WorldWideScience

Sample records for expansion genetic mouse

  1. Expansion Under Climate Change: The Genetic Consequences.

    Science.gov (United States)

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  2. Population Genetics of Three Dimensional Range Expansions

    Science.gov (United States)

    Lavrentovich, Maxim; Nelson, David

    2014-03-01

    We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.

  3. Genetic enrichment of cardiomyocytes derived from mouse ...

    African Journals Online (AJOL)

    Genetic enrichment of cardiomyocytes derived from mouse embryonic stem cells. WJ He, SC Li, LL Ye, H Liu, QW Wang, WD Han, XB Fu, ZL Chen. Abstract. Pluripotent embryonic stem cells (ESC) have the ability to differentiate into a variety of cell lineages in vitro, including cardiomyocytes. Successful applications of ...

  4. Signals of recent spatial expansions in the grey mouse lemur (Microcebus murinus

    Directory of Open Access Journals (Sweden)

    Chikhi Lounès

    2010-04-01

    Full Text Available Abstract Background Pleistocene events have shaped the phylogeography of many taxa worldwide. Their genetic signatures in tropical species have been much less explored than in those living in temperate regions. We analysed the genetic structure of a Malagasy primate species, a mouse lemur with a wide distribution (M. murinus, in order to investigate such phylogeographic processes on a large tropical island. We also evaluated the effects of anthropogenic pressures (fragmentation/deforestation and natural features (geographic distance, rivers on genetic structure in order to complement our understanding of past and present processes of genetic differentiation. Results The analysis of the mitochondrial D-loop sequences of 195 samples from 15 study sites (10 from a continuous forest and five from isolated forest fragments from two adjacent Inter-River-Systems (IRSs revealed that forest fragmentation and the river restrict gene flow, thereby leading to an increased genetic differentiation between populations beyond the effect of isolation-by-distance. Demographic simulations detected signals of two successive spatial expansions that could be preliminarily dated to the late Pleistocene and early Holocene. The haplotype network revealed geographic structure and showed deep molecular divergences within and between the IRSs that would be congruent with a two-step colonization scenario. Conclusions This study supports the hypothesis of a relatively recent spatial expansion of the grey mouse lemur in northwestern Madagascar, which may also explain why this taxon, in contrast to its congeners, has not yet undergone allopatric speciation in the studied area and possibly across its presently wide range.

  5. Genetic evidence for a Paleolithic human population expansion in Africa

    Science.gov (United States)

    Reich, David E.; Goldstein, David B.

    1998-01-01

    Human populations have undergone dramatic expansions in size, but other than the growth associated with agriculture, the dates and magnitudes of those expansions have never been resolved. Here, we introduce two new statistical tests for population expansion, which use variation at a number of unlinked genetic markers to study the demographic histories of natural populations. By analyzing genetic variation in various aboriginal populations from throughout the world, we show highly significant evidence for a major human population expansion in Africa, but no evidence of expansion outside of Africa. The inferred African expansion is estimated to have occurred between 49,000 and 640,000 years ago, certainly before the Neolithic expansions, and probably before the splitting of African and non-African populations. In showing a significant difference between African and non-African populations, our analysis supports the unique role of Africa in human evolutionary history, as has been suggested by most other genetic work. In addition, the missing signal in non-African populations may be the result of a population bottleneck associated with the emergence of these populations from Africa, as postulated in the “Out of Africa” model of modern human origins. PMID:9653150

  6. Controlling complexity: the clinical relevance of mouse complex genetics

    Czech Academy of Sciences Publication Activity Database

    Forejt, Jiří

    2013-01-01

    Roč. 21, č. 11 (2013), s. 1191-1196 ISSN 1018-4813 Institutional support: RVO:68378050 Keywords : Mouse model * Forward genetics * Rewiev Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 4.225, year: 2013

  7. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    Directory of Open Access Journals (Sweden)

    Zhixi Su

    2014-01-01

    Full Text Available In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD. Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity.

  8. Genetic enrichment of cardiomyocytes derived from mouse ...

    African Journals Online (AJOL)

    Jane

    2011-06-22

    Jun 22, 2011 ... Pluripotent embryonic stem cells (ESC) have the ability to differentiate into a ... We describe a simple method to generate relatively pure cardiomyocytes from mouse ... In this study, we described the generation of transgenic.

  9. Ternary alloy material prediction using genetic algorithm and cluster expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chong [Iowa State Univ., Ames, IA (United States)

    2015-12-01

    This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we did our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe3VSi2 is a new stable phase and it can be very inspiring to the future experiments.

  10. Mouse Models of C9orf72 Hexanucleotide Repeat Expansion in Amyotrophic Lateral Sclerosis/ Frontotemporal Dementia

    Directory of Open Access Journals (Sweden)

    Ranjan Batra

    2017-07-01

    Full Text Available The presence of hexanucleotide repeat expansion (HRE in the first intron of the human C9orf72 gene is the most common genetic cause underlying both familial amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Studies aimed at elucidating the pathogenic mechanisms associated of C9orf72 FTD and ALS (C9FTD/ALS have focused on the hypothesis of RNA and protein toxic gain-of-function models, including formation of nuclear RNA foci containing GGGGCC (G4C2 HRE, inclusions containing dipeptide repeat proteins through a non-canonical repeat associated non-ATG (RAN translation mechanism, and on loss-of-function of the C9orf72 protein. Immense effort to elucidate these mechanisms has been put forth and toxic gain-of-function models have especially gained attention. Various mouse models that recapitulate distinct disease-related pathological, functional, and behavioral phenotypes have been generated and characterized. Although these models express the C9orf72 HRE mutation, there are numerous differences among them, including the transgenesis approach to introduce G4C2-repeat DNA, genomic coverage of C9orf72 features in the transgene, G4C2-repeat length after genomic stabilization, spatiotemporal expression profiles of RNA foci and RAN protein aggregates, neuropathological features, and neurodegeneration-related clinical symptoms. This review aims to (1 provide an overview of the key characteristics; (2 provide insights into potential pathological factors contributing to neurotoxicity and clinical phenotypes through systematic comparison of these models.

  11. Astonishing advances in mouse genetic tools for biomedical research.

    Science.gov (United States)

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  12. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. Towards Transgenic Primates: What can we learn from mouse genetics?

    Institute of Scientific and Technical Information of China (English)

    KUANG Hui; WANG Phillip L.; TSIEN Joe Z.

    2009-01-01

    Considering the great physiological and behavioral similarities with humans, monkeys represent the ideal models not only for the study of complex cognitive behavior but also for the precUnical research and development of novel therapeutics for treating human diseases. Various powerful genetic tech-nologies initially developed for making mouse models are being explored for generating transgenic primate models. We review the latest genetic engineering technologies and discuss the potentials and limitations for systematic production of transgenic primates.

  14. Towards Transgenic Primates: What can we learn from mouse genetics?

    OpenAIRE

    KUANG, Hui; WANG, Phillip L.; TSIEN, Joe Z.

    2009-01-01

    Considering the great physiological and behavioral similarities with humans, monkeys represent the ideal models not only for the study of complex cognitive behavior but also for the preclinical research and development of novel therapeutics for treating human diseases. Various powerful genetic technologies initially developed for making mouse models are being explored for generating transgenic primate models. We review the latest genetic engineering technologies and discuss the potentials and...

  15. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.

    Science.gov (United States)

    Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M

    2013-05-29

    Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in

  16. The Mouse House: A brief history of the ORNL mouse-genetics program, 1947–2009

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Liane B.

    2013-10-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  17. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009.

    Science.gov (United States)

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Laboratory (ORNL) is often remembered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-chromosome's importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a

  18. Genetic analysis of radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, R.; Wakabayashi, Y.; Niwa, O.

    2003-01-01

    Mouse thymic lymphomas are one of the classic models of radiation-induced malignancies, and the model has been used for the study of genes involved in carcinogenesis. ras oncogenes are the first isolate which undergoes mutations in 10 to 30 % of lymphomas, and p16INK4a and p19ARF in the INK4a-ARF locus are also frequently inactivated. In our previous study, the inactivation of Ikaros, a key regurator of lymphoid system, was found in those lymphomas, and it was suggested that there are other responsible genes yet to be discovered. On the other hand, genetic predisposition to radiation-induced lymphoma often differs in different strains, and this reflects the presence of low penetrance genes that can modify the impact of a given mutation. Little study of such modifiers or susceptibility genes has been performed, either. Recent availability of databases on mouse genome information and the power of mouse genetic system underline usefulness of the lymphoma model in search for novel genes involved, which may provide clues to molecular mechanisms of development of the radiogenic lymphoma and also genes involved in human lymphomas and other malignancies. Accordingly, we have carried out positional cloning for the two different types of tumor-related genes. In this symposium, our current progress is presented that includes genetic mapping of susceptibility/ resistance loci on mouse chromosomes 4, 5 and 19, and also functional analysis of a novel tumor suppressor gene, Rit1/Bcl11b, that has been isolated from allelic loss (LOH) mapping and sequence analysis for γ -ray induced mouse thymic lymphomas

  19. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.

    Science.gov (United States)

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.

  20. DGCR8 Promotes Neural Progenitor Expansion and Represses Neurogenesis in the Mouse Embryonic Neocortex

    Directory of Open Access Journals (Sweden)

    Nadin Hoffmann

    2018-04-01

    Full Text Available DGCR8 and DROSHA are the minimal functional core of the Microprocessor complex essential for biogenesis of canonical microRNAs and for the processing of other RNAs. Conditional deletion of Dgcr8 and Drosha in the murine telencephalon indicated that these proteins exert crucial functions in corticogenesis. The identification of mechanisms of DGCR8- or DROSHA-dependent regulation of gene expression in conditional knockout mice are often complicated by massive apoptosis. Here, to investigate DGCR8 functions on amplification/differentiation of neural progenitors cells (NPCs in corticogenesis, we overexpress Dgcr8 in the mouse telencephalon, by in utero electroporation (IUEp. We find that DGCR8 promotes the expansion of NPC pools and represses neurogenesis, in absence of apoptosis, thus overcoming the usual limitations of Dgcr8 knockout-based approach. Interestingly, DGCR8 selectively promotes basal progenitor amplification at later developmental stages, entailing intriguing implications for neocortical expansion in evolution. Finally, despite a 3- to 5-fold increase of DGCR8 level in the mouse telencephalon, the composition, target preference and function of the DROSHA-dependent Microprocessor complex remain unaltered. Thus, we propose that DGCR8-dependent modulation of gene expression in corticogenesis is more complex than previously known, and possibly DROSHA-independent.

  1. Invited review: Genetic and genomic mouse models for livestock research

    Directory of Open Access Journals (Sweden)

    D. Arends

    2018-02-01

    Full Text Available Knowledge about the function and functioning of single or multiple interacting genes is of the utmost significance for understanding the organism as a whole and for accurate livestock improvement through genomic selection. This includes, but is not limited to, understanding the ontogenetic and environmentally driven regulation of gene action contributing to simple and complex traits. Genetically modified mice, in which the functions of single genes are annotated; mice with reduced genetic complexity; and simplified structured populations are tools to gain fundamental knowledge of inheritance patterns and whole system genetics and genomics. In this review, we briefly describe existing mouse resources and discuss their value for fundamental and applied research in livestock.

  2. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Mouse genetic approaches applied to the normal tissue radiation response

    International Nuclear Information System (INIS)

    Haston, Christina K.

    2012-01-01

    The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits. Among these radiation-induced responses are documented strain differences in repair of DNA damage and in extent of tissue injury (in the lung, skin, and intestine) which form the base for genetic investigations. For example, radiation-induced DNA damage is consistently greater in tissues from BALB/cJ mice, than the levels in C57BL/6J mice, suggesting there may be an inherent DNA damage level per strain. Regarding tissue injury, strain specific inflammatory and fibrotic phenotypes have been documented for principally, C57BL/6 C3H and A/J mice but a correlation among responses such that knowledge of the radiation injury in one tissue informs of the response in another is not evident. Strategies to identify genetic differences contributing to a trait based on inbred strain differences, which include linkage analysis and the evaluation of recombinant congenic (RC) strains, are presented, with a focus on the lung response to irradiation which is the only radiation-induced tissue injury mapped to date. Such approaches are needed to reveal genetic differences in susceptibility to radiation injury, and also to provide a context for the effects of specific genetic variation uncovered in anticipated clinical association studies. In summary, mouse models can be studied to uncover heritable variation predisposing to specific radiation responses, and such variations may point to pathways of importance to phenotype development in the clinic.

  4. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    Science.gov (United States)

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.

  5. Genetic diversity and genetic structure of the striped field mouse Apodemus agrarius coreae (Muridae, Rodentia) in Korea.

    Science.gov (United States)

    Kim, Hye Ri; Park, Yung Chul

    2015-11-10

    The aim of this study was to investigate the genetic diversity and genetic structure of the striped field mouse Apodemus agrarius coreae in Korea. The Korean A. a. coreae is characterized by high levels of haplotype diversity (Hd=0.967) and low levels of nucleotide diversity (π=0.00683). Haplogroup 1 is well separated from the haplotypes of the neighboring regions of the Korean Peninsula, while the other haplogroups are closely related to those from the Russian Far East. Thus, further investigations are required to confirm the validity of the subspecies status of A. a. coreae by implementing additional morphological characters as well as genetic data from the populations present in the Korean Peninsula and its neighboring countries. Haplogroup 1 includes most Korean haplotypes and forms a star-like haplotype network structure, which reveals relatively low levels of sequence divergence and high frequency of unique mutations (only few mutations are shared in most of the haplotype nodes). The results indicate that the haplotypes of Haplogroup 1 might have experienced population expansion since their migration into Korea, which was further corroborated with negative results of neutrality tests for Korean population of A. a. coreae. Copyright © 2015. Published by Elsevier B.V.

  6. Genetic traces of east-to-west human expansion waves in Eurasia.

    Science.gov (United States)

    Chaix, Raphaëlle; Austerlitz, Frédéric; Hegay, Tatyana; Quintana-Murci, Lluís; Heyer, Evelyne

    2008-07-01

    In this study, we describe the landscape of human demographic expansions in Eurasia using a large continental Y chromosome and mitochondrial DNA dataset. Variation at these two uniparentally-inherited genetic systems retraces expansions that occurred in the past 60 ky, and shows a clear decrease of expansion ages from east to west Eurasia. To investigate the demographic events at the origin of this westward decrease of expansion ages, the estimated divergence ages between Eurasian populations are compared with the estimated expansion ages within each population. Both markers suggest that the demographic expansion diffused from east to west in Eurasia in a demic way, i.e., through migrations of individuals (and not just through diffusion of new technologies), highlighting the prominent role of eastern regions within Eurasia during Palaeolithic times. (c) 2008 Wiley-Liss, Inc.

  7. Methods in Molecular Biology Mouse Genetics: Methods and Protocols | Center for Cancer Research

    Science.gov (United States)

    Mouse Genetics: Methods and Protocols provides selected mouse genetic techniques and their application in modeling varieties of human diseases. The chapters are mainly focused on the generation of different transgenic mice to accomplish the manipulation of genes of interest, tracing cell lineages, and modeling human diseases.

  8. Genetic organization of the agouti region of the mouse

    International Nuclear Information System (INIS)

    Siracusa, L.D.; Russell, L.B.; Eicher, E.M.; Corrow, D.J.; Copeland, N.G.; Jenkins, N.A.

    1987-01-01

    The agouti locus on mouse chromosome 2 acts via the hair follicle to control the melanic type and distribution of hair pigments. The diverse phenotypes associated with various agouti mutations have led to speculation about the organization of the agouti locus. Earlier studies indicated that two presumed agouti alleles, lethal yellow (A/sup y/) and lethal light-bellied nonagouti (a/sup x/), are pseudoallelic. The authors present genetic data showing probable recombination between A/sup y/ and three agouti mutations (a/sup t/, a, and a/sup x/), which suggest that A/sup y/ is a pseudoallele of the agouti locus. The close linkage of an endogenous ecotropic murine leukemia provirus, Emv-15, to A/sup y/ provides a molecular access to genes at or near the agouti locus. However, previous studies suggested that the Emv-15 locus can recombine with some agouti alleles and therefore they analyzed mice from recombinant inbred strains and backcrosses to measure the genetic distance between various agouti alleles and the Emv-15 locus. The data indicate that the Emv-15 locus is less the 0.3 cM from the agouti locus. These experiments provide a conceptual framework for initiating chromosome walking experiments designed to retrieve sequences from the agouti locus and give new insight into the genetic organization of the agouti region

  9. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion.

    Directory of Open Access Journals (Sweden)

    Michelle Erin Miller

    Full Text Available Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1's importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1's functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs and implicate reactive oxygen species (ROS as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA26Sor(tm1(Cre/ERTNat/J or B6.Cg-Tg(Mx1-Cre1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1's role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation.

  10. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes.

    Science.gov (United States)

    Driver, John P; Chen, Yi-Guang; Mathews, Clayton E

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.

  11. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    Science.gov (United States)

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-08

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  12. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  13. Range expansion, genetic differentiation, and phenotypic adaption of Hippophae neurocarpa (Elaeagnaceae) on the Qinghai- Tibet Plateau

    Czech Academy of Sciences Publication Activity Database

    Kou, Y.-X.; Wu, Y.-X.; Jia, Dong-Rui; Li, Z.-H.; Wang, Y.-J.

    2014-01-01

    Roč. 52, č. 3 (2014), s. 303-312 ISSN 1674-4918 Institutional support: RVO:67985939 Keywords : genetic differentiation * phenotyp adaptation * range expansion Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 1.488, year: 2014

  14. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions.

    Science.gov (United States)

    Pezer, Željka; Chung, Amanda G; Karn, Robert C; Laukaitis, Christina M

    2017-06-01

    The Androgen-binding protein ( Abp ) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus ( Mmd ) and Mus musculus musculus ( Mmm ), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd , primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm , Mus musculus castaneus and an outgroup, Mus spretus , although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Mouse forward genetics in the study of the peripheral nervous system and human peripheral neuropathy

    Science.gov (United States)

    Douglas, Darlene S.; Popko, Brian

    2009-01-01

    Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics. PMID:18481175

  16. Genetic screening of Greek patients with Huntington’s disease phenocopies identifies an SCA8 expansion.

    Science.gov (United States)

    Koutsis, G; Karadima, G; Pandraud, A; Sweeney, M G; Paudel, R; Houlden, H; Wood, N W; Panas, M

    2012-09-01

    Huntington’s disease (HD) is an autosomal dominant disorder characterized by a triad of chorea, psychiatric disturbance and cognitive decline. Around 1% of patients with HD-like symptoms lack the causative HD expansion and are considered HD phenocopies. Genetic diseases that can present as HD phenocopies include HD-like syndromes such as HDL1, HDL2 and HDL4 (SCA17), some spinocerebellar ataxias (SCAs) and dentatorubral-pallidoluysian atrophy (DRPLA). In this study we screened a cohort of 21 Greek patients with HD phenocopy syndromes formutations causing HDL2, SCA17, SCA1, SCA2, SCA3,SCA8, SCA12 and DRPLA. Fifteen patients (71%) had a positive family history. We identified one patient (4.8% of the total cohort) with an expansion of 81 combined CTA/CTG repeats at the SCA8 locus. This falls within what is believed to be the high-penetrance allele range. In addition to the classic HD triad, the patient had features of dystonia and oculomotor apraxia. There were no cases of HDL2, SCA17, SCA1, SCA2, SCA3, SCA12 or DRPLA. Given the controversy surrounding the SCA8 expansion, the present finding may be incidental. However, if pathogenic, it broadens the phenotype that may be associated with SCA8 expansions. The absence of any other mutations in our cohort is not surprising, given the low probability of reaching a genetic diagnosis in HD phenocopy patients.

  17. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  18. Genetic characterization and improved genotyping of the dysferlin-deficient mouse strain Dysf (tm1Kcam).

    Science.gov (United States)

    Wiktorowicz, Tatiana; Kinter, Jochen; Kobuke, Kazuhiro; Campbell, Kevin P; Sinnreich, Michael

    2015-01-01

    Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf (tm1Kcam) strain, which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the Dysf (tm1Kcam) mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin gene of the Dysf (tm1Kcam) mouse in greater detail. In this study we resequenced and analyzed the targeted locus of the Dysf (tm1Kcam) mouse and developed a novel PCR protocol for genotyping. We found that instead of a deletion, the dysferlin locus in the Dysf (tm1Kcam) mouse carries a targeted insertion. This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf (tm1Kcam) mouse, and thus has made efficient colony management possible. Our work will make the Dysf (tm1Kcam) mouse model more attractive for animal studies of dysferlinopathies.

  19. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo; Brislawn, Colin J.; Noecker, Cecilia; Zink, Erika M.; Fansler, Sarah J.; Casey, Cameron P.; Miller, Darla R.; Huang, Yurong; Karpen, Gary H.; Celniker, Susan E.; Brown, James B.; Borenstein, Elhanan; Jansson, Janet K.; Metz, Thomas O.; Mao, Jian-Hua

    2016-11-28

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes in the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.

  20. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts.

    Science.gov (United States)

    Gagnon, Kenneth B; Delpire, Eric

    2013-04-15

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.

  1. Identifying novel genes for atherosclerosis through mouse-human comparative genetics

    NARCIS (Netherlands)

    Wang, XS; Ishimori, N; Korstanje, R; Rollins, J; Paigen, B

    Susceptibility to atherosclerosis is determined by both environmental and genetic factors. Its genetic determinants have been studied by use of quantitative- trait - locus ( QTL) analysis. So far, 21 atherosclerosis QTLs have been identified in the mouse: 7 in a high- fat - diet model only, 9 in a

  2. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    Science.gov (United States)

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C.; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  3. Low genetic diversity and recent demographic expansion in the red starfish Echinaster sepositus (Retzius 1816).

    Science.gov (United States)

    Garcia-Cisneros, Alex; Palacín, Creu; Ben Khadra, Yousra; Pérez-Portela, Rocío

    2016-09-15

    Understanding the phylogeography and genetic structure of populations and the processes responsible of patterns therein is crucial for evaluating the vulnerability of marine species and developing management strategies. In this study, we explore how past climatic events and ongoing oceanographic and demographic processes have shaped the genetic structure and diversity of the Atlanto-Mediterranean red starfish Echinaster sepositus. The species is relatively abundant in some areas of the Mediterranean Sea, but some populations have dramatically decreased over recent years due to direct extraction for ornamental aquariums and souvenir industries. Analyses across most of the distribution range of the species based on the mitochondrial cytochrome c oxidase subunit I gene and eight microsatellite loci revealed very low intraspecific genetic diversity. The species showed a weak genetic structure within marine basins despite the a priori low dispersal potential of its lecithotrophic larva. Our results also revealed a very recent demographic expansion across the distribution range of the species. The genetic data presented here indicate that the species might be highly vulnerable, due to its low intraspecific genetic diversity.

  4. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food.

    Science.gov (United States)

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-09-18

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China's major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans.

  5. Genetic structure and invasion history of the house mouse (Mus musculus domesticus) in Senegal, West Africa: a legacy of colonial and contemporary times.

    Science.gov (United States)

    Lippens, C; Estoup, A; Hima, M K; Loiseau, A; Tatard, C; Dalecky, A; Bâ, K; Kane, M; Diallo, M; Sow, A; Niang, Y; Piry, S; Berthier, K; Leblois, R; Duplantier, J-M; Brouat, C

    2017-08-01

    Knowledge of the genetic make-up and demographic history of invasive populations is critical to understand invasion mechanisms. Commensal rodents are ideal models to study whether complex invasion histories are typical of introductions involving human activities. The house mouse Mus musculus domesticus is a major invasive synanthropic rodent originating from South-West Asia. It has been largely studied in Europe and on several remote islands, but the genetic structure and invasion history of this taxon have been little investigated in several continental areas, including West Africa. In this study, we focussed on invasive populations of M. m. domesticus in Senegal. In this focal area for European settlers, the distribution area and invasion spread of the house mouse is documented by decades of data on commensal rodent communities. Genetic variation at one mitochondrial locus and 16 nuclear microsatellite markers was analysed from individuals sampled in 36 sites distributed across the country. A combination of phylogeographic and population genetics methods showed that there was a single introduction event on the northern coast of Senegal, from an exogenous (probably West European) source, followed by a secondary introduction from northern Senegal into a coastal site further south. The geographic locations of these introduction sites were consistent with the colonial history of Senegal. Overall, the marked microsatellite genetic structure observed in Senegal, even between sites located close together, revealed a complex interplay of different demographic processes occurring during house mouse spatial expansion, including sequential founder effects and stratified dispersal due to human transport along major roads.

  6. Tbx3 Promotes Liver Bud Expansion During Mouse Development by Suppression of Cholangiocyte Differentiation

    NARCIS (Netherlands)

    Lüdtke, Timo H.-W.; Christoffels, Vincent M.; Petry, Marianne; Kispert, Andreas

    2009-01-01

    After specification of the hepatic endoderm, mammalian liver organogenesis progresses through a series of morphological stages that culminate in the migration of hepatocytes into the underlying mesenchyme to populate the hepatic lobes. Here, we show that in the mouse the transcriptional repressor

  7. Genetic diversity in India and the inference of Eurasian population expansion.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Hu, Ya; Huff, Chad D; Sabo, Aniko; Muzny, Donna M; Bamshad, Michael J; Gibbs, Richard A; Jorde, Lynn B; Yu, Fuli

    2010-01-01

    Genetic studies of populations from the Indian subcontinent are of great interest because of India's large population size, complex demographic history, and unique social structure. Despite recent large-scale efforts in discovering human genetic variation, India's vast reservoir of genetic diversity remains largely unexplored. To analyze an unbiased sample of genetic diversity in India and to investigate human migration history in Eurasia, we resequenced one 100-kb ENCODE region in 92 samples collected from three castes and one tribal group from the state of Andhra Pradesh in south India. Analyses of the four Indian populations, along with eight HapMap populations (692 samples), showed that 30% of all SNPs in the south Indian populations are not seen in HapMap populations. Several Indian populations, such as the Yadava, Mala/Madiga, and Irula, have nucleotide diversity levels as high as those of HapMap African populations. Using unbiased allele-frequency spectra, we investigated the expansion of human populations into Eurasia. The divergence time estimates among the major population groups suggest that Eurasian populations in this study diverged from Africans during the same time frame (approximately 90 to 110 thousand years ago). The divergence among different Eurasian populations occurred more than 40,000 years after their divergence with Africans. Our results show that Indian populations harbor large amounts of genetic variation that have not been surveyed adequately by public SNP discovery efforts. Our data also support a delayed expansion hypothesis in which an ancestral Eurasian founding population remained isolated long after the out-of-Africa diaspora, before expanding throughout Eurasia. © 2010 Xing et al.; licensee BioMed Central Ltd.

  8. Understanding mammalian genetic systems: the challenge of phenotyping in the mouse.

    Directory of Open Access Journals (Sweden)

    Steve D M Brown

    2006-08-01

    Full Text Available Understanding mammalian genetic systems is predicated on the determination of the relationship between genetic variation and phenotype. Several international programmes are under way to deliver mutations in every gene in the mouse genome. The challenge for mouse geneticists is to develop approaches that will provide comprehensive phenotype datasets for these mouse mutant libraries. Several factors are critical to success in this endeavour. It will be important to catalogue assay and environment and where possible to adopt standardised procedures for phenotyping tests along with common environmental conditions to ensure comparable datasets of phenotypes. Moreover, the scale of the task underlines the need to invest in technological development improving both the speed and cost of phenotyping platforms. In addition, it will be necessary to develop new informatics standards that capture the phenotype assay as well as other factors, genetic and environmental, that impinge upon phenotype outcome.

  9. The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia.

    Science.gov (United States)

    Yunusbayev, Bayazit; Metspalu, Mait; Metspalu, Ene; Valeev, Albert; Litvinov, Sergei; Valiev, Ruslan; Akhmetova, Vita; Balanovska, Elena; Balanovsky, Oleg; Turdikulova, Shahlo; Dalimova, Dilbar; Nymadawa, Pagbajabyn; Bahmanimehr, Ardeshir; Sahakyan, Hovhannes; Tambets, Kristiina; Fedorova, Sardana; Barashkov, Nikolay; Khidiyatova, Irina; Mihailov, Evelin; Khusainova, Rita; Damba, Larisa; Derenko, Miroslava; Malyarchuk, Boris; Osipova, Ludmila; Voevoda, Mikhail; Yepiskoposyan, Levon; Kivisild, Toomas; Khusnutdinova, Elza; Villems, Richard

    2015-04-01

    The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language's expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th-17th centuries) that overlap with the Turkic migrations of the 5th-16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.

  10. The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia.

    Directory of Open Access Journals (Sweden)

    Bayazit Yunusbayev

    2015-04-01

    Full Text Available The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language's expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD with populations from present-day South Siberia and Mongolia (SSM, an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01 compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th-17th centuries that overlap with the Turkic migrations of the 5th-16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.

  11. Population genetic analysis of Bromus tectorum (Poaceae) indicates recent range expansion may be facilitated by specialist genotypes

    Science.gov (United States)

    Keith R. Merrill; Susan E. Meyer; Craig E. Coleman

    2012-01-01

    The mechanisms for range expansion in invasive species depend on how genetic variation is structured in the introduced range. This study examined neutral genetic variation in the invasive annual grass Bromus tectorum in the Intermountain Western United States. Patterns of microsatellite (SSR) genotype distribution in this highly inbreeding species were used to make...

  12. Urban park characteristics, genetic variation, and historical demography of white-footed mouse (Peromyscus leucopus populations in New York City

    Directory of Open Access Journals (Sweden)

    Jason Munshi-South

    2014-03-01

    Full Text Available Severe fragmentation is a typical fate of native remnant habitats in cities, and urban wildlife with limited dispersal ability are predicted to lose genetic variation in isolated urban patches. However, little information exists on the characteristics of urban green spaces required to conserve genetic variation. In this study, we examine whether isolation in New York City (NYC parks results in genetic bottlenecks in white-footed mice (Peromyscus leucopus, and test the hypotheses that park size and time since isolation are associated with genetic variability using nonlinear regression and information-theoretic model selection. White-footed mice have previously been documented to exhibit male-biased dispersal, which may create disparities in genetic variation between males and females in urban parks. We use genotypes of 18 neutral microsatellite data and four different statistical tests to assess this prediction. Given that sex-biased dispersal may create disparities between population genetic patterns inferred from bi- vs. uni-parentally inherited markers, we also sequenced a 324 bp segment of the mitochondrial D-loop for independent inferences of historical demography in urban P. leucopus. We report that isolation in urban parks does not necessarily result in genetic bottlenecks; only three out of 14 populations in NYC parks exhibited a signature of a recent bottleneck at 18 neutral microsatellite loci. Mouse populations in larger urban parks, or parks that have been isolated for shorter periods of time, also do not generally contain greater genetic variation than populations in smaller parks. These results suggest that even small networks of green spaces may be sufficient to maintain the evolutionary potential of native species with certain characteristics. We also found that isolation in urban parks results in weak to nonexistent sex-biased dispersal in a species known to exhibit male-biased dispersal in less fragmented environments. In

  13. CAG Expansions Are Genetically Stable and Form Nontoxic Aggregates in Cells Lacking Endogenous Polyglutamine Proteins

    Directory of Open Access Journals (Sweden)

    Ashley A. Zurawel

    2016-09-01

    Full Text Available Proteins containing polyglutamine (polyQ regions are found in almost all eukaryotes, albeit with various frequencies. In humans, proteins such as huntingtin (Htt with abnormally expanded polyQ regions cause neurodegenerative diseases such as Huntington’s disease (HD. To study how the presence of endogenous polyQ aggregation modulates polyQ aggregation and toxicity, we expressed polyQ expanded Htt fragments (polyQ Htt in Schizosaccharomyces pombe. In stark contrast to other unicellular fungi, such as Saccharomyces cerevisiae, S. pombe is uniquely devoid of proteins with more than 10 Q repeats. We found that polyQ Htt forms aggregates within S. pombe cells only with exceedingly long polyQ expansions. Surprisingly, despite the presence of polyQ Htt aggregates in both the cytoplasm and nucleus, no significant growth defect was observed in S. pombe cells. Further, PCR analysis showed that the repetitive polyQ-encoding DNA region remained constant following transformation and after multiple divisions in S. pombe, in contrast to the genetic instability of polyQ DNA sequences in other organisms. These results demonstrate that cells with a low content of polyQ or other aggregation-prone proteins can show a striking resilience with respect to polyQ toxicity and that genetic instability of repetitive DNA sequences may have played an important role in the evolutionary emergence and exclusion of polyQ expansion proteins in different organisms.

  14. Genetic conflict outweighs heterogametic incompatibility in the mouse hybrid zone?

    Directory of Open Access Journals (Sweden)

    Dufková Petra

    2008-10-01

    Full Text Available Abstract Background The Mus musculus musculus/M. m. domesticus contact zone in Europe is characterised by sharp frequency discontinuities for sex chromosome markers at the centre of wider clines in allozyme frequencies. Results We identify a triangular area (approximately 330 km2 where the musculus Y chromosome introgresses across this front for up to 22 km into domesticus territory. Introgression of the Y chromosome is accompanied by a perturbation of the census sex ratio: the sex ratio is significantly female biased in musculus localities and domesticus localities lacking Y chromosome introgression. In contrast, where the musculus Y is detected in domesticus localities, the sex ratio is close to parity, and significantly different from both classes of female biased localities. The geographic position of an abrupt cline in an X chromosome marker, and autosomal clines centred on the same position, seem unaffected by the musculus Y introgression. Conclusion We conclude that sex ratio distortion is playing a role in the geographic separation of speciation genes in this section of the mouse hybrid zone. We suggest that clines for genes involved in sex-ratio distortion have escaped from the centre of the mouse hybrid zone, causing a decay in the barrier to gene flow between the two house mouse taxa.

  15. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  16. Towards Transgenic Primates:What can we learn from mouse genetics?

    Institute of Scientific and Technical Information of China (English)

    WANG; Phillip; L.; TSIEN; Joe; Z.

    2009-01-01

    Considering the great physiological and behavioral similarities with humans,monkeys represent the ideal models not only for the study of complex cognitive behavior but also for the preclinical research and development of novel therapeutics for treating human diseases.Various powerful genetic tech-nologies initially developed for making mouse models are being explored for generating transgenic primate models.We review the latest genetic engineering technologies and discuss the potentials and limitations for systematic production of transgenic primates.

  17. Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains

    Directory of Open Access Journals (Sweden)

    Taro Kataoka

    2017-10-01

    Full Text Available Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15, has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4 on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.

  18. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Svobodová, M.; Havelková, Helena; Krulová, Magdalena; Badalová, Jana; Nohýnková, E.; Hart, A. A. M.; Schlegel, David; Volf, P.; Demant, P.

    2002-01-01

    Roč. 54, č. 3 (2002), s. 174-183 ISSN 0093-7711 R&D Projects: GA MZd NM28; GA ČR GA310/00/0760; GA MŠk OK 394 Grant - others:Howard Hughes Medical Institute(US) HHMI55000323; WHO(XX) TDR I.D. 970772; EC(XE) ERBI-C15-CT98-0317; EC(XE) BIO-4-CT98-0445 Institutional research plan: CEZ:AV0Z5052915 Keywords : Leishmaniasis * mouse model * complex disease Subject RIV: EC - Immunology Impact factor: 2.475, year: 2002

  19. Population expansion and genetic structure in Carcharhinus brevipinna in the southern Indo-Pacific.

    Directory of Open Access Journals (Sweden)

    Pascal T Geraghty

    Full Text Available Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna, a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa.Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025. While two metrics of genetic divergence (ΦST and F ST revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717-0.03508, p values ≤ 0.0013; pairwise F ST South Africa vs New South Wales = 0.04056, p = 0.0008. Evidence for fine-scale genetic structuring was also detected along Australia's east coast (pairwise ΦST = 0.01328, p < 0.015, and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04.The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.

  20. The role of retrotransposons in gene family expansions in the human and mouse genomes

    Czech Academy of Sciences Publication Activity Database

    Janoušek, Václav; Laukaitis, C. M.; Yanchukov, Alexey; Karn, R. C.

    2016-01-01

    Roč. 8, č. 9 (2016), s. 2632-2650 ISSN 1759-6653 R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : gene families * transposable elements * retrotransposons * LINE * LTR * SINE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.979, year: 2016

  1. Population Genetic Structure and Evidence of Demographic Expansion of the Ayu (Plecoglossus altivelis in East Asia

    Directory of Open Access Journals (Sweden)

    Ye-Seul Kwan

    2012-10-01

    Full Text Available Plecoglossus altivelis (ayu is an amphidromous fish widely distributed in Northeastern Asia from the East China Sea to the northern Japanese coastal waters, encompassing the Korean Peninsula within its range. The shore lines of northeastern region in Asia have severely fluctuated following glaciations in the Quaternary. In the present study, we investigate the population genetic structure and historical demographic change of P. altivelis at a population level in East Asia. Analysis of molecular variance (AMOVA based on 244 mitochondrial control region DNA sequences clearly showed that as the sampling scope extended to a larger geographic area, genetic differentiation began to become significant, particularly among Northeastern populations. A series of hierarchical AMOVA could detect the genetic relationship of three closely located islands between Korea and Japan that might have been tightly connected by the regional Tsushima current. Neutrality and mismatch distribution analyses revealed a strong signature of a recent population expansion of P. altivelis in East Asia, estimated at 126 to 391 thousand years ago during the late Pleistocene. Therefore it suggests that the present population of P. altivelis traces back to its approximate demographic change long before the last glacial maximum. This contrasts our a priori expectation that the most recent glacial event might have the most crucial effect on the present day demography of marine organisms through bottleneck and subsequent increase of effective population size in this region.

  2. Comparative population genetics of two invading ticks: Evidence of the ecological mechanisms underlying tick range expansions.

    Science.gov (United States)

    Nadolny, Robyn; Gaff, Holly; Carlsson, Jens; Gauthier, David

    2015-10-01

    Two species of ixodid tick, Ixodes affinis Neumann and Amblyomma maculatum Koch, are simultaneously expanding their ranges throughout the mid-Atlantic region of the US. Although we have some understanding of the ecology and life history of these species, the ecological mechanisms governing where and how new populations establish and persist are unclear. To assess population connectivity and ancestry, we sequenced a fragment of the 16S mitochondrial rRNA gene from a representative sample of individuals of both species from populations throughout the eastern US. We found that despite overlapping host preferences throughout ontogeny, each species exhibited very different genetic and geographic patterns of population establishment and connectivity. I. affinis was of two distinct mitochondrial clades, with a clear geographic break separating northern and southern populations. Both I. affinis populations showed evidence of recent expansion, although the southern population was more genetically diverse, indicating a longer history of establishment. A. maculatum exhibited diverse haplotypes that showed no significant relationship with geographic patterns and little apparent connectivity between sites. Heteroplasmy was also observed in the 16S mitochondrial rRNA gene in 3.5% of A. maculatum individuals. Genetic evidence suggests that these species rely on different key life stages to successfully disperse into novel environments, and that host vagility, habitat stability and habitat connectivity all play critical roles in the establishment of new tick populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Generation Expansion Planning in pool market: A hybrid modified game theory and improved genetic algorithm

    International Nuclear Information System (INIS)

    Shayanfar, H.A.; Lahiji, A. Saliminia; Aghaei, J.; Rabiee, A.

    2009-01-01

    Unlike the traditional policy, Generation Expansion Planning (GEP) problem in competitive framework is complicated. In the new policy, each Generation Company (GENCO) decides to invest in such a way that obtains as much profit as possible. This paper presents a new hybrid algorithm to determine GEP in a Pool market. The proposed algorithm is divided in two programming levels: master and slave. In the master level a Modified Game Theory (MGT) is proposed to evaluate the contrast of GENCOs by the Independent System Operator (ISO). In the slave level, an Improved Genetic Algorithm (IGA) method is used to find the best solution of each GENCO for decision-making of investment. The validity of the proposed method is examined in the case study including three GENCOs with multi-type of power plants. The results show that the presented method is both satisfactory and consistent with expectation. (author)

  4. Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma.

    Science.gov (United States)

    Hirao, Ichiro; Kimoto, Michiko

    2012-01-01

    Toward the expansion of the genetic alphabet of DNA, several artificial third base pairs (unnatural base pairs) have been created. Synthetic DNAs containing the unnatural base pairs can be amplified faithfully by PCR, along with the natural A-T and G-C pairs, and transcribed into RNA. The unnatural base pair systems now have high potential to open the door to next generation biotechnology. The creation of unnatural base pairs is a consequence of repeating "proof of concept" experiments. In the process, initially designed base pairs were modified to address their weak points. Some of them were artificially evolved to ones with higher efficiency and selectivity in polymerase reactions, while others were eliminated from the analysis. Here, we describe the process of unnatural base pair development, as well as the tests of their applications.

  5. Genetic Pattern and Demographic History of Salminus brasiliensis: Population Expansion in the Pantanal Region during the Pleistocene

    Directory of Open Access Journals (Sweden)

    Lívia A. de Carvalho Mondin

    2018-01-01

    Full Text Available Pleistocene climate changes were major historical events that impacted South American biodiversity. Although the effects of such changes are well-documented for several biomes, it is poorly known how these climate shifts affected the biodiversity of the Pantanal floodplain. Fish are one of the most diverse groups in the Pantanal floodplains and can be taken as a suitable biological model for reconstructing paleoenvironmental scenarios. To identify the effects of Pleistocene climate changes on Pantanal’s ichthyofauna, we used genetic data from multiple populations of a top-predator long-distance migratory fish, Salminus brasiliensis. We specifically investigated whether Pleistocene climate changes affected the demography of this species. If this was the case, we expected to find changes in population size over time. Thus, we assessed the genetic diversity of S. brasiliensis to trace the demographic history of nine populations from the Upper Paraguay basin, which includes the Pantanal floodplain, that form a single genetic group, employing approximate Bayesian computation (ABC to test five scenarios: constant population, old expansion, old decline, old bottleneck following by recent expansion, and old expansion following by recent decline. Based on two mitochondrial DNA markers, our inferences from ABC analysis, the results of Bayesian skyline plot, the implications of star-like networks, and the patterns of genetic diversity (high haplotype diversity and low-to-moderate nucleotide diversity indicated a sudden population expansion. ABC allowed us to make strong quantitative inferences about the demographic history of S. brasiliensis. We estimated a small ancestral population size that underwent a drastic fivefold expansion, probably associated with the colonization of newly formed habitats. The estimated time of this expansion was consistent with a humid and warm phase as inferred by speleothem growth phases and travertine records during

  6. System network planning expansion using mathematical programming, genetic algorithms and tabu search

    International Nuclear Information System (INIS)

    Sadegheih, A.; Drake, P.R.

    2008-01-01

    In this paper, system network planning expansion is formulated for mixed integer programming, a genetic algorithm (GA) and tabu search (TS). Compared with other optimization methods, GAs are suitable for traversing large search spaces, since they can do this relatively rapidly and because the use of mutation diverts the method away from local minima, which will tend to become more common as the search space increases in size. GA's give an excellent trade off between solution quality and computing time and flexibility for taking into account specific constraints in real situations. TS has emerged as a new, highly efficient, search paradigm for finding quality solutions to combinatorial problems. It is characterized by gathering knowledge during the search and subsequently profiting from this knowledge. The attractiveness of the technique comes from its ability to escape local optimality. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions and also provides information regarding the optimal generation at each generation point. This method of solution is demonstrated on the expansion of a 10 bus bar system to 18 bus bars. Finally, a steady-state genetic algorithm is employed rather than generational replacement, also uniform crossover is used

  7. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  8. Genetic Regulation of Pituitary Gland Development in Human and Mouse

    OpenAIRE

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C. A. F.; Dattani, Mehul T.

    2009-01-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndr...

  9. Genetic regulation of pituitary gland development in human and mouse.

    Science.gov (United States)

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C A F; Dattani, Mehul T

    2009-12-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.

  10. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  11. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    Science.gov (United States)

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and

  12. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the tibetan plateau.

    Science.gov (United States)

    Qi, Xuebin; Cui, Chaoying; Peng, Yi; Zhang, Xiaoming; Yang, Zhaohui; Zhong, Hua; Zhang, Hui; Xiang, Kun; Cao, Xiangyu; Wang, Yi; Ouzhuluobu; Basang; Ciwangsangbu; Bianba; Gonggalanzi; Wu, Tianyi; Chen, Hua; Shi, Hong; Su, Bing

    2013-08-01

    Tibetans live on the highest plateau in the world, their current population size is approximately 5 million, and most of them live at an altitude exceeding 3,500 m. Therefore, the Tibetan Plateau is a remarkable area for cultural and biological studies of human population history. However, the chronological profile of the Tibetan Plateau's colonization remains an unsolved question of human prehistory. To reconstruct the prehistoric colonization and demographic history of modern humans on the Tibetan Plateau, we systematically sampled 6,109 Tibetan individuals from 41 geographic populations across the entire region of the Tibetan Plateau and analyzed the phylogeographic patterns of both paternal (n = 2,354) and maternal (n = 6,109) lineages as well as genome-wide single nucleotide polymorphism markers (n = 50) in Tibetan populations. We found that there have been two distinct, major prehistoric migrations of modern humans into the Tibetan Plateau. The first migration was marked by ancient Tibetan genetic signatures dated to approximately 30,000 years ago, indicating that the initial peopling of the Tibetan Plateau by modern humans occurred during the Upper Paleolithic rather than Neolithic. We also found evidences for relatively young (only 7-10 thousand years old) shared Y chromosome and mitochondrial DNA haplotypes between Tibetans and Han Chinese, suggesting a second wave of migration during the early Neolithic. Collectively, the genetic data indicate that Tibetans have been adapted to a high altitude environment since initial colonization of the Tibetan Plateau in the early Upper Paleolithic, before the last glacial maximum, followed by a rapid population expansion that coincided with the establishment of farming and yak pastoralism on the Plateau in the early Neolithic.

  13. Frozen Accident Pushing 50: Stereochemistry, Expansion, and Chance in the Evolution of the Genetic Code.

    Science.gov (United States)

    Koonin, Eugene V

    2017-05-23

    Nearly 50 years ago, Francis Crick propounded the frozen accident scenario for the evolution of the genetic code along with the hypothesis that the early translation system consisted primarily of RNA. Under the frozen accident perspective, the code is universal among modern life forms because any change in codon assignment would be highly deleterious. The frozen accident can be considered the default theory of code evolution because it does not imply any specific interactions between amino acids and the cognate codons or anticodons, or any particular properties of the code. The subsequent 49 years of code studies have elucidated notable features of the standard code, such as high robustness to errors, but failed to develop a compelling explanation for codon assignments. In particular, stereochemical affinity between amino acids and the cognate codons or anticodons does not seem to account for the origin and evolution of the code. Here, I expand Crick's hypothesis on RNA-only translation system by presenting evidence that this early translation already attained high fidelity that allowed protein evolution. I outline an experimentally testable scenario for the evolution of the code that combines a distinct version of the stereochemical hypothesis, in which amino acids are recognized via unique sites in the tertiary structure of proto-tRNAs, rather than by anticodons, expansion of the code via proto-tRNA duplication, and the frozen accident.

  14. Genetic regulation of immunoglobulin E level in different pathological states: integration of mouse and human genetics

    Czech Academy of Sciences Publication Activity Database

    Gusareva, Elena; Kurey, Irina; Grekov, Igor; Lipoldová, Marie

    2014-01-01

    Roč. 89, č. 2 (2014), s. 375-405 ISSN 1464-7931 R&D Projects: GA ČR GA310/08/1697; GA MŠk LH12049 Institutional support: RVO:68378050 Keywords : Genetic control of complex diseases * Immunoglobulin E * Epistasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.670, year: 2014

  15. High-precision genetic mapping of behavioral traits in the diversity outbred mouse population

    Science.gov (United States)

    Logan, R W; Robledo, R F; Recla, J M; Philip, V M; Bubier, J A; Jay, J J; Harwood, C; Wilcox, T; Gatti, D M; Bult, C J; Churchill, G A; Chesler, E J

    2013-01-01

    Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine-mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild-derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open-field, light–dark box, tail-suspension and visual-cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety- and activity-related traits. Half of the QTLs are associated with wild-derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild-alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high-precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics PMID:23433259

  16. Network statistics of genetically-driven gene co-expression modules in mouse crosses

    Directory of Open Access Journals (Sweden)

    Marie-Pier eScott-Boyer

    2013-12-01

    Full Text Available In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS. For six out of the 7 networks, we found that linkage to module QTLs (mQTLs could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as genetically-driven had network statistic properties (density, centralization and heterogeneity that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

  17. USING OF MOUSE MODEL TO ANALYZE IMMUNE RESPONSE TO INFECTIOUS PATHOGENS BY THE METHODS OF CLASSICAL GENETICS

    Directory of Open Access Journals (Sweden)

    A. Poltorak

    2011-01-01

    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  18. Genetic effects of combined chemical-X-ray treatments in male mouse germ cells

    International Nuclear Information System (INIS)

    Cattanach, B.M.; Rasberry, C.

    1987-01-01

    Several studies have shown that the yield of genetic damage induced by radiation in male mouse germ cells can be modified by chemical treatments. Pre-treatments with radio-protecting agents have given contradictory results but this appears to be largely attributable to the different germ cell stages tested and dependent upon the level of radiation damage induced. Pre-treatments which enhance the yield of genetic damage have been reported although, as yet, no tests have been conducted with radio-sensitizers. Another form of interaction between chemicals and radiation is specifically found with spermatogonial stem cells. Chemicals that kill cells can, by population depletion, substantially and predictably modify the genetic response to subsequent radiation exposure over a period of several days, or even weeks. Enhancement and reduction in the genetic yield can be attained, dependent upon the interval between treatments, with the modification also varying with the type of genetic damage scored. Post-treatment with one chemical (TEM) has been shown to reduce the genetic response to radiation exposure. (author)

  19. Genetic variations in two seahorse species (Hippocampus mohnikei and Hippocampus trimaculatus): evidence for middle Pleistocene population expansion.

    Science.gov (United States)

    Zhang, Yanhong; Pham, Nancy Kim; Zhang, Huixian; Lin, Junda; Lin, Qiang

    2014-01-01

    Population genetic of seahorses is confidently influenced by their species-specific ecological requirements and life-history traits. In the present study, partial sequences of mitochondrial cytochrome b (cytb) and control region (CR) were obtained from 50 Hippocampus mohnikei and 92 H. trimaculatus from four zoogeographical zones. A total of 780 base pairs of cytb gene were sequenced to characterize mitochondrial DNA (mtDNA) diversity. The mtDNA marker revealed high haplotype diversity, low nucleotide diversity, and a lack of population structure across both populations of H. mohnikei and H. trimaculatus. A neighbour-joining (NJ) tree of cytb gene sequences showed that H. mohnikei haplotypes formed one cluster. A maximum likelihood (ML) tree of cytb gene sequences showed that H. trimaculatus belonged to one lineage. The star-like pattern median-joining network of cytb and CR markers indicated a previous demographic expansion of H. mohnikei and H. trimaculatus. The cytb and CR data sets exhibited a unimodal mismatch distribution, which may have resulted from population expansion. Mismatch analysis suggested that the expansion was initiated about 276,000 years ago for H. mohnikei and about 230,000 years ago for H. trimaculatus during the middle Pleistocene period. This study indicates a possible signature of genetic variation and population expansion in two seahorses under complex marine environments.

  20. Genetic variations in two seahorse species (Hippocampus mohnikei and Hippocampus trimaculatus: evidence for middle Pleistocene population expansion.

    Directory of Open Access Journals (Sweden)

    Yanhong Zhang

    Full Text Available Population genetic of seahorses is confidently influenced by their species-specific ecological requirements and life-history traits. In the present study, partial sequences of mitochondrial cytochrome b (cytb and control region (CR were obtained from 50 Hippocampus mohnikei and 92 H. trimaculatus from four zoogeographical zones. A total of 780 base pairs of cytb gene were sequenced to characterize mitochondrial DNA (mtDNA diversity. The mtDNA marker revealed high haplotype diversity, low nucleotide diversity, and a lack of population structure across both populations of H. mohnikei and H. trimaculatus. A neighbour-joining (NJ tree of cytb gene sequences showed that H. mohnikei haplotypes formed one cluster. A maximum likelihood (ML tree of cytb gene sequences showed that H. trimaculatus belonged to one lineage. The star-like pattern median-joining network of cytb and CR markers indicated a previous demographic expansion of H. mohnikei and H. trimaculatus. The cytb and CR data sets exhibited a unimodal mismatch distribution, which may have resulted from population expansion. Mismatch analysis suggested that the expansion was initiated about 276,000 years ago for H. mohnikei and about 230,000 years ago for H. trimaculatus during the middle Pleistocene period. This study indicates a possible signature of genetic variation and population expansion in two seahorses under complex marine environments.

  1. [Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis].

    Science.gov (United States)

    Atopkin, D M; Bogdanov, A S; Chelomina, G N

    2007-06-01

    Genetic variation and differentiation of the trans-Palearctic species Apodemus agrarius (striped field mouse), whose range consists of two large isolates-European-Siberian and Far Eastern-Chinese, were examined using RAPD-PCR analysis. The material from the both parts of the range was examined (41 individual of A. agrarius from 18 localities of Russia, Ukraine, Moldova, and Kazakhstan); the Far-Eastern part was represented by samples from the Amur region, Khabarovsk krai, and Primorye (Russia). Differences in frequencies of polymorphic RAPD loci were found between the European-Siberian and the Far Eastern population groups of striped field mouse. No "fixed" differences between them in RAPD spectra were found, and none of the used statistical methods permitted to distinguish with absolute certainty animals from the two range parts. Thus, genetic isolation of the European-Siberian and the Far Eastern population groups of A. agrarius is not strict. These results support the hypothesis on recent dispersal of striped field mouse from East to West Palearctics (during the Holocene climatic optimum, 7000 to 4500 years ago) and subsequent disjunction of the species range (not earlier than 4000-4500 years ago). The Far Eastern population group is more polymorphic than the European-Siberian one, while genetic heterogeneity is more uniformly distributed within it. This is probably explained by both historical events that happened during the species dispersal in the past, and different environmental conditions for the species in different parts of its range. The Far Eastern population group inhabits the area close to the distribution center of A. agrarius. It is likely that this group preserved genetic variation of the formerly integral ancestral form, while some amount of genetic polymorphism could be lost during the species colonization of the Siberian and European areas. To date, the settlement density and population number in general are higher than within the European

  2. Genetic mouse models relevant to schizophrenia: taking stock and looking forward.

    Science.gov (United States)

    Harrison, Paul J; Pritchett, David; Stumpenhorst, Katharina; Betts, Jill F; Nissen, Wiebke; Schweimer, Judith; Lane, Tracy; Burnet, Philip W J; Lamsa, Karri P; Sharp, Trevor; Bannerman, David M; Tunbridge, Elizabeth M

    2012-03-01

    Genetic mouse models relevant to schizophrenia complement, and have to a large extent supplanted, pharmacological and lesion-based rat models. The main attraction is that they potentially have greater construct validity; however, they share the fundamental limitations of all animal models of psychiatric disorder, and must also be viewed in the context of the uncertain and complex genetic architecture of psychosis. Some of the key issues, including the choice of gene to target, the manner of its manipulation, gene-gene and gene-environment interactions, and phenotypic characterization, are briefly considered in this commentary, illustrated by the relevant papers reported in this special issue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains

    Science.gov (United States)

    Meng, Lihua; Chen, Gang; Li, Zhonghu; Yang, Yongping; Wang, Zhengkun; Wang, Liuyang

    2015-01-01

    The formation of the Mekong-Salween Divide and climatic oscillations in Pleistocene were the main drivers for the contemporary diversity and genetic structure of plants in the Himalaya-Hengduan Mountains (HHM). To identify the relative roles of the two historical events in shaping population history of plants in HHM, we investigated the phylogeographic pattern of Oxyria sinensis, a perennial plant endemic to the HHM. Sixteen chloroplast haplotypes were identified and were clustered into three phylogenetic clades. The age of the major clades was estimated to be in the Pleistocene, falling into several Pleistocene glacial stages and postdating the formation of the Mekong-Salween Divide. Range expansions occurred at least twice in the early and middle Pleistocene, but the spatial genetic distribution rarely changed since the Last Glacial Maximum. Our results suggest that temporary mountain glaciers may act as barriers in promoting the lineage divergence in O. sinensis and that subsequential range expansions and secondary contacts might reshape the genetic distribution in geography and blur the boundary of population differentiation created in the earlier glacial stages. This study demonstrates that Pleistocene climatic change and mountain glaciers, rather than the Mekong-Salween Divide, play the primary role in shaping the spatial genetic structure of O. sinensis. PMID:26013161

  4. Fatal Prion Disease in a Mouse Model of Genetic E200K Creutzfeldt-Jakob Disease

    Science.gov (United States)

    Friedman-Levi, Yael; Meiner, Zeev; Canello, Tamar; Frid, Kati; Kovacs, Gabor G.; Budka, Herbert; Avrahami, Dana; Gabizon, Ruth

    2011-01-01

    Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K), causing genetic Creutzfeldt-Jakob disease (gCJD) in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M) E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5–6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments. PMID:22072968

  5. Fatal prion disease in a mouse model of genetic E200K Creutzfeldt-Jakob disease.

    Directory of Open Access Journals (Sweden)

    Yael Friedman-Levi

    2011-11-01

    Full Text Available Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K, causing genetic Creutzfeldt-Jakob disease (gCJD in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5-6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments.

  6. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  7. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes

    Science.gov (United States)

    Multhaup, Michael L.; Seldin, Marcus; Jaffe, Andrew E.; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R.; Wong, G. William; Feinberg, Andrew P.

    2015-01-01

    SUMMARY Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211

  8. The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China.

    Science.gov (United States)

    Li, Xiangdong; Zhu, Tiansheng; Yin, Xiao; Zhang, Chengling; Chen, Jia; Tian, Yanping; Liu, Jinliang

    2017-08-29

    Turnip mosaic virus (TuMV) is one of the most widespread and economically important virus infecting both crop and ornamental species of the family Brassicaceae. TuMV isolates can be classified to five phylogenetic lineages, basal-B, basal-BR, Asian-BR, world-B and Orchis. To understand the genetic structure of TuMV from radish in China, the 3'-terminal genome of 90 TuMV isolates were determined and analyzed with other available Chinese isolates. The results showed that the Chinese TuMV isolates from radish formed three groups: Asian-BR, basal-BR and world-B. More than half of these isolates (52.54%) were clustered to basal-BR group, and could be further divided into three sub-groups. The TuMV basal-BR isolates in the sub-groups I and II were genetically homologous with Japanese ones, while those in sub-group III formed a distinct lineage. Sub-populations of TuMV basal-BR II and III were new emergent and in a state of expansion. The Chinese TuMV radish populations were under negative selection. Gene flow between TuMV populations from Tai'an, Weifang and Changchun was frequent. The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China.

  9. Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in northwest China.

    Science.gov (United States)

    Zhang, Li-Juan; Cai, Wan-Zhi; Luo, Jun-Yu; Zhang, Shuai; Wang, Chun-Yi; Lv, Li-Min; Zhu, Xiang-Zhen; Wang, Li; Cui, Jin-Jie

    2017-01-01

    Lygus pratensis (L.) is an important cotton pest in China, especially in the northwest region. Nymphs and adults cause serious quality and yield losses. However, the genetic structure and geographic distribution of L. pratensis is not well known. We analyzed genetic diversity, geographical structure, gene flow, and population dynamics of L. pratensis in northwest China using mitochondrial and nuclear sequence datasets to study phylogeographical patterns and demographic history. L. pratensis (n = 286) were collected at sites across an area spanning 2,180,000 km2, including the Xinjiang and Gansu-Ningxia regions. Populations in the two regions could be distinguished based on mitochondrial criteria but the overall genetic structure was weak. The nuclear dataset revealed a lack of diagnostic genetic structure across sample areas. Phylogenetic analysis indicated a lack of population level monophyly that may have been caused by incomplete lineage sorting. The Mantel test showed a significant correlation between genetic and geographic distances among the populations based on the mtDNA data. However the nuclear dataset did not show significant correlation. A high level of gene flow among populations was indicated by migration analysis; human activities may have also facilitated insect movement. The availability of irrigation water and ample cotton hosts makes the Xinjiang region well suited for L. pratensis reproduction. Bayesian skyline plot analysis, star-shaped network, and neutrality tests all indicated that L. pratensis has experienced recent population expansion. Climatic changes and extensive areas occupied by host plants have led to population expansion of L. pratensis. In conclusion, the present distribution and phylogeographic pattern of L. pratensis was influenced by climate, human activities, and availability of plant hosts.

  10. Mouse to human comparative genetics reveals a novel immunoglobulin E-controlling locus on Hsa8q12

    Czech Academy of Sciences Publication Activity Database

    Gusareva, Elena; Havelková, Helena; Blažková, Hana; Kosařová, Marcela; Kučera, P.; Král, V.; Salyakina, D.; Mulller-Myhsok, b.; Lipoldová, Marie

    2009-01-01

    Roč. 61, č. 1 (2009), s. 15-25 ISSN 0093-7711 R&D Projects: GA ČR GA310/06/1745; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z50520514 Keywords : atopy * specific IgE * genetic loci * mouse-human homology * Czech population * 8q12 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.988, year: 2009

  11. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity.

    Science.gov (United States)

    Huang, Ji; Rajapakse, Angana; Xiong, Yuyan; Montani, Jean-Pierre; Verrey, François; Ming, Xiu-Fen; Yang, Zhihong

    2016-01-01

    Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase-II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II -/- ) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II -/- mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II -/- mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II -/- mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.

  12. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Ji Huang

    2016-11-01

    Full Text Available Obesity is associated with development and progression of chronic kidney disease (CKD. Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I and arginase-II (Arg-II in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS, leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT C57BL/6 mice and mice deficient in Arg-II gene (Arg-II-/- were fed with either a normal chow (NC or a high-fat-diet (HFD for 14 weeks (starting at the age of 7 weeks to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal ROS levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II-/- mice. Moreover, mesangial expansion as analysed by Periodic Acid Schiff (PAS staining and renal expression of vascular adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1 in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II-/- mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II-/- mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.

  13. LASP-01: Distribution of Mouse Embryonic Stem Cells Expressing MicroRNAs | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Laboratory Animal Sciences Program manages the expansion, processing, and distribution of1,501 genetically engineered mouse embryonic stem cell (mESC) linesharboring conditional microRNA transgenes. The Laboratory Animal Sciences Prog

  14. Transforming growth factor-β and breast cancer: Lessons learned from genetically altered mouse models

    International Nuclear Information System (INIS)

    Wakefield, Lalage M; Yang, Yu-an; Dukhanina, Oksana

    2000-01-01

    Transforming growth factor (TGF)-βs are plausible candidate tumor suppressors in the breast. They also have oncogenic activities under certain circumstances, however. Genetically altered mouse models provide powerful tools to analyze the complexities of TGF-βaction in the context of the whole animal. Overexpression of TGF-β can suppress tumorigenesis in the mammary gland, raising the possibility that use of pharmacologic agents to enhance TGF-β function locally might be an effective method for the chemoprevention of breast cancer. Conversely, loss of TGF-β response increases spontaneous and induced tumorigenesis in the mammary gland. This confirms that endogenous TGF-βs have tumor suppressor activity in the mammary gland, and suggests that the loss of TGF-β receptors seen in some human breast hyperplasias may play a causal role in tumor development

  15. Translating human genetics into mouse: the impact of ultra-rapid in vivo genome editing.

    Science.gov (United States)

    Aida, Tomomi; Imahashi, Risa; Tanaka, Kohichi

    2014-01-01

    Gene-targeted mutant animals, such as knockout or knockin mice, have dramatically improved our understanding of the functions of genes in vivo and the genetic diversity that characterizes health and disease. However, the generation of targeted mice relies on gene targeting in embryonic stem (ES) cells, which is a time-consuming, laborious, and expensive process. The recent groundbreaking development of several genome editing technologies has enabled the targeted alteration of almost any sequence in any cell or organism. These technologies have now been applied to mouse zygotes (in vivo genome editing), thereby providing new avenues for simple, convenient, and ultra-rapid production of knockout or knockin mice without the need for ES cells. Here, we review recent achievements in the production of gene-targeted mice by in vivo genome editing. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  16. Glutamate Oxaloacetate Transaminase (Got) Genetics in the Mouse: Polymorphism of Got-1

    Science.gov (United States)

    Chapman, Verne M.; Ruddle, Frank H.

    1972-01-01

    We have examined a polymorphism for the soluble glutamate oxaloacetate (GOT-1) isozyme system which was found in the Asian mouse Mus castaneus. Variants of GOT-1 segregate as though they are controlled by codominant alleles for a single autosomal locus which we have designated Got-1. No close linkage of genes for soluble and mitochondrial forms of the enzyme, GOT-1 and GOT-2 respectively, was observed. Furthermore, no close linkage of Got-1 and the loci c, Gpi-1, Mod-2, Mod-1, Ld-1, Gpd-1, Pgm-1 or Gpo-1 was observed. Our results demonstrate the utility of sampling Mus from diverse populations to extend the repertoire of polymorphic loci and the genetic linkage map. PMID:17248564

  17. Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population

    Science.gov (United States)

    Wu, Yibo; Williams, Evan G.; Dubuis, Sébastien; Mottis, Adrienne; Jovaisaite, Virginija; Houten, Sander M.; Argmann, Carmen A.; Faridi, Pouya; Wolski, Witold; Kutalik, Zoltán; Zamboni, Nicola; Auwerx, Johan; Aebersold, Ruedi

    2014-01-01

    SUMMARY The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study, we quantified the transcriptome—a subset of the metabolome—and, using targeted proteomics, quantified a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein, and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. These integrated molecular profiles also allowed further characterization of complex pathways, particularly the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved among C. elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes. PMID:25215496

  18. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research.

    Science.gov (United States)

    Miano, Joseph M; Zhu, Qiuyu Martin; Lowenstein, Charles J

    2016-06-01

    Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. © 2016 American Heart Association, Inc.

  19. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research

    Science.gov (United States)

    Miano, Joseph M.; Zhu, Qiuyu Martin; Lowenstein, Charles J.

    2016-01-01

    Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of labs could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any lab can quickly assemble reagents for developing new mouse models for cardiovascular research. Here we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for two-component and three-component CRISPR editing are summarized with a number of applications in mice including frameshift mutations, deletion of enhancers and non-coding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. PMID:27102963

  20. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss.

    Directory of Open Access Journals (Sweden)

    Mathilde Doyard

    Full Text Available Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe-/- male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe-/- animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe-/- mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski's fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis.

  1. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking.

    Science.gov (United States)

    Phillips, T J; Mootz, J R K; Reed, C

    2016-01-01

    Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction. © 2016 Elsevier Inc. All rights reserved.

  2. Two disjunct Pleistocene populations and anisotropic postglacial expansion shaped the current genetic structure of the relict plant Amborella trichopoda.

    Directory of Open Access Journals (Sweden)

    Rémi Tournebize

    Full Text Available Past climate fluctuations shaped the population dynamics of organisms in space and time, and have impacted their present intra-specific genetic structure. Demo-genetic modelling allows inferring the way past demographic and migration dynamics have determined this structure. Amborella trichopoda is an emblematic relict plant endemic to New Caledonia, widely distributed in the understory of non-ultramafic rainforests. We assessed the influence of the last glacial climates on the demographic history and the paleo-distribution of 12 Amborella populations covering the whole current distribution. We performed coalescent genetic modelling of these dynamics, based on both whole-genome resequencing and microsatellite genotyping data. We found that the two main genetic groups of Amborella were shaped by the divergence of two ancestral populations during the last glacial maximum. From 12,800 years BP, the South ancestral population has expanded 6.3-fold while the size of the North population has remained stable. Recent asymmetric gene flow between the groups further contributed to the phylogeographical pattern. Spatially explicit coalescent modelling allowed us to estimate the location of ancestral populations with good accuracy (< 22 km and provided indications regarding the mid-elevation pathways that facilitated post-glacial expansion.

  3. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    Science.gov (United States)

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and

  4. Mutation studies upon spermatogonial stem cells of mammals and genetic tests for non-disjunction in the mouse

    International Nuclear Information System (INIS)

    Cattanach, B.M.

    1993-01-01

    Studies upon strain differences in genetic response to radiation may facilitate extrapolation of mouse data to man. The objective of the project is to investigate the basis of the genetic responses obtained with different treatment regimes. Two systems of genetic (complementation) tests were developed using Robertsonian translocations in tester animals to detect non-disjunction and chromosome loss events in normal mice. The aim is to evaluate the two methods for detecting chromosome 11 loss, and compare the frequency of chromosomes 11 and 13 loss following X-irradiation of males and females. (R.P.) 6 refs., 3 tabs

  5. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    Science.gov (United States)

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  6. Understanding the Basis of Auriculocondylar Syndrome: Insights From Human and Mouse Genetic Studies

    Science.gov (United States)

    Clouthier, David E.; Passos Bueno, Maria Rita; Tavares, Andre L.P.; Lyonnet, Stanislas; Amiel, Jeanne; Gordon, Christopher T.

    2014-01-01

    Among human birth defect syndromes, malformations affecting the face are perhaps the most striking due to cultural and psychological expectations of facial shape. One such syndrome is auriculocondylar syndrome (ACS), in which patients present with defects in ear and mandible development. Affected structures arise from cranial neural crest cells, a population of cells in the embryo that reside in the pharyngeal arches and give rise to most of the bone, cartilage and connective tissue of the face. Recent studies have found that most cases of ACS arise from defects in signaling molecules associated with the endothelin signaling pathway. Disruption of this signaling pathway in both mouse and zebrafish results in loss of identity of neural crest cells of the mandibular portion of the first pharyngeal arch and the subsequent repatterning of these cells, leading to homeosis of lower jaw structures into more maxillary-like structures. These findings illustrate the importance of endothelin signaling in normal human craniofacial development and illustrate how clinical and basic science approaches can coalesce to improve our understanding of the genetic basis of human birth syndromes. Further, understanding the genetic basis for ACS that lies outside of known endothelin signaling components may help elucidate unknown aspects critical to the establishment of neural crest cell patterning during facial morphogenesis. PMID:24123988

  7. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening

    Directory of Open Access Journals (Sweden)

    Zheng-Quan He

    2017-08-01

    Full Text Available The recent success of derivation of mammalian haploid embryonic stem cells (haESCs has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.

  8. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Science.gov (United States)

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  9. Genetic and immunohistochemical analysis of HSPA5 in mouse and human retinas.

    Science.gov (United States)

    Chintalapudi, Sumana R; Wang, XiaoFei; Li, Huiling; Lau, Yin H Chan; Williams, Robert W; Jablonski, Monica M

    2016-01-01

    Photoreceptor degenerative diseases are among the leading causes of vision loss. Although the causative genetic mutations are often known, mechanisms leading to photoreceptor degeneration remain poorly defined. We have previously demonstrated that the photoreceptor membrane-associated protein XAP-1 antigen is a product of the HSPA5 gene. In this study, we used systems genetic methods, statistical modeling, and immunostaining to identify and analyze candidate genes that modulate Hspa5 expression in the retina. Quantitative trait locus (QTL) mapping was used to map the genomic region that regulates Hspa5 in the cross between C57BL/6J X DBA/2J mice (BXD) genetic reference panel. The stepwise refinement of candidate genes was based on expression QTL mapping, gene expression correlation analyses (direct and partial), and analysis of regional sequence variants. The subcellular localization of candidate proteins and HSPA5 in mouse and human retinas was evaluated by immunohistochemistry. Differences in the localization of extracellular HSPA5 were assessed between healthy human donor and atrophic age-related macular degeneration (AMD) donor eyes. In the eyes of healthy mice, extracellular HSPA5 was confined to the area around the cone photoreceptor outer segments. Mapping variation in Hspa5 mRNA expression levels in the retina revealed a statistically significant trans -acting expression QTL (eQTL) on Chromosome 2 (Chr 2) and a suggestive locus on Chr 15. Sulf2 on Chr 2 was the strongest candidate gene based on partial correlation analysis, Pearson correlation with Hspa5 , expression levels in the retina, a missense variant in exon 14, and its reported function in the extracellular matrix and interphotoreceptor matrix. SULF2 is localized to the rod and cone photoreceptors in both human and mouse retinas. In human retinas with no pathology, extracellular HSPA5 was localized around many cones within the macular area. In contrast, fewer HSPA5-immunopositive cones were

  10. Genetic and immunohistochemical analysis of HSPA5 in mouse and human retinas

    Science.gov (United States)

    Chintalapudi, Sumana R.; Wang, XiaoFei; Li, Huiling; Lau, Yin H. Chan; Williams, Robert W.; Jablonski, Monica M.

    2016-01-01

    Purpose Photoreceptor degenerative diseases are among the leading causes of vision loss. Although the causative genetic mutations are often known, mechanisms leading to photoreceptor degeneration remain poorly defined. We have previously demonstrated that the photoreceptor membrane-associated protein XAP-1 antigen is a product of the HSPA5 gene. In this study, we used systems genetic methods, statistical modeling, and immunostaining to identify and analyze candidate genes that modulate Hspa5 expression in the retina. Methods Quantitative trait locus (QTL) mapping was used to map the genomic region that regulates Hspa5 in the cross between C57BL/6J X DBA/2J mice (BXD) genetic reference panel. The stepwise refinement of candidate genes was based on expression QTL mapping, gene expression correlation analyses (direct and partial), and analysis of regional sequence variants. The subcellular localization of candidate proteins and HSPA5 in mouse and human retinas was evaluated by immunohistochemistry. Differences in the localization of extracellular HSPA5 were assessed between healthy human donor and atrophic age-related macular degeneration (AMD) donor eyes. Results In the eyes of healthy mice, extracellular HSPA5 was confined to the area around the cone photoreceptor outer segments. Mapping variation in Hspa5 mRNA expression levels in the retina revealed a statistically significant trans-acting expression QTL (eQTL) on Chromosome 2 (Chr 2) and a suggestive locus on Chr 15. Sulf2 on Chr 2 was the strongest candidate gene based on partial correlation analysis, Pearson correlation with Hspa5, expression levels in the retina, a missense variant in exon 14, and its reported function in the extracellular matrix and interphotoreceptor matrix. SULF2 is localized to the rod and cone photoreceptors in both human and mouse retinas. In human retinas with no pathology, extracellular HSPA5 was localized around many cones within the macular area. In contrast, fewer HSPA5

  11. Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin

    Directory of Open Access Journals (Sweden)

    Thomas Höfner

    2015-03-01

    Full Text Available Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin.

  12. A mouse model of spontaneous preterm birth based on the genetic ablation of biglycan and decorin

    Science.gov (United States)

    Calmus, Megan L.; Macksoud, Elyse E.; Tucker, Richard; Iozzo, Renato V.; Lechner, Beatrice E.

    2011-01-01

    Preterm premature rupture of membranes is responsible for one third of preterm births. Ehlers-Danlos syndrome (EDS) is associated with preterm premature rupture of membranes in humans. Notably, an EDS variant is caused by a genetic mutation resulting in abnormal secretion of biglycan and decorin, two small leucine-rich proteoglycans highly expressed in reproductive tissues. Because biglycan/decorin null mutant (Bgn−/−Dcn−/−) mice demonstrate phenotypic changes similar to EDS, we utilized this model to test whether either or both biglycan and decorin play a role in the attainment of successful term gestation. Wild-type, biglycan null mutant, decorin null mutant and biglycan/decorin null mutant pregnancies were assessed for length of gestation, pup and placenta weight and litter size. Quantitative real-time polymerase chain reaction was performed to measure biglycan and decorin gene expression and immunohistochemistry was performed to assess protein expression in placenta and fetal membranes at embryonic day E12, E15 and E18. Bgn−/−Dcn−/− dams displayed preterm birth, whereas the possession of at least two biglycan or decorin wild-type alleles was protective of preterm birth. Bgn−/−Dcn−/− pups were decreased at postnatal day P1 but not at E18. Biglycan and decorin were upregulated in the placenta in each other’s absence and were developmentally regulated in fetal membranes, suggesting that these two proteoglycans demonstrate genetic complementation and contribute to gestational success in a dose dependent manner. Thus, the biglycan/decorin null mutant mouse is a model of genetically induced preterm birth and perinatal loss. This model presents novel targets for preventive or therapeutic manipulation of preterm birth. PMID:21502335

  13. On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola

    Directory of Open Access Journals (Sweden)

    Beleza Sandra

    2009-04-01

    Full Text Available Abstract Background Current information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyaneka-Nkumbi and Kuvale. We assessed the differentiation between these populations and their levels of admixture with Khoe-San groups, and examined their relationship with other sub-Saharan populations. We further combined our dataset with previously published data on Y-chromosome and mtDNA variation to explore a general isolation with migration model and infer the demographic parameters underlying current genetic diversity in Bantu populations. Results Correspondence analysis, lineage sharing patterns and admixture estimates indicate that the gene pool from southwestern Angola is predominantly derived from West-Central Africa. The pastoralist Herero-speaking Kuvale people were additionally characterized by relatively high frequencies of Y-chromosome (12% and mtDNA (22% Khoe-San lineages, as well as by the presence of the -14010C lactase persistence mutation (6%, which likely originated in non-Bantu pastoralists from East Africa. Inferred demographic parameters show that both male and female populations underwent significant size growth after the split between the western and eastern branches of Bantu expansions occurring 4000 years ago. However, males had lower population sizes and migration rates than females throughout the Bantu dispersals. Conclusion Genetic variation in southwestern Angola essentially results from the encounter of an offshoot of West-Central Africa with autochthonous Khoisan-speaking peoples from the south. Interactions between the Bantus

  14. Population Expansion and Genetic Structure in Carcharhinus brevipinna in the Southern Indo-Pacific

    Science.gov (United States)

    Geraghty, Pascal T.; Williamson, Jane E.; Macbeth, William G.; Wintner, Sabine P.; Harry, Alastair V.; Ovenden, Jennifer R.; Gillings, Michael R.

    2013-01-01

    Background Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. Methods and Findings Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and F ST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717–0.03508, p values ≤ 0.0013; pairwise F ST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia’s east coast (pairwise ΦST = 0.01328, p Indo-Pacific. PMID:24086462

  15. The genetic analysis of repeated measures II: The Karhunen-Loeve expansion.

    NARCIS (Netherlands)

    Molenaar, P.C.M.; Boomsma, D.I.

    1987-01-01

    Outlines the Karhunen-Loeve (N. Ahmed and K. R. Rao, 1975) approach to the genetic analysis of time series of arbitrary length and with arbitrary covariance function. This approach is based on the simultaneous eigenvalue decomposition of the covariance matrices of the original time series obtained

  16. Mechanistic Insight into the Pathology of Polyalanine Expansion Disorders Revealed by a Mouse Model for X Linked Hypopituitarism

    Science.gov (United States)

    Hughes, James; Piltz, Sandra; Rogers, Nicholas; McAninch, Dale; Rowley, Lynn; Thomas, Paul

    2013-01-01

    Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 (Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele. PMID:23505376

  17. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse.

    Directory of Open Access Journals (Sweden)

    Julie Cocquet

    2012-09-01

    Full Text Available Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation.

  18. Dentate gyrus network dysfunctions precede the symptomatic phase in a genetic mouse model of seizures

    Directory of Open Access Journals (Sweden)

    Oana eToader

    2013-08-01

    Full Text Available Neuronal circuit disturbances that lead to hyperexcitability in the cortico-hippocampal network are one of the landmarks of temporal lobe epilepsy. The dentate gyrus (DG network plays an important role in regulating the excitability of the entire hippocampus by filtering and integrating information received via the perforant path. Here, we investigated possible epileptogenic abnormalities in the function of the DG neuronal network in the Synapsin II (Syn II knockout mouse (Syn II-/-, a genetic mouse model of epilepsy. Syn II is a presynaptic protein whose deletion in mice reproducibly leads to generalized seizures starting at the age of two months. We made use of a high-resolution microelectrode array (4096 electrodes and patch-clamp recordings, and found that in acute hippocampal slices of young pre-symptomatic (3-6 weeks-old Syn II-/- mice excitatory synaptic output of the mossy fibers is reduced. Moreover, we showed that the main excitatory neurons present in the polymorphic layer of the DG, hilar mossy cells, display a reduced excitability. We also provide evidence of a predominantly inhibitory regulatory output from mossy cells to granule cells, through feed-forward inhibition, and show that the excitatory-inhibitory ratio is increased in both pre-symptomatic and symptomatic Syn II-/- mice. These results support the key role of the hilar mossy neurons in maintaining the normal excitability of the hippocampal network and show that the late epileptic phenotype of the Syn II-/- mice is preceded by neuronal circuitry dysfunctions. Our data provide new insights into the mechanisms of epileptogenesis in the Syn II-/- mice and open the possibility for early diagnosis and therapeutic interventions.

  19. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells.

    Science.gov (United States)

    Tong, Zhixiang; Martyn, Keir; Yang, Andy; Yin, Xiaolei; Mead, Benjamin E; Joshi, Nitin; Sherman, Nicholas E; Langer, Robert S; Karp, Jeffrey M

    2018-02-01

    Current ISC culture systems face significant challenges such as animal-derived or undefined matrix compositions, batch-to-batch variability (e.g. Matrigel-based organoid culture), and complexity of assaying cell aggregates such as organoids which renders the research and clinical translation of ISCs challenging. Here, through screening for suitable ECM components, we report a defined, collagen based monolayer culture system that supports the growth of mouse and human intestinal epithelial cells (IECs) enriched for an Lgr5 + population comparable or higher to the levels found in a standard Matrigel-based organoid culture. The system, referred to as the Bolstering Lgr5 Transformational (BLT) Sandwich culture, comprises a collagen IV-coated porous substrate and a collagen I gel overlay which sandwich an IEC monolayer in between. The distinct collagen cues synergistically regulate IEC attachment, proliferation, and Lgr5 expression through maximizing the engagement of distinct cell surface adhesion receptors (i.e. integrin α2β1, integrin β4) and cell polarity. Further, we apply our BLT Sandwich system to identify that the addition of a bone morphogenetic protein (BMP) receptor inhibitor (LDN-193189) improves the expansion of Lgr5-GFP + cells from mouse small intestinal crypts by nearly 2.5-fold. Notably, the BLT Sandwich culture is capable of expanding human-derived IECs with higher LGR5 mRNA levels than conventional Matrigel culture, providing superior expansion of human LGR5 + ISCs. Considering the key roles Lgr5 + ISCs play in intestinal epithelial homeostasis and regeneration, we envision that our BLT Sandwich culture system holds great potential for understanding and manipulating ISC biology in vitro (e.g. for modeling ISC-mediated gut diseases) or for expanding a large number of ISCs for clinical utility (e.g. for stem cell therapy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Neolithic expansion, but strong genetic structure, in the independent history of New Guinea.

    Science.gov (United States)

    Bergström, Anders; Oppenheimer, Stephen J; Mentzer, Alexander J; Auckland, Kathryn; Robson, Kathryn; Attenborough, Robert; Alpers, Michael P; Koki, George; Pomat, William; Siba, Peter; Xue, Yali; Sandhu, Manjinder S; Tyler-Smith, Chris

    2017-09-15

    New Guinea shows human occupation since ~50 thousand years ago (ka), independent adoption of plant cultivation ~10 ka, and great cultural and linguistic diversity today. We performed genome-wide single-nucleotide polymorphism genotyping on 381 individuals from 85 language groups in Papua New Guinea and find a sharp divide originating 10 to 20 ka between lowland and highland groups and a lack of non-New Guinean admixture in the latter. All highlanders share ancestry within the last 10 thousand years, with major population growth in the same period, suggesting population structure was reshaped following the Neolithic lifestyle transition. However, genetic differentiation between groups in Papua New Guinea is much stronger than in comparable regions in Eurasia, demonstrating that such a transition does not necessarily limit the genetic and linguistic diversity of human societies. Copyright © 2017, American Association for the Advancement of Science.

  1. Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma

    Directory of Open Access Journals (Sweden)

    Cosma Ioan M

    2006-07-01

    Full Text Available Abstract Background DBA/2J (D2 mice develop an age-related form of glaucoma. Their eyes progressively develop iris pigment dispersion and iris atrophy followed by increased intraocular pressure (IOP and glaucomatous optic nerve damage. Mutant alleles of the Gpnmb and Tyrp1 genes are necessary for the iris disease, but it is unknown whether alleles of other D2 gene(s are necessary for the distinct later stages of disease. We initiated a study of congenic strains to further define the genetic requirements and disease mechanisms of the D2 glaucoma. Results To further understand D2 glaucoma, we created congenic strains of mice on the C57BL/6J (B6 genetic background. B6 double-congenic mice carrying D2-derived Gpnmb and Tyrp1 mutations develop a D2-like iris disease. B6 single-congenics with only the Gpnmb and Tyrp1 mutations develop milder forms of iris disease. Genetic epistasis experiments introducing a B6 tyrosinase mutation into the congenic strains demonstrated that both the single and double-congenic iris diseases are rescued by interruption of melanin synthesis. Importantly, our experiments analyzing mice at ages up to 27 months indicate that the B6 double-congenic mice are much less prone to IOP elevation and glaucoma than are D2 mice. Conclusion As demonstrated here, the Gpnmb and Tyrp1 iris phenotypes are both individually dependent on tyrosinase function. These results support involvement of abnormal melanosomal events in the diseases caused by each gene. In the context of the inbred D2 mouse strain, the glaucoma phenotype is clearly influenced by more genes than just Gpnmb and Tyrp1. Despite the outward similarity of pigment-dispersing iris disease between D2 and the B6 double-congenic mice, the congenic mice are much less susceptible to developing high IOP and glaucoma. These new congenic strains provide a valuable new resource for further studying the genetic and mechanistic complexity of this form of glaucoma.

  2. Efficacy of Sunitinib and Radiotherapy in Genetically Engineered Mouse Model of Soft-Tissue Sarcoma

    International Nuclear Information System (INIS)

    Yoon, Sam S.; Stangenberg, Lars; Lee, Yoon-Jin; Rothrock, Courtney; Dreyfuss, Jonathan M.; Baek, Kwan-Hyuck; Waterman, Peter R.; Nielsen, G. Petur; Weissleder, Ralph; Mahmood, Umar; Park, Peter J.; Jacks, Tyler

    2009-01-01

    Purpose: Sunitinib (SU) is a multitargeted receptor tyrosine kinase inhibitor of the vascular endothelial growth factor and platelet-derived growth factor receptors. The present study examined SU and radiotherapy (RT) in a genetically engineered mouse model of soft tissue sarcoma (STS). Methods and Materials: Primary extremity STSs were generated in genetically engineered mice. The mice were randomized to treatment with SU, RT (10 Gy x 2), or both (SU+RT). Changes in the tumor vasculature before and after treatment were assessed in vivo using fluorescence-mediated tomography. The control and treated tumors were harvested and extensively analyzed. Results: The mean fluorescence in the tumors was not decreased by RT but decreased 38-44% in tumors treated with SU or SU+RT. The control tumors grew to a mean of 1378 mm 3 after 12 days. SU alone or RT alone delayed tumor growth by 56% and 41%, respectively, but maximal growth inhibition (71%) was observed with the combination therapy. SU target effects were confirmed by loss of target receptor phosphorylation and alterations in SU-related gene expression. Cancer cell proliferation was decreased and apoptosis increased in the SU and RT groups, with a synergistic effect on apoptosis observed in the SU+RT group. RT had a minimal effect on the tumor microvessel density and endothelial cell-specific apoptosis, but SU alone or SU+RT decreased the microvessel density by >66% and induced significant endothelial cell apoptosis. Conclusion: SU inhibited STS growth by effects on both cancer cells and tumor vasculature. SU also augmented the efficacy of RT, suggesting that this combination strategy could improve local control of STS.

  3. Cross-packaging of genetically distinct mouse and primate retroviral RNAs

    Directory of Open Access Journals (Sweden)

    Jaballah Soumeya

    2009-07-01

    Full Text Available Abstract Background The mouse mammary tumor virus (MMTV is unique from other retroviruses in having multiple viral promoters, which can be regulated by hormones in a tissue specific manner. This unique property has lead to increased interest in studying MMTV replication with the hope of developing MMTV based vectors for human gene therapy. However, it has recently been reported that related as well as unrelated retroviruses can cross-package each other's genome raising safety concerns towards the use of candidate retroviral vectors for human gene therapy. Therefore, using a trans complementation assay, we looked at the ability of MMTV RNA to be cross-packaged and propagated by an unrelated primate Mason-Pfizer monkey virus (MPMV that has intracellular assembly process similar to that of MMTV. Results Our results revealed that MMTV and MPMV RNAs could be cross-packaged by the heterologous virus particles reciprocally suggesting that pseudotyping between two genetically distinct retroviruses can take place at the RNA level. However, the cross-packaged RNAs could not be propagated further indicating a block at post-packaging events in the retroviral life cycle. To further confirm that the specificity of cross-packaging was conferred by the packaging sequences (ψ, we cloned the packaging sequences of these viruses on expression plasmids that generated non-viral RNAs. Test of these non-viral RNAs confirmed that the reciprocal cross-packaging was primarily due to the recognition of ψ by the heterologous virus proteins. Conclusion The results presented in this study strongly argue that MPMV and MMTV are promiscuous in their ability to cross-package each other's genome suggesting potential RNA-protein interactions among divergent retroviral RNAs proposing that these interactions are more complicated than originally thought. Furthermore, these observations raise the possibility that MMTV and MPMV genomes could also co-package providing substrates for

  4. Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models

    Science.gov (United States)

    Makowski, Alexander J.; Pence, Isaac J.; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Huszagh, Meredith C.; Mahadevan-Jansen, Anita; Nyman, Jeffry S.

    2014-11-01

    Raman spectroscopy (RS) has been extensively used to characterize bone composition. However, the link between bone biomechanics and RS measures is not well established. Here, we leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can explain differences in bone toughness in genetic mouse models for which traditional RS peak ratios are not informative. In the selected mutant mice-activating transcription factor 4 (ATF4) or matrix metalloproteinase 9 (MMP9) knock-outs-toughness is reduced but differences in bone strength do not exist between knock-out and corresponding wild-type controls. To incorporate differences in the RS of bone occurring at peak shoulders, a multivariate approach was used. Full spectrum principal components analysis of two paired, orthogonal bone orientations (relative to laser polarization) improved genotype classification and correlation to bone toughness when compared to traditional peak ratios. When applied to femurs from wild-type mice at 8 and 20 weeks of age, the principal components of orthogonal bone orientations improved age classification but not the explanation of the maturation-related increase in strength. Overall, increasing polarization information by collecting spectra from two bone orientations improves the ability of multivariate RS to explain variance in bone toughness, likely due to polarization sensitivity to organizational changes in both mineral and collagen.

  5. Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models

    Directory of Open Access Journals (Sweden)

    Sang Ah Lee

    2017-02-01

    Full Text Available Research across the cognitive and brain sciences has begun to elucidate some of the processes that guide navigation and spatial memory. Boundary geometry and featural landmarks are two distinct classes of environmental cues that have dissociable neural correlates in spatial representation and follow different patterns of learning. Consequently, spatial navigation depends both on the type of cue available and on the type of learning provided. We investigated this interaction between spatial representation and memory by administering two different tasks (working memory, reference memory using two different environmental cues (rectangular geometry, striped landmark in mouse models of human genetic disorders: Prader-Willi syndrome (PWScrm+/p− mice, n = 12 and Beta-catenin mutation (Thr653Lys-substituted mice, n = 12. This exploratory study provides suggestive evidence that these models exhibit different abilities and impairments in navigating by boundary geometry and featural landmarks, depending on the type of memory task administered. We discuss these data in light of the specific deficits in cognitive and brain function in these human syndromes and their animal model counterparts.

  6. A genetic map of mouse chromosome 1 near the Lsh-Ity-Bcg disease resistance locus.

    Science.gov (United States)

    Mock, B; Krall, M; Blackwell, J; O'Brien, A; Schurr, E; Gros, P; Skamene, E; Potter, M

    1990-05-01

    Isozyme and restriction fragment length polymorphism (RFLP) analyses of backcross progeny, recombinant inbred strains, and congenic strains of mice positioned eight genetic markers with respect to the Lsh-Ity-Bcg disease resistance locus. Allelic isoforms of Idh-1 and Pep-3 and RFLPs detected by Southern hybridization for Myl-1, Cryg, Vil, Achrg, bcl-2, and Ren-1,2, between BALB/cAnPt and DBA/2NPt mice, were utilized to examine the cosegregation of these markers with the Lsh-Ity-Bcg resistance phenotype in 103 backcross progeny. An additional 47 backcross progeny from a cross between C57BL/10ScSn and B10.L-Lshr/s mice were examined for the cosegregation of Myl-1 and Vil RFLPs with Lsh phenotypic differences. Similarly, BXD recombinant inbred strains were typed for RFLPs upon hybridization with Vil and Achrg. Recombination frequencies generated in the different test systems were statistically similar, and villin (Vil) was identified as the molecular marker closest (1.7 +/- 0.8 cM) to the Lsh-Ity-Bcg locus. Two other DNA sequences, nebulin (Neb) and an anonymous DNA fragment (D2S3), which map to a region of human chromosome 2q that is homologous to proximal mouse chromosome 1, were not closely linked to the Lsh-Ity-Bcg locus. This multipoint linkage analysis of chromosome 1 surrounding the Lsh-Ity-Bcg locus provides a basis for the eventual isolation of the disease gene.

  7. Genetic structure and contrasting selection pattern at two major histocompatibility complex genes in wild house mouse populations

    Czech Academy of Sciences Publication Activity Database

    Čížková, Dagmar; Goüy de Bellocq, J.; Baird, S. J. E.; Piálek, Jaroslav; Bryja, Josef

    2011-01-01

    Roč. 106, č. 5 (2011), s. 727-740 ISSN 0018-067X R&D Projects: GA AV ČR IAA600930608; GA ČR GA206/08/0640 Institutional research plan: CEZ:AV0Z60930519 Keywords : MHC * house mouse * selection * population structure * trans-species polymorphism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.597, year: 2011

  8. Identification of the UBP1 locus as a critical blood pressure determinant using a combination of mouse and human genetics

    DEFF Research Database (Denmark)

    Koutnikova, Hana; Laakso, Markku; Lu, Lu

    2009-01-01

    complementarities of mouse and human genetic approaches, identifies the UBP1 locus as a critical blood pressure determinant. UBP1 plays a role in cholesterol and steroid metabolism via the transcriptional activation of CYP11A, the rate-limiting enzyme in pregnenolone and aldosterone biosynthesis. We suggest......Hypertension is a major health problem of largely unknown genetic origins. To identify new genes responsible for hypertension, genetic analysis of recombinant inbred strains of mice followed by human association studies might prove powerful and was exploited in our current study. Using a set of 27...... recombinant BXD strains of mice we identified a quantitative trait locus (QTL) for blood pressure (BP) on distal chromosome 9. The association analysis of markers encompassing the syntenic region on human chromosome 3 gave in an additive genetic model the strongest association for rs17030583 C/T and rs2291897...

  9. Development of Genetic Testing for Fragile X Syndrome and Associated Disorders, and Estimates of the Prevalence of FMR1 Expansion Mutations

    Directory of Open Access Journals (Sweden)

    James N. Macpherson

    2016-11-01

    Full Text Available The identification of a trinucleotide (CGG expansion as the chief mechanism of mutation in Fragile X syndrome in 1991 heralded a new chapter in molecular diagnostic genetics and generated a new perspective on mutational mechanisms in human genetic disease, which rapidly became a central paradigm (“dynamic mutation” as more and more of the common hereditary neurodevelopmental disorders were ascribed to this novel class of mutation. The progressive expansion of a CGG repeat in the FMR1 gene from “premutation” to “full mutation” provided an explanation for the “Sherman paradox,” just as similar expansion mechanisms in other genes explained the phenomenon of “anticipation” in their pathogenesis. Later, FMR1 premutations were unexpectedly found associated with two other distinct phenotypes: primary ovarian insufficiency and tremor-ataxia syndrome. This review will provide a historical perspective on procedures for testing and reporting of Fragile X syndrome and associated disorders, and the population genetics of FMR1 expansions, including estimates of prevalence and the influence of AGG interspersions on the rate and probability of expansion.

  10. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers.

    Science.gov (United States)

    Simmons, Aaron B; Bloomsburg, Samuel J; Billingslea, Samuel A; Merrill, Morgan M; Li, Shuai; Thomas, Marshall W; Fuerst, Peter G

    2016-01-01

    superior colliculus. Pou4f2(Cre) provides multiple uses for the vision researcher's genetic toolkit. First, Pou4f2(Cre) is a knock-in allele that can be used to eliminate Pou4f2, resulting in depletion of RGCs. Second, expression of Cre in male germ cells makes this strain an efficient germline activator of recombination, for example, to target LoxP-flanked sequences in the whole mouse. Third, Pou4f2(Cre) efficiently targets RGCs, amacrine cells, bipolar cells, horizontal cells, and a small number of photoreceptors within the retina, as well as the visual centers in the brain. Unlike other Cre recombinase lines that target retinal neurons, no recombination was observed in Müller or other retinal glia. These properties make this Cre recombinase line a useful tool for vision researchers.

  11. Northern range expansion of European populations of the wasp spider Argiope bruennichi is associated with global warming-correlated genetic admixture and population-specific temperature adaptations.

    Science.gov (United States)

    Krehenwinkel, Henrik; Tautz, Diethard

    2013-04-01

    Poleward range expansions are observed for an increasing number of species, which may be an effect of global warming during the past decades. However, it is still not clear in how far these expansions reflect simple geographical shifts of species ranges, or whether new genetic adaptations play a role as well. Here, we analyse the expansion of the wasp spider Argiope bruennichi into Northern Europe during the last century. We have used a range-wide sampling of contemporary populations and historical specimens from museums to trace the phylogeography and genetic changes associated with the range shift. Based on the analysis of mitochondrial, microsatellite and SNP markers, we observe a higher level of genetic diversity in the expanding populations, apparently due to admixture of formerly isolated lineages. Using reciprocal transplant experiments for testing overwintering tolerance, as well as temperature preference and tolerance tests in the laboratory, we find that the invading spiders have possibly shifted their temperature niche. This may be a key adaptation for survival in Northern latitudes. The museum samples allow a reconstruction of the invasion's genetic history. A first, small-scale range shift started around 1930, in parallel with the onset of global warming. A more massive invasion of Northern Europe associated with genetic admixture and morphological changes occurred in later decades. We suggest that the latter range expansion into far Northern latitudes may be a consequence of the admixture that provided the genetic material for adaptations to new environmental regimes. Hence, global warming could have facilitated the initial admixture of populations and this resulted in genetic lineages with new habitat preferences. © 2013 Blackwell Publishing Ltd.

  12. Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development.

    Science.gov (United States)

    Lincoln, Joy; Kist, Ralf; Scherer, Gerd; Yutzey, Katherine E

    2007-05-01

    Heart valve structures derived from mesenchymal cells of the endocardial cushions (ECs) are composed of highly organized cell lineages and extracellular matrix. Sox9 is a transcription factor required for both early and late stages of cartilage formation that is also expressed in the developing valves of the heart. The requirements for Sox9 function during valvulogenesis and adult valve homeostasis in mice were examined by conditional inactivation of Sox9 using Tie2-cre and Col2a1-cre transgenes. Sox9(flox/flox);Tie2-cre mice die before E14.5 with hypoplastic ECs, reduced cell proliferation and altered extracellular matrix protein (ECM) deposition. Sox9(flox/flox);Col2a1-cre mice die at birth with thickened heart valve leaflets, reduced expression of cartilage-associated proteins and abnormal ECM patterning. Thickened valve leaflets and calcium deposits, characteristic of valve disease, are observed in heterozygous adult Sox9(flox/+);Col2a1-cre mice. Therefore, Sox9 is required early in valve development for expansion of the precursor cell population and later is required for normal expression and distribution of valvular ECM proteins. These data indicate that Sox9 is required for early and late stages of valvulogenesis and identify a potential role for Sox9 in valve disease mechanisms.

  13. Mitochondrial DNA Analyses Indicate High Diversity, Expansive Population Growth and High Genetic Connectivity of Vent Copepods (Dirivultidae) across Different Oceans.

    Science.gov (United States)

    Gollner, Sabine; Stuckas, Heiko; Kihara, Terue C; Laurent, Stefan; Kodami, Sahar; Martinez Arbizu, Pedro

    2016-01-01

    Communities in spatially fragmented deep-sea hydrothermal vents rich in polymetallic sulfides could soon face major disturbance events due to deep-sea mineral mining, such that unraveling patterns of gene flow between hydrothermal vent populations will be an important step in the development of conservation policies. Indeed, the time required by deep-sea populations to recover following habitat perturbations depends both on the direction of gene flow and the number of migrants available for re-colonization after disturbance. In this study we compare nine dirivultid copepod species across various geological settings. We analyze partial nucleotide sequences of the mtCOI gene and use divergence estimates (FST) and haplotype networks to infer intraspecific population connectivity between vent sites. Furthermore, we evaluate contrasting scenarios of demographic population expansion/decline versus constant population size (using, for example, Tajima's D). Our results indicate high diversity, population expansion and high connectivity of all copepod populations in all oceans. For example, haplotype diversity values range from 0.89 to 1 and FST values range from 0.001 to 0.11 for Stygiopontius species from the Central Indian Ridge, Mid Atlantic Ridge, East Pacific Rise, and Eastern Lau Spreading Center. We suggest that great abundance and high site occupancy by these species favor high genetic diversity. Two scenarios both showed similarly high connectivity: fast spreading centers with little distance between vent fields and slow spreading centers with greater distance between fields. This unexpected result may be due to some distinct frequency of natural disturbance events, or to aspects of individual life histories that affect realized rates of dispersal. However, our statistical performance analyses showed that at least 100 genomic regions should be sequenced to ensure accurate estimates of migration rate. Our demography parameters demonstrate that dirivultid

  14. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  15. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics

    Directory of Open Access Journals (Sweden)

    Claire E Le Pichon

    2014-04-01

    Full Text Available The word somatosensation comes from joining the Greek word for body (soma with a word for perception (sensation. Somatosensory neurons comprise the largest sensory system in mammals and have nerve endings coursing throughout the skin, viscera, muscle, and bone. Their cell bodies reside in a chain of ganglia adjacent to the dorsal spinal cord (the dorsal root ganglia and at the base of the skull (the trigeminal ganglia. While the neuronal cell bodies are intermingled within the ganglia, the somatosensory system is in reality composed of numerous sub-systems, each specialized to detect distinct stimuli, such as temperature and touch. Historically, somatosensory neurons have been classified using a diverse host of anatomical and physiological parameters, such as the size of the cell body, degree of myelination, histological labeling with markers, specialization of the nerve endings, projection patterns in the spinal cord and brainstem, receptive tuning, and conduction velocity of their action potentials. While useful, the picture that emerged was one of heterogeneity, with many markers at least partially overlapping. More recently, by capitalizing on advances in molecular techniques, researchers have identified specific ion channels and sensory receptors expressed in subsets of sensory neurons. These studies have proved invaluable as they allow genetic access to small subsets of neurons for further molecular dissection. Data being generated from transgenic mice favor the model whereby an array of dedicated neurons is responsible for selectively encoding different modalities. Here we review the current knowledge of the different sensory neuron subtypes in the mouse, the markers used to study them, and the neurogenetic strategies used to define their anatomical projections and functional roles.

  16. A new mouse model for mania shares genetic correlates with human bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Michael C Saul

    Full Text Available Bipolar disorder (BPD is a debilitating heritable psychiatric disorder. Contemporary rodent models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain termed Madison (MSN that naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR. We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a novel genome enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Using a functional network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.

  17. Evaluation of genetically inactivated alpha toxin for protection in multiple mouse models of Staphylococcus aureus infection.

    Directory of Open Access Journals (Sweden)

    Rebecca A Brady

    Full Text Available Staphylococcus aureus is a major human pathogen and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. While S. aureus protective antigens have been identified in the literature, the majority have only been tested in a single animal model of disease. We wished to evaluate the ability of one S. aureus vaccine antigen to protect in multiple mouse models, thus assessing whether protection in one model translates to protection in other models encompassing the full breadth of infections the pathogen can cause. We chose to focus on genetically inactivated alpha toxin mutant HlaH35L. We evaluated the protection afforded by this antigen in three models of infection using the same vaccine dose, regimen, route of immunization, adjuvant, and challenge strain. When mice were immunized with HlaH35L and challenged via a skin and soft tissue infection model, HlaH35L immunization led to a less severe infection and decreased S. aureus levels at the challenge site when compared to controls. Challenge of HlaH35L-immunized mice using a systemic infection model resulted in a limited, but statistically significant decrease in bacterial colonization as compared to that observed with control mice. In contrast, in a prosthetic implant model of chronic biofilm infection, there was no significant difference in bacterial levels when compared to controls. These results demonstrate that vaccines may confer protection against one form of S. aureus disease without conferring protection against other disease presentations and thus underscore a significant challenge in S. aureus vaccine development.

  18. Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.

    Science.gov (United States)

    Carstea, Ana Claudia; Pirity, Melinda K; Dinnyes, Andras

    2009-12-31

    In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.

  19. An increase in immature β-cells lacking Glut2 precedes the expansion of β-cell mass in the pregnant mouse.

    Directory of Open Access Journals (Sweden)

    Christine A Beamish

    Full Text Available A compensatory increase in β-cell mass occurs during pregnancy to counter the associated insulin resistance, and a failure in adaptation is thought to contribute to gestational diabetes. Insulin-expressing but glucose-transporter-2-low (Ins+Glut2LO progenitor cells are present in mouse and human pancreas, being predominantly located in extra-islet β-cell clusters, and contribute to the regeneration of the endocrine pancreas following induced ablation. We therefore sought to investigate the contribution of Ins+Glut2LO cells to β-cell mass expansion during pregnancy. Female C57Bl/6 mice were time mated and pancreata were collected at gestational days (GD 6, 9, 12, 15, and 18, and postpartum D7 (n = 4/time-point and compared to control (non-pregnant animals. Beta cell mass, location, proliferation (Ki67+, and proportion of Ins+Glut2LO cells were measured using immunohistochemistry and bright field or confocal microscopy. Beta cell mass tripled by GD18 and β-cell proliferation peaked at GD12 in islets (≥6 β-cells and small β-cell clusters (1-5 β-cells. The proportion and fraction of Ins+Glut2LO cells undergoing proliferation increased significantly at GD9 in both islets and clusters, preceding the increase in β-cell mass and proliferation, and their proliferation within clusters persisted until GD15. The overall number of clusters increased significantly at GD9. Quantitative PCR showed a significant increase in Pdx1 presence at GD9 vs. GD18 or control pancreas, and Pdx1 was visualized by immunohistochemistry within both Ins+Glut2LO and Ins+Glut2HI cells within clusters. These results indicate that Ins+Glut2LO cells are likely to contribute to β-cell mass expansion during pregnancy.

  20. Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose.

    Directory of Open Access Journals (Sweden)

    Rosemary C Challis

    Full Text Available We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII, a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found, similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology.

  1. The generation expansion planning of the Brazilian electric sector employing genetic algorithms; O planejamento da expansao da geracao do setor eletrico brasileiro utilizando os algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Kazay, Heloisa Firmo

    2001-07-01

    The generation expansion-planning problem is a non-linear large-scale optimisation problem, which is even larger when it refers to the Brazilian system, and when one considers the multiple intervening uncertainty sources. To handle the complexity of the problem, decomposition schemes have been used. Usually, such schemes divide the expansion problem into two sub-problems: one related to the construction of new plants (investment sub-problem) and another dealing with the task of operating the system (operation sub-problem). This thesis proposes a genetic algorithm to solve the investment sub-problem. Initially, an analysis of the state of the art on the generation expansion planning and the field of the genetic algorithms are presented. Then follows a practical application of the proposed algorithm in a model of generation expansion planning under uncertainty. Finally, the results obtained in two case studies are presented and analysed. These results indicate that the proposed genetic algorithm is an effective alternative to the solution of the investment sub-problem. (author)

  2. Induction, by thymidylate stress, of genetic recombination as evidenced by deletion of a transferred genetic marker in mouse FM3A cells

    International Nuclear Information System (INIS)

    Ayusawa, D.; Koyama, H.; Shimizu, K.; Kaneda, S.; Takeishi, K.; Seno, T.

    1986-01-01

    Studies were made on the genetic consequences of methotrexate-directed thymidylate stress, focusing attention on a human thymidylate synthase gene that was introduced as a heterologous genetic marker into mouse thymidylate synthase-negative mutant cells. Thymidylate stress induced thymidylate synthase-negative segregants with concomitant loss of human thymidylate synthase activity with frequencies 1 to 2 orders of magnitude higher than the uninduced spontaneous level in some but not all transformant lines. Induction of the segregants was suppressed almost completely by cycloheximide and partially by caffeine. Thymidylate stress did not, however, induce mutations, as determined by measuring resistance to ouabain or 6-thioguanine. Thymidylate synthase-negative segregants were also induced by other means such as bromodeoxyuridine treatment and X-ray irradiation. In each of the synthase-negative segregants induced by thymidylate stress, a DNA segment including almost the whole coding region of the transferred human thymidylate synthase gene was deleted in a very specific manner, as shown by Southern blot analysis with a human Alu sequence and a human thymidylate synthase cDNA as probes. In the segregants that emerged spontaneously at low frequency, the entire transferred genetic marker was lost. In the segregants induced by X-ray irradiation, structural alterations of the genetic marker were random. These results show that thymidylate stress is a physiological factor that provokes the instability of this exogenously incorporated DNA in some specific manner and produces nonrandom genetic recombination in mammalian cells

  3. Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene.

    Science.gov (United States)

    Chao, B N; Baldwin, W H; Healey, J F; Parker, E T; Shafer-Weaver, K; Cox, C; Jiang, P; Kanellopoulou, C; Lollar, P; Meeks, S L; Lenardo, M J

    2016-02-01

    ESSENTIALS: Anti-factor VIII (FVIII) inhibitory antibody formation is a severe complication in hemophilia A therapy. We genetically engineered and characterized a mouse model with complete deletion of the F8 coding region. F8(TKO) mice exhibit severe hemophilia, express no detectable F8 mRNA, and produce FVIII inhibitors. The defined background and lack of FVIII in F8(TKO) mice will aid in studying FVIII inhibitor formation. The most important complication in hemophilia A treatment is the development of inhibitory anti-Factor VIII (FVIII) antibodies in patients after FVIII therapy. Patients with severe hemophilia who express no endogenous FVIII (i.e. cross-reacting material, CRM) have the greatest incidence of inhibitor formation. However, current mouse models of severe hemophilia A produce low levels of truncated FVIII. The lack of a corresponding mouse model hampers the study of inhibitor formation in the complete absence of FVIII protein. We aimed to generate and characterize a novel mouse model of severe hemophilia A (designated the F8(TKO) strain) lacking the complete coding sequence of F8 and any FVIII CRM. Mice were created on a C57BL/6 background using Cre-Lox recombination and characterized using in vivo bleeding assays, measurement of FVIII activity by coagulation and chromogenic assays, and anti-FVIII antibody production using ELISA. All F8 exonic coding regions were deleted from the genome and no F8 mRNA was detected in F8(TKO) mice. The bleeding phenotype of F8(TKO) mice was comparable to E16 mice by measurements of factor activity and tail snip assay. Similar levels of anti-FVIII antibody titers after recombinant FVIII injections were observed between F8(TKO) and E16 mice. We describe a new C57BL/6 mouse model for severe hemophilia A patients lacking CRM. These mice can be directly bred to the many C57BL/6 strains of genetically engineered mice, which is valuable for studying the impact of a wide variety of genes on FVIII inhibitor formation on a

  4. Genetic deletion of amphiregulin restores the normal skin phenotype in a mouse model of the human skin disease tylosis

    Directory of Open Access Journals (Sweden)

    Vishnu Hosur

    2017-08-01

    Full Text Available In humans, gain-of-function (GOF mutations in RHBDF2 cause the skin disease tylosis. We generated a mouse model of human tylosis and show that GOF mutations in RHBDF2 cause tylosis by enhancing the amount of amphiregulin (AREG secretion. Furthermore, we show that genetic disruption of AREG ameliorates skin pathology in mice carrying the human tylosis disease mutation. Collectively, our data suggest that RHBDF2 plays a critical role in regulating EGFR signaling and its downstream events, including development of tylosis, by facilitating enhanced secretion of AREG. Thus, targeting AREG could have therapeutic benefit in the treatment of tylosis.

  5. The Pleiotropic Phenotype of Apc Mutations in the Mouse: Allele Specificity and Effects of the Genetic Background

    Science.gov (United States)

    Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.

    2008-01-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878

  6. Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse

    DEFF Research Database (Denmark)

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Alagarsamy, Jeyashree

    2016-01-01

    Host genetic variations play an important role in several pathogenic diseases, and we have previously provided strong evidences that these genetic variations contribute significantly to differences in susceptibility and clinical outcomes of invasive Group A Streptococcus (GAS) infections, includi...

  7. The Genetics of PTPN1 and Obesity: Insights from Mouse Models of Tissue-Specific PTP1B Deficiency

    Directory of Open Access Journals (Sweden)

    Ryan C. Tsou

    2012-01-01

    Full Text Available The protein tyrosine phosphatase PTP1B is a negative regulator of both insulin and leptin signaling and is involved in the control of glucose homeostasis and energy expenditure. Due to its prominent role in regulating metabolism, PTP1B is a promising therapeutic target for the treatment of human obesity and type 2 diabetes. The PTP1B protein is encoded by the PTPN1 gene on human chromosome 20q13, a region that shows linkage with insulin resistance, type 2 diabetes, and obesity in human populations. In this paper, we summarize the genetics of the PTPN1 locus and associations with metabolic disease. In addition, we discuss the tissue-specific functions of PTP1B as gleaned from genetic mouse models.

  8. Genetic mapping of species differences via in vitro crosses in mouse embryonic stem cells

    NARCIS (Netherlands)

    Lazzarano, S. (Stefano); Kučka, M. (Marek); Castro, J.P.L. (João P. L.); Naumann, R. (Ronald); Medina, P. (Paloma); Fletcher, M.N.C. (Michael N. C.); Wombacher, R. (Rebecka); J.H. Gribnau (Joost); Hochepied, T. (Tino); Van Montagu, M. (Marc); C. Libert; Chan, Y.F. (Yingguang Frank)

    2018-01-01

    textabstractDiscovering the genetic changes underlying species differences is a central goal in evolutionary genetics. However, hybrid crosses between species in mammals often suffer from hybrid sterility, greatly complicating genetic mapping of trait variation across species. Here, we describe a

  9. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    Science.gov (United States)

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  10. A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons

    DEFF Research Database (Denmark)

    Borgius, Lotta; Restrepo, C. Ernesto; Leao, Richardson N.

    2010-01-01

    Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line...... showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior...... colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC...

  11. Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse.

    Directory of Open Access Journals (Sweden)

    Tia DiTommaso

    2014-10-01

    Full Text Available The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP. A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1, while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1. The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation.

  12. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Lockamy, Virginia [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Zhou, Lin [Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Xue, Christine; LeBlanc, Justin [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Glenn, Shonna [Xstrahl, Inc, Suwanee, Georgia (United States); Shukla, Gaurav; Yu, Yan; Dicker, Adam P.; Leeper, Dennis B. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Lu, You [Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Lu, Bo, E-mail: bo.lu@jefferson.edu [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2016-11-01

    Purpose: To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. Methods and Materials: A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOG protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. Results: The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. Conclusions: It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics.

  13. Radiation-induced intestinal neoplasia in a genetically-predisposed mouse (Min)

    International Nuclear Information System (INIS)

    Ellender, M.; Larder, S.M.; Harrison, J.D.; Cox, R.; Silver, A.R.J.

    1997-01-01

    A mouse lineage with inherited predisposition to multiple intestinal neoplasia (min) has been proposed as a model to study human colorectal cancer. Min mice are heterozygous for the adenomatous polyposis coli (Apc) gene implicated in human familial adenomatous polyposis (FAP). There is an increased risk of intestinal cancer in humans following radiation exposure and the min mouse model may be used to further our understanding of the molecular mechanisms involved. The present study showed a 2 Gy dose of x-rays doubles the tumour numbers in the murine gastrointestinal tract of F1 min heterozygotes. The distribution of tumours through the gut was also recorded. (authors)

  14. Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+](i and insulin rhythms in mouse islets.

    Directory of Open Access Journals (Sweden)

    Craig S Nunemaker

    2009-12-01

    Full Text Available We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+](i that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed "islet imprinting." We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J as well as outbred mouse strains (Swiss-Webster; CD1. Second, imprinting was observed in NAD(PH oscillations, indicating a metabolic component. Further, short-term exposure to a glucose-free solution, which transiently silenced [Ca2+](i oscillations, reset the oscillatory patterns to a higher frequency. This suggests a key role for glucose metabolism in maintaining imprinting, as transiently suppressing the oscillations with diazoxide, a K(ATP-channel opener that blocks [Ca2+](i influx downstream of glucose metabolism, did not change the imprinted patterns. Third, imprinting was not as readily observed at the level of single beta cells, as the [Ca2+](i oscillations of single cells isolated from imprinted islets exhibited highly variable, and typically slower [Ca2+](i oscillations. Lastly, to test whether the imprinted [Ca2+](i patterns were of functional significance, a novel microchip platform was used to monitor insulin release from multiple islets in real time. Insulin release patterns correlated closely with [Ca2+](i oscillations and showed significant mouse-to-mouse differences, indicating imprinting. These results indicate that islet imprinting is a general feature of islets and is likely to be of physiological significance. While islet imprinting did not depend on the genetic background of the mice, glucose metabolism and intact islet architecture may be important for the imprinting phenomenon.

  15. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Robert A Taft

    Full Text Available There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs. We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium. ESC germline transmission was observed in 9/11 (82% lines using PH blastocysts, compared to 6/11 (55% when conventional host blastocysts were used. Furthermore, less than 35% (83/240 of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137 of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the

  16. Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis.

    Directory of Open Access Journals (Sweden)

    Charles R Farber

    2011-04-01

    Full Text Available Significant advances have been made in the discovery of genes affecting bone mineral density (BMD; however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA and co-expression network analysis were used in the recently described Hybrid Mouse Diversity Panel (HMDP to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal, and femoral BMD revealed four significant associations (-log10P>5.39 affecting at least one BMD trait on chromosomes (Chrs. 7, 11, 12, and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2 gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism through which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cells of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

  17. Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides) in Europe as a Result of Rapid Population Expansion

    Science.gov (United States)

    Drygala, Frank; Korablev, Nikolay; Ansorge, Hermann; Fickel, Joerns; Isomursu, Marja; Elmeros, Morten; Kowalczyk, Rafał; Baltrunaite, Laima; Balciauskas, Linas; Saarma, Urmas; Schulze, Christoph; Borkenhagen, Peter; Frantz, Alain C.

    2016-01-01

    The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species’ dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large ‘central’ population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations. PMID:27064784

  18. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains.

    Science.gov (United States)

    Kozak, C A; Rowe, W P

    1980-07-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction.

  19. FMR1 CGG repeat expansion mutation detection and linked haplotype analysis for reliable and accurate preimplantation genetic diagnosis of fragile X syndrome.

    Science.gov (United States)

    Rajan-Babu, Indhu-Shree; Lian, Mulias; Cheah, Felicia S H; Chen, Min; Tan, Arnold S C; Prasath, Ethiraj B; Loh, Seong Feei; Chong, Samuel S

    2017-07-19

    Fragile X mental retardation 1 (FMR1) full-mutation expansion causes fragile X syndrome. Trans-generational fragile X syndrome transmission can be avoided by preimplantation genetic diagnosis (PGD). We describe a robust PGD strategy that can be applied to virtually any couple at risk of transmitting fragile X syndrome. This novel strategy utilises whole-genome amplification, followed by triplet-primed polymerase chain reaction (TP-PCR) for robust detection of expanded FMR1 alleles, in parallel with linked multi-marker haplotype analysis of 13 highly polymorphic microsatellite markers located within 1 Mb of the FMR1 CGG repeat, and the AMELX/Y dimorphism for gender identification. The assay was optimised and validated on single lymphoblasts isolated from fragile X reference cell lines, and applied to a simulated PGD case and a clinical in vitro fertilisation (IVF)-PGD case. In the simulated PGD case, definitive diagnosis of the expected results was achieved for all 'embryos'. In the clinical IVF-PGD case, delivery of a healthy baby girl was achieved after transfer of an expansion-negative blastocyst. FMR1 TP-PCR reliably detects presence of expansion mutations and obviates reliance on informative normal alleles for determining expansion status in female embryos. Together with multi-marker haplotyping and gender determination, misdiagnosis and diagnostic ambiguity due to allele dropout is minimised, and couple-specific assay customisation can be avoided.

  20. Genetic and immunohistochemical analysis of HSPA5 in mouse and human retinas

    OpenAIRE

    Chintalapudi, Sumana R.; Wang, XiaoFei; Li, Huiling; Lau, Yin H. Chan; Williams, Robert W.; Jablonski, Monica M.

    2016-01-01

    Purpose Photoreceptor degenerative diseases?are among the leading causes of vision loss. Although the causative genetic mutations are often known, mechanisms leading to photoreceptor degeneration remain poorly defined. We have previously demonstrated that the photoreceptor membrane-associated protein XAP-1 antigen is a product of the HSPA5 gene. In this study, we used systems genetic methods, statistical modeling, and immunostaining to identify and analyze candidate genes that modulate Hspa5 ...

  1. Lipidomic and metabolomic characterization of a genetically modified mouse model of the early stages of human type 1 diabetes pathogenesis

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Weir, Jacquelyn M; De Souza, David Peter

    2016-01-01

    as methionine deficits were detected in the pre-type 1 diabetic mice. Additionally higher lysophosphatidylinositol levels and low phosphatidylglycerol levels where novel findings in the pre-type 1 diabetic mice. These observations suggest that metabolomic disturbances precede the onset of T1D.......The early mechanisms regulating progression towards beta cell failure in type 1 diabetes (T1D) are poorly understood, but it is generally acknowledged that genetic and environmental components are involved. The metabolomic phenotype is sensitive to minor variations in both, and accordingly reflects...... changes that may lead to the development of T1D. We used two different extraction methods in combination with both liquid- and gas chromatographic techniques coupled to mass spectrometry to profile the metabolites in a transgenic non-diabetes prone C57BL/6 mouse expressing CD154 under the control...

  2. Histochemical studies on genetical control of hormonal enzyme inducibility in the mouse. I. Non-specific esterase activity and regional histology of the epididymis

    DEFF Research Database (Denmark)

    Blecher, S R; Kirkeby, S

    1978-01-01

    As a base line for future cell genetical studies the authors record the distribution of non-specific esterase reaction in the various histologically distinguishable cell types of the mouse epididymis. The findings are correlated with previous descriptions of the lobar structure of the organ...

  3. Genetically Engineered Mouse Model of Diffuse Intrinsic Pontine Glioma as a Preclinical Tool

    Science.gov (United States)

    2014-11-01

    www.actaneurocomms.org/content/2/1/134N-Myc and Hedgehog [17], MYCN, silent, and H3-K27M [10] or H3-K27M and wildtype [6]. Together, these classi...pons, and as there are significant differences between mouse and human brainstem anatomy , we can- not be certain that the dorsal Nestin+/Pax3...Fisher PG, Weissman IL, Rowitch DH, Vogel H, Wong AJ, Beachy PA (2011) Hedgehog -responsive candidate cell of origin for diffuse intrinsic pontine glioma

  4. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain

    OpenAIRE

    Hefner, Kathryn; Whittle, Nigel; Juhasz, Jaynann; Norcross, Maxine; Karlsson, Rose-Marie; Saksida, Lisa M.; Bussey, Timothy J.; Singewald, Nicolas; Holmes, Andrew

    2008-01-01

    Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor for anxiety disorders. There are few examples of naturally-occurring animal models of impaired extinction. The present study compared fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The phenotypic specificity of this deficit was evaluated by comparing 129S1 and C5...

  5. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Directory of Open Access Journals (Sweden)

    Paula Moran

    2016-01-01

    Full Text Available The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  6. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models.

    Science.gov (United States)

    Moran, Paula; Stokes, Jennifer; Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John; O'Tuathaigh, Colm

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  7. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Science.gov (United States)

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  8. The genetic basis of strain-dependent differences in the early phase of radiation injury in mouse lung

    International Nuclear Information System (INIS)

    Franko, A.J.; Sharplin, J.; Ward, W.F.; Hinz, J.M.

    1991-01-01

    Substantial differences between mouse strains have been reported in the lesions present in the lung during the early phase of radiation injury. Some strains show only classical pneumonitis, while other strains develop substantial fibrosis and hyaline membranes which contribute appreciably to respiratory insufficiency, in addition to pneumonitis. Other strains are intermediate between these extremes. These differences correlate with intrinsic differences in activities of lung plasminogen activator and angiotensin converting enzyme. The genetic basis of these differences was assessed by examining histologically the early reaction in lungs of seven murine hybrids available commercially after whole-thorax irradiation. Crosses between fibrosing and nonfibrosing parents were uniformly nonfibrosing, and crosses between fibrosing and intermediate parents were uniformly intermediate. No evidence of sex linkage was seen. Thus the phenotype in which fibrosis is found is controlled by autosomal recessive determinants. Strains prone to radiation-induced pulmonary fibrosis and hyaline membranes exhibited intrinsically lower activities of lung plasminogen activator and angiotensin converting enzyme than either the nonfibrosing strains or the nonfibrosing hybrid crosses. The median time of death of the hybrids was genetically determined primarily by the longest-lived parent regardless of the types of lesions expressed

  9. Identification of genetic elements in metabolism by high-throughput mouse phenotyping

    DEFF Research Database (Denmark)

    Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A.

    2018-01-01

    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic da...

  10. Identification of genetic elements in metabolism by high-throughput mouse phenotyping

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Radislav

    2018-01-01

    Roč. 9, zima (2018), č. článku 288. ISSN 2041-1723 Institutional support: RVO:68378050 Keywords : Insulin-resistance * Diabetes -mellitus * Glycemic traits * Variants * Architecture * Association * Consortiuj * Pathways * Disease * Biology Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Other biological topics Impact factor: 12.124, year: 2016

  11. Estimation of genetic variability level in inbred CF1 mouse lines ...

    Indian Academy of Sciences (India)

    To estimate the genetic variability levels maintained by inbred lines selected for body weight and to compare them with a nonselected population from which the lines were derived, we calculated the per cent polymorphic loci (P) and marker diversity (MD) index from data on 43 putative loci of inter simple sequence repeats ...

  12. Cracking anxiety in the mouse : a quantitative (epi)genetic approach

    NARCIS (Netherlands)

    Labots, M.

    2017-01-01

    The aim of this thesis was to improve existing methodologies and apply genetic strategies in order to identify (main-effect, epistatic, multiple and pleiotropic) quantitative trait loci and to decipher functional candidate genes for anxiety-related behavior and baseline blood plasma total

  13. Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC mouse

    Directory of Open Access Journals (Sweden)

    Belknap John

    2010-10-01

    Full Text Available Abstract Background The current study focused on the extent genetic diversity within a species (Mus musculus affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS formed from the same eight inbred strains that have been used to create the collaborative cross (CC. The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6 × DBA/2J (D2 F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA. Results Genes reliably detected as expressed were similar in all three data sets as was the variability of expression. As measured by the WGCNA, the modular structure of the transcriptome networks was also preserved both on the basis of module assignment and from the perspective of the topological overlap maps. Details of the HS-CC gene modules are provided; essentially identical results were obtained for the HS4 and F2 modules. Gene ontology annotation of the modules revealed a significant overrepresentation in some modules for neuronal processes, e.g., central nervous system development. Integration with known protein-protein interactions data indicated significant enrichment among co-expressed genes. We also noted significant overlap with markers of central nervous system cell types (neurons, oligodendrocytes and astrocytes. Using the Allen Brain Atlas, we found evidence of spatial co-localization within the striatum for several modules. Finally, for some modules it was possible to detect an enrichment of transcription binding sites. The binding site for Wt1, which is associated with neurodegeneration, was the most significantly overrepresented. Conclusions Despite the marked

  14. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model.

    Directory of Open Access Journals (Sweden)

    Tetsuro Ikegami

    Full Text Available Rift Valley fever phlebovirus (RVFV causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51 and Zinga (rZinga strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.

  15. Genetic interactions between Shox2 and Hox genes during the regional growth and development of the mouse limb.

    Science.gov (United States)

    Neufeld, Stanley J; Wang, Fan; Cobb, John

    2014-11-01

    The growth and development of the vertebrate limb relies on homeobox genes of the Hox and Shox families, with their independent mutation often giving dose-dependent effects. Here we investigate whether Shox2 and Hox genes function together during mouse limb development by modulating their relative dosage and examining the limb for nonadditive effects on growth. Using double mRNA fluorescence in situ hybridization (FISH) in single embryos, we first show that Shox2 and Hox genes have associated spatial expression dynamics, with Shox2 expression restricted to the proximal limb along with Hoxd9 and Hoxa11 expression, juxtaposing the distal expression of Hoxa13 and Hoxd13. By generating mice with all possible dosage combinations of mutant Shox2 alleles and HoxA/D cluster deletions, we then show that their coordinated proximal limb expression is critical to generate normally proportioned limb segments. These epistatic interactions tune limb length, where Shox2 underexpression enhances, and Shox2 overexpression suppresses, Hox-mutant phenotypes. Disruption of either Shox2 or Hox genes leads to a similar reduction in Runx2 expression in the developing humerus, suggesting their concerted action drives cartilage maturation during normal development. While we furthermore provide evidence that Hox gene function influences Shox2 expression, this regulation is limited in extent and is unlikely on its own to be a major explanation for their genetic interaction. Given the similar effect of human SHOX mutations on regional limb growth, Shox and Hox genes may generally function as genetic interaction partners during the growth and development of the proximal vertebrate limb. Copyright © 2014 by the Genetics Society of America.

  16. Generating different genetic expression patterns in the early embryo: insights from the mouse model

    Czech Academy of Sciences Publication Activity Database

    Bruce, Alexander

    2013-01-01

    Roč. 27, č. 6 (2013), s. 586-592 ISSN 1472-6483 Grant - others:Marie Curie Career Integration Grant(CZ) IDNOVCELFAT2011; Czech Science Foundation(CZ) 13-032955 Institutional support: RVO:60077344 Keywords : cell fate * preimplantation embryo * probabilistic Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.980, year: 2013 http://www.sciencedirect.com/science/article/pii/S1472648313002435

  17. Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Demant, P.

    2006-01-01

    Roč. 7, č. 4 (2006), s. 294-305 ISSN 1471-0056 R&D Projects: GA ČR(CZ) GA310/03/1381 Grant - others:Howard Hughes Medical Institute(US) HHMI55000323 Institutional research plan: CEZ:AV0Z50520514 Keywords : leishmaniasis * susceptibility to infectious disease * modifying genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 22.947, year: 2006

  18. Contemporary paternal genetic landscape of Polish and German populations: from early medieval Slavic expansion to post-World War II resettlements.

    Science.gov (United States)

    Rębała, Krzysztof; Martínez-Cruz, Begoña; Tönjes, Anke; Kovacs, Peter; Stumvoll, Michael; Lindner, Iris; Büttner, Andreas; Wichmann, H-Erich; Siváková, Daniela; Soták, Miroslav; Quintana-Murci, Lluís; Szczerkowska, Zofia; Comas, David

    2013-04-01

    Homogeneous Proto-Slavic genetic substrate and/or extensive mixing after World War II were suggested to explain homogeneity of contemporary Polish paternal lineages. Alternatively, Polish local populations might have displayed pre-war genetic heterogeneity owing to genetic drift and/or gene flow with neighbouring populations. Although sharp genetic discontinuity along the political border between Poland and Germany indisputably results from war-mediated resettlements and homogenisation, it remained unknown whether Y-chromosomal diversity in ethnically/linguistically defined populations was clinal or discontinuous before the war. In order to answer these questions and elucidate early Slavic migrations, 1156 individuals from several Slavic and German populations were analysed, including Polish pre-war regional populations and an autochthonous Slavic population from Germany. Y chromosomes were assigned to 39 haplogroups and genotyped for 19 STRs. Genetic distances revealed similar degree of differentiation of Slavic-speaking pre-war populations from German populations irrespective of duration and intensity of contacts with German speakers. Admixture estimates showed minor Slavic paternal ancestry (~20%) in modern eastern Germans and hardly detectable German paternal ancestry in Slavs neighbouring German populations for centuries. BATWING analysis of isolated Slavic populations revealed that their divergence was preceded by rapid demographic growth, undermining theory that Slavic expansion was primarily linguistic rather than population spread. Polish pre-war regional populations showed within-group heterogeneity and lower STR variation within R-M17 subclades compared with modern populations, which might have been homogenised by war resettlements. Our results suggest that genetic studies on early human history in the Vistula and Oder basins should rely on reconstructed pre-war rather than modern populations.

  19. Mouse and human genetic analyses associate kalirin with ventral striatal activation during impulsivity and with alcohol misuse

    Directory of Open Access Journals (Sweden)

    Yolanda ePeña-Oliver

    2016-04-01

    Full Text Available Impulsivity is associated with a spectrum of psychiatric disorders including drug addiction. To investigate genetic associations with impulsivity and initiation of drug taking, we took a two-step approach. First, we identified genes whose expression level in prefrontal cortex, striatum and accumbens were associated with impulsive behaviour in the 5-choice serial reaction time task across 10 BXD recombinant inbred (BXD RI mouse strains and their progenitor C57BL/6J and DBA2/J strains. Behavioural data were correlated with regional gene expression using GeneNetwork (www.genenetwork.org, to identify 44 genes whose probability of association with impulsivity exceeded a false discovery rate of <0.05. We then interrogated the IMAGEN database of 1423 adolescents for potential associations of SNPs in human homologues of those genes identified in the mouse study, with brain activation during impulsive performance in the Monetary Incentive Delay task, and with novelty seeking scores from the Temperament and Character Inventory, as well as alcohol-experience. There was a significant overall association between the human homologues of impulsivity-related genes and percentage of premature responses in the MID task and with fMRI BOLD-response in ventral striatum (VS during reward anticipation. In contrast, no significant association was found between the polygenic scores and anterior cingulate cortex activation. Univariate association analyses revealed that the G allele (major of the intronic SNP rs6438839 in the KALRN gene was significantly associated with increased VS activation. Additionally, the A-allele (minor of KALRN intronic SNP rs4634050, belonging to the same haplotype block, was associated with increased frequency of binge drinking.

  20. Analysis of the cartilage proteome from three different mouse models of genetic skeletal diseases reveals common and discrete disease signatures

    Directory of Open Access Journals (Sweden)

    Peter A. Bell

    2013-06-01

    Pseudoachondroplasia and multiple epiphyseal dysplasia are genetic skeletal diseases resulting from mutations in cartilage structural proteins. Electron microscopy and immunohistochemistry previously showed that the appearance of the cartilage extracellular matrix (ECM in targeted mouse models of these diseases is disrupted; however, the precise changes in ECM organization and the pathological consequences remain unknown. Our aim was to determine the effects of matrilin-3 and COMP mutations on the composition and extractability of ECM components to inform how these detrimental changes might influence cartilage organization and degeneration. Cartilage was sequentially extracted using increasing denaturants and the extraction profiles of specific proteins determined using SDS-PAGE/Western blotting. Furthermore, the relative composition of protein pools was determined using mass spectrometry for a non-biased semi-quantitative analysis. Western blotting revealed changes in the extraction of matrilins, COMP and collagen IX in mutant cartilage. Mass spectrometry confirmed quantitative changes in the extraction of structural and non-structural ECM proteins, including proteins with roles in cellular processes such as protein folding and trafficking. In particular, genotype-specific differences in the extraction of collagens XII and XIV and tenascins C and X were identified; interestingly, increased expression of several of these genes has recently been implicated in susceptibility and/or progression of murine osteoarthritis. We demonstrated that mutation of matrilin-3 and COMP caused changes in the extractability of other cartilage proteins and that proteomic analyses of Matn3 V194D, Comp T585M and Comp DelD469 mouse models revealed both common and discrete disease signatures that provide novel insight into skeletal disease mechanisms and cartilage degradation.

  1. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms.

    Science.gov (United States)

    N'Diaye, Amidou; Haile, Jemanesh K; Fowler, D Brian; Ammar, Karim; Pozniak, Curtis J

    2017-01-01

    Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion

  2. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Amidou N’Diaye

    2017-08-01

    Full Text Available Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called ‘large p, small n’ problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers. While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat and Norstar × Cappelle Desprez (bread wheat. The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF, we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez. Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase

  3. Dimethylaminoparthenolide and gemcitabine: a survival study using a genetically engineered mouse model of pancreatic cancer

    International Nuclear Information System (INIS)

    Yip-Schneider, Michele T; Wu, Huangbing; Stantz, Keith; Agaram, Narasimhan; Crooks, Peter A; Schmidt, C Max

    2013-01-01

    Pancreatic cancer remains one of the deadliest cancers due to lack of early detection and absence of effective treatments. Gemcitabine, the current standard-of-care chemotherapy for pancreatic cancer, has limited clinical benefit. Treatment of pancreatic cancer cells with gemcitabine has been shown to induce the activity of the transcription factor nuclear factor-kappaB (NF-κB) which regulates the expression of genes involved in the inflammatory response and tumorigenesis. It has therefore been proposed that gemcitabine-induced NF-κB activation may result in chemoresistance. We hypothesize that NF-κB suppression by the novel inhibitor dimethylaminoparthenolide (DMAPT) may enhance the effect of gemcitabine in pancreatic cancer. The efficacy of DMAPT and gemcitabine was evaluated in a chemoprevention trial using the mutant Kras and p53-expressing LSL-Kras G12D/+ ; LSL-Trp53 R172H ; Pdx-1-Cre mouse model of pancreatic cancer. Mice were randomized to treatment groups (placebo, DMAPT [40 mg/kg/day], gemcitabine [50 mg/kg twice weekly], and the combination DMAPT/gemcitabine). Treatment was continued until mice showed signs of ill health at which time they were sacrificed. Plasma cytokine levels were determined using a Bio-Plex immunoassay. Statistical tests used included log-rank test, ANOVA with Dunnett’s post-test, Student’s t-test, and Fisher exact test. Gemcitabine or the combination DMAPT/gemcitabine significantly increased median survival and decreased the incidence and multiplicity of pancreatic adenocarcinomas. The DMAPT/gemcitabine combination also significantly decreased tumor size and the incidence of metastasis to the liver. No significant differences in the percentages of normal pancreatic ducts or premalignant pancreatic lesions were observed between the treatment groups. Pancreata in which no tumors formed were analyzed to determine the extent of pre-neoplasia; mostly normal ducts or low grade pancreatic lesions were observed, suggesting prevention

  4. Brain transcriptome perturbations in the Hfe(-/-) mouse model of genetic iron loading.

    Science.gov (United States)

    Johnstone, Daniel; Graham, Ross M; Trinder, Debbie; Delima, Roheeth D; Riveros, Carlos; Olynyk, John K; Scott, Rodney J; Moscato, Pablo; Milward, Elizabeth A

    2012-04-11

    Severe disruption of brain iron homeostasis can cause fatal neurodegenerative disease, however debate surrounds the neurologic effects of milder, more common iron loading disorders such as hereditary hemochromatosis, which is usually caused by loss-of-function polymorphisms in the HFE gene. There is evidence from both human and animal studies that HFE gene variants may affect brain function and modify risks of brain disease. To investigate how disruption of HFE influences brain transcript levels, we used microarray and real-time reverse transcription polymerase chain reaction to assess the brain transcriptome in Hfe(-/-) mice relative to wildtype AKR controls (age 10 weeks, n≥4/group). The Hfe(-/-) mouse brain showed numerous significant changes in transcript levels (pgenes relating to transcriptional regulation (FBJ osteosarcoma oncogene Fos, early growth response genes), neurotransmission (glutamate NMDA receptor Grin1, GABA receptor Gabbr1) and synaptic plasticity and memory (calcium/calmodulin-dependent protein kinase IIα Camk2a). As previously reported for dietary iron-supplemented mice, there were altered levels of transcripts for genes linked to neuronal ceroid lipofuscinosis, a disease characterized by excessive lipofuscin deposition. Labile iron is known to enhance lipofuscin generation which may accelerate brain aging. The findings provide evidence that iron loading disorders can considerably perturb levels of transcripts for genes essential for normal brain function and may help explain some of the neurologic signs and symptoms reported in hemochromatosis patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering

    Science.gov (United States)

    2013-01-01

    Background The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship. PMID:23845024

  6. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism[S

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M. Airanthi K.; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-01-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. PMID:27389691

  7. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-09-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Mouse consomic strains: Exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies

    Czech Academy of Sciences Publication Activity Database

    Gregorová, Soňa; Divina, Petr; Storchová, Radka; Trachtulec, Zdeněk; Fotopulosová, Vladana; Svenson, K.L.; Donahue, K.L.; Paigen, B.; Forejt, Jiří

    2008-01-01

    Roč. 18, č. 3 (2008), s. 509-515 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA301/07/1264 Grant - others:HHMI(US) HHMI55000306; NIH(US) 1R01HG00318; EC(XE) AnEUploidy 037627 Institutional research plan: CEZ:AV0Z50520514 Keywords : complex trait loci (QTLs) * chromosome substitution strains * PWD/Ph Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.176, year: 2008

  9. Expansive phenotypic landscape of Botrytis cinerea shows differential contribution of genetic diversity and plasticity

    DEFF Research Database (Denmark)

    Corwin, Jason A; Subedy, Anushriya; Eshbaugh, Robert

    2016-01-01

    and genetic diversity for virulence-associated phenotypes in a generalist plant pathogen, we grew a population of 15 isolates of Botrytis cinerea from throughout the world, under a variety of in vitro and in planta conditions. Under in planta conditions, phenotypic differences between the isolates were......The modern evolutionary synthesis suggests that both environmental variation and genetic diversity are critical determinants of pathogen success. However, the relative contribution of these two sources of variation is not routinely measured. To estimate the relative contribution of plasticity...... determined by the combination of genotypic variation within the pathogen and environmental variation. In contrast, phenotypic differences between the isolates under in vitro conditions were predominantly determined by genetic variation in the pathogen. Using a correlation network approach, we link...

  10. Optimization of a water resource system expansion using the Genetic Algorithm and Simulated Annealing methods; Optimizacion de la expansion de un sistema de recursos hidricos utilizados las metodologias del algoritmo genetico y el recocido simulado

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Camacho, Enrique; Andreu Alvarez, Joaquin [Universidad Politecnica de Valencia (Spain)

    2001-06-01

    Two numerical procedures, based on the Genetic Algorithm (GA) and the Simulated Annealing (SA), are developed to solve the problem of the expansion of capacity of a water resource system. The problem was divided into two subproblems: capital availability and operation policy. Both are optimisation-simulation models, the first one is solved by means of the GA and SA, in each case, while the second one is solved using the Out-of-kilter algorithm (OKA), in both models. The objective function considers the usual benefits and costs in this kind of systems, such as irrigation and hydropower benefits, costs of dam construction and system maintenance. The strength and weakness of both models are evaluated by comparing their results with those obtained with the branch and bound technique, which was classically used to solve this kind of problems. [Spanish] Un par de metodos numericos fundamentados en dos tecnicas de busqueda globales. Algoritmos Genetico (AG) y Recocido Simulado (RS), son desarrollados para resolver el problema de expansion de capacidad de un sistema de recursos hidricos. La estrategia ha sido dividir al problema en dos subproblemas: el de disponibilidad de capital y el de la politica de operacion. Ambos modelos son de optimizacion-simulacion, el primero se realiza mediante los algoritmos del RS y el AG en cada caso, en tanto que el segundo lleva a cabo a traves del algoritmo del Out-of-kilter (AOK) en los dos modelos. La funcion objetivo con que se trabaja considera los beneficios y costos mas comunes en este tipo de sistema, tales como beneficios por riego, por hidroelectricidad y costos de construccion de los embalses y mantenimiento del sistema. La potencia y debilidades delos dos modelos se evaluan mediante la comparacion con los resultados obtenidos a traves de una de las tecnicas mas usadas en este tipo de problemas: la de ramificacion y acotacion.

  11. Evaluation of members of the TGF beta superfamily as candidates for the oocyte factors that control mouse cumulus expansion and steroidogenesis

    Czech Academy of Sciences Publication Activity Database

    Vanderhyden, B. C.; Macdonald, E. A.; Nagyová, Eva; Dhawan, A.

    2003-01-01

    Roč. 61, - (2003), s. 55-70 ISSN 1470-1626 R&D Projects: GA AV ČR IAA5045102 Institutional research plan: CEZ:AV0Z5045916 Keywords : mouse Subject RIV: ED - Physiology Impact factor: 2.606, year: 2003

  12. Urban landscape genetics: canopy cover predicts gene flow between white-footed mouse (Peromyscus leucopus) populations in New York City.

    Science.gov (United States)

    Munshi-South, Jason

    2012-03-01

    In this study, I examine the influence of urban canopy cover on gene flow between 15 white-footed mouse (Peromyscus leucopus) populations in New York City parklands. Parks in the urban core are often highly fragmented, leading to rapid genetic differentiation of relatively nonvagile species. However, a diverse array of 'green' spaces may provide dispersal corridors through 'grey' urban infrastructure. I identify urban landscape features that promote genetic connectivity in an urban environment and compare the success of two different landscape connectivity approaches at explaining gene flow. Gene flow was associated with 'effective distances' between populations that were calculated based on per cent tree canopy cover using two different approaches: (i) isolation by effective distance (IED) that calculates the single best pathway to minimize passage through high-resistance (i.e. low canopy cover) areas, and (ii) isolation by resistance (IBR), an implementation of circuit theory that identifies all low-resistance paths through the landscape. IBR, but not IED, models were significantly associated with three measures of gene flow (Nm from F(ST) , BayesAss+ and Migrate-n) after factoring out the influence of isolation by distance using partial Mantel tests. Predicted corridors for gene flow between city parks were largely narrow, linear parklands or vegetated spaces that are not managed for wildlife, such as cemeteries and roadway medians. These results have implications for understanding the impacts of urbanization trends on native wildlife, as well as for urban reforestation efforts that aim to improve urban ecosystem processes. © 2012 Blackwell Publishing Ltd.

  13. The novel Hsp90 inhibitor NXD30001 induces tumor regression in a genetically engineered mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Zhu, Haihao; Woolfenden, Steve; Bronson, Roderick T; Jaffer, Zahara M; Barluenga, Sofia; Winssinger, Nicolas; Rubenstein, Allan E; Chen, Ruihong; Charest, Al

    2010-09-01

    Glioblastoma multiforme (GBM) has an abysmal prognosis. We now know that the epidermal growth factor receptor (EGFR) signaling pathway and the loss of function of the tumor suppressor genes p16Ink4a/p19ARF and PTEN play a crucial role in GBM pathogenesis: initiating the early stages of tumor development, sustaining tumor growth, promoting infiltration, and mediating resistance to therapy. We have recently shown that this genetic combination is sufficient to promote the development of GBM in adult mice. Therapeutic agents raised against single targets of the EGFR signaling pathway have proven rather inefficient in GBM therapy, showing the need for combinatorial therapeutic approaches. An effective strategy for concurrent disruption of multiple signaling pathways is via the inhibition of the molecular chaperone heat shock protein 90 (Hsp90). Hsp90 inhibition leads to the degradation of so-called client proteins, many of which are key effectors of GBM pathogenesis. NXD30001 is a novel second generation Hsp90 inhibitor that shows improved pharmacokinetic parameters. Here we show that NXD30001 is a potent inhibitor of GBM cell growth in vitro consistent with its capacity to inhibit several key targets and regulators of GBM biology. We also show the efficacy of NXD30001 in vivo in an EGFR-driven genetically engineered mouse model of GBM. Our findings establish that the Hsp90 inhibitor NXD30001 is a therapeutically multivalent molecule, whose actions strike GBM at the core of its drivers of tumorigenesis and represent a compelling rationale for its use in GBM treatment.

  14. QTL and systems genetics analysis of mouse grooming and behavioral responses to novelty in an open field.

    Science.gov (United States)

    Delprato, A; Algéo, M-P; Bonheur, B; Bubier, J A; Lu, L; Williams, R W; Chesler, E J; Crusio, W E

    2017-11-01

    The open field is a classic test used to assess exploratory behavior, anxiety and locomotor activity in rodents. Here, we mapped quantitative trait loci (QTLs) underlying behaviors displayed in an open field, using a panel of 53 BXD recombinant inbred mouse strains with deep replication (10 per strain and sex). The use of these strains permits the integration and comparison of data obtained in different laboratories, and also offers the possibility to study trait covariance by exploiting powerful bioinformatics tools and resources. We quantified behavioral traits during 20-min test sessions including (1) percent time spent and distance traveled near the wall (thigmotaxis), (2) leaning against the wall, (3) rearing, (4) jumping, (5) grooming duration, (6) grooming frequency, (7) locomotion and (8) defecation. All traits exhibit moderate heritability making them amenable to genetic analysis. We identified a significant QTL on chromosome M.m. 4 at approximately 104 Mb that modulates grooming duration in both males and females (likelihood ratio statistic values of approximately 18, explaining 25% and 14% of the variance, respectively) and a suggestive QTL modulating locomotion that maps to the same locus. Bioinformatic analysis indicates Disabled 1 (Dab1, a key protein in the reelin signaling pathway) as a particularly strong candidate gene modulating these behaviors. We also found 2 highly suggestive QTLs for a sex by strain interaction for grooming duration on chromosomes 13 and 17. In addition, we identified a pairwise epistatic interaction between loci on chromosomes 12 at 36-37 Mb and 14 at 34-36 Mb that influences rearing frequency in males. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Genetic modifications associated with ketogenic diet treatment in the BTBRT+Tf/J mouse model of autism spectrum disorder.

    Science.gov (United States)

    Mychasiuk, Richelle; Rho, Jong M

    2017-03-01

    Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder characterized by hallmark behavioral features. The spectrum of disorders that fall within the ASD umbrella encompass a distinct but overlapping symptom complex that likely results from an array of molecular and genetic aberrations rather than a single genetic mutation. The ketogenic diet (KD) is a high-fat low-carbohydrate anti-seizure and neuroprotective diet that has demonstrated efficacy in the treatment of ASD-like behaviors in animal and human studies. We investigated changes in mRNA and gene expression in the BTBR mouse model of ASD that may contribute to the behavioral phenotype. In addition, we sought to examine changes in gene expression following KD treatment in BTBR mice. Despite significant behavioral abnormalities, expression changes in BTBR mice did not differ substantially from controls; only 33 genes were differentially expressed in the temporal cortex, and 48 in the hippocampus. Examination of these differentially expressed genes suggested deficits in the stress response and in neuronal signaling/communication. After treatment with the KD, both brain regions demonstrated improvements in ASD deficits associated with myelin formation and white matter development. Although our study supports many of the previously known impairments associated with ASD, such as excessive myelin formation and impaired GABAergic transmission, the RNAseq data and pathway analysis utilized here identified new therapeutic targets for analysis, such as Vitamin D pathways and cAMP signaling. Autism Res 2017, 10: 456-471. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  16. Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon.

    Science.gov (United States)

    Stenman, Jan; Yu, Ruth T; Evans, Ronald M; Campbell, Kenneth

    2003-03-01

    We have examined the role of Tlx, an orphan nuclear receptor, in dorsal-ventral patterning of the mouse telencephalon. Tlx is expressed broadly in the ventricular zone, with the exception of the dorsomedial and ventromedial regions. The expression spans the pallio-subpallial boundary, which separates the dorsal (i.e. pallium) and ventral (i.e. subpallium) telencephalon. Despite being expressed on both sides of the pallio-subpallial boundary, Tlx homozygous mutants display alterations in the development of this boundary. These alterations include a dorsal shift in the expression limits of certain genes that abut at the pallio-subpallial boundary as well as the abnormal formation of the radial glial palisade that normally marks this boundary. The Tlx mutant phenotype is similar to, but less severe than, that seen in Small eye (i.e. Pax6) mutants. Interestingly, removal of one allele of Pax6 on the homozygous Tlx mutant background significantly worsens the phenotype. Thus Tlx and Pax6 cooperate genetically to regulate the establishment of the pallio-subpallial boundary. The patterning defects in the Tlx mutant telencephalon result in a loss of region-specific gene expression in the ventral-most pallial region. This correlates well with the malformation of the lateral and basolateral amygdala in Tlx mutants, both of which have been suggested to derive from ventral portions of the pallium.

  17. Establishment of new murine embryonic stem cell lines for the generation of mouse models of human genetic diseases

    Directory of Open Access Journals (Sweden)

    M.A. Sukoyan

    2002-05-01

    Full Text Available Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.

  18. Genetically Modified Mouse Models Used for Studying the Role of the AT2 Receptor in Cardiac Hypertrophy and Heart Failure

    Directory of Open Access Journals (Sweden)

    Maria D. Avila

    2011-01-01

    Full Text Available The actions of Angiotensin II have been implicated in many cardiovascular conditions. It is widely accepted that the cardiovascular effects of Angiotensin II are mediated by different subtypes of receptors: AT1 and AT2. These membrane-bound receptors share a part of their nucleic acid but seem to have different distribution and pathophysiological actions. AT1 mediates most of the Angiotensin II actions since it is ubiquitously expressed in the cardiovascular system of the normal adult. Moreover AT2 is highly expressed in the developing fetus but its expression in the cardiovascular system is low and declines after birth. However the expression of AT2 appears to be modulated by pathological states such as hypertension, myocardial infarction or any pathology associated to tissue remodeling or inflammation. The specific role of this receptor is still unclear and different studies involving in vivo and in vitro experiments have shown conflicting data. It is essential to clarify the role of the AT2 receptor in the different pathological states as it is a potential site for an effective therapeutic regimen that targets the Angiotensin II system. We will review the different genetically modified mouse models used to study the AT2 receptor and its association with cardiac hypertrophy and heart failure.

  19. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors.

    Science.gov (United States)

    Yamamoto, Hideaki; Tonello, Jane Marie; Sambuichi, Takanori; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2018-01-01

    New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.

    Science.gov (United States)

    Ichikawa, Shoji; Gray, Amie K; Padgett, Leah R; Allen, Matthew R; Clinkenbeard, Erica L; Sarpa, Nicole M; White, Kenneth E; Econs, Michael J

    2014-10-01

    Fibroblast growth factor 23 (FGF23) is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. The FGF23 subtilisin-like proprotein convertase recognition sequence ((176)RHTR(179)↓) is protected by O-glycosylation through ppGalNAc-T3 (GALNT3) activity. Thus, inactivating GALNT3 mutations render FGF23 susceptible to proteolysis, thereby reducing circulating intact hormone levels and leading to hyperphosphatemic familial tumoral calcinosis. To further delineate the role of glycosylation in the Fgf23 function, we generated an inducible FGF23 transgenic mouse expressing human mutant FGF23 (R176Q and R179Q) found in patients with autosomal dominant hypophosphatemic rickets (ADHR) and bred this animal to Galnt3 knockout mice, a model of familial tumoral calcinosis. Due to the low intact Fgf23 level, Galnt3 knockout mice with wild-type Fgf23 alleles were hyperphosphatemic. In contrast, carriers of the mutant FGF23 transgene, regardless of Galnt3 mutation status, had significantly higher serum intact FGF23, resulting in severe hypophosphatemia. Importantly, serum phosphorus and FGF23 were comparable between transgenic mice with or without normal Galnt3 alleles. To determine whether the presence of the ADHR mutation could improve biochemical and skeletal abnormalities in Galnt3-null mice, these mice were also mated to Fgf23 knock-in mice, carrying heterozygous or homozygous R176Q ADHR Fgf23 mutations. The knock-in mice with functional Galnt3 had normal Fgf23 but were slightly hypophosphatemic. The stabilized Fgf23 ADHR allele reversed the Galnt3-null phenotype and normalized total Fgf23, serum phosphorus, and bone Fgf23 mRNA. However, the skeletal phenotype was unaffected. In summary, these data demonstrate that O-glycosylation by ppGaINAc-T3 is only necessary for proper secretion of intact Fgf23 and, once secreted, does not affect Fgf23 function. Furthermore, the more stable Fgf23 ADHR mutant protein could normalize serum phosphorus

  1. [Expansive development of the French regulation of the genetic print files after the recent reforms (Part I)].

    Science.gov (United States)

    Etxeberria Guridi, José Francisco

    2003-01-01

    French regulations related to "genetic prints" and its later incorporation to an automatized file in the frame of the penal process, initially deserved (1998) a positive judgement due to the guarantees surrounding such techniques, considering that with its use an interference was made with the freedom and rights of the individual. This primary regulation is watching a legislative evolution that brings serious doubts about the current guarantee system. A couple of legal reforms with security as their main axis (2001 and 2003) give more importance to the "genetic print" file by extending the causes in which it starts functioning going against the proportionality that must be observed when freedoms and rights of the individual can be affected.

  2. Early-onset behavioral and neurochemical deficits in the genetic mouse model of phenylketonuria.

    Science.gov (United States)

    Fiori, Elena; Oddi, Diego; Ventura, Rossella; Colamartino, Marco; Valzania, Alessandro; D'Amato, Francesca Romana; Bruinenberg, Vibeke; van der Zee, Eddy; Puglisi-Allegra, Stefano; Pascucci, Tiziana

    2017-01-01

    Phenylketonuria (PKU) is one of the most common human inborn errors of metabolism, caused by phenylalanine hydroxylase deficiency, leading to high phenylalanine and low tyrosine levels in blood and brain causing profound cognitive disability, if untreated. Since 1960, population is screened for hyperphenylalaninemia shortly after birth and submitted to early treatment in order to prevent the major manifestations of the disease. However, the dietetic regimen (phenylalanine free diet) is difficult to maintain, and despite the recommendation to a strict and lifelong compliance, up to 60% of adolescents partially or totally abandons the treatment. The development and the study of new treatments continue to be sought, taking advantage of preclinical models, the most used of which is the PAHenu2 (BTBR ENU2), the genetic murine model of PKU. To date, adult behavioral and neurochemical alterations have been mainly investigated in ENU2 mice, whereas there are no clear indications about the onset of these deficiencies. Here we investigated and report, for the first time, a comprehensive behavioral and neurochemical assay of the developing ENU2 mice. Overall, our findings demonstrate that ENU2 mice are significantly smaller than WT until pnd 24, present a significant delay in the acquisition of tested developmental reflexes, impaired communicative, motor and social skills, and have early reduced biogenic amine levels in several brain areas. Our results extend the understanding of behavioral and cerebral abnormalities in PKU mice, providing instruments to an early preclinical evaluation of the effects of new treatments.

  3. Genetic variation in HTR4 and lung function: GWAS follow-up in mouse.

    Science.gov (United States)

    House, John S; Li, Huiling; DeGraff, Laura M; Flake, Gordon; Zeldin, Darryl C; London, Stephanie J

    2015-01-01

    Human genome-wide association studies (GWASs) have identified numerous associations between single nucleotide polymorphisms (SNPs) and pulmonary function. Proving that there is a causal relationship between GWAS SNPs, many of which are noncoding and without known functional impact, and these traits has been elusive. Furthermore, noncoding GWAS-identified SNPs may exert trans-regulatory effects rather than impact the proximal gene. Noncoding variants in 5-hydroxytryptamine (serotonin) receptor 4 (HTR4) are associated with pulmonary function in human GWASs. To gain insight into whether this association is causal, we tested whether Htr4-null mice have altered pulmonary function. We found that HTR4-deficient mice have 12% higher baseline lung resistance and also increased methacholine-induced airway hyperresponsiveness (AHR) as measured by lung resistance (27%), tissue resistance (48%), and tissue elastance (30%). Furthermore, Htr4-null mice were more sensitive to serotonin-induced AHR. In models of exposure to bacterial lipopolysaccharide, bleomycin, and allergic airway inflammation induced by house dust mites, pulmonary function and cytokine profiles in Htr4-null mice differed little from their wild-type controls. The findings of altered baseline lung function and increased AHR in Htr4-null mice support a causal relationship between genetic variation in HTR4 and pulmonary function identified in human GWAS. © FASEB.

  4. The role of the SIBLING, Bone Sialoprotein in skeletal biology - Contribution of mouse experimental genetics.

    Science.gov (United States)

    Bouleftour, Wafa; Juignet, Laura; Bouet, Guenaelle; Granito, Renata Neves; Vanden-Bossche, Arnaud; Laroche, Norbert; Aubin, Jane E; Lafage-Proust, Marie-Hélène; Vico, Laurence; Malaval, Luc

    2016-01-01

    Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  5. Pharmacological or genetic orexin 1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex

    Directory of Open Access Journals (Sweden)

    Leah eAluisio

    2014-05-01

    Full Text Available The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors. The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C. which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient or genetic (permanent inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states.

  6. Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing.

    Directory of Open Access Journals (Sweden)

    Mathieu Beraneck

    Full Text Available The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied, gravity cannot be sensed and therefore maculo-ocular reflexes (MOR were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG and compared to non-centrifuged (control C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.

  7. Variable effects of chronic intermittent ethanol exposure on ethanol drinking in a genetically diverse mouse cohort.

    Science.gov (United States)

    Lopez, Marcelo F; Miles, Michael F; Williams, Robert W; Becker, Howard C

    2017-02-01

    The BXD family of mice were generated by crossing and inbreeding ethanol-preferring C57BL/6J and ethanol-avoiding DBA/2J strains that differ greatly in genome sequence and other behaviors. This study evaluated variations in the level of voluntary ethanol intake in a cohort of 42 BXD strains and both progenitor strains using a model of alcohol dependence and relapse drinking. A total of 119 BXDs (85 males, 34 females) (n ∼ 4 per genotype; 1/genotype/sex/group) were evaluated along with males from both progenitor strains (n = 14-15/genotype). Mice were evaluated for intake using limited access (2 h/day) 2-bottle (15% v/v ethanol vs. water) model for 6 weeks (baseline intake). Each animal received 4 weekly cycles of chronic intermittent ethanol (CIE) vapor exposure (CIE group) or air control exposure (CTL group) (16 h/day × 4 days) interleaved by 5-day drinking test cycles. Blood ethanol concentrations (BEC) ranged from 150 to 300 mg/dl across genotypes. Baseline intake varied greatly among cases-from ∼0.8 to ∼2.9 g/kg. As expected, CIE exposure induced a significant increase in ethanol drinking in C57BL/6J relative to baseline as well as air controls that remained relatively stable over the four test cycles. In contrast, DBA/2J cases did not show a significant increase in consumption. Heritability of variation in baseline consumption, calculated from C57BL/6J and DBA/2J strains is about 54% but this increases following treatment to 60-80%. As expected from the marked difference between progenitors, ethanol intake and level of escalation varied greatly among BXDs after exposure (∼-1.3 to 2.6 g/kg). Interestingly, the magnitude and direction of changes in ethanol intake did not relate to BEC values of the preceding CIE exposure cycle. Overall, these data indicate significant variation in consumption and even escalation, much of it under genetic control, following repeated CIE treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. MicroRNA Cluster miR-17-92 Regulates Neural Stem Cell Expansion and Transition to Intermediate Progenitors in the Developing Mouse Neocortex

    Directory of Open Access Journals (Sweden)

    Shan Bian

    2013-05-01

    Full Text Available During development of the embryonic neocortex, tightly regulated expansion of neural stem cells (NSCs and their transition to intermediate progenitors (IPs are critical for normal cortical formation and function. Molecular mechanisms that regulate NSC expansion and transition remain unclear. Here, we demonstrate that the microRNA (miRNA miR-17-92 cluster is required for maintaining proper populations of cortical radial glial cells (RGCs and IPs through repression of Pten and Tbr2 protein. Knockout of miR-17-92 and its paralogs specifically in the developing neocortex restricts NSC proliferation, suppresses RGC expansion, and promotes transition of RGCs to IPs. Moreover, Pten and Tbr2 protectors specifically block silencing activities of endogenous miR-17-92 and control proper numbers of RGCs and IPs in vivo. Our results demonstrate a critical role for miRNAs in promoting NSC proliferation and modulating the cell-fate decision of generating distinct neural progenitors in the developing neocortex.

  9. Transplantation of mouse HSCs genetically modified to express a CD4-restricted TCR results in long-term immunity that destroys tumors and initiates spontaneous autoimmunity.

    Science.gov (United States)

    Ha, Sung P; Klemen, Nicholas D; Kinnebrew, Garrett H; Brandmaier, Andrew G; Marsh, Jon; Hangoc, Giao; Palmer, Douglas C; Restifo, Nicholas P; Cornetta, Kenneth; Broxmeyer, Hal E; Touloukian, Christopher E

    2010-12-01

    The development of effective cancer immunotherapies has been consistently hampered by several factors, including an inability to instigate long-term effective functional antitumor immunity. This is particularly true for immunotherapies that focus on the adoptive transfer of activated or genetically modified mature CD8+ T cells. In this study, we sought to alter and enhance long-term host immunity by genetically modifying, then transplanting, mouse HSCs. We first cloned a previously identified tumor-reactive HLA-DR4-restricted CD4+ TCR specific for the melanocyte differentiation antigen tyrosinase-related protein 1 (Tyrp1), then constructed both a high-expression lentivirus vector and a TCR-transgenic mouse expressing the genes encoding this TCR. Using these tools, we demonstrated that both mouse and human HSCs established durable, high-efficiency TCR gene transfer following long-term transplantation into lethally irradiated mice transgenic for HLA-DR4. Recipients of genetically modified mouse HSCs developed spontaneous autoimmune vitiligo that was associated with the presence of a Th1-polarized memory effector CD4+ T cell population that expressed the Tyrp1-specific TCR. Most importantly, large numbers of CD4+ T cells expressing the Tyrp1-specific TCR were detected in secondary HLA-DR4-transgenic transplant recipients, and these mice were able to destroy subcutaneously administered melanoma cells without the aid of vaccination, immune modulation, or cytokine administration. These results demonstrate the creation of what we believe to be a novel translational model of durable lentiviral gene transfer that results in long-term effective immunity.

  10. Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation.

    Science.gov (United States)

    Zagreda, L; Goodman, J; Druin, D P; McDonald, D; Diamond, A

    1999-07-15

    Phenylalanine hydroxylase (Pah)-deficient "PKU mice" have a mutation in the Pah gene that causes phenylketonuria (PKU) in humans. PKU produces cognitive deficits in humans if it is untreated. We report here the first evidence that the genetic mouse model of PKU (Pah(enu2)) also produces cognitive impairments. PKU mice were impaired on both odor discrimination reversal and latent learning compared with heterozygote littermates and with wild-type mice of the same BTBR strain. A small container of cinnamon-scented sand was presented on the right or left, and nutmeg-scented sand was presented on the other side; left-right location varied over trials. Digging in sand of the correct scent was rewarded by finding phenylalanine-free chocolate. To prevent scent cuing, new containers were used on every trial, and both containers always contained chocolate. Digging in the incorrect choice was stopped before the chocolate was uncovered. Once criterion was reached, the other scent was rewarded. PKU mice were impaired on reversals 2, 3, and 4. They were also impaired in latent learning. On day 1, half the mice were allowed to explore a maze and discover the location of water. On day 2, all mice were water-deprived and were placed in the maze. Whereas pre-exposed wild-type and heterozygous mice showed evidence that they remembered the location of the water and hence could find the water faster on day 2, pre-exposed PKU mice showed no significant benefit from their pre-exposure on day 1.

  11. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine

    Directory of Open Access Journals (Sweden)

    Franceschini Alessia

    2012-11-01

    Full Text Available Abstract Background Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT or knock-in (KI mice expressing the Cacna1a gene mutation (R192Q found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. Results KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Conclusions Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.

  12. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine.

    Science.gov (United States)

    Franceschini, Alessia; Nair, Asha; Bele, Tanja; van den Maagdenberg, Arn Mjm; Nistri, Andrea; Fabbretti, Elsa

    2012-11-21

    Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.

  13. Modest genetic differentiation among North American populations of Sarcocystis neurona may reflect expansion in its geographic range.

    Science.gov (United States)

    Sundar, N; Asmundsson, I M; Thomas, N J; Samuel, M D; Dubey, J P; Rosenthal, B M

    2008-03-25

    Sarcocystis neurona is an important cause of neurological disease in horses (equine protozoal myeloencephalitis, EPM) and sea otters in the United States. In addition, EPM-like disease has been diagnosed in several other land and marine mammals. Opossums are its only definitive hosts. Little genetic diversity among isolates of S. neurona from different hosts has been reported. Here, we used 11 microsatellites to characterize S. neurona DNA isolated from natural infections in 22 sea otters (Enhydra lutris) from California and Washington and in 11 raccoons (Procyon lotor) and 1 striped skunk (Mephitis mephitis) from Wisconsin. By jointly analyzing these 34 isolates with 26 isolates previously reported, we determined that geographic barriers may limit S. neurona dispersal and that only a limited subset of possible parasite genotypes may have been introduced to recently established opossum populations. Moreover, our study confirms that diverse intermediate hosts share a common infection source, the opossum (Didelphis virginiana).

  14. Modest genetic differentiation among North American populations of Sarcocystic neurona may reflect expansion in its geographic range

    Science.gov (United States)

    Sundar, N.; Asmundsson, I.M.; Thomas, N.J.; Samuel, M.D.; Dubey, J.P.; Rosenthal, B.M.

    2008-01-01

    Sarcocystis neurona is an important cause of neurological disease in horses (equine protozoal myeloencephalitis, EPM) and sea otters in the United States. In addition, EPM-like disease has been diagnosed in several other land and marine mammals. Opossums are its only definitive hosts. Little genetic diversity among isolates of S. neurona from different hosts has been reported. Here, we used 11 microsatellites to characterize S. neurona DNA isolated from natural infections in 22 sea otters (Enhydra lutris) from California and Washington and in 11 raccoons (Procyon lotor) and 1 striped skunk (Mephitis mephitis) from Wisconsin. By jointly analyzing these 34 isolates with 26 isolates previously reported, we determined that geographic barriers may limit S. neurona dispersal and that only a limited subset of possible parasite genotypes may have been introduced to recently established opossum populations. Moreover, our study confirms that diverse intermediate hosts share a common infection source, the opossum (Didelphis virginiana).

  15. Cryptic speciation in the recently discovered American cycliophoran Symbion americanus; genetic structure and population expansion

    DEFF Research Database (Denmark)

    Baker, J.M.; Funch, Peter; Giribet, G.

    2007-01-01

      Symbion americanus was recently described as the second species in the phylum Cycliophora, living commensally on the American commercial lobster Homarus americanus. A previous genetic analysis of American and European populations of cycliophorans suggested that haplotype divergence in S....... americanus was much greater than in its European counterpart S. pandora. This study examined the population structure and demographics of 169 individuals thought to belong to S. americanus collected from lobsters over 13 North American localities (Nova Scotia, Canada to Maryland, USA) between October 2003...... and January 2006. Cytochrome c oxidase subunit I sequence data clearly suggested the presence of three cryptic lineages in a species complex, often co-occurring in the same lobster specimens. One of these lineages, named the "G" lineage, was represented by very few individuals and therefore was excluded from...

  16. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2017-08-01

    Full Text Available Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4–induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4–induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor–BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process.

  17. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response.

    Science.gov (United States)

    Jayakumar, Asha; Bothwell, Alfred L M

    2017-08-01

    Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4-induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs) cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4-induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor-BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Nras Overexpression Results in Granulocytosis, T-Cell Expansion and Early Lethality in Mice

    DEFF Research Database (Denmark)

    Lassen, Louise Berkhoudt; Gonzalez, Borja Ballarin; Schmitz, Alexander

    2012-01-01

    NRAS is a proto-oncogene involved in numerous myeloid malignancies. Here, we report on a mouse line bearing a single retroviral long terminal repeat inserted into Nras. This genetic modification resulted in an increased level of wild type Nras mRNA giving the possibility of studying the function ...... the increment in immature myeloid cells detected in these mice. The short latency period indicates that Nras overexpression alone is sufficient to cause dose-dependent granulocytosis and T-cell expansion....

  19. Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion.

    Science.gov (United States)

    Kent, David G; Li, Juan; Tanna, Hinal; Fink, Juergen; Kirschner, Kristina; Pask, Dean C; Silber, Yvonne; Hamilton, Tina L; Sneade, Rachel; Simons, Benjamin D; Green, Anthony R

    2013-01-01

    Recent descriptions of significant heterogeneity in normal stem cells and cancers have altered our understanding of tumorigenesis, emphasizing the need to understand how single stem cells are subverted to cause tumors. Human myeloproliferative neoplasms (MPNs) are thought to reflect transformation of a hematopoietic stem cell (HSC) and the majority harbor an acquired V617F mutation in the JAK2 tyrosine kinase, making them a paradigm for studying the early stages of tumor establishment and progression. The consequences of activating tyrosine kinase mutations for stem and progenitor cell behavior are unclear. In this article, we identify a distinct cellular mechanism operative in stem cells. By using conditional knock-in mice, we show that the HSC defect resulting from expression of heterozygous human JAK2V617F is both quantitative (reduced HSC numbers) and qualitative (lineage biases and reduced self-renewal per HSC). The defect is intrinsic to individual HSCs and their progeny are skewed toward proliferation and differentiation as evidenced by single cell and transplantation assays. Aged JAK2V617F show a more pronounced defect as assessed by transplantation, but mice that transform reacquire competitive self-renewal ability. Quantitative analysis of HSC-derived clones was used to model the fate choices of normal and JAK2-mutant HSCs and indicates that JAK2V617F reduces self-renewal of individual HSCs but leaves progenitor expansion intact. This conclusion is supported by paired daughter cell analyses, which indicate that JAK2-mutant HSCs more often give rise to two differentiated daughter cells. Together these data suggest that acquisition of JAK2V617F alone is insufficient for clonal expansion and disease progression and causes eventual HSC exhaustion. Moreover, our results show that clonal expansion of progenitor cells provides a window in which collaborating mutations can accumulate to drive disease progression. Characterizing the mechanism(s) of JAK2V617F

  20. Genetic localization of Cd63, a member of the transmembrane 4 superfamily, reveals two distinct loci in the mouse genome

    Energy Technology Data Exchange (ETDEWEB)

    Gwynn, B.; Eicher, E.M.; Peters, L.L. [Jackson Lab., Bar Harbor, ME (United States)

    1996-07-15

    The membrane protein CD63, a molecular marker for early stages of melanoma progression, has been associated with platelet storage pool deficiency disorders (SPD). CD63 localizes to the membranes of platelets, lysosomes, and melanosomes, all of which are affected in a specific subgroup of SPD. The cDNA encoding CD63 detects two closely related sequences that map to different regions of the mouse genome. One locus maps to mouse Chromosome (Chr) 10 in a region that shares linkage homology with the human chromosome encoding human CD63. The second locus maps to mouse Chr 18 in a region that bears no known human CD63-related genes. No SPD has been localized to these regions of either the mouse or the human chromosomes. 15 refs., 2 figs.

  1. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

    Directory of Open Access Journals (Sweden)

    Lijuan Chen

    Full Text Available Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.

  2. Drainage isolation and climate change-driven population expansion shape the genetic structures of Tuber indicum complex in the Hengduan Mountains region.

    Science.gov (United States)

    Feng, Bang; Zhao, Qi; Xu, Jianping; Qin, Jiao; Yang, Zhu L

    2016-02-24

    The orogenesis of the Qinghai-Tibetan Plateau and the Quaternary climate changes have played key roles in driving the evolution of flora and fauna in Southwest China, but their effects on higher fungi are poorly addressed. In this study, we investigated the phylogeographic pattern of the Tuber indicum species complex, an economically important fungal group distributed in the Hengduan Mountains region. Our data confirmed the existence of two distinct lineages, T. indicum and T. himalayense, within this species complex. Three geographic groups (Groups W, N and C) were revealed within T. indicum, with Group W found in the paleo-Lancang River region, while Groups N and C corresponded to the two banks along the contemporary Jinsha River, suggesting that rivers have acted as barriers for gene flow among populations from different drainages. Historical range expansion resulted from climate changes was inferred in Group C, contributing to the observed gene flow among geographic populations within this group. Although no significant geographic structure was identified in T. himalayense, evidence of drainage isolation for this species was also detected. Our findings demonstrate that both topographic changes and Quaternary climate oscillations have played important roles in driving the genetic structures of the T. indicum species complex.

  3. Clonal expansion across the seas as seen through CPLP-TB database: A joint effort in cataloguing Mycobacterium tuberculosis genetic diversity in Portuguese-speaking countries

    KAUST Repository

    Perdigão, João

    2018-03-18

    Tuberculosis (TB) remains a major health problem within the Community of Portuguese Language Speaking Countries (CPLP). Despite the marked variation in TB incidence across its member-states and continued human migratory flux between countries, a considerable gap in the knowledge on the Mycobacterium tuberculosis population structure and strain circulation between the countries still exists. To address this, we have assembled and analysed the largest CPLP M. tuberculosis molecular and drug susceptibility dataset, comprised by a total of 1447 clinical isolates, including 423 multidrug-resistant isolates, from five CPLP countries. The data herein presented reinforces Latin American and Mediterranean (LAM) strains as the hallmark of M. tuberculosis populational structure in the CPLP coupled with country-specific differential prevalence of minor clades. Moreover, using high-resolution typing by 24-loci MIRU-VNTR, six cross-border genetic clusters were detected, thus supporting recent clonal expansion across the Lusophone space.To make this data available to the scientific community and public health authorities we developed CPLP-TB (available at http://cplp-tb.ff.ulisboa.pt), an online database coupled with web-based tools for exploratory data analysis. As a public health tool, it is expected to contribute to improved knowledge on the M. tuberculosis population structure and strain circulation within the CPLP, thus supporting the risk assessment of strain-specific trends.

  4. Clonal expansion across the seas as seen through CPLP-TB database: A joint effort in cataloguing Mycobacterium tuberculosis genetic diversity in Portuguese-speaking countries

    KAUST Repository

    Perdigã o, Joã o; Silva, Carla; Diniz, Jaciara; Pereira, Catarina; Machado, Diana; Ramos, Jorge; Silva, Hugo; Abilleira, Fernanda; Brum, Clarice; Reis, Ana J.; Macedo, Maí ra; Scaini, Joã o L.; Silva, Ana B.; Esteves, Leonardo; Macedo, Rita; Maltez, Fernando; Clemente, Sofia; Coelho, Elizabeth; Viegas, Sofia; Rabna, Paulo; Rodrigues, Amabé lia; Taveira, Nuno; Jordao, Luí sa; Kritski, Afrâ nio; e Silva, José Lapa; Mokrousov, Igor; Couvin, David; Rastogi, Nalin; Couto, Isabel; Pain, Arnab; McNerney, Ruth; Clark, Taane G.; von Groll, Andrea; Dalla-Costa, Elis R.; Rossetti, Maria Lú cia; da Silva, Pedro E.A.; Viveiros, Miguel; Portugal, Isabel

    2018-01-01

    Tuberculosis (TB) remains a major health problem within the Community of Portuguese Language Speaking Countries (CPLP). Despite the marked variation in TB incidence across its member-states and continued human migratory flux between countries, a considerable gap in the knowledge on the Mycobacterium tuberculosis population structure and strain circulation between the countries still exists. To address this, we have assembled and analysed the largest CPLP M. tuberculosis molecular and drug susceptibility dataset, comprised by a total of 1447 clinical isolates, including 423 multidrug-resistant isolates, from five CPLP countries. The data herein presented reinforces Latin American and Mediterranean (LAM) strains as the hallmark of M. tuberculosis populational structure in the CPLP coupled with country-specific differential prevalence of minor clades. Moreover, using high-resolution typing by 24-loci MIRU-VNTR, six cross-border genetic clusters were detected, thus supporting recent clonal expansion across the Lusophone space.To make this data available to the scientific community and public health authorities we developed CPLP-TB (available at http://cplp-tb.ff.ulisboa.pt), an online database coupled with web-based tools for exploratory data analysis. As a public health tool, it is expected to contribute to improved knowledge on the M. tuberculosis population structure and strain circulation within the CPLP, thus supporting the risk assessment of strain-specific trends.

  5. An attempt to distinguish a modified genetic response of the mouse testis to X-ray exposure by the action of a spermatogonial chalone

    International Nuclear Information System (INIS)

    Cattanach, B.M.; Jones, J.T.; Andrews, S.J.; Crocker, M.

    1979-01-01

    The results of an experiment designed to distinguish whether the action of a spermatogonial chalone in the mouse testis could modify the genetic response of a depleted stem spermatogonial population to X-radiation are reported. The results are consistent with the view that the stem cell population of the depleted adult testis a few days after damage closely approximates that of the early post-natal or immature animal, do not provide any indication that the testis extract in any way influence the response of the depleted testis to the 500-rad challenging dose. The yield of genetic damage was almost identical to that in the two control groups and the sterile period and testis weight data provided little reason to suspect that the amount of spermatogonial killing was altered. (Auth.)

  6. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  7. A new mouse model for marfan syndrome presents phenotypic variability associated with the genetic background and overall levels of Fbn1 expression.

    Directory of Open Access Journals (Sweden)

    Bruno L Lima

    2010-11-01

    Full Text Available Marfan syndrome is an autosomal dominant disease of connective tissue caused by mutations in the fibrillin-1 encoding gene FBN1. Patients present cardiovascular, ocular and skeletal manifestations, and although being fully penetrant, MFS is characterized by a wide clinical variability both within and between families. Here we describe a new mouse model of MFS that recapitulates the clinical heterogeneity of the syndrome in humans. Heterozygotes for the mutant Fbn1 allele mgΔloxPneo, carrying the same internal deletion of exons 19-24 as the mgΔ mouse model, present defective microfibrillar deposition, emphysema, deterioration of aortic wall and kyphosis. However, the onset of a clinical phenotypes is earlier in the 129/Sv than in C57BL/6 background, indicating the existence of genetic modifiers of MFS between these two mouse strains. In addition, we characterized a wide clinical variability within the 129/Sv congenic heterozygotes, suggesting involvement of epigenetic factors in disease severity. Finally, we show a strong negative correlation between overall levels of Fbn1 expression and the severity of the phenotypes, corroborating the suggested protective role of normal fibrillin-1 in MFS pathogenesis, and supporting the development of therapies based on increasing Fbn1 expression.

  8. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    Directory of Open Access Journals (Sweden)

    Chen X-C

    2008-10-01

    Full Text Available Abstract Background Bone marrow-derived stromal cells (BMSCs are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Methods Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Receptor-1 (sFlt-1. The anti-angiogenesis of sFlt-1 in BMSCs was determined using endothelial cells proliferation inhibition assay and alginate encapsulation assay. The anti-tumor effects of BMSCs expressing sFlt-1 through tail-vein infusion were evaluated in two mouse tumor metastases models. Results BMSCs genetically modified with Adv-GFP-sFlt-1 could effectively express and secret sFlt-1. BMSCs loaded with sFlt-1 gene could preferentially home to tumor loci and decrease lung metastases and prolong lifespan in mouse tumor model through inducing anti-angiogenesis and apoptosis in tumors. Conclusion We demonstrated that BMSCs might be employed as a promising vehicle for tumor gene therapy which can effectively not only improve the concentration of anticancer therapeutics in tumors, but also modify the tumor microenvironment.

  9. Why are tropical mountain passes "low" for some species? Genetic and stable-isotope tests for differentiation, migration and expansion in elevational generalist songbirds.

    Science.gov (United States)

    Gadek, Chauncey R; Newsome, Seth D; Beckman, Elizabeth J; Chavez, Andrea N; Galen, Spencer C; Bautista, Emil; Witt, Christopher C

    2018-05-01

    Most tropical bird species have narrow elevational ranges, likely reflecting climatic specialization. This is consistent with Janzen's Rule, the tendency for mountain passes to be effectively "higher" in the tropics. Hence, those few tropical species that occur across broad elevational gradients (elevational generalists) represent a contradiction to Janzen's Rule. Here, we aim to address the following questions. Are elevational generalists being sundered by diversifying selection along the gradient? Does elevational movement cause these species to resist diversification or specialization? Have they recently expanded, suggesting that elevational generalism is short-lived in geological time? To answer these questions, we tested for differentiation, movement and expansion in four elevational generalist songbird species on the Andean west slope. We used morphology and mtDNA to test for genetic differentiation between high- and low-elevation populations. To test for elevational movements, we measured hydrogen isotope (δ 2 H) values of metabolically inert feathers and metabolically active liver. Morphology differed for House Wren (Troglodytes aedon) and Hooded Siskin (Spinus magellanicus), but not for Cinereous Conebill (Conirostrum cinereum) and Rufous-collared Sparrow (Zonotrichia capensis) respectively. mtDNA was structured by elevation only in Z. capensis. δ 2 H data indicated elevational movements by two tree- and shrub-foraging species with moderate-to-high vagility (C. cinereum and S. magellanicus), and sedentary behaviour by two terrestrial-foraging species with low-to-moderate vagility (T. aedon and Z. capensis). In S. magellanicus, elevational movements and lack of mtDNA structure contrast with striking morphological divergence, suggesting strong diversifying selection on body proportions across the c. 50 km gradient. All species except C. cinereum exhibited mtDNA haplotype variation consistent with recent population expansion across the elevational

  10. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  11. A systematic analysis of the suitability of preimplantation genetic diagnosis for mitochondrial diseases in a heteroplasmic mitochondrial mouse model.

    Science.gov (United States)

    Neupane, Jitesh; Vandewoestyne, Mado; Heindryckx, Björn; Ghimire, Sabitri; Lu, Yuechao; Qian, Chen; Lierman, Sylvie; Van Coster, Rudy; Gerris, Jan; Deroo, Tom; Deforce, Dieter; De Sutter, Petra

    2014-04-01

    What is the reliability of preimplantation genetic diagnosis (PGD) based on polar body (PB), blastomere or trophectoderm (TE) analysis in a heteroplasmic mitochondrial mouse model? The reliability of PGD to determine the level of mitochondrial DNA (mtDNA) heteroplasmy is questionable based on either the first or second PB analysis; however, PGD based on blastomere or TE analysis seems more reliable. PGD has been suggested as a technique to determine the level of mtDNA heteroplasmy in oocytes and embryos to avoid the transmission of heritable mtDNA disorders. A strong correlation between first PBs and oocytes and between second PBs and zygotes was reported in mice but is controversial in humans. So far, the levels of mtDNA heteroplasmy in first PBs, second PBs and their corresponding oocytes, zygotes and blastomeres, TE and blastocysts have not been analysed within the same embryo. We explored the suitability of PGD by comparing the level of mtDNA heteroplasmy between first PBs and metaphase II (MII) oocytes (n = 33), between first PBs, second PBs and zygotes (n = 30), and between first PBs, second PBs and their corresponding blastomeres of 2- (n = 10), 4- (n = 10) and 8-cell embryos (n = 11). Levels of mtDNA heteroplasmy in second PBs (n = 20), single blastomeres from 8-cell embryos (n = 20), TE (n = 20) and blastocysts (n = 20) were also compared. Heteroplasmic mice (BALB/cOlaHsd), containing mtDNA mixtures of BALB/cByJ and NZB/OlaHsd, were used in this study. The first PBs were biopsied from in vivo matured MII oocytes. The ooplasm was then subjected to ICSI. After fertilization, second PBs were biopsied and zygotes were cultured to recover individual blastomeres from 2-, 4- and 8-cell embryos. Similarly, second PBs were biopsied from in vivo fertilized zygotes and single blastomeres were biopsied from 8-cell stage embryos. The remaining embryo was cultured until the blastocyst stage to isolate TE cells. Polymerase chain reaction followed by restriction fragment

  12. Generation of a Novel T Cell Specific Interleukin-1 Receptor Type 1 Conditional Knock Out Mouse Reveals Intrinsic Defects in Survival, Expansion and Cytokine Production of CD4 T Cells.

    Directory of Open Access Journals (Sweden)

    Ilgiz A Mufazalov

    Full Text Available Interleukin-1 (IL-1 plays a crucial role in numerous inflammatory diseases via action on its only known signaling IL-1 receptor type 1 (IL-1R1. To investigate the role of IL-1 signaling in selected cell types, we generated a new mouse strain in which exon 5 of the Il1r1 gene is flanked by loxP sites. Crossing of these mice with CD4-Cre transgenic mice resulted in IL-1R1 loss of function specifically in T cells. These mice, termed IL-1R1ΔT, displayed normal development under steady state conditions. Importantly, isolated CD4 positive T cells retained their capacity to differentiate toward Th1 or Th17 cell lineages in vitro, and strongly proliferated in cultures supplemented with either anti-CD3/CD28 or Concanavalin A, but, as predicted, were completely unresponsive to IL-1β administration. Furthermore, IL-1R1ΔT mice were protected from gut inflammation in the anti-CD3 treatment model, due to dramatically reduced frequencies and absolute numbers of IL-17A and interferon (IFN-γ producing cells. Taken together, our data shows the necessity of intact IL-1 signaling for survival and expansion of CD4 T cells that were developed in an otherwise IL-1 sufficient environment.

  13. Unraveling the Molecular Mechanism(s) Underlying Er+/PR-Breast Tumorigenesis Using a Novel Genetically Engineered Mouse Model

    Science.gov (United States)

    2011-11-01

    and subjected to silver stain, immunoblot, or LC-MS/MS spec- tral analyses (The MSU Proteomics Facility, Michigan State University). Mouse Hepatocyte... flotation gradient essentially as described [29]. Briefly, cells were incubated with 10 ng/ml EGF for 10 min at 37uC. After several washings, cells were

  14. A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high-grade serous carcinoma development.

    Science.gov (United States)

    Sherman-Baust, Cheryl A; Kuhn, Elisabetta; Valle, Blanca L; Shih, Ie-Ming; Kurman, Robert J; Wang, Tian-Li; Amano, Tomokazu; Ko, Minoru S H; Miyoshi, Ichiro; Araki, Yoshihiko; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G; Morin, Patrice J

    2014-07-01

    Recent evidence suggests that ovarian high-grade serous carcinoma (HGSC) originates from the epithelium of the fallopian tube. However, most mouse models are based on the previous prevailing view that ovarian cancer develops from the transformation of the ovarian surface epithelium. Here, we report the extensive histological and molecular characterization of the mogp-TAg transgenic mouse, which expresses the SV40 large T-antigen (TAg) under the control of the mouse müllerian-specific Ovgp-1 promoter. Histological analysis of the fallopian tubes of mogp-TAg mice identified a variety of neoplastic lesions analogous to those described as precursors to ovarian HGSC. We identified areas of normal-appearing p53-positive epithelium that are similar to 'p53 signatures' in the human fallopian tube. More advanced proliferative lesions with nuclear atypia and epithelial stratification were also identified that were morphologically and immunohistochemically reminiscent of human serous tubal intraepithelial carcinoma (STIC), a potential precursor of ovarian HGSC. Beside these non-invasive precursor lesions, we also identified invasive adenocarcinoma in the ovaries of 56% of the mice. Microarray analysis revealed several genes differentially expressed between the fallopian tube of mogp-TAg and wild-type (WT) C57BL/6. One of these genes, Top2a, which encodes topoisomerase IIα, was shown by immunohistochemistry to be concurrently expressed with elevated p53 and was specifically elevated in mouse STICs but not in the surrounding tissues. TOP2A protein was also found elevated in human STICs, low-grade and high-grade serous carcinoma. The mouse model reported here displays a progression from normal tubal epithelium to invasive HGSC in the ovary, and therefore closely simulates the current emerging model of human ovarian HGSC pathogenesis. This mouse therefore has the potential to be a very useful new model for elucidating the mechanisms of serous ovarian tumourigenesis, as well as

  15. Qualitative analysis of mouse specific-locus mutations: information on genetic organization, gene expression, and the chromosomal nature of induced lesions

    International Nuclear Information System (INIS)

    Russell, L.B.

    1982-01-01

    Analysis of mouse specific-locus (SL) mutations at three loci has identified over 33 distinct complementation groups - most of which are probably overlapping deficiencies - and 13 to 14 new functional units. The complementation maps that have been generated for the d-se and c regions include numerous vital functions; however, some of the genes in these regions are non-vital. At such loci, hypomorphic mutants must represent intragenic alterations, and some viable nulls could conceivably be intragenic lesions also. Analysis of SL mutations has provided information on genetic expression. Homozygous deficiencies can be completely viable or can kill at any one of a range of developmental stages. Heterozygonus deficiencies of up to 6 cM or more in genetic length have been recovered and propagated. The time of death of homozygous and the degree of inviability of heterozygous deficiencies are related more to specific content of the missing segment than to its length. Combinations of deficiencies with x-autosome translocations that inactivate the homologous region in a mosaic fashion have shown that organismic lethals are not necessarily cell lethal. The spectrum of mutations induced depends on the nature of the mutagen and the type of germ cell exposed. Radiation of spermatogonia produces intragenic as well as null mutations. Spontaneous mutations have an admixture of types not present in populations of mutations induced in germ cells, and this raises doubts concerning the accuracy of doubling-dose calculations in genetic risk estimation. The analysis of SL mutations has yielded genetic tools for the construction of detailed gene-dosage series, cis-trans comparisons, the mapping of known genes and identification of new genes, genetic rescue of various types, and the identification and isolation of DNA sequences

  16. Genetic control of the radiosensitivity of lymphoid cells for antibody-forming ability in CXS series of recombinant inbred mouse strains

    International Nuclear Information System (INIS)

    Okumoto, M.; Mori, N.; Nishikawa, R.; Imai, S.; Hilgers, J.; Takamori, Y.; Yagasaki, O.

    1992-01-01

    Incidence of radiation-induced lymphomas differs remarkably among various mouse strains. BALB/cHeA (C) mice are highly susceptible to radiation induction of lymphomas, while STS/A (S) mice are resistant. Thus, the induction of the disease is controlled by some genetic factors. To examine an involvement of radiosensitivity of lymphoid cells in lymphomagenesis, we have compared genetic control of the radiosensitivity for antibody-forming ability with that of lymphoma development in BALB/cHeA, STS/A, (CXS)F 1 hybrids and CXS series of recombinant inbred strains. Decrease of number of splenic plaque-forming cell (PFC) in Jerne's method by 3 Gy of X-irradiation for BALB/cHeA mice was larger than that for STS/A mice by more than one order of magnitude. (CXS)F 1 hybrid mice showed small number of decrease of PFC similar to STS/A mice suggesting that phenotype of radioresistance was dominant over sensitivity. The best concordance between genetic markers and radiosensitivities of antibody-forming ability in recombinant inbred strains was observed in a region containing Igh locus on chromosome 12. The results show that one locus controlling the radioresistance of lymphoid cells for antibody-forming ability might exist in the region containing Igh locus, and that this region clearly differ from a region with Ifa locus on chromosome 4 which regulate the susceptibility to radiation-induced lymphomagenesis. (author)

  17. Genetic mouse embryo assay: improving performance and quality testing for assisted reproductive technology (ART) with a functional bioassay.

    Science.gov (United States)

    Gilbert, Rebecca S; Nunez, Brandy; Sakurai, Kumi; Fielder, Thomas; Ni, Hsiao-Tzu

    2016-03-24

    Growing concerns about safety of ART on human gametes, embryos, clinical outcomes and long-term health of offspring require improved methods of risk assessment to provide functionally relevant assays for quality control testing and pre-clinical studies prior to clinical implementation. The one-cell mouse embryo assay (MEA) is the most widely used for development and quality testing of human ART products; however, concerns exist due to the insensitivity/variability of this bioassay which lacks standardization and involves subjective analysis by morphology alone rather than functional analysis of the developing embryos. We hypothesized that improvements to MEA by the use of functional molecular biomarkers could enhance sensitivity and improve detection of suboptimal materials/conditions. Fresh one-cell transgenic mouse embryos with green fluorescent protein (GFP) expression driven by Pou6f1 or Cdx2 control elements were harvested and cultured to blastocysts in varied test and control conditions to compare assessment by standard morphology alone versus the added dynamic expression of GFP for screening and selection of critical raw materials and detection of suboptimal culture conditions. Transgenic mouse embryos expressing functionally relevant biomarkers of normal early embryo development can be used to monitor the developmental impact of culture conditions. This novel approach provides a superior MEA that is more meaningful and sensitive for detection of embryotoxicity than morphological assessment alone.

  18. Mitochondrial DNA confirms low genetic variation of the greater mouse-eared bats, Myotis myotis, in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Bryja, Josef; Uhrin, M.; Kaňuch, P.; Bémová, P.; Martínková, Natália; Zukal, Jan

    2010-01-01

    Roč. 12, č. 1 (2010), s. 73-81 ISSN 1508-1109 R&D Projects: GA ČR GA206/01/1555; GA MŠk LC06073 Grant - others:VEGA(SK) 2/0130/08 Institutional research plan: CEZ:AV0Z60930519 Keywords : genetic structure * mtDNA * control region * phylogeography * Myotis myotis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.012, year: 2010

  19. Revitalizing genetically-modified mouse strains using frozen-thawed sperm after up to 192 h of refrigerated epididymis transportation.

    Science.gov (United States)

    Moreno-Del Val, Gonzalo; Muñoz-Robledano, Patricia

    2017-10-01

    In the scientific interchange of genetically-modified mouse strains the transportation of refrigerated epididymis has several advantages over the transportation of live animals, especially with regard to the 3R (replacement, reduction and refinement) principles. The major limiting factor is the duration of the transportation. Previous reports have shown that sperm collected from transported epididymis maintained their fertility for around 72 h, but there are no published data with longer transportation times, and this window of time may be too short, especially for international shipments and where locations are not well connected. In this study live pups were born using frozen-thawed sperm after up to 192 h (8 days) of transportation, using a special in vitro fertilization design which resulted in a fertilization rate of 10.5%.

  20. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Sergeant, C. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France)]. E-mail: sergeant@cenbg.in2p3.fr; Vesvres, M.H. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Deves, G. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Guillou, F. [INRA-CNRS-Universite de Tours-Haras nationaux, UMR 6175, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly (France)

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  1. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Deves, G.; Guillou, F.

    2005-01-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter

  2. Two genetic determinants acquired late in Mus evolution regulate the inclusion of exon 5, which alters mouse APOBEC3 translation efficiency.

    Directory of Open Access Journals (Sweden)

    Jun Li

    2012-01-01

    Full Text Available Mouse apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like editing complex 3 (mA3, an intracellular antiviral factor, has 2 allelic variations that are linked with different susceptibilities to beta- and gammaretrovirus infections among various mouse strains. In virus-resistant C57BL/6 (B6 mice, mA3 transcripts are more abundant than those in susceptible BALB/c mice both in the spleen and bone marrow. These strains of mice also express mA3 transcripts with different splicing patterns: B6 mice preferentially express exon 5-deficient (Δ5 mA3 mRNA, while BALB/c mice produce exon 5-containing full-length mA3 mRNA as the major transcript. Although the protein product of the Δ5 mRNA exerts stronger antiretroviral activities than the full-length protein, how exon 5 affects mA3 antiviral activity, as well as the genetic mechanisms regulating exon 5 inclusion into the mA3 transcripts, remains largely uncharacterized. Here we show that mA3 exon 5 is indeed a functional element that influences protein synthesis at a post-transcriptional level. We further employed in vitro splicing assays using genomic DNA clones to identify two critical polymorphisms affecting the inclusion of exon 5 into mA3 transcripts: the number of TCCT repeats upstream of exon 5 and the single nucleotide polymorphism within exon 5 located 12 bases upstream of the exon 5/intron 5 boundary. Distribution of the above polymorphisms among different Mus species indicates that the inclusion of exon 5 into mA3 mRNA is a relatively recent event in the evolution of mice. The widespread geographic distribution of this exon 5-including genetic variant suggests that in some Mus populations the cost of maintaining an effective but mutagenic enzyme may outweigh its antiviral function.

  3. Contemporary paternal genetic landscape of Polish and German populations: from early medieval Slavic expansion to post-World War II resettlements

    OpenAIRE

    Rębała, Krzysztof; Martínez-Cruz, Begoña; Tönjes, Anke; Kovacs, Peter; Stumvoll, Michael; Lindner, Iris; Büttner, Andreas; Wichmann, H-Erich; Siváková, Daniela; Soták, Miroslav; Quintana-Murci, Lluís; Szczerkowska, Zofia; Comas, David

    2012-01-01

    Homogeneous Proto-Slavic genetic substrate and/or extensive mixing after World War II were suggested to explain homogeneity of contemporary Polish paternal lineages. Alternatively, Polish local populations might have displayed pre-war genetic heterogeneity owing to genetic drift and/or gene flow with neighbouring populations. Although sharp genetic discontinuity along the political border between Poland and Germany indisputably results from war-mediated resettlements and homogenisation, it re...

  4. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  5. expansion method

    Indian Academy of Sciences (India)

    of a system under investigation is to model the system in terms of some ... The organization of the paper is as follows: In §2, a brief account of the (G /G)- expansion ...... It is interesting to note that from the general results, one can easily recover.

  6. Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis.

    Science.gov (United States)

    Duarte, Tiago L; Caldas, Carolina; Santos, Ana G; Silva-Gomes, Sandro; Santos-Gonçalves, Andreia; Martins, Maria João; Porto, Graça; Lopes, José Manuel

    2017-04-01

    In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload. We evaluated if the genetic disruption of Nrf2 would prompt the development of liver damage in Hfe -/- mice (an established model of human HFE-hemochromatosis). Wild-type, Nrf2 -/- , Hfe -/- and double knockout (Hfe/Nrf2 -/- ) female mice on C57BL/6 genetic background were sacrificed at the age of 6 (young), 12-18 (middle-aged) or 24 months (old) for evaluation of liver pathology. Despite the parenchymal iron accumulation, Hfe -/- mice presented no liver injury. The combination of iron overload (Hfe -/- ) and defective antioxidant defences (Nrf2 -/- ) increased the number of iron-related necroinflammatory lesions (sideronecrosis), possibly due to the accumulation of toxic oxidation products such as 4-hydroxy-2-nonenal-protein adducts. The engulfment of dead hepatocytes led to a gradual accumulation of iron within macrophages, featuring large aggregates. Myofibroblasts recruited towards the injury areas produced substantial amounts of collagen fibers involving the liver parenchyma of double-knockout animals with increased hepatic fibrosis in an age-dependent manner. The genetic disruption of Nrf2 promotes the transition from iron accumulation (siderosis) to liver injury in Hfe -/- mice, representing the first demonstration of spontaneous hepatic fibrosis in the long term in a mouse model of hereditary hemochromatosis displaying mildly elevated liver iron. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Identification of multiple genetic loci in the mouse controlling immobility time in the tail suspension and forced swimming tests.

    Science.gov (United States)

    Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi

    2015-05-01

    Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.

  8. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaojun [The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Park, Eunmi [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Fischer, Susan M. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78967 (United States); Hu, Yinling, E-mail: huy2@mail.nih.gov [Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701 (United States)

    2013-02-15

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside.

  9. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Xia, Xiaojun; Park, Eunmi; Fischer, Susan M.; Hu, Yinling

    2013-01-01

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside

  10. Range expansion of heterogeneous populations.

    Science.gov (United States)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  11. Genetic dissection of a cell-autonomous neurodegenerative disorder: lessons learned from mouse models of Niemann-Pick disease type C

    Directory of Open Access Journals (Sweden)

    Manuel E. Lopez

    2013-09-01

    Full Text Available Understanding neurodegenerative disease progression and its treatment requires the systematic characterization and manipulation of relevant cell types and molecular pathways. The neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC is highly amenable to genetic approaches that allow exploration of the disease biology at the organismal, cellular and molecular level. Although NPC is a rare disease, genetic analysis of the associated neuropathology promises to provide insight into the logic of disease neural circuitry, selective neuron vulnerability and neural-glial interactions. The ability to control the disorder cell-autonomously and in naturally occurring spontaneous animal models that recapitulate many aspects of the human disease allows for an unparalleled dissection of the disease neurobiology in vivo. Here, we review progress in mouse-model-based studies of NPC disease, specifically focusing on the subtype that is caused by a deficiency in NPC1, a sterol-binding late endosomal membrane protein involved in lipid trafficking. We also discuss recent findings and future directions in NPC disease research that are pertinent to understanding the cellular and molecular mechanisms underlying neurodegeneration in general.

  12. Cross-species analysis of genetically engineered mouse models of MAPK-driven colorectal cancer identifies hallmarks of the human disease

    Directory of Open Access Journals (Sweden)

    Peter J. Belmont

    2014-06-01

    Full Text Available Effective treatment options for advanced colorectal cancer (CRC are limited, survival rates are poor and this disease continues to be a leading cause of cancer-related deaths worldwide. Despite being a highly heterogeneous disease, a large subset of individuals with sporadic CRC typically harbor relatively few established ‘driver’ lesions. Here, we describe a collection of genetically engineered mouse models (GEMMs of sporadic CRC that combine lesions frequently altered in human patients, including well-characterized tumor suppressors and activators of MAPK signaling. Primary tumors from these models were profiled, and individual GEMM tumors segregated into groups based on their genotypes. Unique allelic and genotypic expression signatures were generated from these GEMMs and applied to clinically annotated human CRC patient samples. We provide evidence that a Kras signature derived from these GEMMs is capable of distinguishing human tumors harboring KRAS mutation, and tracks with poor prognosis in two independent human patient cohorts. Furthermore, the analysis of a panel of human CRC cell lines suggests that high expression of the GEMM Kras signature correlates with sensitivity to targeted pathway inhibitors. Together, these findings implicate GEMMs as powerful preclinical tools with the capacity to recapitulate relevant human disease biology, and support the use of genetic signatures generated in these models to facilitate future drug discovery and validation efforts.

  13. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model.

    Directory of Open Access Journals (Sweden)

    Chunqing Ai

    Full Text Available Mucosal vaccine based on lactic acid bacteria is an attractive concept for the prevention and treatment of allergic diseases, but their mechanisms of action in vivo are poorly understood. Therefore, we sought to investigate how recombinant major dust mite allergen Der p2-expressing Lactococcus lactis as a mucosal vaccine induced the immune tolerance against house dust mite allergy in a mouse model.Three strains of recombinant L. lactis producing Der p2 in different cell components (extracellular, intracellular and cell wall were firstly constructed. Their prophylactic potential was evaluated in a Der p2-sensitised mouse model, and immunomodulation properties at the cellular level were determined by measuring cytokine production in vitro.Der p2 expressed in the different recombinant L. lactis strains was recognized by a polyclonal anti-Der p2 antibody. Oral treatment with the recombinant L. lactis prior sensitization significantly prevented the development of airway inflammation in the Der p2-sensitized mice, as determined by the attenuation of inflammatory cells infiltration in the lung tissues and decrease of Th2 cytokines IL-4 and IL-5 levels in bronchoalveolar lavage. In addition, the serum allergen-specific IgE levels were significantly reduced, and the levels of IL-4 in the spleen and mesenteric lymph nodes cell cultures were also markedly decreased upon allergen stimulation in the mice fed with the recombinant L. lactis strains. These protective effects correlated with a significant up-regulation of regulatory T cells in the mesenteric lymph nodes.Oral pretreatment with live recombinant L. lactis prevented the development of allergen-induced airway inflammation primarily by the induction of specific mucosal immune tolerance.

  14. The role of GABAB(1) receptor isoforms in anxiety and depression : genetic and pharmacological studies in the mouse

    OpenAIRE

    Jacobson, Laura Helen

    2007-01-01

    Anxiety and depression disorders represent common, serious and growing health problems world-wide. The neurobiological basis of anxiety and depression, however, remains poorly understood. Further, there is a clear need for the development of better treatments for these disorders. Emerging data with genetic and pharmacological tools supports a role for GABAB receptors in both anxiety and depression. GABAB receptors are metabotropic GABA receptors that are comprised of two subunits, GABAB1 and ...

  15. Genetics of Adverse Reactions to Haloperidol in a Mouse Diallel: A Drug–Placebo Experiment and Bayesian Causal Analysis

    Science.gov (United States)

    Crowley, James J.; Kim, Yunjung; Lenarcic, Alan B.; Quackenbush, Corey R.; Barrick, Cordelia J.; Adkins, Daniel E.; Shaw, Ginger S.; Miller, Darla R.; de Villena, Fernando Pardo-Manuel; Sullivan, Patrick F.; Valdar, William

    2014-01-01

    Haloperidol is an efficacious antipsychotic drug that has serious, unpredictable motor side effects that limit its utility and cause noncompliance in many patients. Using a drug–placebo diallel of the eight founder strains of the Collaborative Cross and their F1 hybrids, we characterized aggregate effects of genetics, sex, parent of origin, and their combinations on haloperidol response. Treating matched pairs of both sexes with drug or placebo, we measured changes in the following: open field activity, inclined screen rigidity, orofacial movements, prepulse inhibition of the acoustic startle response, plasma and brain drug level measurements, and body weight. To understand the genetic architecture of haloperidol response we introduce new statistical methodology linking heritable variation with causal effect of drug treatment. Our new estimators, “difference of models” and “multiple-impute matched pairs”, are motivated by the Neyman–Rubin potential outcomes framework and extend our existing Bayesian hierarchical model for the diallel (Lenarcic et al. 2012). Drug-induced rigidity after chronic treatment was affected by mainly additive genetics and parent-of-origin effects (accounting for 28% and 14.8% of the variance), with NZO/HILtJ and 129S1/SvlmJ contributions tending to increase this side effect. Locomotor activity after acute treatment, by contrast, was more affected by strain-specific inbreeding (12.8%). In addition to drug response phenotypes, we examined diallel effects on behavior before treatment and found not only effects of additive genetics (10.2–53.2%) but also strong effects of epistasis (10.64–25.2%). In particular: prepulse inhibition showed additivity and epistasis in about equal proportions (26.1% and 23.7%); there was evidence of nonreciprocal epistasis in pretreatment activity and rigidity; and we estimated a range of effects on body weight that replicate those found in our previous work. Our results provide the first

  16. Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans

    Directory of Open Access Journals (Sweden)

    Veronica Codoni

    2016-10-01

    Full Text Available Macrophages are key players involved in numerous pathophysiological pathways and an in-depth characterization of their gene regulatory networks can help in better understanding how their dysfunction may impact on human diseases. We here conducted a cross-species network analysis of macrophage gene expression data between human and mouse to identify conserved networks across both species, and assessed whether such networks could reveal new disease-associated regulatory mechanisms. From a sample of 684 individuals processed for genome-wide macrophage gene expression profiling, we identified 27 groups of coexpressed genes (modules. Six modules were found preserved (P < 10−4 in macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was significantly [false discovery rate (FDR = 8.9 × 10−11] enriched for genes belonging to the oxidative phosphorylation (OXPHOS pathway. This pathway was also found significantly (FDR < 10−4 enriched in susceptibility genes for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This analysis identified the PARK2 rs192804963 as a trans-acting variant influencing (minimal P-value = 4.3 × 10−8 the expression of most OXPHOS genes in humans. Further experimental work demonstrated that PARK2 knockdown expression was associated with increased OXPHOS gene expression in THP1 human macrophages. This work provided strong new evidence that PARK2 participates to the regulatory networks associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans.

  17. Genetic and Informatic Analyses Implicate Kif12 as a Candidate Gene within the Mpkd2 Locus That Modulates Renal Cystic Disease Severity in the Cys1cpk Mouse.

    Directory of Open Access Journals (Sweden)

    Michal Mrug

    Full Text Available We have previously mapped the interval on Chromosome 4 for a major polycystic kidney disease modifier (Mpkd of the B6(Cg-Cys1cpk/J mouse model of recessive polycystic kidney disease (PKD. Informatic analyses predicted that this interval contains at least three individual renal cystic disease severity-modulating loci (Mpkd1-3. In the current study, we provide further validation of these predicted effects using a congenic mouse line carrying the entire CAST/EiJ (CAST-derived Mpkd1-3 interval on the C57BL/6J background. We have also generated a derivative congenic line with a refined CAST-derived Mpkd1-2 interval and demonstrated its dominantly-acting disease-modulating effects (e.g., 4.2-fold increase in total cyst area; p<0.001. The relative strength of these effects allowed the use of recombinants from these crosses to fine map the Mpkd2 effects to a <14 Mbp interval that contains 92 RefSeq sequences. One of them corresponds to the previously described positional Mpkd2 candidate gene, Kif12. Among the positional Mpkd2 candidates, only expression of Kif12 correlates strongly with the expression pattern of Cys1 across multiple anatomical nephron structures and developmental time points. Also, we demonstrate that Kif12 encodes a primary cilium-associated protein. Together, these data provide genetic and informatic validation of the predicted renal cystic disease-modulating effects of Mpkd1-3 loci and implicate Kif12 as the candidate locus for Mpkd2.

  18. Mild myopathy is associated with COMP but not MATN3 mutations in mouse models of genetic skeletal diseases.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Piróg

    Full Text Available Pseudoachondroplasia (PSACH and multiple epiphyseal dysplasia (MED are skeletal disorders resulting from mutations in COMP, matrilin-3 or collagen IX and are characterised by short-limbed dwarfism and premature osteoarthritis. Interestingly, recent reports suggest patients can also manifest with muscle weakness. Here we present a detailed analysis of two mouse models of the PSACH/MED disease spectrum; ΔD469 T3-COMP (PSACH and V194D matrilin-3 (MED. In grip test experiments T3-COMP mice were weaker than wild-type littermates, whereas V194D mice behaved as controls, confirming that short-limbed dwarfism alone does not contribute to PSACH/MED-related muscle weakness. Muscles from T3-COMP mice showed an increase in centronuclear fibers at the myotendinous junction. T3-COMP tendons became more lax in cyclic testing and showed thicker collagen fibers when compared with wild-type tissue; matrilin-3 mutant tissues were indistinguishable from controls. This comprehensive study of the myopathy associated with PSACH/MED mutations enables a better understanding of the disease progression, confirms that it is genotype specific and that the limb weakness originates from muscle and tendon pathology rather than short-limbed dwarfism itself. Since some patients are primarily diagnosed with neuromuscular symptoms, this study will facilitate better awareness of the differential diagnoses that might be associated with the PSACH/MED spectrum and subsequent care of PSACH/MED patients.

  19. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  20. Fine genetic map of mouse chromosome 10 around the polycystic kidney disease gene, jcpk, and ankyrin 3

    Energy Technology Data Exchange (ETDEWEB)

    Bryda, E.C.; Ling, H.; Rathbun, D.E. [New York State Department of Health, Albany, NY (United States)] [and others

    1996-08-01

    A chlorambucil (CHL)-induced mutation of the jcpk (juvenile congenital polycystic kidney disease) gene causes a severe early onset polycystic kidney disease. In an intercross involving Mus musculus castaneus, jcpk was precisely mapped 0.2 cM distal to D10Mit115 and 0.8 cM proximal to D10Mit173. In addition, five genes, Cdc2a, Col6al, Col6a2, Bcr, and Ank3 were mapped in both this jcpk intercross and a (BALB/c X CAST/Ei)F{sub 1} x BALB/c backcross. All five genes were eliminated as possible candidates for jcpk based on the mapping data. The jcpk intercross allowed the orientation of the Ank3 gene relative to the centromere to be determined. D10Mit115, D10Mit173, D10Mit199, and D10Mit200 were separated genetically in this cross. The order and genetic distances of all markers and gene loci mapped in the jcpk intercross were consistent with those derived from the BALB/c backcross, indicating that the CHL-induced lesion has not generated any gross chromosomal abnormalities detectable in these studies. 39 refs., 3 figs.

  1. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.

    Science.gov (United States)

    Cooper, Colin S; Eeles, Rosalind; Wedge, David C; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G; Camacho, Niedzica; Massie, Charlie E; Kay, Jonathan; Luxton, Hayley J; Edwards, Sandra; Kote-Jarai, ZSofia; Dennis, Nening; Merson, Sue; Leongamornlert, Daniel; Zamora, Jorge; Corbishley, Cathy; Thomas, Sarah; Nik-Zainal, Serena; O'Meara, Sarah; Matthews, Lucy; Clark, Jeremy; Hurst, Rachel; Mithen, Richard; Bristow, Robert G; Boutros, Paul C; Fraser, Michael; Cooke, Susanna; Raine, Keiran; Jones, David; Menzies, Andrew; Stebbings, Lucy; Hinton, Jon; Teague, Jon; McLaren, Stuart; Mudie, Laura; Hardy, Claire; Anderson, Elizabeth; Joseph, Olivia; Goody, Victoria; Robinson, Ben; Maddison, Mark; Gamble, Stephen; Greenman, Christopher; Berney, Dan; Hazell, Steven; Livni, Naomi; Fisher, Cyril; Ogden, Christopher; Kumar, Pardeep; Thompson, Alan; Woodhouse, Christopher; Nicol, David; Mayer, Erik; Dudderidge, Tim; Shah, Nimish C; Gnanapragasam, Vincent; Voet, Thierry; Campbell, Peter; Futreal, Andrew; Easton, Douglas; Warren, Anne Y; Foster, Christopher S; Stratton, Michael R; Whitaker, Hayley C; McDermott, Ultan; Brewer, Daniel S; Neal, David E

    2015-04-01

    Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.

  2. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy.

    Science.gov (United States)

    du Toit, Nina; van Vuuren, Bettine Jansen; Matthee, Sonja; Matthee, Conrad A

    2012-10-01

    Within southern Africa, a link between past climatic changes and faunal diversification has been hypothesized for a diversity of taxa. To test the hypothesis that evolutionary divergences may be correlated to vegetation changes (induced by changes in climate), we selected the widely distributed four-striped mouse, Rhabdomys, as a model. Two species are currently recognized, the mesic-adapted R. dilectus and arid-adapted R. pumilio. However, the morphology-based taxonomy and the distribution boundaries of previously described subspecies remain poorly defined. The current study, which spans seven biomes, focuses on the spatial genetic structure of the arid-adapted R. pumilio (521 specimens from 31 localities), but also includes limited sampling of the mesic-adapted R. dilectus (33 specimens from 10 localities) to act as a reference for interspecific variation within the genus. The mitochondrial COI gene and four nuclear introns (Eef1a1, MGF, SPTBN1, Bfib7) were used for the construction of gene trees. Mitochondrial DNA analyses indicate that Rhabdomys consists of four reciprocally monophyletic, geographically structured clades, with three distinct lineages present within the arid-adapted R. pumilio. These monophyletic lineages differ by at least 7.9% (±0.3) and these results are partly confirmed by a multilocus network of the combined nuclear intron dataset. Ecological niche modeling in MaxEnt supports a strong correlation between regional biomes and the distribution of distinct evolutionary lineages of Rhabdomys. A Bayesian relaxed molecular clock suggests that the geographic clades diverged between 3.09 and 4.30Ma, supporting the hypothesis that the radiation within the genus coincides with paleoclimatic changes (and the establishment of the biomes) characterizing the Miocene-Pliocene boundary. Marked genetic divergence at the mitochondrial DNA level, coupled with strong nuclear and mtDNA signals of non-monophyly of R. pumilio, support the notion that a taxonomic

  3. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies.

    Science.gov (United States)

    Fang, Bingliang

    2016-01-01

    Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology

  4. Myostatin genetic inactivation inhibits myogenesis by muscle-derived stem cells in vitro but not when implanted in the mdx mouse muscle

    Science.gov (United States)

    2013-01-01

    Introduction Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). Methods To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis. Results Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages. The genetic inactivation of myostatin in MDSCs was associated with silencing of critical genes for early myogenesis (Actc1, Acta1, and MyoD). WT MDSCs implanted into the injured gastrocnemius of aged mdx mice significantly improved myofiber repair and reduced fat deposition and, to a lesser extent, fibrosis. In contrast to their in vitro behavior, Mst KO MDSCs in vivo also significantly improved myofiber repair, but had few effects on lipofibrotic degeneration. Conclusions Although WT MDSCs are very myogenic in culture and stimulate muscle repair after injury in the aged mdx mouse, myostatin genetic inactivation blocks myotube formation in vitro, but the myogenic capacity is recovered in vivo under the influence of the myostatin+ host-tissue environment, presumably by reactivation of key genes originally silenced in the Mst KO MDSCs. PMID:23295128

  5. Nanoparticle-mediated knockdown of DNA repair sensitizes cells to radiotherapy and extends survival in a genetic mouse model of glioblastoma.

    Science.gov (United States)

    Kievit, Forrest M; Wang, Kui; Ozawa, Tatsuya; Tarudji, Aria W; Silber, John R; Holland, Eric C; Ellenbogen, Richard G; Zhang, Miqin

    2017-10-01

    Glioblastoma (GBM) remains incurable, and recurrent tumors rarely respond to standard-of-care radiation and chemo-therapies. Therefore, strategies that enhance the effects of these therapies should provide significant benefits to GBM patients. We have developed a nanoparticle delivery vehicle that can stably bind and protect nucleic acids for specific delivery into brain tumor cells. These nanoparticles can deliver therapeutic siRNAs to sensitize GBM cells to radiotherapy and improve GBM treatment via systemic administration. We show that nanoparticle-mediated knockdown of the DNA repair protein apurinic endonuclease 1 (Ape1) sensitizes GBM cells to radiotherapy and extend survival in a genetic mouse model of GBM. Specific knockdown of Ape1 activity by 30% in brain tumor tissue doubled the extended survival achieved with radiotherapy alone. Ape1 is a promising target for increasing the effectiveness of radiotherapy, and nanoparticle-mediated delivery of siRNA is a promising strategy for tumor specific knockdown of Ape1. Copyright © 2017. Published by Elsevier Inc.

  6. Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model.

    Science.gov (United States)

    Lemasson, Benjamin; Wang, Hanxiao; Galbán, Stefanie; Li, Yinghua; Zhu, Yuan; Heist, Kevin A; Tsein, Christina; Chenevert, Thomas L; Rehemtulla, Alnawaz; Galbán, Craig J; Holland, Eric C; Ross, Brian D

    2016-02-01

    Despite the use of ionizing radiation (IR) and temozolomide (TMZ), outcome for glioblastoma (GBM) patients remains dismal. Poly (ADP-ribose) polymerase (PARP) is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model

    Directory of Open Access Journals (Sweden)

    Benjamin Lemasson

    2016-02-01

    Full Text Available Despite the use of ionizing radiation (IR and temozolomide (TMZ, outcome for glioblastoma (GBM patients remains dismal. Poly (ADP-ribose polymerase (PARP is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM.

  8. Molecular and genetic characterization of a radiation-induced structural rearrangement in mouse chromosome 2 causing mutations at the limb deformity and agouti loci

    International Nuclear Information System (INIS)

    Woychik, R.P.; Generoso, W.M.; Russell, L.B.; Cain, K.T.; Cacheiro, N.L.; Bultman, S.J.; Selby, P.B.; Dickinson, M.E.; Hogan, B.L.

    1990-01-01

    Molecular characterization of mutations in the mouse, particularly those involving agent-induced major structural alterations, is proving to be useful for correlating the structure and expression of individual genes with their function in the whole organism. Here we present the characterization of a radiation-induced mutation that simultaneously generated distinct alleles of both the limb deformity (ld) and agouti (a) loci, two developmentally important regions of chromosome 2 normally separated by 20 centimorgans. Cytogenetic analysis revealed that an interstitial segment of chromosome 17 (17B- 17C; or, possibly, 17A2-17B) had been translocated into the distal end of chromosome 2, resulting in a smaller-than-normal chromosome 17 (designated 17del) and a larger form of chromosome 2 designated 2(17). Additionally, a large interstitial segment of the 2(17) chromosome, immediately adjacent and proximal to the insertion site, did not match bands 2E4-2H1 at corresponding positions on a normal chromosome 2. Molecular analysis detected a DNA rearrangement in which a portion of the ld locus was joined to sequences normally tightly linked to the a locus. This result, along with the genetic and cytogenetic data, suggests that the alleles of ld and a in this radiation-induced mutation, designated ldIn2 and ajIn2, were associated with DNA breaks caused by an inversion of an interstitial segment in the 2(17) chromosome

  9. Post-Glacial Expansion and Population Genetic Divergence of Mangrove Species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican Coast

    Science.gov (United States)

    Sandoval-Castro, Eduardo; Dodd, Richard S.; Riosmena-Rodríguez, Rafael; Enríquez-Paredes, Luis Manuel; Tovilla-Hernández, Cristian; López-Vivas, Juan Manuel; Aguilar-May, Bily; Muñiz-Salazar, Raquel

    2014-01-01

    Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans. PMID:24699389

  10. Specific-locus mutation frequencies in mouse stem-cell spermatogonia at very low radiation dose rates, and their use in the estimation of genetic hazards of radiation in man

    International Nuclear Information System (INIS)

    Russell, W.L.; Kelly, E.M.

    1982-01-01

    Experiments were undertaken to augment the information on the lowest radiation dose rates feasible for scoring transmitted induced mutations detected by the specific-locus method in the mouse. This is the type of information most suitable for estimating genetic hazards of radiation in man. The results also aid in resolving conflicting possibilities about the relationship between mutation frequency and radiation dose at low dose rates

  11. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts

    Science.gov (United States)

    Zherdeva, Victoria; Kazachkina, Natalia I.; Shcheslavskiy, Vladislav; Savitsky, Alexander P.

    2018-03-01

    Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.

  12. Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease.

    Science.gov (United States)

    Willebrords, Joost; Maes, Michaël; Pereira, Isabel Veloso Alves; da Silva, Tereza Cristina; Govoni, Veronica Mollica; Lopes, Valéria Veras; Crespo Yanguas, Sara; Shestopalov, Valery I; Nogueira, Marina Sayuri; de Castro, Inar Alves; Farhood, Anwar; Mannaerts, Inge; van Grunsven, Leo; Akakpo, Jephte; Lebofsky, Margitta; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2018-03-01

    Pannexins are transmembrane proteins that form communication channels connecting the cytosol of an individual cell with its extracellular environment. A number of studies have documented the presence of pannexin1 in liver as well as its involvement in inflammatory responses. In this study, it was investigated whether pannexin1 plays a role in acute liver failure and non-alcoholic steatohepatitis, being prototypical acute and chronic liver pathologies, respectively, both featured by liver damage, oxidative stress and inflammation. To this end, wild-type and pannexin1 -/- mice were overdosed with acetaminophen for 1, 6, 24 or 48h or were fed a choline-deficient high-fat diet for 8weeks. Evaluation of the effects of genetic pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, lipid accumulation, protein adduct formation, oxidative stress and inflammation. In parallel, in order to elucidate molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. The results of this study show that pannexin1 -/- diseased mice present less liver damage and oxidative stress, while inflammation was only decreased in pannexin1 -/- mice in which non-alcoholic steatohepatitis was induced. A multitude of genes related to inflammation, oxidative stress and xenobiotic metabolism were differentially modulated in both liver disease models in wild-type and in pannexin1 -/- mice. Overall, the results of this study suggest that pannexin1 may play a role in the pathogenesis of liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    Science.gov (United States)

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M.; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells we targeted HER2-positive OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2-positive canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy prior to conducting studies in humans. PMID:25198528

  14. Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice.

    Directory of Open Access Journals (Sweden)

    Yusuke Echigoya

    Full Text Available Duchenne muscular dystrophy (DMD, one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs, as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23 and mdx52 mice (containing deletion mutation of exon 52 with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.

  15. When public health and genetic privacy collide: positive and normative theories explaining how ACA's expansion of corporate wellness programs conflicts with GINA's privacy rules.

    Science.gov (United States)

    Bard, Jennifer S

    2011-01-01

    The Patient Protection and Affordable Care Act of 2010 (ACA) contains many provisions intended to increase access to and lower the cost of health care by adopting public health measures. One of these promotes the use of at-work wellness programs by both providing employers with grants to develop these programs and also increasing their ability to tie the price employees pay for health insurance for participating in these programs and meeting specific health goals. Yet despite ACA's specific alteration of three different statues which had in the past shielded employees from having to contribute to the cost of their health insurance based on their achieving employer-designated health markers, it chose to leave alone recently enacted rules implementing the Genetic Non-Discrimination Act (GINA), which prohibits employers from asking employees about their family health history in any context, including assessing their risk for setting wellness targets. This article reviews how both the changes made by ACA and the restrictions recently put place by GINA will affect the way employers are likely to structure Wellness Programs. It also considers how these changes reflect the competing social goals of both ACA, which seeks to expand access to the population by lowering costs, and GINA, which seeks to protect individuals from discrimination. It does so by analyzing both positive theories about how these new laws will function and normative theories explaining the likelihood of future friction between the interests of the population of the United States as a whole who are in need of increased and affordable access to health care, and of the individuals living in this country who risk discrimination, as science and medicine continue to make advances in linking genetic make-up to risk of future illness. © 2011 American Society of Law, Medicine & Ethics, Inc.

  16. Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q.

    Science.gov (United States)

    Seldin, M F; Morse, H C; LeBoeuf, R C; Steinberg, A D

    1988-01-01

    A linkage map of distal mouse chromosome 1 was constructed by restriction fragment length polymorphism analysis of DNAs from seven sets of recombinant inbred (RI) strains. The data obtained with seven probes on Southern hybridization combined with data from previous studies suggest the gene order Cfh, Pep-3/Ren-1,2, Ly-5, Lamb-2, At-3, Apoa-2/Ly-17,Spna-1. These results confirm and extend analyses of a large linkage group which includes genes present on a 20-30 cM span of mouse chromosome 1 and those localized to human chromosome 1q21-32. Moreover, the data indicate similar relative positions of human and mouse complement receptor-related genes REN, CD45, LAMB2, AT3, APOA2, and SPTA. These results suggest that mouse gene analyses may help in detailed mapping of human genes within such a syntenic group.

  17. Developmental defects and genomic instability after x-irradiation of wild-type and genetically modified mouse pre-implantation and early post-implantation embryos

    International Nuclear Information System (INIS)

    Jacquet, P

    2012-01-01

    Results obtained from the end of the 1950s suggested that ionizing radiation could induce foetal malformations in some mouse strains when administered during early pre-implantation stages. Starting in 1989, data obtained in Germany also showed that radiation exposure during that period could lead to a genomic instability in the surviving foetuses. Furthermore, the same group reported that both malformations and genomic instability could be transmitted to the next generation foetuses after exposure of zygotes to relatively high doses of radiation. As such results were of concern for radiation protection, we investigated this in more detail during recent years, using mice with varying genetic backgrounds including mice heterozygous for mutations involved in important cellular processes like DNA repair, cell cycle regulation or apoptosis. The main parameters which were investigated included morphological development, genomic instability and gene expression in the irradiated embryos or their own progeny. The aim of this review is to critically reassess the results obtained in that field in the different laboratories and to try to draw general conclusions on the risks of developmental defects and genomic instability from an exposure of early embryos to moderate doses of ionizing radiation. Altogether and in the range of doses normally used in diagnostic radiology, the risk of induction of embryonic death and of congenital malformation following the irradiation of a newly fertilised egg is certainly very low when compared to the ‘spontaneous’ risks for such effects. Similarly, the risk of radiation induction of a genomic instability under such circumstances seems to be very small. However, this is not a reason to not apply some precaution principles when possible. One way of doing this is to restrict the use of higher dose examinations on all potentially pregnant women to the first ten days of their menstrual cycle when conception is very unlikely to have occurred

  18. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the "weaver" mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor.

    Science.gov (United States)

    Botsakis, Konstantinos; Mourtzi, Theodora; Panagiotakopoulou, Vasiliki; Vreka, Malamati; Stathopoulos, Georgios T; Pediaditakis, Iosif; Charalampopoulos, Ioannis; Gravanis, Achilleas; Delis, Foteini; Antoniou, Katerina; Zisimopoulos, Dimitrios; Georgiou, Christos D; Panagopoulos, Nikolaos T; Matsokis, Nikolaos; Angelatou, Fevronia

    2017-07-15

    Neurotrophic factors are among the most promising treatments aiming at slowing or stopping and even reversing Parkinson's disease (PD). However, in most cases, they cannot readily cross the human blood-brain-barrier (BBB). Herein, we propose as a therapeutic for PD the small molecule 17-beta-spiro-[5-androsten-17,2'-oxiran]-3beta-ol (BNN-20), a synthetic analogue of DHEA, which crosses the BBB and is deprived of endocrine side-effects. Using the "weaver" mouse, a genetic model of PD, which exhibits progressive dopaminergic neurodegeneration in the Substantia Nigra (SN), we have shown that long-term administration (P1-P21) of BNN-20 almost fully protected the dopaminergic neurons and their terminals, via i) a strong anti-apoptotic effect, probably mediated through the Tropomyosin receptor kinase B (TrkB) neurotrophin receptor's PI3K-Akt-NF-κB signaling pathway, ii) by exerting an efficient antioxidant effect, iii) by inducing significant anti-inflammatory activity and iv) by restoring Brain-Derived Neurotrophic Factor (BDNF) levels. By intercrossing "weaver" with NGL mice (dual GFP/luciferase-NF-κΒ reporter mice, NF-κΒ.GFP.Luc), we obtained Weaver/NGL mice that express the NF-κB reporter in all somatic cells. Acute BNN-20 administration to Weaver/NGL mice induced a strong NF-κB-dependent transcriptional response in the brain as detected by bioluminescence imaging, which was abolished by co-administration of the TrkB inhibitor ANA-12. This indicates that BNN-20 exerts its beneficial action (at least in part) through the TrkB-PI3K-Akt-NF-κB signaling pathway. These results could be of clinical relevance, as they suggest BNN-20 as an important neuroprotective agent acting through the TrkB neurotrophin receptor pathway, mimicking the action of the endogenous neurotrophin BDNF. Thus BNN-20 could be proposed for treatment of PD. Copyright © 2017. Published by Elsevier Ltd.

  19. Fork stalling and template switching as a mechanism for polyalanine tract expansion affecting the DYC mutant of HOXD13, a new murine model of synpolydactyly.

    Science.gov (United States)

    Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann

    2009-09-01

    Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.

  20. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington's Disease Knock-In Mice.

    Science.gov (United States)

    Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C; Pinto, Ricardo Mouro

    2017-02-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. Copyright © 2017 by the Genetics Society of America.

  1. Evaluation of the Genetic and Nutritional Control of Obesity and Type 2 Diabetes in a Novel Mouse Model on Chromosome 7: An Insight into Insulin Signaling and Glucose Homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.; Dhar, M.

    2003-01-01

    Obesity is the main cause of type 2 diabetes, accounting for 90-95% of all diabetes cases in the US. Human obesity is a complex trait and can be studied using appropriate mouse models. A novel polygenic mouse model for studying the genetic and environmental contributions to and the physiological ramifications of obesity and related phenotypes is found in specific lines of mice bred and maintained at Oak Ridge National Laboratory. Heterozygous mice with a maternally inherited copy of two radiation-induced deletions in the p region of mouse chromosome 7, p23DFioD and p30PUb, have significantly greater body fat and show hyperinsulinemia compared to the wild-type. A single gene, Atp10c, maps to this critical region and codes for a putative aminophospholipid translocase. Biochemical and molecular studies were initiated to gain insight into obesity and glucose homeostasis in these animals and to study the biological role of Atp10c in creating these phenotypes. Glucose and insulin tolerance tests were standardized for the heterozygous p23DFioD and control mice on a custom-made diet containing 20% protein, 70% carbohydrate, and 10% fat (kcal). Atp10c expression profiles were also generated using Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR). Heterozygous p23DFioD animals showed insulin resistance after receiving a dose of either 0.375 or 0.75 U/kg Illetin R insulin. RT-PCR data also shows differences in Atp10c expression in the mutants versus control mice. Using these standardized biochemical assays, future studies will further the understanding of genetic and nutritional controls of glucose homeostasis and obesity in animal models and subsequently in human populations.

  2. A Comparison Between House Mouse Lines Selected for Attack Latency or Nest-Building : Evidence for a Genetic Basis of Alternative Behavioral Strategies

    NARCIS (Netherlands)

    Sluyter, Frans; Bult, Abel; Lynch, Carol B.; Oortmerssen, Geert A. van; Koolhaas, Jaap M.

    House mouse lines bidirectionally selected for either nest-building behavior or attack latency were tested for both attack latency and nest-building behavior under identical conditions. Male mice selected for high nest-building behavior had shorter attack latencies, i.e., were more aggressive, than

  3. Histochemical studies on genetical control of hormonal enzyme inducibility in the mouse. IV: Cellular localization of androgen sensitive nonspecific esterase in the epididymis

    DEFF Research Database (Denmark)

    Kirkeby, S; Blecher, S R

    1981-01-01

    Nonspecific esterase of mouse epididymis has previously been studied histochemically, using alpha naphthyl-acetate and 5-bromoindoxyl acetate techniques, as well as certain inhibitors. Epithelial cell types of the epididymis have been characterized, and certain esterase isozymes in a particular...

  4. IL-10 Production Is Critical for Sustaining the Expansion of CD5+ B and NKT Cells and Restraining Autoantibody Production in Congenic Lupus-Prone Mice.

    Directory of Open Access Journals (Sweden)

    Yuriy Baglaenko

    Full Text Available The development and progression of systemic lupus erythematosus is mediated by the complex interaction of genetic and environmental factors. To decipher the genetics that contribute to pathogenesis and the production of pathogenic autoantibodies, our lab has focused on the generation of congenic lupus-prone mice derived from the New Zealand Black (NZB strain. Previous work has shown that an NZB-derived chromosome 4 interval spanning 32 to 151 Mb led to expansion of CD5+ B and Natural Killer T (NKT cells, and could suppress autoimmunity when crossed with a lupus-prone mouse strain. Subsequently, it was shown that CD5+ B cells but not NKT cells derived from these mice could suppress the development of pro-inflammatory T cells. In this paper, we aimed to further resolve the genetics that leads to expansion of these two innate-like populations through the creation of additional sub-congenic mice and to characterize the role of IL-10 in the suppression of autoimmunity through the generation of IL-10 knockout mice. We show that expansion of CD5+ B cells and NKT cells localizes to a chromosome 4 interval spanning 91 to 123 Mb, which is distinct from the region that mediates the majority of the suppressive phenotype. We also demonstrate that IL-10 is critical to restraining autoantibody production and surprisingly plays a vital role in supporting the expansion of innate-like populations.

  5. IL-10 Production Is Critical for Sustaining the Expansion of CD5+ B and NKT Cells and Restraining Autoantibody Production in Congenic Lupus-Prone Mice.

    Science.gov (United States)

    Baglaenko, Yuriy; Manion, Kieran P; Chang, Nan-Hua; Gracey, Eric; Loh, Christina; Wither, Joan E

    2016-01-01

    The development and progression of systemic lupus erythematosus is mediated by the complex interaction of genetic and environmental factors. To decipher the genetics that contribute to pathogenesis and the production of pathogenic autoantibodies, our lab has focused on the generation of congenic lupus-prone mice derived from the New Zealand Black (NZB) strain. Previous work has shown that an NZB-derived chromosome 4 interval spanning 32 to 151 Mb led to expansion of CD5+ B and Natural Killer T (NKT) cells, and could suppress autoimmunity when crossed with a lupus-prone mouse strain. Subsequently, it was shown that CD5+ B cells but not NKT cells derived from these mice could suppress the development of pro-inflammatory T cells. In this paper, we aimed to further resolve the genetics that leads to expansion of these two innate-like populations through the creation of additional sub-congenic mice and to characterize the role of IL-10 in the suppression of autoimmunity through the generation of IL-10 knockout mice. We show that expansion of CD5+ B cells and NKT cells localizes to a chromosome 4 interval spanning 91 to 123 Mb, which is distinct from the region that mediates the majority of the suppressive phenotype. We also demonstrate that IL-10 is critical to restraining autoantibody production and surprisingly plays a vital role in supporting the expansion of innate-like populations.

  6. Shrub expansion in SW Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Halfdan

    Arctic regions have experienced higher temperatures in recent decades, and the warming trend is projected to continue in the coming years. Arctic ecosystems are considered to be particularly vulnerable to climate change. Expansion of shrubs has been observed widely in tundra areas across the Arctic......, and has a range of ecosystem effects where it occurs. Shrub expansion has to a large extend been attributed to increasing temperatures over the past century, while grazing and human disturbance have received less attention. Alnus viridis ssp. crispa is a common arctic species that contributes...... to increasing shrub cover. Despite this, there is only limited experimental evidence that growth of the species responds to warming. Plant populations in fragmented and isolated locations could face problems adapting to a warming climate due to limited genetic variation and restricted migration from southern...

  7. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W

    1997-01-01

    . To analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin...... was specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation...

  8. Utrophin Compensates dystrophin Loss during Mouse Spermatogenesis

    OpenAIRE

    Chen, Hung-Chih; Chin, Yu-Feng; Lundy, David J.; Liang, Chung-Tiang; Chi, Ya-Hui; Kuo, Paolin; Hsieh, Patrick C. H.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder resulting from mutations in the dystrophin gene. The mdx/utrn ?/? mouse, lacking in both dystrophin and its autosomal homologue utrophin, is commonly used to model the clinical symptoms of DMD. Interestingly, these mice are infertile but the mechanisms underlying this phenomenon remain unclear. Using dystrophin deficient mdx mouse and utrophin haplodeficient mdx/utrn +/? mouse models, we demonstrate the contribution of Dp427 (f...

  9. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  10. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains.

    Science.gov (United States)

    Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K

    2012-07-12

    The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Rescue of Impaired Fear Extinction and Normalization of Cortico-Amygdala Circuit Dysfunction in a Genetic Mouse Model by Dietary Zinc Restriction

    OpenAIRE

    Whittle, Nigel; Hauschild, Markus; Lubec, Gert; Holmes, Andrew; Singewald, Nicolas

    2010-01-01

    Fear extinction is impaired in neuropsychiatric disorders, including posttraumatic stress disorder. Identifying drugs that facilitate fear extinction in animal models provides leads for novel pharmacological treatments for these disorders. Zinc (Zn) is expressed in neurons in a cortico-amygdala circuit mediating fear extinction, and modulates neurotransmitter systems regulating extinction. We previously found that the 129S1/SvImJ mouse strain (S1) exhibited a profound impairment in fear extin...

  12. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  13. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  14. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  15. Genetic Disruption of the Sh3pxd2a Gene Reveals an Essential Role in Mouse Development and the Existence of a Novel Isoform of Tks5

    OpenAIRE

    Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A.; Díaz, Begoña

    2014-01-01

    Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulte...

  16. Convergence of mayer expansions

    International Nuclear Information System (INIS)

    Brydges, D.C.

    1986-01-01

    The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained

  17. Genetic Recombination Between Stromal and Cancer Cells Results in Highly Malignant Cells Identified by Color-Coded Imaging in a Mouse Lymphoma Model.

    Science.gov (United States)

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kousuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-12-01

    The tumor microenvironment (TME) promotes tumor growth and metastasis. We previously established the color-coded EL4 lymphoma TME model with red fluorescent protein (RFP) expressing EL4 implanted in transgenic C57BL/6 green fluorescent protein (GFP) mice. Color-coded imaging of the lymphoma TME suggested an important role of stromal cells in lymphoma progression and metastasis. In the present study, we used color-coded imaging of RFP-lymphoma cells and GFP stromal cells to identify yellow-fluorescent genetically recombinant cells appearing only during metastasis. The EL4-RFP lymphoma cells were injected subcutaneously in C57BL/6-GFP transgenic mice and formed subcutaneous tumors 14 days after cell transplantation. The subcutaneous tumors were harvested and transplanted to the abdominal cavity of nude mice. Metastases to the liver, perigastric lymph node, ascites, bone marrow, and primary tumor were imaged. In addition to EL4-RFP cells and GFP-host cells, genetically recombinant yellow-fluorescent cells, were observed only in the ascites and bone marrow. These results indicate genetic exchange between the stromal and cancer cells. Possible mechanisms of genetic exchange are discussed as well as its ramifications for metastasis. J. Cell. Biochem. 118: 4216-4221, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model.

    Science.gov (United States)

    Haybaeck, Johannes; Stumptner, Cornelia; Thueringer, Andrea; Kolbe, Thomas; Magin, Thomas M; Hesse, Michael; Fickert, Peter; Tsybrovskyy, Oleksiy; Müller, Heimo; Trauner, Michael; Zatloukal, Kurt; Denk, Helmut

    2012-06-01

    Keratin 8 (K8) and keratin 18 (K18) form the major hepatocyte cytoskeleton. We investigated the impact of genetic loss of either K8 or K18 on liver homeostasis under toxic stress with the hypothesis that K8 and K18 exert different functions. krt8⁻/⁻ and krt18⁻/⁻ mice crossed into the same 129-ola genetic background were treated by acute and chronic administration of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC). In acutely DDC-intoxicated mice, macrovesicular steatosis was more pronounced in krt8⁻/⁻ and krt18⁻/⁻ compared with wild-type (wt) animals. Mallory-Denk bodies (MDBs) appeared in krt18⁻/⁻ mice already at an early stage of intoxication in contrast to krt8⁻/⁻ mice that did not display MDB formation when fed with DDC. Keratin-deficient mice displayed significantly lower numbers of apoptotic hepatocytes than wt animals. krt8⁻/⁻, krt18⁻/⁻ and control mice displayed comparable cell proliferation rates. Chronically DDC-intoxicated krt18⁻/⁻ and wt mice showed a similarly increased degree of steatohepatitis with hepatocyte ballooning and MDB formation. In krt8⁻/⁻ mice, steatosis was less, ballooning, and MDBs were absent. krt18⁻/⁻ mice developed MDBs whereas krt8⁻/⁻ mice on the same genetic background did not, highlighting the significance of different structural properties of keratins. They are independent of the genetic background as an intrinsic factor. By contrast, toxicity effects may depend on the genetic background. krt8⁻/⁻ and krt18⁻/⁻ mice on the same genetic background show similar sensitivity to DDC intoxication and almost resemble wt animals regarding survival, degree of porphyria, liver-to-body weight ratio, serum bilirubin and liver enzyme levels. This stands in contrast to previous work where krt8⁻/⁻ and krt18⁻/⁻ mice on different genetic backgrounds were investigated.

  19. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5.

    Science.gov (United States)

    Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A; Díaz, Begoña

    2014-01-01

    Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.

  20. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5.

    Directory of Open Access Journals (Sweden)

    Pilar Cejudo-Martin

    Full Text Available Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.

  1. Radiation-induced genetic instability: no association with changes in radiosensitivity or cell cycle checkpoints in C3H 10T1/2 mouse fibroblasts

    International Nuclear Information System (INIS)

    Crompton, N.E.A.; Emery, G.C.; Shi Yuquan; Sigg, M.; Blattmann, H.

    1998-01-01

    We investigated various phenotypic characteristics of radiation-induced morphologically transformed C3H 10T1/2 mouse fibroblasts. The cells were treated with 8 Gy x-rays, and type II/III foci were isolated. Cell lines were developed from these foci, and subsequently clones were established from these focal lines. The clones were examined for DNA content, radiosensitivity and inducible cell cycle arrests. Besides the morphological changes associated with the transformed state, the major difference between the isolated focal lines or derived clones and the parental C3H 10T1/2 line was one of ploidy. The transformed cells often displayed aneuploid and multiple polyploid populations. No change in the radiosensitivity of the transformed cells was observed. Furthermore, the two major radiation- and staurosporine-induced G1 and G2 cell cycle arrests observed in the parental cell line were also observed in the morphological transformants, suggesting that checkpoint function was normal. (orig.)

  2. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass

    Directory of Open Access Journals (Sweden)

    Vivas Yurena

    2011-12-01

    Full Text Available Abstract Background The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Results Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Conclusions Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.

  3. Alterations of social interaction through genetic and environmental manipulation of the 22q11.2 gene Sept5 in the mouse brain.

    Science.gov (United States)

    Harper, Kathryn M; Hiramoto, Takeshi; Tanigaki, Kenji; Kang, Gina; Suzuki, Go; Trimble, William; Hiroi, Noboru

    2012-08-01

    Social behavior dysfunction is a symptomatic element of schizophrenia and autism spectrum disorder (ASD). Although altered activities in numerous brain regions are associated with defective social cognition and perception, the causative relationship between these altered activities and social cognition and perception-and their genetic underpinnings-are not known in humans. To address these issues, we took advantage of the link between hemizygous deletion of human chromosome 22q11.2 and high rates of social behavior dysfunction, schizophrenia and ASD. We genetically manipulated Sept5, a 22q11.2 gene, and evaluated its role in social interaction in mice. Sept5 deficiency, against a high degree of homogeneity in a congenic genetic background, selectively impaired active affiliative social interaction in mice. Conversely, virally guided overexpression of Sept5 in the hippocampus or, to a lesser extent, the amygdala elevated levels of active affiliative social interaction in C57BL/6J mice. Congenic knockout mice and mice overexpressing Sept5 in the hippocampus or amygdala were indistinguishable from control mice in novelty and olfactory responses, anxiety or motor activity. Moreover, post-weaning individual housing, an environmental condition designed to reduce stress in male mice, selectively raised levels of Sept5 protein in the amygdala and increased active affiliative social interaction in C57BL/6J mice. These findings identify this 22q11.2 gene in the hippocampus and amygdala as a determinant of social interaction and suggest that defective social interaction seen in 22q11.2-associated schizophrenia and ASD can be genetically and environmentally modified by altering this 22q11.2 gene.

  4. Expression quantitative trait loci and genetic regulatory network analysis reveals that Gabra2 is involved in stress responses in the mouse.

    Science.gov (United States)

    Dai, Jiajuan; Wang, Xusheng; Chen, Ying; Wang, Xiaodong; Zhu, Jun; Lu, Lu

    2009-11-01

    Previous studies have revealed that the subunit alpha 2 (Gabra2) of the gamma-aminobutyric acid receptor plays a critical role in the stress response. However, little is known about the gentetic regulatory network for Gabra2 and the stress response. We combined gene expression microarray analysis and quantitative trait loci (QTL) mapping to characterize the genetic regulatory network for Gabra2 expression in the hippocampus of BXD recombinant inbred (RI) mice. Our analysis found that the expression level of Gabra2 exhibited much variation in the hippocampus across the BXD RI strains and between the parental strains, C57BL/6J, and DBA/2J. Expression QTL (eQTL) mapping showed three microarray probe sets of Gabra2 to have highly significant linkage likelihood ratio statistic (LRS) scores. Gene co-regulatory network analysis showed that 10 genes, including Gria3, Chka, Drd3, Homer1, Grik2, Odz4, Prkag2, Grm5, Gabrb1, and Nlgn1 are directly or indirectly associated with stress responses. Eleven genes were implicated as Gabra2 downstream genes through mapping joint modulation. The genetical genomics approach demonstrates the importance and the potential power of the eQTL studies in identifying genetic regulatory networks that contribute to complex traits, such as stress responses.

  5. Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Muta™Mouse transgenic rodent assay

    Energy Technology Data Exchange (ETDEWEB)

    Long, Alexandra S., E-mail: alexandra.long@hc-sc.gc.ca [Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON (Canada); Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON (Canada); Lemieux, Christine L. [Air Health Science Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON (Canada); Arlt, Volker M. [Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King' s College London, London (United Kingdom); White, Paul A. [Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON (Canada); Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON (Canada)

    2016-01-01

    Test batteries to screen chemicals for mutagenic hazard include several endpoints regarded as effective for detecting genotoxic carcinogens. Traditional in vivo methods primarily examine clastogenic endpoints in haematopoietic tissues. Although this approach is effective for identifying systemically distributed clastogens, some mutagens may not induce clastogenic effects; moreover, genotoxic effects may be restricted to the site of contact and/or related tissues. An OECD test guideline for transgenic rodent (TGR) gene mutation assays was released in 2011, and the TGR assays permit assessment of mutagenicity in any tissue. This study assessed the responses of two genotoxicity endpoints following sub-chronic oral exposures of male Muta™Mouse to 9 carcinogenic polycyclic aromatic hydrocarbons (PAHs). Clastogenicity was assessed via induction of micronuclei in peripheral blood, and mutagenicity via induction of lacZ transgene mutations in bone marrow, glandular stomach, small intestine, liver, and lung. Additionally, the presence of bulky PAH-DNA adducts was examined. Five of the 9 PAHs elicited positive results across all endpoints in at least one tissue, and no PAHs were negative or equivocal across all endpoints. All PAHs were positive for lacZ mutations in at least one tissue (sensitivity = 100%), and for 8 PAHs, one or more initial sites of chemical contact (i.e., glandular stomach, liver, small intestine) yielded a greater response than bone marrow. Five PAHs were positive in the micronucleus assay (sensitivity = 56%). Furthermore, all PAHs produced DNA adducts in at least one tissue. The results demonstrate the utility of the TGR assay for mutagenicity assessment, especially for compounds that may not be systemically distributed. - Highlights: • The Muta™Mouse is a reliable tool for in vivo mutagenicity assessment of PAHs. • All 9 PAHs induced lacZ transgene mutations in small intestine. • Only 5 of 9 PAHs induced lacZ mutations and micronuclei in

  6. Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1crv4 mouse model of SCAR13 ataxia.

    Science.gov (United States)

    Bossi, Simone; Musante, Ilaria; Bonfiglio, Tommaso; Bonifacino, Tiziana; Emionite, Laura; Cerminara, Maria; Cervetto, Chiara; Marcoli, Manuela; Bonanno, Giambattista; Ravazzolo, Roberto; Pittaluga, Anna; Puliti, Aldamaria

    2018-01-01

    Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1 crv4/crv4 ) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1 crv4 and Grm5 ko mice to generate double mutants (Grm1 crv4/crv4 Grm5 ko/ko ) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1 crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1 crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1 crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1 crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  8. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  9. A report from the Sixth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Saint Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  10. A mammalian spot test: induction of genetic alterations in pigment cells or mouse embryos with X-rays and chemical mutagens

    International Nuclear Information System (INIS)

    Fahrig, R.

    1975-01-01

    Embryos heterozygous for five recessive coat-color genes from the cross C57 BL/6 J Han x T-stock were X-irradiated with 100 r or treated in utero with 50 mg/kg methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), respectively. Controls consisted of irradiated embryos of C57 BL x C57 BL matings homozygous wild-type for the genes under study, and non-treated offspring of both types of mating. The colors of the spots observed in the adult fur were either due to expression of the recessive coat genes or were white. 1) Irradiated and mutagen-treated offspring of C57 BL x T-stock matings had almost exclusively nonwhite spots, distributed randomly over the mouse surface. 2) Irradiated offspring of C57 BL x C57 BL matings had only white spots which were always midventral. 3) In non-treated offspring of both types of mating no spot could be observed. It is discussed that the white midventral spots are preferentially the result of pigment cell killing, while the nonwhite spots are preferentially the result of gene mutations or recombinational processes like mitotic crossing over and mitotic gene conversion. (orig./BSC) [de

  11. Comprehensive genetic analyses reveal evolutionary distinction of a mouse (Zapus hudsonius preblei) proposed for delisting from the US Endangered Species Act.

    Science.gov (United States)

    King, Tim L; Switzer, John F; Morrison, Cheryl L; Eackles, Michael S; Young, Colleen C; Lubinski, Barbara A; Cryan, Paul

    2006-12-01

    Zapus hudsonius preblei, listed as threatened under the US Endangered Species Act (ESA), is one of 12 recognized subspecies of meadow jumping mice found in North America. Recent morphometric and phylogenetic comparisons among Z. h. preblei and neighbouring conspecifics questioned the taxonomic status of selected subspecies, resulting in a proposal to delist the Z. h. preblei from the ESA. We present additional analyses of the phylogeographic structure within Z. hudsonius that calls into question previously published data (and conclusions) and confirms the original taxonomic designations. A survey of 21 microsatellite DNA loci and 1380 base pairs from two mitochondrial DNA (mtDNA) regions (control region and cytochrome b) revealed that each Z. hudsonius subspecies is genetically distinct. These data do not support the null hypothesis of a homogeneous gene pool among the five subspecies found within the southwestern portion of the species' range. The magnitude of the observed differentiation was considerable and supported by significant findings for nearly every statistical comparison made, regardless of the genome or the taxa under consideration. Structuring of nuclear multilocus genotypes and subspecies-specific mtDNA haplotypes corresponded directly with the disjunct distributions of the subspecies investigated. Given the level of correspondence between the observed genetic population structure and previously proposed taxonomic classification of subspecies (based on the geographic separation and surveys of morphological variation), we conclude that the nominal subspecies surveyed in this study do not warrant synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and Z. h. intermedius.

  12. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.

    2009-01-01

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  13. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  14. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  15. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The Mouse SAGE Site: database of public mouse SAGE libraries

    Czech Academy of Sciences Publication Activity Database

    Divina, Petr; Forejt, Jiří

    2004-01-01

    Roč. 32, - (2004), s. D482-D483 ISSN 0305-1048 R&D Projects: GA MŠk LN00A079; GA ČR GV204/98/K015 Grant - others:HHMI(US) 555000306 Institutional research plan: CEZ:AV0Z5052915 Keywords : mouse SAGE libraries * web -based database Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.260, year: 2004

  17. Genetic variation of an acid phosphatase (Acp-2) in the laboratory rat: possible homology with mouse AP-1 and human ACP2.

    Science.gov (United States)

    Bender, K; Bissbort, S; Kuhn, A; Nagel, M; Günther, E

    1986-02-01

    A genetic locus controlling the electrophoretic mobility of an acid phosphatase in the rat (Rattus norvegicus) is described. The locus, designed Acp-2, is not expressed in erythrocytes but is expressed in all other tissues studied. The product of Acp-2 hydrolyzes a wide variety of phosphate monoesters and is inhibited by L(+)-tartaric acid. Inbred rat strains have fixed either allele Acp-2a or allele Acp-2b. Codominant expression is observed in the respective F1 hybrids. Backcross progenies revealed the expected 1:1 segregation ratio. Possible loose linkage was found between the Acp-2 and the Pep-3 gene loci at a recombination frequency of 0.36 +/- 0.06.

  18. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  19. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  20. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  1. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  2. Murine adipose tissue-derived stromal cell apoptosis and susceptibility to oxidative stress in vitro are regulated by genetic background.

    Directory of Open Access Journals (Sweden)

    Robert Pazdro

    Full Text Available Adipose tissue-derived stromal cells (ADSCs are of interest for regenerative medicine as they are isolated easily and can differentiate into multiple cell lineages. Studies of their in vitro proliferation, survival, and differentiation are common; however, genetic effects on these phenotypes remain unknown. To test if these phenotypes are genetically regulated, ADSCs were isolated from three genetically diverse inbred mouse strains--C57BL/6J (B6, BALB/cByJ (BALB, and DBA/2J (D2--in which genetic regulation of hematopoietic stem function is well known. ADSCs from all three strains differentiated into osteogenic and chondrogenic lineages in vitro. ADSCs from BALB grew least well in vitro, probably due to apoptotic cell death after several days in culture. BALB ADSCs were also the most susceptible to the free radical inducers menadione and H2O2. ADSCs from the three possible F1 hybrids were employed to further define genetic regulation of ADSC phenotypes. D2, but not B6, alleles stimulated ADSC expansion in BALB cells. In contrast, B6, but not D2, alleles rescued BALB H2O2 resistance. We conclude that low oxidative stress resistance does not limit BALB ADSC growth in vitro, as these phenotypes are genetically regulated independently. In addition, ADSCs from these strains are an appropriate model system to investigate genetic regulation of ADSC apoptosis and stress resistance in future studies. Such investigations are essential to optimize cell expansion and differentiation and thus, potential for regenerative medicine.

  3. Thermal expansion data

    International Nuclear Information System (INIS)

    Taylor, D.

    1984-01-01

    This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)

  4. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  5. The immune receptor Trem1 cooperates with diminished DNA damage response to induce preleukemic stem cell expansion.

    Science.gov (United States)

    Du, W; Amarachintha, S; Wilson, A; Pang, Q

    2017-02-01

    Fanconi anemia (FA) is an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Here we investigate the relationship between DNA damage response (DDR) and leukemogenesis using the Fanca knockout mouse model. We found that chronic exposure of the Fanca -/- hematopoietic stem cells to DNA crosslinking agent mitomycin C in vivo leads to diminished DDR, and the emergence/expansion of pre-leukemia stem cells (pre-LSCs). Surprisingly, although genetic correction of Fanca deficiency in the pre-LSCs restores DDR and reduces genomic instability, but fails to prevent pre-LSC expansion or delay leukemia development in irradiated recipients. Furthermore, we identified transcription program underlying dysregulated DDR and cell migration, myeloid proliferation, and immune response in the Fanca -/- pre-LSCs. Forced expression of the downregulated DNA repair genes, Rad51c or Trp53i13, in the Fanca -/- pre-LSCs partially rescues DDR but has no effect on leukemia, whereas shRNA knockdown of the upregulated immune receptor genes Trem1 or Pilrb improves leukemia-related survival, but not DDR or genomic instability. Furthermore, Trem1 cooperates with diminished DDR in vivo to promote Fanca -/- pre-LSC expansion and leukemia development. Our study implicates diminishing DDR as a root cause of FA leukemogenesis, which subsequently collaborates with other signaling pathways for leukemogenic transformation.

  6. Can a genetically-modified organism-containing diet influence embryo development? A preliminary study on pre-implantation mouse embryos

    Directory of Open Access Journals (Sweden)

    B Cisterna

    2009-08-01

    Full Text Available In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in premRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development.

  7. Can a genetically-modified organism-containing diet influence embryo development? A preliminary study on pre-implantation mouse embryos.

    Science.gov (United States)

    Cisterna, B; Flach, F; Vecchio, L; Barabino, S M L; Battistelli, S; Martin, T E; Malatesta, M; Biggiogera, M

    2008-01-01

    In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM) soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in pre-mRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development.

  8. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses1

    Science.gov (United States)

    Belkina, Anna C.; Nikolajczyk, Barbara S.; Denis, Gerald V.

    2013-01-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated pro-inflammatory cytokine response remain poorly characterized. Bromodomain extra terminal (BET) proteins are “readers” of histone acetylation marks with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for pro-inflammatory cytokine production in macrophages. Studies that utilize siRNA knockdown and a small molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the “cytokine storm” in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small molecule inhibitors will benefit hyper-inflammatory conditions associated with high levels of cytokine production. PMID:23420887

  9. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses.

    Science.gov (United States)

    Belkina, Anna C; Nikolajczyk, Barbara S; Denis, Gerald V

    2013-04-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated proinflammatory cytokine response remain poorly characterized. Bromodomain and extraterminal (BET) proteins are "readers" of histone acetylation marks, with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for proinflammatory cytokine production in macrophages. Studies that use small interfering RNA knockdown and a small-molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the "cytokine storm" in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small-molecule inhibitors will benefit hyperinflammatory conditions associated with high levels of cytokine production.

  10. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  11. 40 CFR 798.5195 - Mouse biochemical specific locus test.

    Science.gov (United States)

    2010-07-01

    ...-induced variants are bred to determine the genetic nature of the change. (f) Data and reports—(1... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5195 Mouse...) A biochemical specific locus mutation is a genetic change resulting from a DNA lesion causing...

  12. Lace expansion for dummies

    NARCIS (Netherlands)

    Bolthausen, Erwin; Van Der Hofstad, Remco; Kozma, Gady

    2018-01-01

    We show Green's function asymptotic upper bound for the two-point function of weakly self-Avoiding walk in d >4, revisiting a classic problem. Our proof relies on Banach algebras to analyse the lace-expansion fixed point equation and is simpler than previous approaches in that it avoids Fourier

  13. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    Sandrea, I.

    2005-01-01

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  14. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  15. Genetic ablation of Bcl-x attenuates invasiveness without affecting apoptosis or tumor growth in a mouse model of pancreatic neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Jeffrey H Hager

    Full Text Available Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-x(L, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic beta-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-x(L upon exogenous over-expression.

  16. Strain screen and haplotype association mapping of wheel running in inbred mouse strains.

    Science.gov (United States)

    Lightfoot, J Timothy; Leamy, Larry; Pomp, Daniel; Turner, Michael J; Fodor, Anthony A; Knab, Amy; Bowen, Robert S; Ferguson, David; Moore-Harrison, Trudy; Hamilton, Alicia

    2010-09-01

    Previous genetic association studies of physical activity, in both animal and human models, have been limited in number of subjects and genetically homozygous strains used as well as number of genomic markers available for analysis. Expansion of the available mouse physical activity strain screens and the recently published dense single-nucleotide polymorphism (SNP) map of the mouse genome (approximately 8.3 million SNPs) and associated statistical methods allowed us to construct a more generalizable map of the quantitative trait loci (QTL) associated with physical activity. Specifically, we measured wheel running activity in male and female mice (average age 9 wk) in 41 inbred strains and used activity data from 38 of these strains in a haplotype association mapping analysis to determine QTL associated with activity. As seen previously, there was a large range of activity patterns among the strains, with the highest and lowest strains differing significantly in daily distance run (27.4-fold), duration of activity (23.6-fold), and speed (2.9-fold). On a daily basis, female mice ran further (24%), longer (13%), and faster (11%). Twelve QTL were identified, with three (on Chr. 12, 18, and 19) in both male and female mice, five specific to males, and four specific to females. Eight of the 12 QTL, including the 3 general QTL found for both sexes, fell into intergenic areas. The results of this study further support the findings of a moderate to high heritability of physical activity and add general genomic areas applicable to a large number of mouse strains that can be further mined for candidate genes associated with regulation of physical activity. Additionally, results suggest that potential genetic mechanisms arising from traditional noncoding regions of the genome may be involved in regulation of physical activity.

  17. Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system.

    Directory of Open Access Journals (Sweden)

    John F Staropoli

    Full Text Available Cln3(Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL, an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3(Δex7/8 mice. Homozygous Cln3(Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10-14 weeks of age. Homozygous Cln3(Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12-13 week old homozygous Cln3(Δex7/8 mice, which were also seen to a lesser extent in heterozygous Cln3(Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15-16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV, and reticulocyte counts were reproducibly increased in homozygous Cln3(Δ (ex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3(Δ (ex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3(Δ (ex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3(Δ (ex7/8 mice that merit further study for JNCL biomarker development.

  18. Expansion at Olympic Dam

    International Nuclear Information System (INIS)

    Lewis, C.

    1997-01-01

    The Olympic Dam orebody is the 6th largest copper and the single largest uranium orebody in the world. Mine production commenced in June 1988, at an annual production rate of around 45,000 tonnes of copper and 1,000 tonnes of uranium. Western Mining Corporation announced in 1996 a proposed $1.25 billion expansion of the Olympic Dam operation to raise the annual production capacity of the mine to 200,000 tonnes of copper, approximately 3,700 tonnes of uranium, 75,000 ounces of gold and 950,000 ounces of silver by 2001. Further optimisation work has identified a faster track expansion route, with an increase in the capital cost to $1.487 billion but improved investment outcome, a new target completion date of end 1999, and a new uranium output of 4,600 tonnes per annum from that date

  19. Financing electricity expansion

    International Nuclear Information System (INIS)

    Hyman, L.S.

    1994-01-01

    Expansion of electricity supply is associated with economic development. The installation and enlargement of power systems in developing countries entails a huge financial burden, however. Energy consumers in such countries must pay not only for supplies but for the cost of raising the capital for expansion on the international markets. Estimates are presented for the capital expenditure for electricity supply over the period 1990 to 2020 for the major world regions, using approximations for the cost of plant and capital and for the returns earned. These data lead to the conclusion that the five regions with the lowest per capita incomes are those which will need the major part of the capital expenditure and the highest percentage of external finance. (6 tables) (UK)

  20. Bigravity from gradient expansion

    International Nuclear Information System (INIS)

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-01-01

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  1. Expansion of magnetic clouds

    International Nuclear Information System (INIS)

    Suess, S.T.

    1987-01-01

    Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun

  2. IKEA's International Expansion

    OpenAIRE

    Harapiak, Clayton

    2013-01-01

    This case concerns a global retailing firm that is dealing with strategic management and marketing issues. Applying a scenario of international expansion, this case provides a thorough analysis of the current business environment for IKEA. Utilizing a variety of methods (e.g. SWOT, PESTLE, McKinsey Matrix) the overall objective is to provide students with the opportunity to apply their research skills and knowledge regarding a highly competitive industry to develop strategic marketing strateg...

  3. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  4. Series expansions without diagrams

    International Nuclear Information System (INIS)

    Bhanot, G.; Creutz, M.; Horvath, I.; Lacki, J.; Weckel, J.

    1994-01-01

    We discuss the use of recursive enumeration schemes to obtain low- and high-temperature series expansions for discrete statistical systems. Using linear combinations of generalized helical lattices, the method is competitive with diagrammatic approaches and is easily generalizable. We illustrate the approach using Ising and Potts models. We present low-temperature series results in up to five dimensions and high-temperature series in three dimensions. The method is general and can be applied to any discrete model

  5. Rational Design of Mouse Models for Cancer Research

    NARCIS (Netherlands)

    Landgraf, M.; McGovern, J.A.; Friedl, P.; Hutmacher, D.W.

    2018-01-01

    The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models.

  6. Genetics and developmental biology

    International Nuclear Information System (INIS)

    Barnett, W.E.

    1975-01-01

    Progress is reported on research activities in the fields of mutagenesis in Haemophilus influenzae and Escherichia coli; radioinduced chromosomal aberrations in mammalian germ cells; effects of uv radiation on xeroderma pigmentosum skin cells; mutations in Chinese hamster ovary cells; radioinduced hemoglobin variants in the mouse; analysis of mutants in yeast; Drosophila genetics; biochemical genetics of Neurospora; DNA polymerase activity in Xenopus laevis oocytes; uv-induced damage in Bacillus subtilis; and others

  7. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  8. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  9. Genetic risks of ionizing radiation

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1990-01-01

    Quantitative genetic risk estimation is made using two methods: the direct method, and the doubling dose (DD) method. The doubling dose currently used is 1 Gy for low LET, low dose, low dose rate irradiation, and is based on mouse data. Tables present the 1988 UNSCEAR estimates of genetic risk using both methods. (L.L.) (Tab.)

  10. Genetic hazards of radiation

    International Nuclear Information System (INIS)

    Searle, A.G.

    1987-01-01

    The difficulties of quantifying genetic radiation effects are discussed, with reference to studies of atomic bomb survivors, and mouse germ-cells. Doubling dose methods of extrapolation and the problems of quantifying risks of diseases of irregular inheritance are also considered. (U.K.)

  11. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  12. Radial expansion and multifragmentation

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  13. Rethinking expansive learning

    DEFF Research Database (Denmark)

    Kolbæk, Ditte; Lundh Snis, Ulrika

    Abstract: This paper analyses an online community of master’s students taking a course in ICT and organisational learning. The students initiated and facilitated an educational design for organisational learning called Proactive Review in the organisation where they are employed. By using an online...... discussion forum on Google groups, they created new ways of reflecting and learning. We used netnography to select qualitative postings from the online community and expansive learning concepts for data analysis. The findings show how students changed practices of organisational learning...

  14. Load regulating expansion fixture

    International Nuclear Information System (INIS)

    Wagner, L.M.; Strum, M.J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located there between. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig

  15. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  16. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  17. Provincial hydro expansions

    Energy Technology Data Exchange (ETDEWEB)

    Froschauer, K J

    1993-01-01

    A study of the development of five provincial hydroelectric utilities in Canada indicates that power companies and the state invited manufacturers to use hydroelectricity and natural resources in order to diversify provincial economies. These hydro expansions also show that utilities and government designed hydro projects to serve continental requirements; serving both objectives became problematic. It is argued that when the Canadian state and firms such as utilities use hydro expansions to serve both continentalism and industrialization, then at best they foster dependent industrialization and staple processing. At worst, they overbuild the infrastructure to generate provincial surplus energy for continental, rather than national, integration. Hydro developments became subject to state intervention in Canada mainly through the failures of private utilities to provide power for the less-lucrative industrial markets within provincial subregions. Although the state and utilities invited foreign firms to manufacture hydro equipment within the provinces and others to use electricity to diversify production beyond resource processing, such a diversification did not occur. Since 1962, ca 80% of industrial energy was used to semi-process wood-derived products, chemicals, and metals. The idea for a national power network became undermined by interprovincial political-economic factors and since 1963, the federal national/continential power policy prevailed. 187 refs., 6 figs., 52 tabs.

  18. Measuring of tube expansion

    International Nuclear Information System (INIS)

    Vogeleer, J. P.

    1985-01-01

    The expansion of the primary tubes or sleeves of the steam generator of a nuclear reactor plant are measured while the tubes or sleeves are being expanded. A primary tube or sleeve is expanded by high pressure of water which flows through a channel in an expander body. The water is supplied through an elongated conductor and is introduced through a connector on the shank connected to the conductor at its outer end. A wire extends through the mandrel and through the conductor to the end of the connector. At its inner end the wire is connected to a tapered pin which is subject to counteracting forces produced by the pressure of the water. The force on the side where the wire is connected to the conductor is smaller than on the opposite side. The tapered pin is moved in the direction of the higher force and extrudes the wire outwardly of the conductor. The tapered surface of the tapered pin engages transverse captive plungers which are maintained in engagement with the expanding tube or sleeve as they are moved outwardly by the tapered pin. The wire and the connector extend out of the generator and, at its outer end, the wire is connected to an indicator which measures the extent to which the wire is moved by the tapered pin, thus measuring the expansion of the tube or sleeve as it progresses

  19. Understanding sex determination in the mouse: genetics ...

    Indian Academy of Sciences (India)

    challenge now is to understand how controlled epigenomic changes effect the now familiar sexually dimorphic transcriptomic profiles of the ... Cattanach, personal communication, April 2015. .... The human homologue, DMRT1, is found on.

  20. Mammalian developmental genetics in the twentieth century.

    Science.gov (United States)

    Artzt, Karen

    2012-12-01

    This Perspectives is a review of the breathtaking history of mammalian genetics in the past century and, in particular, of the ways in which genetic thinking has illuminated aspects of mouse development. To illustrate the power of that thinking, selected hypothesis-driven experiments and technical advances are discussed. Also included in this account are the beginnings of mouse genetics at the Bussey Institute, Columbia University, and The Jackson Laboratory and a retrospective discussion of one of the classic problems in developmental genetics, the T/t complex and its genetic enigmas.

  1. The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Jatin Roper

    Full Text Available To examine the in vitro and in vivo efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type colorectal cancer (CRC.PIK3CA mutant and wild-type human CRC cell lines were treated in vitro with NVP-BEZ235, and the resulting effects on proliferation, apoptosis, and signaling were assessed. Colonic tumors from a genetically engineered mouse (GEM model for sporadic wild-type PIK3CA CRC were treated in vivo with NVP-BEZ235. The resulting effects on macroscopic tumor growth/regression, proliferation, apoptosis, angiogenesis, and signaling were examined.In vitro treatment of CRC cell lines with NVP-BEZ235 resulted in transient PI3K blockade, sustained decreases in mTORC1/mTORC2 signaling, and a corresponding decrease in cell viability (median IC(50 = 9.0-14.3 nM. Similar effects were seen in paired isogenic CRC cell lines that differed only in the presence or absence of an activating PIK3CA mutant allele. In vivo treatment of colonic tumor-bearing mice with NVP-BEZ235 resulted in transient PI3K inhibition and sustained blockade of mTORC1/mTORC2 signaling. Longitudinal tumor surveillance by optical colonoscopy demonstrated a 97% increase in tumor size in control mice (p = 0.01 vs. a 43% decrease (p = 0.008 in treated mice. Ex vivo analysis of the NVP-BEZ235-treated tumors demonstrated a 56% decrease in proliferation (p = 0.003, no effects on apoptosis, and a 75% reduction in angiogenesis (p = 0.013.These studies provide the preclinical rationale for studies examining the efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type CRC.

  2. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  3. Identity Expansion and Transcendence

    Directory of Open Access Journals (Sweden)

    William Sims Bainbridge

    2014-05-01

    Full Text Available Emerging developments in communications and computing technology may transform the nature of human identity, in the process rendering obsolete the traditional philosophical and scientific frameworks for understanding the nature of individuals and groups.  Progress toward an evaluation of this possibility and an appropriate conceptual basis for analyzing it may be derived from two very different but ultimately connected social movements that promote this radical change. One is the governmentally supported exploration of Converging Technologies, based in the unification of nanoscience, biology, information science and cognitive science (NBIC. The other is the Transhumanist movement, which has been criticized as excessively radical yet is primarily conducted as a dignified intellectual discussion within a new school of philosophy about human enhancement.  Together, NBIC and Transhumanism suggest the immense transformative power of today’s technologies, through which individuals may explore multiple identities by means of online avatars, semi-autonomous intelligent agents, and other identity expansions.

  4. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla).

    Science.gov (United States)

    Gallus, S; Kumar, V; Bertelsen, M F; Janke, A; Nilsson, M A

    2015-10-25

    Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A resposta oxidativa em corações de camundongos é modulada por background genético The oxidative response of mouse hearts is modulated by genetic background

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Santos-Silva

    2013-02-01

    Full Text Available FUNDAMENTO: o tabagismo apresenta importante papel sobre as doenças cardiovasculares, entretanto permanecem pouco compreendidos os motivos pelos quais alguns seres humanos as desenvolvem e outros não. OBJETIVO: nosso objetivo foi analisar o perfil redox do coração de diferentes linhagens de camundongos após exposição à fumaça de cigarro. MÉTODOS: camundongos machos suíços (n = 10, C3H (n = 10, BALB/c (n = 10 e C57BL/6 (n = 10 foram expostos à fumaça de cigarro (12 cigarros/dia, enquanto os respectivos controles (n = 10 ao ar ambiente por 60 dias. Após sacrifício, o coração foi retirado para análises bioquímicas. RESULTADOS: embora o conteúdo de malondialdeído não tenha aumentado em nenhum grupo, a atividade da catalase diminuiu no grupo suíço (p BACKGROUND: Smoking plays an important role in cardiovascular diseases. However, the reasons why some individuals develop those diseases and others do not remain to be explained. OBJECTIVE: This study aimed at assessing the redox profile of the heart of different mouse strains after exposure to cigarette smoke. METHODS: Male mice of the Swiss (n = 10, C3H (n = 10, BALB/c (n = 10 and C57BL/6 (n = 10 strains were exposed to cigarette smoke (12 cigarettes/day, while their respective controls (n = 10 were exposed to ambient air for 60 days. After being euthanized, their heart was removed for biochemical analyses. RESULTS: Although the malondialdehyde content did not increase in any of the groups, catalase activity decreased in the Swiss (p < 0.05 and BALB/c (p < 0.05 strain mice as compared with their respective control groups, while myeloperoxidase decreased in the C3H (p < 0.05 and C57BL/6 (p < 0.001 strain mice as compared with their respective control groups. The reduced glutathione content decreased in the Swiss, C3H, C57BL/6 (p < 0.05 and BALB/c (p < 0,001 strain mice as compared with their respective control groups. Regarding reduced glutathione content, an increase was

  6. Clinical diagnostic exome evaluation for an infant with a lethal disorder: genetic diagnosis of TARP syndrome and expansion of the phenotype in a patient with a newly reported RBM10 alteration.

    Science.gov (United States)

    Powis, Zöe; Hart, Alexa; Cherny, Sara; Petrik, Igor; Palmaer, Erika; Tang, Sha; Jones, Carolyn

    2017-06-02

    Diagnostic Exome Sequencing (DES) has been shown to be an effective tool for diagnosis individuals with suspected genetic conditions. We report a male infant born with multiple anomalies including bilateral dysplastic kidneys, cleft palate, bilateral talipes, and bilateral absence of thumbs and first toes. Prenatal testing including chromosome analysis and microarray did not identify a cause for the multiple congenital anomalies. Postnatal diagnostic exome studies (DES) were utilized to find a molecular diagnosis for the patient. Exome sequencing of the proband, mother, and father showed a previously unreported maternally inherited RNA binding motif protein 10 (RBM10) c.1352_1353delAG (p.E451Vfs*66) alteration. Mutations in RBM10 are associated with TARP syndrome, an X-linked recessive disorder originally described with cardinal features of talipes equinovarus, atrial septal defect, Robin sequence, and persistent left superior vena cava. DES established a molecular genetic diagnosis of TARP syndrome for a neonatal patient with a poor prognosis in whom traditional testing methods were uninformative and allowed for efficient diagnosis and future reproductive options for the parents. Other reported cases of TARP syndrome demonstrate significant variability in clinical phenotype. The reported features in this infant including multiple hemivertebrae, imperforate anus, aplasia of thumbs and first toes have not been reported in previous patients, thus expanding the clinical phenotype for this rare disorder.

  7. Population structure and expansion of kuruma shrimp ( Penaeus ...

    African Journals Online (AJOL)

    Sequence analyses on the specific intron from the elongation factor-1α gene were conducted to examine the population genetic structure and expansion of kuruma shrimp (Penaeus japonicus) off Taiwan. Five populations including 119 individuals were separately sampled from the north of East China Sea (ECS), west of ...

  8. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  9. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    Science.gov (United States)

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Evolution of density-dependent movement during experimental range expansions.

    Science.gov (United States)

    Fronhofer, E A; Gut, S; Altermatt, F

    2017-12-01

    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. Mouse Models of Gastric Cancer

    Science.gov (United States)

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  13. Humanized mouse models: Application to human diseases.

    Science.gov (United States)

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  14. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    Science.gov (United States)

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  15. Renormalization group and Mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-02-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)

  16. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  17. Renormalization group and mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere

  18. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  19. The synthesis paradigm in genetics.

    Science.gov (United States)

    Rice, William R

    2014-02-01

    Experimental genetics with model organisms and mathematically explicit genetic theory are generally considered to be the major paradigms by which progress in genetics is achieved. Here I argue that this view is incomplete and that pivotal advances in genetics--and other fields of biology--are also made by synthesizing disparate threads of extant information rather than generating new information from experiments or formal theory. Because of the explosive expansion of information in numerous "-omics" data banks, and the fragmentation of genetics into numerous subdisciplines, the importance of the synthesis paradigm will likely expand with time.

  20. Selective rescue of heightened anxiety but not gait ataxia in a premutation 90CGG mouse model of Fragile X-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Castro, Hoanna; Kul, Emre; Buijsen, Ronald A M; Severijnen, Lies-Anne W F M; Willemsen, Rob; Hukema, Renate K; Stork, Oliver; Santos, Mónica

    2017-06-01

    A CGG-repeat expansion in the premutation range in the Fragile X mental retardation 1 gene (FMR1) has been identified as the genetic cause of Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder that manifests with action tremor, gait ataxia and cognitive impairments. In this study, we used a bigenic mouse model, in which expression of a 90CGG premutation tract is activated in neural cells upon doxycycline administration-P90CGG mouse model. We, here, demonstrate the behavioural manifestation of clinically relevant features of FXTAS patients and premutation carrier individuals in this inducible mouse model. P90CGG mice display heightened anxiety, deficits in motor coordination and impaired gait and represent the first FXTAS model that exhibits an ataxia phenotype as observed in patients. The behavioural phenotype is accompanied by the formation of ubiquitin/FMRpolyglycine-positive intranuclear inclusions, as another hallmark of FXTAS, in the cerebellum, hippocampus and amygdala. Strikingly, upon cessation of transgene induction the anxiety phenotype of mice recovers along with a reduction of intranuclear inclusions in dentate gyrus and amygdala. In contrast, motor function deteriorates further and no reduction in intranuclear inclusions can be observed in the cerebellum. Our data thus demonstrate that expression of a 90CGG premutation expansion outside of the FMR1 context is sufficient to evoke an FXTAS-like behavioural phenotype. Brain region-specific neuropathology and (partial) behavioural reversibility make the inducible P90CGG a valuable mouse model for testing pathogenic mechanisms and therapeutic intervention methods. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. High-Resolution Maps of Mouse Reference Populations

    Czech Academy of Sciences Publication Activity Database

    Šimeček, Petr; Forejt, Jiří; Williams, R. W.; Shiroishi, T.; Takada, T.; Lu, L.; Johnson, T. E.; Bennett, B.; Deschepper, C. F.; Scott-Boyer, M.P.; de Villena, F.P.M.; Churchill, G. A.

    2017-01-01

    Roč. 7, č. 10 (2017), s. 3427-3434 ISSN 2160-1836 R&D Projects: GA ČR GA16-01969S; GA MŠk(CZ) LM2015040; GA MŠk(CZ) LQ1604 Institutional support: RVO:68378050 Keywords : chromosome substitution strains * recombinant inbred strains * mouse diversity genotyping array * gene conversions Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 2.861, year: 2016

  2. Stepwise development of MAIT cells in mouse and human.

    Directory of Open Access Journals (Sweden)

    Emmanuel Martin

    2009-03-01

    Full Text Available Mucosal-associated invariant T (MAIT cells display two evolutionarily conserved features: an invariant T cell receptor (TCRalpha (iTCRalpha chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC molecule, MHC-related molecule 1 (MR1. MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanValpha7.2 antibody and MAIT cell-specific iTCRalpha and TCRbeta transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRalpha and TCRbeta transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%-4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the

  3. Growth promotion of genetically modified hematopoietic progenitors using an antibody/c-Mpl chimera.

    Science.gov (United States)

    Kawahara, Masahiro; Chen, Jianhong; Sogo, Takahiro; Teng, Jinying; Otsu, Makoto; Onodera, Masafumi; Nakauchi, Hiromitsu; Ueda, Hiroshi; Nagamune, Teruyuki

    2011-09-01

    Thrombopoietin is a potent cytokine that exerts proliferation of hematopoietic stem cells (HSCs) through its cognate receptor, c-Mpl. Therefore, mimicry of c-Mpl signaling by a receptor recognizing an artificial ligand would be attractive to attain specific expansion of genetically modified HSCs. Here we propose a system enabling selective expansion of genetically modified cells using an antibody/receptor chimera that can be activated by a specific antigen. We constructed an antibody/c-Mpl chimera, in which single-chain Fv (ScFv) of an anti-fluorescein antibody was tethered to the extracellular D2 domain of the erythropoietin receptor and transmembrane/cytoplasmic domains of c-Mpl. When the chimera was expressed in interleukin (IL)-3-dependent pro-B cell line Ba/F3, genetically modified cells were selectively expanded in the presence of fluorescein-conjugated BSA (BSA-FL) as a specific antigen. Furthermore, highly purified mouse HSCs transduced with the retrovirus carrying antibody/c-Mpl chimera gene proliferated in vitro in response to BSA-FL, and the cells retained in vivo long-term repopulating abilities. These results demonstrate that the antibody/c-Mpl chimera is capable of signal transduction that mimics wild-type c-Mpl signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A mouse model of the human Fragile X syndrome I304N mutation.

    Directory of Open Access Journals (Sweden)

    Julie B Zang

    2009-12-01

    Full Text Available The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA-binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5'UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein. Moreover, antisense transcripts (FMR4, ASFMR1 in the same locus have been reported to be silenced by the repeat expansion. Missense mutations offer one means of confirming a central role for FMRP in the disease, but to date, only a single such patient has been described. This patient harbors an isoleucine to asparagine mutation (I304N in the second FMRP KH-type RNA-binding domain, however, this single case report was complicated because the patient harbored a superimposed familial liver disease. To address these issues, we have generated a new Fragile X Syndrome mouse model in which the endogenous Fmr1 gene harbors the I304N mutation. These mice phenocopy the symptoms of Fragile X Syndrome in the existing Fmr1-null mouse, as assessed by testicular size, behavioral phenotyping, and electrophysiological assays of synaptic plasticity. I304N FMRP retains some functions, but has specifically lost RNA binding and polyribosome association; moreover, levels of the mutant protein are markedly reduced in the brain specifically at a time when synapses are forming postnatally. These data suggest that loss of FMRP function, particularly in KH2-mediated RNA binding and in synaptic plasticity, play critical roles in pathogenesis of the Fragile X Syndrome and establish a new model for studying the disorder.

  5. Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal.

    Science.gov (United States)

    Marrotte, R R; Gonzalez, A; Millien, V

    2014-08-01

    We evaluated the effect of habitat and landscape characteristics on the population genetic structure of the white-footed mouse. We develop a new approach that uses numerical optimization to define a model that combines site differences and landscape resistance to explain the genetic differentiation between mouse populations inhabiting forest patches in southern Québec. We used ecological distance computed from resistance surfaces with Circuitscape to infer the effect of the landscape matrix on gene flow. We calculated site differences using a site index of habitat characteristics. A model that combined site differences and resistance distances explained a high proportion of the variance in genetic differentiation and outperformed models that used geographical distance alone. Urban and agriculture-related land uses were, respectively, the most and the least resistant landscape features influencing gene flow. Our method detected the effect of rivers and highways as highly resistant linear barriers. The density of grass and shrubs on the ground best explained the variation in the site index of habitat characteristics. Our model indicates that movement of white-footed mouse in this region is constrained along routes of low resistance. Our approach can generate models that may improve predictions of future northward range expansion of this small mammal. © 2014 John Wiley & Sons Ltd.

  6. Plasma expansion: fundamentals and applications

    International Nuclear Information System (INIS)

    Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C

    2002-01-01

    The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures

  7. Y chromosome diversity, human expansion, drift, and cultural evolution.

    Science.gov (United States)

    Chiaroni, Jacques; Underhill, Peter A; Cavalli-Sforza, Luca L

    2009-12-01

    The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent "Out of Africa" expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production.

  8. DNA damage response during mouse oocyte maturation

    Czech Academy of Sciences Publication Activity Database

    Mayer, Alexandra; Baran, Vladimír; Sakakibara, Y.; Brzáková, Adéla; Ferencová, Ivana; Motlík, Jan; Kitajima, T.; Schultz, R. M.; Šolc, Petr

    2016-01-01

    Roč. 15, č. 4 (2016), s. 546-558 ISSN 1538-4101 R&D Projects: GA MŠk LH12057; GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : double strand DNA breaks * DNA damage * MRE11 * meiotic maturation * mouse oocytes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.530, year: 2016

  9. Warp drive with zero expansion

    Energy Technology Data Exchange (ETDEWEB)

    Natario, Jose [Department of Mathematics, Instituto Superior Tecnico (Portugal)

    2002-03-21

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.

  10. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  11. Estimates of expansion time scales

    International Nuclear Information System (INIS)

    Jones, E.M.

    1979-01-01

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure

  12. Strategic Complexity and Global Expansion

    DEFF Research Database (Denmark)

    Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina

    2012-01-01

    The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....

  13. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes

    KAUST Repository

    Grupstra, Carsten G. B.

    2017-05-15

    Zooxanthellate corals are threatened by climate change but may be able to escape increasing temperatures by colonizing higher latitudes. To determine the effect of host range expansion on symbiont genetic diversity, we examined genetic variation among populations of Symbiodinium psygmophilum associated with Oculina patagonica, a range-expanding coral that acquires its symbionts through horizontal transmission. We optimized five microsatellite primer pairs for S. psygmophilum and tested them on Oculina spp. samples from the western North Atlantic and the Mediterranean. We then used them to compare symbiont genotype diversity between an Iberian core and an expansion front population of O. patagonica. Only one multilocus S. psygmophilum genotype was identified at the expansion front, and it was shared with the core population, which harbored seven multilocus genotypes. This pattern suggests that O. patagonica range expansion is accompanied by reduced symbiont genetic diversity, possibly due to limited dispersal of symbionts or local selection.

  14. The worldwide expansion of the Argentine ant

    DEFF Research Database (Denmark)

    Vogel, Valerie; Pedersen, Jes Søe; Giraud, Tatiana

    2010-01-01

    Aim The aim of this study was to determine the number of successful establishments of the invasive Argentine ant outside native range and to see whether introduced supercolonies have resulted from single or multiple introductions. We also compared the genetic diversity of native versus introduced...... supercolonies to assess the size of the propagules (i.e. the number of founding individuals) at the origin of the introduced supercolonies. Location Global. Methods We used mitochondrial DNA (mtDNA) markers and microsatellite loci to study 39 supercolonies of the Argentine ant Linepithema humile covering both......) and secondary introductions (from sites with established invasive supercolonies) were important in the global expansion of the Argentine ant. In combination with the similar social organization of colonies in the native and introduced range, this indicates that invasiveness did not evolve recently as a unique...

  15. Meeting Report: The Twelfth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Manolakou, Katerina; Cross, Sally H.; Simpson, Eleanor H.; Jackson, Ian J.

    1998-10-01

    The annual International Mouse Genome Conference (IMGC) is where, scientifically speaking, classical mouse genetics meets the relative newcomer of genomics. The 12th meeting took place last October in the delightful Bavarian village of Garmisch-Partenkirchen, and we were greeted by the sight on the mountains of the first snowfall of the season. However the discussions left little time for exploration. Minds of participants in Garmisch were focused by a recent document produced by the NIH and by discussions within other funding agencies worldwide. If implemented, the proposals will further enhance the status of the mouse as the principal model for study of the function of the human genome.

  16. Gaze beats mouse

    DEFF Research Database (Denmark)

    Mateo, Julio C.; San Agustin, Javier; Hansen, John Paulin

    2008-01-01

    Facial EMG for selection is fast, easy and, combined with gaze pointing, it can provide completely hands-free interaction. In this pilot study, 5 participants performed a simple point-and-select task using mouse or gaze for pointing and a mouse button or a facial-EMG switch for selection. Gaze...

  17. Rapid, global demographic expansions after the origins of agriculture.

    Science.gov (United States)

    Gignoux, Christopher R; Henn, Brenna M; Mountain, Joanna L

    2011-04-12

    The invention of agriculture is widely assumed to have driven recent human population growth. However, direct genetic evidence for population growth after independent agricultural origins has been elusive. We estimated population sizes through time from a set of globally distributed whole mitochondrial genomes, after separating lineages associated with agricultural populations from those associated with hunter-gatherers. The coalescent-based analysis revealed strong evidence for distinct demographic expansions in Europe, southeastern Asia, and sub-Saharan Africa within the past 10,000 y. Estimates of the timing of population growth based on genetic data correspond neatly to dates for the initial origins of agriculture derived from archaeological evidence. Comparisons of rates of population growth through time reveal that the invention of agriculture facilitated a fivefold increase in population growth relative to more ancient expansions of hunter-gatherers.

  18. On genus expansion of superpolynomials

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)

    2014-12-15

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  19. DYNAMIC PROGRAMMING – EFFICIENT TOOL FOR POWER SYSTEM EXPANSION PLANNING

    Directory of Open Access Journals (Sweden)

    SIMO A.

    2015-03-01

    Full Text Available The paper isfocusing on dynamic programming use for power system expansion planning (EP – transmission network (TNEP and distribution network (DNEP. The EP problem has been approached from the retrospective and prospective point of view. To achieve this goal, the authors are developing two software-tools in Matlab environment. Two techniques have been tackled: particle swarm optimization (PSO and genetic algorithms (GA. The case study refers to Test 25 buses test power system developed within the Power Systems Department.

  20. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  1. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  2. Regulation of gas infrastructure expansion

    International Nuclear Information System (INIS)

    De Joode, J.

    2012-01-01

    The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities - such as gas storage facilities, LNG import terminals and certain gas transmission pipelines - need to be regulated, as there may be scope for competition. In practice, the choice of regulation of gas infrastructure expansion varies among different types of gas infrastructure facilities and across EU Member States. Based on a review of economic literature and on a series of in-depth case studies, this study explains these differences in choices of regulation from differences in policy objectives, differences in local circumstances and differences in the intrinsic characteristics of the infrastructure projects. An important conclusion is that there is potential for a larger role for competition in gas infrastructure expansion.

  3. External Volume Expansion in Irradiated Tissue: Effects on the Recipient Site.

    Science.gov (United States)

    Chin, Michael S; Lujan-Hernandez, Jorge; Babchenko, Oksana; Bannon, Elizabeth; Perry, Dylan J; Chappell, Ava G; Lo, Yuan-Chyuan; Fitzgerald, Thomas J; Lalikos, Janice F

    2016-05-01

    External volume expansion prepares recipient sites to improve outcomes of fat grafting. For patients receiving radiotherapy after mastectomy, results with external volume expansion vary, and the relationship between radiotherapy and expansion remains unexplored. Thus, the authors developed a new translational model to investigate the effects in chronic skin fibrosis after radiation exposure. Twenty-four SKH1-E mice received 50 Gy of β-radiation to each flank and were monitored until fibrosis developed (8 weeks). External volume expansion was then applied at -25 mmHg to one side for 6 hours for 5 days. The opposite side served as the control. Perfusion changes were assessed with hyperspectral imaging. Mice were euthanized at 5 (n = 12) and 15 days (n = 12) after the last expansion application. Tissue samples were analyzed with immunohistochemistry for CD31 and Ki67, Masson trichrome for skin thickness, and picrosirius red to analyze collagen composition. All animals developed skin fibrosis 8 weeks after radiotherapy and became hypoperfused based on hyperspectral imaging. Expansion induced edema on treated sides after stimulation. Perfusion was decreased by 13 percent on the expansion side (p External volume expansion temporarily reduces perfusion, likely because of transient ischemia or edema. Together with mechanotransduction, these effects encourage a proangiogenic and proliferative environment in fibrotic tissue after radiotherapy in the authors' mouse model. Further studies are needed to assess these changes in fat graft retention.

  4. The loop expansion as a divergent-power-series expansion

    International Nuclear Information System (INIS)

    Murai, N.

    1981-01-01

    The loop expansion should be divergent, possibly an asymptotic one, in the Euclidean path integral formulation. This consideration is important in applications of the symmetric and mass-independent renormalization. The [1,1] Pade approximant is calculated in a PHI 4 model. Its classical vacua may be not truely stable for nonzero coupling constant. (author)

  5. Cosmological expansion and local physics

    International Nuclear Information System (INIS)

    Faraoni, Valerio; Jacques, Audrey

    2007-01-01

    The interplay between cosmological expansion and local attraction in a gravitationally bound system is revisited in various regimes. First, weakly gravitating Newtonian systems are considered, followed by various exact solutions describing a relativistic central object embedded in a Friedmann universe. It is shown that the 'all or nothing' behavior recently discovered (i.e., weakly coupled systems are comoving while strongly coupled ones resist the cosmic expansion) is limited to the de Sitter background. New exact solutions are presented which describe black holes perfectly comoving with a generic Friedmann universe. The possibility of violating cosmic censorship for a black hole approaching the big rip is also discussed

  6. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  7. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  8. Energy expansion planning by considering electrical and thermal expansion simultaneously

    International Nuclear Information System (INIS)

    Abbasi, Ali Reza; Seifi, Ali Reza

    2014-01-01

    Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies

  9. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  10. In Vivo SILAC-Based Proteomics Reveals Phosphoproteome Changes during Mouse Skin Carcinogenesis

    NARCIS (Netherlands)

    Zanivan, S.; Meves, A.; Behrendt, K.; Schoof, E.M.; Neilson, L.J.; Cox, J.; Tang, H.R.; Kalna, G.; Ree, J.H. van; Deursen, J.M.A. van; Trempus, C.S.; Machesky, L.M.; Linding, R.; Wickstrom, S.A.; Fassler, R.; Mann, M.

    2013-01-01

    Cancer progresses through distinct stages, and mouse models recapitulating traits of this progression are frequently used to explore genetic, morphological, and pharmacological aspects of tumor development. To complement genomic investigations of this process, we here quantify phosphoproteomic

  11. Sparse Statistical Deformation Model for the Analysis of Craniofacial Malformations in the Crouzon Mouse

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Hansen, Michael Sass; Sjöstrand, Karl

    2007-01-01

    Crouzon syndrome is characterised by the premature fusion of cranial sutures. Recently the first genetic Crouzon mouse model was generated. In this study, Micro CT skull scannings of wild-type mice and Crouzon mice were investigated. Using nonrigid registration, a wild-type mouse atlas was built...

  12. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  13. Growth control of genetically modified cells using an antibody/c-Kit chimera.

    Science.gov (United States)

    Kaneko, Etsuji; Kawahara, Masahiro; Ueda, Hiroshi; Nagamune, Teruyuki

    2012-05-01

    Gene therapy has been regarded as an innovative potential treatment against serious congenital diseases. However, applications of gene therapy remain limited, partly because its clinical success depends on therapeutic gene-transduced cells acquiring a proliferative advantage. To address this problem, we have developed the antigen-mediated genetically modified cell amplification (AMEGA) system, which uses chimeric receptors to enable the selective proliferation of gene-transduced cells. In this report, we describe mimicry of c-Kit signaling and its application to the AMEGA system. We created an antibody/c-Kit chimera in which the extracellular domain of c-Kit is replaced with an anti-fluorescein single-chain Fv antibody fragment and the extracellular D2 domain of the erythropoietin receptor. A genetically modified mouse pro-B cell line carrying this chimera showed selective expansion in the presence of fluorescein-conjugated BSA (BSA-FL) as a growth inducer. By further engineering the transmembrane domain of the chimera to reduce interchain interaction we attained stricter ligand-dependency. Since c-Kit is an important molecule in the expansion of hematopoietic stem cells (HSCs), this antibody/c-Kit chimera could be a promising tool for gene therapy targeting HSCs. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Crude oil pipeline expansion summary

    International Nuclear Information System (INIS)

    2005-02-01

    The Canadian Association of Petroleum Producers has been working with producers to address issues associated with the development of new pipeline capacity from western Canada. This document presents an assessment of the need for additional oil pipeline capacity given the changing mix of crude oil types and forecasted supply growth. It is of particular interest to crude oil producers and contributes to current available information for market participants. While detailed, the underlying analysis does not account for all the factors that may come into play when individual market participants make choices about which expansions they may support. The key focus is on the importance of timely expansion. It was emphasized that if pipeline expansions lags the crude supply growth, then the consequences would be both significant and unacceptable. Obstacles to timely expansion are also discussed. The report reviews the production and supply forecasts, the existing crude oil pipeline infrastructure, opportunities for new market development, requirements for new pipeline capacity and tolling options for pipeline development. tabs., figs., 1 appendix

  15. Asymptotic Expansions - Methods and Applications

    International Nuclear Information System (INIS)

    Harlander, R.

    1999-01-01

    Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)

  16. Model of clinker capacity expansion

    CSIR Research Space (South Africa)

    Stylianides, T

    1998-10-01

    Full Text Available This paper describes a model which has been applied in practice to determine an optimal plan for clinker capacity expansion. The problem was formulated as an integer linear program aiming to determine the optimal number, size and location of kilns...

  17. The bootstrap and edgeworth expansion

    CERN Document Server

    Hall, Peter

    1992-01-01

    This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...

  18. On Fourier re-expansions

    OpenAIRE

    Liflyand, E.

    2012-01-01

    We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.

  19. On persistently positively expansive maps

    Directory of Open Access Journals (Sweden)

    Alexander Arbieto

    2010-06-01

    Full Text Available In this paper, we prove that any C¹-persistently positively expansive map is expanding. This improves a result due to Sakai (Sakai 2004.Neste artigo, mostramos que todo mapa C¹-persistentemente positivamente expansivo e expansor. Isto melhora um resultado devido a Sakai (Sakai 2004.

  20. The first mouse mutants of D14Abb1e (Fam208a) show that it is critical for early development

    Czech Academy of Sciences Publication Activity Database

    Harten, S.K.; Bruxner, T.J.; Bharti, V.; Blewitt, M.; Nguyen, T.M.T.; Whitelaw, E.; Epp, Trevor

    2014-01-01

    Roč. 25, 7-8 (2014), s. 293-303 ISSN 0938-8990 Institutional support: RVO:68378050 Keywords : embryogenesis * forward genetics * mouse mutant Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.068, year: 2014

  1. A new type of genetic regulation of allogeneic response. A novel locus on mouse chromosome 4, Alan2 controls MLC reactivity to three different alloantigens: C57BL/10, BALB/c and CBA

    Czech Academy of Sciences Publication Activity Database

    Havelková, Helena; Badalová, Jana; Demant, P.; Lipoldová, Marie

    2000-01-01

    Roč. 1, č. 8 (2000), s. 483-487 ISSN 1466-4879 R&D Projects: GA MŠk OK 394 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.222, year: 2000

  2. Inherited effects from mouse immature oocytes following low-dose irradiation

    International Nuclear Information System (INIS)

    Straume, T.; Khan, R.; Raabe, O.G.; Walsh, K.J.; Wiley, L.M.

    1992-07-01

    Immature oocytes represent the genetic pool in female mice as well as in women and therefore are principal cells of concern for genetic studies. Previous studies have demonstrated that genetic effects in female mice can be masked by the hypersensitive plasma membrane lethality target of immature oocytes. Studies have also shown that genetic effects can be detected when the plasma mambrane is sufficiently spared. Here, new data obtained using the mouse preimplantation embryo chimera assay are presented and discussed in light of previous findings for irradiated mouse oocytes

  3. The Population Origins and Expansion of Feral Cats in Australia.

    Science.gov (United States)

    Spencer, Peter B S; Yurchenko, Andrey A; David, Victor A; Scott, Rachael; Koepfli, Klaus-Peter; Driscoll, Carlos; O'Brien, Stephen J; Menotti-Raymond, Marilyn

    2016-03-01

    The historical literature suggests that in Australia, the domestic cat (Felis catus) had a European origin [~200 years before present (ybp)], but it is unclear if cats arrived from across the Asian land bridge contemporaneously with the dingo (4000 ybp), or perhaps immigrated ~40000 ybp in association with Aboriginal settlement from Asia. The origin of cats in Australia is important because the continent has a complex and ancient faunal assemblage that is dominated by endemic rodents and marsupials and lacks the large placental carnivores found on other large continents. Cats are now ubiquitous across the entire Australian continent and have been implicit in the range contraction or extinction of its small to medium sized (cats using 15 short tandem repeat (STR) genomic markers. Their origin appears to come exclusively from European founders. Feral cats in continental Australia exhibit high genetic diversity in comparison with the low diversity found in populations of feral cats living on islands. The genetic structure is consistent with a rapid westerly expansion from eastern Australia and a limited expansion in coastal Western Australia. Australian cats show modest if any population structure and a close genetic alignment with European feral cats as compared to cats from Asia, the Christmas and Cocos (Keeling) Islands (Indian Ocean), and European wildcats (F. silvestris silvestris). © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren

    2014-01-01

    of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin...... cycle inhibitory compounds decreased PPAR ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal...... expansion for PPAR ligand production at the onset of adipocyte differentiation....

  5. A Mouse Model of Chronic West Nile Virus Disease.

    Directory of Open Access Journals (Sweden)

    Jessica B Graham

    2016-11-01

    Full Text Available Infection with West Nile virus (WNV leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.

  6. The European dimension for the mouse genome mutagenesis

    Czech Academy of Sciences Publication Activity Database

    Auwerx, J.; Avner, P.; Baldock, R.; Ballabio, A.; Balling, R.; Barbacid, M.; Berns, A.; Bradley, A.; Brown, S.; Carmeliet, P.; Chambon, P.; Cox, R.; Davidson, D.; Davies, K.; Duboule, D.; Forejt, Jiří; Granucci, F.; Hastie, N.; Angelis, M. H. de; Jackson, I.; Kioussis, D.; Kollias, G.; Lathrop, M.; Lendahl, U.; Malumbres, M.; von Melchner, H.; Müller, W.; Partanen, J.; Ricciardi-Castagnoli, P.; Rigby, P.; Rosen, B.; Rosenthal, N.; Skarnes, B.; Stewart, A. F.; Thornton, J.; Tocchini-Valentini, G.; Wagner, E.; Wahli, W.; Wurst, W.

    2004-01-01

    Roč. 16, - (2004), s. 925-927 ISSN 1061-4036 R&D Projects: GA MŠk(CZ) LN00A079 Institutional research plan: CEZ:AV0Z5052915 Keywords : The European Mouse Mutagenesis Consortium Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 24.695, year: 2004

  7. The influence of fluorides on mouse sperm capacitation

    Czech Academy of Sciences Publication Activity Database

    Dvořáková-Hortová, K.; Šandera, M.; Jursová, M.; Vašinová, J.; Pěknicová, Jana

    2008-01-01

    Roč. 108, 1-2 (2008), s. 157-170 ISSN 0378-4320 R&D Projects: GA MŠk 1M06011 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : mouse spermatozoa * capacitation * fluorides Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.890, year: 2008

  8. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  9. Risk assessment in man and mouse.

    Science.gov (United States)

    Balci, Fuat; Freestone, David; Gallistel, Charles R

    2009-02-17

    Human and mouse subjects tried to anticipate at which of 2 locations a reward would appear. On a randomly scheduled fraction of the trials, it appeared with a short latency at one location; on the complementary fraction, it appeared after a longer latency at the other location. Subjects of both species accurately assessed the exogenous uncertainty (the probability of a short versus a long trial) and the endogenous uncertainty (from the scalar variability in their estimates of an elapsed duration) to compute the optimal target latency for a switch from the short- to the long-latency location. The optimal latency was arrived at so rapidly that there was no reliably discernible improvement over trials. Under these nonverbal conditions, humans and mice accurately assess risks and behave nearly optimally. That this capacity is well-developed in the mouse opens up the possibility of a genetic approach to the neurobiological mechanisms underlying risk assessment.

  10. The scarless heart and the MRL mouse.

    Science.gov (United States)

    Heber-Katz, Ellen; Leferovich, John; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise

    2004-05-29

    The ability to regenerate tissues and limbs in its most robust form is seen in many non-mammalian species. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivalling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. The adult MRL mouse regrows cartilage, skin, hair follicles and myocardium with near perfect fidelity and without scarring. This is seen in the ability to close through-and-through ear holes, which are generally used for lifelong identification of mice, and the anatomic and functional recovery of myocardium after a severe cryo-injury. We present histological, biochemical and genetic data indicating that the enhanced breakdown of scar-like tissue may be an underlying factor in the MRL regenerative response. Studies as to the source of the cells in the regenerating MRL tissue are discussed. Such studies appear to support multiple mechanisms for cell replacement.

  11. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  12. Dusp16 Deficiency Causes Congenital Obstructive Hydrocephalus and Brain Overgrowth by Expansion of the Neural Progenitor Pool

    Directory of Open Access Journals (Sweden)

    Ksenija Zega

    2017-11-01

    Full Text Available Hydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (Dusp16, which is known to negatively regulate mitogen-activated protein kinases (MAPKs and which has never previously been implicated in brain development and disorders. Mouse mutants lacking a functional Dusp16 gene (Dusp16−/− developed fully-penetrant congenital obstructive hydrocephalus together with brain overgrowth. The midbrain aqueduct in Dusp16−/− mutants was obstructed during mid-gestation by an expansion of neural progenitors, and during later gestational stages by neurons resulting in a blockage of cerebrospinal fluid (CSF outflow. In contrast, the roof plate and ependymal cells developed normally. We identified a delayed cell cycle exit of neural progenitors in Dusp16−/− mutants as a cause of progenitor overproliferation during mid-gestation. At later gestational stages, this expanded neural progenitor pool generated an increased number of neurons associated with enlarged brain volume. Taken together, we found that Dusp16 plays a critical role in neurogenesis by balancing neural progenitor cell proliferation and neural differentiation. Moreover our results suggest that a lack of functional Dusp16 could play a central role in the molecular mechanisms linking brain overgrowth and hydrocephalus.

  13. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...

  14. Production expansion continues to accelerate

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Saudi Arabian Oil Co. (Saudi Aramco) is continuing its accelerated Crude Oil Expansion Program initiated in 1989 that aims at achieving a 10 million bpd productive capacity by 1995. In addition to major engineering, construction and renovation work related to production expansion, Saudi Aramco drilling and workover operations have been markedly expanded. Since January 1991, rig activity has doubled. As an indication of aging of Saudi production, projects include modernizing current injection water treatment facilities, installing a new seawater injection plant on the Persian Gulf, installing dewatering facilities in a number of locations and installing a pilot gas lift project. In addition, equipment orders indicate the new discoveries south of Riyadh may also need the assistance of water injection from inception of production

  15. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  16. RELIABILITY OF LENTICULAR EXPANSION COMPENSATORS

    Directory of Open Access Journals (Sweden)

    Gabriel BURLACU,

    2011-11-01

    Full Text Available Axial lenticular compensators are made to take over the longitudinal heat expansion, shock , vibration and noise, made elastic connections for piping systems. In order to have a long life for installations it is necessary that all elements, including lenticular compensators, have a good reliability. This desire can be did by technology of manufactoring and assembly of compensators, the material for lenses and by maintenance.of compensator

  17. Ectopic Overexpression of Sonic Hedgehog (Shh Induces Stromal Expansion and Metaplasia in the Adult Murine Pancreas

    Directory of Open Access Journals (Sweden)

    Volker Fendrich

    2011-10-01

    Full Text Available Ligand-dependent activation of the Hedgehog (Hh signaling pathway has been implicated in both tumor initiation and metastasis of pancreatic ductal adenocarcinoma (PDAC. Prior studies in genetically engineered mouse models (GEMMs have assessed the role of Hh signaling by cell autonomous expression of a constitutively active Gli2 within epithelial cells. On the contrary, aberrant pathway reactivation in the human exocrine pancreas occurs principally as a consequence of Sonic Hh ligand (Shh overexpression from epithelial cells. To recapitulate the cognate pathophysiology of Hh signaling observed in the human pancreas, we examined GEMM where Hh ligand is conditionally overexpressed within the mature exocrine pancreas using a tamoxifen-inducible Elastase-Cre promoter (Ela-CreERT2;LSL-mShh. We also facilitated potential cell autonomous epithelial responsiveness to secreted Hh ligand by generating compound transgenic mice with concomitant expression of the Hh receptor Smoothened (Ela-CreERT2;LSL-mShh;LSL-mSmo. Of interest, none of these mice developed intraductal precursor lesions or PDAC during the follow-up period of up to 12 months after tamoxifen induction. Instead, all animals demonstrated marked expansion of stromal cells, consistent with the previously described epithelial-to-stromal paracrine Hh signaling. Hh responsiveness was mirrored by the expression of primary cilia within the expanded mesenchymal compartment and the absence within mature acinar cells. In the absence of cooperating mutations, Hh ligand overexpression in the mature exocrine pancreas is insufficient to induce neoplasia, even when epithelial cells coexpress the Smo receptor. This autochthonous model serves as a platform for studying epithelial stromal interactions in pancreatic carcinogenesis.

  18. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    Science.gov (United States)

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  19. The endoplasmic reticulum exerts control over organelle streaming during cell expansion.

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica

    2014-03-01

    Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.

  20. Immunostimulatory mouse granuloma protein.

    Science.gov (United States)

    Fontan, E; Fauve, R M; Hevin, B; Jusforgues, H

    1983-10-01

    Earlier studies have shown that from subcutaneous talc-induced granuloma in mice, a fraction could be extracted that fully protected mice against Listeria monocytogenes. Using standard biochemical procedures--i.e., ammonium sulfate fractionation, preparative electrophoresis, gel filtration chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis--we have now purified an active factor to homogeneity. A single band was obtained in NaDodSO4/polyacrylamide gel with an apparent Mr of 55,000. It migrated with alpha 1-globulins and the isoelectric point was 5 +/- 0.1. The biological activity was destroyed with Pronase but not with trypsin and a monospecific polyclonal rabbit antiserum was obtained. The intravenous injection of 5 micrograms of this "mouse granuloma protein" fully protects mice against a lethal inoculum of L. monocytogenes. Moreover, after their incubation with 10 nM mouse granuloma protein, mouse peritoneal cells became cytostatic against Lewis carcinoma cells.

  1. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  2. genetics, epigenetics and the story of mutual antagonisms

    Indian Academy of Sciences (India)

    Recent years have seen a rapid growth in mouse genetics resources that support research into fundamental mechanisms in organogenesis, including those controlling mammalian sex determinations. Numerous mouse mutants have shed light on molecular pathways of cell fate specification during gonadogenesis and the ...

  3. Genetic Mapping

    Science.gov (United States)

    ... greatly advanced genetics research. The improved quality of genetic data has reduced the time required to identify a ... cases, a matter of months or even weeks. Genetic mapping data generated by the HGP's laboratories is freely accessible ...

  4. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

    Science.gov (United States)

    Sato, Toshiro; Stange, Daniel E; Ferrante, Marc; Vries, Robert G J; Van Es, Johan H; Van den Brink, Stieneke; Van Houdt, Winan J; Pronk, Apollo; Van Gorp, Joost; Siersema, Peter D; Clevers, Hans

    2011-11-01

    We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. A Power Series Expansion and Its Applications

    Science.gov (United States)

    Chen, Hongwei

    2006-01-01

    Using the power series solution of a differential equation and the computation of a parametric integral, two elementary proofs are given for the power series expansion of (arcsin x)[squared], as well as some applications of this expansion.

  6. Nrl-Cre transgenic mouse mediates loxP recombination in developing rod photoreceptors.

    Science.gov (United States)

    Brightman, Diana S; Razafsky, David; Potter, Chloe; Hodzic, Didier; Chen, Shiming

    2016-03-01

    The developing mouse retina is a tractable model for studying neurogenesis and differentiation. Although transgenic Cre mouse lines exist to mediate conditional genetic manipulations in developing mouse retinas, none of them act specifically in early developing rods. For conditional genetic manipulations of developing retinas, a Nrl-Cre mouse line in which the Nrl promoter drives expression of Cre in rod precursors was created. The results showed that Nrl-Cre expression was specific to the retina where it drives rod-specific recombination with a temporal pattern similar to endogenous Nrl expression during retinal development. This Nrl-Cre transgene does not negatively impact retinal structure and function. Taken together, the data suggested that the Nrl-Cre mouse line was a valuable tool to drive Cre-mediated recombination specifically in developing rods. © 2016 Wiley Periodicals, Inc.

  7. Structural covariance networks in the mouse brain.

    Science.gov (United States)

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  9. Perkembangan Praimplantasi Embrio Mencit dengan Materi Genetik yang Berasal dari Parental, Maternal, dan Inti Sel Somatik (PRE-IMPLANTATION DEVELOPMENT OF MOUSE EMBRYO WITH GENETIC MATERIAL DERIVED FROM PARENTAL, MATERNAL AND SOMATIC CELL NUCLEUS

    Directory of Open Access Journals (Sweden)

    Harry Murti

    2014-05-01

    Full Text Available Cloned embryo and parthenogenetic embryo are a potential source of stem cells for regenerativemedicine. Stem cells derived from those embryos are expected to overcome the ethical issues to the use offertilization embryos for therapeutic purposes. The pre-implantation development is a critical step fordeveloping embryos reach the blastocyst stage. The objectives in vivo of this research are to produce mousecloned embryo, parthenogenetic embryo, and fertilized embryo and to study stages of  in vitro pre-implantation development culture. In vivo fertilized embryos, mouse oocytes, and cumulus cells were usedin this study. Treatment was performed on female mice superovulated with PMSG and hCG injections.Two-cell stage of in vivo fertilized embryos were collected on the second day post hCG injection. Clonedembryos were produced through Somatic Cell Nuclear Transfer (SCNT, which included enucleation, nucleartransfer and artificial activation. Parthenogenetic embryos were produced with artificial activationtechnique. The result of the research indicated that SCNT application was able to produce cloned embryos which could develop to blastocyst stage (3,2%. In addition, artificial activation of oocytes could produceparthenogenetic embryos which were able to develop up to the blastocyst stage (8,6%. In conclusion,efficiency level of parthenogenetic embryos that is able to reach the blastocyst stage was higher than in thecloned embryos. Fertilized embryos shows a better development and more efficient compared to in vitrocloned embryos and parthenogenetic embryos cultures.

  10. Genetic privacy.

    Science.gov (United States)

    Sankar, Pamela

    2003-01-01

    During the past 10 years, the number of genetic tests performed more than tripled, and public concern about genetic privacy emerged. The majority of states and the U.S. government have passed regulations protecting genetic information. However, research has shown that concerns about genetic privacy are disproportionate to known instances of information misuse. Beliefs in genetic determinacy explain some of the heightened concern about genetic privacy. Discussion of the debate over genetic testing within families illustrates the most recent response to genetic privacy concerns.

  11. Transmission Network Expansion Planning Considering Phase-Shifter Transformers

    Directory of Open Access Journals (Sweden)

    Celso T. Miasaki

    2012-01-01

    Full Text Available This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process.

  12. The Population Origins and Expansion of Feral Cats in Australia

    Science.gov (United States)

    Yurchenko, Andrey A.; David, Victor A.; Scott, Rachael; Koepfli, Klaus-Peter; Driscoll, Carlos; O’Brien, Stephen J.; Menotti-Raymond, Marilyn

    2016-01-01

    The historical literature suggests that in Australia, the domestic cat (Felis catus) had a European origin [~200 years before present (ybp)], but it is unclear if cats arrived from across the Asian land bridge contemporaneously with the dingo (4000 ybp), or perhaps immigrated ~40000 ybp in association with Aboriginal settlement from Asia. The origin of cats in Australia is important because the continent has a complex and ancient faunal assemblage that is dominated by endemic rodents and marsupials and lacks the large placental carnivores found on other large continents. Cats are now ubiquitous across the entire Australian continent and have been implicit in the range contraction or extinction of its small to medium sized (cats using 15 short tandem repeat (STR) genomic markers. Their origin appears to come exclusively from European founders. Feral cats in continental Australia exhibit high genetic diversity in comparison with the low diversity found in populations of feral cats living on islands. The genetic structure is consistent with a rapid westerly expansion from eastern Australia and a limited expansion in coastal Western Australia. Australian cats show modest if any population structure and a close genetic alignment with European feral cats as compared to cats from Asia, the Christmas and Cocos (Keeling) Islands (Indian Ocean), and European wildcats (F. silvestris silvestris). PMID:26647063

  13. Strain expansion-reduction approach

    Science.gov (United States)

    Baqersad, Javad; Bharadwaj, Kedar

    2018-02-01

    Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.

  14. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  15. Nuclear fuel reprocessing expansion strategies

    International Nuclear Information System (INIS)

    Gallagher, J.M.

    1975-01-01

    A description is given of an effort to apply the techniques of operations research and energy system modeling to the problem of determination of cost-effective strategies for capacity expansion of the domestic nuclear fuel reprocessing industry for the 1975 to 2000 time period. The research also determines cost disadvantages associated with alternative strategies that may be attractive for political, social, or ecological reasons. The sensitivity of results to changes in cost assumptions was investigated at some length. Reactor fuel types covered by the analysis include the Light Water Reactor (LWR), High-Temperature Gas-Cooled Reactor (HTGR), and the Fast Breeder Reactor (FBR)

  16. Thermal expansion of LATGS crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Kandil, S.H.; Hamed, A.E.; Stankowska, J.

    1989-04-01

    The thermal expansion of triglycine sulphate crystals doped with L-α alanine (LATGS) has been studied around the phase transition temperature (30-60 deg. C) using thermomechanical analysis TMA. With increasing the content of admixture, the transition temperature (T c ) was shifted towards higher values, while the relative changes in the dimension of the crystals (ΔL/L 0 ) of the studied directions varied both in the para- and ferroelectric phases. The transition width in the case of doped crystals was found to be broad, and this broadening increases with increasing the content of L-α alanine. (author). 12 refs, 3 figs

  17. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  18. Colonization, mouse-style

    Directory of Open Access Journals (Sweden)

    Searle Jeremy B

    2010-10-01

    Full Text Available Abstract Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325

  19. EuroPhenome and EMPReSS: online mouse phenotyping resource.

    Science.gov (United States)

    Mallon, Ann-Marie; Blake, Andrew; Hancock, John M

    2008-01-01

    EuroPhenome (http://www.europhenome.org) and EMPReSS (http://empress.har.mrc.ac.uk/) form an integrated resource to provide access to data and procedures for mouse phenotyping. EMPReSS describes 96 Standard Operating Procedures for mouse phenotyping. EuroPhenome contains data resulting from carrying out EMPReSS protocols on four inbred laboratory mouse strains. As well as web interfaces, both resources support web services to enable integration with other mouse phenotyping and functional genetics resources, and are committed to initiatives to improve integration of mouse phenotype databases. EuroPhenome will be the repository for a recently initiated effort to carry out large-scale phenotyping on a large number of knockout mouse lines (EUMODIC).

  20. The mechanism of functional up-regulation of P2X3 receptors of trigeminal sensory neurons in a genetic mouse model of familial hemiplegic migraine type 1 (FHM-1.

    Directory of Open Access Journals (Sweden)

    Swathi K Hullugundi

    Full Text Available A knock-in (KI mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP.

  1. High thermal expansion, sealing glass

    Science.gov (United States)

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  2. Nonperturbative path integral expansion II

    International Nuclear Information System (INIS)

    Kaiser, H.J.

    1976-05-01

    The Feynman path integral representation of the 2-point function for a self-interacting Bose field is investigated using an expansion ('Path Integral Expansion', PIE) of the exponential of the kinetic term of the Lagrangian. This leads to a series - illustrated by a graph scheme - involving successively a coupling of more and more points of the lattice space commonly employed in the evaluation of path integrals. The values of the individual PIE graphs depend of course on the lattice constant. Two methods - Pade approximation and Borel-type extrapolation - are proposed to extract information about the continuum limit from a finite-order PIE. A more flexible PIE is possible by expanding besides the kinetic term a suitably chosen part of the interaction term too. In particular, if the co-expanded part is a mass term the calculation becomes only slightly more complicated than in the original formulation and the appearance of the graph scheme is unchanged. A significant reduction of the number of graphs and an improvement of the convergence of the PIE can be achieved by performing certain sums over an infinity of graph elements. (author)

  3. Radiation carcinogenesis in mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, Ryo; Niwa, Ohtsura

    2006-01-01

    Ionizing radiation is a well-known carcinogen for various human tissues and a complete carcinogen that is able to initiate and promote neoplastic progression. Studies of radiation-induced mouse thymic lymphomas, one of the classic models in radiation carcinogenesis, demonstrated that even the unirradiated thymus is capable of developing into full malignancy when transplanted into the kidney capsule or subcutaneous tissue of irradiated mice. This suggests that radiation targets tissues other than thymocytes to allow expansion of cells with tumorigenic potential in the thymus. The idea is regarded as the ''indirect mechanism'' for tumor development. This paper reviews the indirect mechanism and genes affecting the development of thymic lymphomas that we have analyzed. One is the Bcl11b/Rit1 tumor suppressor gene and the other is Mtf-1 gene affecting tumor susceptibility. (author)

  4. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    OpenAIRE

    Fei-Ran Shen; Hao Kuang; Feng-Xia Hu; Hui Wu; Qing-Zhen Huang; Fei-Xiang Liang; Kai-Ming Qiao; Jia Li; Jing Wang; Yao Liu; Lei Zhang; Min He; Ying Zhang; Wen-Liang Zuo; Ji-Rong Sun

    2017-01-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE o...

  5. Mouse Models as Predictors of Human Responses: Evolutionary Medicine.

    Science.gov (United States)

    Uhl, Elizabeth W; Warner, Natalie J

    Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.

  6. Genetics of sweet taste preferences†

    OpenAIRE

    Bachmanov, Alexander A; Bosak, Natalia P; Floriano, Wely B; Inoue, Masashi; Li, Xia; Lin, Cailu; Murovets, Vladimir O; Reed, Danielle R; Zolotarev, Vasily A; Beauchamp, Gary K

    2011-01-01

    Sweet taste is a powerful factor influencing food acceptance. There is considerable variation in sweet taste perception and preferences within and among species. Although learning and homeostatic mechanisms contribute to this variation in sweet taste, much of it is genetically determined. Recent studies have shown that variation in the T1R genes contributes to within- and between-species differences in sweet taste. In addition, our ongoing studies using the mouse model demonstrate that a sign...

  7. The Mouse That Soared

    Science.gov (United States)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  8. Stimulation of growth in the little mouse.

    Science.gov (United States)

    Beamer, W H; Eicher, E M

    1976-10-01

    The new mouse mutation little (lit) in the homozygous state causes a pituitary deficiency involving at least growth hormone (GH) and prolactin. The resultant growth failure of lit/lit mice was shown to be reversed by experimental conditions that enhanced levels of GH or GH and prolactin in the circulation. Two measures of growth, actual weight gain and bone dimension, were significantly improved by the physiological processes of pregnancy and pseudopregnancy, by extra-sellar graft of a normal mouse pituitary, and by treatment with GH but not prolactin. These data confirmed pituitary dysfunction as the basic defect caused by the mutation lit and showed that the GH deficiency is responsible for growth failure. However, the biological site of gene action, the pituitary or hypothalamus, has not been established. Little mice exhibit a number of characteristics similar to those of human genetic ateleotic dwarfism Type 1, namely genetic inheritance, time of onset of growth retardation, proportionate skeletal size reduction, and pituitary GH deficiency.

  9. Mouse Y-Encoded Transcription Factor Zfy2 Is Essential for Sperm Head Remodelling and Sperm Tail Development

    NARCIS (Netherlands)

    Vernet, Nadege; Mahadevaiah, Shantha K.; Decarpentrie, Fanny; Longepied, Guy; de Rooij, Dirk G.; Burgoyne, Paul S.; Mitchell, Michael J.

    2016-01-01

    A previous study indicated that genetic information encoded on the mouse Y chromosome short arm (Yp) is required for efficient completion of the second meiotic division (that generates haploid round spermatids), restructuring of the sperm head, and development of the sperm tail. Using mouse models

  10. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene

    NARCIS (Netherlands)

    Himes, Blanca E.; Sheppard, Keith; Berndt, Annerose; Leme, Adriana S.; Myers, Rachel A.; Gignoux, Christopher R.; Levin, Albert M.; Gauderman, W. James; Yang, James J.; Mathias, Rasika A.; Romieu, Isabelle; Torgerson, Dara G.; Roth, Lindsey A.; Huntsman, Scott; Eng, Celeste; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Szefler, Stanley J.; Lemanske, Robert F.; Zeiger, Robert S.; Strunk, Robert C.; Martinez, Fernando D.; Boushey, Homer; Chinchilli, Vernon M.; Israel, Elliot; Mauger, David; Koppelman, Gerard H.; Postma, Dirkje S.; Nieuwenhuis, Maartje A. E.; Vonk, Judith M.; Lima, John J.; Irvin, Charles G.; Peters, Stephen P.; Kubo, Michiaki; Tamari, Mayumi; Nakamura, Yusuke; Litonjua, Augusto A.; Tantisira, Kelan G.; Raby, Benjamin A.; Bleecker, Eugene R.; Meyers, Deborah A.; London, Stephanie J.; Barnes, Kathleen C.; Gilliland, Frank D.; Williams, L. Keoki; Burchard, Esteban G.; Nicolae, Dan L.; Ober, Carole; DeMeo, Dawn L.; Silverman, Edwin K.; Paigen, Beverly; Churchill, Gary; Shapiro, Steve D.; Weiss, Scott

    2013-01-01

    Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify

  11. Expansion of passive safety function

    International Nuclear Information System (INIS)

    Inai, Nobuhiko; Nei, Hiromichi; Kumada, Toshiaki.

    1995-01-01

    Expansion of the use of passive safety functions is proposed. Two notions are presented. One is that, in the design of passive safety nuclear reactors where aversion of active components is stressed, some active components are purposely introduced, by which a system is built in such a way that it behaves in an apparently passive manner. The second notion is that, instead of using a passive safety function alone, a passive safety function is combined with some active components, relating the passivity in the safety function with enhanced controllability in normal operation. The nondormant system which the authors propose is one example of the first notion. This is a system in which a standby safety system is a portion of the normal operation system. An interpretation of the nondormant system via synergetics is made. As an example of the second notion, a PIUS density lock aided with active components is proposed and is discussed

  12. Genetic risks from radiation

    International Nuclear Information System (INIS)

    Selby, P.B.

    Two widely-recognized committees, UNSCEAR and BEIR, have reevaluated their estimates of genetic risks from radiation. Their estimates for gene mutations are based on two different approaches, one being the doubling-dose approach and the other being a new direct approach based on an empirical determination of the amount of dominant induced damage in the skeletons of mice in the first generation following irradiation. The estimates made by these committees are in reasonably good agreement and suggest that the genetic risks from present exposures resultng from nuclear power production are small. There is room for much improvement in the reliability of the risk estimates. The relatively new approach of measuring the amount of induced damage to the mouse skeleton shows great promise of improving knowledge about how changes in the mutation frequency affect the incidence of genetic disorders. Such findings may have considerable influence on genetic risk estimates for radiation and on the development of risk estimates for other less-well-understood environmental mutagens. (author)

  13. On the Equisummability of Hermite and Fourier Expansions

    Indian Academy of Sciences (India)

    We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.

  14. Effect of intraovarian factors on porcine follicular cells: cumulus expansion, granulosa and cumulus cell progesterone production

    Czech Academy of Sciences Publication Activity Database

    Ježová, M.; Scsuková, S.; Nagyová, Eva; Vranová, J.; Procházka, Radek; Kolena, J.

    2001-01-01

    Roč. 65, - (2001), s. 115-126 ISSN 0378-4320 R&D Projects: GA ČR GA524/98/0231; GA AV ČR KSK5052113 Keywords : pig-ovary * cumulus expansion * luteinization stimulator Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.196, year: 2001

  15. Eugenics, Genetics, and the Minority Group Model of Disabilities: Implications for Social Work Advocacy

    Science.gov (United States)

    O'Brien, Gerald V.

    2011-01-01

    In the United States, genetic research, as well as policy and practice innovations based on this research, has expanded greatly over the past few decades. This expansion is indicated, for example, by the mapping of the human genome, an expansion of genetic counseling, and other biogenetic research. Also, a disability rights movement that in many…

  16. [Tissular expansion in giant congenital nevi treatment].

    Science.gov (United States)

    Nguyen Van Nuoi, V; Francois-Fiquet, C; Diner, P; Sergent, B; Zazurca, F; Franchi, G; Buis, J; Vazquez, M-P; Picard, A; Kadlub, N

    2014-08-01

    Surgical management of giant melanotic naevi remains a surgical challenge. Tissue expansion provides tissue of the same quality for the repair of defects. The aim of this study is to review tissular expansion for giant melanotic naevi. We conducted a retrospective study from 2000 to 2012. All children patients who underwent a tissular expansion for giant congenital naevi had been included. Epidemiological data, surgical procedure, complication rate and results had been analysed. Thirty-tree patients had been included; they underwent 61 procedures with 79 tissular-expansion prosthesis. Previous surgery, mostly simple excision had been performed before tissular expansion. Complete naevus excision had been performed in 63.3% of the cases. Complications occurred in 45% of the cases, however in 50% of them were minor. Iterative surgery increased the complication rate. Tissular expansion is a valuable option for giant congenital naevus. However, complication rate remained high, especially when iterative surgery is needed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  18. Semiclassical expansions for confined N fermion systems

    International Nuclear Information System (INIS)

    Krivine, H.; Martorell, J.; Casas, M.

    1989-01-01

    A new derivation of the Wigner Kirkwood expansion for N-fermion systems is presented, showing explicitly the connection to the WKB approximation for a single level. This allows to study separately the two ansatz required to obtain the semiclassical expansions: the asymptotic expansions in powers of ℎ and the smoothing of quantal effects. We discuss the one dimensional and three dimensional, with spherical symmetry, cases. Applications for standard potentials used in nuclear physics are described in detail

  19. Thermal and hygroscopic expansion characteristics of bamboo

    OpenAIRE

    Huang, Puxi; Chang, Wen-shao; Ansell, Martin P.; Bowen, Chris R.; Chew, John Y. M.; Adamak, Vana i

    2017-01-01

    The expansion and contraction of bamboo caused by temperature and moisture variations must be evaluated\\ud if bamboo is to be utilised as a building material. However, detailed expansion data, especially data in the ascent and\\ud descent processes of temperature and moisture are unexplored. The aim of this study is to investigate the expansion\\ud characteristics of Phyllostachys edulis (Moso bamboo) in ascent and descent processes of temperature and moisture.\\ud The measurement of linear ther...

  20. $\\delta$-Expansion at Finite Temperature

    OpenAIRE

    Ramos, Rudnei O.

    1996-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.

  1. Chromatic Derivatives, Chromatic Expansions and Associated Spaces

    OpenAIRE

    Ignjatovic, Aleksandar

    2009-01-01

    This paper presents the basic properties of chromatic derivatives and chromatic expansions and provides an appropriate motivation for introducing these notions. Chromatic derivatives are special, numerically robust linear differential operators which correspond to certain families of orthogonal polynomials. Chromatic expansions are series of the corresponding special functions, which possess the best features of both the Taylor and the Shannon expansions. This makes chromatic derivatives and ...

  2. Thermal expansion in small metallic particles

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1985-01-01

    An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature

  3. Cytogenetic and genetic studies of radiation-induced chromosome damage in mouse oocytes. Part 1. Numerical and structural chromosome anomalies in metaphase II oocytes, pre- and post-implantation embryos

    International Nuclear Information System (INIS)

    Tease, Charles; Fisher, Graham

    1996-01-01

    The incidences of X-ray induced numerical and structural chromosome anomalies were screened in a range of developmental stages from metaphase II oocytes through to post-implantation embryos. Following 1 Gy of acute X-rays to immediately preovulatory stage oocytes, the rate of hyperploidy (chromosome gain) was found to be elevated over levels in unirradiated controls, at metaphase II, in 1-cell and 3.5 day pre-implantation embryos but not in 8.5 day post-implantation foetuses. In the latter, however, the frequency of mosaicism was significantly increased. A similar response of an increase in mosaicism but not in hyperploidy in 8.5 day post-implantation embryos was also found after irradiation of dictyate stage oocytes with 4 Gy of acute X-rays. Significantly elevated frequencies of structural chromosome anomalies were present in metaphase II oocytes and pre-implantation embryonic stages, but could not be detected in block-stained chromosome preparations from 8.5 day post-implantation foetuses. However, analysis of chromosome preparations after G-banding showed that almost 14% of 14.5 day foetuses carried a chromosome rearrangement after 1 Gy of X-rays to immediately preovulatory stage oocytes. Overall, our data indicate that the presence of radiation-induced chromosome gains are incompatible with embryonic survival but that a proportion of embryos with structural chromosome damage develop past mid-gestation. These latter embryos are therefore potentially capable of contributing to the genetic burden of the next generation

  4. Major genomic mitochondrial lineages delineate early human expansions

    Directory of Open Access Journals (Sweden)

    Flores Carlos

    2001-08-01

    Full Text Available Abstract Background The phylogeographic distribution of human mitochondrial DNA variations allows a genetic approach to the study of modern Homo sapiens dispersals throughout the world from a female perspective. As a new contribution to this study we have phylogenetically analysed complete mitochondrial DNA(mtDNA sequences from 42 human lineages, representing major clades with known geographic assignation. Results We show the relative relationships among the 42 lineages and present more accurate temporal calibrations than have been previously possible to give new perspectives as how modern humans spread in the Old World. Conclusions The first detectable expansion occurred around 59,000–69,000 years ago from Africa, independently colonizing western Asia and India and, following this southern route, swiftly reaching east Asia. Within Africa, this expansion did not replace but mixed with older lineages detectable today only in Africa. Around 39,000–52,000 years ago, the western Asian branch spread radially, bringing Caucasians to North Africa and Europe, also reaching India, and expanding to north and east Asia. More recent migrations have entangled but not completely erased these primitive footprints of modern human expansions.

  5. Disjoint sum expansion method in FTA

    International Nuclear Information System (INIS)

    Ruan Keqiang

    1987-01-01

    An expansion formula for transforming boolean algebraic expressions into disjoint form was proved. Based on this expansion formula, a method for transforming system failure function into disjoint form was devised. The fact that the expansion can be done for several elements simulatneously makes the method flexible and fast. Some examples from fault tree analysis (FTA) and network analysis were examined by the new method to show its algorithm and its merit. Besides, by means of the proved expansion formula some boolean algebraic relations can proved very easily

  6. Thermal expansion of L-ascorbic acid

    Science.gov (United States)

    Nicolaï, B.; Barrio, M.; Tamarit, J.-Ll.; Céolin, R.; Rietveld, I. B.

    2017-04-01

    The specific volume of vitamin C has been investigated by X-ray powder diffraction as a function of temperature from 110 K up to complete degradation around 440 K. Its thermal expansion is relatively small in comparison with other organic compounds with an expansivity α v of 1.2(3) × 10-4 K-1. The structure consists of strongly bound molecules in the ac plane through a dense network of hydrogen bonds. The thermal expansion is anisotropic. Along the b axis, the expansion has most leeway and is about 10 times larger than in the other directions.

  7. Adiabatic supernova expansion into the circumstellar medium

    International Nuclear Information System (INIS)

    Band, D.L.; Liang, E.P.

    1987-01-01

    We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs

  8. Expansion of the gateway multisite recombination cloning toolkit.

    Science.gov (United States)

    Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.

  9. Genetic modification and genetic determinism

    Science.gov (United States)

    Resnik, David B; Vorhaus, Daniel B

    2006-01-01

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions. PMID:16800884

  10. Screening for the C9ORF72 repeat expansion in a greek frontotemporal dementia cohort.

    Science.gov (United States)

    Kartanou, Chrisoula; Karadima, Georgia; Koutsis, Georgios; Breza, Marianthi; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Panas, Marios

    2018-02-01

    The C9orf72 repeat expansion is a common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in European populations. A previous study has reported a high frequency of the expansion in Greek ALS. However, no data have been reported on the frequency of the expansion in Greek FTD. Currently, we investigated the frequency of the C9orfF72 expansion in a well-characterized cohort of 64 Greek FTD patients. We detected the C9orf72 repeat expansion in 9.3% of cases. Overall, 27.7% of familial and 2.2% of sporadic cases were expansion-positive. Five out of 6 cases had a diagnosis of behavioral variant FTD. All expansion-positive cases had fairly typical FTD presentations. Clinical features included motor neuron disease, Parkinsonism and hallucinations. We conclude that the overall frequency of C9orf72-positive cases in Greek FTD is high, comparable to Greek ALS, similar to some Western European, but significantly higher than some Mediterranean FTD populations.

  11. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes

    Directory of Open Access Journals (Sweden)

    Coukos George

    2011-08-01

    Full Text Available Abstract Background Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application. Methods To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs for the direct and rapid expansion of TILs isolated from primary cancer specimens. Results TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures. Conclusion Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy.

  12. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    These results suggest that sexual preference may be influenced in a significant proportion of homosexual men by a biological/genetic factor that also controls direction of hair-whorl rotation. pp 257-263 Research Article. Cloning of a novel gene, Cymg1, related to family 2 cystatins and expressed at specific stages of mouse ...

  13. Moralistic gods, supernatural punishment and the expansion of human sociality.

    Science.gov (United States)

    Purzycki, Benjamin Grant; Apicella, Coren; Atkinson, Quentin D; Cohen, Emma; McNamara, Rita Anne; Willard, Aiyana K; Xygalatas, Dimitris; Norenzayan, Ara; Henrich, Joseph

    2016-02-18

    Since the origins of agriculture, the scale of human cooperation and societal complexity has dramatically expanded. This fact challenges standard evolutionary explanations of prosociality because well-studied mechanisms of cooperation based on genetic relatedness, reciprocity and partner choice falter as people increasingly engage in fleeting transactions with genetically unrelated strangers in large anonymous groups. To explain this rapid expansion of prosociality, researchers have proposed several mechanisms. Here we focus on one key hypothesis: cognitive representations of gods as increasingly knowledgeable and punitive, and who sanction violators of interpersonal social norms, foster and sustain the expansion of cooperation, trust and fairness towards co-religionist strangers. We tested this hypothesis using extensive ethnographic interviews and two behavioural games designed to measure impartial rule-following among people (n = 591, observations = 35,400) from eight diverse communities from around the world: (1) inland Tanna, Vanuatu; (2) coastal Tanna, Vanuatu; (3) Yasawa, Fiji; (4) Lovu, Fiji; (5) Pesqueiro, Brazil; (6) Pointe aux Piments, Mauritius; (7) the Tyva Republic (Siberia), Russia; and (8) Hadzaland, Tanzania. Participants reported adherence to a wide array of world religious traditions including Christianity, Hinduism and Buddhism, as well as notably diverse local traditions, including animism and ancestor worship. Holding a range of relevant variables constant, the higher participants rated their moralistic gods as punitive and knowledgeable about human thoughts and actions, the more coins they allocated to geographically distant co-religionist strangers relative to both themselves and local co-religionists. Our results support the hypothesis that beliefs in moralistic, punitive and knowing gods increase impartial behaviour towards distant co-religionists, and therefore can contribute to the expansion of prosociality.

  14. Hubble expansion in static spacetime

    International Nuclear Information System (INIS)

    Rossler, Otto E.; Froehlich, Dieter; Movassagh, Ramis; Moore, Anthony

    2007-01-01

    A recently proposed mechanism for light-path expansion in a static spacetime is based on the moving-lenses paradigm. Since the latter is valid independently of whether space expands or not, a static universe can be used to better see the implications. The moving-lenses paradigm is related to the paradigm of dynamical friction. If this is correct, a Hubble-like law is implicit. It is described quantitatively. A bent in the Hubble-like line is predictably implied. The main underlying assumption is Price's Principle (PI 3 ). If the theory is sound, the greatest remaining problem in cosmology becomes the origin of hydrogen. Since Blandford's jet production mechanism for quasars is too weak, a generalized Hawking radiation hidden in the walls of cosmic voids is invoked. A second prediction is empirical: slow pattern changes in the cosmic microwave background. A third is ultra-high redshifts for Giacconi quasars. Bruno's eternal universe in the spirit of Augustine becomes a bit less outlandish

  15. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  16. Mouse models for gastric cancer: Matching models to biological questions

    Science.gov (United States)

    Poh, Ashleigh R; O'Donoghue, Robert J J

    2016-01-01

    Abstract Gastric cancer is the third leading cause of cancer‐related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late‐stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new‐targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre‐clinical development of new therapeutics. PMID:26809278

  17. From Genetics to Genetic Algorithms

    Indian Academy of Sciences (India)

    Genetic algorithms (GAs) are computational optimisation schemes with an ... The algorithms solve optimisation problems ..... Genetic Algorithms in Search, Optimisation and Machine. Learning, Addison-Wesley Publishing Company, Inc. 1989.

  18. From Genetics to Genetic Algorithms

    Indian Academy of Sciences (India)

    artificial genetic system) string feature or ... called the genotype whereas it is called a structure in artificial genetic ... assigned a fitness value based on the cost function. Better ..... way it has produced complex, intelligent living organisms capable of ...

  19. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  20. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline

    KAUST Repository

    Vignaud, Thomas M.; Maynard, Jeffrey Allen; Leblois, Raphaë l; Meekan, Mark G.; Vá zquez-Juá rez, Ricardo; Ramí rez-Mací as, Dení ; Pierce, Simon J.; Rowat, David; Berumen, Michael L.; Beeravolu, Champak R.; Baksay, Sandra; Planes, Serge

    2014-01-01

    This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks