fields by flux compression using controlled liquid liner implosions will be studied in the LINUS-O experiments. This paper reports on experimental studies of the rotating liquid liner at lower energy density, using a one-third scale model with water as the liner material. Radial implosion of the free inside surface of the liquid is achieved by axial displacement of an annular piston, driven by helium. Azimuthally symmetric, repetitive implosion-reexpansion cycles have been demonstrated, with area compressions of over a hundred. The apparatus has also been used to investigate other problems inherent in the annular piston geometry, including piston guidance, seals, z-dependence of the imploding free surface trajectory, and Rayleigh-Taylor instability of the free surface. Methods for r-z plane tailoring of the free surface to provide three-dimensional payload compression are considered

  17. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    International Nuclear Information System (INIS)

    Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface

  18. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  19. Operation of CdZnTe Semiconductor Detectors in Liquid Scintillator for the COBRA Experiment

    International Nuclear Information System (INIS)

    Oldorf, Christian

    2015-08-01

    COBRA, the Cadmium-Zinc-Telluride O-neutrino double-Beta Research Apparatus, is an experiment aiming for the measurement of the neutrinoless double beta decay with several isotopes, in particular 116 Cd, 106 Cd and 130 Te. A highly granular large scale experiment with about 400 kg of CdZnTe semiconductor detectors is currently under development. To provide evidence for the neutrinoless double beta decay of 116 Cd, a background rate in the order of 10 -3 counts/keV/kg/a is needed to achieve the required half-life sensitivity of at least 2 . 10 26 years. To reach this target, the detectors have to be operated in a highly pure environment, shielded from external radiation. Liquid scintillator is a promising candidate as a circum fluent replacement for the currently used lacquer. Next to the function as highly pure passivation material, liquid scintillator also acts as a neutron shield and active veto for external gammas. Within this thesis, the design, construction and assembly of a test set-up is described. The operation of four CdZnTe detectors after several years of storage in liquid scintillator is demonstrated. Next to extensive material compatibility tests prior to the assembly, the commissioning of the set-up and the characterization of the detectors are shown. Finally, results concerning the background reduction capability of liquid scintillator and the detection of cosmic muons are presented and compared to a Monte Carlo simulation.

  20. Plasma Surface Interactions Common to Advanced Fusion Wall Materials and EUV Lithography - Lithium and Tin

    Science.gov (United States)

    Ruzic, D. N.; Alman, D. A.; Jurczyk, B. E.; Stubbers, R.; Coventry, M. D.; Neumann, M. J.; Olczak, W.; Qiu, H.

    2004-09-01

    Advanced plasma facing components (PFCs) are needed to protect walls in future high power fusion devices. In the semiconductor industry, extreme ultraviolet (EUV) sources are needed for next generation lithography. Lithium and tin are candidate materials in both areas, with liquid Li and Sn plasma material interactions being critical. The Plasma Material Interaction Group at the University of Illinois is leveraging liquid metal experimental and computational facilities to benefit both fields. The Ion surface InterAction eXperiment (IIAX) has measured liquid Li and Sn sputtering, showing an enhancement in erosion with temperature for light ion bombardment. Surface Cleaning of Optics by Plasma Exposure (SCOPE) measures erosion and damage of EUV mirror samples, and tests cleaning recipes with a helicon plasma. The Flowing LIquid surface Retention Experiment (FLIRE) measures the He and H retention in flowing liquid metals, with retention coefficients varying between 0.001 at 500 eV to 0.01 at 4000 eV.

  1. Fusion Materials Irradiation Test (FMIT) facility lithium system: a design and development status

    International Nuclear Information System (INIS)

    Brackenbury, P.J.; Bazinet, G.D.; Miller, W.C.

    1983-01-01

    The design and development of the Fusion Materials Irradiation Test (FMIT) Facility lithium system is outlined. This unique liquid lithium recirculating system, the largest of its kind in the world, is described with emphasis on the liquid lithium target assembly and other important components necessary to provide lithium flow to the target. The operational status and role of the Experimental Lithium System (ELS) in the design of the FMIT lithium system are discussed. Safety aspects of operating the FMIT lithium system in a highly radioactive condition are described. Potential spillage of the lithium is controlled by cell liners, by argon flood systems and by remote maintenance features. Lithium chemistry is monitored and controlled by a side-stream loop, where impurities measured by instruments are collected by hot and cold traps

  2. Fusion Materials Irradiation Test (FMIT) facility lithium system: a design and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbury, P.J.; Bazinet, G.D.; Miller, W.C.

    1983-01-01

    The design and development of the Fusion Materials Irradiation Test (FMIT) Facility lithium system is outlined. This unique liquid lithium recirculating system, the largest of its kind in the world, is described with emphasis on the liquid lithium target assembly and other important components necessary to provide lithium flow to the target. The operational status and role of the Experimental Lithium System (ELS) in the design of the FMIT lithium system are discussed. Safety aspects of operating the FMIT lithium system in a highly radioactive condition are described. Potential spillage of the lithium is controlled by cell liners, by argon flood systems and by remote maintenance features. Lithium chemistry is monitored and controlled by a side-stream loop, where impurities measured by instruments are collected by hot and cold traps.

  3. First experiment on liquid hydrogen transportation by ship inside Osaka bay

    Science.gov (United States)

    Maekawa, K.; Takeda, M.; Hamaura, T.; Suzuki, K.; Miyake, Y.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.

    2017-12-01

    A project to import a large amount of liquid hydrogen (LH2) from Australia by a cargo carrier, which is equipped with two 1250 m3 tanks, is underway in Japan. It is important to understand sloshing and boil-off characteristics inside the LH2 tank during marine transportation. However, the LH2 sloshing and boil-off characteristics on the sea have not yet been clarified. First experiment on the LH2 transportation of 20 liter with magnesium diboride (MgB2) level sensors by the training ship “Fukae-maru”, which has 50 m long and 449 ton gross weight, was carried out successfully inside Osaka bay on February 2, 2017. In the experiment, synchronous measurements of liquid level, temperature, pressure, ship motions, and accelerations as well as the rapid depressurization test were done. The increase rate of the temperature and the pressure inside the LH2 tank were discussed under the rolling and the pitching conditions.

  4. Operation of the lithium pellet injector

    International Nuclear Information System (INIS)

    Khlopenkov, K.V.; Sudo, S.; Sergeev, V.Yu.

    1996-05-01

    A lithium pellet injection requires an accurate handling with lithium and special technique of loading the pellets. Thus, the technology for this has been developed based on the following conditions: 1) Because of chemical activity of lithium it is necessary to operate in a glove-box with the noble gas atmosphere (He, Ar, etc.). 2) A special procedure of replacing the glove-box atmosphere allows to achieve high purity of the noble gas. 3) When making the pellets it is better to keep the clean lithium in the liquid hexane so as to maintain lithium purity. 4) The pressure of the accelerating gas for Li pellets should be not less than 30 atm. (author)

  5. A facility for liquid-phase radiation experiments on heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Zvara, I; Yakushev, A B; Timokhin, S N [Flerov Lab. of Nuclear Reactions, Dubna (Russian Federation). Joint Inst. for Nuclear Research

    1994-05-01

    The facility for liquid-phase radiation experiments installed on the beam line of the U-400 cyclotron in the Flerov Laboratory of Nuclear Reactions, JINR, Dubna, is described. The accelerator provides intermediate energy (some 10 MeV/nucleon) beams of ions ranging from Li to Xe. Preliminary results on the radiolysis of the Fricke solution and malachite green in ethanol by {sup 11}B, {sup 24}Mg and {sup 40}Ca ions are presented. (author).

  6. Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.

    2010-01-01

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  7. Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment.

    Science.gov (United States)

    Nornberg, M D; Ji, H; Schartman, E; Roach, A; Goodman, J

    2010-02-19

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  8. Experiment and model for the surface tension of amine–ionic liquids aqueous solutions

    International Nuclear Information System (INIS)

    Zhang, Pan; Du, LeiXia; Fu, Dong

    2014-01-01

    Highlights: • The surface tensions of MEA/DEA–ionic liquids aqueous solutions were measured. • The experiments were modeled satisfactorily by using a thermodynamic equation. • The temperature dependence of the surface tension was illustrated. • The effects of the mass fractions of MEA/DEA and ionic liquids were demonstrated. - Abstract: The surface tension (γ) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF 4 ])–monoethanolamine (MEA), 1-butyl-3-methylimidazolium bromide ([Bmim][Br])–MEA, [Bmim][BF 4 ]–diethanolamine (DEA) and [Bmim][Br]–DEA aqueous solutions was measured by using the BZY-1 surface tension meter. The temperature ranged from (293.2 to 323.2) K. The mass fraction of amines and ionic liquids (ILS) respectively ranged from 0.15 to 0.30 and 0.05 to 0.10. A thermodynamic equation was proposed to model the surface tension of amines–ILS aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fraction of amines and ILS on the surface tension were demonstrated on the basis of experiments and calculations

  9. Experiment of amnion epithelial cell suspension liquid used for acute rabbit corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Yan-Yan Zhang

    2017-10-01

    Full Text Available AIM: To investigate the effects of amnion epithelial cell(AECsuspension liquid on the biological behavior of the rabbit's corneal epithelium, combined with the in vitro and in vivo experiments. METHODS: The rabbit's corneal epithelium were cultured in the lower chamber of transwell, and AEC suspension liquid was dropwised in the upper chamber. There was only culture medium in the upper chamber of the control group. The proliferation of rabbit's corneal epithelium was observed with CCK-8 automated colorimetry and the expression of PCNA was detected by immunocytochemistry. We used the scratch wound assay to detect the migration of corneal epithelial cell(CEC. The in vivo models were established by placing a 10mm diameter corneal trephine in the center of the cornea, within 1mol/L NaOH for 1min. We divided those into three groups: treatment group of AEC suspension liquid eye drop, AEC suspension liquid subconjunctival injection and the control group without any treatment. Using the slit-lamp biomicroscope and fluorescence staining to observe the cornea per week. After 28d we took the eyeballs with the HE staining. The expression of VEGF was detected by immunohistochemistry. RESULTS: The activity of CEC with AEC treatment was much higher than the control group(PPIn vivo, the inflammation of the corneal and the CNV of the AEC group were all significantly reduced compared with the control group(PPCONCLUSION: AEC suspension liquid can promote the proliferation and migration of the rabbit's corneal epithelium. The potential of AEC suspension liquid as a therapy for acute corneal alkali burn.

  10. Required momentum, heat, and mass transport experiments for liquid-metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Sze, D.K.; Abdou, M.A.

    1986-01-01

    Through the effects on fluid flow, many aspects of blanket behavior are affected by magnetohydrodynamic (MHD) effects, including pressure drop, heat transfer, mass transfer, and structural behavior. In this paper, a set of experiments is examined that could be performed in order to reduce the uncertainties in the highly related set of issues dealing with momentum, heat, and mass transport under the influence of a strong magnetic field (i.e., magnetic transport phenomena). By improving our basic understanding and by providing direct experimental data on blanket behavior, these experiments will lead to improved designs and an accurate assessment of the attractiveness of liquid-metal blankets

  11. An Open-Source, Low-Cost Robot for Performing Reactive Liquid Handling Experiments

    DEFF Research Database (Denmark)

    Nejatimoharrami, Farzad; Faina, Andres; Støy, Kasper

    vessels in the middle, and 3) a camera as the sensing system at the bottom, providing a view of the experiment. From the raw camera image experiment specific data such as droplet size, position, speed, number, color, and shape are calculated. The computer vision system has an accuracy of 4% for droplet......Bot's application domain is extendable owing to a modular design of hardware, and open source software. Evobot's modular design enables support for different modules, e.g. syringe modules for liquid handling, grippers to reposition reaction vessels or dispose of them, sensor modules including temperature, pH, etc...

  12. Capillary Electrophoresis as Analysis Technique for Battery Electrolytes: (i Monitoring Stability of Anions in Ionic Liquids and (ii Determination of Organophosphate-Based Decomposition Products in LiPF6-Based Lithium Ion Battery Electrolytes

    Directory of Open Access Journals (Sweden)

    Marcelina Pyschik

    2017-09-01

    Full Text Available In this work, a method for capillary electrophoresis (CE hyphenated to a high-resolution mass spectrometer was presented for monitoring the stability of anions in ionic liquids (ILs and in commonly used lithium ion battery (LIB electrolytes. The investigated ILs were 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonylimide (PYR13TFSI and 1-methyl-1-propylpyrrolidinium bis(fluorosulfonylimide (PYR13FSI. The method development was conducted by adjusting the following parameters: buffer compositions, buffer concentrations, and the pH value. Also the temperature and the voltage applied on the capillary were optimized. The ILs were aged at room temperature and at 60 °C for 16 months each. At both temperatures, no anionic decomposition products of the FSI− and TFSI− anions were detected. Accordingly, the FSI− and TFSI− anions were thermally stable at these conditions. This method was also applied for the investigation of LIB electrolyte samples, which were aged at 60 °C for one month. The LP30 (50/50 wt. % dimethyl carbonate/ethylene carbonate and 1 M lithium hexafluorophosphate electrolyte was mixed with the additive 1,3-propane sultone (PS and with one of the following organophosphates (OP: dimethyl phosphate (DMP, diethyl phosphate (DEP, and triethyl phosphate (TEP, to investigate the influence of these compounds on the formation of OPs.

  13. Lithium adduct as precursor ion for sensitive and rapid quantification of 20 (S)-protopanaxadiol in rat plasma by liquid chromatography/quadrupole linear ion trap mass spectrometry and application to rat pharmacokinetic study.

    Science.gov (United States)

    Bao, Yuanwu; Wang, Quanying; Tang, Pingming

    2013-03-01

    A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC-ESI-(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP-C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN-water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple-reaction-monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5-100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Prototype tests for the liquid Krypton, Calorimeter of the CP-violation Experiment NA48

    CERN Document Server

    Viehauser, Georg

    This work 1s the result of a one year stay as a technical student in the NA48 group at the European Center for Nuclear Research CERN from May 1992 to May 1993. The NA48 experiment is a fixed target experiment at the CERN Super Proton Synchrotron (SPS) to study direct CP violation in neutral kaon decays. The aim of the experiment is the measurement of the ratio of the CP violation parameters £ '/£. Chapter 1 will explain the origin of these parameters and our current knowledge of their size. Chapter 2 will give a description of the NA48 experiment. A crucial part of the experiment will be a photon calorimeter filled with liquid krypton. It has to meet very ambitious demands concerning the high rate capability and the energy, space and time resolutions. In chapter 3 the principles of electromagnetic calorimetry and ionization chambers are reviewed. In 1992 two test beam exposures of a prototype of the liquid krypton calorimeter were performed. A description of these tests will be given in chapter 4. During th...

  15. Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals

    Directory of Open Access Journals (Sweden)

    Adolfo Ribeiro

    2015-03-01

    Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪  Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.

  16. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  17. Predictive modeling of liquid-sodium thermal–hydraulics experiments and computations

    International Nuclear Information System (INIS)

    Arslan, Erkan; Cacuci, Dan G.

    2014-01-01

    Highlights: • We applied the predictive modeling method of Cacuci and Ionescu-Bujor (2010). • We assimilated data from sodium flow experiments. • We used computational fluid dynamics simulations of sodium experiments. • The predictive modeling method greatly reduced uncertainties in predicted results. - Abstract: This work applies the predictive modeling procedure formulated by Cacuci and Ionescu-Bujor (2010) to assimilate data from liquid-sodium thermal–hydraulics experiments in order to reduce systematically the uncertainties in the predictions of computational fluid dynamics (CFD) simulations. The predicted CFD-results for the best-estimate model parameters and results describing sodium-flow velocities and temperature distributions are shown to be significantly more precise than the original computations and experiments, in that the predicted uncertainties for the best-estimate results and model parameters are significantly smaller than both the originally computed and the experimental uncertainties

  18. Control System for the NSTX Lithium Pellet Injector

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.; Gernhardt, R.; Gettelfinger, G.; Kugel, H.

    2003-01-01

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI

  19. Corrosion behaviour of materials selected for FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Brehm, W.F.

    1983-09-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/ to 270/sup 0/C and static lithium at temperatures from 200/sup 0/ to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.

  20. Corrosion behaviour of materials selected for FMIT lithium system

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Brehm, W.F.

    1983-01-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230 0 to 270 0 C and static lithium at temperatures from 200 0 to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system

  1. RECOVERY OF LITHIUM FROM WASTE MATERIALS

    Directory of Open Access Journals (Sweden)

    JITKA JANDOVÁ

    2012-03-01

    Full Text Available In this study, processes based on roasting-leaching-crystallization steps and condensation-precipitation steps for Li2CO3 separation from spent Li/MnO2 batteries and lithium-containing wastewaters were developed and verified on a laboratory scale. Spent Li/MnO2 batteries were roasted under reduced pressure at 650°C, which split the castings and deactivated the batteries by reduction of LiMnO2 and MnO2 with residual lithium metal and graphite to form MnO and Li2CO3. The resultant lithium carbonate was selectively solubilised in water with manganese remaining in the leach residue. Li2CO3 of 99.5 % purity was obtained after evaporation of 95 % water. Processing of lithium-containing alkaline wastewaters from the production of liquid rubber comprises condensation up to lithium concentration of 12-13 g/l Li and a two-step precipitation of lithium carbonate using CO2 as a precipitation agent. Sparingly soluble Li2CO3 was produced in the second step at 95°C, whilst most impurities remain in the solution. Obtained lithium carbonate products contained on average more than 99.5 % Li2CO3. The lithium precipitation efficiency was about 90 %.

  2. Model-independent nonlinear control algorithm with application to a liquid bridge experiment

    International Nuclear Information System (INIS)

    Petrov, V.; Haaning, A.; Muehlner, K.A.; Van Hook, S.J.; Swinney, H.L.

    1998-01-01

    We present a control method for high-dimensional nonlinear dynamical systems that can target remote unstable states without a priori knowledge of the underlying dynamical equations. The algorithm constructs a high-dimensional look-up table based on the system's responses to a sequence of random perturbations. The method is demonstrated by stabilizing unstable flow of a liquid bridge surface-tension-driven convection experiment that models the float zone refining process. Control of the dynamics is achieved by heating or cooling two thermoelectric Peltier devices placed in the vicinity of the liquid bridge surface. The algorithm routines along with several example programs written in the MATLAB language can be found at ftp://ftp.mathworks.com/pub/contrib/v5/control/nlcontrol. copyright 1998 The American Physical Society

  3. Performance of a prototype active veto system using liquid scintillator for a dark matter search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Adhikari, P.; Adhikari, G.; Oh, S.Y. [Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Kim, N.Y. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Kim, Y.D. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Ha, C.; Park, K.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Lee, H.S., E-mail: hyunsulee@ibs.re.kr [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Jeon, E.J. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of)

    2017-04-11

    We report the performance of an active veto system using a liquid scintillator with NaI(Tl) crystals for use in a dark matter search experiment. When a NaI(Tl) crystal is immersed in the prototype detector, the detector tags 48% of the internal {sup 40}K background in the 0–10 keV energy region. We also determined the tagging efficiency for events at 6–20 keV as 26.5±1.7% of the total events, which corresponds to 0.76±0.04 events/keV/kg/day. According to a simulation, approximately 60% of the background events from U, Th, and K radioisotopes in photomultiplier tubes are tagged at energies of 0–10 keV. Full shielding with a 40-cm-thick liquid scintillator can increase the tagging efficiency for both the internal {sup 40}K and external background to approximately 80%.

  4. Numerical simulation of a liquid droplet combustion experiment focusing on ignition process

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Tajima, Yuji

    1999-11-01

    SPHINCS (Sodium Fire phenomenology IN multi-Cell System) computer program has been developed for the safety analysis of sodium fire accident in a Fast Breeder Reactor. The program can deal with spray combustion and pool surface combustion. In this report the authors investigate a single droplet combustion phenomena focusing on an ignition process. The spray combustion model of SPHINCS is as follows. The liquid droplet-burning rate after ignition is based on the D-square law and a diffusion flame assumption. Before the droplet is ignited, the burning rate is evaluated by mass flux of oxidizer gases. Forced convection effect that skews the sphere shape of the flame zone surrounding a droplet is taken into consideration. It enhances the burning rate. The chemical equilibrium theory is used to determine the resultant fraction of reaction products of Na-O 2 -H 2 O system. It is noted that users have to give an ignition temperature based on empirical evidences. According to this model, it is obvious that a smaller liquid droplet with higher initial temperature tends to burn more easily. What is observed in a recent experiment is that the smallest liquid droplet (2mm diameter) did not ignited of itself and larger droplets (3.7mm and 4.5mm diameter) burnt at 300degC initial temperature. The current model for liquid droplet combustion cannot predict the experimental results. Therefore, in the present study, a surface reaction model has been developed to predict the ignition process. The model has been used to analyze a combustion experiment of a stationary liquid droplet. The authors investigate the validity of the physical modeling of the liquid droplet combustion and surface reaction. It has been found, as the results, that the model can predict the influence of the initial temperature on the temperature lower limit for spontaneous ignition and ignition delay time. Also investigated is the influence of the moisture on the ignition phenomena. From the present study, it has

  5. Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius† †Electronic supplementary information (ESI) available: Detailed ionic liquids synthesis, characterization, conductivity, cyclic voltammetry, battery cycling and those of other compositions; SEM images; energy density calculation. See DOI: 10.1039/c5sc01518a Click here for additional data file.

    Science.gov (United States)

    Lin, X.; Kavian, R.; Lu, Y.; Hu, Q.; Shao-Horn, Y.

    2015-01-01

    Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature. PMID:28757963

  6. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    International Nuclear Information System (INIS)

    Bauer, G.S.; Salvatores, M.; Heusener, G.

    2001-01-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  7. CRITIC-I: Instrumented lithium oxide irradiation: Part 1, Lithium oxide fabrication and characteristics

    International Nuclear Information System (INIS)

    Applegate, D.S.; Poeppel, R.B.

    1987-06-01

    Fine-grained, sinterable lithium oxide powder was prepared by high-temperature vacuum calcination of molten lithium carbonate. The product was ball milled, cold pressed, and fired in an oxygen atmosphere. The fired density, grain size, and surface roughness varied widely with firing schedule. Most variations were attributed to moisture content. Rings of high-density, sintered lithium oxide will be used in an in-reactor experiment to measure tritium release. 2 refs., 8 figs., 1 tab

  8. A rope-net support system for the liquid scintillator detector for the SNO+ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bialek, A., E-mail: abialek@snolab.ca [University of Alberta, Edmonton (Canada); Chen, M. [Queen' s University, Kingston (Canada); Cleveland, B. [SNOLAB, Lively (Canada); Gorel, P.; Hallin, A. [University of Alberta, Edmonton (Canada); Harvey, P.J.; Heise, J. [Queen' s University, Kingston (Canada); Kraus, C. [Laurentian University, Sudbury (Canada); Krauss, C.B. [University of Alberta, Edmonton (Canada); Lawson, I. [SNOLAB, Lively (Canada); Ng, C.J.; Pinkney, B. [University of Alberta, Edmonton (Canada); Rogowsky, D.M. [Rogowsky Engineering Ltd, AECOM Canada Ltd (Canada); Sibley, L.; Soluk, R.; Soukup, J. [University of Alberta, Edmonton (Canada); Vázquez-Jáuregui, E. [SNOLAB, Lively (Canada); Laurentian University, Sudbury (Canada)

    2016-08-11

    The detector for the SNO+ experiment consists of 780 000 kg of liquid scintillator contained in an acrylic vessel that is surrounded by water. A mechanical system has been installed to counteract the 1.25 MN of buoyant force on the acrylic and prevent the vessel from moving. The system is a rope net, designed using a Finite Element Analysis to calculate the amount of stress on the acrylic induced by the ropes, hydrostatic pressures and gravity. A dedicated test was performed to measure strains in the acrylic arising from the complex geometry of the knots in the rope system. The ratio between measured and FEA calculated strains was 1.3.

  9. Liquid radwaste processing, operational experience utilizing Duratek Mobile Process System (MPS)

    International Nuclear Information System (INIS)

    Hunkele, W.; Jensen, C.E.; Duratek Corp., Beltsville, MD)

    1985-01-01

    The use of Duratek's Mobile Process System (MPS) employing sluiceable pressure vessels and improved operational techniques generates operational efficiencies including volume reduction (VR), reduced personnel labor and exposure and higher flowrates for cleanup of liquid radwaste streams in an operating nuclear power plant (Salem Generating Station). Significant additional VR is achievable based on laboratory and on-site experience utilizing Durasil 70. Under high conductivity, actual waste stream conditions, this proprietary media has demonstrated through-puts of a magnitude 15 times higher than organic cation resin. A long-term problem, cobalt species removal, is mitigated by this media

  10. Equipment experience in a radioactive LFCM [liquid-fed ceramic melter] vitrification facility

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Dierks, R.D.; Sevigny, G.J.; Goles, R.W.; Surma, J.E.; Thomas, N.M.

    1986-11-01

    Since October 1984, the Pacific Northwest Laboratory (PNL) has operated a pilot-scale radioactive liquid-fed ceramic melter (RLFCM) vitrification process in shielded manipulator hot cells. This vitrification facility is being operated for the Department of Energy (DOE) to remotely test vitrification equipment components in a radioactive environment and to develop design and operation data that can be applied to production-scale projects. This paper summarizes equipment and process experience obtained from the operations of equipment systems for waste feeding, waste vitrification, canister filling, canister handling, and vitrification off-gas treatment

  11. Two-dimensional cross-section sensitivity and uncertainty analysis of the LBM [Lithium Blanket Module] experiments at LOTUS

    International Nuclear Information System (INIS)

    Davidson, J.W.; Dudziak, D.J.; Pelloni, S.; Stepanek, J.

    1988-01-01

    In a recent common Los Alamos/PSI effort, a sensitivity and nuclear data uncertainty path for the modular code system AARE (Advanced Analysis for Reactor Engineering) was developed. This path includes the cross-section code TRAMIX, the one-dimensional finite difference S/sub N/-transport code ONEDANT, the two-dimensional finite element S/sub N/-transport code TRISM, and the one- and two-dimensional sensitivity and nuclear data uncertainty code SENSIBL. Within the framework of the present work a complete set of forward and adjoint two-dimensional TRISM calculations were performed both for the bare, as well as for the Pb- and Be-preceeded, LBM using MATXS8 libraries. Then a two-dimensional sensitivity and uncertainty analysis for all cases was performed. The goal of this analysis was the determination of the uncertainties of a calculated tritium production per source neutron from lithium along the central Li 2 O rod in the LBM. Considered were the contributions from 1 H, 6 Li, 7 Li, 9 Be, /sup nat/C, 14 N, 16 O, 23 Na, 27 Al, /sup nat/Si, /sup nat/Cr, /sup nat/Fe, /sup nat/Ni, and /sup nat/Pb. 22 refs., 1 fig., 3 tabs

  12. Basic technology for {sup 6}Li enrichment using an ionic-liquid impregnated organic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki 311-1393 (Japan); Terai, Takayuki [The Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2011-10-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ({sup 6}Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% {sup 6}Li. In this paper, a new lithium isotope separation technique using an ionic-liquid impregnated organic membrane is proposed. In order to separate and concentrate lithium isotopes, only lithium ions are able to move through the membrane by electrodialysis between the cathode and the anode in lithium solutions. Preliminary experiments of lithium isotope separation were conducted using this phenomenon. Organic membranes impregnated with TMPA-TFSI and PP13-TFSI as ionic liquids were prepared, and the relationship between the {sup 6}Li separation coefficient and the applied electrodialytic conditions was evaluated using them. The results showed that the {sup 6}Li isotope separation coefficient in this method (about 1.1-1.4) was larger than that in the mercury amalgam method (about 1.06).

  13. Liquid-handling Lego robots and experiments for STEM education and research.

    Directory of Open Access Journals (Sweden)

    Lukas C Gerber

    2017-03-01

    Full Text Available Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.

  14. Liquid-handling Lego robots and experiments for STEM education and research.

    Science.gov (United States)

    Gerber, Lukas C; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday; Riedel-Kruse, Ingmar H

    2017-03-01

    Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.

  15. Heteroaromatic-based electrolytes for lithium and lithium-ion batteries

    Science.gov (United States)

    Cheng, Gang; Abraham, Daniel P.

    2017-04-18

    The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.

  16. Lithium technologies for edge plasma control

    International Nuclear Information System (INIS)

    Sergeev, Vladimir Yu.; Kuteev, Boris V.; Bykov, Aleksey S.; Krylov, Sergey V.; Skokov, Viacheslav G.; Timokhin, Vladimir M.

    2012-01-01

    Highlights: ► We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. ► The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. ► The lithium technology may provide inherent safety mission for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments. - Abstract: We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. Quasi steady-state mode I and pulse mode II of dust delivery were realized in both OH and OH + ECRH disruption free plasmas at the lithium flow rate up to 2 × 10 21 atoms/s. A higher flow rate in mode II with injection rate of ∼5 × 10 21 atoms/s caused a series of minor disruptions, which was completed by discharge termination after the major disruption. The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. The lithium technology may provide inherent safety pathway for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments.

  17. Nitrogen Recovery by Fe-Ti Alloy from Molten Lithium at High Temperatures

    International Nuclear Information System (INIS)

    Juro Yagi; Akihiro Suzuki; Takayuki Terai; Takeo Muroga

    2006-01-01

    Molten lithium will be used as a beam target of IFMIF (International Fusion Materials Irradiation Facility), and is also expected as a self-cooling and tritium breeding material in fusion reactors. Since tritium is generated in both cases, tritium recovery is required from viewpoints of safety and a feasible fuel cycle. Nitrogen impurity in the lithium, however, not only enhance corrosion to tubing materials, but also promote nitride contamination on a surface of yttrium, which is considered to be a tritium gettering candidate. In our previous study, nitrogen recovery by hot trap method with Fe + 5%Ti alloy as a gettering material showed a higher nitrogen reduction capacity than that with Ti or Cr metal. In this study, high temperature recovery of nitrogen with Fe-Ti alloy was examined to achieve more efficient recovery and higher recovery rate coefficient. Fe - 4%Ti alloy are fabricated by electron beam melting, and its thin plates (40 mm x 10 mm x 1 mm) are used in our experiments. The Fe - 4%Ti alloy plates were immersed into 25 g of liquid lithium in Mo crucible under Ar atmosphere. The crucible was put in a SUS316 stainless steel pot heated at 600, 700, or 800 o C up to 100 hours. A small portion of the liquid lithium in the crucible was sampled out with adequate time interval, and the nitrogen concentrations in the sampled lithium were observed by changing nitrogen to ammonia. Experiments using lithium containing about 100 wt. ppm of nitrogen at the beginning show that the nitrogen reduction became faster with temperature and the minimum achieved nitrogen concentration was less than 20 wppm in case of 800 C. SEM-EDS analysis on the plates after experiment shows a Ti-rich surface layer of tens of micrometers on the alloy immersed in lithium at 800 C, and XPS analysis indicates the surface layer is TiN, while no Ti-rich layer nor TiN were observed on the alloys immersed at 600 o C and 700 o C. By increasing temperature from 600 o C to 800 o C, the diffusion

  18. Fast neutron spectrometry by bolometers lithium target for the reduction of background experiences of direct detection of dark matter

    International Nuclear Information System (INIS)

    Gironnet, J.

    2010-01-01

    Fast neutron spectrometry is a common interest for both direct dark matter detection and for nuclear research centres. Fast neutrons are usually detected indirectly. Neutrons are first slowed down by moderating materials for being detected in low energy range. Nevertheless, these detection techniques are and are limited in energy resolution. A new kind of fast neutron spectroscopy has been developed at the Institut d'Astrophysique Spatiale (IAS) in the aim of having a better knowledge of neutron backgrounds by the association of the bolometric technique with neutron sensitive crystals containing Li. Lithium-6 is indeed an element which has one the highest cross section for neutron capture with the 6 Li(n,α) 3 H reaction. This reaction releases 4,78 MeV tagging energetically each neutron capture. In particular for fast neutrons, the total energy measured by the bolometer would be the sum of this energy reaction and of the incoming fast neutron energy. To validate this principle, a spectrometer for fast neutrons, compact and semi-transportable, was built in IAS. This cryogenic detector, operated at 300 - 400 mK, consists of a 0.5 g LiF 95% 6 Li enriched crystal read out by a NTD-Ge sensor. This PhD thesis was on the study of the spectrometer characteristics, from the first measurements at IAS, to the measurements in the nuclear research centre of the Paul Scherrer Institute (PSI) until the final calibration with the Amande instrument of the Institut de Radioprotection et de Surete Nucleaire (IRSN). (author)

  19. Formation of radiation-induced defects and their influence on tritium extraction from lithium silicates in out-of-pile experiments

    International Nuclear Information System (INIS)

    Abramenkovs, A.A.; Tiliks, J.E.

    1991-01-01

    Formation and properties of radiation-induced defects and radiolysis products in lithium silicates irradiated in nuclear reactor till absorbed doses 1000 MGy were studied. Radiation-induced defects (RD) and radiolysis products (RP) were qualitatively and quantitatively determinated by methods of chemical scavengers (MHS), electron-spin resonance (ESR) and optical spectroscopy. Colloidal silicon and lithium, lithium and silicon oxides, oxygen, silicon and lithium peroxides are the final products of the lithium silicates radiolysis at absorbed energy doses D abs = 1000 MGy. The concentration of radiation defects and products of radiolysis strongly depend on the temperature of irradiation, humidity, granural size. The thermostimulated extraction of tritiated water (95-98% of the released tritium is in chemical form of water) from lithium silicates ceramics proceeds according to two independent mechanisms: a) chemidesorption of surface localized tritiated water (the first order chemical reaction); b) formation of the tritium water molecules limited by triton diffusion to the near-surface layer of grains. It has been found that the concentration of radiation-induced defects considerably affects the tritium localization and releasing processes from lithium silicates. (orig.)

  20. An improved lithium-vanadium pentoxide cell and comparison with a lithium-thionyl chloride cell

    Science.gov (United States)

    Voorn, G.

    1985-03-01

    This paper describes a programme of experiments conducted to assess the effects of: (a) diluting the electrolyte in lithium-vanadium pentoxide cells; (b) optimizing the volume of electrolyte per unit cathode mass. This programme led to the development of an improved cell, the performance of which is compared with that of a lithium-thionyl chloride cell of similar configuration.

  1. Improved lithium-vanadium pentoxide cell and comparison with a lithium-thionyl chloride cell

    Energy Technology Data Exchange (ETDEWEB)

    Voorn, G.

    1985-01-15

    This paper describes a programme of experiments conducted to assess the effects of: (a) diluting the electrolyte in lithium-vanadium pentoxide cells; (b) optimizing the volume of electrolyte per unit cathode mass. This programme led to the development of an improved cell, the performance of which is compared with that of a lithium-thionyl chloride cell of similar configuration.

  2. Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

    KAUST Repository

    Tu, Zhengyuan

    2015-11-17

    of ceramic electrolytes that meet the modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room temperature battery operation. We also review recent progress in designing surface passivation films for metallic lithium that facilitate fast deposition of lithium at the electrolyte/electrode interface and at the same time protect the lithium from parasitic side reactions with liquid electrolytes. A promising finding from both theory and experiment is that simple film-forming halide salt additives in a conventional liquid electrolyte can substantially extend the lifetime and safety of LMBs.

  3. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

    Science.gov (United States)

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A

    2015-11-17

    modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room tem