Sample records for exotic oxygen isotopes

  1. Fragmentation of exotic oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Leistenschneider, A.; Elze, Th.W.; Gruenschloss, A.; Palit, R. [Johann Wolfgang Goethe-Univ., Frankfurt (Germany). Inst. fuer Kernphysik; Aumann, T.; Cortina, D.; Datta Pramanik, U.; Emling, H.; Geissel, H.; Helariutta, K.; Hellstroem, M.; Ilievski, S.; Jones, K.; Muenzenberg, G.; Scheidenberger, C.; Schmidt, K.-H.; Suemmerer, K. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Boretzky, K.; Kratz, J.V.; Le Hong, Khiem [Johannes Gutenberg-Univ., Mainz (Germany). Inst. fue Kernchemie; Canto, L.F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Carlson, B.V. [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica (ITA). Dept. de Fisica; Hussein, M.S. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica; Kulessa, R.; Lubkiewicz, E.; Wajda, E.; Walus, W. [Uniwersytet Jagellonski, Krakow (Poland). Instytut Fizyki; Reiter, P. [Ludwig-Maximilians-Univ., Garching (Germany). Sektion Physik; Simon, H. [Technische Univ., Darmstadt (Germany). Inst. fuer Kernphysik


    Abrasion-ablation models and the empirical EPAX parametrization of projectile fragmentation are described. Their cross section predictions are compared to recent data of the fragmentation of secondary beams of neutron-rich, unstable {sup 19,20,21} O isotopes at beam energies near 600 MeV/nucleon as well as data for stable {sup 17,18} O beams. (author)

  2. Exotic decay in cerium isotopes

    Indian Academy of Sciences (India)

    Half life for the emission of exotic clusters like 8Be, 12C, 16O, 20Ne, 24Mg and 28Si are computed taking Coulomb and proximity potentials as interacting barrier and many of these are found well within the present upper limit of measurement. These results lie very close to those values reported by Shanmugam et al using ...

  3. Masses of exotic calcium isotopes pin down nuclear forces. (United States)

    Wienholtz, F; Beck, D; Blaum, K; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; George, S; Herfurth, F; Holt, J D; Kowalska, M; Kreim, S; Lunney, D; Manea, V; Menéndez, J; Neidherr, D; Rosenbusch, M; Schweikhard, L; Schwenk, A; Simonis, J; Stanja, J; Wolf, R N; Zuber, K


    The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces. Calcium, with its doubly magic isotopes (40)Ca and (48)Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory. Whereas predictions for the masses of (51)Ca and (52)Ca have been validated by direct measurements, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes (53)Ca and (54)Ca, using the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our theoretical calculations. These results increase our understanding of neutron-rich matter and pin down the subtle components of nuclear forces that are at the forefront of theoretical developments constrained by quantum chromodynamics.

  4. Masses of exotic calcium isotopes pin down nuclear forces

    CERN Document Server

    Wienholtz, F; Blaum, K; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; George, S; Herfurth, F; Holt, J D; Kowalska, M; Kreim, S; Lunney, D; Manea, V; Menéndez, J; Neidherr, D; Rosenbusch, M; Schweikhard, L; Schwenk, A; Simonis, J; Stanja, J; Wolf, R N; Zuber, K


    The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces. Calcium, with its doubly magic isotopes $^{40}$Ca and $^{48}$Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory. Whereas predictions for the masses of $^{51}$Ca and $^{52}$Ca have been validated by direct measurements$^4$, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes $^{53}$Ca and $^{54}$Ca, using the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our t...

  5. Isotopic niches of sympatric native and exotic fish species in a Neotropical floodplain. (United States)

    Philippsen, Juliana S; Hauser, Marília; Benedito, Evanilde


    This study investigated the isotopic niches of two fish species, one exotic and one native. It was hypothesized that these species would show little or no isotopic niche overlap. This hypothesis was tested with the isotopic niche concept and the trophic Layman's metrics. A considerable isotopic niche overlap was observed between the species, mainly for the exotic that showed the greater percentage of overlapping, indicating an interspecific competition for food resources. Layman's metrics also showed this species probably exploits a more specific array of food resources when compared with the native species. The native species probably has the ability to exploit a wider array of resources, highlighted by the higher values given for the Layman's metrics. The juveniles and adults of native species showed minor overlapping between the isotopic niches. This indicates that they have probably adopted different foraging strategies, minimizing intraspecific competition. Evidences that the exotic species explores a narrower range of resources and that the native species has a greater isotopic niche and possibly suffer less intraspecific competition, indicates that the native species can tolerate the presence of the exotic species and promote survival and maintenance of its population even under possible competition effects imposed by the exotic species.

  6. Isotopic niches of sympatric native and exotic fish species in a Neotropical floodplain

    Directory of Open Access Journals (Sweden)

    Juliana S. Philippsen


    Full Text Available This study investigated the isotopic niches of two fish species, one exotic and one native. It was hypothesized that these species would show little or no isotopic niche overlap. This hypothesis was tested with the isotopic niche concept and the trophic Layman's metrics. A considerable isotopic niche overlap was observed between the species, mainly for the exotic that showed the greater percentage of overlapping, indicating an interspecific competition for food resources. Layman's metrics also showed this species probably exploits a more specific array of food resources when compared with the native species. The native species probably has the ability to exploit a wider array of resources, highlighted by the higher values given for the Layman's metrics. The juveniles and adults of native species showed minor overlapping between the isotopic niches. This indicates that they have probably adopted different foraging strategies, minimizing intraspecific competition. Evidences that the exotic species explores a narrower range of resources and that the native species has a greater isotopic niche and possibly suffer less intraspecific competition, indicates that the native species can tolerate the presence of the exotic species and promote survival and maintenance of its population even under possible competition effects imposed by the exotic species.

  7. Seafloor alteration, oxygen isotopes and climate (United States)

    Kanzaki, Y.; Kump, L. R.; Kasting, J. F.


    Seafloor alteration can be related to climate in two ways: through storage of carbon dioxide as carbonates and indirectly through its influence on the oxygen isotopic composition of seawater. Low temperature alteration of the seafloor, or seafloor weathering, can store carbon dioxide as carbonates formed as the result of dissolution of cations from silicate rocks, and since this process is temperature dependent, can serve as a climate regulator. On the other hand, the oxygen isotopic composition of seawater is determined by the balance between low temperature crustal alteration (including continental weathering) and high temperature seafloor alteration, because the heavy isotope is depleted from and added to seawater in low and high temperature alteration, respectively. The oxygen isotopic composition of seawater is a parameter necessary to estimate surface temperature of the Earth from the oxygen isotopic composition of authigenic sedimentary rocks. Thus seafloor alteration is related to reconstruction of Earth's climate. We have developed a comprehensive model of seafloor alteration that captures both seafloor weathering and oxygen isotope exchange, and use it to reconcile observations of long-term stability in both climate and altered ocean crust δ18O with secular changes in the oxygen isotopic composition of marine sediments.

  8. Exotic decay in Ba isotopes via 12 C emission

    Indian Academy of Sciences (India)

    Considering Coulomb and proximity potentials as barriers, we have calculated the half lives for 12C emission from various Ba isotopes using different mass tables. The half life for 112Ba isotope calculated by us is 6.020 × 103 s which is comparable with the experimental value 5.620 × 103 s. From our study it is found that ...

  9. Three-nucleon forces in exotic open-shell isotopes

    Directory of Open Access Journals (Sweden)

    Somà V.


    Full Text Available Advances in the self-consistent Green’s function approach to finite nuclei are discussed, including the implementation of three-nucleon forces and the extension to the Gorkov formalism. We report results on binding energies in the nitrogen and fluorine isotopic chains, as well as spectral functions of 22O. The application to medium-mass open-shell systems is illustrated by separation energy spectra of two argon isotopes, which are compared to one-neutron removal experiments.

  10. Oxygen isotope fractionation in double carbonates. (United States)

    Zheng, Yong-Fei; Böttcher, Michael E


    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates.

  11. Oxygen Isotope Systematics of Almahata Sitta (United States)

    Kita, N. T.; Goodrich, C. A.; Herrin, J. S.; Shaddad, M. H.; Jenniskens, P.


    The Almahata Sitta (hereafter "AHS") meteorite was derived from an impact of asteroid 2008TC3 on Earth and is classified as an anomalous polymict ureilite. More than 600 meteorite fragments have been recovered from the strewnfield. Previous reports indicate that these fragments consist mainly of ureilitic materials with textures and compositions, while some fragments are found to be chondrites of a wide range of chemical classes. Bulk oxygen three isotope analyses of ureilitic fragments from AHS fall close to the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line similar to ureilites. In order to further compare AHS with known ureilites, we performed high precision SIMS (Secondary Ion Mass Spectrometer) oxygen isotope analyses of some AHS samples

  12. Oxygen and hydrogen isotope geochemistry of zeolites (United States)

    Karlsson, Haraldur R.; Clayton, Robert N.


    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  13. The Oxygen Isotopic Composition of the Sun (United States)

    McKeegan, K. D.; Kallio, A.; Heber, V. S.; Jarzebinski, G.; Mao, P.; Coath, C.; Kunihiro, T.; Wiens, R. C.; Judith, A.; Burnett, D. S.


    An accurate and precise determination of the oxygen isotopic composition of the Sun is the highest priority scientific goal of the Genesis Mission [1] as such data would provide a baseline from which one could interpret the oxygen isotopic anomalies found at all spatial scales in inner solar system materials. We have measured oxygen isotope compositions of implanted solar wind in 40 spots along a radial traverse of the Genesis SiC target sample 60001 by depth profiling with the UCLA MegaSIMS [2]. Mass-dependent fractionation induced by the solar wind concentrator [3] ion optics was corrected by comparison of the concentrator 22Ne/20Ne with that measured in a bulk solar wind target (diamond-like carbon on Si, [4]). The solar wind captured at L1 has an isotopic composition of (δ18O, δ17O) ≈ (-99, -79)‰, a value which is far removed from the terrestrial mass fractionation line. Profiles from the central portion of the target, where solar concentrations are highest and background corrections minimal, yield a mean Δ17O = -28.3 ± 1.8 ‰ indicating that the Earth and other planetary materials from the inner solar system are highly depleted in 16O relative to the solar wind. A mass-dependent fractionation of ~ -20%/amu in the acceleration of solar wind is required if we hypothesize that the photospheric oxygen isotope value, which represents the bulk starting composition of the solar system, is on the 16O-mixing line characteristic of refractory phase in primitive meteorites [5]. With this assumption, our preferred value for the bulk solar oxygen isotope composition is δ18O ≈ δ17O ≈ -57‰. A mechanism is required to fractionate oxygen isotopes in a non-mass-dependent manner to deplete 16O by ~6 to 7% in the rocky materials of the solar nebula. As oxygen is the third most abundant element in the solar system, and the most abundant in the terrestrial planets, this mechanism must operate on a large scale. Isotope-selective photochemistry, for example as in

  14. Oxygen-Free Biochemistry: The Putative CHN Foundation for Exotic Life in a Hydrocarbon World? (United States)

    Lv, Kong-Peng; Norman, Lucy; Li, Yi-Liang


    Since Earth's biochemistry is carbon-based and water-borne, the main strategies for searching for life elsewhere are "follow the carbon" and "follow the water." Recently, however, there is a growing focus on the prospect that putative exotic life on other planets could rely on unearthly biochemistries. Here, we hypothesize a novel oxygen-free organic chemistry for supporting potential exotic biosystems, which is named CHN biochemistry. This oxygen-free CHN biochemistry starts from simple oxygen-free species (including hydrocarbons, hydrogen cyanide, and nitriles) and produces a range of functional macromolecules that may function in similar ways to terran macromolecules, such as sugars (cyanosugars), acids (cyanoacids), amino acids (amino cyanoacids), and nucleobases (cyanonucleobases). These CHN macromolecules could further interact with each other to generate higher "cyanoester" and "cyanoprotein" systems. In addition, theoretical calculations indicate that the energy changes of some reactions are consistent with their counterparts in Earth's biochemistry. The CHN biochemistry-based life would be applicable in habitats with a low bioavailability of oxygen, such as the alkane lakes of Titan and non-aquatic liquids on extrasolar bodies.

  15. Giant Resonances in unstable oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T.; Leistenschneider, A.; Boretzky, K.; Cortina, D.; Cub, J.; Dostal, W.; Eberlein, B.; Elze, Th.W.; Emling, H.; Geissel, H.; Gruenschloss, A.; Hellstroem, M.; Holeczek, J.; Holzmann, R.; Ilievski, S.; Iwasa, N.; Kaspar, M.; Kleinboehl, A.; Kratz, J.V.; Kulessa, R.; Leifels, Y.; Lubkiewicz, E.; Muenzenberg, G.; Reiter, P.; Rejmund, M.; Scheidenberger, C.; Schlegel, Ch.; Simon, H.; Stroth, J.; Suemmerer, K.; Wajda, E.; Walus, W.; Wan, S


    Electromagnetic and nuclear breakup of the neutron-rich Oxygen isotopes ranging from A=17 to A=22 is studied experimentally in reactions at energies around 600 MeV/u. The beams were produced in fragmentation reactions and separated by the GSI Fragment Separator FRS. By measuring the four-momenta of all decay products after inelastic scattering and neutron decay of the projectile, the excitation energy is determined. From the differential cross sections d{sigma}/dE{sup *} for electromagnetic excitation, the E1-strength distributions can be deduced. For {sup 18,20,22}O, low-lying dipole strength is observed, exhausting about 5% of the Thomas Reiche Kuhn sumrule for energies up to 5 MeV above the continuum threshold.

  16. Anomalous oxygen isotopic charge state distribution in ECRIS : New evidence

    NARCIS (Netherlands)

    Drentje, AG; Girard, A; Hitz, D; Melin, G

    The highly performing Electron Cyclotron Resonance Ion Source CAPRICE in Grenoble was operated with a mixture of three oxygen isotopes. The summed currents per charge state show a distribution almost identical to that of natural oxygen. However, the distributions per isotope are distinctly and

  17. Oxygen exchange with water alters the oxygen isotopic signature of nitrate in soil ecosystems.

    NARCIS (Netherlands)

    Kool, D.M.; Wrage, N.; Oenema, O.; Kessel, van C.; Groenigen, van J.W.


    Combined oxygen (O) and nitrogen (N) stable isotope analyses are commonly used in the source determination of nitrate . The source and fate of are studied based on distinct O and N isotopic signatures (d18O and d15N) of various sources and isotopic effects during transformation processes, which

  18. Oxygen Isotope Trajectories of Crystallizing Arc Magmas (United States)

    Bucholz, C. E.; Jagoutz, O. E.; VanTongeren, J. A.; Wang, Z.


    Oxygen isotopes are essential to quantify mantle-derived versus 'recycled' crustal contributions to arc magmas. High δ18O values in igneous rocks (i.e., δ18OSMOW > ~5.7) are generally used to identify supra-crustal inputs, but a melt can also become enriched in 18O due to magmatic differentiation [1,2]. To assess magmatic δ18O values of plutonic rocks, δ18Ozircon values, which are resilient to secondary alteration, are often used. Thus, to disentangle the effects of assimilation versus fractionation, both the absolute increase in melt δ18O due to differentiation and ∆18O(WR-zircon) must be determined. However, existing constraints on the effect of magmatic fractionation on melt δ18O are model-based [2] and calculated relationships between WR SiO2, δ18Ozircon, and δ18Omelt do not incorporate complex melt SiO2, H2O, and temperature (T) relationships [3]. To build upon these initial constraints, we combine the first high-precision δ18O data set on natural samples documenting changes in δ18O melt values with increasing extent of differentiation and modeling which incorporates experimentally constrained melt SiO2, H2O, and T relationships. We analyzed 55 mineral separates with infrared laser-fluorination [4] across large fractionation intervals of two well-studied cumulate sequences: (I) a relatively dry (~1 wt.% H2O initial) tholeiitic sequence (analyzed minerals include plag, opx, cpx, & Fe-rich ol) from the Bushveld Complex and (II) a hydrous high-K sequence (analyzed minerals include ol, cpx, bt, fsp, & qtz) from the Dariv paleoarc in Mongolia. Our results indicate that multiple per mil increases in melt δ18O can occur during magmatic fractionation that in detail depend strongly on melt composition and T. Calculated relationships between WR SiO2 and δ18Ozircon for experimental melt compositions show that wet, 'cool' and dry, 'hot' melts are characterized by larger and smaller ∆18O (melt-zircon) fractionations, respectively. Applying our results to

  19. Measuring oxygen isotopes beyond the neutron dripline: Two-neutron emission and radioactivity (United States)

    Kohley, Zach


    The availability of rare isotope beams has made it possible to extend nuclear structure measurements to nuclei far away from stability. Drastic changes in the structure, properties, and available decay-modes of these exotic isotopes have been observed in comparison to their stable counterparts. The oxygen isotopic chain has been particularly interesting with observations of new shell closures at N = 14 and N = 16. The MoNA-LISA/Sweeper setup at the National Superconducting Cyclotron Laboratory at Michigan State University has allowed for studies of the oxygen isotopes to be extended beyond the neutron dripline. Recently, the 26O ground state was observed for the first time and shown to be unbound by less than 200 keV. The low energy ground state of the two-neutron unbound 26O opened the possibility for the discovery of two-neutron radioactivity. A new technique was developed to measure the lifetimes of neutron unbound nuclei in the picosecond range. This technique was applied to the 26O decay and a half-life of 4.5-1. 5 + 1 . 1 (stat.) +/-3 (sys.) ps was extracted. This corresponds to 26O having a finite lifetime at an 82% confidence level and, thus, suggests the possibility of two-neutron radioactivity. Supported by the National Science Foundation, under Grant No. PHY-1102511.

  20. Quasi-free Proton Knockout Reactions on the Oxygen Isotopic Chain (United States)

    Atar, Leyla; Aumann, Thomas; Bertulani, Carlos; Paschalis, Stefanos; R3B Collaboration


    It is well known from electron-induced knockout data that the single-particle (SP) strength is reduced to about 60-70% for stable nuclei in comparison to the independent particle model due to the presence of short- and long-range correlations. This finding has been confirmed by nuclear knockout reactions using stable and exotic beams, however, with a strong dependency on the proton-neutron asymmetry. The observed strong reduction of SP cross sections for the deeply bound valence nucleons in asymmetric nuclei is theoretically not understood. To understand this dependency quantitatively a complementary approach, quasi-free (QF) knockout reactions in inverse kinematics, is introduced. We have performed a systematic study of spectroscopic strength of oxygen isotopes using QF (p,2p) knockout reactions in complete kinematics at the R3B/LAND setup at GSI with secondary beams containing 13-24O. The oxygen isotopic chain covers a large variation of separ ation energies, which allow a systematic study of SF with respect to isospin asymmetry. We will present results on the (p,2p) cross sections for the entire oxygen isotopic chain obtained from a single experiment. By comparison with the Eikonal reaction theory the SF and reduction factors will be presented. The work is supported by GSI-TU Darmstadt cooperation and BMBF project 05P15RDFN1.

  1. Oxygen isotope fractionation in stratospheric CO2 (United States)

    Thiemens, M. H.; Jackson, T.; Mauersberger, K.; Schueler, B.; Morton, J.


    A new cryogenic collection system has been flown on board a balloon gondola to obtain separate samples of ozone and carbon dioxide without entrapping major atmospheric gases. Precision laboratory isotopic analysis of CO2 samples collected between 26 and 35.5 km show a mass-independent enrichment in both O-17 and O-18 of about 11 per mil above tropospheric values. Ozone enrichment in its heavy isotopes was 9 to 16 percent in O3-50 and 8 to 11 percent in O3-49, respectively (Schueler et al., 1990). A mechanism to explain the isotope enrichment in CO2 has been recently proposed by Yung et al. (1991). The model is based on the isotope exchange between CO2 and O3 via O(1D), resulting in a transfer of the ozone isotope enrichment to carbon dioxide. Predicted enrichment and measured values agree well.

  2. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    link the observed seasonal regression/transgression pattern to the inland recharge cycle, which is expressed in hydraulic head configuration and submarine groundwater discharge rates at the fieldsite. Nonetheless, those observed dynamics could not be simulated due to numerical limitations. By the use...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... young age. Those results are in contrast to earlier age estimations from groundwater samples just beneath the stream. We therefore suggest the conceptualization of the hydrological conditions at this headwater catchment to be revised....

  3. Oxygen isotope fractionation between analcime and water - An experimental study (United States)

    Karlsson, Haraldur R.; Clayton, Robert N.


    The oxygen isotope fractionation between analcime and water is studied to test the feasibility of using zeolites as low-temperature thermometers. The fractionation of oxygen isotopes between natural analcime and water is determined at 300, 350, and 400 C, and at fluid pressures ranging from 1.5 to 5.0 kbar. Also, isotope ratios for the analcime framework, the channel water, and bulk water are obtained. The results suggest that the channel water is depleted in O-18 relative to bulk water by a constant value of about 5 percent, nearly independent of temperature. The analcime-water fractionation curve is presented, showing that the exchange has little effect on grain morphology and does not involve recrystallization. The exchange is faster than any other observed for a silicate. The exchange rates suggest that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. It is concluded that calibrated zeolites may be excellent low-temperature oxygen isotope geothermometers.

  4. Carbon and oxygen isotope compositions of the carbonate facies in ...

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the ...

  5. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle. (United States)

    Casciotti, Karen L


    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  6. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange. (United States)

    Zheng, Yong-Fei


    Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates.

  7. Carbon and Oxygen Isotope Ratios in Rona Limestone, Romania

    Directory of Open Access Journals (Sweden)

    Stela Cuna


    Full Text Available The carbon and oxygen isotopic compositions of limestones provide criteria for the evaluation of the depositional environment. For Jurassic and younger samples, the best discrimination between marine and fresh-water limestones is given by Z parameter, calculated as a linear correlation between δ13C and δ18O (‰ PDB. Rona Limestone (Upper Paleocene - Lower Eocene, outcropping on a small area in NW Transylvania (Meseş area is a local lacustrine facies. There, it divides Jibou Formation into the Lower Red Member and the Upper Variegated Member, respectively. Recently, a sequence containing a marine nannoplankton assemblage was identified in the base of Rona deposits. The main goal of our study was to characterize, based on the isotopic record, the primary environment of formation of the deposit, as well as that in which some diagenetic processes (the formation of dolomite and of green clay around the siliceous chert nodules took place. Ten samples representing limestones, dolomitic limestone, marls and the green carbonate-rich clay were studied from petrographical and mineralogical points of view, and the carbon and oxygen isotopic ratios from the carbonate (calcite component were measured. In conclusion, it was found that the procedure of extraction of CO2 we used enabled the discrimination between the isotopic prints of calcite vs. dolomite. This pleads for considering our results as a primary isotopic pattern in the bulk rock. The oxygen and carbon isotope data indicate a fresh-water depositional environment with Z<120. The δ13C mean value (-4.96 ‰ PDB is, generally, representative for fresh-water carbonates of the Tertiary period. The same environment characterized also the formation of carbonates within the green clay.

  8. Oxygen isotopic signature of CO2 from combustion processes

    Directory of Open Access Journals (Sweden)

    W. A. Brand


    Full Text Available For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires, and human induced (fossil fuel combustion, biomass burning in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature, sample geometries (e.g. texture and surface-volume ratios and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio

  9. Oxygen isotope variation in stony-iron meteorites. (United States)

    Greenwood, R C; Franchi, I A; Jambon, A; Barrat, J A; Burbine, T H


    Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.

  10. Oxygen Isotope Composition of Nitrate Produced by Freshwater Nitrification (United States)

    Boshers, D.; Granger, J.; Bohlke, J. K.


    Measurements of the naturally occurring nitrogen and oxygen stable isotope ratios of nitrate (NO3-), δ15N and δ18O, can be used to determine the source, dispersal, and fate of natural and contaminant NO3- in aquatic environments. To this end, it is necessary to know the extent to which NO3- isotopologues are modified by biological reactions, as heavy and light isotopes have different reaction rates. The purpose of this study was to determine the influence of the δ18O of ambient water on the isotope composition of NO3- produced during nitrification, the biological oxidation of ammonium (NH4+) to nitrite (NO2-) and then NO3-, which is poorly constrained in freshwater systems. To determine the δ18O of NO3- produced by nitrification in freshwater, we collected water from a stream in New England, which we amended with NH4+ and with increments of 18O-enriched water, to monitor the isotope composition of NO3- produced by a natural consortium of nitrifiers. Added NH4+ was completely oxidized to NO3- over 26 days. The final δ18O of nitrified NO3- revealed sensitivity to the δ18O of water mediated by (a) isotopic equilibration between water and NO2- and (b) kinetic isotope fractionation during O-atom incorporation from water into NO2- and NO3-. Our results concur with nitrifying culture experiments that have demonstrated analogous sensitivity of the δ18O of nitrified NO3- to equilibrium and kinetic O isotope effects (Buchwald et al. 2012), as well as show that these dynamics need to be considered to interpret NO3- isotope distribution in freshwater environments.

  11. A spatially explicit multi-isotope approach to map influence regions of plant-plant interactions after exotic plant invasion (United States)

    Hellmann, Christine; Oldeland, Jens; Werner, Christiane


    Exotic plant invasions impose profound alterations to native ecosystems, including changes of water, carbon and nutrient cycles. However, explicitly quantifying these impacts remains a challenge. Stable isotopes, by providing natural tracers of biogeochemical processes, can help to identify and measure such alterations in space and time. Recently, δ15N isoscapes, i.e. spatially continuous representations of isotopic values, derived from native plant foliage, enabled to accurately trace nitrogen introduced by the N2-fixing invasive Acacia longifolia into a native Portuguese dune system. It could be shown that the area of the system which was altered by the invasive species exceeded the area which was covered by the invader by far. But still, definition of clear regions of influence is to some extent ambiguous. Here, we present an approach using multiple isoscapes derived from measured foliar δ13C and δ15N values of a native, non-fixing species, Corema album. By clustering isotopic information, we obtained an objective classification of the study area. Properties and spatial position of clusters could be interpreted to distinguish areas that were or were not influenced by A. longifolia. Spatial clusters at locations where A. longifolia was present had δ15N values that were enriched, i.e. close to the atmospheric signal of 0 o compared to the depleted values of the uninvaded system (ca. -11 o). Furthermore, C. album individuals in these clusters were characterized by higher foliar N content and enriched δ13C. These results indicate that the N2-fixing A. longifolia added nitrogen to the system which originated from the atmosphere and was used by the native C. album, inducing functional changes, i.e. an increase in WUE. Additionally, clusters were identified that were presumably determined by inherent properties of the native system. Thus, combining isotope ecology with geostatistical methods is a promising approach for mapping regions of influence in multi-isotope

  12. Iron isotope fractionation and the oxygen fugacity of the mantle. (United States)

    Williams, Helen M; McCammon, Catherine A; Peslier, Anne H; Halliday, Alex N; Teutsch, Nadya; Levasseur, Sylvain; Burg, Jean-Pierre


    The oxygen fugacity of the mantle exerts a fundamental influence on mantle melting, volatile speciation, and the development of the atmosphere. However, its evolution through time is poorly understood. Changes in mantle oxidation state should be reflected in the Fe3+/Fe2+ of mantle minerals, and hence in stable iron isotope fractionation. Here it is shown that there are substantial (1.7 per mil) systematic variations in the iron isotope compositions (delta57/54Fe) of mantle spinels. Spinel delta57/54Fe values correlate with relative oxygen fugacity, Fe3+/sigmaFe, and chromium number, and provide a proxy of changes in mantle oxidation state, melting, and volatile recycling.

  13. Ultra-fast timing study of exotic neutron-rich Fe isotopes

    CERN Document Server

    Olaizola, Bruno; Mach, Henryk

    The cornerstone of nuclear structure, as we know it from stable nuclei, is the existence of magic numbers. The most stable nuclei arise for completely occupied shells, closed shells, and give rise to the magic numbers. At the Valley of Stability their values are 8, 20, 28, 50, 82 and 126. The steady development of the production, separation and identication of exotic nuclei, together with the improvement of the detection techniques, makes it possible to experimentally explore nuclei further away from the Valley of Stability. These exotic nuclei with nucleon numbers supposed to be magic do not always have the properties one would expect. As extra nucleons are added (or removed) from stable nuclei, the single particle energies are modied and strong quadrupole correlations appear, which may neutralize the spherical meanfield shell gaps. The investigation of the evolution of shell structure far from stability has become a major subject in Nuclear Physics. Research in this field has strong implications also in nuc...

  14. Hydrogen and oxygen isotope ratios in body water and hair: modeling isotope dynamics in nonhuman primates. (United States)

    O'Grady, Shannon P; Valenzuela, Luciano O; Remien, Christopher H; Enright, Lindsey E; Jorgensen, Matthew J; Kaplan, Jay R; Wagner, Janice D; Cerling, Thure E; Ehleringer, James R


    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water ((2)H/(1)H, (18)O/(16)O expressed as δ(2) H and δ(18)O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ(2)H and δ(18)O values of body water and a second model to predict the δ(2)H and δ(18)O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ(2)H and δ(18)O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ(2)H and δ(18)O values of gut water and the (18)O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (α(ow)). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of α(ow) was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. © 2012 Wiley Periodicals, Inc.

  15. Triple oxygen isotope composition of the Campi Flegrei magma systems (United States)

    Iovine, Raffaella Silvia; Wörner, Gerhard; Pack, Andreas; Sengupta, Sukanya; Carmine Mazzeo, Fabio; Arienzo, Ilenia; D'Antonio, Massimo


    Sr-O isotope relationships in igneous rocks are a powerful tool to distinguish magma sources and quantify assimilation processes in magmatic rocks. Isotopic (87Sr/86Sr and 18O/16O-17O/16O) data have been acquired on whole rocks and separated minerals (feldspar, Fe-cpx, Mg-cpx, olivine phenocrysts) from pyroclastic products of the Campi Flegrei volcanic complex (Gulf of Naples, Southern Italy). Oxygen isotope ratios were measured by infrared laser fluorination using a Thermo MAT253 gas source isotope ratio mass spectrometer in dual inlet mode, on ˜2 mg of hand-picked phenocrysts. Variations in triple oxygen isotope ratios (17O/16O, 18O/16O) are expressed as the δ notation relative to VSMOW. Sr isotopic compositions were determined by thermal ionization mass spectrometry after standard cation-exchange methods on separated hand-picked phenocrysts (˜300 mg), and on whole rocks, in case of insufficient sample size to separate crystals. Sr-isotopes in Campi Flegrei minerals range from 0.707305 to 0.707605 and δ18O varies from 6.5 to 8.3‰ . Recalculated δ18Omelt values accordingly show a large range between 7.2 and 8.6‰ . Our data, compared with published δ18O-isotope data from other Italian volcanic centers (Alban Hills, Mts. Ernici, Ischia, Mt. Vesuvius, Aeolian Islands, Tuscany and Sardinia) and from subduction zones worldwide (Kamchatka, Lesser Antilles, Indonesia and Central Andean ignimbrites), show compositions that are very different from typical mantle values. Distinct trends and sources are recognized in our compilation from global data: (1) serpentinized mantle (Kamchatka), (2) sediment-enrichment in the mantle source (Indonesia, Lesser Antilles, Eolian arc), (3) assimilation of old radiogenic continental crust affecting magmas derived from sediment-modified mantle sources (Tuscany, Sardinia), (4) assimilation of lower crustal lithologies (Central Andes, Alban Hills, Mts. Ernici, Ischia). Sr-O-isotope values of Campi Flegrei and Vesuvius magmas

  16. New techniques of laser spectroscopy on exotic isotopes of gallium and francium

    CERN Document Server

    Procter, Thomas John

    The neutron-deficient gallium isotopes down to ${N}$=32 have had their hyperfine structures and isotope shifts measured via collinear laser spectroscopy using the COLLAPS (COllinear LAser sPectroScopy) beam line. The ground-state spin of $^{63}$Ga has been determined as ${I}$ = 3/2 and its magnetic dipole and electric quadrupole moments were measured to be $\\mu$ = +1.469(5) $_{\\mu N}$ and ${ Q}$s = +0.212(14) b respectively. The nuclear moments of $^{70}$Ga were measured to be ${\\mu}$= +0.571(2) $_{\\mu}$ and ${Q}$s = +0.105(7) b. New isotope shift results were combined with previously measured values of the neutron-rich isotopes and the changes in mean-square charge radii of the entire gallium isotope chain were investigated. Analysis of the trend in the neutron-deficient charge radii demonstrated that there is no evidence of anomalous charge radii behaviour in gallium in the region of ${N}$=32. A sudden increase of the charge radii was observed at the ${N}$=50 shell gap and an inversion of the normal odd-eve...

  17. Oxygen isotope geochemistry of the amphiboles: Isotope effects of cation substitutions in minerals

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, M.J. [Lawrence Livermore National Lab., CA (United States); Valley, J.W. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Geology and Geophysics


    The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition {sup 18}O in the order: hornblende {much_lt} gedrite < cummingtonite {le} anthophyllite. The observed fractionations at {approximately}575 C are: {Delta}(Ged-Hbl) = 0.8%, {Delta}(Cum-Hbl) = 0.9, {Delta}(Cum-Ged) = 0.2, {Delta}(Ath-Ged) = 0.3, and {Delta}(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that {Delta}(Act-Hbl) {approximately} 0.2, {Delta}(Gin-Grt) {much_gt} 1, and {Delta}(Hbl-Grt) {approximately} 0. Thus, glaucophane strongly partitions {sup 18}O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components. Applications of the exchange component method reproduce measured amphibole fractionations to within {+-}0.1 to {+-}0.2%, whereas other predictive methods cause misfit for typical metamorphic hornblende of {ge}0.5% at 575 C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium {delta}{sup 18}O differences of 2--9%. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.

  18. A Spatially Explicit Dual-Isotope Approach to Map Regions of Plant-Plant Interaction after Exotic Plant Invasion.

    Directory of Open Access Journals (Sweden)

    Christine Hellmann

    Full Text Available Understanding interactions between native and invasive plant species in field settings and quantifying the impact of invaders in heterogeneous native ecosystems requires resolving the spatial scale on which these processes take place. Therefore, functional tracers are needed that enable resolving the alterations induced by exotic plant invasion in contrast to natural variation in a spatially explicit way. 15N isoscapes, i.e., spatially referenced representations of stable nitrogen isotopic signatures, have recently provided such a tracer. However, different processes, e.g. water, nitrogen or carbon cycles, may be affected at different spatial scales. Thus multi-isotope studies, by using different functional tracers, can potentially return a more integrated picture of invader impact. This is particularly true when isoscapes are submitted to statistical methods suitable to find homogeneous subgroups in multivariate data such as cluster analysis. Here, we used model-based clustering of spatially explicit foliar δ15N and δ13C isoscapes together with N concentration of a native indicator species, Corema album, to map regions of influence in a Portuguese dune ecosystem invaded by the N2-fixing Acacia longifolia. Cluster analysis identified regions with pronounced alterations in N budget and water use efficiency in the native species, with a more than twofold increase in foliar N, and δ13C and δ15N enrichment of up to 2‰ and 8‰ closer to the invader, respectively. Furthermore, clusters of multiple functional tracers indicated a spatial shift from facilitation through N addition in the proximity of the invader to competition for resources other than N in close contact. Finding homogeneous subgroups in multi-isotope data by means of model-based cluster analysis provided an effective tool for detecting spatial structure in processes affecting plant physiology and performance. The proposed method can give an objective measure of the spatial extent

  19. Oxygen isotopic analyses of individual planktic foraminifera species: Implications for seasonality in the western Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Niitsuma, N.; Naik, S.S.

    The variation of stable isotopes between individual shells of planktic foraminifera of a given species and size may provide short-term seasonal insight on Paleoceanography. In this context, oxygen isotope analyses of individual Globigerinoides...

  20. Oxygen Isotopic composition of nitrate trapped in Vostok ice core (United States)

    Savarino, J.; Michalski, G.; Thiemens, M. H.


    It is well known that NOx plays a key role in the mediation of the oxidative capacity of the atmosphere. Our ability to model and understand pre-industrial atmospheric chemistry is mainly limited by our lack of knowledge of past NOx emissions. For years, the hope was that HNO3 trapped in ice cores would probe NOx emissions the during glacial/interglacial climate oscillations. However, it was soon realized that post depositional effects in the snow pack obscure the original atmospheric signal of this end product of NOx oxidation. So far, none of the concentration profiles of nitrate obtained from ice cores has been used to constrain NOx emissions. Recent observations of the oxygen isotopic composition of nitrate have opened a possible new way to link the nitrate ice core profile and past atmospheric chemistry. For \\17O, thermodynamic, kinetic, and equilibrium isotope effects dictate that δ 17O = .52 x δ 18O . Certain photochemical processes violate this rule due to quantum effects and are quantified by Δ 17O = δ 17O -.52 x δ 18O which are termed mass independent fractionations (MIF). Atmospheric nitrates have now been measured and have been found to have a large MIF; Δ 17O ~ 29 ‰ and a small range +/- 2‰ . The large variations in δ 18O of atmospheric nitrate are due to mass dependent fractions from transport and source ratios, and do not effect the Δ 17O. In addition, post depositional fractionations associated with remobilization (condensation/evaporation, phase changes .) in the snow pack are processes known for years to be mass dependent processes. The Δ 17O can then be used as a conservative trace of atmospheric nitrate deposition and chemistry. Experiments performed in our lab show that the oxygen isotopic anomaly of nitrate derives from the ozone-NOx catalytic cycle. During this process, the ozone transfer to the NOx inscribes its unique isotopic signature. Antarctic soils have a Δ 17O ~ 30 ‰ , acknowledging they are purely atmospheric in

  1. Hydrogen and oxygen isotope values in hydrogen peroxide. (United States)

    Barnette, Janet E; Lott, Michael J; Howa, John D; Podlesak, David W; Ehleringer, James R


    Hydrogen peroxide (H(2)O(2)) is a widely used oxidizer with many commercial applications; unfortunately, it also has terrorist-related uses. We analyzed 97 hydrogen peroxide solutions representing four grades purchased across the United States and in Mexico. As expected, the range of hydrogen (δ(2)H, 230‰) and oxygen (δ(18)O, 24‰) isotope values of the H(2)O(2) solutions was large, reflecting the broad isotopic range of dilution waters. This resulted in predictable linear relationships of δ(2)H and δ(18)O values of H(2)O(2) solutions that were near parallel to the Meteoric Water Line (MWL), offset by the concentration of H(2)O(2) in the solution. By grade, dilute (3 to 35%) H(2)O(2) solutions were not statistically different in slope. Although the δ(2)H values of manufactured H(2)O(2) could be different from those of water, rapid H(2)O(2)-H(2)O exchange of H atoms eliminated any distinct isotope signal. We developed a method to measure the δ(18)O value of H(2)O(2) independent of dilution water by directly measuring O(2) gas generated from a catalase-induced disproportionation reaction. We predicted that the δ(18)O values of H(2)O(2) would be similar to that of atmospheric oxygen (+23.5‰), the predominant source of oxygen in the most common H(2)O(2) manufacturing process (median disproportionated δ(18)O=23.8‰). The predictable H-O relationships in H(2)O(2) solutions make it possible to distinguish commercial dilutions from clandestine concentration practices. Future applications of this work include synthesis studies that investigate the chemical link between H(2)O(2) reagents and peroxide-based explosive products, which may assist law enforcement in criminal investigations. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Triple oxygen isotope systematics of structurally bonded water in gypsum (United States)

    Herwartz, Daniel; Surma, Jakub; Voigt, Claudia; Assonov, Sergey; Staubwasser, Michael


    The triple oxygen isotopic composition of gypsum mother water (gmw) is recorded in structurally bonded water in gypsum (gsbw). Respective fractionation factors have been determined experimentally for 18O/16O and 17O/16O. By taking previous experiments into account we suggest using 18αgsbw-gmw = 1.0037; 17αgsbw-gmw = 1.00195 and θgsbw-gmw = 0.5285 as fractionation factors in triple oxygen isotope space. Recent gypsum was sampled from a series of 10 ponds located in the Salar de Llamara in the Atacama Desert, Chile. Total dissolved solids (TDS) in these ponds show a gradual increase from 23 g/l to 182 g/l that is accompanied by an increase in pond water 18O/16O. Gsbw falls on a parallel curve to the ambient water from the saline ponds. The offset is mainly due to the equilibrium fractionation between gsbw and gmw. However, gsbw represents a time integrated signal biased towards times of strong evaporation, hence the estimated gmw comprises elevated 18O/16O compositions when compared to pond water samples taken on site. Gypsum precipitation is associated with algae mats in the ponds with lower salinity. No evidence for respective vital effects on the triple oxygen isotopic composition of gypsum hydration water is observed, nor are such effects expected. In principle, the array of δ18Ogsbw vs. 17Oexcess can be used to: (1) provide information on the degree of evaporation during gypsum formation; (2) estimate pristine meteoric water compositions; and (3) estimate local relative humidity which is the controlling parameter of the slope of the array for simple hydrological situations. In our case study, local mining activities may have decreased deep groundwater recharge, causing a recent change of the local hydrology.

  3. Collinear Laser Spectroscopy on exotic Ca isotopes towards new magic numbers N=32 and N=34

    CERN Document Server


    For more than a century physicists have been trying to understand the striking particularities of the atomic nucleus. Although several questions remain open for stable nuclei, our current interest for exploring the properties of exotic species has revealed new and unexpected aspects of nuclear structure. The study of nuclei at extreme conditions is not only relevant for nuclear physics, it can also provide answers to questions related to astrophysical processes such as the origin of elements in the universe and the limits of existence for nuclear matter. Besides the complexity of the nuclear many-body problem, nuclear structure properties exhibit regular patterns at the so called “magic” numbers of nucleons. The understanding of these apparently simple structures has motivated the development of some of the most elegant models of nuclear physics. Up to now, most of these models have been successfully applied to describe the properties of nuclei in specific regions of the nuclear chart. Even though some mo...

  4. Production of exotic, short lived carbon isotopes in ISOL-type facilities

    CERN Document Server

    Franberg, Hanna; Köster, Ulli; Ammann, Markus


    The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

  5. Continuum excitations in neutron-rich Oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T.; Boretzky, K.; Cortina, D.; Cub, J.; Emling, H.; Geissel, H.; Hellstroem, M.; Holzmann, R.; Ilievski, S.; Iwasa, N.; Kaspar, M.; Kleinboehl, A.; Leifels, Y.; Muenzenberg, G.; Rejmund, M.; Scheidenberger, C.; Schlegel, C.; Suemmerer, K.; Wan, S. [Gesellschaft fuer Schwerionenforschung (GSI), Planckstr. 1, D-64291 Darmstadt (Germany); Aumann, T.; Boretzky, K.; Dostal, W.; Eberlein, B.; Kratz, J.V. [Institut fuer Kernchemie, Johannes Gutenberg Universitaet, D-55099 Mainz (Germany); Leistenschneider, A.; Elze, T.W.; Gruenschloss, A.; Stroth, J. [Institut fuer Kernphysik, Johann Wolfgang Goethe Universitaet, D-60486 Frankfurt (Germany); Cub, J.; Simon, H. [Institut fuer Kernphysik, Technische Universitaet, D-64289 Darmstadt (Germany); Holeczek, J. [Instytut Fizyki, Uniwersytet Slaski, PL-40-007 Katowice (Poland); Kulessa, R.; Lubkiewicz, E.; Wajda, E.; Walus, W. [Instytut Fizyki, Uniwersytet Jagellonski, PL-30-059 Krakow (Poland); Reiter, P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)


    Electromagnetic and nuclear excitations of the neutron-rich Oxygen isotopes ranging from A=17 to A=22 are studied experimentally in reactions at energies around 600 MeV/u. By measuring the four-momenta of all decay products the excitation energy is determined. From the differential cross sections for electromagnetic excitation, the E1-strength distributions can be deduced. For {sup 18,20,22}O, low-lying dipole strength is observed, exhausting about 5{percent} of the energy weighted TRK sumrule for energies up to 5 MeV above the continuum threshold. {copyright} {ital 1998 American Institute of Physics.}

  6. Continuum effects in neutron-drip-line oxygen isotopes


    Fossez, K.; Rotureau, J.; Michel, N.; Nazarewicz, W.


    The binding-energy pattern along the neutron-rich oxygen chain, governed by an interplay between shell effects and many-body correlations impacted by strong couplings to one- and two-neutron continuum, make these isotopes a unique testing ground for nuclear models. In this work, we investigate ground states and low-lying excited states of $^{23-28}$O using the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to...

  7. Oxygen isotope fractionation between bird bone phosphate and drinking water (United States)

    Amiot, Romain; Angst, Delphine; Legendre, Serge; Buffetaut, Eric; Fourel, François; Adolfssen, Jan; André, Aurore; Bojar, Ana Voica; Canoville, Aurore; Barral, Abel; Goedert, Jean; Halas, Stanislaw; Kusuhashi, Nao; Pestchevitskaya, Ekaterina; Rey, Kevin; Royer, Aurélien; Saraiva, Antônio Álamo Feitosa; Savary-Sismondini, Bérengère; Siméon, Jean-Luc; Touzeau, Alexandra; Zhou, Zhonghe; Lécuyer, Christophe


    Oxygen isotope compositions of bone phosphate (δ18Op) were measured in broiler chickens reared in 21 farms worldwide characterized by contrasted latitudes and local climates. These sedentary birds were raised during an approximately 3 to 4-month period, and local precipitation was the ultimate source of their drinking water. This sampling strategy allowed the relationship to be determined between the bone phosphate δ18Op values (from 9.8 to 22.5‰ V-SMOW) and the local rainfall δ18Ow values estimated from nearby IAEA/WMO stations (from -16.0 to -1.0‰ V-SMOW). Linear least square fitting of data provided the following isotopic fractionation equation: δ18Ow = 1.119 (±0.040) δ18Op - 24.222 (±0.644); R 2 = 0.98. The δ18Op-δ18Ow couples of five extant mallard ducks, a common buzzard, a European herring gull, a common ostrich, and a greater rhea fall within the predicted range of the equation, indicating that the relationship established for extant chickens can also be applied to birds of various ecologies and body masses. Applied to published oxygen isotope compositions of Miocene and Pliocene penguins from Peru, this new equation computes estimates of local seawater similar to those previously calculated. Applied to the basal bird Confuciusornis from the Early Cretaceous of Northeastern China, our equation gives a slightly higher δ18Ow value compared to the previously estimated one, possibly as a result of lower body temperature. These data indicate that caution should be exercised when the relationship estimated for modern birds is applied to their basal counterparts that likely had a metabolism intermediate between that of their theropod dinosaur ancestors and that of advanced ornithurines.

  8. Isotopes and trace elements as geo-location markers for biosecurity: determining the origin of exotic pests. (United States)

    Holder, Peter W.; Armstrong, Karen; Clough, Tim; Frew, Russell; van Hale, Robert; Baker, Joel A.; Millet, Marc-Alban


    Background. The benefits of accurate point of origin discrimination in biosecurity include achieving appropriate operational responses in exotic pest eradication and post-border incursion campaigns, and identifying risk pathways. Reading natural abundance biogeochemical markers via mass spectrometry methods is a powerful tool for tracing ecological pathways and provenance determination of agricultural products and items of forensic interest. However, the application of these methods to trace insects - man's most damaging competitors - has been underutilised to date and our understanding in this field is still in a phase of basic development. Stable isotope ratio analyses using δ2H, δ13C have given spatial resolution in the monarch butterfly, single host system in eastern North America. Subsequently, the same method was employed in an attempt to determine the origin of important biosecurity pests in New Zealand. However, the results were contentious as the accuracy and limitations of the method in a biosecurity application were unknown. Further investigation has shown the value of existing invertebrate stable isotope geo-location methodology (i.e., using only two light elements) is tenuous in the biosecurity context, where the sample sizes are usually only one or two insects, and the specimens are generally polyphagous and accidentally introduced, and so from an unknown and unpredictable place, point in time and host: The spatial distribution of 2H in New Zealand may not be reliable over insect life-span time-scales; and fractional variables are un-quantified and potentially overwhelm any New Zealand signal. Further, the geo-location value of 13C is uncertain, especially for polyphagous insects. Research aims. The internationally distributed Helicoverpa armigera [Noctuidae] is being used to examine the processes fundamental to the location-to-plant-to-insect biogeochemical profile imprinting in phytophagous insects, including the turn over of elements in adult

  9. Light exotic isotopes recent beam developments and physics applications at ISOLDE

    CERN Document Server

    Bergmann, U C; Bennett, J R J; García-Borge, M J; Catherall, R; Drumm, P V; Fedosseev, V; Forssén, C; Fraile-Prieto, L M; Fynbo, H O U; Georg, U; Giles, T; Grévy, S; Hornshøj, P; Jonson, B; Jonsson, O C; Köster, U; Lettry, Jacques; Markenroth, K G; Marqués, F M; Mishin, V I; Mukha, I; Nilsson, T; Nyman, G H; Oberstedt, A; Ravn, H L; Riisager, K; Schrieder, G; Sebastian, V; Simon, H; Tengblad, O; Wenander, F; Wilhelmsen-Rolander, K


    This paper is divided in three parts. (i) The measurement of yields and decay losses of Li and Be isotopes released from a thin foil tantalum target at the CERN/ISOLDE PS-Booster. (ii) Results from $\\beta$-decay experiments on $^{12}$Be and $^{14}$Be. An improved half-life of 21.49(3)~ms has been obtained for $^{12}$Be. (iii) The $\\beta$-decay of $^{9}$C. An outline of the analysis procedure to determine the branching at high excitation energies is given. The ground-state branch has been determined to 54.1(15)%.

  10. Oxygen Isotope Anomalies in Orgueil Corundum: Confirmation of Presolar Origin (United States)

    Huss, G. R.; Hutcheon, I. D.; Fahey, A. J.; Wasserburg, G. J.


    In a study of Mg isotopes in oxide grains from an Orgueil SiC-spinel-rich residue, [1] reported a corundum grain with ^26Mg*/^27Al = 8.9 x 10^-4, a value ~18 times greater than the canonical 5 x 10^-5 value characteristic of refractory phases formed in the solar nebula. Comparable ratios had previously been found only in carbon-rich interstellar materials, SiC and graphite, [2] leading [1] to suggest that Orgueil corundum B is a pre-solar oxide grain. Subsequently, [3] discovered Murchison corundum 83-5 with a sirnilar ^26Mg*/^27Al of 8.7 x 10^-4; the very unusual oxygen isotope composition (delta^17O = 1072 +- 59 per mil, delta^18O = -244 per mil) led [3] to conclude 83-5 is an interstellar oxide grain. The Panurge ion probe was used to determine ^170/^160 and ^180/^160 ratios in 27 Orgueil oxide grains--16 corundum, 2 hibonite, and 9 spinel--and in 6 Allende spinels. Orgueil corundum B has an extreme ^17O excess (delta^17O = 1394 +- 178 per mil (2sigma(mean)) and a hint of an ^18O depletion (delta^18O = -65 +- 64 per mil) (Fig. 1). The extraordinary enrichments in ^26Mg* and ^17O identify Orgueil B as an interstellar oxide grain. Orgueil B and Murchison 83-5 have remarkably similar O- and Mg-isotope compositions. Red giant stars are enriched in ^17O with ^17O/^18O >~ 1 [4], suggesting these stars are a likely source of the interstellar corundum. Production of ^26Al during H-burning in AGB stars also appears to account for the ^26Mg* excess [5,6]. Condensation of corundum in the circumstellar envelope must occur before dredge up of processed material from the stellar interior decreases ^17O/^16O and creates a C-rich atmosphere. The oxygen isotope compositions of the remaining oxide grains fall into three groups (Fig. 1). All but six corundums and one Orgueil spinel exhibit ^16O excesses and lie along the ^16O-mixing line with compositions similar to those of corundum and spinel from Murchison LS, LU, and CFO(sub)c [7]. Data from Allende spinels cluster about a

  11. Triple oxygen isotopes in biogenic and sedimentary carbonates (United States)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.


    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  12. Silicon and oxygen isotopic trends in Mesozoic radiolarites (United States)

    Bôle, Maximlien; Baumgartner Peter, O.; Lukas, Baumgartner; Anne-Sophie, Bouvier; Rie, Hori; Masayuki, Ikeda


    Silicon and oxygen isotopes (δ30Si and δ18O) of siliceous tests (diatoms, sponges and radiolarians) preserve environmental signatures in unconsolidated sediments, but few studies show such signatures for ancient biosilicieous rocks. In Precambrian cherts from greenstone belts, small scaled isotopic variations were interpreted as a primary diagenetic feature. They were used, coupled to mean δ18O, to reconstruct seawater temperature at which cherts precipitated. Here, we examine stable isotopes in Mesozoic biogenic cherts that may also preserve an environmental signature. We measured δ30Si and δ18O in situ by SIMS, in the chalcedony of individual radiolarian tests preserved in Mesozoic radiolarites. Microanalysis of chalcedony, rather than the bulk rock isotopic composition, is likely to reveal a palaeoenvironmental signal, since it is derived from biogenic opal, the most mobile silica phase during earliest diagenesis. Our data reveal clear trends through several Mesozoic radiolarite sections from Panthalassa (Kiso River, Japan) and Western Tethys (Sogno, Italy). δ18O records measured in radiolarites show a relatively good correlation to δ18O-variations of Mesozoic low magnesium calcite shells, which are commonly used as a palaeotemperature proxy. Once these variations, attributed to seawater temperature, are removed, the residual δ18O trends are opposite to the δ30Si trends. δ30Si increases from Middle Triassic to Early Jurassic in the Kiso River sections and decrease during the Middle Jurassic in the Sogno section. The observed d30Si-trends are likely to represent a palaeoenvironmental signal, because they are not compatible with simple models of progressive diagenesis along P/T-paths (or depth below sea bottom in drill holes). Among the palaeoenvironmental factors that may have influenced these trends are the oceanic silica cycle changing though time, oceanic circulation and/or the palaeogeographic location of each studied site. Siliceous organisms are

  13. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?

    Directory of Open Access Journals (Sweden)

    Brooke eCrowley


    Full Text Available Stable isotope data provide insight into the foraging ecology of animals. Traditionally, carbon and nitrogen isotope values have been used to infer dietary and habitat preferences. Oxygen isotopes are used less frequently but may complement the ecological information provided by carbon and nitrogen, particularly in densely forested or arid environments. Additionally, because oxygen is preserved in both bioapatite and collagen, it is useful for paleoecological studies. To investigate the suitability of oxygen isotopes for complementing and building on ecological applications of carbon and nitrogen isotopes, we analyze all three isotopes in bone collagen for nearly identical assemblages of Costa Rican mammals in two ecologically distinct habitats - a evergreen rainforest and a seasonal dry forest. We assess the degree to which differences in habitat, activity pattern, diet, arboreality, and thermoregulation are revealed by each of the isotope systems. Our results highlight the potential of oxygen isotopes in modern and paleoecological contexts. In addition to reflecting habitat type, oxygen isotope values in collagen distinguish species on the basis of vertical habitat stratification and drinking behavior. Within a locality, individuals with low oxygen isotope values likely track meteoric water, whereas those with elevated values most likely consume evaporatively-enriched plant tissues, such as canopy leaves. These patterns will be useful in reconstructing paleoenvironments and interpreting ecological differences among taxa both extant and extinct.

  14. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden


    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  15. Oxygen isotope composition of mafic magmas at Vesuvius (United States)

    Dallai, L.; Cioni, R.; Boschi, C.; D'Oriano, C.


    The oxygen isotope composition of olivine and clinopyroxene from four plinian (AD 79 Pompeii, 3960 BP Avellino), subplinian (AD 472 Pollena) and violent strombolian (Middle Age activity) eruptions were measured to constrain the nature and evolution of the primary magmas of the last 4000 years of Mt. Vesuvius activity. A large set of mm-sized crystals was accurately separated from selected juvenile material of the four eruptions. Crystals were analyzed for their major and trace element compositions (EPMA, Laser Ablation ICP-MS), and for 18O/16O ratios. As oxygen isotope composition of uncontaminated mantle rocks on world-wide scale is well constrained (δ18Oolivine = 5.2 ± 0.3; δ18Ocpx = 5.6 ± 0.3 ‰), the measured values can be conveniently used to monitor the effects of assimilation/contamination of crustal rocks in the evolution of the primary magmas. Instead, typically uncontaminated mantle values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary magmas during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). Low δ18O values have been measured in olivine from Pompeii eruption (δ18Oolivine = 5.54 ± 0.03‰), whereas higher O-compositions are recorded in mafic minerals from pumices or scoria of the other three eruptions. Measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas, as also constrained by their trace element compositions. Data on melt inclusions hosted in crystals of these compositions have been largely collected in the past demonstrating that they crystallized from mafic melt, basaltic to tephritic in composition. Published data on volatile content of these melt inclusions reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting

  16. Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia. (United States)

    Perna, Colton; Burrows, Damien


    The Burdekin delta floodplain, north Queensland, is highly modified for agricultural purposes. Riparian condition is very poor and exotic aquatic weeds dominate waterways. Historically, most streams and lagoons were highly seasonal, but those now used for the delivery of irrigation water maintain elevated flows and increased turbidity and nutrient loading. These factors have aided exotic weed growth and many major lagoons are covered by dense water hyacinth (Eichhornia crassipes) mats which greatly reduce dissolved oxygen levels, one of the most important water quality variables for aquatic fauna. Mechanical harvesting of water hyacinth from several of these lagoons resulted in rapid and substantial increases in dissolved oxygen saturation, and improved suitability of the habitat to support fish species. Decrease in dissolved oxygen as water passes sequentially through weed-infested lagoons, justified the approach of harvesting upstream lagoons first, however, the channels that connect these lagoons remain weed-infested and are still impacting upon downstream oxygen levels.

  17. Oxygen stable isotopes variation in water precipitation in Poland – anthropological applications

    Directory of Open Access Journals (Sweden)

    Lisowska-Gaczorek Aleksandra


    Full Text Available The main objective of oxygen isotope analysis is to determine the probable place of origin of an individual or the reconstruction of migration paths. The research are methodologically based on referencing oxygen isotope ratios of apatite phosphates (δ18Op to the range of environmental background δ18O, most frequently determined on the basis of precipitation.

  18. Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Shahack-Gross, R.; Weiner, S.; Shemesh, A.; Yakir, D. [Weizmann Institute of Science, Rehovot (Israel)


    Opaline mineralized bodies are produced by many terrestrial plants and accumulate in certain soils and archaeological sites. Analyses of the oxygen isotopic compositions of these so-called phytoliths from stems and leaves of wheat plants grown in a greenhouse showed a linear relationship with stem and leaf water isotopic compositions and hence, indirectly, rain water isotopic composition. Analyses of wheat plants grown in fields showed that stem phytoliths isotopic composition directly reflects the seasonal air temperature change, whereas leaf phytoliths isotopic composition reflects both temperature and relative humidity. Temperature and the oxygen isotopic composition of stem phytoliths were related by an equation similar to that proposed for marine opal. Oxygen isotopic compositions of fossil phytoliths, and in particular those from stems, could be valuable for reconstructing past terrestrial climate change.

  19. Oxygen Isotope Measurements of a Rare Murchison Type A CAI and Its Rim (United States)

    Matzel, J. E. P.; Simon, J. I.; Hutcheon, I. D.; Jacobsen, B.; Simon, S. B.; Grossman, L.


    Ca-, Al-rich inclusions (CAIs) from CV chondrites commonly show oxygen isotope heterogeneity among different mineral phases within individual inclusions reflecting the complex history of CAIs in both the solar nebula and/or parent bodies. The degree of isotopic exchange is typically mineral-specific, yielding O-16-rich spinel, hibonite and pyroxene and O-16-depleted melilite and anorthite. Recent work demonstrated large and systematic variations in oxygen isotope composition within the margin and Wark-Lovering rim of an Allende Type A CAI. These variations suggest that some CV CAIs formed from several oxygen reservoirs and may reflect transport between distinct regions of the solar nebula or varying gas composition near the proto-Sun. Oxygen isotope compositions of CAIs from other, less-altered chondrites show less intra-CAI variability and 16O-rich compositions. The record of intra-CAI oxygen isotope variability in CM chondrites, which commonly show evidence for low-temperature aqueous alteration, is less clear, in part because the most common CAIs found in CM chondrites are mineralogically simple (hibonite +/- spinel or spinel +/- pyroxene) and are composed of minerals less susceptible to O-isotopic exchange. No measurements of the oxygen isotope compositions of rims on CAIs in CM chondrites have been reported. Here, we present oxygen isotope data from a rare, Type A CAI from the Murchison meteorite, MUM-1. The data were collected from melilite, hibonite, perovskite and spinel in a traverse into the interior of the CAI and from pyroxene, melilite, anorthite, and spinel in the Wark-Lovering rim. Our objectives were to (1) document any evidence for intra-CAI oxygen isotope variability; (2) determine the isotopic composition of the rim minerals and compare their composition(s) to the CAI interior; and (3) compare the MUM-1 data to oxygen isotope zoning profiles measured from CAIs in other chondrites.

  20. Oxygen isotope fractionation between human phosphate and water revisited

    DEFF Research Database (Denmark)

    Daux, Valérie; Lécuyer, Christophe; Héran, Marie-Anne


    collected at 12 sites located at latitudes ranging from 4 degrees N to 70 degrees N together with the corresponding oxygen composition of tap waters (delta18OW) from these areas. In addition, the delta18O of some raw and boiled foods were determined and simple mass balance calculations were performed...... to investigate the impact of solid food consumption on the oxygen isotope composition of the total ingested water (drinking water+solid food water). The results, along with those from three, smaller published data sets, can be considered as random estimates of a unique delta18OW/delta18OP linear relationship......: delta18OW=1.54(+/-0.09)xdelta18OP-33.72(+/-1.51)(R2=0.87: p [H0:R2=0]=2x10(-19)). The delta18O of cooked food is higher than that of the drinking water. As a consequence, in a modern diet the delta18O of ingested water is +1.05 to 1.2 per thousand higher than that of drinking water in the area. In meat...

  1. Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation (United States)

    Chen, Guo; Schnyder, Hans; Auerswald, Karl


    Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (panalysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.

  2. Oxygen isotope geochemistry of mafic magmas at Mt. Vesuvius (United States)

    Dallai, Luigi; Raffaello, Cioni; Chiara, Boschi; Claudia, D'oriano


    above the range of typical mantle minerals. The δ18Oolivine and δ18Ocpxof the minerals from all the studied eruptions define variable degrees of carbonate interaction and magma crystallization for the different eruptions, and possibly within the same eruption, and show evidence of oxygen isotope equilibrium at high temperature. However, energy-constrained AFC model suggest that carbonate assimilation was limited. On the basis of our data, we suggest that interaction between magma and a fluxing, decarbonation-derived CO2 fluid may be partly accounted for the measured O-isotope compositions.

  3. Trace Elements and Oxygen Isotope Zoning of the Sidewinder Skarn (United States)

    Draper, C.; Gevedon, M. L.; Barnes, J.; Lackey, J. S.; Jiang, H.; Lee, C. T.


    Skarns of the Verde Antique Quarry and White Horse Mountain areas of the Sidewinder Range give insight into the paleohydrothermal systems operating in the California's Jurassic arc in the Southwestern Mojave Desert. Garnet from these skarns is iron rich: Xand= 55-100. Laser fluorination measurements show oxygen isotope (δ18O) compositions of garnet crystals and crystals domains have large ranges: -3.1‰ to +4.4‰ and -8.9‰ to +3.4‰, respectively. In general, the garnet cores have more negative δ18O values than rims, although oscillations are present. Negative values have been interpreted as influx of meteoric fluid and positive values as increased magmatic input. Here we report major and trace element concentrations for 17 core to rim Sidewinder garnet transects. REEs concentrations are low in all crystals, with total REE concentrations ranging from 0.710 ppm to 33.7 ppm, values that are lower than Cretaceous skarn garnets in the Sierra Nevada in the White Chief and Empire Mt skarns. Such low concentrations are likely due to the higher fraction of meteoric fluids during formation of the Sidewinder skarns. REE concentrations decrease from core to rim (REE core average=12.2ppm, REE rim average=7.21ppm). This is slightly more pronounced in the LREEs than in the HREEs (LaN/YbN core average= 10.9; rim average= 9.73, normalized to Chondrite). X­and tends to decrease core to rim in the Verde Antique skarn, whereas, Xand of the White Horse skarn does not correlate with distance from core. A large positive Eu anomaly (Eu/Eu* = 3­-30) in garnet from both skarns suggests oxidizing fluid conditions. Oxygen isotope data from garnet in these same skarns show periods of time with increased proportion of magmatic derived fluids in the total fluid budget. However, there is no corresponding widespread increase in total REE concentrations. Other studies of skarns from the western Sierra Nevadan arc (White Chief and Empire Mountain) observe complete decoupling of d18O values

  4. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition (United States)

    Nielson, Kristine E.; Bowen, Gabriel J.


    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  5. Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes $^{52,53}$K

    CERN Document Server

    Rosenbusch, M.; Atanasov, D.; Barbieri, C.; Beck, D.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Cakirli, R.B.; Cipollone, A.; George, S.; Herfurth, F.; Kowalska, M.; Kreim, S.; Lunney, D.; Manea, V.; Navrátil, P.; Neidherr, D.; Schweikhard, L.; Somà, V.; Stanja, J.; Wienholtz, F.; Wolf, R.N.; Zuber, K.


    The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly lower than for 52Ca, highlighting the doubly-magic nature of this nuclide. Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.

  6. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata


    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  7. Oxygen Isotope Character of the Lake Owyhee Volcanic Field, Oregon (United States)

    Blum, T.; Strickland, A.; Valley, J. W.


    Oxygen isotope analyses of zircons from lavas and tuffs from the Lake Owyhee Volcanic Field (LOVF) of east central Oregon unequivocally demonstrate the presence of mid-Miocene low-δ18O magmas (δ18Ozrcperalkaline to metaluminous rhyolitic lavas and ignimbrites erupted from a series of fissures and calderas. Geographically, the LOVF overlaps the Oregon-Idaho Graben (OIG), and straddles the 87Sr/86Sr= 0.704 line which, together with the 0.706 line to the east, delineate the regional transition from the North American Precambrian continental crust to the east to younger Phanerozoic accreted terranes to the west. Here we report high accuracy ion microprobe analyses of δ18O in zircons using a 10-15μm spot, with average spot-to-spot precision ±0.28‰ (2SD), to investigate intra-grain and intra-unit δ18Ozrc trends for LOVF rhyolites. Due to its high closure temperature, chemical and physical resistance, and slow oxygen diffusion rates, zircon offers a robust record of magmatic oxygen isotope ratios during crystallization and provides constraints on the petrogenesis of Snake River Plain (SRP) low-δ18O melts. Individual zircons from LOVF rhyolites show no evidence of core-rim δ18O zoning, and populations exhibit ≤0.42‰ (2SD) intra-unit variability. Unit averages range from 2.2 to 4.3‰, with the lowest values in caldera-forming ignimbrites, but all units show evidence of crystallization from low-δ18O melts. Quartz and feldspar analyses by laser fluorination (precision ±0.20‰, 2SD) indicate δ18Oqtz ranges between 5.7 and 6.8‰, and δ18OKfs between -5.4 and +6.7‰. Δ18O(qtz-zrc) ranges from 2.1-2.5‰, while Δ18O(Kfs-zrc) varies from 2.3 to -7.7‰. Quartz values are consistent with equilibration at magmatic temperatures, however, at least some feldspars have undergone subsolidus exchange and feldspar or whole rock δ18O values are not reliably igneous. The observed low-δ18Ozrc values document high temperature interaction of magmatic protoliths with

  8. The Divnoe meteorite: Petrology, chemistry, oxygen isotopes and origin (United States)

    Petaev, M. I.; Barsukova, L. D.; Lipschultz, M. E.; Wang, M.-S.; Ariskin, A. A.; Clayton, R. N.; Mayeda, T. K.


    The Divnoe meteorite is an olivine-rich primitive achondrite with subchondritic chemistry and mineralogy. It has a granoblastic, coarse-grained, olivine groundmass (CGL: coarse-grained lithology) with relatively large pyroxene-plagioclase poiklitic patches (PP) and small fine-grained domains of an opaque-rich lithology (ORL). Both PP and ORL are inhomogeneously distributed and display reaction boundaries with the groundmass. Major silicates, olivine Fa(20-28) and orthopyroxyene Fs(20-28 Wo(0.5-2.5), display systematic differences in composition between CGL and ORL as well as a complicated pattern of variations within CGL. Accessory plagioclase has low K content and displays regular igneous zoning with core compositions An(40-45) and rims An(32-37). The bulk chemical composition of Divnoe is similar to that of olivine-rich primitive achondrites, except for a depletion of incompatible elements and minor enrichment of refractory siderophiles. Oxygen isotope compositions for whole-rock and separated minerals from Divnoe fall in a narrow range, with mean delta O-18 = +4.91, delta O-17 = +2.24, and Delta O-17 = -0.26 +/- 0.11. The isotopic composition is not within the range of any previously recognized group but is very close to that of the brachinites. To understand the origin of Divnoe lithologies, partial melting and crystallization were modelled using starting compositions equal to that of Divnoe and some chondritic meteorites. It was found that the Divnoe composition could be derived from a chondritic source region by approximately 20 wt% partial melting at Ta approximately 1300 C and log(fO2) = IW-1.8, followed by approximtely 60 wt% crystallization of the partial melt formed, and removal of the still-liquid portion of the partial melt. Removal of the last partial melt resulted in depletion of the Divnoe plagioclase in Na and K. In this scenario, CGL represents the residue of partial melting, and PP is a portion of the partial melt that crystallized in situ. The

  9. Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited) (United States)

    Young, M. B.; Kendall, C.; Paytan, A.


    The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and

  10. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water...

  11. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor (United States)

    National Aeronautics and Space Administration — This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water vapor from...

  12. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  13. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  14. Palmyra Island Monthly Oxygen Isotope Data (delta 18O) for 1886-1998 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Palmyra Island Monthly Coral Oxygen Isotope Data. 112-yr, monthly-resolved coral record from Palmyra Island (5 deg 52 min N, 162 deg 8 min W). The coral was drilled...

  15. Ras Umm Sidd Oxygen Isotope (delta 18O) Data for 1750 to 1995 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ras Umm Sidd bimonthly coral oxygen isotope data (coral core RUS-95). Notes on the data: File (Ras Umm Sidd d18O.txt.) includes columns for Year AD (bimonthly...


    NARCIS (Netherlands)



    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  17. Biochemical effects of salinity on oxygen isotope fractionation during cellulose synthesis. (United States)

    Ellsworth, Patricia V; Sternberg, Leonel S L


    The current isotope tree ring model assumes that 42% of the sucrose oxygen exchanges with stem water during cellulose synthesis and that the oxygen isotope biochemical fractionation is c. 27‰. However, previous studies have indicated that this model can overestimate the cellulose oxygen isotope ratio of plants under salinity or water stress. Saline stress increases soluble carbohydrates and osmolytes, which can alter exchange and biochemical fractionation during cellulose synthesis. To test the effect of salinity as well as the synthesis of osmolytes on exchange and biochemical fractionation, we grew wild-type and a transgenic mannitol synthesizer Arabidopsis thaliana hydroponically with fresh and saline water. We then measured the oxygen isotope ratios of leaf water, stem water and stem cellulose to determine the effects on exchange and biochemical fractionation. Biochemical fractionation did not change, but oxygen isotope exchange was twice as high for plants grown in saline water relative to freshwater-treated plants (0.64 and 0.3, respectively). Mannitol (osmolyte) synthesis did not affect exchange or biochemical fractionation regardless of salinity. Increases in salinity increased oxygen isotope exchange during cellulose synthesis, which may explain the overestimation of cellulose δ(18) O values under saline conditions. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. Stable carbon and oxygen isotope study on benthic foraminifera ...

    Indian Academy of Sciences (India)

    Isotopic fractionations are mainly controlled by ontogeny, bottom/pore water chemistry, habitat preference, kinetic effect and respiration. ... Infaunal species (B. marginata, Ammonia spp. and N. auris) show a lighter carbon isotopic excursion with respect to the epifaunal to shallow infaunal forms (C. wuellerstorfi, ...

  19. Sources of Holocene variability of oxygen isotopes in paleoclimate archives

    Directory of Open Access Journals (Sweden)

    A. N. LeGrande


    Full Text Available Variability in water isotopes has been captured in numerous archives and used to infer past climate changes. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, ~1000 years apart are simulated and driven by estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that simulated water isotope archives match well with those seen in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern spatial slope interpretations might suggest. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to the masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrology, but are better interpreted in terms of regional hydrological cycle changes rather than as indicators of local climate.

  20. The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean

    DEFF Research Database (Denmark)

    Rumble, D.; Bowring, S.; Iizuka, T.


    such long-lived consistency was most easily established by mixing in a terrestrial magma ocean. The measured identical oxygen isotope mass fractionation lines for Earth and Moon suggest that oxygen isotope reservoirs of both bodies were homogenized at the same time during a giant moon-forming impact....... But other sources of heat for global melting cannot be excluded such as bolide impacts during early accretion of proto-Earth, the decay of short-lived radioactive isotopes, or the energy released during segregation of core from mantle....

  1. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water (United States)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa


    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  2. Measuring Carbon and Oxygen Isotope Uptake into Inorganic Calcite using Crystal Growth Experiments (United States)

    Baker, E. B.; Watkins, J. M.


    Carbon and oxygen isotopes measured on natural calcite crystals provide a record of paleo-environment conditions. Despite the importance of measuring stable isotopes in calcite for paleo-environment reconstructions, there is neither a general theory nor an experimental data set that fully separates the effects of pH, temperature, and precipitation rate on isotope discrimination during calcite growth. Many stable isotope studies of calcite have focused on either carbon or oxygen isotope compositions individually, but few have measured both carbon and oxygen isotope uptake in the same set of crystals. We are precipitating inorganic calcite across a range in temperature, pH, and precipitation rate to guide the development of a general theory for combined carbon and oxygen isotope uptake into calcite crystals grown on laboratory timescales. In our experiments, dissolved inorganic carbon (DIC) is added to an aqueous solution (15 mM CaCl2 + 5 mM NH4Cl) by CO2 bubbling. Once a critical supersaturation is reached, calcite crystals nucleate spontaneously and grow on the beaker walls. A key aspect of this experimental approach is that the δ13C of DIC is relatively constant throughout the crystal growth period, because there is a continuous supply of DIC from the CO2-bearing bubbles. Carbonic anhydrase, an enzyme promoting rapid equilibration of isotopes between DIC and water, was added to ensure that the solution remained isotopically equilibrated during calcite growth. We have conducted experiments at T = 25°C and pH = 8.3 - 9.0. We observe that the fractionation of oxygen isotopes between calcite and water decreases with increasing pH, consistent with available data from experiments in which the enzyme carbonic anhydrase was used. Our results for carbon isotopes extend the available data set, which previously ranged from pH 6.62 to 7.75, to higher pH. At pH 8.3, we observe that calcite is isotopically heavier than DIC with respect to carbon isotopes by about 0.25‰. At

  3. Divergent biochemical fractionation, not convergent temperature, explains cellulose oxygen isotope enrichment across latitudes. (United States)

    Sternberg, Leonel; Ellsworth, Patricia Fernandes Vendramini


    Recent findings based on the oxygen isotope ratios of tree trunk cellulose indicate that the temperature of biomass production in biomes ranging from boreal to subtropical forests converge to an average leaf temperature of 21.4°C. The above conclusion has been drawn under the assumption that biochemically related isotopic fractionations during cellulose synthesis are not affected by temperature. Here we test the above assumption by heterotrophically generating cellulose at different temperatures and measuring the proportion of carbohydrate oxygen that exchange with water during cellulose synthesis and the average biochemical fractionation associated with this exchange. We observed no variation in the proportion of oxygen that exchange with different temperatures, which averaged 0.42 as it has been observed in other studies. On the other hand, the biochemical oxygen isotope fractionation during cellulose synthesis is affected by temperature and can be described by a 2(nd) order polynomial equation. The biochemical fractionation changes little between temperatures of 20 and 30°C averaging 26‰ but increases at lower temperatures to values of 31‰. This temperature sensitive biochemical fractionation explains the pattern of cellulose oxygen isotope ratios of aquatic plants encompassing several latitudes. The observed temperature sensitive biochemical fractionation also indicates that divergent biochemical fractionation and not convergent leaf temperature explains the increase in oxygen isotope enrichment of cellulose across several biomes.

  4. Deciphering the "chemical" nature of the exotic isotopes of hydrogen by the MC-QTAIM analysis: the positively charged muon and the muonic helium as new members of the periodic table. (United States)

    Goli, Mohammad; Shahbazian, Shant


    This report is a primarily survey on the chemical nature of some exotic species containing the positively charged muon and the muonic helium, i.e., the negatively charged muon plus helium nucleus, as exotic isotopes of hydrogen, using the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis, employing ab initio non-Born-Oppenhiemer wavefunctions. Accordingly, the "atoms in molecules" analysis performed on various asymmetric exotic isotopomers of the hydrogen molecule, recently detected experimentally [Science, 2011, 331, 448], demonstrates that both the exotic isotopes are capable of forming atoms in molecules and retaining the identity of hydrogen atoms. Various derived properties of atomic basins containing the muonic helium cast no doubt that apart from its short life time, it is a heavier isotope of hydrogen while the properties of basins containing the positively charged muon are more remote from those of the orthodox hydrogen basins, capable of appreciable donation of electrons as well as large charge polarization. However, with some tolerance, they may also be categorized as hydrogen basins though with a smaller electronegativity. All in all, the present study also clearly demonstrates that the MC-QTAIM analysis is an efficient approach to decipher the chemical nature of species containing exotic constituents, which are difficult to elucidate by experimental and/or alternative theoretical schemes.

  5. Oxygen isotopic ratios of primordial water in carbonaceous chondrites (United States)

    Fujiya, Wataru


    In this work, I estimate the δ18 O and δ17 O values of primordial water in CM chondrites to be 55 ± 13 and 35 ± 9‰, respectively, based on whole-rock O and H data. Also, I found that the O and/or H data of Antarctic meteorites are biased, which is attributed to terrestrial weathering. This characteristic O isotopic ratio of water together with corresponding water abundances in CM chondrites are consistent with the origin of water as ice processed by photochemical reactions at the outer regions of the solar nebula, where mass-independent O isotopic fractionation and water destruction may have occurred. Another possible mechanism to produce the inferred O isotopic ratio of water would be O isotopic fractionation between water vapor and ice, which likely occurred near the condensation front of H2O (snow line) in the solar nebula. The inferred O isotopic ratio of water suggests that carbonate in CM chondrites formed at low temperatures of <150 °C. The O isotopic ratios of primordial water in chondrites other than CM chondrites are not well constrained.

  6. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.


    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  7. Technique for high-precision analysis of triple oxygen isotope ratios in carbon dioxide. (United States)

    Hofmann, Magdalena E G; Pack, Andreas


    Since the discovery of mass-independent isotope effects in stratospheric and tropospheric gases, the analysis of triple oxygen isotope abundance in carbon dioxide gained in importance. However, precise triple oxygen isotope determination in carbon dioxide is a challenging task due to mass-interference of (17)O and (13)C variations. Here, we present a novel analytical technique that allows us to determine slight deviations of CO(2) from the terrestrial fractionation line [TFL]. Our approach is based on isotopic equilibration between CO(2) gas and CeO(2) powder at 685 degrees C and subsequent mass spectrometric analysis of ceria powder by infrared-laser fluorination. We found that beta(CO2-CeO2), the exponent in the relation alpha(17/16) = (alpha(18/16))(beta), amounts to 0.5240 +/- 0.0011 at 685 degrees C. The oxygen isotope anomaly of CO(2) (Delta(17)O) can be determined for a single analysis of CeO(2) with a precision of +/-0.05 per thousand (1sigma). Our CO(2)-CeO(2) equilibration procedure is performed with an excess of CO(2) so that one analysis of Delta(17)O on CO(2) requires at least 3.5 mmol of CO(2) gas. Our new technique allows accurate and precise determination of Delta(17)O in CO(2) and opens up a new field for investigating triple oxygen isotope abundance in various types of natural CO(2).

  8. Glacial meltwater input to the Alaska Coastal Current: Evidence from oxygen isotope measurements (United States)

    Kipphut, George W.


    Results of a study of the oxygen isotopic composition of coastal, pelagic, and fresh waters from the northern Gulf of Alaska region are presented. This study was undertaken to investigate whether isotopic tracers could be of use in determining the important freshwater inputs to the Alaska Coastal Current (ACC) and whether they could confirm the presence of the ACC in coastal waters west of Kodiak Island. The Alaska Coastal Current, the major coastal circulation feature of the northern Gulf of Alaska, can be distinguished from oceanic waters on the basis of its lower salinity at least as far west as Kodiak Island. This study adds significantly to the small amount of oxygen isotopic information available for the waters of this region. The isotopic results suggest that in late summer, glacial meltwater may provide a substantial portion of the total freshwater runoff into the ACC, and that the ACC does extend as far to the west as Unimak Pass.

  9. Hydrogen and oxygen isotope exchange reactions between clay minerals and water (United States)

    O'Neil, J.R.; Kharaka, Y.K.


    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  10. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater (United States)

    Hermoso, Michaël; Horner, Tristan J.; Minoletti, Fabrice; Rickaby, Rosalind E. M.


    In this study, we show that there are independent controls of 18O/16O and 13C/12C fractionation in coccolithophore and dinoflagellate calcite due to the contrasting kinetics of each isotope system. We demonstrate that the direction and magnitude of the oxygen isotope fractionation with respect to equilibrium is related to the balance between calcification rate and the replenishment of the internal pool of dissolved inorganic carbon (DIC). As such, in fast growing cells, such as those of Emiliania huxleyi and Gephyrocapsa oceanica (forming the so-called ;heavy group;), calcification of the internal carbon pool occurs faster than complete isotopic re-adjustment of the internal DIC pool with H2O molecules. Hence, coccoliths reflect the heavy oxygen isotope signature of the CO2 overprinting the whole DIC pool. Conversely, in large and slow growing cells, such as Coccolithus pelagicus ssp. braarudii, complete re-equilibration is achieved due to limited influx of CO2 leading to coccoliths that are precipitated in conditions close to isotopic equilibrium (;equilibrium group;). Species exhibiting the most negative oxygen isotope composition, such as Calcidiscus leptoporus (;light group;), precipitate coccolith under increased pH in the coccolith vesicle, as previously documented by the ;carbonate ion effect;. We suggest that, for the carbon isotope system, any observed deviation from isotopic equilibrium is only ;apparent;, as the carbon isotopic composition in coccolith calcite is controlled by a Rayleigh fractionation originating from preferential incorporation of 12C into organic matter. Therefore, species with low PIC/POC ratios as E. huxleyi and G. oceanica are shifted towards positive carbon isotope values as a result of predominant carbon fixation into the organic matter. By contrast, cells with higher PIC/POC as C. braarudii and C. leptoporus maintain, to some extent, the original negative isotopic composition of the CO2. The calcareous dinoflagellate

  11. Phosphate oxygen isotopes within aquatic ecosystems: Global data synthesis and future research priorities

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Ceri L. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Surridge, Ben W.J., E-mail: [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Gooddy, Daren C. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom)


    The oxygen isotope ratio of dissolved inorganic phosphate (δ{sup 18}O{sub p}) represents a novel and potentially powerful stable isotope tracer for biogeochemical research. Analysis of δ{sup 18}O{sub p} may offer new insights into the relative importance of different sources of phosphorus within natural ecosystems. Due to the isotope fractionations that occur alongside the metabolism of phosphorus, δ{sup 18}O{sub p} could also be used to better understand the intracellular and extracellular reaction mechanisms that control phosphorus cycling. In this review focussed on aquatic ecosystems, we examine the theoretical basis to using stable oxygen isotopes within phosphorus research. We consider the methodological challenges involved in accurately determining δ{sup 18}O{sub p}, given aquatic matrices in which potential sources of contaminant oxygen are ubiquitous. Finally, we synthesise the existing global data regarding δ{sup 18}O{sub p} in aquatic ecosystems, concluding by identifying four key areas for future development of δ{sup 18}O{sub p} research. Through this synthesis, we seek to stimulate broader interest in the use of δ{sup 18}O{sub p} to address the significant research and management challenges that continue to surround the stewardship of phosphorus. - Highlights: • Oxygen isotope ratio in dissolved inorganic phosphate a novel stable isotope tracer. • Theoretical basis for application of this tracer in aquatic ecosystems reviewed. • Protocols for determining phosphate oxygen isotope ratio summarised. • Synthesis of global data from marine and freshwater ecosystems reported. • Priorities for future research in this rapidly evolving field identified.

  12. Sulfur- and oxygen-isotopes in sediment-hosted stratiform barite deposits (United States)

    Johnson, C.A.; Emsbo, P.; Poole, F.G.; Rye, R.O.


    Sulfur- and oxygen-isotope analyses have been obtained for sediment-hosted stratiform barite deposits in Alaska, Nevada, Mexico, and China to examine the environment of formation of this deposit type. The barite is contained in sedimentary sequences as old as Late Neoproterozoic and as young as Mississippian. If previously published data for other localities are considered, sulfur- and oxygen-isotope data are now available for deposits spanning a host-rock age range of Late Neoproterozoic to Triassic. On a ??34S versus ??18O diagram, many deposits show linear or concave-upward trends that project down toward the isotopic composition of seawater sulfate. The trends suggest that barite formed from seawater sulfate that had been isotopically modified to varying degrees. The ??34S versus ??18O patterns resemble patterns that have been observed in the modern oceans in pore water sulfate and water column sulfate in some anoxic basins. However, the closest isotopic analog is barite mineralization that occurs at fluid seeps on modern continental margins. Thus the data favor genetic models for the deposits in which barium was delivered by seafloor seeps over models in which barium was delivered by sedimentation of pelagic organisms. The isotopic variations within the deposits appear to reflect bacterial sulfate reduction operating at different rates and possibly with different electron donors, oxygen isotope exchange between reduction intermediates and H2O, and sulfate availability. Because they are isotopically heterogeneous, sediment-hosted stratiform barite deposits are of limited value in reconstructing the isotopic composition of ancient seawater sulfate.

  13. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy (United States)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.


    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  14. Measurements and interpretation of oxygen isotopes in stratospheric carbon dioxide

    NARCIS (Netherlands)

    Mrozek, D.J.


    Carbon dioxide (CO2) is an important natural and anthropogenic greenhouse gas in Earth's atmosphere. Its atmospheric mole fraction has increased from about 280 ppm (parts per million) in the pre-industrial atmosphere to more than 400 ppm at present. Investigation of the stable isotopic composition

  15. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles (United States)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.


    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  16. Site-specific equilibrium isotopic fractionation of oxygen, carbon and calcium in apatite (United States)

    Aufort, Julie; Ségalen, Loïc; Gervais, Christel; Paulatto, Lorenzo; Blanchard, Marc; Balan, Etienne


    The stable isotope composition of biogenic apatite is an important geochemical marker that can record environmental parameters and is widely used to infer past climates, biomineralization processes, dietary preferences and habitat of vertebrates. In this study, theoretical equilibrium isotopic fractionation of oxygen, carbon and calcium in hydroxyapatite and carbonate-bearing hydroxyapatite is investigated using first-principles methods based on density-functional theory and compared to the theoretical isotopic fractionation properties of calcite, CO2 and H2O. Considering the variability of apatite crystal-chemistry, special attention is given to specific contributions of crystal sites to isotopic fractionation. Significant internal fractionation is calculated for oxygen and carbon isotopes in CO3 between the different structural sites occupied by carbonate groups in apatite (typically 7‰ for both 18O/16O and 13C/12C fractionation at 37 °C). Compared with calcite-water oxygen isotope fractionation, occurrence of A-type substitution in apatite structure, in addition to the main B-type substitution, could explain the larger temperature dependence of oxygen isotope fractionation measured at low temperature between carbonate in apatite and water. Theoretical internal fractionation of oxygen isotopes between carbonate and phosphate in B-type carbonated apatite (∼8‰ at 37 °C) is consistent with experimental values obtained from modern and well-preserved fossil bio-apatites. Concerning calcium, theoretical results suggest a small fractionation between apatite and calcite (-0.17‰ at 37 °C). Internal fractionation reaching 0.8‰ at 37 °C occurs between the two Ca sites in hydroxyapatite. Furthermore, the Ca isotopic fractionation properties of apatite are affected by the occurrence of carbonate groups, which could contribute to the variability observed on natural samples. Owing to the complexity of apatite crystal-chemistry and in light of the theoretical

  17. Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling? (United States)

    Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.


    Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.

  18. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia (United States)

    Brookman, Tom H.; Ambrose, Stanley H.


    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  19. Holocene precipitation seasonality captured by a dual hydrogen and oxygen isotope approach at Steel Lake, Minnesota (United States)

    Henderson, Anna K.; Nelson, David M.; Hu, Feng Sheng; Huang, Yongsong; Shuman, Bryan N.; Williams, John W.


    Middle-Holocene (8 to 4 ka BP) warmth and aridity are well recorded in sediment archives from midcontinental North America. However, neither the climatic driver nor the seasonal character of precipitation during this period is well understood because of the limitations of available proxy indicators. For example, an important challenge is to distinguish among the interacting effects of evaporation, temperature, or precipitation seasonality in existing δ 18O records from the region. Here we combine hydrogen isotopes of palmitic acid and oxygen isotopes of carbonate to derive lake-water isotopic values during the Holocene at Steel Lake in north-central Minnesota. In combination, these data enable us to separate variations in evaporation from variations in the isotopic composition of input-waters to lake. Variations in evaporation are used as a proxy for aridity and lake-water input isotopic values are used as a proxy for the isotopic values of meteoric precipitation. Our results suggest that lake-water input isotopic values were more negative during the middle Holocene than at present. To test whether these more negative values are related to temperature or precipitation seasonality, we compare pollen-inferred temperatures and the expected isotopic value of precipitation resulting from these temperatures to the reconstructed precipitation isotopic values. Results suggest that middle Holocene warmth and aridity were associated with increased evaporation rates and decreased summer precipitation. These inferences are consistent with climate simulations that highlight the role of seasonal insolation and sea surface temperatures in driving variations in precipitation seasonality during the Holocene. Results also suggest that changes in Holocene precipitation seasonality may have influenced the expansion of the prairie-forest border in Minnesota as well as regional variations in grassland community composition. This study demonstrates the efficacy of the dual hydrogen and

  20. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions (United States)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.


    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  1. Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Ushikubo, T.; Nakashima, D.; Kita, N.T.

    . (2000) Clarity and confusion: the history of Allende chondrules as evinced by oxygen isotopes. Lunar Planet. Sci. 31 (Abstract #1881). Ash R. D., Young E. D., Rumble III, D., Alexander C. M. O’D. and MacPherson G. J. (1999) Oxygen isotope systematics... in Allende chondrules. Lunar Planet. Sci. 30 (Abstract #1836). Brearley A. J. (1997) Disordered biopyriboles, amphibole, and talc in the Allende meteorite: Products of nebular or parent body aqueous alteration? Science 276, 1103–1105. Bridges J.C., Franchi...

  2. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate. (United States)

    Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky


    Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.

  3. The oxygen isotope composition of nitrate generated by nitrification in acid forest floors (United States)

    Mayer, Bernhard; Bollwerk, Sandra M.; Mansfeldt, Tim; Hütter, Birgit; Veizer, Jan


    The oxygen isotope composition of nitrate is used increasingly for identifying the origin of nitrate in terrestrial and aquatic ecosystems. This novel isotope tracer technique is based on the fact that nitrate in atmospheric deposition, in fertilizers, and nitrate generated by nitrification in soils appear to have distinct oxygen isotope ratios. While the typical ranges of δ18O values of nitrate in atmospheric deposition and fertilizers are comparatively well known, few experimental data exist for the oxygen isotope composition of nitrate generated by nitrification in soils. The objective of this study was to determine δ18O values of nitrate formed by microbial nitrification in acid forest floors. Evidence from laboratory incubation experiments and field studies suggests that during microbial nitrification in acid forest floor horizons, up to two of the three oxygen atoms in newly formed nitrate are derived from water, particularly if ammonium is abundant and nitrification rates are high. It was, however, also observed that in ammonium-limited systems with low nitrification rates, significantly less than two thirds of the oxygen in newly formed nitrate can be derived from water oxygen, presumably as a result of heterotrophic nitrification. It can be concluded from the presented data that the δ18O values of nitrate formed by microbial nitrification in acid forest floors typically range between +2 and +14‰, assuming that soil water δ18O values vary between -15 and -5‰. Hence, oxygen isotope ratios of nitrate formed by nitrification in forest floors are usually distinct from those of other nitrate sources such as atmospheric deposition and synthetic fertilizers and, therefore, constitute a valuable qualitative tracer for distinguishing among these sources of nitrate. A quantitative source apportionment appears, however, difficult because of the wide range of δ18O values, particularly for atmospheric nitrate deposition and for nitrate from microbial

  4. Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation (United States)

    Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C.


    Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.

  5. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures. (United States)

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik


    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  6. Uncertainties in the oxygen isotopic composition of barium sulfate induced by coprecipitation of nitrate. (United States)

    Michalski, Greg; Kasem, Michelle; Rech, Jason A; Adieu, Sabine; Showers, William S; Genna, Bernie; Thiemens, Mark


    Coprecipitation of nitrate and sulfate by barium has probably resulted in significant error in numerous studies dealing with the oxygen isotopic composition of natural sulfates using chemical/thermal conversion of BaSO(4) and analysis by isotope ratio mass spectrometry. In solutions where NO(3) (-)/SO(4) (2-) molar ratios are above 2 the amount of nitrate coprecipitated with BaSO(4) reaches a maximum of approximately 7% and decreases roughly linearly as the molar ratio decreases. The fraction of coprecipitated nitrate appears to increase with decreasing pH and is also affected by the nature of the cations in the precipitating solution. The size of the oxygen isotope artifact in sulfate depends both on the amount of coprecipitated nitrate and the delta(18)O and Delta(17)O values of the nitrate, both of which can be highly variable. The oxygen isotopic composition of sulfate extracted from atmospheric aerosols or rain waters are probably severely biased because photochemical nitrate is usually also present and it is highly enriched in (18)O (delta(18)O approximately 50-90 per thousand) and has a large mass-independent isotopic composition (Delta(17)O approximately 20-32 per thousand). The sulfate delta(18)O error can be 2-5 per thousand with Delta(17)O artifacts reaching as high as 4.0 per thousand.

  7. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream (United States)

    Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken


    ABSTRACT Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ15NNO2− and δ18ONO2−, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of “Candidatus Nitrosocaldus.” The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ18O value of nitrite produced from ammonia oxidation varied with the δ18O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ18ONO2− in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying


    Directory of Open Access Journals (Sweden)

    E. Novelli


    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  9. A Quantitative, Time-Dependent Model of Oxygen Isotopes in the Solar Nebula: Step one (United States)

    Nuth, J. A.; Paquette, J. A.; Farquhar, A.; Johnson, N. M.


    The remarkable discovery that oxygen isotopes in primitive meteorites were fractionated along a line of slope I rather than along the typical slope 0,52 terrestrial fractionation line occurred almost 40 years ago, However, a satisfactory, quantitative explanation for this observation has yet to be found, though many different explanations have been proposed, The first of these explanations proposed that the observed line represented the final product produced by mixing molecular cloud dust with a nucleosynthetic component, rich in O-16, possibly resulting from a nearby supernova explosion, Donald Clayton suggested that Galactic Chemical Evolution would gradually change the oxygen isotopic composition of the interstellar grain population by steadily producing O-16 in supernovae, then producing the heavier isotopes as secondary products in lower mass stars, Thiemens and collaborators proposed a chemical mechanism that relied on the availability of additional active rotational and vibrational states in otherwise-symmetric molecules, such as CO2, O3 or SiO2, containing two different oxygen isotopes and a second, photochemical process that suggested that differential photochemical dissociation processes could fractionate oxygen , This second line of research has been pursued by several groups, though none of the current models is quantitative,

  10. Beyond the neutron drip line : The unbound oxygen isotopes O-25 and O-26

    NARCIS (Netherlands)

    Caesar, C.; Simonis, J.; Adachi, T.; Aksyutina, Y.; Alcantara, J.; Altstadt, S.; Alvarez-Pol, H.; Ashwood, N.; Aumann, T.; Avdeichikov, V.; Barr, M.; Beceiro, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Burgunder, G.; Caamano, M.; Casarejos, E.; Catford, W.; Cederkaell, J.; Chakraborty, S.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Pramanik, U. Datta; Fernandez, P. Diaz; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Freudenberger, M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Gernhaeuser, R.; Golubev, P.; Diaz, D. Gonzalez; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Holt, J. D.; Ickert, G.; Ignatov, A.; Jakobsson, B.; Johansson, H. T.; Jonson, B.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knoebel, R.; Kroell, T.; Kruecken, R.; Kurcewicz, J.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lepyoshkina, O.; Lindberg, S.; Machado, J.; Marganiec, J.; Maroussov, V.; Menendez, J.; Mostazo, M.; Movsesyan, A.; Najafi, A.; Nilsson, T.; Nociforo, C.; Panin, V.; Perea, A.; Pietri, S.; Plag, R.; Prochazka, A.; Rahaman, A.; Rastrepina, G.; Reifarth, R.; Ribeiro, G.; Ricciardi, M. V.; Rigollet, C.; Riisager, K.; Roeder, M.; Rossi, D.; del Rio, J. Sanchez; Savran, D.; Scheit, H.; Schwenk, A.; Simon, H.; Sorlin, O.; Stoica, V.; Streicher, B.; Taylor, J.; Tengblad, O.; Terashima, S.; Thies, R.; Togano, Y.; Uberseder, E.; Van de Walle, J.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Weigand, M.; Wheldon, C.; Wilson, G.; Wimmer, C.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M. V.; Zilges, A.; Zoric, M.; Zuber, K.


    The very neutron-rich oxygen isotopes O-25 and O-26 are investigated experimentally and theoretically. The unbound states are populated in an experiment performed at the R3B-LAND setup at GSI via proton-knockout reactions from F-26 and F-27 at relativistic energies around 442 and 414 MeV/nucleon,

  11. Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces. (United States)

    Lapoux, V; Somà, V; Barbieri, C; Hergert, H; Holt, J D; Stroberg, S R


    We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art ab initio calculations along with binding energy systematics. Experimental matter radii are obtained through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear interactions derived within chiral effective field theory fail to provide a realistic description of charge and matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the simultaneous description of the three observables for stable isotopes but shows deficiencies for the most neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

  12. Glacial-interglacial Variations of Molybdenum Isotopes in the Peruvian Oxygen Minimum Zone (United States)

    Siebert, C.; Frank, M.; Scholz, F.


    Mo isotopes have been widely used as a tool to constrain redox-conditions during major global events such as the oxygenation of the oceans in the Precambrian and Cretaceous Ocean Anoxic Events. In addition, Mo isotopes have considerable, yet underexplored potential to quantitatively track local redox-variation at high resolution on shorter timescales. Here we present data from piston core M77/2-024-5 that was retrieved in the Peruvian oxygen minimum zone in the context of Collaborative Research Centre (SFB) 754 of the Deutsche Forschungs Gemeinschaft (DFG). The age model for this core is well constrained and the core covers the last 140 ka with a hiatus between 20 and 50 ky BP. The oxygen minimum zone along the Peru continental margin is thought to have been better ventilated and therefore less pronounced during glacial periods compared to interglacials. Concentrations of redox-sensitive trace elements show high-amplitude changes and indicate periods of strongly sulphidic conditions with high Mo fixation rate and oxygenated periods with limited Mo fixation (Scholz et al 2014). Mo isotopes do not show straightforward correlations with elemental redox tracers and are only weakly correlated with Mo/U and total organic carbon (TOC). However, Mo isotopes become significantly heavier around the last glacial maximum (Δ98Mo of 0.4 permil). The observed signatures indicate that the Mo isotope composition is dominated by changes in the operating Mo delivery mechanism, i.e. particulate transport versus molecular diffusion. Our results suggest that Mo isotopes can track local redox variation therefore adding to our understanding of this complex indicator for marine environmental change. Scholz et al., (2014), Nature Geosciences, Vol. 7, Pages 433-437

  13. Nitrogen and oxygen isotope measurements of nitrate to survey the sources and transformation of nitrogen loads in rivers


    OHTE, Nobuhito; NAGATA, Toshi; TAYASU, Ichiro; KOHAZU, Ayato; YOSHIMIZU, Chikage


    This paper reviews the studies on evaluation of river environments in terms of water pollution, ecosystem disturbances, excess nutrient (nitrogen) loads, and developments in the isotopic measurements of nitrate and present an update and future perspectives regarding the application of nitrate isotopes to river nutrient assessments. Then, we present the advantages of simultaneous measurement of the nitrogen and oxygen isotopes of nitrate in streamwaters.Dual isotope measurement has recently be...

  14. Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils. (United States)

    Tian, Liyan; Guo, Qingjun; Zhu, Yongguan; He, Huijun; Lang, Yunchao; Hu, Jian; Zhang, Han; Wei, Rongfei; Han, Xiaokun; Peters, Marc; Yang, Junxing


    Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ(18)OP) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L(-1) NaHCO3 (pH = 8.5), 0.1 mol L(-1) NaOH and 1 mol L(-1) HCl) of agricultural soils from the Beijing area. The δ(18)OP results of the water extracts and NaHCO3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ(18)OP value of the water extracts and NaHCO3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ(18)OP values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ(18)OP values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ(18)Op values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.

  15. Hydrogen and oxygen isotope ratios in human hair are related to geography. (United States)

    Ehleringer, James R; Bowen, Gabriel J; Chesson, Lesley A; West, Adam G; Podlesak, David W; Cerling, Thure E


    We develop and test a model to predict the geographic region-of-origin of humans based on the stable isotope composition of their scalp hair. This model incorporates exchangeable and nonexchangeable hydrogen and oxygen atoms in amino acids to predict the delta(2)H and delta(18)O values of scalp hair (primarily keratin). We evaluated model predictions with stable isotope analyses of human hair from 65 cities across the United States. The model, which predicts hair isotopic composition as a function of drinking water, bulk diet, and dietary protein isotope ratios, explains >85% of the observed variation and reproduces the observed slopes relating the isotopic composition of hair samples to that of local drinking water. Based on the geographical distributions of the isotope ratios of tap waters and the assumption of a "continental supermarket" dietary input, we constructed maps of the expected average H and O isotope ratios in human hair across the contiguous 48 states. Applications of this model and these observations are extensive and include detection of dietary information, reconstruction of historic movements of individuals, and provision of region-of-origin information for unidentified human remains.

  16. Secular changes in the oxygen isotopic composition of Devonian biogenic apatite (United States)

    Breisig, S.; Joachimski, M. M.; Buggisch, W.


    Oxygen isotopes are a key tool for quantifying temperature and salinity of ancient sea water. Initially, pristine skeletal carbonates (preferentially LMC) have been utilized to monitor variations in the oxygen isotopic composition of past oceans. A high preservation potential of the primordial isotopic signature may also be awarded to conodonts. These microfossils consist of fluor-apatite (francolite) with a dense microcrystalline structure and therefore are comparatively insensitive with regard to diagenetic overprinting. Because conodonts are frequent in Devonian rocks and widely used as index fossils, their application for oxygen isotope analysis is espe-cially promising for this specific geological time interval. Laser-based microsampling or high-temperature combustion techniques (TC/EA) allows us to analyse microsamples of conodont apatite (0.5 to 1 mg). The oxygen isotope measurements are performed on trisilverphosphate after dissolving conodont apatite (0.5 to 1 mg) in nitric acid and precipitating the phosphate group as Ag_3PO_4. Conodont samples from different locations in Germany (Rheinisches Schieferge-birge) and the Czech Republic (Prague Basin) as well as from the United States (Iowa) and Morocco (Anti-Atlas) have been analysed. δ18Oapatite values are presented for the Lochkovian, Middle and Late Devonian. δ18Oapatite values for the Lochkovian (Prague Basin) vary between 18.5 and 19.0 ppm (δ18Oapatite values given in V-SMOW). Assuming an oxygen isotopic composition for Devonian seawater of -1 ppm (ice-free world), the δ18Oapatite values translate into tem-peratures of 26^o to 28^oC for the tropical Lochkovian ocean. Eifelian to Givetian conodonts (Rheinisches Schiefergebirge, Prague Basin) show δ18Oapatite values from 18.5 to 20.4 ppm, corresponding to paleotemperatures of 20 to 28^o C. The Middle to Late Devonian transition is mainly documented by conodonts from Iowa with δ18Oapatite values of 18 to 20 ppm (21-30^o C). Conodont δ18Oapatite

  17. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters (United States)

    Sun, Jing; Kobayashi, Tatsuaki; Strosnider, William H. J.; Wu, Pan


    Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.

  18. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. (United States)

    Lyons, J R; Young, E D


    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  19. Nitrogen and Oxygen Isotopes of Low-Level Nitrate in Groundwater For Environmental Forensics (United States)

    Wang, Y.


    Sources of nitrate in water from human activities include fertilizers, animal feedlots, septic systems, wastewater treatment lagoons, animal wastes, industrial wastes and food processing wastes. Nitrogen and Oxygen isotopic analysis of nitrate in groundwater is essential to source identification and environmental forensics as nitrate from different sources carry distinctly different N and O isotopic compositions. Nitrate is extracted from groundwater samples and converted into AgNO3 using ion exchange techniques. The purified AgNO3 is then broken down into N2 and CO for N and O isotopic measurement. Since nitrate concentrations in natural ground waters are usually less than 2 mg/L, however, such method has been limited by minimum sample size it requires, in liters, which is highly nitrate concentration dependent. Here we report a TurboVap- Denitrifier method for N and O isotopic measurement of low-level dissolved nitrate, based on sample evaporation and isotopic analysis of nitrous oxide generated from nitrate by denitrifying bacteria that lack N2O- reductase activity. For most groundwater samples with mg/L-level of nitrate direct injection of water samples in mLs is applied. The volume of sample is adjusted according to its nitrate concentration to achieve a final sample size optimal for the system. For water samples with ug/L-level of nitrate, nitrate is highly concentrated using a TurboVap evaporator, followed by isotopic measurement with Denitrifier method. Benefits of TurboVap- Denitrifier method include high sensitivity and better precision in both isotopic data. This method applies to both freshwater and seawater. The analyses of isotopic reference materials in nitrate-free de-ionized water and seawater are included as method controls to correct for any blank effects. The isotopic data from groundwater and ocean profiles demonstrate the consistency of the data produced by the TurboVap-Denitrifier method.

  20. Oxygen isotope signature of UV degradation of glyphosate and phosphonoacetate: Tracing sources and cycling of phosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Sandy, Edward H. [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); Department of Chemistry, University of Sierra Leone, Freetown (Sierra Leone); Blake, Ruth E., E-mail: [Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); School of Civil and Environmental Engineering, and National “International Cooperation Base on Environment and Energy”, University of Science and Technology Beijing, Beijing 100084 (China); Chang, Sae Jung [Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); Jun, Yao, E-mail: [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); School of Civil and Environmental Engineering, and National “International Cooperation Base on Environment and Energy”, University of Science and Technology Beijing, Beijing 100084 (China); Yu, Chan [Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); School of Civil and Environmental Engineering, and National “International Cooperation Base on Environment and Energy”, University of Science and Technology Beijing, Beijing 100084 (China)


    Highlights: • Phosphonate (phon) hydrolysis by UVR (1.2 kW) attained ≥90% completion in 84 h. • Isotope study reveals both ambient H{sub 2}O and O{sub 2} involvements in phon C-P bond cleavage. • Mechanistic models proposed for phon C-P bond cleavage based on O-isotope analysis. • Model equations used to calculate δ{sup 18}O{sub P-org} of original phon P-moiety-useful as a tracer. • Study shows relevance in tracing phon sources and cycling in the environment. -- Abstract: The degradation of phosphonates in the natural environment constitutes a major route by which orthophosphate (Pi) is regenerated from organic phosphorus and recently implicated in marine methane production, with ramifications to environmental pollution issues and global climate change concerns. This work explores the application of stable oxygen isotope analysis in elucidating the C-P bond cleavage mechanism(s) of phosphonates by UV photo-oxidation and for tracing their sources in the environment. The two model phosphonates used, glyphosate and phosphonoacetic acid were effectively degraded after exposure to UV irradiation. The isotope results indicate the involvement of both ambient water and atmospheric oxygen in the C-P bond cleavage and generally consistent with previously posited mechanisms of UV-photon excitation reactions. A model developed to calculate the oxygen isotopic composition of the original phosphonate P-moiety, shows both synthetic phosphonates having distinctly lower values compared to naturally derived organophosphorus compounds. Such mechanistic models, based on O-isotope probing, are useful for tracing the sources and reactions of phosphonates in the environment.

  1. Triple oxygen isotope composition of leaf waters in Mpala, central Kenya (United States)

    Li, Shuning; Levin, Naomi E.; Soderberg, Keir; Dennis, Kate J.; Caylor, Kelly K.


    Variations in triple oxygen isotopes have been used in studies of atmospheric photochemistry, global productivity and increasingly in studies of hydroclimate. Understanding the distribution of triple oxygen isotopes in plant waters is critical to studying the fluxes of oxygen isotopes between the atmosphere and hydrosphere, in which plants play an important role. In this paper we report triple oxygen isotope data for stem and leaf waters from Mpala, Kenya and explore how Δ17 O, the deviation from an expected relationship between 17O /16O and 18O /16O ratios, in plant waters vary with respect to relative humidity and deuterium excess (d-excess). We observe significant variation in Δ17 O among waters in leaves and stems from a single plant (up to 0.16‰ range in Δ17 O in leaf water in a plant over the course of a signal day), which correlates to changes in relative humidity. A steady state model for evaporation in leaf water reproduces the majority of variation in Δ17 O and d-excess we observed in leaf waters, except for samples that were collected in the morning, when relative humidity is high and the degree of fractionation in the system is minimal. The data and the steady state model indicate that the slope, λtransp, that links δ17 O and δ18 O values of stem and leaf waters and characterizes the fractionation during transpiration, is strongly influenced by the isotopic composition of ambient vapor when relative humidity is high. We observe a strong, positive relationship between d-excess and Δ17 O, with a slope 2.2 ± 0.2 per meg ‰-1, which is consistent with the observed relationship in tropical rainfall and in water in an evaporating open pan. The strong linear relationship between d-excess and Δ17 O should be typical for any process involving evaporation or any other fractionation that is governed by kinetic effects.

  2. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry (United States)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François


    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the

  3. Oxygen isotope fractionation in the CaCO3-DIC-H2O system (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.


    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  4. Oxygen isotopes as a tool to quantify reservoir-scale CO2 pore-space saturation (United States)

    Serno, Sascha; Flude, Stephanie; Johnson, Gareth; Mayer, Bernard; Boyce, Adrian; Karolyte, Ruta; Haszeldine, Stuart; Gilfillan, Stuart


    Structural and residual trapping of carbon dioxide (CO2) are two key mechanisms of secure CO2 storage, an essential component of Carbon Capture and Storage technology [1]. Estimating the amount of CO2 that is trapped by these two mechanisms is a vital requirement for accurately assessing the secure CO2 storage capacity of a formation, but remains a key challenge. Recent field [2,3] and laboratory experiment studies [4] have shown that simple and relatively inexpensive measurements of oxygen isotope ratios in both the injected CO2 and produced water can provide an assessment of the amount of CO2 that is stored by these processes. These oxygen isotope assessments on samples obtained from observation wells provide results which are comparable to other geophysical techniques. In this presentation, based on the first comprehensive review of oxygen isotope ratios measured in reservoir waters and CO2 from global CO2 injection projects, we will outline the advantages and potential limitations of using oxygen isotopes to quantify CO2 pore-space saturation. We will further summarise the currently available information on the oxygen isotope composition of captured CO2. Finally, we identify the potential issues in the use of the oxygen isotope shifts in the reservoir water from baseline conditions to estimate accurate saturations of the pore space with CO2, and suggest how these issues can be reduced or avoided to provide reliable CO2 pore-space saturations on a reservoir scale in future field experiments. References [1] Scott et al., (2013) Nature Climate Change, Vol. 3, 105-111 doi:10.1038/nclimate1695 [2] Johnson et al., (2011) Chemical Geology, Vol. 283, 185-193 [3] Serno et al., (2016) IJGGC, Vol. 52, 73-83 [4] Johnson et al., (2011) Applied Geochemistry, Vol. 26 (7) 1184-1191

  5. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate (United States)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.


    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  6. Stable oxygen and hydrogen isotopes measurement by CF-IRMS with applications in hydrology studies

    Energy Technology Data Exchange (ETDEWEB)

    Costinel, Diana; Vremera, Raluca [National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei, POBox Raureni 7, 240050 Ramnicu Valcea (Romania); Grecu, Voicu V [University Bucharest, Faculty of Physics, Department of Atomic and Nuclear Physics, 405 Atomistilor, CP MG 11, 077125 Bucharest-Magurele (Romania); Cuna, Stela, E-mail: diana@icsi.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)


    The major changes in isotopic composition of natural waters occur in the atmospheric part of the water cycle and in surface waters which are exposed to the atmosphere. This study demonstrated the utility of the Continuous Flow - Isotope Ratio Mass Spectrometry method for measuring natural variation of the occurring isotopes of hydrogen ({sup 2}H) and oxygen ({sup 18}O) in meteoric waters. The variation of {delta}{sup 18}O and {delta}{sup 2}D values from precipitation fallen in Raureni-Valcea area between May-December 2007 and September 2008-March 2009 were measured together with the {delta}{sup 18}O and {delta}{sup 2}D values from the Bistrita River. The Local Meteoric Water Line was reported for this area. Also, the variation of {delta}{sup 18}O and {delta}{sup 2}D values was correlated with the temperature and humidity in the same period.

  7. Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from Rumuruti (R) chondrites (United States)

    Rout, S. S.; Bischoff, A.; Nagashima, K.; Krot, A. N.; Huss, G. R.; Keil, K.


    We report oxygen- and magnesium-isotope compositions of Ca,Al-rich inclusions (CAIs) from several Rumuruti (R) chondrites measured in situ using a Cameca ims-1280 ion microprobe. On a three-isotope oxygen diagram, δ 17O vs. δ 18O, compositions of individual minerals in most R CAIs analyzed fall along a slope-1 line. Based on the variations of Δ 17O values (Δ 17O = δ 17O - 0.52 × δ 18O) within individual inclusions, the R CAIs are divided into (i) 16O-rich (Δ 17O ˜ -23-26‰), (ii) uniformly 16O-depleted (Δ 17O ˜ -2‰), and (iii) isotopically heterogeneous (Δ 17O ranges from -25‰ to +5‰). One of the hibonite-rich CAIs, H030/L, has an intermediate Δ 17O value of -12‰ and a highly fractionated composition (δ 18O ˜ +47‰). We infer that like most CAIs in other chondrite groups, the R CAIs formed in an 16O-rich gaseous reservoir. The uniformly 16O-depleted and isotopically heterogeneous CAIs subsequently experienced oxygen-isotope exchange during remelting in an 16O-depleted nebular gas, possibly during R chondrite chondrule formation, and/or during fluid-assisted thermal metamorphism on the R chondrite parent asteroid. Three hibonite-bearing CAIs and one spinel-plagioclase-rich inclusion were analyzed for magnesium-isotope compositions. The CAI with the highly fractionated oxygen isotopes, H030/L, shows a resolvable excess of 26Mg ( 26Mg ∗) corresponding to an initial 26Al/ 27Al ratio of ˜7 × 10 -7. Three other CAIs show no resolvable excess of 26Mg ( 26Mg ∗). The absence of 26Mg ∗ in the spinel-plagioclase-rich CAI from a metamorphosed R chondrite NWA 753 (R3.9) could have resulted from metamorphic resetting. Two other hibonite-bearing CAIs occur in the R chondrites (NWA 1476 and NWA 2446), which appear to have experienced only minor degrees of thermal metamorphism. These inclusions could have formed from precursors with lower than canonical 26Al/ 27Al ratio.

  8. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Kaiser


    Full Text Available Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production.

    In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state.

    I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to

  9. Mineralogy and Oxygen Isotope Compositions of Two C-Rich Hydrated Interplanetary Dust Particles (United States)

    Snead, C. J.; McKeegan, K. D.; Messenger, S.; Nakamura-Messenger, K.


    Oxygen isotopic compositions of chondrites reflect mixing between a O-16-rich reservoir and a O-17,O-18-rich reservoir produced via mass-independent fractionation. The composition of the O-16-rich reservoir is reasonably well constrained, but material representing the O-17,O-18-rich end-member is rare. Self-shielding models predict that cometary water, presumed to represent this reservoir, should be enriched in O-17 and O-18 18O by > 200%. Hydrated interplanetary dust particles (IDPs) rich in carbonaceous matter may be derived from comets; such particles likely contain the products of reaction between O-16-poor water and anhydrous silicates that formed in the inner solar system. Here we present mineralogy and oxygen isotope compositions of two C-rich hydrated IDPs, L2083E47 and L2071E35.

  10. Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula. (United States)

    Simon, Justin I; Hutcheon, Ian D; Simon, Steven B; Matzel, Jennifer E P; Ramon, Erick C; Weber, Peter K; Grossman, Lawrence; DePaolo, Donald J


    Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of (16)O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely (16)O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

  11. Triple oxygen and hydrogen isotopes of gypsum hydration water for quantitative paleo-humidity reconstruction (United States)

    Gázquez, Fernando; Morellón, Mario; Bauska, Thomas; Herwartz, Daniel; Surma, Jakub; Moreno, Ana; Staubwasser, Michael; Valero-Garcés, Blas; Delgado-Huertas, Antonio; Hodell, David A.


    Atmospheric relative humidity is an important parameter affecting vegetation yet paleo-humidity proxies are scarce and difficult to calibrate. Here we use triple oxygen (δ17O and δ18O) and hydrogen (δD) isotopes of structurally-bound gypsum hydration water (GHW) extracted from lacustrine gypsum to quantify past changes in atmospheric relative humidity. An evaporation isotope-mass-balance model is used together with Monte Carlo simulations to determine the range of climatological conditions that simultaneously satisfy the stable isotope results of GHW, and with statistically robust estimates of uncertainty. We apply this method to reconstruct the isotopic composition of paleo-waters of Lake Estanya (NE Spain) and changes in normalized atmospheric relative humidity (RHn) over the last glacial termination and Holocene (from ∼15 to 0.6 cal. kyrs BP). The isotopic record indicates the driest conditions occurred during the Younger Dryas (YD; ∼12-13 cal. kyrs BP). We estimate a RHn of ∼40-45% during the YD, which is ∼30-35% lower than today. Because of the southward displacement of the Polar Front to ∼42°N, it was both windier and drier during the YD than the Bølling-Allerød period and Holocene. Mean atmospheric moisture gradually increased from the Preboreal to Early Holocene (∼11 to 8 cal. kyrs BP, 50-60%), reaching 70-75% RHn from ∼7.5 cal. kyrs BP until present-day. We demonstrate that combining hydrogen and triple oxygen isotopes in GHW provides a powerful tool for quantitative estimates of past changes in relative humidity.

  12. Searching for isovector signatures in the neutron-rich oxygen and calcium isotopes

    Directory of Open Access Journals (Sweden)

    Wei-Chia Chen


    Full Text Available We search for potential isovector signatures in the neutron-rich oxygen and calcium isotopes within the framework of a relativistic mean-field theory with an exact treatment of pairing correlations. To probe the isovector sector we calibrate a few relativistic density functionals using the same isoscalar constraints but with one differing isovector assumption. It is found that under certain conditions, the isotopic chain in oxygen can be made to terminate at the experimentally observed 24O isotope and in the case of the calcium isotopes at 60Ca. To produce such behavior, the resulting symmetry energy must be soft, with predicted values for the symmetry energy and its slope at saturation density being J=(30.92±0.47 MeV and L=(51.0±1.5 MeV, respectively. As a consequence, the neutron-skin thickness of 208Pb is rather small: Rskin208=(0.161±0.011 fm. This same model—labeled “FSUGarnet”—predicts R1.4=(13.0±0.1 km for the radius of a “canonical” 1.4M⊙ neutron star, yet is also able to support a two-solar-mass neutron star.

  13. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies (United States)

    Canfield, D. E.; Teske, A.


    The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5-18% of present levels--a change that may also have triggered the evolution of animals.

  14. Oxygen isotope ratios in the shell of Mytilus edulis: Archives of glacier meltwater in Greenland?

    DEFF Research Database (Denmark)

    Versteegh, E.A.A.; Blicher, M.E.; Mortensen, J.


    these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and archaeological shell middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We......) values occurring during the years 2007 to 2010. Results show that delta O-18(w) values were not recorded at very low salinities (reconstructing past meltwater amounts in most...

  15. Mineralogy and Oxygen Isotope Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende (United States)

    Keller, L. P.; Snead, C.; Rahman, Z.; McKeegan, K. D.


    Hibonite-rich Ca- and Al-rich inclusions (CAIs) are among the earliest formed solids that condensed in the early nebula. We discovered an unusual refractory inclusion from the Allende CV3 chondrite (SHAL) containing an approx 500 micron long single crystal of hibonite and co-existing coarse-grained perovskite. The mineralogy and petrography of SHAL show strong similarities to some FUN inclusions, especially HAL. Here we report on the mineralogy, petrography, mineral chemistry and oxygen isotopic compositions in SHAL.

  16. Oxygen isotope fractionation processes in the water-calcite-aragonite system (United States)

    Fohlmeister, Jens; Spötl, Christoph; Plessen, Birgit; Tjallingii, Rik; Schröder-Ritzrau, Andrea; Frank, Norbert; Arps, Jennifer; Leutz, Kathrin; Vollweiler, Nicole; Trüssel, Martin


    The O isotopic composition of speleothems in their pure calcite or pure aragonite polymorphs provides valuable insight into past climate variability. However, robust climatic interpretations become difficult when both polymorphs are present either in different growth layers or as intergrown fabrics. Experimental studies show that the O isotope fractionation between the dissolved carbonate species and CaCO3 is about 0.75‰ (at 10°C) larger for aragonite than for calcite (e.g., Kim et al., 2007, Kim and O'Neil, 1997). The temperature dependence of this offset is negligible for temperature variations typical of most cave systems. However, cave analogue experiments examining this offset are still lacking. Here, we present stable O isotope measurements of a Holocene speleothem from the Swiss Alps, which shows exactly one calcite-aragonite transition along individual growth layers. Oxygen isotope measurements along 'Hendy test'-like traverses across those transitions provide insight into the fractionation behavior of the water-calcite vs. water-aragonite system. We observed a fractionation offset smaller than predicted by laboratory experiments that varies by at least a factor of two. In addition, the observed variations correlate positively with growth rate and negatively with the isotopic composition of the calcite precipitating at the growth axis. The reason for this behavior is still unclear. Trace element analyses across the transitions of growth layers are planned to help understanding this pattern.

  17. LBA-ECO CD-02 Carbon and Oxygen Isotopes in Atmospheric CO2 in the Amazon: 1999-2004 (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports carbon and oxygen stable isotope ratios of atmospheric carbon dioxide (CO2) collected at several forest and pasture sites and in the...

  18. LBA-ECO CD-02 Carbon and Oxygen Isotopes in Atmospheric CO2 in the Amazon: 1999-2004 (United States)

    National Aeronautics and Space Administration — This data set reports carbon and oxygen stable isotope ratios of atmospheric carbon dioxide (CO2) collected at several forest and pasture sites and in the free...

  19. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. (United States)

    Bao, Huiming; Lyons, J R; Zhou, Chuanming


    Understanding the composition of the atmosphere over geological time is critical to understanding the history of the Earth system, as the atmosphere is closely linked to the lithosphere, hydrosphere and biosphere. Although much of the history of the lithosphere and hydrosphere is contained in rock and mineral records, corresponding information about the atmosphere is scarce and elusive owing to the lack of direct records. Geologists have used sedimentary minerals, fossils and geochemical models to place constraints on the concentrations of carbon dioxide, oxygen or methane in the past. Here we show that the triple oxygen isotope composition of sulphate from ancient evaporites and barites shows variable negative oxygen-17 isotope anomalies over the past 750 million years. We propose that these anomalies track those of atmospheric oxygen and in turn reflect the partial pressure of carbon dioxide (P(CO2)) in the past through a photochemical reaction network linking stratospheric ozone to carbon dioxide and to oxygen. Our results suggest that P(CO2) was much higher in the early Cambrian than in younger eras, agreeing with previous modelling results. We also find that the (17)O isotope anomalies of barites from Marinoan (approximately 635 million years ago) cap carbonates display a distinct negative spike (around -0.70 per thousand), suggesting that by the time barite was precipitating in the immediate aftermath of a Neoproterozoic global glaciation, the P(CO2) was at its highest level in the past 750 million years. Our finding is consistent with the 'snowball Earth' hypothesis and/or a massive methane release after the Marinoan glaciation.

  20. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt (United States)

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.


    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit

  1. Effect of varying frontal systems on stable oxygen and carbon isotopic compositions of modern planktic foraminifera of Southern Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, M.; Mohan, R.; Meloth, T.; Naik, S.S.; Sudhakar, M.

    SCIENCE, VOL. 100, NO. 6, 25 MARCH 2011 881 *For correspondence. (e-mail: Effect of varying frontal systems on stable oxygen and carbon isotopic compositions of modern planktic foraminifera of Southern Ocean Manish Tiwari 1...: Carbon isotopes, foraminifera, oxygen iso- topes, Southern Ocean. PLANKTIC foraminifera thrive in various environments of the upper water column and are sensitive to changes occurring in the temperature, salinity, nutrients, food availability...

  2. Tracking the oxygen isotopic signature from the rainfall to the speleothems in Ortigosa de Cameros caves (La Rioja, Spain)


    Osácar, M. C.; Sancho Marcén, Carlos; Muñoz, Arsenio; Bartolomé, Miguel; Moreno Caballud, Ana; Delgado Huertas, Antonio; Cacho, Isabel


    [EN] A one-year monitoring survey has been carried out in La Paz and La Viña Caves in the Ortigosa de Cameros Cave System (NE Iberian Peninsula), in order to track the oxygen isotope signal from rainfall to speleothem calcite, assessing the ability of this signal to retain environmental information. Oxygen isotope signals of rainfall events, drip water —sampled every three months—, and speleothem calcite, precipitated over three-months, are compared. Water dripping follows precipitation event...

  3. Tracking the oxygen isotopic signature from the rainfall to the speleothems in Ortigosa de Cameros caves (La Rioja, Spain)


    Osácar, M. C.; Sancho, C.; A Muñoz; Bartolomé, M.; Moreno, A.; Delgado-Huertas, A.; Cacho, I.


    A one-year monitoring survey has been carried out in La Paz and La Viña Caves in the Ortigosa de Cameros Cave System (NE Iberian Peninsula), in order to track the oxygen isotope signal from rainfall to speleothem calcite, assessing the ability of this signal to retain environmental information. Oxygen isotope signals of rainfall events, drip water —sampled every three months—, and speleothem calcite, precipitated over three-months, are compared. Water dripping follows precipitation events in ...

  4. Disentangling dissolved oxygen sources in shallow riparian groundwater by stable isotope analysis (United States)

    Mader, Michael; Porst, David; Schmidt, Christian; van Geldern, Robert; Barth, Johannes


    Dissolved oxygen (DO) is one of the strongest oxidation agents in aquatic environments. Besides gas-water-exchange, mixing and mineral oxidation, it is a key player in fundamental biogeochemical processes such as respiration and photosynthesis. These processes also systematically influence stable isotope ratios of DO and of dissolved inorganic carbon (DIC). Simultaneous measurements of DO and DIC concentrations in conjunction with their stable isotope ratios (δ18ODO and δ13CDIC) can thus provide useful tools to quantify oxygen and carbon sources and sinks in natural waters. This study focused on the Selke River in the Harz Mountains (Germany) with steep DO gradients between the stream water and the shallow, adjacent groundwater and associated stable isotope shifts. δ13CDIC values decreased from -13 ‰ to -18 ‰ versus the Vienna Pee Dee Belemnite standard (VPDB) from May to November 2016 and indicated the dominant influence of microbial respiration on the observed DO gradients. With such respiration dominance, we have expected a simultaneous enrichment of δ18ODOto values higher than the one of atmospheric O2 (+23.9 ‰ versus Vienna Standard Mean Ocean Water standard - VSMOW). However, our measurements revealed anomalously low δ18ODO values between +22 ‰ and +18 ‰ versus VSMOW for the same time period. These δ18ODO values were lower than those found in the river. Latter were close to equilibrium with the atmosphere (24.9 ‰ versus VSMOW). The observed δ18ODO ratios in the shallow groundwater can be explained with DO from the river that is subject to fractionation by microbial respiration with a typical fractionation factor (αr) of 0.995. In addition, mass balances revealed that this oxygen pool receives contributions of up to 25 % by diffused oxygen from the vadose zone. Consequently, isotope shifts by respiration and admixture with surface water are masked by diffusion effects that result in a decoupling of carbon and oxygen isotope systematics in


    Energy Technology Data Exchange (ETDEWEB)

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J


    Based on the mineralogy and petrography, coarse-grained, igneous, anorthite-rich (Type C) calcium-aluminum-rich inclusions (CAIs) in the CV3 carbonaceous chondrite Allende have been recently divided into three groups: (i) CAIs with melilite and Al,Ti-diopside of massive and lacy textures (coarse grains with numerous rounded inclusions of anorthite) in a fine-grained anorthite groundmass (6-1-72, 100, 160), (ii) CAI CG5 with massive melilite, Al,Ti-diopside and anorthite, and (iii) CAIs associated with chondrule material: either containing chondrule fragments in their peripheries (ABC, TS26) or surrounded by chondrule-like, igneous rims (93) (Krot et al., 2007a,b). Here, we report in situ oxygen isotopic measurements of primary (melilite, spinel, Al,Ti-diopside, anorthite) and secondary (grossular, monticellite, forsterite) minerals in these CAIs. Spinel ({Delta}{sup 17}O = -25{per_thousand} to -20{per_thousand}), massive and lacy Al,Ti-diopside ({Delta}{sup 17}O = -20{per_thousand} to -5{per_thousand}) and fine-grained anorthite ({Delta}{sup 17}O = -15{per_thousand} to -2{per_thousand}) in 100, 160 and 6-1-72 are {sup 16}O-enriched relative spinel and coarse-grained Al,Ti-diopside and anorthite in ABC, 93 and TS26 ({Delta}{sup 17}O ranges from -20{per_thousand} to -15{per_thousand}, from -15{per_thousand} to -5{per_thousand}, and from -5{per_thousand} to 0{per_thousand}, respectively). In 6-1-72, massive and lacy Al,Ti-diopside grains are {sup 16}O-depleted ({Delta}{sup 17}O {approx} -13{per_thousand}) relative to spinel ({Delta}{sup 17}O = -23{per_thousand}). Melilite is the most {sup 16}O-depleted mineral in all Allende Type C CAIs. In CAI 100, melilite and secondary grossular, monticellite and forsterite (minerals replacing melilite) are similarly {sup 16}O-depleted, whereas grossular in CAI 160 is {sup 16}O-enriched ({Delta}{sup 17}O = -10{per_thousand} to -6{per_thousand}) relative to melilite ({Delta}{sup 17}O = -5{per_thousand} to -3{per_thousand}). We infer


    Directory of Open Access Journals (Sweden)

    E. Ristin Pujiindiyati


    Full Text Available There are at least 30 high temperature systems; eleven active volcanoes, five degassing volcanoes and one caldera volcano controlled by Sumatra Fault Zone over a length of 1700 km. To understand this geothermal field system, some information about geochemistry including isotope composition in its fluid is needed. Sulphur-34 and oxygen-18 isotopes in dissolved sulphate pair have been used to determine the origin of acidic fluid of sulphate and to evaluate the process involved. The fluids from eight hot springs, two fumaroles, four deep wells and crater have been collected in along Sumatra geothermal fields. Sulphur-34 (d 34S (SO4, 0/00 CDT and oxygen-18 (d 18O (SO4, 0/00 SMOW in sulphate is analyzed according to Robinson-Kusakabe and Rafter method, respectively. The d 34S (SO4 values from Sibayak wells are more enriched of 16.8 0/00 to 18.2 0/0 that may indicate the dissolution of anhydrite minerals or isotope partitioning in hydration of SO2. The d 34S (SO4 values from two fumaroles (Pusuk Bukit - North Sumatra and Rantau Dadap - South Sumatra are at depleted value of -0.150/00 and 1.80/00, those are close to d 34S from magmatic sulphur.  In general, the d 34S (SO4 of springs spread in a wide range of 5.250/00 to14.20/00 and show a mixing process between atmospheric sulphate and sulphate from deep wells. The d 18O (SO4 from wells exhibits depleted value around -3.60/00 suggesting that 87.5% of sulphate oxygen is derived from groundwater oxygen and 12.5% is derived from atmospheric molecular oxygen in sulphide oxidation reaction. In the other hand, hot springs (except Semurup, crater and fumaroles have enriched value of d 18O (SO4. These enriched values suggest that a higher percentage of atmospherically derived oxygen compared to those from the depth.   Keywords: isotope, geothermal, Sumatra

  7. Using Oxygen and Carbon Isotopic Signatures in Order to Infer Climatic and Dietary Information in Roman Edessa, Greece (United States)

    Michael, Dimitra-Ermioni; Dotsika, Elissavet


    Even though many isotopic studies have been conducted on ancient populations from Greece for the purpose of dietary reconstruction; mostly through carbon and nitrogen isotopic signals of bone collagen, less attention has been given to the utility of apatite signatures (oxygen and carbon) as dietary and palaeoenvironmental tools. Moreover, until recently the isotopic signal of tooth enamel for both the purposes of environmental and dietary reconstructions has been rarely assessed in ancient Greek societies. Therefore, the present study aims to provide with novel isotopic information regarding Edessa; a town in Northern Greece, during the Roman period. The current study primarily aims to explore the possible differentiation between the present climatic conditions in Edessa in relation to those occurring at the Roman period. Secondly, this study aims to reveal the significant utility of enamel isotopic signatures (carbon and oxygen) in palaeoenvironmental and palaeodietary studies regarding ancient human remains. The isotopic analyses have been conducted at the Stable Isotope and Radiocarbon Unit of INN, NCSR “Demokritos”. The population of Roman Edessa (2nd-4th c. AD) consists of 22 individuals, providing with 19 bone samples and 16 enamel ones. The mean enamel oxygen value is at -7.7 ±1.1 %0, the bone apatite mean oxygen value at -9.2 ±1.9 %0, and finally the mean carbon enamel value is at -11.7 ±1.2 %0. Oxygen values probably indicate that Edessa had a cooler climate during the Roman times in relation to present conditions, even though more research should be carried out in order to be more certain. In addition, the possible existence of non-local individuals has been revealed through the oxygen teeth enamel-bone apatite spacing. Finally, the carbon enamel signature has pointed out possible differentiations between the adult and the juvenile diet. Based on Edessa’s findings, the stated study strongly encourages the enamel oxygen and carbon isotopic signals

  8. A new isolation procedure of nitrate from freshwater for nitrogen and oxygen isotope analysis. (United States)

    Huber, Benjamin; Bernasconi, Stefano M; Luster, Jörg; Pannatier, Elisabeth Graf


    The nitrogen (δ(15)N) and oxygen isotope (δ(18)O) analysis of nitrate (NO(3)(-)) from aqueous samples can be used to determine nitrate sources and to study N transformation processes. For these purposes, several methods have been developed; however, none of them allows an accurate, fast and inexpensive analysis. Here, we present a new simple method for the isolation of nitrate, which is based on the different solubilities of inorganic salts in an acetone/hexane/water mixture. In this solvent, all major nitrate salts are soluble, whereas all other oxygen-bearing compounds such as most inorganic carbonates, sulfates, and phosphates are not. Nitrate is first concentrated by freeze-drying, dissolved in the ternary solvent and separated from insoluble compounds by centrifugation. Anhydrous barium nitrate is then precipitated in the supernatant solution by adding barium iodide. For δ(18)O analysis, dried Ba(NO(3))(2) samples are directly reduced in a high-temperature conversion system to CO and measured on-line using isotope ratio mass spectrometry (IRMS). For δ(15)N analysis, samples are combusted in an elemental analyzer (EA) coupled to an IRMS system. The method has been tested down to 20 µmol NO(3)(-) with a reproducibility (1SD) of 0.1‰ for nitrogen and 0.2-0.4‰ for oxygen isotopes. For nitrogen we observed a small consistent (15) N enrichment of +0.2‰, probably due to an incomplete precipitation process and, for oxygen, a correction for the incorporation of water in the precipitated Ba(NO(3))(2) has to be applied. Apart from being robust, this method is highly efficient and low in cost. Copyright © 2011 John Wiley & Sons, Ltd.

  9. A Simple Approach to Simulate the Complexity of Planktonic Foraminifer Oxygen Isotope Time Series (United States)

    Waelbroeck, C.; Roche, D. M.; Caley, T.; Kucera, M.; Jonkers, L.; Vazquez Riveiros, N.


    Oxygen isotopic curves measured on different planktonic foraminifer species at the same site often exhibit a variable offset. This means that the habitats of the involved species may change through time, which affects the interpretation of the paleoclimatic records. Here we propose to investigate the effect of habitat change by comparing measured and mechanistically computed calcite oxygen isotopic ratios (δ18O) for N. pachyderma left and right coiling, G. bulloides, and G. ruber. To this end we developed the module "Foraminifers as Modeled Entities" (FAME) using species and temperature-dependent growth rates to predict the vertical and seasonal habitat of each species. FAME is forced by hydrography and water δ18O taken from observations or models, and predicts sedimentary average δ18O for each planktonic foraminifer species. FAME yields excellent agreement with MARGO Late Holocene and core top planktonic δ18O data when forced with WOA13 temperature and GISS water δ18O data, in contrast to the calculation of calcite equilibrium δ18O without correction for foraminifer habitat. We explore the applicability of the module to the past by forcing it with vertical temperature and water δ18O profiles computed by the isotope-enabled Earth System Model of Intermediate Complexity iLOVECLIM and compare δ18O simulations with fossil data for the LGM time slice and for the last deglaciation.

  10. Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments (United States)

    Antler, Gilad; Turchyn, Alexandra V.; Herut, Barak; Davies, Alicia; Rennie, Victoria C. F.; Sivan, Orit


    We use multiple stable isotope measurements in two highly stratified estuaries located along the Mediterranean coast of Israel (the Yarqon and the Qishon) to explore the consumption of sulfate through the anaerobic oxidation of methane (sulfate-driven AOM). At both sites, pore fluid sulfate is rapidly consumed within the upper 15-20 cm. Although the pore fluid sulfate and dissolved inorganic carbon (DIC) concentration profiles change over a similar range with respect to depth, the sulfur and oxygen isotopes in the pore fluid sulfate and the carbon isotopes in the pore fluid DIC are fundamentally different. This pore fluid isotope geochemistry indicates that the microbial mechanism of sulfate reduction differs between the studied sites. We suggest that in the Yarqon estuary, sulfate is consumed entirely through AOM, whereas in the Qishon, both AOM and bacterial sulfate reduction through organic matter oxidation coexist. These results have implications for understanding the microbial mechanisms behind sulfate-driven AOM. Our data compilation from marine and marginal marine environments supports the conclusion that the intracellular pathways of sulfate reduction varies among environments with sulfate-driven AOM. The data can be used to elucidate new pathways in the cycling of methane and sulfate, and the findings are applicable to the broader marine environment.

  11. Scavenging of oxygen vacancies at modulation-doped oxide interfaces: Evidence from oxygen isotope tracing

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Döbeli, M.; Pomjakushina, E.


    The introduction of manganite buffer layers, La7/8Sr1/8MnO3 (LSMO) in particular, at the metallic interface between SrTiO3 (STO) and another band insulator suppresses the carrier density of the interfacial two-dimensional electron gas (2DEG) and improves significantly the electron mobility. However......-stabilized zirconia (YSZ), we provide unambiguous evidence that redox reactions occur at oxide interfaces even grown at room temperature. Moreover, the manganite buffer layer not only suppresses the carrier density but also strongly suppresses the oxygen exchange dynamics of the STO substrate, which likely prevents...

  12. Experimental simulation of oxygen isotopic exchange in olivine and implication for the formation of metamorphosed carbonaceous chondrites (United States)

    Ivanova, Marina A.; Lorenz, Cyril A.; Franchi, Ian A.; Bychkov, Andrei Y.; Post, Jeffrey E.


    We have conducted hydration-dehydration experiments on terrestrial olivine to investigate the behavior of oxygen isotopic fractionation to test the hypothesis that multiple cycles of aqueous and thermal processing on a parent asteroid comprise a genetic relationship between CM2s and metamorphosed carbonaceous chondrites (MCCs). Two experiments were undertaken. In the first experiment, serpentine was obtained by hydrating terrestrial olivine (Fo90.9) in the laboratory. During this experiment, olivine was reacted with isotopically heavy water (δ18O 21.5‰) at T = 300 °C, PH2O = 300 bar, for 100 days. The oxygen isotopic composition of the experimental serpentine was enriched in 18O (by 10 ‰ in δ18O) due to exchange of oxygen isotopes between olivine and the 18O-rich water. Dehydrated serpentine was then produced during laboratory heating experiment in vacuum, at T = 930 °C, for 1 h. The oxygen isotopic composition of the dehydrated serpentine was enriched in 18O by a further 7 ‰. The net result of the hydration-dehydration process was an enrichment of 18O in the final material by approximately 17‰. The new experimental results suggest that the oxygen isotopic compositions of MCCs of the Belgica-like group, including Dhofar 225 and Dhofar 725, could be derived from those of typical CM2 chondrites via several cycles of hydration-dehydration caused by aqueous alteration and subsequent thermal metamorphism within their parent asteroids.

  13. Mo isotope record of shales points to deep ocean oxygenation in the early Paleoproterozoic (United States)

    Asael, Dan; Scott, Clint; Rouxel, Olivier; Poulton, Simon; Lyons, Timothy; Javaux, Emmanuelle; Bekker, Andrey


    Two steps in Earth's surface oxidation lie at either end of the Proterozoic Eon. The first step, known as the Great Oxidation Event (GOE), occurred at ca. 2.32 Ga (1), when atmospheric oxygen first exceeded 0.001% of present atmospheric levels (2). The second step, occurred at ca. 0.58 Ga, resulting in the pervasive oxygenation of the deep oceans, a feature that persisted through most of the Phanerozoic (3). The conventional model envisions two progressive and unidirectional increases in free oxygen. However, recent studies have challenged this simplistic view of the GOE (4, 5). A dramatic increase and decline in Earth oxidation state between 2.3 and 2.0 Ga is now well supported (6-9) and raises the question of how well-oxygenated the Earth surface was in the immediate aftermath of the GOE. In order to constrain the response of the deep oceans to the GOE, we present a study of Mo isotope composition and Mo concentration from three key early Paleoproterozoic black shale units with ages ranging from 2.32 to 2.06 Ga. Our results suggest high and unstable surface oxygen levels at 2.32 Ga, leading to an abrupt increase in Mo supply to the still globally anoxic ocean, and producing extreme seawater Mo isotopic enrichments in these black shales. We thus infer a period of significant Mo isotopic Rayleigh effects and non-steady state behaviour of the Mo oceanic system at the beginning of the GOE. Between 2.2-2.1 Ga, we observe smaller Mo isotopic variations and estimate the δ98Mo of seawater to be 1.42 ± 0.27 ‰W conclude that oxygen levels must have stabilized at a relatively high level and that the deep oceans were oxygenated for the first time in Earth's history. By ca. 2.06 Ga, immediately after the Lomagundi Event, the Mo isotopic composition decreased dramatically to δ98MoSW = 0.80 ± 0.21 o reflecting the end of deep ocean oxygenation and the return of largely anoxic deep oceans. References: [1] A. Bekker et al., 2004, Nature 427, 117-20. [2] A. Pavlov and J

  14. Tracing the Impact of Aviation on the Atmospheric Nitrate With Oxygen Triple Isotopes (United States)

    Shaheen, R.; Jackson, T. L.; Chan, S.; Hill, A.; Chakraborty, S.; Thiemens, M. H.


    The aviation industry is responsible for ~ 5% of anthropogenic climate change. Jet emission affects ~ in 25 mile radii from airports produce fine particles and concomitant pulmonary and cardio-vascular diseases. These unregulated emissions are of particular concerns for the health of local residents and environment in general due to rapid increase in worldwide air travel in 21st century. The accurate measurement of emissions from airports therefore requires development of new tools that quantification of aviation related emissions against other road traffic and hence to assess its local and global impacts and provide deeper understanding of nitrate in the environment in general, including the stratosphere where contrails are inadequately detailed Triple oxygen isotopic analysis of particulate nitrate from a DC 8 engine during a controlled experiment in Palmdale, CA documented the emission of nitric acid (~31 ng.m-3) at ~ 1m. The oxygen triple isotopic composition of nitrate emitted directly from the jet had δ18O values (22±1‰) identical to air O2 (δ18O = 23.5‰) with a mass dependent isotopic signature (Δ17O = 0), thus providing a unique isotopic signature of jet nitrate. A year long sampling campaign at one of the world's busiest airports, the Los Angeles International airport showed the contribution of NO3 varies from 60 to 90% in summer and winter with variations largely attributed to the change in road traffic as air traffic remains fairly constant throughout the year at LAX. The next step in this is to detect these contributions at distal sites and use this as a signal carrier of atmospheric nitrate and its transport in general in the global biogeochemical system. These aspects will be discussed in the presentation.

  15. Spring Bloom Dynamics of the Eastern Bering Sea Shelf as Estimated from Oxygen/Argon Ratios and Triple Oxygen Isotopes (United States)

    Prokopenko, M.; Granger, J.; Mordy, C. W.; Difiore, P.; Cassar, N.; Cokelet, E.; Kachel, N. B.; Kachel, D. N.; Sambrotto, R.; Moran, B.


    The Bering Sea's position at the end of the global ocean "conveyor belt" and shoaling of nutrient rich water masses onto its broad shelf make the Eastern Bering Sea shelf one of the most productive regions of the polar oceans, with reported annual primary production rates of 150 to 500 gC*m-2 yr-1. Much of this production occurs during spring blooms, which follow the inception of water column stratification after the retreat of sea-ice. The fate of the bloom biomass determines the amount of the export production available to higher trophic levels in the shelf ecosystem, but due to the hydrographic variability of the ice edge regime direct measurements of productivity rates are not easily extrapolated in space and time. Hence, a more integrative approach is needed. Here we report estimates of Net Community and Gross Photosynthetic Production rates (GPP and NCP) obtained from O2/Ar and triple oxygen isotope ratios measured as a part of the BEST (Bering Sea Ecosystem Study) project during six weeks of spring 2007. Under steady state conditions, NCP and new production should be stoichiometrically equivalent to net photosynthetic O2 production and can be estimated from oxygen air-sea exchange fluxes. In this study, O2/Ar ratios, used to distinguish between biological and physical components of oxygen flux, were measured continuously by a quadrupole mass spectrometer equipped with an Equilibrator Inlet (EIMS, modified from Kaiser et al., 2005). To calibrate EIMS results, discrete samples were collected from the ship's underway seawater system and from hydrocasts. Dissolved O2 and Ar were cryogenically isolated and extracted offline and analyzed on an IRMS at the Geosciences Dept, Princeton Univ. To estimate the rates of gross photosynthetic production, oxygen triple isotope ratios of dissolved O2 were measured on the same discrete samples. Ventilation rates (piston velocities) were calculated based on Quikscat wind speeds and the parameterization of Wanninkhof (1992

  16. Can Lightning Produce Significant Levels of Mass-Independent Oxygen Isotopic Fractionation in Nebular Dust? (United States)

    Nuth, Joseph A.; Paquette, John A.; Farquhar, Adam


    Based on recent evidence that oxide grains condensed from a plasma will contain oxygen that is mass independently fractionated compared to the initial composition of the vapor, we present a first attempt to evaluate the potential magnitude of this effect on dust in the primitive solar nebula. This assessment relies on previous studies of nebular lightning to provide reasonable ranges of physical parameters to form a very simple model to evaluate the plausibility that lightning could affect a significant fraction of nebular dust and that such effects could cause a significant change in the oxygen isotopic composition of solids in the solar nebula over time. If only a small fraction of the accretion energy is dissipated as lightning over the volume of the inner solar nebula, then a large fraction of nebular dust will be exposed to lightning. If the temperature of such bolts is a few percent of the temperatures measured in terrestrial discharges, then dust will vaporize and recondense in an ionized environment. Finally, if only a small average decrease is assumed in the O-16 content of freshly condensed dust, then over the last 5 million years of nebular accretion the average delta O-17 of the dust could increase by more than 30 per mil. We conclude that it is possible that the measured " slope 1" oxygen isotope line measured in meteorites and their components represents a time-evolution sequence of nebular dust over the last several million years of nebular evolution O-16-rich materials formed first, then escaped further processing as the average isotopic composition of the dust graduaUy became increasingly depleted in O-16 .

  17. Oxygen isotope ratios in the shell of Mytilus edulis: archives of glacier meltwater in Greenland?

    Directory of Open Access Journals (Sweden)

    T. D. Als


    Full Text Available Melting of the Greenland Ice Sheet (GrIS is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthåbsfjord (West Greenland, where glacier meltwater causes seasonal excursions with lower oxygen isotope water (δ18Ow values and salinity. The blue mussel (Mytilus edulis potentially records these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and archaeological shell middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We investigate its potential as a palaeo-meltwater proxy. First, we confirmed that M. edulis shell calcite oxygen isotope (δ18Oc values are in equilibrium with ambient water and generally reflect meltwater conditions. Subsequently we investigated if this species recorded the full range of δ18Ow values occurring during the years 2007 to 2010. Results show that δ18Ow values were not recorded at very low salinities (Mytilus edulis δ18Oc values are suitable in reconstructing past meltwater amounts in most cases, but care has to be taken that shells are collected not too close to a glacier, but rather in the mid-region or mouth of the fjord. The focus of future research will expand on the geographical and temporal range of the shell measurements by sampling mussels in other fjords in Greenland along a south–north gradient, and by sampling shells from raised shorelines and archaeological shell middens from prehistoric settlements in Greenland.

  18. Closed system oxygen isotope redistribution in igneous CAIs upon spinel dissolution (United States)

    Aléon, Jérôme


    In several Calcium-Aluminum-rich Inclusions (CAIs) from the CV3 chondrites Allende and Efremovka, representative of the most common igneous CAI types (type A, type B and Fractionated with Unknown Nuclear isotopic anomalies, FUN), the relationship between 16O-excesses and TiO2 content in pyroxene indicates that the latter commonly begins to crystallize with a near-terrestrial 16O-poor composition and becomes 16O-enriched during crystallization, reaching a near-solar composition. Mass balance calculations were performed to investigate the contribution of spinel to this 16O-enrichment. It is found that a back-reaction of early-crystallized 16O-rich spinel with a silicate partial melt having undergone a 16O-depletion is consistent with the O isotopic evolution of CAI minerals during magmatic crystallization. Dissolution of spinel explains the O isotopic composition (16O-excess and extent of mass fractionation) of pyroxene as well as that of primary anorthite/dmisteinbergite and possibly that of the last melilite crystallizing immediately before pyroxene. It requires that igneous CAIs behaved as closed-systems relative to oxygen from nebular gas during a significant fraction of their cooling history, contrary to the common assumption that CAI partial melts constantly equilibrated with gas. The mineralogical control on O isotopes in igneous CAIs is thus simply explained by a single 16O-depletion during magmatic crystallization. This 16O-depletion occurred in an early stage of the thermal history, after the crystallization of spinel, i.e. in the temperature range for melilite crystallization/partial melting and did not require multiple, complex or late isotope exchange. More experimental work is however required to deduce the protoplanetary disk conditions associated with this 16O-depletion.

  19. Oxygen isotope systematics in an evolving geothermal system: Coso Hot Springs, California (United States)

    Etzel, Thomas M.; Bowman, John R.; Moore, Joseph N.; Valley, John W.; Spicuzza, Michael J.; McCulloch, Jesse M.


    Oxygen isotope and clay mineralogy studies have been made on whole rock samples and feldspar separates from three wells along the high temperature West Flank of the Coso geothermal system, California. The reservoir rocks have experienced variable 18O/16O depletion, with δ18O values ranging from primary values of + 7.5‰ down to - 4.6‰. Spatial patterns of clay mineral distributions in the three wells are not closely correlated with the distributions expected from measured, pre-production temperature profiles, but do correlate with spatial patterns of 18O/16O depletion, indicating that the stability of clay minerals in the three wells is a function of fluid-rock interaction in addition to temperature. Detailed δ18O measurements in the three wells identify a limited number of localized intervals of extensive 18O/16O depletion. These intervals document localized zones of higher permeability in the geothermal system that have experienced significant fluid infiltration, water-rock interaction and oxygen isotopic exchange with the geothermal fluids. The local zones of maximum 18O/16O depletion in each well correspond closely with current hot water production zones. Most feldspar separates have measured δ18O values too high to have completely attained oxygen isotope exchange equilibrium with the reservoir fluid at pre-production temperatures. In general, the lower the δ18O value of the feldspar, the closer the feldspar approaches exchange equilibrium with the geothermal fluid. This correlation suggests that fracture-induced increases in permeability increase both fluid infiltration and the surface area of the host rock exposed to geothermal fluid, promoting fluid-rock interaction and oxygen isotope exchange. The two most 18O/16O-depleted feldspar samples have δ18O values too low to be in exchange equilibrium with the pre-production reservoir fluid at pre-production temperatures. These discrepancies suggest that the reservoir fluid in the West Flank of the Coso

  20. The Oxygen Isotope Composition of Dark Inclusions in HEDs, Ordinary and Carbonaceous Chondrites (United States)

    Greenwood, R. C.; Zolensky, M. E.; Buchanan, P. C.; Franchi, I. A.


    Dark inclusions (DIs) are lithic fragments that form a volumetrically small, but important, component in carbonaceous chondrites. Carbonaceous clasts similar to DIs are also found in some ordinary chondrites and HEDs. DIs are of particular interest because they provide a record of nebular and planetary processes distinct from that of their host meteorite. DIs may be representative of the material that delivered water and other volatiles to early Earth as a late veneer. Here we focus on the oxygen isotopic composition of DIs in a variety of settings with the aim of understanding their formational history and relationship to the enclosing host meteorite.

  1. From Mars Meteorites to Laboratory Investigations: Understanding Heterogeneous Photochemical Transformations Using Oxygen Triple Isotope Anomalies of Carbonates (United States)

    Shaheen, R.; Smirnova, V.; Jackson, T. L.; Mang, L.; Thiemens, M. H.


    The planet Mars is unique in our solar system with a positive O-isotope anomaly observed in its bulk silicate and carbonates minerals ranging from 0.3 to 0.6 ‰. The carbonate isotopic signature can be used to reveal its origin, past history and atmosphere-hydrosphere-geosphere-interactions. Ozone is a powerful natural tracer of photochemical processes in Earth's atmosphere. It possess the highest enrichment in heavy isotopes δ17O ≈ δ18O (70-150‰) and oxygen isotopic anomaly (∆17O = 30-40‰). The oxygen isotopic anomaly from ozone is transferred to other oxygen carrying molecules in the atmosphere through different mechanisms. Laboratory experiments were conducted with the JSC-Mars Simulant and iron oxide to investigate how this anomaly can be transferred to water and minerals under conditions similar to present day Mars. Three sets of laboratory experiments (O3-H2O-UV-minerals; O2-H2O-UV-minerals; O3-H2O-minerals) were performed. The oxygen triple isotopic analysis of product mineral carbonates formed from adsorbed CO2 reaction showed an oxygen isotopic anomaly (∆17O = 0.4-3‰). The oxygen triple isotopic composition of water at photochemical equilibrium shifted towards ozone with ∆17O = 9‰ indicating reaction of ozone with water vapor via electronically excited oxygen atoms and transfer of the anomaly via hydroxyl radicals. HOx (HO, HO2) are extremely reactive and have very short life time (surfaces. Hydroxyl radicals may have played a significant role in heterogeneous photochemical transformations on mineral dust in the atmosphere of Mars and transfer of ozone anomaly to water and other oxygen bearing minerals through surficial reactions. Series of experiments were performed to constrain the amount of H2O required to preserve the oxygen isotope anomaly observed in carbonate minerals in the Martian meteorites. These observation will help refine Mars photochemistry models and also to constrain the past hydrological cycle and its coupling with the

  2. Oxygen isotope fractionation in the siderite-water system between 8.5 and 62 °C (United States)

    van Dijk, Joep; Fernandez, Alvaro; Müller, Inigo A.; Lever, Mark; Bernasconi, Stefano M.


    The oxygen isotope composition of siderites can be used to deduce the temperature and/or oxygen isotope composition of the fluids from which they precipitated. Previous siderite-water oxygen isotope fractionation calibrations are not well constrained at temperatures below 33 °C where most of the siderite forms at the Earth's surface. Moreover, the few experimental low temperature calibration points available are possibly inaccurate as the corresponding siderites may not have formed in equilibrium with the solution. In this study, we synthesized siderite in the laboratory from 8.5 to 62 °C, using both active-degassing experiments and microbial cultures. We used the enzyme carbonic anhydrase, which significantly reduces the equilibration time of oxygen isotopes among all dissolved inorganic carbon (DIC) species and water to minimize siderite formation out of equilibrium. Our calibration is based on many more data points than previous calibrations and significantly reduces the uncertainty in siderite-water oxygen isotope fractionation in natural siderites formed at low temperatures. The best fit equation is 1000 * ln α = 19.67 ± 0.42(103/T) -36.27 ± 1.34 where α (1000+δ18Osiderite/1000+δ18Owater) is the fractionation factor and T is the temperature in Kelvin.

  3. Exotic Physics

    CERN Document Server



    A selection of results for searches for exotic physics at the LHC are presented. These include a search for massive resonances, dark matter with a high energy jet in association with large missing transverse momentum, long-lived neutral particles, and narrow dijet resonances. The results are based on 20/fb of LHC proton-proton collisions at sqrt(s) = 8 TeV taken with the CMS detector.

  4. Do oxygen stable isotopes track precipitation moisture source in vascular plant dominated peatlands? (United States)

    Charman, D.; Amesbury, M. J.; Newnham, R.; Loader, N.; Goodrich, J. P.; Gallego-Sala, A. V.; Royles, J.; Keller, E. D.; Baisden, W. T.


    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature and humidity dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives. Exploitation of this record from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, has been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with limited application in the Southern Hemisphere (SH) or in peatlands dominated by vascular plants. Throughout New Zealand (NZ), the preserved root matrix of the restionaceous wire rush (Empodisma spp.) forms deep peat deposits. NZ provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because sites are ideally suited to single taxon analysis, preserve potentially high resolution full Holocene palaeoclimate records and are situated in the climatically sensitive SH mid-latitudes. Crucially, large gradients exist in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. We test the capacity for δ18O analysis of Empodisma alpha cellulose from ombrotrophic restiad peatlands in NZ to provide a methodology for developing palaeoclimate records. We took surface plant, water and precipitation samples over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. We found a strong link between the isotopic compositions of surface root water, the most likely source water for plant growth, and precipitation in both datasets. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in surface root water. The link between source water and plant

  5. Triple Oxygen and Clumped Isotopes in Synthetic and Natural Carbonates: Implications for Paleoclimate and Paleohydrology Studies (United States)

    Laskar, A. H.; Rangarajan, R.; Liang, M. C.


    Conventional oxygen isotope (δ18O) has widely been used for paleoclimate studies. However, multiple influencing factors such as temperature, precipitation and kinetic effects during carbonate precipitation complicate the interpretation of δ18O data sometimes. Triple oxygen isotope (Δ17O) in carbonates could be sensitive to kinetic effect occur during its precipitation in water. Carbonates may also record the Δ17O signature of the parent waters, providing a basis in the natural carbonates for identifying kinetic processes such as rapid degassing at lower relative humidity inside a cave during speleothem deposition. Clumped isotopes (Δ47) in carbonates give the formation temperatures of the carbonates if precipitated under isotopic equilibrium. The first goal of the study is to explore the applicability of Δ17O for paleohydrolocial studies. The second is to reconstruct paleotemperature with suitable natural carbonates using Δ47values. This is a rare paleoclimate study utilizing two sophisticated new tools. CO2 produced from carbonates by acid digestion was used for both Δ47 and Δ17O analysis. Purified CO2 samples were directly introduced into the Mass spectrometer (MAT 253) for clumped isotope analysis [1] and CO2-O2 exchange method in presence of platinum for Δ17O analysis [2,3]. We measured Δ47 and Δ17O values in synthetic carbonates precipitated at different temperatures (10-90 oC) and Δ17O values in the water from which the carbonate precipitated. We observed consistent Δ47 values in the carbonates while Δ17O were found to vary. Probably a proper slope (between δ18O and δ17O) selection for carbonates would give consistent results. We also measured Δ47 and Δ17O in modern and well dated speleothems from Chinese and Indian caves to study the paleohydrology and paleotemperature. Δ47 and Δ17O were also measured in modern natural carbonate depositions such as corals, foraminifer and marbles to explore their potentials for paleoclimate studies

  6. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves

    Directory of Open Access Journals (Sweden)

    A. Wackerbarth


    Full Text Available Interpreting stable oxygen isotope18O records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso. The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite.

    First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model.

    We then examine the response of the cave system to mid-Holocene (6000 yr before present, 6 ka climate conditions by forcing the ODSM with ECHAM5-wiso results from 6 ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors

  7. High-temperature pyrolysis/gas chromatography/isotope ratio mass spectrometry: simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose. (United States)

    Woodley, Ewan J; Loader, Neil J; McCarroll, Danny; Young, Giles H F; Robertson, Iain; Heaton, Timothy H E; Gagen, Mary H; Warham, Joseph O


    Stable isotope analysis of cellulose is an increasingly important aspect of ecological and palaeoenvironmental research. Since these techniques are very costly, any methodological development which can provide simultaneous measurement of stable carbon and oxygen isotope ratios in cellulose deserves further exploration. A large number (3074) of tree-ring α-cellulose samples are used to compare the stable carbon isotope ratios (δ(13)C) produced by high-temperature (1400°C) pyrolysis/gas chromatography (GC)/isotope ratio mass spectrometry (IRMS) with those produced by combustion GC/IRMS. Although the two data sets are very strongly correlated, the pyrolysis results display reduced variance and are strongly biased towards the mean. The low carbon isotope ratios of tree-ring cellulose during the last century, reflecting anthropogenic disturbance of atmospheric carbon dioxide, are thus overestimated. The likely explanation is that a proportion of the oxygen atoms are bonding with residual carbon in the reaction chamber to form carbon monoxide. The 'pyrolysis adjustment', proposed here, is based on combusting a stratified sub-sample of the pyrolysis results, across the full range of carbon isotope ratios, and using the paired results to define a regression equation that can be used to adjust all the pyrolysis measurements. In this study, subsamples of 30 combustion measurements produced adjusted chronologies statistically indistinguishable from those produced by combusting every sample. This methodology allows simultaneous measurement of the stable isotopes of carbon and oxygen using high-temperature pyrolysis, reducing the amount of sample required and the analytical costs of measuring them separately. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Fluid evolution in CM carbonaceous chondrites tracked through the oxygen isotopic compositions of carbonates (United States)

    Lindgren, P.; Lee, M. R.; Starkey, N. A.; Franchi, I. A.


    The oxygen isotopic compositions of calcite grains in four CM carbonaceous chondrites have been determined by NanoSIMS, and results reveal that aqueous solutions evolved in a similar manner between parent body regions with different intensities of aqueous alteration. Two types of calcite were identified in Murchison, Mighei, Cold Bokkeveld and LaPaz Icefield 031166 by differences in their petrographic properties and oxygen isotope values. Type 1 calcite occurs as small equant grains that formed by filling of pore spaces in meteorite matrices during the earliest stages of alteration. On average, the type 1 grains have a δ18O of ∼32-36‰ (VSMOW), and Δ17O of between ∼2‰ and -1‰. Most grains of type 2 calcite precipitated after type 1. They contain micropores and inclusions, and have replaced ferromagnesian silicate minerals. Type 2 calcite has an average δ18O of ∼21-24‰ (VSMOW) and a Δ17O of between ∼-1‰ and -3‰. Such consistent isotopic differences between the two calcite types show that they formed in discrete episodes and from solutions whose δ18O and δ17O values had changed by reaction with parent body silicates, as predicted by the closed-system model for aqueous alteration. Temperatures are likely to have increased over the timespan of calcite precipitation, possibly owing to exothermic serpentinisation. The most highly altered CM chondrites commonly contain dolomite in addition to calcite. Dolomite grains in two previously studied CM chondrites have a narrow range in δ18O (∼25-29‰ VSMOW), with Δ17O ∼-1‰ to -3‰. These grains are likely to have precipitated between types 1 and 2 calcite, and in response to a transient heating event and/or a brief increase in fluid magnesium/calcium ratios. In spite of this evidence for localised excursions in temperature and/or solution chemistry, the carbonate oxygen isotope record shows that fluid evolution was comparable between many parent body regions. The CM carbonaceous chondrites

  9. Stable carbon and oxygen isotopes as an indicator for soil degradation (United States)

    Alewell, C.; Schaub, M.; Seth, B.


    Analyses of soil organic carbon content (SOC) and stable carbon and oxygen isotope signatures (^13C) of soils were assessed for their suitability to detect early stage soil erosion. Results were validated with Cs-137 measurements. We investigated the soils in the alpine Urseren Valley (Southern Central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visual soil erosion and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of ^13C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of ^13C of these upland soils mainly reflect decomposition of SOC. Long term disturbance of an upland soil is indicated by decreasing correlation of ^13C and SOC (r ? 0.80) which goes parallel to increasing (visual) damage at the site. Early stage soil erosion in hill slope transects from uplands to adjacent wetlands is documented as an intermediate ^13C value (27.5 ) for affected wetland soil horizons (0 - 12 cm) between upland (aerobic metabolism, relatively heavier ^13C of 26.6 ) and wetland isotopic signatures (anaerobic metabolism, relatively lighter ^13C of 28.6 ). Cs-137 measurements confirmed stable isotope analysis. Stable oxygen isotope signature (^18O) of soil is the result of a mixture of the components within the soil with varying ^18O signatures. Thus, ^18O of soils should provide information about the soil's substrate, especially about the relative contribution of organic matter versus minerals. As there is no standard method available for measuring soil ^18O, the method for measurement of single components using High Temperature Conversion Elemental Analyzer (TC/EA) was adapted. We measured ^18O in standard materials (IAEA 601, IAEA 602, Merck Cellulose

  10. Recent variability in the hydrological cycle of tropical Asia from oxygen isotopes of tree cellulose (United States)

    Zhu, Mengfan

    This dissertation investigates hydrological variability within tropical Asia over the past several few centuries as reflected in the stable oxygen isotope composition of atmospheric moisture. High-resolution water isotope records are developed from trees collected from northern Thailand, southern Cambodia, and eastern part of the Tibetan Plateau. These records are examined to assess whether and how the 20th century is unique in terms of the hydrological conditions in tropical Asia under the influences of both monsoon and ENSO with the observed temperature changes. In northern Thailand, the oxygen isotopic composition (δ 18O) of tree cellulose samples of Pinus kesiya from a montane forest has been analyzed in subannual resolution for the past 80 years. The cellulose δ18O values exhibit a distinctive annual cycle with an amplitude of up to 12 ‰, which is interpreted to reflect primarily the seasonal cycle of precipitation δ18 O. The cellulose δ18O annual mean values correlate significantly with the amount of summer monsoon precipitation over the India subcontinent, corroborating recent studies that suggest the so-called "isotope amount effect" in the tropical precipitation δ18O reflects the hydrological processes of the upstream or the moisture source regions instead of the rainfall amount at the local site. No obvious trend in the summer monsoon precipitation is detected from the cellulose δ 18O record. However, the record does suggest a temporal weakening relationship between the Indian Monsoon and ENSO over the 20th century. The annual maxima in the cellulose δ18O values are representative of the moisture balance during the winter dry season, and possibly document a decreasing trend in the isotopically-distinct fog water input during the dry season because of the warming in the 20th century. Isotope chronologies of Pinus merkusii from a coastal lowland forest in Cambodia have been generated to investigate hydrological variability over the Indo

  11. Exotic decay in cerium isotopes

    Indian Academy of Sciences (India)

    financial support under FIP (IX Plan). References. [1] A Sandulescu, D N Poenaru and W Greiner, Fiz. Elem. Chastits At. Yadra II, 1334 (1980) [Sov. J. Part. Nucl. II, 528 (1980)]. [2] R K Gupta, in Heavy elements and related new phenomena edited by R K Gupta and W Greiner. (World Scientific Pub., Singapore, 1999) vol II, p.

  12. Solvent deuterium isotope effects in the catalysis of oxygen-18 exchange by human carbonic anhydrase II. (United States)

    Tu, C K; Silverman, D N


    By measuring the rate of exchange at chemical equilibrium of 18O between HCO3- and H2O catalyzed by human carbonic anhydrase II in the absence of buffers, we have determined the rate of release from the enzyme of water bearing substrate oxygen. The ratio of this rate measured in H2O to the rate measured in D2O, the solvent deuterium isotope effect, is between 4 and 9 in the range of pH(D) from 5.8 to 8.0, with a value of 8.0 +/- 0.7 at pH(D) 6.6 (uncorrected pH meter reading). The magnitude of this isotope effect at pH(D) 6.6 has an exponential dependence on the atom fraction of deuterium in solvent water. We conclude that an intramolecular proton transfer between a proton shuttle group on the enzyme and the active site is rate limiting for the release from the enzyme of water bearing substrate oxygen and involves a change in bonding of more than one proton. In contrast, the solvent deuterium isotope effect on the intermolecular proton transfer between the external buffer imidazole and the active site (or proton shuttle group) of the enzyme is small, 2.3 at pH(D) 7.0, as determined from initial velocity experiments. With a rate constant near 9 X 10(8) M-1 s-1, this intermolecular transfer is limited to a significant extent by diffusion processes.

  13. Towards a new proxy of continental atmospheric humidity: the triple oxygen isotopic composition of plant biosilica (United States)

    Alexandre, A. E.; Pauchet, S.; Landais, A.; Piel, C.; Devidal, S.; Roy, J.; Vallet-Coulomb, C.; Sonzogni, C.; Pasturel, M.; Cornuault, P.; Xin, J.; Mazur, J. C.; Prie, F.; Bentaleb, I.


    There is a serious lack of proxy suitable for reconstructing, in a quantitative way, past changes of continental atmospheric humidity. This reduces the possibility to make model-data comparisons necessary for the implementation of climate models. Over the past 10 years, analytical developments have enabled a few laboratories to reach sufficient precision for measuring the triple oxygen isotopes, expressed by the 17O-excess, in water, water vapor, atmospheric oxygen, and minerals. The 17O-excess represents an alternative to d-excess for investigating relative humidity conditions that prevail during water evaporation. The 17O-excess of water results from the increase of kinetic isotopic fractionation at evaporative sites as a function of decreasing relative humidity. This mechanism occurs at large scales, i.e. during seawater evaporation or during plant canopies transpiration. Unlike deuterium-excess, 17O-excess is supposed to be insensitive to temperature and less sensitive than δD and δ18O to equilibrium fractionation during transport and precipitation. Additionally, the 17O-excess is recorded in biogenic minerals less prone to weathering than organic compounds. Here, we calibrate the 17O-excess of plant biosilica as a new air humidity proxy. First, we examined the behavior of the 17O-excess in soil water, leaf water and phytoliths in growth chambers in response to changes in relative humidity. Second, we measured the 17O-excess of soil phytolith assemblages from inter-tropical savannas and forests distributed along humidity transects. Both approaches show similar dependency of phytolith 17O-excess to relative humidity. The results allow to discuss future calibration directions aimed at estimating the precision of the obtained relationship and at quantifying the successive isotopic fractionations in play at the soil-plant-atmosphere interface, to provide a strong proxy of past atmospheric relative humidity.

  14. Oxygen stable isotopic disparities among sympatric small land snail species from northwest Minnesota, USA (United States)

    Yanes, Yurena; Nekola, Jeffery C.; Rech, Jason A.; Pigati, Jeffery S.


    The oxygen isotopic composition (δ18O) of land snail shells can be a valuable paleoenvironmental archive if the climatic parameters that influence the isotopic system are fully understood. Previous calibration studies have examined a limited number of species or individuals, and most have focused on larger (> 10 mm) taxa, which do not represent the dominant shell material in the Quaternary fossil record. In this study, we evaluate the δ18O values of small land snails (USA), which exhibits extremely abundant and diverse terrestrial malacofauna in North America. We did not observe significant correlations between shell δ18O values and the type of ecosystem (forest/grassland) or hydrologic setting (upland/lowland). However, the majority of species differed significantly in shell δ18O values. Larger taxa (Catinella, Succinea, Discus) consistently yielded higher δ18O values than smaller taxa (Euconulus, Gastrocopta, Hawaiia, Vallonia), by up to ~ 3‰. These isotopic offsets among sympatric taxa could be attributed to a number of physical, behavioral, and/or evolutionary traits, including the ability of larger species to tolerate drier conditions better than their smaller counterparts, differences in their preferred microhabitats or phylogentic non-independence. Regardless of the reason, our results imply that researchers should not combine isotopic data from different types of land snails without first investigating modern specimens to determine if it is appropriate. Moreover, our data suggest that combining instrumental climate data, a snail flux-balance model, and shell δ18O values can help us to better understand the ecology of land snails.

  15. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region (United States)

    Cai, Zhongyin; Tian, Lide; Bowen, Gabriel J.


    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  16. An experiment to assess the effects of diatom dissolution on oxygen isotope ratios. (United States)

    Smith, Andrew C; Leng, Melanie J; Swann, George E A; Barker, Philip A; Mackay, Anson W; Ryves, David B; Sloane, Hilary J; Chenery, Simon R N; Hems, Mike


    Current studies which use the oxygen isotope composition from diatom silica (δ(18) Odiatom ) as a palaeoclimate proxy assume that the δ(18) Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ(18) Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated. Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ(18) O values using step-wise fluorination and isotope ratio mass spectrometry. Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ(18) Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰). We have shown that dissolution can have a small negative impact on δ(18) Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ(18) Odiatom values, especially when interpreting variations in these values of <1‰. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species. (United States)

    Lehmann, Marco M; Gamarra, Bruno; Kahmen, Ansgar; Siegwolf, Rolf T W; Saurer, Matthias


    Almost no δ 18 O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ 18 O relationship between leaf water and cellulose. We measured δ 18 O values of bulk leaf water (δ 18 O LW ) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ 18 O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18 O-enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (ε bio ) of more than 27‰ relative to δ 18 O LW , which might be explained by isotopic leaf water and sucrose synthesis gradients. δ 18 O LW and δ 18 O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (ε bio  = 25.1‰). Interestingly, damping factor p ex p x , which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ 18 O LW but not if modelled directly from δ 18 O of individual carbohydrates. We conclude that δ 18 O LW is not always a good substitute for δ 18 O of synthesis water due to isotopic leaf water gradients. Thus, compound-specific δ 18 O analyses of individual carbohydrates are helpful to better constrain (post-)photosynthetic isotope fractionation processes in plants. © 2017 John Wiley & Sons Ltd.

  18. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.E.; Elders, W.A.


    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  19. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)


    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  20. Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites (United States)

    Makide, Kentaro; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.; Hutcheon, Ian D.; Bischoff, Addi


    We report both oxygen- and magnesium-isotope compositions measured in situ using a Cameca ims-1280 ion microprobe in 20 of 166 CAIs identified in 47 polished sections of 15 CR2 (Renazzo-type) carbonaceous chondrites. Two additional CAIs were measured for oxygen isotopes only. Most CR2 CAIs are mineralogically pristine; only few contain secondary phyllosilicates, sodalite, and carbonates - most likely products of aqueous alteration on the CR2 chondrite parent asteroid. Spinel, hibonite, grossite, anorthite, and melilite in 18 CAIs have 16O-rich (Δ 17O = -23.3 ± 1.9‰, 2 σ error) compositions and show no evidence for postcrystallization isotopic exchange commonly observed in CAIs from metamorphosed CV carbonaceous chondrites. The inferred initial 26Al/ 27Al ratios, ( 26Al/ 27Al) 0, in 15 of 16 16O-rich CAIs measured are consistent with the canonical value of (4.5-5) × 10 -5 and a short duration (magnesium and lower-than-canonical 26Al abundance. Another 16O-enriched (Δ 17O = -20.3 ± 1.2‰) inclusion, a spinel-melilite CAI fragment Gao-Guenie (b) #3, has highly-fractionated oxygen- and magnesium-isotope compositions (˜11 and 23‰/amu, respectively), a deficit of 26Mg, and a relatively low ( 26Al/ 27Al) 0 = (2.0 ± 1.7) × 10 -5. This could be the first FUN ( Fractionation and Unidentified Nuclear effects) CAI found in CR2 chondrites. Because this inclusion is slightly 16O-depleted compared to most CR2 CAIs and has lower than the canonical ( 26Al/ 27Al) 0, it may have experienced multistage formation from precursors with nonsolar magnesium-isotope composition and recorded evolution of oxygen-isotope composition in the early solar nebula over 0.9+2.2-0.7 My. Eight of the 166 CR2 CAIs identified are associated with chondrule materials, indicating that they experienced late-stage, incomplete melting during chondrule formation. Three of these CAIs show large variations in oxygen-isotope compositions (Δ 17O ranges from -23.5‰ to -1.7‰), suggesting dilution by

  1. Holocene climate change in Newfoundland reconstructed using oxygen isotope analysis of lake sediment cores (United States)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Steinman, Byron A.


    Carbonate minerals that precipitate from open-basin lakes can provide archives of past variations in the oxygen isotopic composition of precipitation (δ18Oppt). Holocene δ18Oppt records from the circum- North Atlantic region exhibit large fluctuations during times of rapid ice sheet deglaciation, followed by more stable conditions when interglacial boundary conditions were achieved. However, the timing, magnitude, and climatic controls on century to millennial-scale variations in δ18Oppt in northeastern North America are unclear principally because of a dearth of paleo-proxy data. Here we present a lacustrine sediment oxygen isotope (δ18O) record spanning 10,200 to 1200 calendar years before present (cal yr BP) from Cheeseman Lake, a small, alkaline, hydrologically open lake basin located in west-central Newfoundland, Canada. Stable isotope data from regional lakes, rivers, and precipitation indicate that Cheeseman Lake water δ18O values are consistent with the isotopic composition of inflowing meteoric water. In light of the open-basin hydrology and relatively short water residence time of the lake, we interpret down-core variations in calcite oxygen isotope (δ18Ocal) values to primarily reflect changes in δ18Oppt and atmospheric temperature, although other factors such as changes in the seasonality of precipitation may be a minor influence. We conducted a series of climate sensitivity simulations with a lake hydrologic and isotope mass balance model to investigate theoretical lake water δ18O responses to climate change. Results from these experiments suggest that Cheeseman Lake δ18O values are primarily controlled by temperature and to a much lesser extent, the seasonality of precipitation. Increasing and more positive δ18Ocal values between 10,200 and 8000 cal yr BP are interpreted to reflect the waning influence of the Laurentide Ice Sheet on atmospheric circulation, warming temperatures, and rapidly changing surface ocean δ18O from the input of

  2. Validation of chlorine and oxygen isotope ratio analysis to differentiate perchlorate sources and to document perchlorate biodegradation (United States)

    Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua


    Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.

  3. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios. (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu


    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  4. A Simple Mechanism for Fractionating Oxygen Isotopes in the Solar Nebula (United States)

    Nuth, Joseph A., III; Johnson, N. M.


    Lightning in the Solar Nebula is caused by the tribo-electric charging of dust grains carried by massive turbulent flows and driven by the accretion energy in the disk: it has long been one agent assumed responsible for the formation of chondrules. The degree to which charge separation can occur is dependent upon a number of factors, including the concentration of radioactive sources and the total level of ionization in the nebula, and these factors determine the maximum energy likely to be released by a single bolt. While chondrule formation requires a massive discharge, even a small lightning bolt can vaporize grains in the ionized discharge channel. Experimental studies have shown that silica, iron silicate and iron oxide grains formed from a high voltage discharge in hydrogen rich gas containing some oxygen produces solids that are enriched in O-17 and O-18 relative to the composition of the starting gas. Vaporization of silicates produces SiO, metal and free oxygen atoms in each discharge and these species will immediately begin to recondense from the hot plasma. Freshly condensed grains are incrementally enriched in heavy oxygen while the gas is enriched in O-16. Repeated evaporation and condensation of silicates in continuously occurring lightning discharges will monotonically increase the fractionation of oxygen isotopes between the O-17 and O-18 rich dust and the O-16 rich gas. The first mass independently fractionated refractory oxide particles were produced in the lab following the condensation of a flowing gas mixture containing variable amounts of hydrogen, silane, pentacarbonyl iron and oxygen that passed through a high voltage discharge powered by a Tesla coil. While the exact chemical pathway is still uncertain, the most probable reaction mechanisms involve oxidation of the growing refractory clusters by O3, OH or O atoms. This model has some interesting consequences for chemical processes in the early solar nebula. Chemical fractionation of

  5. Variogram analysis of stable oxygen isotope composition of daily precipitation over the British Isles (United States)

    Kohán, Balázs; Tyler, Jonathan; Jones, Matthew; Kern, Zoltán


    Water stable isotopes are important natural tracers in the hydrological cycle on global, regional and local scales. Daily precipitation water samples were collected from 70 sites over the British Isles on the 23rd, 24th, and 25th January, 2012 [1]. Samples were collected as part of a pilot study for the British Isotopes in Rainfall Project, a community engagement initiative, in collaboration with volunteer weather observers and the UK Met Office. Spatial correlation structure of daily precipitation stable oxygen isotope composition (δ18OP) has been explored by variogram analysis [2]. Since the variograms from the raw data suggested a pronounced trend, owing to the spatial trend discussed in the original study [1], a second order polynomial trend was removed from the raw δ18OP data and variograms were calculated on the residuals. Directional experimental semivariograms were calculated (steps: 10°, tolerance: 30°) and aggregated into variogram surface plots to explore the spatial dependence structure of daily δ18OP. Each daily data set produced distinct variogram plots. -A well expressed anisotropic structure can be seen for Jan 23. The lowest and highest variance was observed in the SW-NE and NNE-SSW direction, respectively. Meteorological observations showed that the majority of the atmospheric flow was SW on this day, so the direction of low variance seems to reflect this flow direction, while the maximum variance might reflect the moisture variance near the elongation of the frontal system. -A less characteristic but still expressed anisotropic structure was found for Jan 24 when a warm front passed the British Isles perpendicular to the east coast, leading to a characteristic east-west δ18OP gradient suggestive of progressive rainout. The low variance central zone has a 100 km radius which might correspond well to the width of the warm front zone. Although, the axis of minimum variance was similarly SW-NE, the zone of maximum variance was broader and

  6. Precision Oxygen Isotope Measurements of Two C-Rich Hydrated Interplanetary Dust Particles (United States)

    Snead, C. J.; Keller, L. P.; McKeegan, K. D.; Messenger, S.


    Introduction: Chondritic-smooth IDPs (Interplanetary Dust Particles) are low porosity objects whose mineralogy is dominated by aqueous alteration products such as Mg-rich phyllosilicates (smectite and serpentine group) and Mg-Fe carbonate minerals. Their hydrated mineralogy combined with low atmospheric entry velocities have been used to infer an origin largely from asteroidal sources. Spectroscopic studies show that the types and abundance of organic matter in CS IDPs is similar to that in CP IDPs. Although CS IDPs show broad similarities to primitive carbonaceous chondrites, only a few particles have been directly linked to specific meteorite groups such as CM and CI chondrites based on the presence of diagnostic minerals. Many CS IDPs however, have carbon contents that greatly exceed that of known meteorite groups suggesting that they either may derive from comets or represent samples of more primitive parent bodies than do meteorites. It is now recognized that many large, dark primitive asteroids in the outer main belt, as well as some trans-Neptunian objects, show spectroscopic evidence for aqueous alteration products on their surfaces. Some CS IDPs exhibit large bulk D enrichments similar to those observed in the cometary CP IDPs. While hydrated minerals in comets have not been unambiguously identified to date, the presence of the smectite group mineral nontronite has been inferred from infrared spectra obtained from the ejecta from comet 9P/Tempel 1 during the Deep Impact mission. Recent observations of low temperature sulfide minerals in Stardust mission samples suggest that limited aqueous activity occurred on comet Wild-2. All of these observations, taken together, suggest that the high-carbon hydrated IDPs are abundant and important samples of primitive solar system objects not represented in meteorite collections. Oxygen isotopic compositions of chondrites reflect mixing between a 16O-rich reservoir and a 17O,18O-rich reservoir produced via mass

  7. An innovative molybdenum column liner for oxygen and hydrogen stable isotope analysis by pyrolysis. (United States)

    Stuart-Williams, Hilary; Wong, S Chin; Farquhar, Graham D; Keitel, Claudia; Clayton, Stephen


    The most widely used method for pyrolysing samples for hydrogen or oxygen isotopic analysis involves heating them to greater than 1300 degrees C in a helium stream passed through a glassy carbon tube in an alumina casing. There are a number of difficulties with this. Glassy carbon tubes are expensive and interaction between the carbon tube and the outer casing produces unwanted carbon monoxide by reduction of the alumina at high temperatures. The latter effect is overwhelming if temperatures of 1400 degrees C or greater are used for pyrolysis. We experimented with lining alumina casings with pure molybdenum sheet. It is relatively cheap, conforms well to the interior of the reactor tube (to avoid carrier and sample bypassing of the carbon pack), resists high temperatures and neither oxidises excessively nor absorbs the gases. The main disadvantages are that silver sample cups must be used and that the molybdenum degrades over time by formation of the carbide. We can maintain sharp peaks, high precision and good accuracy over more than 700 solid samples for both hydrogen and oxygen. The reactors last longer for water injections. The molybdenum in the columns does not contribute greatly to memory effects. The precision of analysis is dependent on other factors as well as the pyrolysis column, but for oxygen we typically achieve approximately <0.2 per thousand (sucrose), <0.25 per thousand (water) and <0.25 per thousand (leaf), sometimes using only a linear correction of drift, after dividing the run into 1 to 3 segments.

  8. Charge state distribution studies of pure and oxygen mixed krypton ECR plasma - signature of isotope anomaly and gas mixing effect. (United States)

    Kumar, Pravin; Mal, Kedar; Rodrigues, G


    We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all-permanent-magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. 82 Kr (~11.58%), 83 Kr (~11.49%), 84 Kr (~57%) and 86 Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer-cum-switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. 82 Kr, 86 Kr and 83 Kr, 86 Kr is prominent, whereas the intensity ratio of 86 Kr to 84 Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols (United States)

    Bindeman, I. N.; Eiler, J. M.; Wing, B. A.; Farquhar, J.


    We present analyses of stable isotopic ratios 17O/ 16O, 18O/ 16O, 34S/ 32S, and 33S/ 32S, 36S/ 32S in sulfate leached from volcanic ash of a series of well known, large and small volcanic eruptions. We consider eruptions of Mt. St. Helens (Washington, 1980, ˜1 km 3), Mt. Spurr (Alaska, 1953, tuff (Long Valley, California, 0.76 Ma, 750 km 3), Lower Bandelier tuff (Toledo Caldera, New Mexico, 1.61 Ma, 600 km 3), and Lava Creek and Huckleberry Ridge tuffs (Yellowstone, Wyoming, 0.64 Ma, 1000 km 3 and 2.04 Ma 2500 km 3, respectively). This list covers much of the diversity of sizes and the character of silicic volcanic eruptions. Particular emphasis is paid to the Lava Creek tuff for which we present wide geographic sample coverage. This global dataset spans a significant range in δ34S, δ18O, and Δ17O of sulfate (29‰, 30‰, and 3.3‰, respectively) with oxygen isotopes recording mass-independent ( Δ17O > 0.2‰) and sulfur isotopes exhibiting mass-dependent behavior. Products of large eruptions account for most of' these isotopic ranges. Sulfate with Δ17O > 0.2‰ is present as 1-10 μm gypsum crystals on distal ash particles and records the isotopic signature of stratospheric photochemical reactions. Sediments that embed ash layers do not contain sulfate or contain little sulfate with Δ17O near 0‰, suggesting that the observed sulfate in ash is of volcanic origin. Mass-dependent fractionation of sulfur isotopic ratios suggests that sulfate-forming reactions did not involve photolysis of SO 2, like that inferred for pre-2.3 Ga sulfates from Archean sediments or Antarctic ice-core sulfate associated with few dated eruptions. Even though the sulfate sulfur isotopic compositions reflect mass-dependent processes, the products of caldera-forming eruptions display a large δ34S range and exhibit fractionation relationships that do not follow the expected equilibrium slopes of 0.515 and 1.90 for 33S/ 32S vs. 34S/ 32S and 36S/ 32S vs. 34S/ 32S, respectively. The

  10. Lake Louise Water (USGS47): A new isotopic reference water for stable hydrogen and oxygen isotope measurements (United States)

    Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve


    "RATIONALE: Because of the paucity of isotopic reference waters for daily use, a new secondary isotopic reference material has been prepared from Lake Louise water from Alberta, Canada for international distribution. MOTHODS: This water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.

  11. Nitrogen and Triple Oxygen Isotopic Analyses of Atmospheric Particulate Nitrate over the Pacific Ocean (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Iwamoto, Yoko; Ishino, Sakiko; Furutani, Hiroshi; Miki, Yusuke; Miura, Kazuhiko; Uematsu, Mitsuo; Yoshida, Naohiro


    Nitrate plays a significant role in the biogeochemical cycle. Atmospheric nitrate (NO3- and HNO3) are produced by reaction precursor as NOx (NO and NO2) emitted by combustion, biomass burning, lightning, and soil emission, with atmospheric oxidants like ozone (O3), hydroxyl radical (OH), peroxy radical and halogen oxides. Recently, industrial activity lead to increases in the concentrations of nitrogen species (NOx and NHy) throughout the environment. Because of the increase of the amount of atmospheric nitrogen deposition, the oceanic biogeochemical cycle are changed (Galloway et al., 2004; Kim et al., 2011). However, the sources and formation pathways of atmospheric nitrate are still uncertain over the Pacific Ocean because the long-term observation is limited. Stable isotope analysis is useful tool to gain information of sources, sinks and formation pathways. The nitrogen stable isotopic composition (δ15N) of atmospheric particulate NO3- can be used to posses information of its nitrogen sources (Elliott et al., 2007). Triple oxygen isotopic compositions (Δ17O = δ17O - 0.52 ×δ18O) of atmospheric particulate NO3- can be used as tracer of the relative importance of mass-independent oxygen bearing species (e.g. O3, BrO; Δ17O ≠ 0 ‰) and mass-dependent oxygen bearing species (e.g. OH radical; Δ17O ≈ 0 ‰) through the formation processes from NOx to NO3- in the atmosphere (Michalski et al., 2003; Thiemens, 2006). Here, we present the isotopic compositions of atmospheric particulate NO3- samples collected over the Pacific Ocean from 40˚ S to 68˚ N. We observed significantly low δ15N values for atmospheric particulate NO3- on equatorial Pacific Ocean during both cruises. Although the data is limited, combination analysis of δ15N and Δ17O values for atmospheric particulate NO3- showed the possibility of the main nitrogen source of atmospheric particulate NO3- on equatorial Pacific Ocean is ammonia oxidation in troposphere. Furthermore, the Δ17O values

  12. Beyond the neutron drip line: The unbound oxygen isotopes 25O and 26O (United States)

    Caesar, C.; Simonis, J.; Adachi, T.; Aksyutina, Y.; Alcantara, J.; Altstadt, S.; Alvarez-Pol, H.; Ashwood, N.; Aumann, T.; Avdeichikov, V.; Barr, M.; Beceiro, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Burgunder, G.; Caamano, M.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chakraborty, S.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Datta Pramanik, U.; Diaz Fernandez, P.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Freudenberger, M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Gonzalez Diaz, D.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Holt, J. D.; Ickert, G.; Ignatov, A.; Jakobsson, B.; Johansson, H. T.; Jonson, B.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knöbel, R.; Kröll, T.; Krücken, R.; Kurcewicz, J.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lepyoshkina, O.; Lindberg, S.; Machado, J.; Marganiec, J.; Maroussov, V.; Menéndez, J.; Mostazo, M.; Movsesyan, A.; Najafi, A.; Nilsson, T.; Nociforo, C.; Panin, V.; Perea, A.; Pietri, S.; Plag, R.; Prochazka, A.; Rahaman, A.; Rastrepina, G.; Reifarth, R.; Ribeiro, G.; Ricciardi, M. V.; Rigollet, C.; Riisager, K.; Röder, M.; Rossi, D.; Sanchez del Rio, J.; Savran, D.; Scheit, H.; Schwenk, A.; Simon, H.; Sorlin, O.; Stoica, V.; Streicher, B.; Taylor, J.; Tengblad, O.; Terashima, S.; Thies, R.; Togano, Y.; Uberseder, E.; Van de Walle, J.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Weigand, M.; Wheldon, C.; Wilson, G.; Wimmer, C.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M. V.; Zilges, A.; Zoric, M.; Zuber, K.


    The very neutron-rich oxygen isotopes 25O and 26O are investigated experimentally and theoretically. The unbound states are populated in an experiment performed at the R3B-LAND setup at GSI via proton-knockout reactions from 26F and 27F at relativistic energies around 442 and 414 MeV/nucleon, respectively. From the kinematically complete measurement of the decay into 24O plus one or two neutrons, the 25O ground-state energy and width are determined, and upper limits for the 26O ground-state energy and lifetime are extracted. In addition, the results provide indications for an excited state in 26O at around 4 MeV. The experimental findings are compared to theoretical shell-model calculations based on chiral two- and three-nucleon (3N) forces, including for the first time residual 3N forces, which are shown to be amplified as valence neutrons are added.

  13. Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades. (United States)

    Rey, Kévin; Amiot, Romain; Fourel, François; Abdala, Fernando; Fluteau, Frédéric; Jalil, Nour-Eddine; Liu, Jun; Rubidge, Bruce S; Smith, Roger Mh; Steyer, J Sébastien; Viglietti, Pia A; Wang, Xu; Lécuyer, Christophe


    The only true living endothermic vertebrates are birds and mammals, which produce and regulate their internal temperature quite independently from their surroundings. For mammal ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic. Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen isotope compositions (δ(18)Op) of some of their Permo-Triassic therapsid relatives. Comparing of the δ(18)Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods, demonstrates different body temperatures and thermoregulatory strategies. It is proposed that cynodonts and dicynodonts independently acquired constant elevated thermometabolism, respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We conclude that mammalian endothermy originated in the Epicynodontia during the middle-late Permian. Major global climatic and environmental fluctuations were the most likely selective pressures on the success of such elevated thermometabolism.

  14. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.


    18O values of glacier ice on the newly formed glacier tongue, there were no diurnal oscillations in the bulk meltwater emanating from the glacier in the post-surge years. This is likely a consequence of a tortuous subglacial drainage system consisting of linked cavities, which formed during the surge......Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from....... A hydrograph separation analysis revealed that the ice melt component constituted 82±5% of the total run-off and dominated the observed variations during peak flow in August 2004. The snowmelt component peaked between 10:00 and 13:00 local time, reflecting the long travel time and an inefficient distributed...

  15. Precipitation regime influence on oxygen triple-isotope distributions in Antarctic precipitation and ice cores (United States)

    Miller, Martin F.


    The relative abundance of 17O in meteoric precipitation is usually reported in terms of the 17O-excess parameter. Variations of 17O-excess in Antarctic precipitation and ice cores have hitherto been attributed to normalised relative humidity changes at the moisture source region, or to the influence of a temperature-dependent supersaturation-controlled kinetic isotope effect during in-cloud ice formation below -20 °C. Neither mechanism, however, satisfactorily explains the large range of 17O-excess values reported from measurements. A different approach, based on the regression characteristics of 103 ln (1 +δ17 O) versus 103 ln (1 +δ18 O), is applied here to previously published isotopic data sets. The analysis indicates that clear-sky precipitation ('diamond dust'), which occurs widely in inland Antarctica, is characterised by an unusual relative abundance of 17O, distinct from that associated with cloud-derived, synoptic snowfall. Furthermore, this distinction appears to be largely preserved in the ice core record. The respective mass contributions to snowfall accumulation - on both temporal and spatial scales - provides the basis of a simple, first-order explanation for the observed oxygen triple-isotope ratio variations in Antarctic precipitation, surface snow and ice cores. Using this approach, it is shown that precipitation during the last major deglaciation, both in western Antarctica at the West Antarctic Ice Sheet (WAIS) Divide and at Vostok on the eastern Antarctic plateau, consisted essentially of diamond dust only, despite a large temperature differential (and thus different water vapour supersaturation conditions) at the two locations. In contrast, synoptic snowfall events dominate the accumulation record throughout the Holocene at both sites.

  16. A Delayed Noeproterozoic Oceanic Oxygenation: Evidence from the Mo Isotope of the Cryogenian Datangpo Formation (United States)

    Cheng, M.; Li, C.; Algeo, T. J.; Zhou, L.; Liu, X. D.; Feng, L. J.


    The onset of the Neoproterozoic oxygenation event (NOE) is usually considered to be at 750-800Ma, which was supposed to have triggered the subsequent oxygenation of the earth's atmosphere-ocean system, thus removing the barrier for the emergence and rapid diversification of animals. However, the subsequent oceanic redox responses in the Cryogenian are poorly constrained. Here, we conducted an integrated Fe-S-C-Mo biogeochemical study on black shales of the Cryogenian Datangpo Formation (~660Ma, Nanhua Basin, South China). Iron speciation data indicate that these black shales were deposited under euxinic water conditions. Co-variation between Mo and TOC suggests an increasing isolation of the basin from open ocean during the deposition of the black shales. Correspondingly, the Datangpo black shales show higher δ98Mo values (+0.97‰ to +1.12‰) for the lower part (0-10m) and lower δ98Mo values (+0.44‰ to +0.53‰) for the upper part (10-20m) consistent with a global scale seawater δ98Mo recorded in the lower part but only a basin scale seawater δ98Mo recorded in the upper part. Accordingly, we estimate the seawater Mo isotope closed to +1.1‰ at ~660 Ma, which suggests substantial oceanic anoxia compared to modern oceans (+2.3‰). The seawater δ98Mo reconstructed by the Datangpo black shales is exactly the same to previously reported seawater δ98Mo at ~750 Ma and ~640 Ma, indicating a continuous oceanic anoxia throughout the Cryogenian although widespread oceanic oxygenation was suggested for the subsequent Ediacaran by multiple geochemical records. Thus, in light of previous studies, our findings indicate a delayed oceanic oxygenation relative to the onset of NOE, which may help to explain the first presence of metazoa in Cryogenian but rapid diversification occurred in Ediacaran.

  17. Chronology of the Middle Pleistocene Kidnappers Group, New Zealand and correlation to global oxygen isotope stratigraphy (United States)

    Black, Tasha M.


    Middle Pleistocene strata of the Kidnappers Group consist of a conformable sequence of alternating fluvio-lacustrine and shallow marine sediments exposed along coastal cliffs near Cape Kidnappers, southern Hawkes Bay, New Zealand. Three major paleomagnetic polarity intervals are recognised and interpreted as Jaramillo Normal Subchron, upper Matuyama Reversed Chron and Brunhes Normal Chron. This and biostratigraphy indicates an age range of 0.97 to 0.54 Ma for the group, compared to 0.85 to new age control and facies interpretations suggest that the upper part of the group represents oxygen isotope stages 22 to 15. The duration and magnitude of isotope stages is reflected in the relative thicknesses of lithological units. Glacial periods are recorded as alluvial aggradation in the form of braidplain conglomerates, while estuarine and subaerial sands and muds with temperate climate pollens represent interglacial periods. This contrasts with many coastal and shelf sequences where glacial periods are represented by unconformities. Chemical and paleomagnetic characterisation of silicic tuffs in the Kidnappers Group establishes correlation to other sections and cores in New Zealand, the Tasman Sea and the western Pacific Ocean, thus providing temporal correlation for a range of sedimentary environments.

  18. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.


    Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from...... event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used...... the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68±0.18‰ during the peak flow period...

  19. Rapid Method for the Determination of the Stable Oxygen Isotope Ratio of Water in Alcoholic Beverages. (United States)

    Wang, Daobing; Zhong, Qiding; Li, Guohui; Huang, Zhanbin


    This paper demonstrates the first successful application of an online pyrolysis technique for the direct determination of oxygen isotope ratios (δ(18)O) of water in alcoholic beverages. Similar water concentrations in each sample were achieved by adjustment with absolute ethyl alcohol, and then a fixed GC split ratio can be used. All of the organic ingredients were successfully separated from the analyte on a CP-PoraBond Q column and subsequently vented out, whereas water molecules were transferred into the reaction furnace and converted to CO. With the system presented, 15-30 μL of raw sample was diluted and can be analyzed repeatedly; the analytical precision was better than 0.4‰ (n = 5) in all cases, and more than 50 injections can be made per day. No apparent memory effect was observed even if water samples were injected using the same syringe; a strong correlation (R(2) = 0.9998) was found between the water δ(18)O of measured sample and that of working standards. There was no significant difference (p > 0.05) between the mean δ(18)O value and that obtained by the traditional method (CO2-water equilibration/isotope ratio mass spectrometry) and the newly developed method in this study. The advantages of this new method are its rapidity and straightforwardness, and less test portion is required.

  20. Letter Report: Stable Hydrogen and Oxygen Isotope Analysis of B-Complex Perched Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nims, Megan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Fine-grained sediments associated with the Cold Creek Unit at Hanford have caused the formation of a perched water aquifer in the deep vadose zone at the B Complex area, which includes waste sites in the 200-DV-1 Operable Unit and the single-shell tank farms in Waste Management Area B-BX-BY. High levels of contaminants, such as uranium, technetium-99, and nitrate, make this aquifer a continuing source of contamination for the groundwater located a few meters below the perched zone. Analysis of deuterium (2H) and 18-oxygen (18O) of nine perched water samples from three different wells was performed. Samples represent time points from hydraulic tests performed on the perched aquifer using the three wells. The isotope analyses showed that the perched water had δ2H and δ18O ratios consistent with the regional meteoric water line, indicating that local precipitation events at the Hanford site likely account for recharge of the perched water aquifer. Data from the isotope analysis can be used along with pumping and recovery data to help understand the perched water dynamics related to aquifer size and hydraulic control of the aquifer in the future.

  1. Interaction cross sections and matter radii of oxygen isotopes using the Glauber model (United States)

    Ahmad, Suhel; Usmani, A. A.; Ahmad, Shakeb; Khan, Z. A.


    Using the Coulomb modified correlation expansion for the Glauber model S matrix, we calculate the interaction cross sections of oxygen isotopes (O-2616) on 12C at 1.0 GeV/nucleon. The densities of O-2616 are obtained using (i) the Slater determinants consisting of the harmonic oscillator single-particle wave functions (SDHO) and (ii) the relativistic mean-field approach (RMF). Retaining up to the two-body density term in the correlation expansion, the calculations are performed employing the free as well as the in-medium nucleon-nucleon (N N ) scattering amplitude. The in-medium N N amplitude considers the effects arising due to phase variation, higher momentum transfer components, and Pauli blocking. Our main focus in this work is to reveal how could one make the best use of SDHO densities with reference to the RMF one. The results demonstrate that the SDHO densities, along with the in-medium N N amplitude, are able to provide satisfactory explanation of the experimental data. It is found that, except for O,2423, the predicted SDHO matter rms radii of oxygen isotopes closely agree with those obtained using the RMF densities. However, for O,2423, our results require reasonably larger SDHO matter rms radii than the RMF values, thereby predicting thicker neutron skins in 23O and 24O as compared to RMF ones. In conclusion, the results of the present analysis establish the utility of SDHO densities in predicting fairly reliable estimates of the matter rms radii of neutron-rich nuclei.

  2. Baboons, water, and the ecology of oxygen stable isotopes in an arid hybrid zone. (United States)

    Moritz, Gillian L; Fourie, Nicolaas; Yeakel, Justin D; Phillips-Conroy, Jane E; Jolly, Clifford J; Koch, Paul L; Dominy, Nathaniel J


    Baboons regularly drink surface waters derived from atmospheric precipitation, or meteoric water. As a result, the oxygen isotope (δ(18)O) composition of their tissues is expected to reflect that of local meteoric waters. Animal proxies of the oxygen isotope composition of meteoric water have practical applications as paleoenvironmental recorders because they can be used to infer aridity and temperature in historic and fossil systems. To explore this premise, we measured the δ(18)O values of hair from two baboon species, Papio anubis and Papio hamadryas, inhabiting Awash National Park, Ethiopia. The hybridizing taxa differ in their ranging behavior and physiological response to heat. Papio hamadryas ranges more widely in the arid thornbush and is inferred to ingest a greater proportion of leaf water that is enriched in (18)O as a result of evaporative fractionation. It is also better able to conserve body water, which reduces its dependence on meteoric waters depleted in (18)O. Taken together, these factors would predict relatively higher δ(18)O values in the hair (δ(18)O(hair)) of P. hamadryas. We found that the δ(18)O(hair) values of P. hamadryas were higher than those of P. anubis, yet the magnitude of the difference was marginal. We attribute this result to a common source of drinking water, the Awash River, and the longer drinking bouts of P. hamadryas. Our findings suggest that differences in δ(18)O values among populations of Papio (modern or ancient) reflect different sources of drinking water (which might have ecological significance) and, further, that Papio has practical value as a paleoenvironmental recorder.

  3. Chironomid oxygen isotope record of mid- to late Holocene climate evolution from southern Spitsbergen (United States)

    Arppe, Laura; Kurki, Eija; Wooller, Matthew; Luoto, Tomi; Zajączkowski, Marek; Ojala, Antti


    The oxygen isotope composition of head capsule chitin of chironomid larvae picked from a sediment core covering the past 5500 years from lake Svartvatnet in southern Spitsbergen was used to reconstruct the isotopic composition of oxygen in lake water (δ18Olw) and local precipitation. Consistent with the gradual cooling of climate over the Neoglacial period, the δ18Olw record displays a gentle decreasing trend over the study period. The Svartvatnet δ18Olwrecord shows a maximum at ca. 1900-1800 cal BP, consistent with the timing of the Roman Warm Period, and three negative excursions increasing in intensity towards the present-day at 3400-3200, 1250-1100 and 350-50 cal BP, which are tentatively linked to multidecadal periods of low solar activity amplified by oceanic and atmospheric feedbacks. The time period of the Little Ice Age shows a two-step decrease in δ18Olwvalues, with a remarkable, 8-9‰ drop at 350-50 cal BP construed to predominantly represent significantly decreased winter temperatures during a period of increased seasonal differences and extended sea ice cover inducing changes in moisture source regions. Similarity of the trends between the δ18Olwrecord and a July-T reconstruction based on chironomid assemblages (Luoto et al., in review) from the same core suggests that air temperature exerts a significant control over the δ18Olwvalues, but the record is most likely influenced by changes in sea ice extent and possibly the seasonal distribution of precipitation. Reference: Luoto TP, Ojala A, Brooks S et al. Synchronized proxy-based temperature reconstructions reveal mid-to late Holocene climate oscillations in High Arctic Svalbard. Journal of Quaternary Science, submitted.

  4. IR laser extraction technique applied to oxygen isotope analysis of small biogenic silica samples. (United States)

    Crespin, Julien; Alexandre, Anne; Sylvestre, Florence; Sonzogni, Corinne; Paillès, Christine; Garreta, Vincent


    An IR-laser fluorination technique is reported here for analyzing the oxygen isotope composition (delta18O) of microscopic biogenic silica grains (phytoliths and diatoms). Performed after a controlled isotopic exchanged (CIE) procedure, the laser fluorination technique that allows one to visually check the success of the fluorination reaction is faster than the conventional fluorination technique and allows analyzing delta18O of small to minute samples (1.6-0.3 mg) as required for high-resolution paleoenvironmental reconstructions. The long-term reproducibility achieved with the IR laser-heating fluorination/O2 delta18O analysis is lower than or equal to +/-0.26 per thousand (1 SD; n = 99) for phytoliths and +/-0.17 per thousand (1 SD; n = 47) for diatoms. When several CIE are taken into account in the SD calculation, the resulting reproducibility is lower than or equal to +/-0.51 per thousand for phytoliths (1 SD; n = 99; CIE > 5) and +/-0.54 per thousand (1 SD; n = 47; CIE = 13) for diatoms. A minimum reproducibility of +/-0.5 per thousand leads to an estimated uncertainty on delta18Osilica close to +/-0.5 per thousand. Resulting uncertainties on reconstructed temperature and delta18Oforming water are, respectively, +/-2 degrees C and +/-0.5 per thousand and fit in the precisions required for intertropical paleoenvironmental reconstructions. Several methodological points such as optimal extraction protocols and the necessity or not of performing two CIE prior to oxygen extraction are assessed.

  5. The carbon and oxygen isotope records of reef-dwelling foraminifers subjected to five varied pCO2 seawater (United States)

    Hikami, M.; Ishimura, T.; Suzuki, A.; Nojiri, Y.; Kawahata, H.


    Ocean acidification (OA) in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Reef dwelling foraminifera is one of the most important primary and carbonate producers in coral reef environments. Their shells are composed of high-Mg calcite and they are host to algal endosymbionts. In our previous culture experiment with two algal reef dwelling foraminifers, Amphisorus kudakajimensis and Calcarina gaudichaudii in the seawater of five different pCO2 conditions, net calcification of A. kudakajimensis was reduced under higher pCO2, whereas net calcification of C. gaudichaudii showed continued increasing trend with pCO2. These contrasting responses between the two species are possibly due to differences in calcification mechanisms and to links between calcification by the foraminifers and photosynthesis by the algal endosymbionts. But the factors affecting these calcification mechanisms are poorly understood. In this study, to get a better understanding of the effect of OA on their calcification, we cultured three reef dwelling foraminifers: Amphisorus hemprichii, belong to imperforate species, Baculogypsina sphaerulata, and C. gaudichaudii belong to perforate species, in the seawater of five different pCO2 conditions and we address the response of carbon and oxygen isotopes of the carbonate shells of foraminifers. The oxygen isotope ratio of cultured foraminiferal tests under five varied pCO2 seawater indicated no significant correlation to pCO2 values. On the other hand, the carbon isotope ratio of foraminiferal tests indicated heavy trend with rising pCO2 in all species. Alteration of carbonate chemistry result from ocean acidification may be effect strongly on carbon isotope composition relate to metabolic system (i.e. photosynthesis and respiration). In perforate species, both of oxygen and carbon isotope ratio were lighter than that

  6. In situ oxygen isotope compositions in olivines of different types of cosmic spherules: An assessment of relationships to chondritic particles

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Jones, R.H.; Nagashima, K.

    ‰, -13 to 22‰ and -11 to 6‰. Our results suggest that the oxygen isotope compositions of the scoriaceous, relict-bearing, porphyritic and barred spherules show provenance related to the carbonaceous (CM, CV, CO and CR) chondrites. The different types...

  7. Past 20,000-year history of Himalayan aridity: Evidence from oxygen isotope records in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.

    Late Quaternary climate history of the Himalayas is inferred from sea surface salinity (SSS) changes determined from the oxygen isotope in planktonic foraminifers, in a turbidity-free, 14C-dated core from the Bay of Bengal. The heaviest d18O...

  8. Oxygen stable isotopes during the Last Glacial Maximum climate: perspectives from data-model (iLOVECLIM) comparison

    NARCIS (Netherlands)

    Caley, T.; Roche, D.M.V.A.P.; Waelbroeck, C.; Michel, E.


    We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 years). By using a model that is able to explicitly simulate the sensor (Î18O), results can be

  9. Sensitivity of Oxygen Isotopes of Sulfate in Ice Cores to Past Changes in Atmospheric Oxidant Concentrations (United States)

    Sofen, E. D.; Alexander, B.; Kunasek, S. A.; Mickley, L.; Murray, L. T.; Kaplan, J. O.


    The oxygen isotopic composition (Δ17O) of sulfate from ice cores allows for a quantitative assessment of the past oxidative capacity of the atmosphere, which has implications for the lifetime of pollutants (e.g. CO) and greenhouse gases (e.g. CH4), and changes in the sulfur budget on various timescales. Using Δ17O of sulfate measurements from the WAIS-Divide, Antarctica and Site-A, Greenland ice cores as constraints, we use the GEOS-Chem global three-dimensional chemical transport model to study changes in the concentrations of OH, O3, and H2O2 and their impact on sulfate Δ17O between the preindustrial and present-day. The Greenland ice core sulfate oxygen isotope observations are insensitive to changes in oxidant concentrations on the preindustrial-industrial timescale due to the rising importance of metal catalyzed S(IV) oxidation in mid- to high-northern latitudes resulting from anthropogenic metal emissions. The small change in Antarctic ice core sulfate Δ17O observations on this timescale is consistent with simultaneous increases in boundary layer O3 (32%) and H2O2 (49%) concentrations in the Southern Hemisphere, which have opposing effects on the sulfate O-isotope anomaly. Sulfate Δ17O is insensitive to the relatively small (-12%) decrease in Southern Hemisphere OH concentrations on this timescale due to the dominance of in-cloud versus gas-phase formation of sulfate in the mid-to-high southern latitudes. We find that the fraction of sulfate formed globally through gas-phase oxidation has not changed substantially between preindustrial and present times, however the total amount of sulfate formed in the gas-phase has nearly quadrupled due to rising anthropogenic emissions of sulfur dioxide. Measurements over a glacial-interglacial cycle from the Vostok core indicate dramatic changes in the Δ17O of sulfate on this timescale, which provide a strong constraint for glacial-era atmospheric chemistry modeling efforts. We will present preliminary results of

  10. Carbon, hydrogen, and oxygen isotope studies of the regional metamorphic complex at Naxos, Greece (United States)

    Rye, R.O.; Schuiling, R.D.; Rye, D.M.; Jansen, J.B.H.


    At Naxos, Greece, a migmatite dome is surrounded by schists and marbles of decreasing metamorphic grade. Sillimanite, kyanite, biotite, chlorite, and glaucophane zones are recognized at successively greater distances from the migmatite dome. Quartz-muscovite and quartz-biotite oxygen isotope and mineralogie temperatures range from 350 to 700??C. The metamorphic complex can be divided into multiple schist-rich (including migmatites) and marblerich zones. The ??18O values of silicate minerals in migmatite and schist units and quartz segregations in the schist-rich zones decrease with increase in metamorphic grades. The calculated ??18OH2O values of the metamorphic fluids in the schist-rich zones decrease from about 15??? in the lower grades to an average of about 8.5??? in the migmatite. The ??D values of OH-minerals (muscovite, biotite, chlorite, and glaucophane) in the schist-rich zones also decrease with increase in grade. The calculated ??DH2O values for the metamorphic fluid decrease from -5??? in the glaucophane zone to an average of about -70??? in the migmatite. The ??D values of water in fluid inclusions in quartz segregations in the higher grade rocks are consistent with this trend. The??18O values of silicate minerals and quartz segregations in marble-rich zones are usually very large and were controlled by exchange with the adjacent marbles. The ??D values of the OH minerals in some marble-rich zones may reflect the value of water contained in the rocks prior to metamorphism. Detailed data on 20 marble units show systematic variations of ??18O values which depend upon metamorphic grade. Below the 540??C isograd very steep ??18O gradients at the margins and large ??18O values in the interior of the marbles indicate that oxygen isotope exchange with the adjacent schist units was usually limited to the margins of the marbles with more exchange occurring in the stratigraphic bottom than in the top margins. Above the 540??C isograd lower ??18O values occur in

  11. Stable Nitrogen and Oxygen Isotope Analysis of Nitrate using Denitrifying Bacteria (United States)

    Edenburn, L.; Michalski, G. M.


    tube into both O2 and N2 using techniques adapted from Cascotti and Kaiser. Our instrument utilizes an extended 11-cup multi-collector feature which does not require a peak jump during analysis on the continuous flow IRMS. Although this is not the first method to study independent measurements of δ18O, δ17O, δ15N, or Δ17O, this is first technique that simultaneously detects the stable isotope composition of oxygen and nitrogen in a given nitrate sample. Tests of the impact on isotopic composition by pre-concentration methods have been performed including freeze-drying/evaporation, column chromatography and ion chromatography.

  12. Using oxygen isotopes to establish freshwater sources in Bedford Basin, Nova Scotia, a Northwestern Atlantic fjord (United States)

    Kerrigan, Elizabeth A.; Kienast, Markus; Thomas, Helmuth; Wallace, Douglas W. R.


    A weekly time-series of oxygen isotope (δ18O) measurements was collected over a 16-month period from near-surface (1 m) and near-bottom (60 m) waters of Bedford Basin, a coastal fjord adjacent to the Scotian Shelf, off eastern Canada. The time-series was complemented with δ18O measurements of local precipitation (rain and snow), river, and wastewater runoff. The isotopic composition of precipitation displayed strong seasonality with an average (volume-weighted) δ18O value of -5.39‰ (±0.96) for summer and a depleted value of -10.37‰ (±2.96) over winter. Winter precipitation exhibited more depleted and variable δ18O of solid precipitation relative to rainfall. The annual, amount-weighted average δ18O of Sackville River discharge (-6.49‰ ± 0.82) was not statistically different from precipitation (-7.24‰ ± 0.92), but exhibited less seasonal variation. Freshwater end-members (zero-salinity intercepts) estimated from annual and seasonal regressions of δ18O versus salinity (S) for Bedford Basin near-surface samples were consistent with the δ18O of summer precipitation and the annual, amount-weighted average for the Sackville River. However, the isotopically depleted signature of winter precipitation was not observed clearly in near-surface waters of Bedford Basin, which might reflect isotope enrichment during sublimation from accumulated snowfall prior to melting and discharge, or retention and mixing within the drainage basin. In near bottom waters, most of the δ18O-S variation (average freshwater end-member: 7.47‰ ± 2.17) could be explained by vertical mixing with near-surface waters (average freshwater end-member: -6.23‰ ± 0.34) and hence with locally-derived freshwater. However the near-bottom δ18O-S variation suggested an additional contribution of a freshwater end-member with a δ18O of -15.55‰ ± 2.3, consistent with a remotely-derived freshwater end-member identified previously for the Scotian Shelf. Residuals from a long

  13. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy. (United States)

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R


    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  14. Oxygen isotopes in tree rings record variation in precipitation δ(18)O and amount effects in the south of Mexico. (United States)

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel


    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ(18)Otr). Interannual variation in δ(18)Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ(13)C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ(18)Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly (18)O-depleted rain in the region and seem to have affected the δ(18)Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ(18)Otr of M. acantholoba can be used as a proxy for source water δ(18)O and that interannual variation in δ(18)Oprec is caused by a regional amount effect. This contrasts with δ(18)O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in

  15. Multidimensional isotope analysis of carbon, hydrogen and oxygen as tool for identification of the origin of ibuprofen. (United States)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans Hermann


    Multidimensional isotope profiling is a useful tool for the characterization of the provenance of active pharmaceutical ingredients (API). To evaluate this approach, samples of the nonsteroidal anti-inflammatory drug (NSAIDs) ibuprofen were collected from 32 manufactures and 13 countries, and carbon, hydrogen and oxygen isotope ratios were analyzed by elemental analyzer, chromium-filled elemental analyzer and high temperature conversion elemental analyzer (EA, Cr-EA and TC/EA) coupled to an isotope ratio mass spectrometry (IRMS). The range of isotope values of ibuprofen (δ(13)C: -33.2±0.1‰ to -27.4±0.1‰; δ(2)H: -121.4±1.5‰ to -41.2±0.8‰; and δ(18)O: -12.6±0.3‰ to 19.0±0.6‰) allowed characterization and distinction of 5 groups, which reflect synthetic pathways and/or use of different raw materials, as well as possible isotope fractionation during the synthesis reactions. This study highlights that multi isotope fingerprinting has potential for identification of sources, and provides a database of isotope composition of ibuprofen (δ(2)H, δ(13)C, δ(18)O) that might improve the tracing of origin, transport pathways and environmental fate of ibuprofen. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Upper ocean nitrogen fluxes in the Polar Antarctic Zone: Constraints from the nitrogen and oxygen isotopes of nitrate (United States)

    Difiore, Peter J.; Sigman, Daniel M.; Dunbar, Robert B.


    We report nitrate nitrogen (N) and oxygen (O) isotope measurements from the seasonally sea ice covered Polar Antarctic Zone (PAZ) south of the Southern Antarctic Circumpolar Front. The 15N/14N and 18O/16O ratios of nitrate both increase into the summertime surface mixed layer, in strong correlation with the upward decrease in nitrate concentration, the expected result of nitrate assimilation by phytoplankton. Culture studies indicate that algal assimilation of nitrate fractionates the nitrate N and O isotopes equally, while previous field studies suggest that nitrate N and O isotope behavior can be decoupled by euphotic zone nitrification. Our data for the PAZ show strong coupling of the dual isotopes of nitrate, and a numerical model of Antarctic summertime surface layer N cycling fits our observations (including isotopic compositions of both nitrate and suspended particulate N) if the nitrification rate is no more than 6% of the nitrate assimilation rate by phytoplankton. The model estimates that the N isotope effect of nitrate assimilation is 5.0 ± 0.7‰. This estimate lacks some of the uncertainties associated with previous studies within the Antarctic Circumpolar Current, and it is at the low end of most recent estimates from the Southern Ocean, the range of which we speculatively attribute to an effect of mixed layer depth on the amplitude of isotope discrimination.

  17. Oxygen isotopic determination of climatic variation using phosphate from beaver bone, tooth enamel, and dentine (United States)

    Stuart-Williams, Hilary Le Q.; Schwarcz, Henry P.


    The δ 18O of Canadian beaver ( Castor canadensis) teeth should reflect variations in the isotopic composition of the water in which the beavers live, as their incisors grow rapidly and continuously. We observe seasonal variations in phosphate δ 18O using samples of enamel taken along the length of single teeth. In the spring the δ 18O of the enamel being deposited gradually declines, reflecting a retarded input of δ 18O depleted winter water. After mid-year, enamel δ 18O is higher than average (as represented by the δ 18O of bone phosphate from the same animal) and passes through a maximum in late summer or early fall. Overall, the amplitude of seasonal excursions in enamel δ 18O (4‰) is much smaller than the expected summer-winter range in the δ 18O of meteoric water (> 10‰). This is because hydrologic mixing processes, gradual admixing of environmental water with beaver body water, long-term plant growth, and oxygen inputs of relatively constant value (particularly atmospheric oxygen) tend to even out summer-winter differences in the δ 18O of oxygen inputs to the beaver. The δ 18O of bone from adult beavers was uniform at 11.9 ± 0.5‰ over the study area. Analyses of a Sangamon age giant beaver ( Castoroides ohioensis) incisor from Hopwood Farm, Illinois, show a slightly larger 5.5‰ seasonal cycle of δ 18O with an average enamel δ 18O of 18‰. This suggests that average temperatures were warmer during the Sangamon than today and that seasonal temperature differences and/or relative humidity variations were larger.

  18. Shape of gold and platinum exotic isotopes by laser spectroscopy; Formes des noyaux exotiques d`or et de platine par spectroscopie laser

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, F.; Obert, J.; Oms, J.; Putaux, J.C.; Roussiere, B.; Sauvage, J. [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Pinard, J.; Cabaret, L.; Duong, H.T. [LAM Orsay (France); Hubert, G.; Krieg, M.; Sebastian, V. [Inst. fuer Physik, Mainz Univ. (Germany); Crawford, J.; Lee, J.K.P. [Foster Radiation Lab., McGill Univ., Montreal, PQ (Canada); Genevey, J.; Ibrahim, F. [Inst. des Sciences Nucleaires, Grenoble-1 Univ., 38 (France); ISOLDE Collaboration


    Resonance Ionisation Spectroscopy (RIS) was performed on desorbed {sup 184}Au{sup g,m} as well as on platinum isotopes and isomers from A = 189 to A 178. The complete hyperfine structure of both isomer and ground state was obtained for {sup 184}Au. In the platinum isotopes, 14 hyperfine structures were measured. (authors) 3 refs.

  19. Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record. (United States)

    Royer, Aurélien; Daux, Valérie; Fourel, François; Lécuyer, Christophe


    Stable isotope data provide insight into the reconstruction of ancient human diet. However, cooking may alter the original stable isotope compositions of food due to losses and modifications of biochemical and water components. To address this issue, carbon, nitrogen and oxygen isotope ratios were measured on meat aliquots sampled from various animals such as pork, beef, duck and chicken, and also from the flesh of fishes such as salmon, European seabass, European pilchard, sole, gilt-head bream, and tuna. For each specimen, three pieces were cooked according to the three most commonly-known cooking practices: boiling, frying and roasting on a barbecue. Our data show that cooking produced isotopic shifts up to 1.8‰, 3.5‰, and 5.2‰ for δ13 C, δ15 N, and δ18 O values, respectively. Such variations between raw and cooked food are much greater than previously estimated in the literature; they are more sensitive to the type of food rather than to the cooking process itself, except in the case of boiling. Reconstructions of paleodietary may thus suffer slight bias in cases of populations with undiversified diets that are restrained toward a specific raw or cooked product, or using a specific cooking mode. In cases of oxygen isotope compositions from skeletal remains (bones, teeth), they not only constitute a valuable proxy for reconstructing past climatic conditions, but they could also be used to improve our knowledge of past human diet. © 2017 Wiley Periodicals, Inc.

  20. Kangaroo tooth enamel oxygen and carbon isotope variation on a latitudinal transect in southern Australia: implications for palaeoenvironmental reconstruction. (United States)

    Brookman, Tom H; Ambrose, Stanley H


    Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C(3)-C(4) transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C(3) and C(4) vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ(13)C and δ(18)O. No species achieved the δ(13)C values (~-1.0 ‰) expected for 100 % C(4) grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C(4) grasses (grazers) have δ(13)C of up to -3.5 ‰. In these areas, δ(13)C below -12 ‰ suggests a 100 % C(3) grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ(13)C. Animals from semi-arid areas have δ(18)O of 34-40 ‰, while grazers from temperate areas have lower values (~28-30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ(13)C and δ(18)O data are used together. These data demonstrate that diet-isotope and climate-isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.

  1. Evaluation of diffuse and preferential flow pathways of infiltratedprecipitation and irrigation using oxygen and hydrogen isotopes (United States)

    Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jingxin


    Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10–40 cm depth in the grassland and arable land, and 10–60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20–50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.

  2. Analysis of High Frequency Site-Specific Nitrogen and Oxygen Isotopic Composition of Atmospheric Nitrous Oxide at Mace Head, Ireland (United States)

    McClellan, M. J.; Harris, E. J.; Olszewski, W.; Ono, S.; Prinn, R. G.


    Atmospheric nitrous oxide (N2O) significantly impacts Earth's climate due to its dual role as an inert potent greenhouse gas in the troposphere and as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. However, there remain significant uncertainties in the global budget of this gas. The marked spatial divide in its reactivity means that all stages in the N2O life cycle—emission, transport, and destruction—must be examined to understand the overall effect of N2O on climate. Source and sink processes of N2O lead to varying concentrations of N2O isotopologues (14N14N16O, 14N15N16O, 15N14N16O, and 14N14N18O being measured) due to preferential isotopic production and elimination in different environments. Estimation of source and sink fluxes can be improved by combining isotopically resolved N2O observations with simulations using a chemical transport model with reanalysis meteorology and treatments of isotopic signatures of specific surface sources and stratospheric intrusions. We present the first few months of site-specific nitrogen and oxygen isotopic composition data from the Stheno-TILDAS instrument (Harris et al, 2013) at Mace Head, Ireland and compare these to results from MOZART-4 (Model for Ozone and Related Chemical Tracers, version 4) chemical transport model runs including N2O isotopic fractionation processes and reanalysis meterological fields (NCEP/NCAR, MERRA, and GEOS-5). This study forms the basis for future inverse modeling experiments that will improve the accuracy of isotopically differentiated N2O emission and loss estimates. Ref: Harris, E., D. Nelson, W. Olszewski, M. Zahniser, K. Potter, B. McManus, A. Whitehill, R. Prinn, and S. Ono, Development of a spectroscopic technique for continuous online monitoring of oxygen and site-specific nitrogen isotopic composition of atmospheric nitrous oxide, Analytical Chemistry, 2013; DOI: 10.1021/ac403606u.

  3. Oxygen and Magnesium Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission (United States)

    Yurimoto, H; Abe, M.; Ebihara, M.; Fujimura, A.; Hashizume, K.; Ireland, T. R.; Itoh, S.; Kawaguchi, K.; Kitajima, F.; Mukai, T.; hide


    The Hayabusa spacecraft made two touchdowns on the surface of Asteroid 25143 Itokawa on November 20th and 26th, 2005. The Asteroid 25143 Itokawa is classified as an S-type asteroid and inferred to consist of materials similar to ordinary chondrites or primitive achondrites [1]. Near-infrared spectroscopy by the Hayabusa spacecraft proposed that the surface of this body has an olivine-rich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering [2]. The spacecraft made the reentry into the Earth s atmosphere on June 12th, 2010 and the sample capsule was successfully recovered in Australia on June 13th, 2010. Although the sample collection processes on the Itokawa surface had not been made by the designed operations, more than 1,500 grains were identified as rocky particles in the sample curation facility of JAXA, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa on November 17th, 2010 [3]. Although their sizes are mostly less than 10 microns, some larger grains of about 100 microns or larger were also included. The mineral assembly is olivine, pyroxene, plagioclase, iron sulfide and iron metal. The mean mineral compositions are consistent with the results of near-infrared spectroscopy from Hayabusa spacecraft [2], but the variations suggest that the petrologic type may be smaller than the spectroscopic results. Several tens of grains of relatively large sizes among the 1,500 grains will be selected by the Hayabusa sample curation team for preliminary examination [4]. Each grain will be subjected to one set of preliminary examinations, i.e., micro-tomography, XRD, XRF, TEM, SEM, EPMA and SIMS in this sequence. The preliminary examination will start from the last week of January 2011. Therefore, samples for isotope analyses in this study will start from the last week of February 2011. By the time of the LPSC meeting we will have measured the oxygen and

  4. Stable oxygen isotope reconstruction of ambient temperature during the collapse of a cod (Gadus morhua) fishery. (United States)

    Jones, J Brin; Campana, Steven E


    Changing environmental conditions set against a backdrop of high exploitation can result in severe consequences for commercially harvested stocks. The collapse of the Eastern Scotian Shelf cod (Gadus morhua L.) off eastern Canada was primarily due to overexploitation but may have been exacerbated by a widespread temperature decline. Recent studies have called for accurate determination of ambient temperature (the actual temperature exposure history of the fish) before discarding environmental conditions as a factor in the collapse. We used the stable oxygen isotope composition of otoliths (delta18O(oto)) to reconstruct the ambient temperature history of Eastern Scotian Shelf cod from 1970 to 2000 in order to determine whether the stock experienced the temperature decline or shifted their distribution to avoid it. To correct delta18O(oto) for seawater isotope content (deltaO(w)), we generated a new meta-equation for the relationship between delta18O(w) (per mil) and salinity (S, in psu) on the Eastern Scotian Shelf: delta18O(w) = 0.539 x S - 18.790. The ambient temperature series revealed that the large-scale geographic distribution of mature cod remained constant through the cooling period, although their ambient temperature was cooler than expected in warmer periods and warmer than expected in cooler periods, indicating small-scale thermoregulatory movement. Although the mean hydrographic temperature was 4 degrees C, mature cod usually inhabited the coldest available waters (mean ambient temperature = 3 degrees C), while the juveniles usually inhabited warmer waters (mean ambient temperature = 5.5 degrees C). Length-at-age was significantly related to ambient temperature, especially in the early years of growth, and therefore declining ambient temperatures were at least partially responsible for declines in asymptotic length (up to age 8 yr). The most active thermoregulatory movement occurred during a moderate warming period; therefore extreme warming events (such

  5. Strontium, boron, oxygen, and hydrogen isotope geochemistry of brines from basal strata of the Gulf Coast sedimentary basin, USA (United States)

    Moldovanyi, Eva P.; Walter, Lynn M.; Land, Lynton S.


    Significant spatial heterogeneities exist in the stable isotopic composition of saline formation waters from reservoirs of the Smackover Formation (Upper Jurassic). We focused on the southwest Arkansas shelf, a structurally simple portion of one of the interior basins of the northern Gulf Coast sedimentary basin. Here, faulting and facies changes juxtapose dominantly oolitic carbonate strata against basal evaporites, red beds, and siliciclastics, as well as metamorphosed basement rocks. Brines from this area have exceptionally high Br and alkali element concentrations and have spatially heterogeneous hydrogen sulfide concentrations. Strontium, boron, oxygen, and hydrogen isotope compositions exhibit coherent relations with other aspects of brine geochemistry. Sr isotope compositions range from those expected for carbonates and evaporites deposited from Jurassic seawater (0.7071) to radiogenic ratios as high as 0.7107. Generally, most radiogenic Sr isotope values are associated with H 2S-rich waters which also have elevated alkali element (Li, B, K, Rb) concentrations. These alkali element-rich waters are associated with portions of the South Arkansas fault system which reach basement. Boron isotope compositions are similarly heterogeneous, ranging from values of +26 to +50%.. Brines with highest B contents are most depleted in 11B, consistent with boron input from brines generated from high-temperature siliciclastic diagenetic reactions. Normalizing B contents to Br in the brines reveals a reasonable mixing trend between a Dead Sea-type composition and Texas Gulf Coast-type shale/sand reservoir waters. Oxygen and hydrogen isotope data exhibit regional variations which are controlled by meteoric water invasion along the northern limb of the southwest Arkansas Fault, which has surface expression. Although oxygen isotope compositions are often near equilibrium with respect to reservoir carbonate, it is more difficult to ascribe trends in δD values to local water

  6. Chemical and oxygen isotope zonings in garnet from subducted continental crust record mineral replacement and metasomatism (United States)

    Vho, Alice; Rubatto, Daniela; Regis, Daniele; Baumgartner, Lukas; Bouvier, Anne-Sophie


    Garnet is a key mineral in metamorphic petrology for constraining pressure, temperature and time paths. Garnet can preserve multiple growth stages due to its wide P-T stability field and the relatively slow diffusivity for major and trace elements at sub-solidus temperatures. Pressure-temperature-time-fluid paths of the host rock may be reconstructed by combining metamorphic petrology with microscale trace element and oxygen isotope measurements in garnet. Subduction zones represent relevant geological settings for geochemical investigation of element exchanges during aqueous fluid-rock interactions. The Sesia Zone consists of a complex continental sequence containing a variety of mono-metamorphic and poly-metamorphic lithologies such as metagranitoids, sediments and mafic boudins. The precursor Varisican-Permian amphibolite-facies basement (6-9 kbar 650-850°C; Lardeaux and Spalla, 1991; Robyr et al., 2013) experienced high pressure metamorphism (15-22 kbar 500-550°C; Regis, et al. 2014; Robyr et al., 2013) during Alpine subduction. In different lithologies of the Internal Complex (Eclogitic Micaschist Complex), including metabasites from the Ivozio Complex, Ti-rich metasediments from Val Malone and pre-Alpine Mn-quartzites associated to metagabbros from Cima Bonze, garnet is abundant and shows a variety of complex textures that cannot be reconciled with typical growth zoning, but indicate resorption and replacement processes and possible metasomatism. In-situ, microscale oxygen isotopes analysis of garnet zones was performed by ion microprobe with the SwissSIMS Cameca IMS 1280-HR at University of Lausanne and SHRIMP-SI at the Australian National University. Each sample has a distinct δ18O composition, and the δ18O values show different degrees of variation between domains. Homogeneously low values of element geochemistry and P-T modelling allows reconstructing the major stages of metasomatism, as well as identifying the nature of the fluid interacting with the

  7. Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I (United States)

    Vetter, Lael; Spero, Howard J.; Eggins, Stephen M.; Williams, Carlie; Flower, Benjamin P.


    We present a new method that quantifies the oxygen isotope geochemistry of Laurentide ice-sheet (LIS) meltwater across the last deglaciation, and reconstruct decadal-scale variations in the δ18O of LIS meltwater entering the Gulf of Mexico between ∼18 and 11 ka. We employ a technique that combines laser ablation ICP-MS (LA-ICP-MS) and oxygen isotope analyses on individual shells of the planktic foraminifer Orbulina universa to quantify the instantaneous δ18Owater value of Mississippi River outflow, which was dominated by meltwater from the LIS. For each individual O. universa shell, we measure Mg/Ca (a proxy for temperature) and Ba/Ca (a proxy for salinity) with LA-ICP-MS, and then analyze the same O. universa for δ18O using the remaining material from the shell. From these proxies, we obtain δ18Owater and salinity estimates for each individual foraminifer. Regressions through data obtained from discrete core intervals yield δ18Ow vs. salinity relationships with a y-intercept that corresponds to the δ18Owater composition of the freshwater end-member. Our data suggest that from 15.5 through 14.6 ka, estimated δ18Ow values of Mississippi River discharge from discrete core intervals range from -11‰ to -21‰ VSMOW, which is consistent with δ18O values from both regional precipitation and the low-elevation, southern margin of the LIS. During the Bølling and Allerød (14.0 through 13.3 ka), estimated δ18Ow values of Mississippi River discharge from discrete core intervals range from -22‰ to -38‰ VSMOW. These values suggest a dynamic melting history of different parts of the LIS, with potential contributions to Mississippi River outflow from both the low-elevation, southern margin of the LIS and high-elevation, high-latitude domes in the LIS interior that were transported to the ablation zone. Prior to ∼15.5 ka, the δ18Owater value of the Mississippi River was similar to that of regional precipitation or low-latitude LIS meltwater, but the Ba

  8. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis. (United States)

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann


    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS (18)O/(16)O monitoring for future method development is proposed.

  9. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate (United States)

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.


    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  10. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase (United States)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.


    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  11. Digesting the data - Effects of predator ingestion on the oxygen isotopic signature of micro-mammal teeth (United States)

    Barham, Milo; Blyth, Alison J.; Wallwork, Melinda D.; Joachimski, Michael M.; Martin, Laure; Evans, Noreen J.; Laming, Belinda; McDonald, Bradley J.


    Biogenic minerals such as dental apatite have become commonly analysed archives preserving geochemical indicators of past environmental conditions and palaeoecologies. However, post-mortem, biogenic minerals are modified due to the alteration/replacement of labile components, and recent moves to utilise micro-mammal tooth δ18O signatures for refined Cenozoic terrestrial palaeoclimate reconstructions has lacked consideration of the chemical effects of predator digestion. Here, the physical and chemical condition of laboratory-raised mouse (Mus musculus) teeth have been investigated in conjunction with their bulk phosphate and tissue-specific δ18O values prior, and subsequent, to ingestion and excretion by various predator species (owls, mammals and a reptile). Substantial variability (up to 2‰) in the δ18O values of both undigested teeth and those ingested by specific predators suggests significant natural heterogeneity of individual prey δ18O. Statistically distinct, lower δ18O values (∼0.7‰) are apparent in teeth ingested by barn owls compared to undigested controls as a result of the chemically and enzymatically active digestive and waste-pellet environments. Overall, dentine tissues preserve lower δ18O values than enamel, while the greatest modification of oxygen isotope signals is exhibited in the basal enamel of ingested teeth as a result of its incompletely mineralised state. However, recognition of 18O-depletion in chemically purified phosphate analyses demonstrates that modification of original δ18O values is not restricted to labile oxygen-bearing carbonate and organic phases. The style and magnitude of digestive-alteration varies with predator species and no correlation was identified between specific physical or minor/trace-element (patterns or concentrations) modification of ingested teeth and disruption of their primary oxygen isotope values. Therefore, there is a current lack of any screening tool for oxygen isotope disruption as a result

  12. Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotopes in phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Jaisi, Deb P.; Kukkadapu, Ravi K.; Stout, Lisa M.; Varga, Tamas; Blake, Ruth E.


    A key question to address in the development of oxygen isotope ratios in phosphate (18Op) as a tracer of biogeochemical cycling of phosphorus in ancient and modern environments is the nature of isotopic signatures associated with uptake and cycling of mineral-bound phosphate by microorganisms. Here we present experimental results aimed at understanding the biotic and abiotic pathway of P cycling during biological uptake of phosphate sorbed to ferrihydrite and the selective uptake of specific sedimentary phosphate phases by Escherichia coli, Vibrio fischeri and Marinobacter aquaeolei. Results indicate that a significant fraction of ferrihydrite-bound phosphate is biologically available. The fraction of phosphate taken up by E. coli attained an equilibrium isotopic composition in a short time (<50 hrs) due to efficient O-isotope exchange between phosphate and water (biotic pathway). The difference in isotopic composition between newly equilibrated aqueous and residual sorbed phosphate promoted the exchange of intact phosphate radicals (abiotic pathway) so that this difference gradually became negligible. In sediment containing different P phases, E. coli and V. fischeri ‘extracted’ loosely sorbed phosphate first while M. aquaeolei preferred iron-oxide bound phosphate. Each bacterium imprinted a biotic isotopic signature on each P phase that it took up and cycled. For example, the 18Op value of the sorbed phosphate phase shifted gradually towards equilibrium isotopic composition and the value of Fe oxide-bound phosphate showed slight changes at first, but when new iron oxides were formed, co-precipitated/occluded phosphate retained 18O values of aqueous phosphate at that time. Concentrations and isotopic compositions of authigenic and detrital phosphates did not change, suggesting that these phosphate phases were not utilized by bacteria. These findings support burgeoning applications of 18Op as a tracer of phosphorus cycling in sediments, soils and aquatic

  13. ODP Site 1063 (Bermuda Rise) revisited: Oxygen isotopes, excursions and paleointensity in the Brunhes Chron (United States)

    Channell, J. E. T.; Hodell, D. A.; Curtis, J. H.


    An age model for the Brunhes Chron of Ocean Drilling Program (ODP) Site 1063 (Bermuda Rise) is constructed by tandem correlation of oxygen isotope and relative paleointensity data to calibrated reference templates. Four intervals in the Brunhes Chron where paleomagnetic inclinations are negative for both u-channel samples and discrete samples are correlated to the following magnetic excursions with Site 1063 ages in brackets: Laschamp (41 ka), Blake (116 ka), Iceland Basin (190 ka), Pringle Falls (239 ka). These ages are consistent with current age estimates for three of these excursions, but not for "Pringle Falls" which has an apparent age older than a recently published estimate by ˜28 kyr. For each of these excursions (termed Category 1 excursions), virtual geomagnetic poles (VGPs) reach high southerly latitudes implying paired polarity reversals of the Earth's main dipole field, that apparently occurred in a brief time span (<2 kyr in each case), several times shorter than the apparent duration of regular polarity transitions. In addition, several intervals of low paleomagnetic inclination (low and negative in one case) are observed both in u-channel and discrete samples at ˜318 ka (MIS 9), ˜412 ka (MIS 11) and in the 500-600 ka interval (MIS 14-15). These "Category 2" excursions may constitute inadequately recorded (Category 1) excursions, or high amplitude secular variation.

  14. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in lake Erie (United States)

    Elsbury, K.E.; Paytan, A.; Ostrom, N.E.; Kendall, C.; Young, M.B.; McLaughlin, K.; Rollog, M.E.; Watson, S.


    Water samples collected during three sampling trips to Lake Erie displayed oxygen isotopic values of dissolved phosphate (??18O p) that were largely out of equilibrium with ambient conditions, indicating that source signatures may be discerned. ??18O p values in the Lake ranged from +10??? to +17???, whereas the equilibrium value was expected to be around +14???. The riverine weighted average ??18Op value was +11??? and may represent one source of phosphate to the Lake. The lake ?? 18Op values indicated that there must be one or more as yet uncharacterized source(s) of phosphate with a high ?? 18Op value. Potential sources other than rivers are not yet well-characterized with respect to ??18O of phosphate, but we speculate that a likely source may be the release of phosphate from sediments under reducing conditions created during anoxic events in the hypolimnion of the central basin of Lake Erie. Identifying potential phosphorus sources to the Lake is vital for designing effective management plans for reducing nutrient inputs and associated eutrophication. ?? 2009 American Chemical Society.

  15. Ultra-sensitive probe of spectral line structure and detection of isotopic oxygen (United States)

    Garner, Richard M.; Dharamsi, A. N.; Khan, M. Amir


    We discuss a new method of investigating and obtaining quantitative behavior of higher harmonic (> 2f) wavelength modulation spectroscopy (WMS) based on the signal structure. It is shown that the spectral structure of higher harmonic WMS signals, quantified by the number of zero crossings and turnings points, can have increased sensitivity to ambient conditions or line-broadening effects from changes in temperature, pressure, or optical depth. The structure of WMS signals, characterized by combinations of signal magnitude and spectral locations of turning points and zero crossings, provides a unique scale that quantifies lineshape parameters and, thus, useful in optimization of measurements obtained from multi-harmonic WMS signals. We demonstrate this by detecting weaker rotational-vibrational transitions of isotopic atmospheric oxygen (16O18O) in the near-infrared region where higher harmonic WMS signals are more sensitive contrary to their signal-to-noise ratio considerations. The proposed approach based on spectral structure provides the ability to investigate and quantify signals not only at linecenter but also in the wing region of the absorption profile. This formulation is particularly useful in tunable diode laser spectroscopy and ultra-precision laser-based sensors where absorption signal profile carries information of quantities of interest, e.g., concentration, velocity, or gas collision dynamics, etc.

  16. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs (United States)

    Amiot, Romain; Lécuyer, Christophe; Buffetaut, Eric; Escarguel, Gilles; Fluteau, Frédéric; Martineau, François


    The much debated question of dinosaur thermophysiology has not yet been conclusively solved despite numerous attempts. We used the temperature-dependent oxygen isotope fractionation between vertebrate body water (δ 18O body water) and phosphatic tissues (δ 18O p) to compare the thermophysiology of dinosaurs with that of non-dinosaurian ectothermic reptiles. Present-day δ 18O p values of vertebrate apatites show that ectotherms have higher δ 18O p values than endotherms at high latitudes due to their lower body temperature, and conversely lower δ 18O p values than endotherms at low latitudes. Using a data set of 80 new and 49 published δ 18O p values, we observed similar and systematic differences in δ 18O p values (Δ 18O) between four groups of Cretaceous dinosaurs (theropods, sauropods, ornithopods and ceratopsians) and associated fresh water crocodiles and turtles. Expressed in terms of body temperatures ( Tb), these Δ 18O values indicate that dinosaurs maintained rather constant Tb in the range of endotherms whatever ambient temperatures were. This implies that high metabolic rates were widespread among Cretaceous dinosaurs belonging to widely different taxonomic groups and suggest that endothermy may be a synapomorphy of dinosaurs, or may have been acquired convergently in the studied taxa.

  17. Silicate-SiO reaction in a protoplanetary disk recorded by oxygen isotopes in chondrules (United States)

    Tanaka, Ryoji; Nakamura, Eizo


    The formation of planetesimals and planetary embryos during the earliest stages of the solar protoplanetary disk largely determined the composition and structure of the terrestrial planets. Within a few million years of the birth of the Solar System, chondrule formation and the accretion of the parent bodies of differentiated achondrites and the terrestrial planets took place in the inner protoplanetary disk 1,2 . Here we show that, for chondrules in unequilibrated enstatite chondrites, high-precision Δ17O values (where Δ17O is the deviation of the δ17O value from a terrestrial silicate fractionation line) vary significantly (ranging from -0.49 to +0.84‰) and fall on an array with a steep slope of 1.27 on a three-oxygen-isotope plot. This array can be explained by the reaction between an olivine-rich chondrule melt and an SiO-rich gas derived from vaporized dust and nebular gas. Our study suggests that a large proportion of the building blocks of planetary embryos formed by successive silicate-gas interaction processes: silicate-H2O followed by silicate-SiO interactions under more oxidized and reduced conditions, respectively, within a few million years of the formation of the Solar System.

  18. Raman spectral, elemental, crystallinity, and oxygen-isotope variations in conodont apatite during diagenesis (United States)

    Zhang, Lei; Cao, Ling; Zhao, Laishi; Algeo, Thomas J.; Chen, Zhong-Qiang; Li, Zhihong; Lv, Zhengyi; Wang, Xiangdong


    crystallinity and Raman spectral or elemental parameters. Oxygen isotopes show substantial variation within the conodont study specimens. Albid crown is on average 0.28-0.32‰ more depleted in 18O (equivalent to 1.2-1.4 °C higher temperatures) than hyaline crown and basal body, and the interiors of conodont elements are 1.08 ± 0.37‰ more depleted in 18O (equivalent to 3.0-6.4 °C higher temperatures) relative to their outer layers. Although albid crown is widely regarded as better preserved than other conodont tissue types, its 18O-depleted composition and greater development of secondary crystallinity suggest that, in fact, it may be the most strongly altered tissue type. We conclude that Raman spectral, LA elemental, and HXRD microstructural data can provide useful information about the extent of diagenetic alteration of conodont elements, and that such information should be taken into consideration in using conodont elemental and oxygen-isotope data in paleoenvironmental studies.

  19. Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event) (United States)

    Elrick, M.; Rieboldt, S.; Saltzman, M.; McKay, R.M.


    The globally recognized Late Cambrian Steptoean positive C-isotope excursion (SPICE) is characterized by a 3???-5??? positive ??13C shift spanning thermohaline circulation rates contributed to decreased dissolved O2 concentrations, which enhanced the preservation/burial of Corg causing the positive ??13C shift. ?? 2011 Geological Society of America.

  20. Hydrogen and oxygen isotopes of water from inclusions in minerals: design of a new crushing system and on-line continuous-flow isotope ratio mass spectrometric analysis. (United States)

    Dublyansky, Yuri V; Spötl, Christoph


    An analytical line for stable isotope analyses of water recovered from fluid inclusions in minerals was built and successfully tested. The line is based on the principle of continuous-flow analysis of water via high-temperature reduction on glassy carbon. It includes a custom-designed set of high-efficiency crushers and a cryo-focusing cell. This paper provides details of the line design and discusses strategies for line conditioning and mitigation of memory effects. The line allows measurements of hydrogen and oxygen isotopes during a single acquisition. The precision of the analyses depends on the amount of water released from the inclusions. The best results are obtained for samples containing at least 0.1-0.2 microL (0.06-0.11 micromol) H(2)O. For such samples precision is better than 1.5 per thousand for deltaD and 0.5 per thousand for delta(18)O (1sigma). Smaller amounts of water can be measured but at lower precision. Analyses of modern calcite formed under stable conditions in a deep cave allowed assessment of the accuracy of the analyses. The deltaD values measured in fluid inclusions of this working standard match the deltaD value of the parent water, and the oxygen isotope values agree within ca. 0.5 per thousand. This indicates that fluid inclusions trapped in calcite at near-ambient temperatures (e.g. speleothems and low-temperatures phreatic calcite) faithfully preserve the original isotopic composition of the parent waters. Copyright (c) 2009 John Wiley & Sons, Ltd.

  1. Oxygen and strontium isotope tracing of human migration at the Bell Beaker site Le Tumulus des Sables, France. (United States)

    Willmes, Malte; James, Hannah; Boel, Ceridwen; Courtaud, Patrice; Chancerel, Antoine; McMorrow, Linda; Armstrong, Richard; Kinsley, Les; Aubert, Maxime; Eggins, Stephen; Moffat, Ian; Grün, Rainer


    Oxygen (δ18O) and strontium (87Sr/86Sr) isotopes were used as tools to investigate human migration at the early Bell Beaker site (2500-2000 BC) Le Tumulus des Sables, Saint-Laurent-Médoc, south-west France. The O and Sr isotope ratios measured in tooth enamel record the average dietary isotope signature ingested by that individual during their childhood. When this data is compared to the isotope signature of the burial site it can be used to indicate if the individual migrated into this area during their lifetime. The O isotopic composition of meteoric water changes depending on climate, temperature and quantity of precipitation. O isotope ratios in skeletal and dental remains are related to body water, which in turn is influenced by diet, physiology and climate. Most of the water consumed by large mammals comes from drinking water, typically sourced locally. Sr isotope ratios on the other hand vary between different geologic regions, depending on their age and composition. Sr is released through weathering and transported into the soil, ground and surface water, where it becomes available for uptake by plants, enters the food cycle and eventually ends up in skeletal and dental tissue where it substitutes for calcium. We analysed the teeth of 18 adult and 8 juvenile disarticulated skeletons from Le Tumulus des Sables. O isotopes were analysed in-situ by Sensitive High Resolution Ion Micro Probe (SHRIMP).The Sr isotope analysis involved drilling a 0.2-0.5 mg sample of enamel from the tooth. The Sr was then chemically separated and analysed by Thermal Ionization Mass Spectrometry (TIMS). These results were then compared to the O isoscape of Europe and bioavailable Sr isotope data (fauna, plants, soils) from the IRHUM database. We found that most of the individuals at Le Tumulus des Sables show O and Sr isotope ratios corresponding to the local environmental signal and we interpret these as part of the local population. 3 adults however show slightly higher 87Sr/86

  2. Latest Pleistocene crustal cannibalization at Baekdusan (Changbaishan) as traced by oxygen isotopes of zircon from the Millennium Eruption (United States)

    Cheong, Albert Chang-sik; Sohn, Young Kwan; Jeong, Youn-Joong; Jo, Hui Je; Park, Kye-Hun; Lee, Youn Soo; Li, Xian-Hua


    The silicic volcanism of Baekdusan (Changbaishan), which is on the border between North Korea and China, was initiated in the Late Pleistocene and culminated in the 10th century with a powerful (volcanic explosivity index = 7) commendite-trachyte eruption commonly referred to as the ;Millennium Eruption.; This study presents oxygen isotope data of zircon in trachydacitic pumices ejected during the Millennium Eruption, together with whole-rock geochemical and Sr-Nd-Pb isotopic data that manifest once again the A-type and EM1 affinities of the Millennium Eruption magma. The zircon crystals, dated by previous studies at ca. 12-9 ka, show a moderate inter-grain variation in δ18O from 3.69‰ to 5.03‰. These values are consistently lower than the normal mantle range, and interpreted to have resulted from the digestion of meteoric-hydrothermally altered intracaldera rocks in the shallow magma chamber beneath Baekdusan just prior to the crystallization of the zircons, rather than from derivation from low-δ18O sources deep in the mantle. The whole-rock geochemical/isotopic considerations suggest that the magma mainly self-cannibalized the earlier erupted volcanic carapace around the magma chamber. This study highlights the usefulness of zircon oxygen isotopes for characterizing past volcanic activity that has now been commonly eroded away and implies that the generation of Yellowstone-type low-δ18O magma is not a rare phenomenon in large-volume silicic eruptions.

  3. Potential of Stable Carbon and Oxygen Isotope Variations of Speleothems from Andaman Islands, India, for Paleomonsoon Reconstruction

    Directory of Open Access Journals (Sweden)

    Amzad H. Laskar


    Full Text Available The Indian monsoon activity, coinciding with the Inter-Tropical Convective Zone (ITCZ, progresses from the southern Indian Ocean during the boreal summer and withdraws towards the south in winter. Islands situated to the south of India receive, therefore, the first and last showers of the monsoon; speleothems in such islands have not yet been explored for their potential to reconstruct past monsoon rainfall. Here, we present the first measurements of stable carbon and oxygen isotopic compositions (δ13C and δ18O of a stalagmite collected from the Baratang Island of Andamans, along with new data on δ18O of modern monsoon precipitation (May to July 2010. The aim was to detect (i whether these samples are amenable to dating using 14C, (ii whether their oxygen isotopes indicate precipitation under isotopic equilibrium, and (iii if (i and (ii above are true, can we reconstruct monsoon activity during the past few millennia? Our results indicate that while δ18O of speleothem does show evidence for precipitation under isotopic equilibrium; dating by 14C shows inversions due to varying contributions from dead carbon. The present work highlights the problems and prospects of speleothem paleomonsoon research in these islands.

  4. Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite. (United States)

    Gehler, Alexander; Gingerich, Philip D; Pack, Andreas


    The Paleocene-Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene-Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies. The CIE was the result of a massive release of carbon into the atmosphere. However, the carbon source and quantities of CO2 and CH4 greenhouse gases that contributed to global warming are poorly constrained and highly debated. Here we combine an established oxygen isotope paleothermometer with a newly developed triple oxygen isotope paleo-CO2 barometer. We attempt to quantify the source of greenhouse gases released during the Paleocene-Eocene transition by analyzing bioapatite of terrestrial mammals. Our results are consistent with previous estimates of PETM temperature change and suggest that not only CO2 but also massive release of seabed methane was the driver for CIE and PETM.

  5. Oxygen and hydrogen isotope compositions of eclogites and associated rocks from the Eastern Sesia zone (Western Alps, Italy) (United States)

    Desmons, J.; O'Neil, J.R.


    Oxygen and hydrogen isotope analyses have been made of mineral separates from eclogites, glaucophanites and glaucophane schists from the eastern Sesia zone (Italian Western Alps). Regularities in (1) hydrogen isotope compositions, (2) order of 18O enrichment among coexisting minerals, and (3) ?? 18O (quartz-rutile) and ?? 18O (quartz-phengite) imply attainment of a high degree of isotopic equilibrium. However, some scattering of ??18O values of individual minerals indicates that the eclogitic assemblage did not form in the presence of a thoroughly pervasive fluid. Minerals from an eclogitic lens enclosed in marble have ??18O values distinctly different from those measured in the other rocks. The ??18O values are high in comparison with other type C eclogites of the world, and it is proposed that the fluid present during the high pressure metamorphism has to a large extent been inherited from the precursor rocks of amphibolite facies. An average formation temperature of 540 ?? C is inferred from the oxygen isotope fractionations between quartz and rutile and between quartz and white mica. This temperature is in accordance with petrologic considerations and implies subduction of the precursor rocks into the upper mantle to achieve the high pressures required. ?? 1978 Springer-Verlag.

  6. Using Oxygen Isotopic Values in Order to Infer Palaeoclimatic Differences between Northern and Central-Southern Greece (United States)

    Michael, Dimitra-Ermioni; Dotsika, Elissavet


    Even though isotopic analyses have been extensively implemented on human skeletal remains for the purpose of dietary reconstruction, less attention has been given to the ingested water and thus to the investigation of palaeoclimatic conditions. In particular, oxygen isotopic fingerprinting has never been applied on human skeletal remains from Greece for the abovementioned purpose before. The basic aim of the present study is to compare climatic conditions from two ancient populations, deriving from two different ecological locations; Edessa (Greek Macedonia; 2nd-4th c. AD) and Thebes (Sterea Hellas, 13th-14th c. AD). Oxygen values in Edessa are at -7.69 ±1.13 ‰ and -9.18 ±1.88 ‰ for tooth enamel and bone apatite respectively. On the other hand, oxygen signals in Thebes are at -5.8 ±2.16 ‰ and -9.23 ±1.3 % for the enamel and bone apatite respectively. The utility of oxygen isotopic signatures for the purpose of palaeoclimatic investigation lies on the fact that the ratio of 18 to 16O of meteoric precipitation, expressed as δ18O per mill (‰), relative to the international standard (vSMOW) varies geographically by temperature, humidity, evaporation, distance to the sea, altitude and latitude. Therefore, results as expected, point out that Edessa do presents more negative enamel isotopic values in relation to Thebes, however the noted difference is not observed for the bone apatite samples. The lack of bone apatite differentiation between sites could be attributed to cultural diversity (particularly in Thebes), shift in dietary habits due to migration or social status, climatic fluctuations within each site or to possible diagenetic alteration of bone apatite samples.

  7. Oxygen isotope ratios in the shell of Mytilus edulis: archives of glacier meltwater in Greenland?

    DEFF Research Database (Denmark)

    Versteegh, E. A. A.; Blicher, Martin E.; Mortensen, J.


    these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and kitchen middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We investigate...... during the years 2007 to 2010. Results show that δ18Ow values were not recorded at very low salinities (reconstructing past meltwater amounts in most cases, but care has to be taken that shells...

  8. The isotopic composition of valves and organic tissue of diatoms grown in steady state cultures under varying conditions of temperature, light and nutrients. Implications for the interpretation of oxygen isotopes from sedimentary biogenic opal as proxies of environmental variations

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, K.


    The oxygen isotopes of diatomaceous silica from marine and freshwater sediments are frequently used as indicators of the palaeotemperature development, particularly in cases where calcareous microfossils are rare or absent. With regard to terrestrial waters it is unknown whether or not palaeotemperature scale can be used in a limnic ecosystem. Due to the fact that the seasonal variations in lakes are larger than in oceans, specific problems arise when working with freshwater sediments. Thus, an understanding of the contribution of the various factors (e.g. temperature, light nutrients, competition) influencing the formation of isotope signals in biogenic opal is a prerequisite for the accurate interpretation of environmental processes. Since it is impossible to examine the influence of a single parameter under natural ecosystem conditions due to permanent changes of the environment, laboratory experiments with single diatom species are needed. Therefore, the aim of this study was to investigate the correlation between the oxygen isotope variations in biogenic opal and different environmental parameters using steady state cultures with diatoms. It should be examined whether or not the different diatom species grown under identical conditions show equal oxygen isotope ratios (species relationship), if variations of the water temperature induce variations of the oxygen isotope ratio (relationship with temperature), variable parameters such as light intensity and nitrate concentration influence the isotope ratio, and if vital effects (e.g. growth rate) lead to variations of the oxygen isotope ratio. (orig.)

  9. Palaeotemperature estimation in the Holsteinian Interglacial (MIS 11) based on oxygen isotopes of aquatic gastropods from eastern Poland (United States)

    Szymanek, Marcin


    For quantitative estimation of past water temperature of four Holsteinian (MIS 11) palaeolakes from eastern Poland, the oxygen isotope palaeothermometer was applied to shells of the aquatic gastropods Viviparus diluvianus and Valvata piscinalis. The δ18O composition of their shells demonstrated the average growth-season water temperatures during the mesocratic stage of the interglacial (Ortel Królewski Lake), during its climatic optimum - the Carpinus-Abies Zone (Ossówka-Hrud, Roskosz and Szymanowo Lakes), and in the post-optimum (Szymanowo Lake). The calculation was based on δ18OShell values and the δ18OWater assumed for the Holsteinian from the modern oxygen isotope composition of precipitation and the expected amount of evaporative enrichment. The mean oxygen isotope palaeotemperatures of Ortel Królewski lake waters were in the range of 18.1-21.9°C and were uniform for the Taxus and Pinus-Larix zones. Ossówka-Hrud and Roskosz Lakes had mean temperatures of 17.4-21.0°C during the climatic optimum, whereas the temperature of Szymanowo lake waters was estimated at 20.6-21.7°C at that time. These values are concordant with the pollen-inferred July air temperatures noted during the Holsteinian in eastern Poland. Relatively high values of 25°C in the post-optimum noted at Szymanowo were connected with the presence of a shallow and warm isolated bay indicated by pollen and mollusc records.

  10. Ocean circulation and shelf processes in the Arctic, Mediterranean traced by radiogenic neodymium isotopes, rare earth elements and stable oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Laukert, Georgi


    Disentangling the sources, distribution and mixing of water masses involved in the transport and transfer of heat and freshwater in the Arctic Mediterranean (i.e. the Arctic Ocean and the Nordic Seas, AM) is critical for the understanding of present and future hydrological changes in the high-latitude regions. This study refines the knowledge of water mass circulation in the AM and provides new insights into the processes occurring on the Arctic shelves and in high-latitude estuaries. A multi-proxy approach is used combining dissolved radiogenic Nd isotopes (ε{sub Nd}), rare earth elements (REEs) and stable oxygen isotopes (δ{sup 18}O) together with standard hydrographic tracers. The sources, distribution and mixing of water masses that circulate in the AM and pass the Fram Strait are assessed through evaluation of dissolved ε{sub Nd} and REE, and δ{sup 18}O data obtained from samples recovered in 2012, 2014 and 2015, and through a compilation and reassessment of literature Nd isotope and concentration data previously reported for other sites within the AM. The Nd isotope and REE distribution in the central Fram Strait and the open AM is shown to primarily reflect the lateral advection of water masses and their mixing, whereas seawater-particle interactions exert important control only above the shelf regions. New insights into the processes occurring in high latitude estuaries are provided by dissolved Nd isotope and REE compositions together with δ{sup 18}O data for the Laptev Sea based on filtered samples recovered in 2012, 2013 and 2014. A combination of REE removal through coagulation of nanoparticles and colloids and REE redistribution within the water column through formation and melting of sea ice and river ice is suggested to account for the distribution of all REEs, while no REE release from particles is observed. The ice-related processes contribute to the redistribution of other elements and ultimately may also affect primary productivity in high

  11. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures (United States)

    Horita, Juske


    An experimental study was conducted to determine oxygen and carbon isotope fractionation factors in the system dolomite-water-CO2 at 80-350 and 100-250 °C, respectively, by means of direct precipitation (80 °C) and dolomitization of CaCO3 (100-350 °C). The products are protodolomite with slight Ca-excess (80-100 °C) and well-ordered stoichiometric dolomite (150-350 °C). Several experimental artifacts (inheritance, premature reactions, and kinetic effects) were tested, although attainment of isotope equilibrium cannot be proven. 18O/16O fractionation factors of (proto)dolomite-water at 80-350 °C can be readily expressed with 1σ error: 103lnα=3.140(±0.022)·{106}/{T2}-3.14(±0.11). Our experimental study, which is generally consistent with a majority of experimental and theoretical studies in the literature, provides for the first time an accurate equation over a wide range of temperature. In combination of the calcite-water equation (O’Neil et al., 1969; Friedman and O’Neil, 1977), 18O/16O fractionation factors of (proto)dolomite-calcite at 80-350 °C can also be expressed with 1σ error: 103lnα=0.351(±0.028)·{106}/{T2}-0.25(±0.13). Dolomite is slightly (0.7-2.6‰) enriched in 18O relative to calcite in this temperature range. Given the very good linearity with a 1/T2 term, the above two equations may be extrapolated beyond the temperature range. Our experimental results of 13C/12C fractionation between CO2 and dolomite at 100-250 °C also show a linear function with a 1/T2 term with a cross-over temperature of 200 °C, which differs from results of theoretical calculations.

  12. Oxygen isotope trajectories of crystallizing melts: Insights from modeling and the plutonic record (United States)

    Bucholz, Claire E.; Jagoutz, Oliver; VanTongeren, Jill A.; Setera, Jacob; Wang, Zhengrong


    Elevated oxygen isotope values in igneous rocks are often used to fingerprint supracrustal alteration or assimilation of material that once resided near the surface of the earth. The δ18O value of a melt, however, can also increase through closed-system fractional crystallization. In order to quantify the change in melt δ18O due to crystallization, we develop a detailed closed-system fractional crystallization mass balance model and apply it to six experimentally- and naturally-determined liquid lines of descent (LLDs), which cover nearly complete crystallization intervals (melt fractions of 1 to Igneous Complex (Mongolia). These two sequences were chosen as their major and trace element compositions appear to have been predominantly controlled by closed-system fractional crystallization and their LLDs have been modeled in detail. We calculated equilibrium melt δ18O values using the measured mineral δ18O values and calculated mineral-melt fractionation factors. Increases of 2-3‰ and 1-1.5‰ in the equilibrium melts are observed for the Dariv Igneous Complex and the UUMZ of the Bushveld Complex, respectively. Closed-system fractional crystallization model results reproduce the 1‰ increase observed in the equilibrium melt δ18O for the Bushveld UUMZ, whereas for the Dariv Igneous Complex assimilation of high δ18O material is necessary to account for the increase in melt δ18O values. Assimilation of evolved supracrustal material is also confirmed with Sr and Nd isotope analyses of clinopyroxene from the sequence. Beginning with a range of mantle-derived basalt δ18O values of 5.7‰ ("pristine" mantle) to ∼7.0‰ (heavily subduction-influenced mantle), our model results demonstrated that high-silica melts (i.e. granites) with δ18O of up to 8.5‰ can be produced through fractional crystallization alone. Lastly, we model the zircon-melt δ18O fractionations of different LLDs, emphasizing their dependence on the specific SiO2-T relationships of a given

  13. Forward Modeling of Carbonate Proxy Data from Planktonic Foraminifera using Oxygen Isotope Tracers in a Global Ocean Model (United States)

    Schmidt, Gavin A.


    The distribution and variation of oxygen isotopes in seawater are calculated using the Goddard Institute for Space Studies global ocean model. Simple ecological models are used to estimate the planktonic foraminiferal abundance as a function of depth, column temperature, season, light intensity, and density stratification. These models are combined to forward model isotopic signals recorded in calcareous ocean sediment. The sensitivity of the results to the changes in foraminiferal ecology, secondary calcification, and dissolution are also examined. Simulated present-day isotopic values for ecology relevant for multiple species compare well with core-top data. Hindcasts of sea surface temperature and salinity are made from time series of the modeled carbonate isotope values as the model climate changes. Paleoclimatic inferences from these carbonate isotope records are strongly affected by erroneous assumptions concerning the covariations of temperature, salinity, and delta (sup 18)O(sub w). Habitat-imposed biases are less important, although errors due to temperature-dependent abundances can be significant.

  14. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths. (United States)

    Coplen, T. B.; Hanshaw, B. B.


    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  15. Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition (United States)

    Jones, Sam P.; Ogée, Jérôme; Sauze, Joana; Wohl, Steven; Saavedra, Noelia; Fernández-Prado, Noelia; Maire, Juliette; Launois, Thomas; Bosc, Alexandre; Wingate, Lisa


    The contribution of photosynthesis and soil respiration to net land-atmosphere carbon dioxide (CO2) exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope composition (δ18O) of atmospheric CO2. To do so, the activity of carbonic anhydrases (CAs), a group of enzymes that catalyse the hydration of CO2 in soils and plants, needs to be understood. Measurements of soil CA activity typically involve the inversion of models describing the δ18O of CO2 fluxes to solve for the apparent, potentially catalysed, rate of CO2 hydration. This requires information about the δ18O of CO2 in isotopic equilibrium with soil water, typically obtained from destructive, depth-resolved sampling and extraction of soil water. In doing so, an assumption is made about the soil water pool that CO2 interacts with, which may bias estimates of CA activity if incorrect. Furthermore, this can represent a significant challenge in data collection given the potential for spatial and temporal variability in the δ18O of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by inferring the rate of CO2 hydration and the δ18O of soil water from the relationship between the δ18O of CO2 fluxes and the δ18O of CO2 at the soil surface measured at different ambient CO2 conditions. This approach was tested through laboratory incubations of air-dried soils that were re-wetted with three waters of different δ18O. Gas exchange measurements were made on these soils to estimate the rate of hydration and the δ18O of soil water, followed by soil water extraction to allow for comparison. Estimated rates of CO2 hydration were 6.8-14.6 times greater than the theoretical uncatalysed rate of hydration, indicating that CA were active in these soils. Importantly, these estimates were not significantly different among water treatments, suggesting

  16. Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition

    Directory of Open Access Journals (Sweden)

    S. P. Jones


    Full Text Available The contribution of photosynthesis and soil respiration to net land–atmosphere carbon dioxide (CO2 exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope composition (δ18O of atmospheric CO2. To do so, the activity of carbonic anhydrases (CAs, a group of enzymes that catalyse the hydration of CO2 in soils and plants, needs to be understood. Measurements of soil CA activity typically involve the inversion of models describing the δ18O of CO2 fluxes to solve for the apparent, potentially catalysed, rate of CO2 hydration. This requires information about the δ18O of CO2 in isotopic equilibrium with soil water, typically obtained from destructive, depth-resolved sampling and extraction of soil water. In doing so, an assumption is made about the soil water pool that CO2 interacts with, which may bias estimates of CA activity if incorrect. Furthermore, this can represent a significant challenge in data collection given the potential for spatial and temporal variability in the δ18O of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by inferring the rate of CO2 hydration and the δ18O of soil water from the relationship between the δ18O of CO2 fluxes and the δ18O of CO2 at the soil surface measured at different ambient CO2 conditions. This approach was tested through laboratory incubations of air-dried soils that were re-wetted with three waters of different δ18O. Gas exchange measurements were made on these soils to estimate the rate of hydration and the δ18O of soil water, followed by soil water extraction to allow for comparison. Estimated rates of CO2 hydration were 6.8–14.6 times greater than the theoretical uncatalysed rate of hydration, indicating that CA were active in these soils. Importantly, these estimates were not significantly different among water

  17. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)


    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  18. Modeling the response of precipitation oxygen stable isotopes to the Eocene climate changes over Asia (United States)

    Botsyun, Svetlana; Sepulchre, Pierre; Donnadieu, Yannick; Risi, Camille; Caves, Jeremy K.; Licht, Alexis


    The Himalayas and the Tibetan Plateau have become a focus of the Earth sciences because they provide a classical example of tectonics-climate interactions. Present-day high elevations of the Himalayas and the Tibetan Plateau is the ultimate result of the collision between Indian and Asia plates during the Cenozoic, however, the precise uplift history of the Himalayas and the Tibetan Plateau is still uncertain, especially for the early Cenozoic. For the purpose of paleoelevations reconstructions, multiple methods are available, but stable oxygen paleoaltimetry is considered to be one of the most efficient techniques and has been widely applied in Asia. However, paleoelevations studies using stable oxygen presume that climatic processes control δ18O in a uniform way through time. We use climate modeling tools in order to investigate Eocene climate and δ18O over Asia and its controlling factors. The state-of-the-art general circulation model embedded with isotopes LMDz-iso has been applied together with Eocene boundary conditions and varied Eocene topography of the Himalayas and Tibet. The results of our simulations suggest that topography change has a minor direct impact on δ18O over the Himalayas and the Tibetan Plateau. On the contrary, Eocene δ18O in precipitation is primarily controlled by the atmosphere circulation and global temperature changes. Based on our numerical experiments, we show that despite persistence of large-scale atmospheric flows such as the monsoons and westerlies, Eocene δ18O over the region is different from those of the present-day due to global higher temperatures, southward shift to a zone of strong convection and increased role of westerlies moisture source. We show that the Rayleigh distillation is not applicable for the Eocene Himalayas and conclude that the assumption about the stationarity of δ18O-elevation relationship through geological time is inaccurate and misleading for paleoelevation estimates. We also show that Eocene

  19. Oxygen Isotopes in Fresh Water Biogenic Opal: Northeastern US Alleroed-Younger Dryas Temperature Shift (United States)

    Shemesh, Aldo; Peteet, Dorothy


    The first oxygen isotope analysis of biogenic opal from lake sediments, from the Allerod/Younger Dryas transition in a core from Linsley Pond, Connecticut, gives an average estimate of a 6 C drop in temperature during the Younger Dryas. This shift represents temperatures during the bloom season, and may be less than the winter temperature drop. The sharp transition itself, with a duration of about 200 years, suggests that the temperature decrease may have been as large as 12 C. Previous estimates of the Allerod/Younger Dryas temperature shifts are controversial, and range from 3-20 C, suggesting that further interdisciplinary research on the same samples is warranted. One way that global climate change manifests itself is by redistributing energy throughout the globe. The Northern Hemisphere latitudinal temperature gradient during the late-glacial is at present a controversial topic. The magnitude of air temperature shifts during the Allerod/Younger Dryas (YD) oscillation are estimated from mid-latitude pollen records surrounding the North Atlantic to be 3-5 C in Europe [Lowe et al., 19941 and 3-4 C in the eastern US [Peteet et al., 1993]. In contrast, lake temperatures estimates derived from aquatic midge larvae in the Canadian eastern maritimes and Maine range from 6-20 C, with larger shifts at more southern sites [Levesque et al., 1997]. The magnitude of YD cooling in Greenland ice cores ranges from at least 7 C from the Bolling warming [Dansgaard et al., 1989] to 15 C - a more recent estimate from borehole temperatures [Cuffey et al., 1995]. The ice core geochemical records reveal that massive frequent and short-term (decadal or less) changes in atmospheric composition occurred throughout this event, suggesting a very dynamic circulation [Mayewski et al., 1993).

  20. High-resolution conodont oxygen isotope record of Ordovician climate change (United States)

    Chen, J.; Chen, Z.; Algeo, T. J.


    The Ordovician Period was characterized by several major events, including a prolonged 'super greenhouse' during the Early Ordovician, the 'Great Ordovician Biodiversification Event (GOBE)' of the Middle and early Late Ordovician, and the Hirnantian ice age and mass extinction of the latest Ordovician (Webby et al., 2004, The Great Ordovician Biodiversification Event, Columbia University Press). The cause of the rapid diversification of marine invertebrates during the GOBE is not clear, however, and several scenarios have been proposed including widespread development of shallow cratonic seas, strong magmatic and tectonic activity, and climate moderation. In order to investigate relationships between climate change and marine ecosystem evolution during the Ordovician, we measured the oxygen isotopic composition of single coniform conodonts using a Cameca secondary ion mass spectrometer. Our δ18O profile shows a shift at the Early/Middle Ordovician transition that is indicative of a rapid 6 to 8 °C cooling. This cooling event marks the termination of the Early Ordovician 'super greenhouse' and may have established cooler tropical seawater temperatures that were more favorable for invertebrate animals, setting the stage for the GOBE. Additional cooling episodes occurred during the early Sandbian, early Katian, and Hirnantian, the last culminating in a short-lived (extinction. Our results differ from those of Trotter et al. (2008, 'Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry,' Science 321:550-554). Instead of a slow, protracted cooling through the Early and Middle Ordovician, our high-resolution record shows that cooling occurred in several discrete steps, with the largest step being at the Early/Middle Ordovician transition.

  1. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail:; Sboev, Mikhail N.; Chizhov, Yuri V.


    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  2. A Heterogeneous Chemical Origin for the Mass-Independent Distribution of Oxygen Isotopes in the Solar System? (United States)

    Dominguez, G.; Chakraborty, S.; Jackson, T. L.; Thiemens, M. H.


    One of the longest standing problems in planetary science is the origin of the mass-independently fractionated oxygen isotopic reservoirs in the solar system. The oldest minerals formed in the solar system, calcium-aluminum-rich inclusions (CAIs), are 16O enriched compared to the terrestrial bodies (Earth, Mars, asteroids, and comets). In contrast to most terrestrial solids, whose enrichment-depletion patterns in 18O/16O and 17O/16O are well understood to result from mass-dependent processes, the oxygen isotopic distribution of the solar system requires one (or more) physical processes that produced distinct 16O enriched and 16O depleted reservoirs. Several mechanism have been proposed to date including: I) The injection of pure 16O by a supernova II) isotope selective photo-dissociation of CO and, III) symmetry-dependent chemical fractionation processes in the pre-solar nebula. Mechanism I has been ruled out, while recent experimental tests of mechanism II have cast doubt on the basic assumptions that underlie self-shielding models. Recently it was proposed that the 16O-rich and 16O-poor reservoirs present in the early solar system were produced by the heterogeneous chemical processes that produce H2O on the surface of interstellar dust grains in dense molecular clouds, the astrophysical setting where star formation is observed to occur (1). The production of mass-independently fractionated H2O is expected because its major precursors in these environments, O3(surf.) and HO2 (surf.) are well-known carriers of mass-independently fractionated oxygen isotopic anomalies in Earth’s atmosphere. The formation of complex molecular species in molecular clouds is widely believed to be dominated by chemical reactions that occur on the surfaces of cold interstellar dust grains. This talk will review how these heterogeneous chemical reactions, which in many ways mimic the photo-chemistry present in Earth’s atmosphere, leads to the formation of molecular species such as O2

  3. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System (United States)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.


    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6

  4. Direct observation of an isomeric state in {sup 98}Rb and nuclear properties of exotic rubidium isotopes measured by laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Procter, T.J.; Garnsworthy, A.B.; Levy, C.D.P.; Pearson, M.R. [TRIUMF, Vancouver, British Columbia (Canada); Behr, J.A.; Dilling, J. [TRIUMF, Vancouver, British Columbia (Canada); University of British Columbia, Department of Physics, Vancouver, British Columbia (Canada); Billowes, J. [The University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom); Buchinger, F.; Crawford, J.E.; Leary, A.; Shelbaya, O.; Al Tamimi, W. [McGill University, Physics Department, Montreal, Quebec (Canada); Cheal, B. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Mane, E. [TRIUMF, Vancouver, British Columbia (Canada); Ministry of External Relations, Rio Bianco Institute, Brasilia (Brazil); Stolz, M. [Technische Universitaet Berlin, Berlin (Germany); Voss, A. [TRIUMF, Vancouver, British Columbia (Canada); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)


    Fast-beam collinear laser spectroscopy experiments on rubidium have been performed at the ISAC radioactive ion beam facility at TRIUMF. Most recently, the neutron-rich {sup 98}Rb isotope has been studied for the investigation of shape coexistence. Two long-lived nuclear states in {sup 98}Rb have been clearly observed for the first time: a low-spin state, assigned a spin of I = 0, and a high-spin state. The high-spin state is tentatively assigned a spin of I = 3 based on this analysis in combination with gamma decay results. The measured nuclear properties of the two states are presented, alongside unpublished values of the neutron-deficient isotopes investigated previously. The mean-square charge radii of both states in {sup 98}Rb are observed to continue along the isodeformation line present after the N = 60 onset of deformation. (orig.)

  5. A First Look at Oxygen and Silicon Isotope Variations in Diatom Silica from a Pliocene Antarctic Marine Sediment Core (United States)

    Abbott, T.; Dodd, J. P.; Hackett, H.; Scherer, R. P.


    Coupled oxygen (δ18O) and silicon (δ30Si) isotope variations in diatom silica (opal-A) are increasingly used as a proxy to reconstruct paleoenvironmental conditions (water temperatures, water mass mixing, nutrient cycling) in marine environments. Diatom silica is a particularly significant paleoenvironmental proxy in high latitude environments, such as the Southern Ocean, where diatom blooms are abundant and diatom frustules are well preserved in the sediment. The Andrill-1B (AND-1B) sediment core from the Ross Sea (Antarctica) preserves several Pliocene ( 4.5 Ma) age diatomite units. Here we present preliminary δ18O and δ30Si values for a diatomite subunit in the AND-1B sediment core. Initial isotope values for the AND-1B diatoms silica record relatively high variability (range δ18O: 36.3‰ to 39.9‰) that could be interpreted as large-scale changes in the water temperature and/or freshwater mixing in the Ross Sea; however, a significant concern with marine sediment of this age is isotope fractionation during diagenesis and the potential formation of opal-CT lepispheres. The effects of clay contamination on the diatom silica δ18O values have been addressed through sample purification and quantified through chemical and physical analyses of the diatom silica. The isotopic effects of opal-CT are not as clearly understood and more difficult to physically separate from the primary diatom silica. In order to better understand the isotope variations in the AND-1B diatoms, we also evaluated silicon and oxygen isotope fractionation during the transition from opal-A to opal-CT in a controlled laboratory experiment. Opal-A from cultured marine diatoms (Thalassiosira weissflogii) was subjected to elevated temperatures (150°C) in acid digestion vessels for 4 weeks to initiate opal-CT precipitation. Quantifying the effects of opal-CT formation on δ18O and δ30Si variations in biogenic silica improves our understanding of the use of diatom silica isotope values a

  6. Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events

    Directory of Open Access Journals (Sweden)

    S. C. Lewis


    Full Text Available Water isotope records such as speleothems provide extensive evidence of past tropical hydrological changes. During Heinrich events, isotopic changes in monsoon regions have been interpreted as implying a widespread drying through the Northern Hemisphere tropics and an anti-phased precipitation response in the south. Here, we examine the sources of this variability using a water isotope-enabled general circulation model, Goddard Institute for Space Studies ModelE. We incorporate a new suite of vapour source distribution tracers to help constrain the impact of precipitation source region changes on the isotopic composition of precipitation and to identify nonlocal amount effects. We simulate a collapse of the North Atlantic meridional overturning circulation with a large freshwater input to the region as an idealised analogue to iceberg discharge during Heinrich events. An increase in monsoon intensity, defined by vertical wind shear, is modelled over the South American domain, with small decreases simulated over Asia. Simulated isotopic anomalies agree well with proxy climate records, with lighter isotopic values simulated over South America and enriched values across East Asia. For this particular abrupt climate event, we identify which climatic change is most likely linked to water isotope change – changes in local precipitation amount, monsoon intensity, water vapour source distributions or precipitation seasonality. We categorise individual sites according to the climate variability that water isotope changes are most closely associated with, and find that the dominant isotopic controls are not consistent across the tropics – simple local explanations, in particular, fall short of explaining water isotope variability at all sites. Instead, the best interpretations appear to be site specific and often regional in scale.

  7. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite (United States)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor


    Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that

  8. Stable carbon and oxygen isotope study on benthic foraminifera: Implication for microhabitat preferences and interspecies correlation (United States)

    Bhaumik, Ajoy K.; Kumar, Shiv; Ray, Shilpi; Vishwakarma, G. K.; Gupta, Anil K.; Kumar, Pushpendra; Sain, Kalachand


    Stable isotopes of benthic foraminifera have widely been applied in micropalaeontological research to understand vital effects in foraminifera. Isotopic fractionations are mainly controlled by ontogeny, bottom/pore water chemistry, habitat preference, kinetic effect and respiration. Discontinuous abundance of a species for isotopic analysis has forced us to select multiple species from down-core samples. Thus standardisation factors are required to convert isotopic values of one species with respect to other species. The present study is pursued on isotopic values of different pairs of benthic foraminifera from the Krishna-Godavari basin and Peru offshore to understand habitat-wise isotopic variation and estimation of isotopic correction factors for the paired species ( Cibicides wuellerstorfi-Bulimina marginata, Ammonia spp.- Loxostomum amygdalaeformis and Bolivina seminuda-Nonionella auris). Infaunal species ( B. marginata, Ammonia spp. and N. auris) show a lighter carbon isotopic excursion with respect to the epifaunal to shallow infaunal forms ( C. wuellerstorfi, L. amygdalaeformis and B. seminuda). These lighter δ^{13} C values are related to utilisation of CO2 produced by anaerobic remineralisation of organic matter. However, enrichment of δ^{18} O for the deeper microhabitat (bearing lower pH and decreased {CO3}^{2-}) is only recorded in case of B. marginata. It is reverse in case of N. auris and related to utilisation of respiratory CO2 and internal dissolve inorganic carbon pool. Estimation of interspecies isotopic correction factors for the species pairs (δ^{13} C of C. wuellerstorfi- B. marginata, L. amygdalaeformis- Ammonia spp., N. auris- B. seminuda) and δ^{18} O of C. wuellerstorfi- B. marginata are statistically reliable and may be used in palaeoecological studies.

  9. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region (United States)

    Shackleton, N.J.; Backman, J.; Zimmerman, H.; Kent, D.V.; Hall, M.A.; Roberts, David G.; Schnitker, D.; Baldauf, J.G.; Desprairies, A.; Homrighausen, R.; Huddlestun, P.; Keene, J.B.; Kaltenback, A.J.; Krumsiek, K.A.O.; Morton, A.C.; Murray, J.W.; Westberg-Smith, J.


    We report here that DSDP Site 552A, cored with the hydraulic piston corer on the west flank of Rockall Bank, recovered an undisturbed sequence of alternating white deep-sea carbonate oozes and dark-coloured layers that are rich in glacial debris. Oxygen isotope analysis of the sequence together with detailed nannofossil and palaeomagnetic stratigraphy shows that the first major horizon of ice-rafting occurred at about 2.4 Myr, and was preceded by a minor pulse of ice-rafting at about 2.5 Myr. The carbon isotope record shows that the site has been bathed by a water mass of similar characteristics to present-day North Atlantic deep water at least since 3.5 Myr. ?? 1984 Nature Publishing Group.

  10. Oxygen isotopic ratios in quartz as an indicator of provenance of dust

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M L


    Quartz was isolated in the long range aerosol size range (fine silt, 1-10 in diameter) from atmospheric aerosols, wind-erosive soils, soil silts, shales, and Pacific pelagic sediments of the Northern and Southern Hemispheres, to trace their provenance or origin, as part of a study of dust mineral sequestering of /sup 137/Cs and other products of nuclear fission. The oxygen isotopic ratio (/sup 18/O//sup 16/O) was determined by mass spectrometry. The provenance has been established for this fine silt fraction which reflects the relative proportion of two classes of quartz source: (a) weathering of igneous and metamorphic rocks (high temperature origin and low /sup 18/O//sup 16/O ratio) and (b) of quartz crystallized in cherts and overgrowths (low temperature origin and high /sup 18/O//sup 16/O ratio). This quartz mixing ratio is a basic model or paradigm. Analyses of present day atmospheric aerosols and eolian-derived soils, Pacific pelagic sediments, and now-raised Phanerozoic marine sediments show that the Northern and Southern Hemispheres have separate large-scale reservoirs of the fine grain sizes that contribute to aerosol dusts. These can be identified by distinctive values of /sup 18/O//sup 16/O ratios of the quartz therein. The difference in quartz delta/sup 18/O value in parts per thousand per ml (/sup 0///sub 00/ of about 12 +- 2 /sup 0///sub 00/ in Southern Hemisphere mixed detrital sediments and about 19 +- 2 /sup 0///sub 00/ in those of the Northern Hemisphere (for constant size, the 1-10 size fraction) results from the presence of a considerably larger proportion of quartz having low-temperature origin and higher delta/sup 18/O values (chert, silica overgrowths, etc.) in the Northern Hemisphere reservoirs. The early paleoclimatic and paleogeochemical differences remain the control of the North-South Hemisphere difference in delta/sup 18/O values in long-range aerosol sized quartz.

  11. The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites (United States)

    van Ginneken, M.; Gattacceca, J.; Rochette, P.; Sonzogni, C.; Alexandre, A.; Vidal, V.; Genge, M. J.


    High-precision oxygen isotopic compositions of eighteen large cosmic spherules (>500 μm diameter) from the Atacama Desert, Chile, were determined using IR-laser fluorination - Isotope Ratio Mass spectrometry. The four discrete isotopic groups defined in a previous study on cosmic spherules from the Transantarctic Mountains (Suavet et al., 2010) were identified, confirming their global distribution. Approximately 50% of the studied cosmic spherules are related to carbonaceous chondrites, 38% to ordinary chondrites and 12% to unknown parent bodies. Approximately 90% of barred olivine (BO) cosmic spherules show oxygen isotopic compositions suggesting they are related to carbonaceous chondrites. Similarly, ∼90% porphyritic olivine (Po) cosmic spherules are related to ordinary chondrites and none can be unambiguously related to carbonaceous chondrites. Other textures are related to all potential parent bodies. The data suggests that the textures of cosmic spherules are mainly controlled by the nature of the precursor rather than by the atmospheric entry parameters. We propose that the Po texture may essentially be formed from a coarse-grained precursor having an ordinary chondritic mineralogy and chemistry. Coarse-grained precursors related to carbonaceous chondrites (i.e. chondrules) are likely to either survive atmospheric entry heating or form V-type cosmic spherules. Due to the limited number of submicron nucleation sites after total melting, ordinary chondrite-related coarse-grained precursors that suffer higher peak temperatures will preferentially form cryptocrystalline (Cc) textures instead of BO textures. Conversely, the BO textures would be mostly related to the fine-grained matrices of carbonaceous chondrites due to the wide range of melting temperatures of their constituent mineral phases, allowing the preservation of submicron nucleation sites. Independently of the nature of the precursors, increasing peak temperatures form glassy textures.

  12. Oxygen and sulfur isotopes in sulfate in modern euxinic systems with implications for evaluating the extent of euxinia in ancient oceans (United States)

    Gomes, Maya L.; Johnston, David T.


    Euxinic conditions, which are defined by the presence of sulfide in the water column, were common in ancient oceans. However, it is not clear how the presence of sulfide in the water column affects the balance between rates of sulfide oxidation and sulfate reduction, which plays a major role in regulating the net redox state of the ocean-atmosphere system. Euxinia could lead to higher rates of sulfide oxidation because sulfide may diffuse more rapidly into the oxic zone in solution than in sediment. Alternatively, sulfide oxidation could be inhibited by low overall availability of suitable oxidants in euxinic settings. Here, we constrain rates of sulfide oxidation versus sulfate reduction in four euxinic water columns in coastal ponds by modeling the evolution of the concentration and sulfur and oxygen isotope compositions of sulfate from post-hurricane, well-oxygenated conditions to modern, euxinic conditions. The results of the one-dimensional, depth-dependent models of water column sulfate geochemistry indicate that the fraction of sulfate reduced that is subsequently reoxidized is low (0.11-0.42) in euxinic systems relative to the modern well-oxygenated ocean (0.75-0.90). This implies that sulfide reoxidation rates are low in euxinic systems because of oxidant limitation and physical transport. Low fractional sulfide reoxidation in euxinic systems has important implications for exploring how oxygen levels in the ocean and atmosphere have changed through Earth history. We use a marine sulfate isotope box model to explore how low reoxidation rates in euxinic systems affect marine sulfate sulfur and oxygen isotope records. Model results indicate that marine sulfate sulfur and oxygen isotope compositions increase during the expansion of euxinia with patterns that are distinct from other isotopic changes to the marine sulfate reservoir. Thus, marine sulfate sulfur and oxygen isotope box models can be applied to ancient isotope records in order to evaluate the

  13. Oxygen Isotope Evidence for the Relationship between CM and CO Chondrites: Could they Both Coexist on a Single Asteroid (United States)

    Greenwood, R. C.; Howard, K. T.; Franchi, I. A.; Zolensky, M. E.; Buchanan, P. C.; Gibson, J. M.


    Water played a critical role in the early evolution of asteroids and planets, as well as being an essential ingredient for life on Earth. However, despite its importance, the source of water in the inner solar system remains controversial. Delivery of water to Earth via comets is inconsistent with their relatively elevated D/H ratios, whereas carbonaceous chondrites (CCs) have more terrestrial-like D/H ratios [1]. Of the eight groups into which the CCs are divided, only three (CI, CM, CR) show evidence of extensive aqueous alteration. Of these, the CMs form the single most important group, representing 34% of all CC falls and a similar percentage of finds (Met. Bull. Database). CM material also dominates the population of CC clasts in extraterrestrial samples [2, 3]. The Antarctic micrometeorites population is also dominated by CM and CI-like material and similar particles may have transported water and volatiles to the early Earth [4]. CCs, and CMs in particular, offer the best opportunity for investigating the evolution of water reservoirs in the early solar system. An important aspect of this problem involves identifying the anhydrous silicate component which co-accreted with ice in the CM parent body. A genetic relationship between the essentially anhydrous CO group and the CMs was proposed on the basis of oxygen isotope evidence [5]. However, previous CM whole-rock oxygen isotope data scattered about a line of approximately 0.5 that did not intersect the field of CO chondrites [5]. Here we discuss new oxygen isotope data which provides additional constraints on the relationship between CO and CM chondrites.

  14. Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region (United States)

    Johnson, Craig A.; Day, Warren C.; Rye, Robert O.


    Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition

  15. Oxygen isotope characteristics of chondrules from the Yamato-82094 ungrouped carbonaceous chondrite: Further evidence for common O-isotope environments sampled among carbonaceous chondrites (United States)

    Tenner, T. J.; Kimura, M.; Kita, N. T.


    High-precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty-one of 21 chondrules have multiple homogeneous pyroxene data (∆17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty-one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O-isotope ratios; and (2) suggest efficient O-isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching -40‰, similar to CAI or AOA-like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8-99.5 and ∆17O of -3.9‰ to -6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O-isotope reservoir devoid of 16O-poor H2O. Six Y-82094 chondrules have ∆17O near -2.5‰, with Mg#s of 64-97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# 99, ∆17O: -5‰ ± 1‰ chondrules plus 16O-poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (∆17O: +0.1‰). Their O-isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite-like chondrule precursors. Finally, three Mg# >99 chondrules have ∆17O of -6.7‰ to -8.1‰, potentially due to 16O-rich refractory precursor components. The predominance of Mg# 99, ∆17O: -5‰ ± 1‰ chondrules and a high chondrule-to-matrix ratio suggests bulk Y-82094

  16. Measurement and Modeling of Site-specific Nitrogen and Oxygen Isotopic Composition of Atmospheric Nitrous Oxide at Mace Head, Ireland (United States)

    McClellan, M. J.; Saikawa, E.; Prinn, R. G.; Ono, S.


    Global mixing ratios of atmospheric nitrous oxide (N2O), a potent greenhouse gas, have increased nearly linearly from the beginning of the modern industrial period to today, with the current global average in excess of 325 ppb. This increase can be largely attributed to anthropogenic activity above the level of N2O emissions from natural biotic sources. The effect of N2O on Earth's climate is twofold: in the troposphere, N2O is radiatively active and chemically inert, while it serves as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. The marked altitudinal divide in its reactivity means that all stages in the N2O life cycle—emission, transport, and destruction—must be examined to understand the overall effect of N2O on Earth's climate. However, the understanding of the total impact of N2O is incomplete, as there remain significant uncertainties in the global budget of this gas. Due to unique isotopic substitutions (15N and 18O) made by different N2O sources and stratospheric chemical reactions, the measurement of N2O isotopic ratios in ambient air can help identify the distribution and magnitude of distinct source types. We present the first year of site-specific nitrogen and oxygen isotopic composition data from the MIT Stheno-tunable infrared direct absorption spectroscopy (TILDAS) instrument at Mace Head, Ireland. Aided by the Stheno preconcentration system, Stheno-TILDAS can achieve measurement precisions of 0.10‰ or greater for all isotopic ratios (δ15N and δ18O) in ambient N2O. We further compare these data to the results from Model for Ozone and Related Tracers version 4 (MOZART-4) simulations, including N2O isotopic fractionation processes and MERRA/GEOS-5 reanalysis meteorological fields. These results will form the basis of future Bayesian inverse modeling simulations that will constrain global N2O source, circulation, and sink dynamics better.

  17. Comparison of cellulose extraction methods for analysis of stable-isotope ratios of carbon and oxygen in plant material. (United States)

    Cullen, Louise E; Macfarlane, Craig


    The Jayme-Wise and diglyme-HCl methods for extracting cellulose from plant material for stable-isotope analysis differ considerably in ease of use, with the latter requiring significantly less time and specialized equipment. However, the diglyme-HCl method leaves a small lignin residue in the crude cellulose that may affect stable-isotope values, whereas alpha-cellulose produced by the Jayme-Wise method is relatively pure. We examined whether adding a bleaching step to the diglyme-HCl method could produce cellulose of comparable purity to alpha-cellulose by comparing the yield, percent carbon, and carbon (delta13C) and oxygen (delta18O) stable isotope ratios of the two celluloses. We tested each method on the wood of five species that differ in ease of delignification, Eucalyptus maculata Hook., E. botryoides Sm., E. resinifera Sm., Pinus pinaster Ait. and Callitris glaucophylla J. Thompson & L.A.S. Johnson, as well as the foliage of C. glaucophylla. For hardwoods such as the eucalypts, the diglyme-HCl method without bleaching produced cellulose with delta13C and delta18O ratios similar to alpha-cellulose. For the softwood, C. glaucophylla, 3 h of bleaching with acidified chlorite following treatment with diglyme-HCl produced cellulose with delta13C and delta18O ratios similar to alpha-cellulose. Bleached and unbleached crude celluloses and alpha-cellulose of P. pinaster were similar in delta18O, but not delta13C. Both types of crude cellulose produced from the foliage of C. glaucophylla had significantly different isotope ratios from alpha-cellulose. Overall, the diglyme-HCl method, with or without bleaching, appears to be a simple, fast method for extracting alpha-cellulose from hardwoods for stable-isotope analyses, but its suitability for softwoods and foliage needs to be evaluated depending on the species.

  18. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. (United States)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang


    Subduction of carbonates and carbonated eclogites into the mantle plays an important role in transporting carbon into deep Earth. However, to what degree isotopic exchanges occur between carbonate and silicate during subduction remains unclear. Here we report Mg and O isotopic compositions for ultrahigh pressure metamorphic marbles and enclosed carbonated eclogites from China. These marbles include both calcite- and dolomite-rich examples and display similar O but distinct Mg isotopic signatures to their protoliths. Their δ(26)Mg values vary from -2.508 to -0.531‰, and negatively correlate with MgO/CaO ratios, unforeseen in sedimentary carbonates. Carbonated eclogites have extremely heavy δ(18)O (up to +21.1‰) and light δ(26)Mg values (down to -1.928‰ in garnet and -0.980‰ in pyroxene) compared with their protoliths. These unique Mg-O isotopic characteristics reflect differential isotopic exchange between eclogites and carbonates during subduction, making coupled Mg and O isotopic studies potential tools for tracing deep carbon recycling.

  19. Evaluation of Perchlorate Sources in the Rialto-Colton and Chino California Subbasins using Chlorine and Oxygen Isotope Ratio Analysis (United States)


    Jackson et al., 2010; Lybrand et al., 2013). Recent detections of ClO4- in Antarctic dry valley soils and lakes, and also on the surface of Mars ...on Mars and in the Atacama. J Geophys. Res. 115: E00E11. Coplen, T.B., 1994, Reporting of stable hydrogen, carbon, and oxygen isotopic abundances... Geology and Origin of the Atacama Nitrate Deposits, Prof. Paper 1188; U.S. Geological Survey: Washington, D.C. Ericksen, G.E. 1983. The Atacama

  20. Sulfur and oxygen isotope compositions of Upper Triassic sulfates from Northerm Apennines (Italy): palaeogeographic and hidrogeochemical implications


    Boschetti, T.; Cortecchi, G.; Toscani, L.; Iacumin, P.


    Upper Triassic bedded evaporite sulfate of the Burano Formation outcropping at Cerreto Pass between Tuscany and Emilia-Romagna in the Northern Apennines were analyzed for sulfur and oxygen isotope compositions, yielding d34S and d18O values of 15.5±0.4‰ and 10.8±1.2‰, respectively (mean ±99% confidence intervals). Combining these values with those of other Burano Formation sulfate deposits along the Apennine chain, mean for d34S and d18O values are obtained (15.2±0.2‰ and 10.9±0.5‰, respectiv...

  1. Sulfur and oxygen isotope compositions of Upper Triassic sulfates from northern Apennines (Italy) : paleogeographic and hydrogeochemical implications


    Boschetti, T.


    Upper Triassic bedded evaporite sulfate of the Burano Formation outcropping at Cerreto Pass between Tuscany and Emilia-Romagna in the Northern Apennines were analyzed for sulfur and oxygen isotope compositions, yielding d34S and d18O values of 15.5±0.4‰ and 10.8±1.2‰, respectively (mean ±99% confidence intervals). Combining these values with those of other Burano Formation sulfate deposits along the Apennine chain, mean for d34S and d18O values are obtained (15.2±0.2‰ and 10.9±0.5‰, respectiv...

  2. Beyond the neutron drip line: The unbound oxygen isotopes 25O and 26O

    DEFF Research Database (Denmark)

    Caesar, C.; Simonis, J.; Adachi, T.


    The very neutron-rich oxygen isotopes 25O and 26O are investigated experimentally and theoretically. The unbound states are populated in an experiment performed at the R3B-LAND setup at GSI via proton-knockout reactions from 26F and 27F at relativistic energies around 442 and 414 MeV/nucleon...... at around 4 MeV. The experimental findings are compared to theoretical shell-model calculations based on chiral two- and three-nucleon (3N) forces, including for the first time residual 3N forces, which are shown to be amplified as valence neutrons are added....

  3. Penning-trap mass measurements of exotic rubidium and gold isotopes for a mean-field study of pairing and quadrupole correlations

    CERN Document Server

    Manea, Vladimir


    The most complex nuclei are situated between the magic and the mid-shell ones, in regions known for sudden changes of the trends of nuclear observables. These are the so-called shape-transition regions, where the nuclear paradigm changes from the vibrational liquid drop to the static rotor. With few exceptions, nuclei in these regions are radioactive, with half-lives dropping into the millisecond range. Complementing the information obtained from the low-lying excitation spectrum, nuclear binding energies and mean-square charge radii are among the observables most sensitive to these changes of nuclear structure. In the present work, a study of the shape- transition phenomenon is performed by measurements of radioactive nuclides produced by the ISOLDE facility at CERN. The masses of the neutron-rich rubidium isotopes $^{98-100}$Rb and of the neutron-deficient gold isotopes $^{180, 185, 188, 190, 191}$Au are determined using the Penning-trap mass spectrometer ISOLTRAP. The mass of $^{100}$Rb is determined for t...

  4. Chronological study of oxygen isotope composition for the solar protoplanetary disk recorded in a fluffy Type A CAI from Vigarano (United States)

    Kawasaki, Noriyuki; Itoh, Shoichi; Sakamoto, Naoya; Yurimoto, Hisayoshi


    Fluffy Type A Ca-Al-rich inclusions (CAIs) containing reversely zoned melilite crystals are suggested to be aggregates of direct condensates from solar nebular gas. We conducted an investigation of 26Al-26Mg systematics of a fluffy Type A CAI from Vigarano, named V2-01, with known oxygen isotopic distributions of reversely zoned melilite crystals; we also conducted oxygen isotope measurements of coexisting minerals. Two of six reversely zoned melilite crystals show continuous variations in magnesium isotopic composition, with δ25Mg decreasing along the inferred direction of crystal growth, which supports the idea that they originated through condensation. Petrography suggests that the constituent minerals of V2-01 formed in the following order: first spinel and fassaite enclosed by melilite, then reversely zoned melilite crystals, and spinel and diopside in the Wark-Lovering rim. The spinel enclosed by melilite has 16O-rich compositions (Δ17O ∼ -24‰) and on an Al-Mg evolutionary diagram plots along model isochron with an initial value of (26Al/27Al)0 = (5.6 ± 0.2) × 10-5. The fassaite enclosed by melilite crystals shows variable oxygen isotopic compositions (Δ17O ∼ -12‰ and -17‰) and plots on an isochron with (26Al/27Al)0 = (5.6 ± 0.2) × 10-5. The oxygen isotopic compositions of reversely zoned melilite showed continuous variations in Δ17O along the inferred direction of crystal growth, suggesting that surrounding nebular gas, during the formation of the reversely zoned melilite, changed from 16O-poor (Δ17O values larger than -10‰) to 16O-rich (Δ17O ∼ -25‰). The six reversely zoned melilite crystals show indistinguishable initial 26Al/27Al values with an average (26Al/27Al)0 of (4.7 ± 0.3) × 10-5, which is clearly distinguishable from the value of enclosed spinel and fassaite, indicating a younger formation age than the enclosed spinel and fassaite. The spinel and diopside from the Wark-Lovering rim show 16O-rich compositions (Δ17O

  5. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations.

    Directory of Open Access Journals (Sweden)

    Emma Lightfoot

    Full Text Available Oxygen isotope analysis of archaeological skeletal remains is an increasingly popular tool to study past human migrations. It is based on the assumption that human body chemistry preserves the δ18O of precipitation in such a way as to be a useful technique for identifying migrants and, potentially, their homelands. In this study, the first such global survey, we draw on published human tooth enamel and bone bioapatite data to explore the validity of using oxygen isotope analyses to identify migrants in the archaeological record. We use human δ18O results to show that there are large variations in human oxygen isotope values within a population sample. This may relate to physiological factors influencing the preservation of the primary isotope signal, or due to human activities (such as brewing, boiling, stewing, differential access to water sources and so on causing variation in ingested water and food isotope values. We compare the number of outliers identified using various statistical methods. We determine that the most appropriate method for identifying migrants is dependent on the data but is likely to be the IQR or median absolute deviation from the median under most archaeological circumstances. Finally, through a spatial assessment of the dataset, we show that the degree of overlap in human isotope values from different locations across Europe is such that identifying individuals' homelands on the basis of oxygen isotope analysis alone is not possible for the regions analysed to date. Oxygen isotope analysis is a valid method for identifying first-generation migrants from an archaeological site when used appropriately, however it is difficult to identify migrants using statistical methods for a sample size of less than c. 25 individuals. In the absence of local previous analyses, each sample should be treated as an individual dataset and statistical techniques can be used to identify migrants, but in most cases pinpointing a specific

  6. Rare Isotope Insights into Supereruptions: Rare Sulfur and Triple Oxygen Isotope Geochemistry of Stratospheric Sulfate Aerosols Absorbed on Volcanic Ash Particles (United States)

    Bindeman, I. N.; Eiler, J.; Wing, B.; Farquhar, J.


    We present analyses of stable isotopic ratios of 17O/16O, 18O/16O, 34S/32S, and 33S/32S, 36S/32S of sulfate leached from volcanic ash of a series of well-known volcanic eruptions. This list covers much of the diversity of sizes and the character of volcanic eruptions. Particular emphasis is paid to the Lava Creek Tuff of Yellowstone and we present wide geographic sample coverage for this unit. This global dataset spans a significant range in δ34S, δ18O, and Δ17O of sulfate (29, 30 and 3.3 permil respectively) with oxygen isotopes recording mass-independent fractionation and sulfur isotopes exhibiting mass-dependent behavior. These ranges are defined by the isotopic compositions of products of large caldera forming eruptions. Proximal ignimbrites and coarse ash typically do not contain sulfate. The presence of sulfate with Δ17O > 0.2 permil is characteristic of small distal ash particles, suggesting that sulfate aerosols were scavenged after they underwent atmospheric photochemical reactions. Additionally, sediments that embed ash layers either do not contain sulfate or contain minor sulfate with Δ17O near 0 permil, suggesting that the observed sulfate in ash is of volcanic origin. Mass-dependent sulfur isotopic compositions suggest that sulfate-forming reactions did not involve photolysis of SO2, unlike the situation inferred for some pre-2.3 Ga sulfates or hypothesized to occur during the formation of sulfate associated with plinian eruptions that pierce the ozone layer. However, sulfate in the products of caldera-forming eruptions display a large δ34S range and fractionation relationships that do not follow equilibrium slopes of 0.515 and 1.90 for 33S/32S vs. 34S/32S and 36S/32S vs. 34S/32S, respectively. This implies that the sulfur isotopic characteristics of these sulfates were not set by a single stage, high-temperature equilibrium process in the volcanic plum. The data presented here are consistent with a single stage kinetic fractionation of sulfur

  7. On the origin and evolution of isotopes of carbon, nitrogen, and oxygen (United States)

    Dearborn, D.; Schramm, D. N.; Tinsley, B. M.


    Calculations of CNO processing in stellar envelopes, based on theoretical nucleosynthesis rather than empirical abundances in evolving stars, are presented and used in two models for the chemical evolution of the solar neighborhood. Seven stable isotopes are considered: C-12, C-13, N-14, N-15, O-16, O-17, and O-18. The two models ('infall' and 'initial-burst') represent extremes of types consistent with general constraints and include theoretical estimates of other nucleosynthesis sites and yields for CNO isotopes. The results obtained are found to predict that all CNO isotopes are produced mainly by stars with lifetimes much less than the age of the Galaxy (even at the present time when low-mass stars have the greatest death rate), so that isotopic ratios evolve very slowly after the first few billion years. Consequences of these slow changes are that the isotopic ratios cannot be employed to test between alternative hypotheses and that galactic evolution does not seem to be able to account for the apparent difference between the C-13/C-12 ratio in the solar system and in molecular clouds. The predicted envelope processing is shown to lead to approximately the solar-system values for the C-13/C-12 and O-17/O-16 abundance ratios but to a N-14/C-12 ratio that is too small by at least a factor of 2.

  8. Does Oxygen Isotopic Heterogeneity in Refractory Inclusions and Their Wark-Lovering Rims Record Nebular Repressing? (United States)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.


    Large systematic variations in O-isotopic compositions found within individual mineral layers of rims surrounding Ca-, Al-rich inclusions (CAIs) and at the margins of some CAIs imply formation from distinct environments [e.g., 1-3]. The O-isotope compositions of many CAIs preserve a record of the Solar nebula gas believed to initially be O-16-rich (delta O-17 less than or equal to -25%0) [4-5]. Data from a recent study of the compact Type A Allende CAI, A37, preserve a diffusion profile in the outermost 70 micrometers of the inclusion and show greater than 25%0 variations in delta O-17 within its 100 micrometer-thick Wark-Lovering rim (WL-rim) [3]. This and comparable heterogeneity measured in several other CAIs have been explained by isotopic mixing between the O-16-rich Solar reservoir and a second O-16-poor reservoir (probably nebular gas) with a planetary-like isotopic composition, e.g., [1,2,3,6]. However, there is mineralogical and isotopic evidence from the interiors of CAIs, in particular those from Allende, for parent body alteration. At issue is how to distinguish the record of secondary reprocessing in the nebula from that which occurred on the parent body. We have undertaken the task to study a range of CAI types with varying mineralogies, in part, to address this problem.

  9. Spectroscopy of Exotic Nuclei via Quasi-free Scattering Reactions (United States)

    Paschalis, Stefanos


    In the work presented here we are interested in examining the single-particle strength of nucleons in stable and exotic nuclei and the reduction compared to the independent particle model. The motivation for this work has been the reported reduction of single-particle strengths and in particular the dependency of this reduction as a function of isospin asymmetry expressed in terms of nucleon separation energies. In particular, in (e,e p) experiments single-particle strengths of the order of 60-70 p) experiments were reported for nuclei close to stability but with a strong dependency of the single-particle strength on the proton-neutron asymmetry. The origin of this strong asymmetry is not fully understood and results from transfer reactions do not support this evidence. In this work I will present our results where quasi-free scattering reactions have been extended and used in inverse kinematics with radioactive beams and a hydrogen-rich target. In particular, I will discuss results on the single-particle structure of stable and exotic nuclei along the oxygen isotopic chain from an experiment that was carried out at the R3B/LAND setup at GSI, Germany, and discuss the dependency on neutron/proton separation energy as well as possible dependencies on the reaction theory used for extracting this nuclear structure information.

  10. Heavy exotic molecules (United States)

    Liu, Yizhuang; Zahed, Ismail

    We briefly review the formation of pion-mediated heavy-light exotic molecules with both charm and bottom, under the general structures of chiral and heavy quark symmetries. The charm isosinglet exotic molecules with JPC = 1++ binds, which we identify as the reported neutral X(3872). The bottom isotriplet exotic with JPC = 1+1 binds, and is identified as a mixed state of the reported charged exotics Zb+(10610) and Zb-(10650). The bound bottom isosinglet molecule with JPC = 1++ is a possible neutral Xb(10532) to be observed.

  11. A model composition for Mars derived from the oxygen isotopic ratios of martian/SNC meteorites. [Abstract only (United States)

    Delaney, J. S.


    Oxygen is the most abundant element in most meteorites, yet the ratios of its isotopes are seldom used to constrain the compositional history of achondrites. The two major achondrite groups have O isotope signatures that differ from any plausible chondritic precursors and lie between the ordinary and carbonaceous chondrite domains. If the assumption is made that the present global sampling of chondritic meteorites reflects the variability of O reservoirs at the time of planetessimal/planet aggregation in the early nebula, then the O in these groups must reflect mixing between known chondritic reservoirs. This approach, in combination with constraints based on Fe-Mn-Mg systematics, has been used previously to model the composition of the basaltic achondrite parent body (BAP) and provides a model precursor composition that is generally consistent with previous eucrite parent body (EPB) estimates. The same approach is applied to Mars exploiting the assumption that the SNC and related meteorites sample the martian lithosphere. Model planet and planetesimal compositions can be derived by mixing of known chondritic components using O isotope ratios as the fundamental compositional constraint. The major- and minor-element composition for Mars derived here and that derived previously for the basaltic achondrite parent body are, in many respects, compatible with model compositions generated using completely independent constraints. The role of volatile elements and alkalis in particular remains a major difficulty in applying such models.

  12. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominated peatlands? (United States)

    Amesbury, Matthew J.; Charman, Dan J.; Newnham, Rewi M.; Loader, Neil J.; Goodrich, Jordan; Royles, Jessica; Campbell, David I.; Keller, Elizabeth D.; Baisden, W. Troy; Roland, Thomas P.; Gallego-Sala, Angela V.


    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature- and humidity-dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives, which integrate this signal over time. Applications from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, have been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with few in the Southern Hemisphere or in peatlands dominated by vascular plants. New Zealand (NZ) provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because single taxon analysis can be easily carried out, in particular using the preserved root matrix of the restionaceous wire rush (Empodisma spp.) that forms deep Holocene peat deposits throughout the country. Furthermore, large gradients are observed in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. Here, we test whether δ18O of Empodisma α-cellulose from ombrotrophic restiad peatlands in NZ can provide a methodology for developing palaeoclimate records of past precipitation δ18O. Surface plant, water and precipitation samples were taken over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. A link between the isotopic composition of root-associated water, the most likely source water for plant growth, and precipitation in both datasets was found. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in root-associated water. The link between source water and plant cellulose was less clear, although mechanistic modelling predicted mean

  13. Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA (United States)

    Peter, J.M.; Shanks, Wayne C.


    Sulfur, carbon, and oxygen isotope values were measured in sulfide, sulfate, and carbonate from hydrothermal chimney, spire, and mound samples in the southern trough of Guaymas Basin, Gulf of California, USA. ??34S values of sulfides range from -3.7 to 4.5%. and indicate that sulfur originated from several sources: 1. (1) dissolution of 0??? sulfide contained within basaltic rocks, 2. (2) thermal reduction of seawater sulfate during sediment alteration reactions in feeder zones to give sulfide with positive ??34S, and 3. (3) entrainment or leaching of isotopically light (negative-??34S) bacteriogenic sulfide from sediments underlying the deposits. ??34S of barite and anhydrite indicate sulfur derivation mainly from unfractionated seawater sulfate, although some samples show evidence of sulfate reduction and sulfide oxidation reactions during mixing within chimneys. Oxygen isotope temperatures calculated for chimney calcites are in reasonable agreement with measured vent fluid temperatures and fluid inclusion trapping temperatures. Hydrothermal fluids that formed calcite-rich chimneys in the southern trough of Guaymas Basin were enriched in 18O with respect to seawater by about 2.4??? due to isotopic exchange with sedimentary and/or basaltic rocks. Carbon isotope values of calcite range from -9.6 to -14.0??? ??34CpDB, indicating that carbon was derived in approximately equal quantities from the dissolution of marine carbonate minerals and the oxidation of organic matter during migration of hydrothermal fluid through the underlying sediment column. Statistically significant positive, linear correlations of ??34S, ??34C, and ??18O of sulfides and calcites with geographic location within the southern trough of Guaymas Basin are best explained by variations in water/rock ( w r) ratios or sediment reactivity within subsurface alteration zones. Low w r ratios and the leaching of detrital carbonates and bacteriogenic sulfides at the southern vent sites result in relatively

  14. Ice-free conditions in Fennoscandia during Marine Oxygen Isotope Stage 3?

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Barbara (Dept. of Geology and Geochemistry, Stockholm Univ., Stockholm (Sweden))


    One of the central aims of the climate research conducted by the Swedish Nuclear Fuel and Waste Management Company (SKB) is to investigate the extremes within which climate conditions may vary within a 100,000 year perspective. The 100,000 year time perspective corresponds to one glacial cycle during which warm interstadial and cold stadial conditions alternated, leading to ice sheet advance and retreat over Fennoscandia. To address the issue of how extreme climate conditions may impact the deep nuclear waste repository, a climate modelling study was initiated with the aim to investigate the response to different climate scenarios: glacial conditions, permafrost conditions and temperate conditions. A model set-up for the permafrost and glacial scenario required information on, for example past ice cover, vegetation, and land-sea configuration. The permafrost climate scenario focussed on a stadial event (Greenland stadial 12) during Marine Oxygen Isotope Stage (MIS) 3, because it was assumed that southern Sweden and the areas of Forsmark and Oskarshamn were not ice covered, but possibly experienced permafrost conditions. This assumption however needed to be validated by paleoenvironmental and paleoclimatic records for MIS 3. Available paleoenvironmental records for this time interval are comparably scarce and due to chronological uncertainties also partly conflicting. Most records are derived from marginal areas of the former Fennoscandian ice sheet and only little and inconsistent information exists for the central part. Geological investigations along the Norwegian coast, in Denmark, southern Sweden, northern and eastern Finland have for example shown that the Fennoscandian ice sheet margin responded distinctly to some of the warmest middle Weichselian interstadials (MIS 3). Interstadial organic sediments from the central part of the former ice sheet have been described from several localities in Sweden, but radiocarbon (14C) dates for these deposits provided ages

  15. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations. (United States)

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N


    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH(-) or (•)OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  16. Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols


    Bindeman, I. N.; J. M. Eiler; Wing, B. A.; Farquhar, J


    We present analyses of stable isotopic ratios ^(17)O/^(16)O, ^(18)O/^(16)O, ^(34)S/^(32)S, and ^(33)S/^(32)S, ^(36)S/^(32)S in sulfate leached from volcanic ash of a series of well known, large and small volcanic eruptions. We consider eruptions of Mt. St. Helens (Washington, 1980, ∼1 km^3), Mt. Spurr (Alaska, 1953, 0.2‰ is present as 1–10 μm gypsum crystals on distal ash particles and records the isotopic signature of stratospheric photochemical reactions. Sediments that embed ash layers do...

  17. Petrography, classification, oxygen isotopes, noble gases, and cosmogenic records of Kamargaon (L6) meteorite: The latest fall in India (United States)

    Ray, D.; Mahajan, R. R.; Shukla, A. D.; Goswami, T. K.; Chakraborty, S.


    A single piece of meteorite fell on Kamargaon village in the state of Assam in India on November 13, 2015. Based on mineralogical, chemical, and oxygen isotope data, Kamargaon is classified as an L-chondrite. Homogeneous olivine (Fa: 25 ± 0.7) and low-Ca pyroxene (Fs: 21 ± 0.4) compositions with percent mean deviation of different shock stages, e.g., S3 and S4 (Stöffler et al.; however, local presence of quenched metal-sulfide melt within shock veins/pockets suggest disequilibrium melting and relatively higher shock stage of up to S5 (Bennett and McSween). Based on noble gas isotopes, the cosmic-ray exposure age is estimated as 7.03 ± 1.60 Ma and nitrogen isotope composition (δ15N = 18‰) also correspond well with the L-chondrite group. The He-U, Th, and K-Ar yield younger ages (170 ± 25 Ma 684 ± 93, respectively) and are discordant. A loss of He during the resetting event is implied by the lower He-U and Th age. Elemental ratios of trapped Ar, Kr, and Xe can be explained through the presence of a normal Q noble gas component. Relatively low activity of 26Al (39 dpm/kg) and the absence of 60Co activity suggest a likely low shielding depth and envisage a small preatmospheric size of the meteoroid (<10 cm in radius). The Kr isotopic ratios (82Kr/84Kr) further argue that the meteorite was derived from a shallow depth.

  18. Carbon and oxygen isotopic constraints on paleoclimate and paleoelevation of the southwestern Qaidam basin, northern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Lin-Lin Li


    Full Text Available We investigate the growth of the northern Tibetan Plateau and associated climate change by applying oxygen and carbon isotopic compositions in Cenozoic strata in the southwestern Qaidam basin. The X-ray diffraction and isotopic studies reveal that the carbonate minerals are mainly authigenic and they do not preserve any evidence for detrital carbonate and diagenesis. The isotope data show large fluctuations in the δ18O and δ13C values in the middle–late Eocene, indicating relatively warm and seasonal dry climate. The positive correlation of the δ18O and δ13C values in the Oligocene and the positive shift of the δ13C values from the Eocene to Oligocene suggest that the climate changed to arid in the Oligocene. However, the δ18O values show negative shift, which is closely related to the global cooling event. During the Miocene, the δ13C values vary between –2‰ and –4‰, whereas the δ18O values show continuous negative shift. The mean δ18O values decrease from –8.5‰ in the early Miocene to –10.0‰ in the late Miocene. The stable isotope-based paleoaltimetry results suggest that the elevation of the southwestern Qaidam basin was approximately 1500 m in the middle–late Eocene and Oligocene. Subsequently, during Miocene the crustal uplift process started and the elevation reached approximately 2000 m in the early Miocene and 2500 m in the late Miocene, which suggests large-scale growth of the northern Tibet Plateau during the Miocene.

  19. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology. (United States)

    Roberts, Patrick; Blumenthal, Scott A; Dittus, Wolfgang; Wedage, Oshan; Lee-Thorp, Julia A


    Stable isotope analysis of primate tissues in tropical forest contexts is an increasingly popular means of obtaining information about niche distinctions among sympatric species, including preferences in feeding height, forest canopy density, plant parts, and trophism. However, issues of equifinality mean that feeding height, canopy density, as well as the plant parts and plant species consumed, may produce similar or confounding effects. With a few exceptions, researchers have so far relied largely on general principles and/or limited plant data from the study area as references for deducing the predominant drivers of primate isotope variation. Here, we explore variation in the stable carbon (δ13 C), nitrogen (δ15 N), and oxygen (δ18 O) isotope ratios of 288 plant samples identified as important to the three primate species from the Polonnaruwa Nature Sanctuary, Sri Lanka, relative to plant part, season, and canopy height. Our results show that plant part and height have the greatest effect on the δ13 C and δ18 O measurements of plants of immediate relevance to the primates, Macaca sinica, Semnopithecus priam thersites, and Trachypithecus vetulus, living in this monsoonal tropical forest. We find no influence of plant part, height or season on the δ15 N of measured plants. While the plant part effect is particularly pronounced in δ13 C between fruits and leaves, differential feeding height, and plant taxonomy influence plant δ13 C and δ18 O differences in addition to plant organ. Given that species composition in different regions and forest types will differ, the results urge caution in extrapolating general isotopic trends without substantial local baselines studies. © 2017 Wiley Periodicals, Inc.

  20. Oxygen isotope constraints on the crustal contribution to the subduction-related magmatism of the Aeolian Islands, southern Italy (United States)

    Ellam, R. M.; Harmon, R. S.


    Oxygen isotope data are presented for 37 samples of subduction-related lavas from the Aeolian Islands, southern Italy, that were characterised for radiogenic isotopes (Sr, Nd, Pb) and major- and trace-element abundances in previous studies. The samples, which were all erupted within the past 500,000 years, span the full compositional range of Aeolian magmatism from the calc-alkaline basalt-dacite sequence of Salina to the shoshonites of Stromboli and the potassic leucite-bearing basalt to rhyolite series of Vulcano, Whole-rock δ 18O values range from +6.3‰ to +8.5‰, but in some cases (14 samples) 18O enrichment by post-crystallization hydration and low-temperature alteration is suspected, and an empirical correction for excess water yields a primary magmatic δ 18O range of +6.1‰ to +8.5‰ . Variations in δ 18O exhibit a compositional dependence, increased δ 18O values characterize the evolved samples of the various magmatic series, and δ 18O-SiO 2 trends are steeper than those predicted for closed system fractional crystallization. In general, O isotope variations are accompanied by only small shifts in radiogenic isotope ratios and, while weak correlations between δ 18O and 87Sr/ 86Sr etc., are observed within individual fractionation series, it is apparent that these radiogenic isotope variations are much smaller than the ranges for the whole data set. A two-stage model of magma genesis is proposed in which hybridization of the mantle by the introduction of subducted sediments gave rise to a range of radiogenic isotope ratios at fairly constant δ 18O. Subsequently, magmas derived from the heterogeneous mantle evolved within crustal magma chambers by AFC, involving assimilation of 18O-rich crust, and giving rise to evolved magmas with high δ 18O, decreased 206Pb/ 204Pb, but with only slightly higher 87Sr/ 86Sr and slightly lower 143Nd/ 144Nd.

  1. Isomers in 128Pd and 126Pd: evidence for a robust shell closure at the neutron magic number 82 in exotic palladium isotopes. (United States)

    Watanabe, H; Lorusso, G; Nishimura, S; Xu, Z Y; Sumikama, T; Söderström, P-A; Doornenbal, P; Browne, F; Gey, G; Jung, H S; Taprogge, J; Vajta, Zs; Wu, J; Yagi, A; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Jungclaus, A; Kameda, D; Kim, G D; Kim, Y K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Moon, C-B; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Nishimura, D; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Simpson, G S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yoshinaga, K


    The level structures of the very neutron-rich nuclei 128Pd and 126Pd have been investigated for the first time. In the r-process waiting-point nucleus 128Pd, a new isomer with a half-life of 5.8(8) μs is proposed to have a spin and parity of 8(+) and is associated with a maximally aligned configuration arising from the g(9/2) proton subshell with seniority υ=2. For 126Pd, two new isomers have been identified with half-lives of 0.33(4) and 0.44(3) μs. The yrast 2(+) energy is much higher in 128Pd than in 126Pd, while the level sequence below the 8(+) isomer in 128Pd is similar to that in the N=82 isotone 130Cd. The electric quadrupole transition that depopulates the 8(+) isomer in 128Pd is more hindered than the corresponding transition in 130Cd, as expected in the seniority scheme for a semimagic, spherical nucleus. These experimental findings indicate that the shell closure at the neutron number N=82 is fairly robust in the neutron-rich Pd isotopes.

  2. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite (United States)

    Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J.


    The equilibrium fractionation of O isotopes between synthetic siderite and water has been measured at temperatures ranging from 33?? to 197??C. The fractionation between siderite and water over this temperature range can be represented by the equation: 103 ln ?? = 3.13 ?? 106T-2 - 3.50. Comparison between the experimental and theoretical fractionations is favorable only at approximately 200??C; at lower temperatures, they generally differ by up to 2 permil. Siderite was prepared by the slow addition of ferrous chloride solutions to sodium bicarbonate solutions at the experimental temperatures. It was also used to determine the O isotope fractionation factors between phosphoric acid liberated CO2 and siderite. The fractionation factors for this pair at 25?? and 50??C are 1.01175 and 1.01075, respectively. Preliminary results of the measured C isotope fractionation between siderite and Co2 also indicate C isotopic equilibrium during precipitation of siderite. The measured distribution of 13C between siderite and CO2 coincides with the theoretical values only at about 120??C. Experimental and theoretical C fractionations differ up to 3 permil at higher and lower temperatures. ?? 1988.

  3. Seasonality of bottom water temperature in the northern North Sea reconstructed from the oxygen isotope composition of the bivalve Arctica islandica (United States)

    Trofimova, Tamara; Andersson, Carin; Bonitz, Fabian


    The seasonality of temperature changes is an important characteristic of climate. However, observational data for the ocean are only available for the last 150 year from a limited number of locations. Prior to 18th century information is only available from proxy reconstructions. The vast majority of such reconstructions depend on land-based archives, primarily from dendrochronology. Established marine proxy records for the ocean, especially at high latitudes, are both sparsely distributed and poorly resolved in time. Therefore, the identification and development of proxies for studying key ocean processes at sub-annual resolution that can extend the marine instrumental record is a clear priority in marine climate science. In this study, we have developed a record of early Holocene seasonal variability of bottom water temperature from the Viking Bank in the northern most North Sea. This area is of a particular interest since the hydrography is controlled by the inflow of Atlantic water. The reconstruction is based on the oxygen isotope composition of the growth increments in two sub-fossil shells of Arctica islandica (Bivalvia), dated to 9600-9335 cal. yr BP. By combining radiocarbon dating and sclerochronological techniques a floating chronology spanning over 200 years was constructed. Using the chronology as an age model, oxygen isotope measurements from 2 shells were combined into a 22-years long record. The results from this oxygen isotope record are compared with stable oxygen isotope profiles from modern shells to estimate changes in the mean state and seasonality between present and early Holocene. Shell-derived oxygen isotope values together with ice-volume corrected oxygen isotope values for the seawater were used to calculate bottom-water temperatures on a sub-annual time-scale. Preliminary results of the reconstructed early Holocene bottom water temperature indicate higher seasonality and lower minimum temperature compared to the present.

  4. Evaluation of perchlorate sources in the Rialto-Colton and Chino California subbasins using chlorine and oxygen isotope ratio analysis (United States)

    Hatzinger, Paul B.; Böhlke, John Karl; Izbicki, John; Teague, Nicholas F.; Sturchio, Neil C.


    Perchlorate (ClO4-) in groundwater can be from synthetic or natural sources, the latter of which include both historical application of imported nitrate fertilizers from the Atacama Desert of Chile and naturally deposited ClO4- that forms atmospherically and accumulates in arid regions such as the southwestern US. The objective of this study was to evaluate the use of isotopic data to distinguish sources of ClO4- in groundwater in a specific region of the Rialto-Colton and Chino, CA groundwater subbasins (Study Area). This region includes two groundwater ClO4- plumes emanating from known military/industrial source areas, and a larger area outside of these plumes having measurable ClO4-. Perchlorate extracted from wells in this region was analyzed for chlorine and oxygen stable isotope ratios (δ37Cl, δ18O, δ17O) and radioactive chlorine-36 (36Cl) isotopic abundance, along with other geochemical, isotopic, and hydrogeologic data. Isotope data indicate synthetic, Atacama, and indigenous natural ClO4- were present in the Study Area. Stable isotope data from nearly all sampled wells within the contours of the two characterized plumes, including those located in a perched zone and within the regional groundwater aquifer, were consistent with a dominant synthetic ClO4- source. In wells downgradient from the synthetic plumes and in the Chino subbasin to the southwest, isotopic data indicate the dominant source of ClO4- largely was Atacama, presumably from historical application of nitrate fertilizer in this region. Past agricultural land use and historical records are consistent with this source being present in groundwater. The 36Cl and δ18O data indicate that wells having predominantly synthetic or Atacama ClO4- also commonly contained small fractions of indigenous natural ClO4-. The indigenous ClO4- was most evident isotopically in wells having the lowest overall ClO4- concentrations (< 1 μg/L), consistent with its occurrence as a low-level background constituent

  5. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars (United States)

    Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.


    Banded iron formations (BIFs) contain appreciable amounts of ferric iron (Fe3+). The mechanism by which ferrous iron (Fe2+) was oxidized into Fe3+ in an atmosphere that was globally anoxic is highly debated. Of the three scenarios that have been proposed to explain BIF formation, photo-oxidation by UV photons is the only one that does not involve life (the other two are oxidation by O2 produced by photosynthesis, and anoxygenic photosynthesis whereby Fe2+ is directly used as electron donor in place of water). We experimentally investigated iron and oxygen isotope fractionation imparted by iron photo-oxidation at a pH of 7.3. The iron isotope fractionation between precipitated Fe3+-bearing lepidocrocite and dissolved Fe2+ follows a Rayleigh distillation with an instantaneous 56Fe/54Fe fractionation factor of + 1.2 ‰. Such enrichment in the heavy isotopes of iron is consistent with the values measured in BIFs. We also investigated the nature of the mass-fractionation law that governs iron isotope fractionation in the photo-oxidation experiments (i.e., the slope of the δ56Fe-δ57Fe relationship). The experimental run products follow a mass-dependent law corresponding to the high-T equilibrium limit. The fact that a ∼3.8 Gyr old BIF sample (IF-G) from Isua (Greenland) falls on the same fractionation line confirms that iron photo-oxidation in the surface layers of the oceans was a viable pathway to BIF formation in the Archean, when the atmosphere was largely transparent to UV photons. Our experiments allow us to estimate the quantum yield of the photo-oxidation process (∼0.07 iron atom oxidized per photon absorbed). This yield is used to model iron oxidation on early Mars. As the photo-oxidation proceeds, the aqueous medium becomes more acidic, which slows down the reaction by changing the speciation of iron to species that are less efficient at absorbing UV-photons. Iron photo-oxidation in centimeter to meter-deep water ponds would take months to years to

  6. Temperature dependence of oxygen isotope fractionation in coccolith calcite: A culture and core top calibration of the genus Calcidiscus (United States)

    Candelier, Yaël; Minoletti, Fabrice; Probert, Ian; Hermoso, Michaël


    Reconstructions of seawater temperature based on measurement of oxygen isotopes in carbonates mostly derive from analyses of bulk sediment samples or manually picked foraminifera. The temperature dependence of 18O fractionation in biogenic calcite was first established in the 1950s and the objective of the present study is to re-evaluate this temperature dependence in coccolith calcite with a view to developing a robust proxy for reconstructing "vital effect"-free δ18O values. Coccoliths, the micron-sized calcite scales produced by haptophyte algae that inhabit surface mixed-layer waters, are a dominant component of pelagic sediments. Despite their small size, recent methodological developments allow species-specific separation (and thus isotopic analysis) of coccoliths from bulk sediments. This is especially the case for Calcidiscus spp. coccoliths that are relatively easy to separate out from other sedimentary carbonate grains including other coccolith taxa. Three strains of coccolithophores belonging to the genus Calcidiscus and characterised by distinct cell and coccolith diameters were grown in the laboratory under controlled temperature conditions over a range from 15 to 26 °C. The linear relationship that relates 18O fractionation to the temperature of calcification is here calibrated by the equation: T [°C] = -5.83 × (δ18OCalcidiscus - δ18Omedium) + 4.83 (r = 0.98). The slope of the regression is offset of ˜-1.1‰ from that of equilibrium calcite. This offset corresponds to the physiologically induced isotopic effect or "vital effect". The direction of fractionation towards light isotopic values is coherent with previous reports, but the intensity of fractionation in our dilute batch cultures was significantly closer to equilibrium compared to previously reported offset values. No significant isotopic difference was found between the three Calcidiscus coccolithophores, ruling out a control of the cell geometry on oxygen isotope fractionation within

  7. Heavy Isotope Composition of Oxygen in Zircon from Soil Sample 14163: Lunar Perspective of an Early Ocean on the Earth (United States)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.


    Thirty oxygen analyses of a large (sub-millimetre) zircon grain from the lunar soil sample 14163 have been determined using CAMECA 1270 ion microprobe. The sample 14163 was returned form the Fra Mauro region by Apollo 14 mission. Zircon grain of 0.6-0.8 mm in size extracted from the sample was imaged using CL detector fitted to the Philips Electron Microscope in order to reveal internal structure. Oxygen isotopes have been analysed during two sessions. The first set of data was collected using the original mount where the grain was set in the resin attached to the glass slide. This resulted in the two complications: (i) standard zircon has to be analysed from the separate mount and (ii) the lunar zircon grain was rased in the holder compared to the standard. In order to investigate, if the elevated oxygen compositions observed during this session could have resulted from this difference in geometric configuration during the standard and sample analyses, the lunar zircon was extracted from the original mount, remounted with the standard chip in the new resin disk and reanalysed during the second session. All analyses made during the first session show delta O-18 values heavier than 6.0%. The second set of data has a wider spread of delta O-18 values with some values as low as 5.6%. Nevertheless, a half of observed delta O-18 values in this set is also higher than 6.0%. Slightly lighter oxygen compositions observed during the second session indicate possible dependence of measured delta O-18 values on the geometry of analysed samples. Presence of zircons with similar heavy oxygen isotope compositions on the Moon, which neither had liquid water or felic crust similar to that on the Earth nor ever developed regime similar to plate tectonics, suggests that other mechanisms can be responsible for elevated delta O-18 values in zircons. This implies that there is no support for the presence of an ocean on the surface of the early Earth and as the ocean appears to be an

  8. Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis. (United States)

    Spangenberg, Jorge E


    The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen ((2)H) and oxygen ((18)O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659 days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. Changes of up to +5‰ for δ(2)H values and +2.0‰ for δ(18)O values were measured for water after more than 1 year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal™ cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original δ(2)H and δ(18)O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and

  9. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur (United States)

    Balci, N.; Mayer, B.; Shanks, Wayne C.; Mandernack, K.W.


    Studies of metal sulfide oxidation in acid mine drainage (AMD) systems have primarily focused on pyrite oxidation, although acid soluble sulfides (e.g., ZnS) are predominantly responsible for the release of toxic metals. We conducted a series of biological and abiotic laboratory oxidation experiments with pure and Fe-bearing sphalerite (ZnS & Zn 0.88Fe 0.12S), respectively, in order to better understand the effects of sulfide mineralogy and associated biogeochemical controls of oxidation on the resultant ?? 34S and ?? 18O values of the sulfate produced. The minerals were incubated in the presence and absence of Acidithiobacillus ferrooxidans at an initial solution pH of 3 and with water of varying ?? 18O values to determine the relative contributions of H 2O-derived and O 2-derived oxygen in the newly formed sulfate. Experiments were conducted under aerobic and anaerobic conditions using O 2 and Fe(III) aq as the oxidants, respectively. Aerobic incubations with A. ferrooxidans, and S o as the sole energy source were also conducted. The ??34SSO4 values from both the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq produced sulfur isotope fractionations (??34SSO4-ZnS) of up to -2.6???, suggesting the accumulation of sulfur intermediates during incomplete oxidation of the sulfide. No significant sulfur isotope fractionation was observed from any of the aerobic experiments. Negative sulfur isotope enrichment factors (??34SSO4-ZnS) in AMD systems could reflect anaerobic, rather than aerobic pathways of oxidation. During the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq all of the sulfate oxygen was derived from water, with measured ?? 18OSO 4-H 2O values of 8.2??0.2??? and 7.5??0.1???, respectively. Also, during the aerobic oxidation of ZnS Fe and S o by A. ferrooxidans, all of the sulfate oxygen was derived from water with similar measured ?? 18OSO 4-H 2O values of 8.1??0.1??? and 8.3??0.3???, respectively. During biological oxidation

  10. Oxygen-18 measurement of Andalusian olive oils by continuous flow pyrolysis/isotope ratio mass spectrometry. (United States)

    Aramendía, María A; Marinas, Alberto; Marinas, José M; Moreno, José M; Moalem, Mustafa; Rallo, Luis; Urbano, Francisco J


    We report a method for the determination of delta(18)O isotopic abundance in olive oils. The results obtained by applying the method to various Andalusian oil samples obtained in the 2004/05 and 2005/06 seasons are discussed in relation to olive variety, geographical origin, climate and ripeness index. Application of the method to samples of assured varietal purity exposed the influence of olive variety and origin but not of the ripeness index. The delta(18)O values for the 2005/06 season are higher on average than those obtained in the colder 2004/05 season. Results obtained for samples of the Picual and Hojiblanca varieties in Córdoba and Málaga in the 2005/06 season suggest a correlation between enrichment in heavy isotopes and latitude whereas no clear-cut effect of altitude was observed. Copyright (c) 2007 John Wiley & Sons, Ltd.

  11. Aluminum and Oxygen Isotopic Ratios in Meteorite Grains: a Puzzle Solved By Nuclear and Stellar Physics (United States)

    Palmerini, Sara


    Low mass stars contribute to the chemical evolution of the Galaxy as well as more massive supernova progenitors. Indeed the limited amount of processed matter released into the interstellar medium by small objects is compensated by the large number of them. At the late stages of their evolution, stars with mass smaller than 3M⊙ undergo the Asymptotic Giant Branch phase, which has been found to be a unique site for synthesis of some nuclei heavier than Fe through slow neutron capture reactions. AGB nucleosynthesis is also characterized by H-burning coupled with mixing phenomena, which has been proved to account for anomalies in light element isotopic abundances from Li to Al observed in stellar spectra and meteorites. We present here the case of a large number of meteorite grains, whose isotopic composition offers a puzzles that only Nuclear and Stellar Physics coupled together might solve.

  12. RIB Production at LNL: the EXOTIC Facility (United States)

    Marco, Mazzocco


    Nuclear reactions involving radioactive isotopes are extremely relevant in several astrophysical scenarios, from the Big-Bang Nucleosynthesis to Supernovae explosions. In this contribution the production of Radioactive Ion Beams (RIBs) by means of the in-flight technique is reviewed. In particular, the use of direct reactions in inverse kinematics for the production of light weakly-bound RIBs by means of the facility EXOTIC at INFN-LNL (Italy) will be described in detail.

  13. Reconstruction of seawater chemistry from deeply subducted oceanic crust; hydrogen and oxygen isotope of lawsonite eclogites preserving pillow structure (United States)

    Hamabata, D., VI; Masuyama, Y.; Tomiyasu, F.; Ueno, Y.; Yui, T. F.; Okamoto, K.


    In order to understand evolution of life, change of seawater chemistry from Hadean, Archean to present is significant. Pillow structure is well-preserved in the Archean greenstone belt (e.g. Komiya et al., 1999). Oxygen and hydrogen isotope of rims in the pillow is useful conventional tool to decipher chemistry of Paleao-seawater from Archean to Present. However, Archean greenstone belt suffered regional metamorphism from greenschist to Amphibolite facies conditions. Therefore, it is necessary to testify the validity of pillow chemistry from recent (Phanerozoic) metamorphosed greenstone. We have systematically collected pillowed greenstone from blueschist and eclogites. Two eclogite exhibiting pillow structures were chosen for oxygen and hydrogen isotope analysis. One is from Corsica (lawsonite eclogite collected with Dr. Alberto Vidale Barbarone) and another is from Cazadero, Franciscan belt (collected by Dr. Tatsuki Tsujimori). The both are ascribed as MORB from major and trace bulk chemistry and Ca is rich in the core and Na is poor in the rims. The former exhibits garnet, omphacite, lawsonite, and glacophane. Phengite is in core of the pillow and chlorite is in the rims. In the latter, besides garnet, omphacite, epdiote and glaucophane, chlorite is recognized with phengite in the core. Glaucophane is richer in the rims from the both samples, therefore istope analysis of glaucophane was done. Mineral separation was carefully done using micro-mill, heavy liquid and isodynamic separator. 20 mg specimens were used for oxygen isotope analysis and 2mg were for hydrogen analysis. δ18O of the all analysis (7.7 to 8.3) is within the range of unaltered igneous oceanic crust and high temperature hydrothermal alteration although rims (8.3 for Franciscan and 8.0 for Corsica) are higher than cores (7.7 for Franciscan and Corsica). δD data is also consistent with hydrothermal alteration. It is relative higher in core from the Corsica and Franciscan (-45 and -56) than of the

  14. Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric CO2 by the Phoenix Lander (United States)

    Niles, Paul B.; Boynton, W. V.; Hoffman, J. H.; Ming, D. W.; Hamara, D.


    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars [1]. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated Delta(sup 13)C values measured in carbonates in martian meteorites [2-4] it has been proposed that the martian atmosphere was enriched in 13C [8]. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated Delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in C-13 relative to CO2 in the terrestrial atmosphere[ 7, 9-11]. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander [12] included a magnetic-sector mass spectrometer (EGA) [13] which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils.

  15. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere. (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J


    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  16. Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa (United States)

    Heilweil, V.M.; Solomon, K.D.; Gingerich, S.B.; Verstraeten, Ingrid M.


    Stable isotopes (??18O, ??2H), tritium (3H), and helium isotopes (3He, 4He) were used for evaluating groundwater recharge sources, flow paths, and residence times of three watersheds in the Cape Verde Islands (West Africa). Stable isotopes indicate the predominance of high-elevation precipitation that undergoes little evaporation prior to groundwater recharge. In contrast to other active oceanic hotspots, environmental tracers show that deep geothermal circulation does not strongly affect groundwater. Low tritium concentrations at seven groundwater sites indicate groundwater residence times of more than 50 years. Higher tritium values at other sites suggest some recent recharge. High 4He and 3He/4He ratios precluded 3H/3He dating at six sites. These high 3He/4He ratios (R/Ra values of up to 8.3) are consistent with reported mantle derived helium of oceanic island basalts in Cape Verde and provided end-member constraints for improved dating at seven other locations. Tritium and 3H/3He dating shows that S??o Nicolau Island's Ribeira Faj?? Basin has groundwater residence times of more than 50 years, whereas Fogo Island's Mosteiros Basin and Santo Ant??o Island's Ribeira Paul Basin contain a mixture of young and old groundwater. Young ages at selected sites within these two basins indicate local recharge and potential groundwater susceptibility to surface contamination and/or salt-water intrusion. ?? Springer-Verlag 2009.

  17. Correlated carbon and oxygen isotope signatures in eclogitic diamonds with coesite inclusions: A SIMS investigation of diamonds from Guaniamo, Argyle and Orapa mines (United States)

    Schulze, D. J.; Page, Z.; Harte, B.; Valley, J.; Channer, D.; Jaques, L.


    Using ion microprobes and secondary-ion mass spectrometry we have analyzed the carbon and oxygen isotopic composition of eclogite-suite diamonds and their coesite inclusions, respectively, from three suites of diamonds of Proterozoic age. Extremely high (for the mantle) oxygen isotope values (delta 18O of +10.2 to +16.9 per mil VSMOW) are preserved in coesites included in eclogitic diamonds from Guaniamo, Venezuela (Schulze et al., Nature, 2003), providing compelling evidence for an origin of their eclogite hosts by subduction of sea water altered ocean floor basalts. In situ SIMS analyses of their host diamonds yield carbon isotope values (delta 13C) of -12 to -18 per mil PDB. SIMS analyses of coesite inclusions from Argyle, Australia diamonds previously analyzed by combustion methods for d13C composition (Jaques et al., Proc. 4th Kimb. Conf, 1989), also yield anomalously high d18O values (+6.8 to +16.0 per mil VSMOW), that correlate with the anomalously low carbon isotope values (-10.3 to -14.1 per mil PDB). One coesite-bearing diamond from Orapa, Botswana analyzed in situ by SIMS has a d18O value of the coesite of +8.5 per mil VSMOW and a d13C value of the adjacent diamond host of -9.0 per mil PDB. A second Orapa stone has a SIMS carbon isotope compositional range of d13C = -14 to -16 per mil PDB, but the coesite is too small for ion probe analysis. At each of these localities, carbon isotope values of coesite-bearing diamonds that are lower than typical of mantle carbon are correlated with oxygen isotope compositions of included coesites that are substantially above the common mantle oxygen isotope range. Such results are not in accord with diamond genesis models involving formation of eclogitic diamonds from igneous melts undergoing fractionation in the mantle or by crystallization from primordial inhomogeneities in Earth's mantle. By analogy with the oxygen isotope compositions of altered ocean floor basalts and Alpine (subduction zone) eclogites they are

  18. Diplodon shells from Northwest Patagonia as continental proxy archives: Oxygen isotopic results and sclerochronological analyses (United States)

    Soldati, A. L.; Beierlein, L.; Jacob, D. E.


    Freshwater mussels of the genus Diplodon (Bivalvia, Hyriidae) are the most abundant bivalve (today and in the past) in freshwater bodies at both sides of the South-Andean Cordillera. There are about 25 different Diplodon genera in Argentina and Chile that could be assigned almost completely to the species Diplodon chilensis (Gray, 1828) and two subspecies: D. ch. chilensis and D. ch. patagonicus; this latter species is found in Argentina between Mendoza (32˚ 52' S; 68˚ 51' W) and Chubut (45˚ 51' S; 67˚ 28' W), including the lakes and rivers of the target area, the Nahuel Huapi National Park (Castellanos, 1960). Despite their wide geographic distribution, Diplodon species have only rarely been used as climate archives in the southern hemisphere. Kaandorp et al. (2005) demonstrated for Diplodon longulus (Conrad 1874) collected from the Peruvian Amazonas that oxygen isotopic patterns in the shells could be used in order to reconstruct the precipitation regime and dry/wet seasonal of the monsoonal system in Amazonia. Although this study demonstrated the potential of Diplodon in climatological and ecological reconstructions in the southern hemisphere, as of yet, no systematic study of Diplodon as a multi-proxy archive has been undertaken for the Patagonian region. In this work we present sclerochronological analyses supported by ^18Oshell in recent mussel of Diplodon chilensis patagonicus (D'Orbigny, 1835) collected at Laguna El Trébol (42°S-71°W, Patagonia Argentina), one of the best studied water bodies in the region for paleoclimate analysis. Water temperature was measured every six hours for one year using a temperature sensor (Starmon mini®) placed at 5m depth in the lake, close to a mussel bank. Additionally, ^18Owater was measured monthly for the same time range.g^18Oshell values obtained by micro-milling at high spatial resolution in the growth increments of three Diplodon shells were compared to these records, and to air temperature and

  19. Low-temperature aqueous alteration on the CR chondrite parent body: Implications from in situ oxygen-isotope analyses (United States)

    Jilly-Rehak, Christine E.; Huss, Gary R.; Nagashima, Kazu; Schrader, Devin L.


    The presence of hydrated minerals in chondrites indicates that water played an important role in the geologic evolution of the early Solar System; however, the process of aqueous alteration is still poorly understood. Renazzo-like carbonaceous (CR) chondrites are particularly well-suited for the study of aqueous alteration. Samples range from being nearly anhydrous to fully altered, essentially representing snapshots of the alteration process through time. We studied oxygen isotopes in secondary-minerals from six CR chondrites of varying hydration states to determine how aqueous fluid conditions (including composition and temperature) evolved on the parent body. Secondary minerals analyzed included calcite, dolomite, and magnetite. The O-isotope composition of calcites ranged from δ18O ≈ 9 to 35‰, dolomites from δ18O ≈ 23 to 27‰, and magnetites from δ18O ≈ -18 to 5‰. Calcite in less-altered samples showed more evidence of fluid evolution compared to heavily altered samples, likely reflecting lower water/rock ratios. Most magnetite plotted on a single trend, with the exception of grains from the extensively hydrated chondrite MIL 090292. The MIL 090292 magnetite diverges from this trend, possibly indicating an anomalous origin for the meteorite. If magnetite and calcite formed in equilibrium, then the relative 18O fractionation between them can be used to extract the temperature of co-precipitation. Isotopic fractionation in Al Rais carbonate-magnetite assemblages revealed low precipitation temperatures (∼60 °C). Assuming that the CR parent body experienced closed-system alteration, a similar exercise for parallel calcite and magnetite O-isotope arrays yields "global" alteration temperatures of ∼55 to 88 °C. These secondary mineral arrays indicate that the O-isotopic composition of the altering fluid evolved upon progressive alteration, beginning near the Al Rais water composition of Δ17O ∼ 1‰ and δ18O ∼ 10‰, and becoming increasingly

  20. Influences on the stable oxygen and carbon isotopes in gerbillid rodent teeth in semi-arid and arid environments: Implications for past climate and environmental reconstruction (United States)

    Jeffrey, Amy; Denys, Christiane; Stoetzel, Emmanuelle; Lee-Thorp, Julia A.


    The stable isotope composition of small mammal tissues has the potential to provide detailed information about terrestrial palaeoclimate and environments, because their remains are abundant in palaeontological and archaeological sites, and they have restricted home ranges. Applications to the Quaternary record, however, have been sparse and limited by an acute lack of understanding of small mammal isotope ecology, particularly in arid and semi-arid environments. Here we document the oxygen and carbon isotope composition of Gerbillinae (gerbil) tooth apatite across a rainfall gradient in northwestern Africa, in order to test the relative influences of the 18O/16O in precipitation or moisture availability on gerbil teeth values, the sensitivity of tooth apatite 13C/12C to plant responses to moisture availability, and the influence of developmental period on the isotopic composition of gerbil molars and incisors. The results show that the isotopic composition of molars and incisors from the same individuals differs consistent with the different temporal periods reflected by the teeth; molar teeth are permanently rooted and form around the time of birth, whereas incisors grow continuously. The results indicate that tooth choice is an important consideration for applications as proxy Quaternary records, but also highlights a new potential means to distinguish seasonal contexts. The oxygen isotope composition of gerbil tooth apatite is strongly correlated with mean annual precipitation (MAP) below 600 mm, but above 600 mm the teeth reflect the oxygen isotope composition of local meteoric water instead. Predictably, the carbon isotope composition of the gerbil teeth reflected C3 and C4 dietary inputs, however arid and mesic sites could not be distinguished because of the high variability displayed in the carbon isotope composition of the teeth due to the microhabitat and short temporal period reflected by the gerbil. We show that the oxygen isotope composition of small

  1. The oxygen isotopic composition of phytoliths from tropical rainforest soils (Queensland, Australia): application of a new paleoenvironmental tool (United States)

    Alexandre, A.; Crespin, J.; Sylvestre, F.; Sonzogni, C.; Hilbert, D. W.


    Variations in the oxygen isotopic composition of precipitation (δ18Oprecipitation) in inter-tropical areas mainly record variations in water sources, amounts of precipitation, and atmospheric temperature and provide information regarding local climate and regional atmospheric circulation changes. On continents, fossil biogenic minerals and speleothems formed in isotopic equilibrium with water can produce continuous δ18O records and are becoming increasingly valuable for reconstructing past climate changes. Here, we explore the efficiency and limitations of using the oxygen isotopic composition of wood phytoliths (δ18Owood phytolith) from tropical rainforest soils as a suitable proxy for atmospheric temperature and δ18Oprecipitation values, under conditions that are assumed to be non-evaporative. Soil phytolith assemblages, that should contain 100s of years of phytolith production, were collected along four altitude, temperature, and precipitation gradients in the Queensland rainforests (Australia). Oxygen isotopic analyses were performed on 1.6 mg phytolith samples, after controlled isotopic exchange (CIE), using the IR Laser-Heating Fluorination Technique. Long-term mean annual precipitation (MAP) and mean annual temperature (MAT) values at the sampled sites were obtained using a regional GIS database. The δ18Oprecipitation values were estimated. The δ18Owood phytolith values from the leeward slopes were scattered but recorded the modern combination of weighted mean annual δ18Oprecipitation values and MAT. The empirical relationship was &Delta18Owood phytolith-precipitation (‰ vs. VSMOW) = -0.4 (±0.2) t (°C) + 46 (±3) (R2 = 0.4, p<0.05; n=12). δ18Oprecipitation estimates were close to estimates for δ18Oforming water when using the temperature-dependant relationships previously described for sedimentary diatoms and natural quartz. However, they were 3 ‰ higher than estimates for δ18Oforming water when using the fractionation relationship obtained

  2. Variation of hydrogen, carbon, nitrogen, and oxygen stable isotope ratios in an American diet: fast food meals. (United States)

    Chesson, Lesley A; Podlesak, David W; Thompson, Alexandra H; Cerling, Thure E; Ehleringer, James R


    The stable isotopes of hydrogen, carbon, nitrogen, and oxygen provide insights into a heterotrophic organism's diet and geographic origin. Although the contribution of food delta (2)H and delta (18)O to the final tissue signal will not vary for constrained diets, it will for animals eating varied diets, that is, humans. This study surveyed the isotopic range in one portion of the American diet, fast food meals. Hamburger patties, buns, and French fries from national chain restaurants across the United States and from local restaurants (Salt Lake City, UT, and Charleston, SC) were analyzed for delta (2)H, delta (13)C, delta (15)N (patties only) and delta (18)O values. Patties and buns from local Utah restaurants were more depleted for delta (2)H, delta (13)C, and delta (18)O values than samples from other restaurants. There were no significant differences in delta values among French fries. All three components of the fast food meal displayed significant linear delta (2)H versus delta (18)O relationships (delta (2)H = 7.8delta (18)O - 237 per thousand, delta (2)H = 5.9delta (18)O - 258 per thousand, and delta (2)H = 3.3delta (18)O - 231 per thousand for patties, buns, and fries, respectively). The findings show that significant predictable variation exists in the stable isotopic composition of fast food meals. It is proposed that the variation in delta (13)C values of hamburger (beef) patties is indicative of differences in cattle-rearing practices, whereas delta (2)H and delta (18)O values are evidence of geographic variation in food sources. Although the patterns support the concept of a "continental" supermarket diet, there appears to be a strong regional component within the diet.

  3. Oxygen isotope in archaeological bioapatites from India: Implications to climate change and decline of Bronze Age Harappan civilization. (United States)

    Sarkar, Anindya; Mukherjee, Arati Deshpande; Bera, M K; Das, B; Juyal, Navin; Morthekai, P; Deshpande, R D; Shinde, V S; Rao, L S


    The antiquity and decline of the Bronze Age Harappan civilization in the Indus-Ghaggar-Hakra river valleys is an enigma in archaeology. Weakening of the monsoon after ~5 ka BP (and droughts throughout the Asia) is a strong contender for the Harappan collapse, although controversy exists about the synchroneity of climate change and collapse of civilization. One reason for this controversy is lack of a continuous record of cultural levels and palaeomonsoon change in close proximity. We report a high resolution oxygen isotope (δ(18)O) record of animal teeth-bone phosphates from an archaeological trench itself at Bhirrana, NW India, preserving all cultural levels of this civilization. Bhirrana was part of a high concentration of settlements along the dried up mythical Vedic river valley 'Saraswati', an extension of Ghaggar river in the Thar desert. Isotope and archaeological data suggest that the pre-Harappans started inhabiting this area along the mighty Ghaggar-Hakra rivers fed by intensified monsoon from 9 to 7 ka BP. The monsoon monotonically declined after 7 ka yet the settlements continued to survive from early to mature Harappan time. Our study suggests that other cause like change in subsistence strategy by shifting crop patterns rather than climate change was responsible for Harappan collapse.

  4. Arctic Ocean Cyclostratigraphy: An Alternative to Marine Oxygen Isotope curves as measures of Cryospheric and Sea-Level History (United States)

    Cronin, T. M.; Marzen, R.; O'Regan, M.; Dwyer, G. S.


    Marine benthic and planktic foraminiferal oxygen isotope (δ18O) records, in conjunction with uranium-series dated fossil coral terraces, are often used as proxies of polar ice volume and sea level changes. However, multiple factors affect the δ18O signal in any particular region and corals are subject to large uncertainty due to glacio-isostatic and tectonic processes. An outstanding question is how cyclostratigraphic changes in sediments from central Arctic Ocean (CAO) submarine ridges (Northwind, Mendeleev, Lomonosov) record variations in the cryospheric history of the Northern Hemisphere (NH) on orbital timescales, and whether these changes can be used as a proxy for land ice volume. In this study, we review lithological (grain size, bulk density, color, mineral content), geochemical (manganese, δ18O, Mg/Ca ratios) and microfaunal (planktic, benthic foraminifera, ostracodes) evidence from several dozen CAO cores that, depending on the site, exhibit orbital scale variability back to Marine Oxygen Isotope Stages (MIS) 5 through 17. These proxies are sensitive to changes in land ice, ice shelves, sea ice, nutrient influx and primary productivity, temperature, and surface-to-seafloor organic matter flux. Reconstructed composite CAO records reveal glacial-interglacial changes in ice cover, surface-water productivity, and at some sites post-depositional sediment processes. Results show the Arctic system exhibits a series of interglacials and strong interstadials of roughly equal magnitude seen in spikes in several proxies. It is noteworthy that seasonally sea-ice free conditions during MIS substages (MIS 3, 5a, 5c, 7a, 7c, 9c, 11a) are comparable to those of "peak" interglacials (MIS 5, 7e, 9e, 11c). Warm periods are associated with ice sheet, ice shelf and sea ice cover minima and marine productivity maxima and are spaced at approximately 20-kyr periods. Discrepancies between the Arctic sediment records and extra-Arctic proxies of global ice volume suggest

  5. The relationship between stable oxygen and hydrogen isotope ratios of water in astomatal plants (United States)

    Cooper, Lee W.; DeNiro, Michael J.; Keeley, Jon E.; Taylor, H. P.; O'Neil, J. R.; Kaplan, I.R.


    Isotropic fractination of leaf water during transpiration is influenced by both equilibrium and kinetic factors. Previous workers have predicted that the influence of each factor varies depending upon the path of water loss,m whether centralized through stomata, or diffuse through the cuticle. We studied the relationship between the δD and δ18O values of lead and stem waters of laurel sumac, Rhus laurina (Nutt.) T. & G., and its parasite, dodder, Cuscuta subinclusa D. & H., growing in the field. Stomatal transpiration, associated with more stagnant boundary layers, predominates in R. laurina; cuticular transpiration, associated with more turbulent boundary layers, is most important in the largely astomatal C. subinclusa. We also studied the diurnal variation in the δD and δ18O values of lead waters of two astomatal plants, Chiloschista lunifera (Rchb. F.) J.J.S. and Stylites andicola Amstutz, and two stomatal plants, Tillandsia balbisiana Schult. and Lilaeopsis schaffneriana (Schlecht.) C. & R., growing with them under the same conditions in the laboratory. Slopes, m, for the relation δD = mδ18O + b were significantly higher for stem waters in C. subinclusa that for leaf waters in R. laurina (1.77), consistent with the difference in the boundary layers through which water was lost in the two species. The magnitude of diurnal heavy isotope enrichment of tissue water was smaller in C. subinclusa than in R. laurina, which is also consistent with predictions concerning evapotranspiration through difference types of boundary layers. The slopes, m, in plant waters in the laboratory experiments, conducted at high humidity, were not different than those observed during evaporation of water from pans, regardless of plant anatomy. The observation suggests that cuticular transpiration is important in influencing isotopic fractionation of water only at low humidity. Our results indicate that the isotopic composition of water vapor released by plants in arid regions may

  6. A dual isotopic approach using radioactive phosphorus and the isotopic composition of oxygen associated to phosphorus to understand plant reaction to a change in P nutrition. (United States)

    Pfahler, Verena; Tamburini, Federica; Bernasconi, Stefano M; Frossard, Emmanuel


    Changing the phosphorus (P) nutrition leads to changes in plant metabolism. The aim of this study was to investigate how these changes are reflected in the distribution of (33)P and the isotopic composition of oxygen associated to P (δ(18)OP) in different plant parts of soybean (Glycine max cv. Toliman). Two P pools were extracted sequentially with 0.3 M trichloroacetic acid (TCA P) and 10 M nitric acid (HNO3; residual P). The δ(18)OP of TCA P in the old leaves of the - P plants (23.8‰) significantly decreased compared to the + P plants (27.4‰). The (33)P data point to an enhanced mobilisation of P from residual P in the old leaves of the - P plants compared to the + P plants. Omitting P for 10 days lead to a translocation of P from source to sink organs in soybeans. This was accompanied by a significant lowering of the δ(18)OP of TCA P in the source organs due to the enzymatic hydrolysis of organic P. Combining (33)P and δ(18)OP can provide useful insights in plant responses to P omission at an early stage.

  7. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Nagashima, K.; Jones, R.H.

    and isotopic compositions. Three of the spherules, AAS38-43- P55, AAS62-61-P22 and AAS38-188-P43, are fine-grained and vesicular and are classified as relict bearing (Figs. 1 and 2 b, f, g). The vesicular texture indicates escape of volatile elements, mostly... likely as a result of heating during atmospheric entry. The other nine particles have porphyritic textures, similar to textures of porphyritic chondrules. AAS38-43-P38 and AAS62-51-P8 (Figs. 1 and 2 a, h) both contain larger vesicles, located around...

  8. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values?

    CSIR Research Space (South Africa)

    Waterhouse, JS


    Full Text Available Science Letters 201 (2002) 421^430 environmental data, such as ice cores and lake sediments, owing to unambiguous dating of tree rings to precise years. Ring widths and X-ray ab- sorption measurements have been very success...-7-02 J.S. Waterhouse et al. / Earth and Planetary Science Letters 201 (2002) 421^430 tionship is given by Eq. 1: Nl ? Ns ??Oe ? Ok??13h??1? In this model it is assumed that an isotopic steady state has been reached in the leaf and that source water...

  9. Reconstructing Paleoclimate from Oxygen Isotopes and Trace Element Ratios in Olivella biplicata shells (United States)

    Nye, J. W.; Ferguson, J. E.; Johnson, K. R.; Kennett, D. J.


    High resolution records of past sea surface temperature (SST) are not as common in mid to high latitudes as they are in tropical areas. In higher latitude regions, proxy data preserved in marine mollusk shells, often found in archaeological shell middens, could potentially provide these critical records. One promising candidate is the Purple Olive Snail Olivella biplicata, a marine mollusk with an aragonite shell that occurs in subtidal to shallow intertidal zones along the eastern Pacific coast in large quantities. The ubiquity of the snail spatially (from Baja California to British Colombia) and temporally makes it an ideal candidate for study. Previous studies have shown seasonal changes in isotopic signatures from O. biplicata (Eerkens et al 2005, 2007, 2010), however high resolution trace elemental analysis has not been conducted. We measured stable isotope (δ18O and δ13C) and trace element (Sr/Ca, Mg/Ca) composition in two modern shells collected in La Jolla, California and two archaeological shells from ~AD1410 to AD1500 excavated on San Miguel Island (Channel Islands, California). The shells were micromilled along growth lines at 100-150 μm intervals. The resulting powder was analyzed for stable isotopes and trace elements by IRMS and HR-ICPMS respectively. The modern shell data was compared to instrumental SST records from the Scripps Pier. δ18O data from modern O. biplicata follows monthly trends in SST, though fractionation due to biological effects leads to an offset from isotopic equilibrium values. Mg/Ca and Sr/Ca measurements on modern shells allow us to test the viability of these as additional proxies that could help us deconvolve SST from salinity effects. Archaeological sample measurements are utilized to assess the possible effects of early diagenesis on shell geochemistry. Given that a single shell can record nearly a decade of SSTs at monthly resolution and that the species can be found in archaeological sites dating back 10,000 years B

  10. Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system (United States)

    Sharma, Anupam; Kumar, Kamlesh; Laskar, Amzad; Singh, Sunil Kumar; Mehta, Pankaj


    Understanding the sources and compositional characteristics of waters and sediments in the Indus River system is extremely important as its water availability is one of the primary factors for sustenance of the irrigation activities and the socioeconomic status of a very densely populated region of the world. Here we used stable isotopic compositions (δD and δ18O) and strontium isotopic ratio (87Sr/86Sr) in the Indus River water, its tributaries and its small streams (nallahs) in the Indian territory to understand the regional hydrology, water sources, and catchment processes (evaporation, transpiration, recycling, and mixing). The δ18O values in the Indus River system (IRS) ranges from - 16.9‰ to - 12.5‰ and δD from - 122.8‰ to - 88.5‰. The Indus River and its major tributaries (such as the Zanskar, Nubra and Shyok rivers) are characterized by relatively lower δ18O values, whereas TangTse and other small streams contributing to the Indus are relatively enriched in 18O. The local meteoric water line for the IRS was found to be δD = 7.87 × δ18O + 11.41, which is similar to the Global Meteoric Water Line (GMWL) indicating meteoric origin of the water and insignificant secondary evaporation in the catchment. The Deuterium excess (d-excess) in the IRS varies between 6.5‰ and 14.9‰ with an average of 11.7‰, which is mostly higher than the long-term average for the Indian summer monsoon ( 8‰). The higher d-excess value is because of the contribution of moisture from westerlies; a simple mass balance shows 26% water in the main Indus channel is contributed by the westerlies originated from the Mediterranean Sea. The Sr isotope ratio in IRS varies between 0.70515 and 0.71291; wherein the Indus, and its tributary rivers Shyok and Nubra, are characterized by relatively high Sr isotope ratios (avg. 0.71086-0.71243) compared to the Zanskar and TangTse tributaries (Sr 0.709) because of the variation in silicate rock weathering component and carbonate

  11. Helium-oxygen-osmium isotopic and elemental constraints on the mantle sources of the Deccan Traps (United States)

    Peters, Bradley J.; Day, James M. D.; Greenwood, Richard C.; Hilton, David R.; Gibson, Jennifer; Franchi, Ian A.


    The Deccan Traps, a 65 million-year-old continental flood basalt province located in western India, is the result of one of the largest short-lived magmatic events to have occurred on Earth. The nature and composition of its mantle source(s), however, have been difficult to resolve due to extensive assimilation of continental crust into the ascending Traps magmas. To circumvent this issue, using high-precision electron microprobe analysis, we have analyzed olivine grains from MgO-rich (up to 15.7 wt.%) lavas that likely erupted before substantial crustal assimilation occurred. We compare olivine, pyroxene and plagioclase mineral chemistry and He-O-Os isotope compositions with bulk rock major- and trace-element abundances and 187Os/188Os for both bulk-rocks and mineral separates. Helium isotope compositions for the olivine grains generally show strong influence from crustal assimilation (rocks. Despite significant He-Os isotopic variations, Δ17O is relatively invariant (- 0.008 ± 0.014 ‰) and indistinguishable from the bulk mantle, consistent with high-3He/4He hotspots measured to-date. Compositions of olivine grains indicate the presence of up to 25% of a pyroxenite source for Deccan parental magmas, in good agreement with ∼20% predicted from isotopic data for the same samples. Modeled pyroxenite signatures are similar to geochemical signatures expected to arise due to other types of mantle differentiation or due to assimilation of continental crust; however, we show that crustal assimilation cannot account for all of the compositional features of the olivine. Weak correlations exist between a global compilation of Xpx (Deccan: 0.2-0.7) and 3He/4He, δ18O (Deccan olivine: 4.9-5.2‰) and 187Os/188Os. Robust relationships between these parameters may be precluded due to a lack of two-reservoir source mixing, instead involving multiple mantle domains with distinct compositions, or because Xpx may reflect both source features and crustal assimilation

  12. Investigating the Underlying Causes of Tree Mortality with Carbon and Oxygen Isotopes in Tree-rings (United States)

    English, N. B.; McDowell, N.; Allen, C. D.; Das, A. J.; Mora, C. I.; Stephenson, N. L.


    Increasing rates of tree mortality in the western United States have potentially profound effects on native biodiversity and ecosystem structure and function. Regional drought and insect or pathogen outbreaks have been implicated; however, the underlying cause(s) of recent tree mortality remain unclear. Hypotheses include 1) hydraulic failure; 2) carbon starvation; or 3) increased susceptibility to pests due to (1) and/or (2). We examined evidence for and against these hypotheses by measuring patterns in the δ13C and δ18O of tree-rings from the last 50 years in eight species of isohydric and anisohydric trees, both living and dead, from across the western United States. We compared isotopic compositions of δ13C and δ18O between living and dead trees with models of expected isotope responses to hydraulic failure, carbon starvation and pest infestation to eliminate or support specific mechanisms of tree mortality. Our data thus far show that Pinaceae (including Abies, Picea, Pinus, and Psuedotsuga) respond isohydrically to drought, while Cupressaceae (including Calocedrus, Juniperus, and Sequoiadendron) respond anisohydrically to drought. We expect that in water-limited forests, Pinaceae will exhibit more rapid and pronounced increases in δ13C and δ18O, attributable to water stress, than in Cupressaceae. However, we observe variable results within Pinaceae and between live and dead trees within a given species. For example, in Piñon from various sites in New Mexico, dead trees had either higher or lower δ13C in the years preceding their death than living trees at the same site. The isotopic patterns associated with mortality varied between energy-limited (Oregon, Washington, high-elevation Colorado and California) and water-limited (low-elevation Colorado and New Mexico) forests in a predictable manner. We expect dying trees in energy-limited systems to show changes in δ13C but not in δ18O. Our preliminary conclusions are that either: 1) multiple mechanisms

  13. Ocean circulation and freshwater pathways in the Arctic Mediterranean based on a combined Nd isotope, REE and oxygen isotope section across Fram Strait (United States)

    Laukert, Georgi; Frank, Martin; Bauch, Dorothea; Hathorne, Ed C.; Rabe, Benjamin; von Appen, Wilken-Jon; Wegner, Carolyn; Zieringer, Moritz; Kassens, Heidemarie


    The water masses passing the Fram Strait are mainly responsible for the exchange of heat and freshwater between the Nordic Seas and the Arctic Ocean (the Arctic Mediterranean, AM). Disentangling their exact sources, distribution and mixing, however, is complex. This work provides new insights based on a detailed geochemical tracer inventory including dissolved Nd isotope (εNd), rare earth element (REE) and stable oxygen isotope (δ18O) data along a full water depth section across Fram Strait. We find that Nd isotope and REE distributions in the open AM primarily reflect lateral advection of water masses and their mixing. Seawater-particle interactions exert important control only above the shelf regions, as observed above the NE Greenland Shelf. Advection of northward flowing warm Atlantic Water (AW) is clearly reflected by an εNd signature of -11.7 and a Nd concentration ([Nd]) of 16 pmol/kg in the upper ∼500 m of the eastern and central Fram Strait. Freshening and cooling of the AW on its way trough the AM are accompanied by a continuous change towards more radiogenic εNd signatures (e.g. -10.4 of dense Arctic Atlantic Water). This mainly reflects mixing with intermediate waters but also admixture of dense Kara Sea waters and Pacific-derived waters. The more radiogenic εNd signatures of the intermediate and deep waters (reaching -9.5) are mainly acquired in the SW Nordic Seas through exchange with basaltic formations of Iceland and CE Greenland. Inputs of Nd from Svalbard are not observed and surface waters and Nd on the Svalbard shelf originate from the Barents Sea. Shallow southward flowing Arctic-derived waters (<200 m) form the core of the East Greenland Current above the Greenland slope and can be traced by their relatively radiogenic εNd (reaching -8.8) and elevated [Nd] (21-29 pmol/kg). These properties are used together with δ18O and standard hydrographic tracers to define the proportions of Pacific-derived (<∼30% based on Nd isotopes) and

  14. On the timing and forcing mechanisms of late Pleistocene glacial terminations : Insights from a new high-resolution benthic stable oxygen isotope record of the eastern Mediterranean

    NARCIS (Netherlands)

    Konijnendijk, T. Y M; Ziegler, M.; Lourens, L. J.


    Benthic oxygen isotope records of deep marine sedimentary archives have yielded a wealth of information regarding ice sheet dynamics and climate change during the Pleistocene. However, since they often lack independent age control, these records are generally bound by a fixed phase relationship

  15. A High-resolution Detrital and Oxygen Isotope Record from Flemish Pass, Labrador Sea (United States)

    deJesus, E.; Hoffman, J. S.; Clark, P. U.; Mix, A. C.


    High-resolution records of deglacial paleoceanographic change along the Labrador shelf are scarce. However, they are required in order to characterize and understand possible ice-ocean interactions involving the eastern sector of the Laurentide Ice Sheet (LIS). We have generated a high-resolution stable isotope and detrital stratigraphic record for core HU2001043-008 (990m, 48° N, 45° W) from Flemish Pass, Labrador Sea, to better understand the role of LIS ice-rafting events in abrupt climate changes during the last glaciation. Samples at two-centimeter resolution were disaggregated, washed, and picked for Neogloboquandrina pachyderma (sinistral) for stable isotope and radiocarbon analysis. The δ18O signal in foraminiferal calcite allows us to examine surface-ocean changes that may indicate an influx of freshwater, which may or may not be related to an LIS ice-rafting event. Our results will help in developing a better understanding of the source of LIS ice-rafting events, precursory indicators of the events, and how these events are associated with changes in deep-water formation in the Labrador Sea.

  16. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz. (United States)

    Budd, David A; Troll, Valentin R; Deegan, Frances M; Jolis, Ester M; Smith, Victoria C; Whitehouse, Martin J; Harris, Chris; Freda, Carmela; Hilton, David R; Halldórsson, Sæmundur A; Bindeman, Ilya N


    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ(18)O values. Overall, Toba quartz crystals exhibit comparatively high δ(18)O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ(18)O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ(18)O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ(18)O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  17. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz (United States)

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.


    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  18. The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia: validation of a new paleoenvironmental tool

    Directory of Open Access Journals (Sweden)

    A. Alexandre


    Full Text Available Phytoliths are micrometric particles of amorphous silica that form inside or between the cells of higher plant tissues throughout the life of a plant. With plant decay, phytoliths are either incorporated into soils or exported to sediments via regional watersheds. Phytolith morphological assemblages are increasingly used as proxy of grassland diversity and tree cover density in inter-tropical areas. Here, we investigate whether, along altitudinal gradients in northeast Queensland (Australia, changes in the δ18O signature of soil top phytolith assemblages reflect changes in mean annual temperature (MAT and in the oxygen isotopic composition of precipitation (δ18Oprecipitation, as predicted by equilibrium temperature coefficients previously published for silica. Oxygen isotopic analyses were performed on 16 phytolith samples, after controlled isotopic exchange (CIE, using the IR Laser-Heating Fluorination Technique. Long-term mean annual precipitation (MAP and MAT values at the sampled sites were calculated by the ANUCLIM software. δ18Oprecipitation estimates were calculated using the Bowen and Wilkinson (2002 model, slightly modified. An empirical temperature-dependant relationship was obtained: δ18Owood phytolith-precipitation (‰ vs. VSMOW = −0.4 (±0.2 t (°C + 46 (±3 (R2 = 0.4, p < 0.05; n = 12. Despite the various unknowns introduced when estimating δ18Oprecipitation values and the large uncertainties on δ18Owood phytolith values, the temperature coefficient (−0.4 ± 0.2‰ °C−1 is in the range of values previously obtained for natural quartz, fresh and sedimentary diatoms and harvested grass phytoliths (from −0.2 to −0.5‰ °C−1. The consistency supports the reliability of δ18Owood phytolith signatures for recording

  19. Earlywood and Latewood Stable Carbon and Oxygen Isotope Variations in Two Pine Species in Southwestern China during the Recent Decades (United States)

    Fu, Pei-Li; Grießinger, Jussi; Gebrekirstos, Aster; Fan, Ze-Xin; Bräuning, Achim


    Stable isotopes in wood cellulose of tree rings provide a high-resolution record of environmental conditions, yet intra-annual analysis of carbon and oxygen isotopes and their associations with physiological responses to seasonal environmental changes are still lacking. We analyzed tree-ring stable carbon (δ13C) and oxygen (δ18O) isotope variations in the earlywood (EW) and latewood (LW) of pines from a secondary forest (Pinus kesiya) and from a natural forest (Pinus armandii) in southwestern China. There was no significant difference between δ13CEW and δ13CLW in P. kesiya, while δ13CEW was significantly higher than δ13CLW in P. armandii. For both P. kesiya and P. armandii, δ13CEW was highly correlated with previous year’s δ13CLW, indicating a strong carbon carry-over effect for both pines. The intrinsic water use efficiency (iWUE) in the earlywood of P. armandii was slightly higher than that of P. kesiya, and iWUE of both pine species showed an increasing trend, but at a considerably higher rate in P. kesiya. Respective δ13CEW and δ13CLW series were not correlated between the two pine species and could be influenced by local environmental factors. δ13CEW of P. kesiya was positively correlated with July to September monthly mean temperature (MMT), whereas δ13CEW of P. armandii was positively correlated with February to May MMT. Respective δ18OEW and δ18OLW in P. kesiya were positively correlated with those in P. armandii, indicating a strong common climatic forcing in δ18O for both pine species. δ18OEW of both pine species was negatively correlated with May relative humidity and δ18OEW in P. armandii was negatively correlated with May precipitation, whereas δ18OLW in both pine species was negatively correlated with precipitation during autumn months, showing a high potential for climate reconstruction. Our results reveal slightly higher iWUE in natural forest pine species than in secondary forest pine species, and separating earlywood and

  20. Planetary fertility during the past 400 ka based on the triple isotope composition of atmospheric oxygen in trapped gases from the Vostok ice core (United States)

    Blunier, T.; Bender, M. L.; Barnett, B.; von Fisher, J. C.


    The productivity of the biosphere leaves its imprint on the isotopic composition of atmospheric oxygen. Ultimately atmospheric oxygen, through photosynthesis, originates from seawater. Fractionations during the passage from seawater to atmospheric O2 and during respiration are mass dependent, affecting δ17O about half as much as δ18O. An "anomalous" (also termed mass independent) fractionation process changes δ17O about 1.7 times as much as δ18O during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biological O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass dependent O2 production by photosynthesis versus the rate of mass independent O2-CO2 exchange in the stratosphere. However, the analysis of the 17O anomaly is complicated because each hydrological and biological process influencing δ17O and δ18O fractionates 17O and 18O in slightly different proportions. In this study we present oxygen data covering the last 400 kyr from the Vostok ice core. We reconstruct oxygen productivities from the triple isotope composition of atmospheric oxygen with a box model. Our steady state model for the oxygen cycle takes into account fractionation during photosynthesis and respiration of the land and ocean biosphere as well as fractionation when oxygen passes through the stratosphere. We consider changes of fractionation factors linked to climate variations taking into account the span of estimates of the main factors affecting our calculations. We find that ocean oxygen productivity was likely elevated relative to modern during glacials. However, this increase probably did not fully compensate for a reduction in land ocean productivity resulting in a slight reduction in total oxygen production during glacials.

  1. Exotic viral diseases. (United States)

    Dowdle, W R


    Marburg virus disease, Lassa fever, monkeypox, and Ebola virus diseases of humans have all been recognized since 1967. These are examples of some of the exotic virus diseases which through importation may present a potential public health problem in the United States. Some of these viruses are also highly hazardous to laboratory and medical personnel. This paper is a review of the general characteristics, the epidemiology, and laboratory diagnosis of the exotic viruses which have been described during the last 25 years.

  2. Exotic viral diseases.


    Dowdle, W. R.


    Marburg virus disease, Lassa fever, monkeypox, and Ebola virus diseases of humans have all been recognized since 1967. These are examples of some of the exotic virus diseases which through importation may present a potential public health problem in the United States. Some of these viruses are also highly hazardous to laboratory and medical personnel. This paper is a review of the general characteristics, the epidemiology, and laboratory diagnosis of the exotic viruses which have been describ...

  3. Exotic Mammal Laparoscopy. (United States)

    Sladakovic, Izidora; Divers, Stephen J


    Laparoscopy is an evolving field in veterinary medicine, and there is an increased interest in using laparoscopic techniques in nondomestic mammals, including zoo animals, wildlife, and exotic pets. The aim of this article is to summarize the approach to laparoscopic procedures, including instrumentation, patient selection and preparation, and surgical approaches, and to review the current literature on laparoscopy in exotic mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A First Look at Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric C02 by the Phoenix Lander (United States)

    Niles, P.B.; Ming, D.W.; Boynton, W.V.; Hamara, D.; Hoffman, J.H.


    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated 13C values measured in carbonates in martian meteorites it has been supposed that the martian atmosphere was enriched in delta(sup 13)C. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in delta(sup 13)C relative to CO2 in the terrestrial atmosphere. The spectroscopic measurements performed by Krasnopolsky et al. were reported with approx.2% uncertainties which are much smaller than the Viking measurements, but still remain very large in comparison to the magnitude of carbon and oxygen isotope fractionations under martian surface conditions. The Thermal Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander included a magnetic sector mass spectrometer (EGA) which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature magnetic sector instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils. Ions produced in the ion source are drawn out by a high voltage and focused by a magnetic field onto a set of collector slits. Four specific trajectories are selected to cover the mass ranges, 0.7 - 4, 7 - 35, 14 - 70, and 28 - 140 Da. Using four channels reduces the magnitude of the mass scan and provides simultaneous coverage of the mass ranges. Channel electron multiplier (CEM

  5. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit

    Energy Technology Data Exchange (ETDEWEB)

    Ferrio, J.P.; Voltas, J. [E.T.S.E.A.-Universitat de Lleida (Spain). Dept. de Produccio Vegetal i Ciencia Forestal


    Carbon and oxygen isotope compositions ({delta}{sup 13}C, {delta}{sup 18}O) in tree rings have been shown to bear relevant climatic signals. However, little is known about the interrelationship between both isotopes in wood constituents for species from other than relatively wet climates. We hypothesized that in a species adapted to temporary droughts (e.g. Pinus halepensis Mill.) the signal derived from {delta}{sup 18}O in precipitation would be hidden by the strong variability in leaf transpirative enrichment. To test this assumption, we compared the effect of precipitation, temperature and vapour pressure deficit (VPD) on {delta}{sup 18}O and {delta}{sup 13}C along 23 sites covering the ecological range for this species. We extracted the cores from the south side of four to six adult dominant trees per aspect (north/south) within each site. For each aspect and site, fragments of the period 1975-1999 were pooled and milled to a fine powder. To further test the postulated need for cellulose purification in the assessment of climatic information, we studied these relationships in whole and extracted wood, holocellulose and lignin. In all wood fractions, {delta}{sup 13}C was related to annual precipitation [r=0.58 (P< 0.01) to 0.78 (P< 0.001)] and VPD [r=0.53 (P< 0.01) to 0.57 (P< 0.01)]. In contrast, for {delta}{sup 18}O only holocellulose showed consistent relationships with climatic data, being strongly significant for VPD [r=0.66 (P< 0.001)]. However, it was unrelated to modelled {delta}{sup 18}O in precipitation, confirming that transpirative enrichment (driven by VPD) dampened the source signal in P. halepensis. The relationships between {delta}{sup 13}C and {delta}{sup 18}O were generally poor, regardless of the wood constituent, suggesting that although both variables were somewhat related to transpirative demand, they were relatively independent. This was further confirmed by building stepwise models using both isotopes to predict annual and seasonal

  6. Reconstructing past climate variability in the Iberian Peninsula using carbon and oxygen stable isotopes in tree rings (United States)

    Andreu-Hayles, L.; Helle, G.; Schleser, G. H.; Gutiérrez, E.; Barriendos, M.


    Improving the understanding of past climate in the Mediterranean basin is still a challenge due to the very distinct seasonality and high climatic variability inherent to this region. Studying the climate of the Iberian Peninsula is particularly complicated because of the complex orography, as well as the atmospheric circulation patterns composed by the influence of three climatic regimes: Atlantic, continental and Mediterranean. In this investigation, we seek climatic information recorded in several Iberian tree-ring chronologies. We found that stable carbon (δ13C) and oxygen (δ18O) isotope ratios measured in tree rings from pine forests located at the northern part of the Iberian Peninsula are very sensitive proxies to moisture variations during the summer period. While the width of the tree rings, the dendrochronological classical proxy most commonly and extensively used, is very dependent on local site conditions, the δ13C and δ18O series were able to capture a large-scale climatic signal of summer aridity. In the studied environments, the isotopic signatures seem to be mainly dominated by variations in stomatal conductance driven by changes in air relative humidity. As we were interested in the response of trees to changes in moisture or aridity conditions, we removed all the other non-climatic variability shown by the isotopic series. First, the raw δ13C series were corrected for a decreasing trend attributed to the rise of 13C depleted atmospheric CO2 due to fossil fuel burning and deforestation since industrialization (Suess effect). A second correction was also applied to remove the low-frequency variability apparently caused by tree physiological responses to changes in CO2 concentration. In contrast, no treatment was needed for δ18O. We found that both stable isotopic records were able to properly track July and August temperatures and precipitation fluctuations in the high-frequency domain. However, the climatic significance of their low

  7. Tracking the oxygen isotopic signature from the rainfall to the speleothems in Ortigosa de Cameros caves (La Rioja, Spain

    Directory of Open Access Journals (Sweden)

    Osácar, M. C.


    Full Text Available A one-year monitoring survey has been carried out in La Paz and La Viña Caves in the Ortigosa de Cameros Cave System (NE Iberian Peninsula, in order to track the oxygen isotope signal from rainfall to speleothem calcite, assessing the ability of this signal to retain environmental information. Oxygen isotope signals of rainfall events, drip water —sampled every three months—, and speleothem calcite, precipitated over three-months, are compared. Water dripping follows precipitation events in winter, spring and summer, more closely in the near-surface drip points than in the deeper ones. In autumn, dripping is delayed with respect to rainfall, suggesting that water stays in the epikarst before dripping resumes after summer. This delay causes a deviation of the total drip water signal (average δ18O=−8.39‰ V-SMOW from the rainfall signal (average δ18O=−7.41‰ V-SMOW. On the contrary, in winter the isotopic signal of drip water keeps the rainfall signal. Calcite isotopic signal (total average δ18O=−6.83‰ V-PDB shows a small offset (0.62–0.75% with respect to the signal predicted by drip water oxygen composition; this points to a limited kinetic effect in calcite precipitation, therefore calcite retains the signal of rainfall, especially in winter.Durante un año se han monitorizado las cuevas de La Paz y La Viña en el Sistema de Cuevas de Ortigosa de Cameros (NE de la Península Ibérica para rastrear la señal isotópica del oxígeno desde la lluvia a la calcita espeleotémica, y así valorar la capacidad de esta señal para conservar información medioambiental. Se han comparado las señales isotópicas del oxígeno de los eventos de la lluvia, el agua de goteo (muestreada trimestralmente y la calcita espeleotémica, precipitada también durante cada trimestre. El goteo en las cuevas responde a la precipitación en invierno, primavera y verano, más estrechamente en los puntos más próximos a la superficie que en los

  8. Paleoecologies and paleoclimates of late cenozoic mammals from Southwest China: Evidence from stable carbon and oxygen isotopes (United States)

    Biasatti, Dana; Wang, Yang; Gao, Feng; Xu, Yingfeng; Flynn, Lawrence


    To examine paleodiets and habitats of extinct taxa and to understand long-term regional climate change, we determined the carbon and oxygen isotopic compositions of fossil herbivore teeth and soil samples from six localities in Yunnan Province, Southwest China, ranging in age from ˜10 Ma to the present. Although limited in spatial and temporal coverage, these initial results reveal significant changes in the environments and diets of mammalian taxa over the last 10 million years. Prior to 2-3 Ma, while most mammals examined had pure or nearly pure C 3 diets, some individuals consumed a small amount of C 4 grasses (up to 20% C 4). Since then, C 4 grasses became a significant dietary component for most herbivores as indicated by higher enamel-δ 13C values in the Pleistocene Yuanmou Formation and at Shangri-La, most likely reflecting an increased C 4 biomass in the region. The carbon isotope results show that the diets of mammals of ˜2.5-1.75 Ma from Shangri-La ranged from pure C 3 to pure C 4 while 1.7 Ma horses from Yuanmou had 0-70% C 4 grasses in their diets. Mammals living at ˜8-7 Ma in the Yuanmou and Lufeng region had very similar diets and habitats, with similar climatic conditions. Increased C 4 biomass after ˜3-4 Ma suggests a significant change in certain aspects of regional climate, such as increased seasonality of rainfall or an increase in seasonal drought and fires as these factors are important to modern grasslands. The data also show that unlike the Siwalik fauna in the Indian subcontinent, mammals in Yunnan on the southeast side of the Himalayan-Tibetan Plateau lived in an environment dominated by dense forests until ˜3-4 Ma. Nonetheless, both δ 13C values of paleosol carbonates and fossil enamels indicate that C 4 grasses were present in the Yuanmou region in the latest Miocene and Pliocene (˜8-3.5 Ma), likely in greatly dispersed, small patches of open habitats where the forest canopy was broken or on flood plains, and the C 4 biomass

  9. An oxygen isotope study of silicates in the Lardarello geothermal field, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Petrucci, E. (Rome Univ. ' La Sapienza' (Italy). Ist. di Geochimica); Gianelli, G.; Puxeddu, M. (Istituto Internazionale per le Ricerche Geotermic, Pisa (Italy)); Iacumin, P. (Istituto di Mineralogia e Petrografia, Trieste (Italy))


    Stable-isotope analyses were carried out on hydrothermal minerals sampled from the deep metamorphic units at Larderello, Italy. The [partial derivative][sup 18]O values obtained for the most retentive minerals, quartz and tourmaline, are from +12.0 per mille to 14.7 per mille and 9.9 per mille, respectively and indicate deposition from an [sup 18]O-rich fluid. Calculated [partial derivative][sup 18]O values for these fluids range from + 5.3 per mille to 13.4 per mille. These values, combined with available fluid inclusion and petrographic data, are consistent with the proposed existence of an early thermal fluid of probable magmatic origin and a late meteoric water. Mixing between these two fluids occurred locally. (author)

  10. Diagenetic origin of carbon and oxygen isotope compositions of Permian Triassic boundary strata (United States)

    Heydari, Ezat; Wade, William J.; Hassanzadeh, Jamshid


    Bulk carbonate δ13C and δ18O compositions of profiles across Permian-Triassic (P-T) boundary sections in China, Italy, Austria, and Iran show wide varieties of trends. The δ13C depletions occur in all sections and range from 2 to 8‰ PDB in magnitude. These excursions take place over intervals ranging from less than 0.1 to more than 40 m. The δ18O values may increase or decrease toward the P-T boundary, but decrease sharply by 2-9‰ PDB at or above the boundary. Cross-plots of δ13C and δ18O values from all sections show positive covariance. Wide differences in magnitudes, trends, and position of the excursions relative to the boundary, as well as the covariance patterns suggest that P-T boundary δ18O and δ13C values are partially or entirely diagenetic in origin, formed in association with exposure surfaces. This interpretation implies that P-T boundary sections studied till date were subaerially exposed before, during, and after the mass extinction, resulting in the removal of strata containing key information about the extinction mechanism. This inference is consistent with the paleontological studies that have shown the presence of gaps at the boundary, and further supported by the sharp lithologic changes observed at virtually all P-T boundary sections. Subaerial exposures are documented by detailed sedimentologic and isotopic studies from central Tethyan sections in Abadeh and Shah Reza in Iran. Proposed P-T boundary extinction models are based on isotopic values that are diagenetic in origin and stratigraphic sections that are incomplete, leading to extinction mechanisms with little physical supporting evidence.

  11. Hydrogen, Oxygen and Silicon Isotope Systematics of Groundwater-Magma Interaction in Icelandic Hydrothermal Systems (United States)

    Kleine, B. I.; Stefansson, A.; Halldorsson, S. A.; Martin, W.; Barnes, J.; Jónasson, K.; Franzson, H.


    Magma often encounters groundwater (meteoric or seawater derived) when intruded into the crust. Magma-groundwater interactions result in the formation of hydrothermal fluids which can lead to contact metamorphism and elemental transport in the country rock. In fact, magma-hydrothermal fluid interaction (rather than magma-magmatic fluid interaction) may lead to classic contact metamorphic reactions. In order to explore the importance of hydrothermal fluid during contact metamorphism we use stable isotopes (δD, δ18O, δ30Si) from both active and extinct magma chambers and hydrothermal systems from across Iceland. Quartz grains from various hydrothermal systems, from crustal xenoliths from the Askja central volcano and from the Hafnarfjall pluton, as well as quartz grains associated with low-T zeolites were analysed for δ18O and δ30Si in-situ using SIMS. Whole rock material of these samples was analysed for δD values using a TCEA coupled to an IRMS. Our results indicate that low-T quartz (300°C). Combining the results from the analyses of δ18O and δD allows further division of samples into (i) seawater and/or rock dominated and (ii) meteoric water dominated hydrothermal systems. In order to isolate the effects of fluid-rock interaction, fluid source and formation temperature at the magma-groundwater contact, δD, δ18O and δ30Si values of rocks and fluids were modeled using the PHREEQC software. Comparison of analytical and model results shows that the isotopic compositions are influenced by multiple processes. In some cases, groundwater penetrates the contact zone and causes alteration at >400°C by groundwater-magma heat interaction. Other cases document "baked" contact zones without groundwater. Our analyses and modeling demonstrates that groundwater flow and permeability are crucial in setting the style of contact metamorphism around high T intrusions.

  12. Holocene Climate Reconstructions from Lake Water Oxygen Isotopes in NW and SW Greenland (United States)

    Lasher, G. E.; Axford, Y.; McFarlin, J. M.; Kelly, M. A.; Osterberg, E. C.; Berkelhammer, M. B.; Berman, K.; Kotecki, P.; Gawin, B.


    Reconstructions of stable isotopes of precipitation (SIP) from currently unglaciated parts of Greenland can help elucidate spatial patterns of past climate shifts in this climatically important and complex region. We have developed a 7700-year record of lake water δ18O from a small non-glacial lake in NW Greenland (near Thule Air Base), inferred from the δ18O of subfossil chironomid (insect) head capsules and aquatic mosses. Lake water δ18O remains constant from 8 ka until 4 ka and then declines by 2.5 ‰ to the present, representing a +2.5 to 5.5 °C Holocene Thermal Maximum temperature anomaly for this region. For comparison, two new sediment records from hydrologically connected lakes south of Nuuk in SW Greenland record 8500 years of lake water δ18O, also inferred from δ18O of chironomids. At the time cores were collected during the summer in 2014 and 2015, all lakes reflected SIP and exhibited minimal evaporation influence. Historical monitoring of stable isotopes of precipitation from Thule Air Base and Grønnedal in south Greenland suggest the controls on SIP differ greatly between our two study sites, as would be predicted based upon the strongly Arctic (in the NW) versus North Atlantic (in the SW) atmospheric and marine influences at the two sites. Interpretation of Holocene climate from these two contrasting sites will be discussed. These climate records from the same proxy allow us to compare millennial scale Holocene climate responses to northern hemisphere solar insolation trends in two different climate regimes of Greenland.

  13. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4 (United States)

    Li, Hui; Yu, Chan; Wang, Fei; Chang, Sae Jung; Yao, Jun; Blake, Ruth E.


    Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition—including metabolic water produced as a byproduct of metabolism—based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the 18O/16O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ˜30-40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered.

  14. Oxygen isotopes in the Martian atmosphere - Implications for the evolution of volatiles (United States)

    Mcelroy, M. B.; Yung, Y. L.


    Nonthermal escape of oxygen by recombination of exospheric O2(+) combined with diffusive separation of gases at lower altitude provides a mechanism through which the Martian atmosphere may be enriched in O-18 relative to O-16. Measurement of the abundance of O-18 relative to O-16 together with a determination of the turbopause may be used to develop important constraints on the history of Martian volatiles. Models for the interpretation of these data are developed and discussed in light of present information.

  15. Crystal growth and disequilibrium distribution of oxygen isotopes in an igneous Ca-Al-rich inclusion from the Allende carbonaceous chondrite (United States)

    Kawasaki, Noriyuki; Simon, Steven B.; Grossman, Lawrence; Sakamoto, Naoya; Yurimoto, Hisayoshi


    TS34 is a Type B1 Ca-Al-rich inclusion (CAI) from the Allende CV3 chondrite, consisting of spinel, melilite, Ti-Al-rich clinopyroxene (fassaite) and minor anorthite in an igneous texture. Oxygen and magnesium isotopic compositions were measured by secondary ion mass spectrometry in spots of known chemical composition in all major minerals in TS34. Using the sequence of formation from dynamic crystallization experiments and from chemical compositions of melilite and fassaite, the oxygen isotopic evolution of the CAI melt was established. Oxygen isotopic compositions of the constituent minerals plot along the carbonaceous chondrite anhydrous mineral line. The spinel grains are uniformly 16O-rich (Δ17O = -22.7 ± 1.7‰, 2SD), while the melilite grains are uniformly 16O-poor (Δ17O = -2.8 ± 1.8‰) irrespective of their åkermanite content and thus their relative time of crystallization. The fassaite crystals exhibit growth zoning overprinting poorly-developed sector zoning; they generally grow from Ti-rich to Ti-poor compositions. The fassaite crystals also show continuous variations in Δ17O along the inferred directions of crystal growth, from 16O-poor (Δ17O ∼ -3‰) to 16O-rich (Δ17O ∼ -23‰), covering the full range of oxygen isotopic compositions observed in TS34. The early-crystallized 16O-poor fassaite and the melilite are in oxygen isotope equilibrium and formed simultaneously. The correlation of oxygen isotopic compositions with Ti content in the fassaite imply that the oxygen isotopic composition of the CAI melt evolved from 16O-poor to 16O-rich during fassaite crystallization, presumably due to oxygen isotope exchange with a surrounding 16O-rich nebular gas. Formation of spinel, the liquidus phase in melts of this composition, predates crystallization of all other phases, so its 16O-rich composition is a relic of an earlier stage. Anorthite exhibits oxygen isotopic compositions between Δ17O ∼ -2‰ and -9‰, within the range of those of

  16. Oxygen Isotopic Composition of Nitrate and Sulfate in Fog and River water in Podocarpus National Forest, Ecuador (United States)

    Brothers, L. A.; Fabian, P.; Thiemens, M. H.


    The eastern slopes of the Andean rainforests of Ecuador possess some of the highest plant biodiversity found on the planet; however, these ecosystems are in jeopardy because region is experiences one of the highest deforestation rates in South America. This rainforest characterized by high acidity and low nutrient soils and experiences natural process which are both destabilizing and stabilizing to biodiversity rendering this a unique, though sensitive environment. There is increased concern that anthropogenic activities are affecting rainforests and could lead to higher extinction rates, changes in the biodiversity and far reaching effects on the global troposphere. Measurements of nitrate and sulfate in rain and fog water have shown periods of elevated concentrations in the Podocarpus National Park near Loja, Ecuador. These high episodes contribute to annual deposition rates that are comparable to polluted central Europe. Significant anthropogenic sources near this region are lacking and it is believed that the majority of the nitrate and sulfate pollution can be attributed to biomass burning in the Amazon basin. Concentration measurements do not elucidate the source of high nitrate and sulfate pollution; however, by measuring all three stable isotopes of oxygen in nitrate and sulfate from fog and river water provides a new way to examine the impacts of biomass burning on the region. By using stable isotope techniques atmospheric nitrate and sulfate can be resolved from terrestrial sources. This provides an unique way to trace the contributions from the biomass burning and farming sources. Current research at the field station monitors sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, in-situ observations and numerical models.

  17. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002 (United States)


    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals. PMID:28402123

  18. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002. (United States)

    Swanner, E D; Bayer, T; Wu, W; Hao, L; Obst, M; Sundman, A; Byrne, J M; Michel, F M; Kleinhanns, I C; Kappler, A; Schoenberg, R


    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  19. Analytical Method for Carbon and Oxygen Isotope of Small Carbonate Samples with the GasBench Ⅱ-IRMS Device

    Directory of Open Access Journals (Sweden)

    LIANG Cui-cui


    Full Text Available An analytical method for measuring carbon and oxygen isotopic compositions of trace amount carbonate (>15 μg was established by Delta V Advantage isotope Ratio MS coupled with GasBench Ⅱ. Different trace amount (5-50 μg carbonate standard samples (IAEA-CO-1 were measured by GasBench Ⅱ with 12 mL and 3.7 mL vials. When the weight of samples was less than 40 μg and it was acidified in 12 mL vials, most standard deviations of the δ13C and δ18O were more than 0.1‰, which couldn’t satisfied high-precision measurements. When the weight of samples was greater than 15 μg and it was acidified in 3.7 mL vials, standard deviations for the δ13C and δ18O were 0.01‰-0.07‰ and 0.01‰-0.08‰ respectively, which satisfied high-precision measurements. Therefore, small 3.7 mL vials were used to increase the concentration of carbon dioxide in headspace, carbonate samples even less as 15 μg can be analyzed routinely by a GasBench Ⅱ continuous-flow IRMS. Meanwhile, the linear relationship between sample’s weight and peak’s area was strong (R2>0.993 2 and it can be used to determine the carbon content of carbonate samples.

  20. Hydrologic control of the oxygen isotope ratio of ecosystem respiration in a semi-arid woodland

    Directory of Open Access Journals (Sweden)

    J. H. Shim


    Full Text Available We conducted high frequency measurements of the δ18O value of atmospheric CO2 from a juniper (Juniperus monosperma woodland in New Mexico, USA, over a four-year period to investigate climatic and physiological regulation of the δ18O value of ecosystem respiration (δR. Rain pulses reset δR with the dominant water source isotope composition, followed by progressive enrichment of δR. Transpiration (ET was significantly related to post-pulse δR enrichment because the leaf water δ18O value showed strong enrichment with increasing vapor pressure deficit that occurs following rain. Post-pulse δR enrichment was correlated with both ET and the ratio of ET to soil evaporation (ET/ES. In contrast, the soil water δ18O value was relatively stable and δR enrichment was not correlated with ES. Model simulations captured the large post-pulse δR enrichments only when the offset between xylem and leaf water δ18O value was modeled explicitly and when a gross flux model for CO2 retro-diffusion was included. Drought impacts δR through the balance between evaporative demand, which enriches δR, and low soil moisture availability, which attenuates δR enrichment through reduced ET. The net result, observed throughout all four years of our study, was a negative correlation of post-precipitation δR enrichment with increasing drought.

  1. Long-term sunspot forcing of savanna structure inferred from carbon and oxygen isotopes (United States)

    Woodborne, Stephan; Mélice, Jean-Luc; Scholes, Robert J.


    We used the δ 18O and δ 13C isotopes from a speleothem and Δ14C values from known age tree rings as proxies for vegetation structure, rainfall and sunspot activity over the last 10,000 years. The δ 18O and δ 13C signals are significantly correlated and wavelet coherence analysis shows that a phase locked responses is only found to occur over periods less than 150 years. The δ 13C and Δ14C signals are also significantly correlated but the wavelet coherence analysis shows phase locked responses at periods in the order of 320 and 1100 years at various times in the past. We conclude that savanna vegetation structure responds to rainfall over periods of decades to about 150 years, and to solar forcing over periods greater than 150 years. We propose that elevated UV-B radiation at the earth surface during periods of low sunspot activity favours the productivity of C4 plants over C3 plants possibly because of the metabolic cost of structural adaptive responses and of producing UV-B absorbing compounds in the latter.

  2. Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate (United States)

    Waddell, Lindsey M.; Moore, Theodore C.


    Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (˜55 to ˜45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The δ18O values of the Eocene samples ranged from -6.84‰ to -2.96‰ Vienna Peedee belemnite, with a mean value of -4.89‰, compared to 2.77‰ for a Miocene sample in the overlying section. An average salinity of 21 to 25‰ was calculated for the Eocene Arctic, compared to 35‰ for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ˜48.7 Ma, and a third previously unidentified event at ˜47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive δ13C excursion was observed, indicating unusually high productivity in the surface waters.

  3. Multiple oxygen and sulfur isotope compositions of secondary atmospheric sulfate in the city of Wuhan, central China (United States)

    Li, X.; Bao, H.; Zhou, A.; Wang, D.


    Secondary atmospheric sulfate (SAS) is the oxidation product and sink for sulfur gases of biological, volcanic, and anthropogenic origins on Earth. SAS can be produced from gas-phase OH-radical oxidation and five aqueous-phase chemical reactions including aqueous-phase S (IV) oxidation reactions by H2O2, O3, oxygen catalyzed by Fe3+ and Mn2+, and methyle hydrogen peroxide and peroxyacetic acid. The tropospheric sulfur oxidation pathway is therefore determined by cloud-water pH, dissolved [Fe2+] or [Mn2+] content, S emission rate, meteorological condition, and other factors. The S isotope composition is a good tracer for the source while the O isotopes, especially the triple O isotope compositions are a good tracer for S oxidation pathway. Jerkins and Bao (2006) provided the first set of multiple stable isotope compositions (δ34S, δ18O and Δ17O) for SAS collected from bulk atmosphere in Baton Rouge in the relatively rural southern USA. Their study revealed a long-tern average Δ17O value of ~+0.7‰ for SAS, and speculated that much of the Earth mid-latitudes may have a similar average SAS Δ17O value. Additional sampling campaign at different sites is necessarily for constructing and testing models on sulfur oxidation and transport in the troposphere. A total of 33 sulfate samples were collected from bulk atmospheric deposition over a 950-day period from May 2009 to December 2011 in the city of Wuhan, Hubei Province, China. Differing from Baton Rouge, Wuhan is an industrial metropolis with a population of 9.8 million and a high particulate matter content (115 μg/m3). It also has a subtropical monsoon climate, with rainwater pH at ~5.3 year-around. The rainwater ion concentrations have seasonal variations, typically low in summer and high in winter. The anions are dominated by SO42-, at an average concentration of 8.5 mg/L. There is little sulfate contribution from sea-salt (SS) sulfate or dusts in Wuhan. The isotopic compositions for bulk atmospheric sulfate

  4. Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: The example of oil reservoir souring control (United States)

    Hubert, Casey; Voordouw, Gerrit; Mayer, Bernhard


    Sulfate-reducing bacteria (SRB) are ubiquitous in anoxic environments where they couple the oxidation of organic compounds to the production of hydrogen sulfide. This can be problematic for various industries including oil production where reservoir "souring" (the generation of H 2S) requires corrective actions. Nitrate or nitrite injection into sour oil fields can promote SRB control by stimulating organotrophic nitrate- or nitrite-reducing bacteria (O-NRB) that out-compete SRB for electron donors (biocompetitive exclusion), and/or by lithotrophic nitrate- or nitrite-reducing sulfide oxidizing bacteria (NR-SOB) that remove H 2S directly. Sulfur and oxygen isotope ratios of sulfide and sulfate were monitored in batch cultures and sulfidic bioreactors to evaluate mitigation of SRB activities by nitrate or nitrite injection. Sulfate reduction in batch cultures of Desulfovibrio sp. strain Lac15 indicated typical Rayleigh-type fractionation of sulfur isotopes during bacterial sulfate reduction (BSR) with lactate, whereas oxygen isotope ratios in unreacted sulfate remained constant. Sulfur isotope fractionation in batch cultures of the NR-SOB Thiomicrospira sp. strain CVO was minimal during the oxidation of sulfide to sulfate, which had δ18O SO4 values similar to that of the water-oxygen. Treating an up-flow bioreactor with increasing doses of nitrate to eliminate sulfide resulted in changes in sulfur isotope ratios of sulfate and sulfide but very little variation in oxygen isotope ratios of sulfate. These observations were similar to results obtained from SRB-only, but different from those of NR-SOB-only pure culture control experiments. This suggests that biocompetitive exclusion of SRB took place in the nitrate-injected bioreactor. In two replicate bioreactors treated with nitrite, less pronounced sulfur isotope fractionation and a slight decrease in δ18O SO4 were observed. This indicated that NR-SOB played a minor role during dosing with low nitrite and that

  5. Source identification of N2O produced during simulated wastewater treatment under different oxygen conditions using stable isotopic analysis

    Directory of Open Access Journals (Sweden)

    T Azzaya


    Full Text Available Nitrous oxide (N2O, a potent greenhouse gas which is important in climate change, is predicted to be the most dominant ozone depleting substance. It is mainly produced by oxidation of hydroxylamine (NH2OH or reduction of nitrite (NO2- during microbiological processes such as nitrification and denitrification. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrification in WWTP. We investigated the N2O production mechanisms during batch experiments that simulate wastewater treatment with activated sludge under various dissolved oxygen (DO concentrations by stable isotope analysis. About 125mL of water was sampled from 30L incubation chamber for several times during the incubation, and concentration and isotopomer ratios of N2O and N-containing species were measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS. Ammonium (NH4+ consumption was accompanied by increment of nitrite (NO2-, and at the same time dissolved N2O concentration gradually increased to 4850 and 5650 nmol kg-1, respectively, during the four-hour incubation when DO concentrations were 0.2 and 0.5 mg L-1. Observed low SP values (0.2-8.9‰ at DO-0.2 mg L-1, -5.3-6.3‰ at DO-0.5 mg L-1, -1.0-8.3‰ at DO-0.8 mg L-1 in N2O and relationship of nitrogen isotope ratios between N2O and its potential substrates (NH4+, NO3- suggested that N2O produced under the aerobic condition derived mainly from NO2- reduction by ammonia-oxidizing bacteria (nitrifier–denitrification.DOI: Journal of Chemistry  15 (41, 2014, p4-10  

  6. Measuring carbon and oxygen isotope signals of photosynthesis and respiration: first field results from a chamber system coupled to tunable diode laser spectrometers (United States)

    Wingate, L.; Burlett, R.; Bosc, A.; Cross, A.; Devaux, M.; Grace, J.; Loustau, D.; Seibt, U.; Ogée, J.


    Studying the carbon and oxygen stable isotope signals from plants and soils can help us gain insight to mechanistic processes responsible for the net exchange of CO2 and water cycled between terrestrial ecosystems and the atmosphere. Chamber field measurements of component fluxes and their isotopic composition have been reported for a few ecosystems. These observations have revealed that isotopic signals for carbon and oxygen are dynamic over relatively short time scales (hrs and days) for both branches and soils (Seibt et al., 2006a; 2006b; Wingate et al., 2007), and not fully explained by currently available models (Seibt et al., 2006b; Wingate et al., 2007). Ecosystem isotope studies have been limited by flask sampling requirements in the past. To evaluate and refine our models of isotopic fractionation by plants and soil, we need high resolution continuous isotopic measurements over the growing season for different ecosystems. In this study, we coupled chambers with tunable diode laser spectroscopy techniques in the field to continuously capture the isotopic signals from the most important component fluxes contributing to the net ecosystem exchange of CO2 in a Pinus pinaster forest in south-west France. We obtained profiles of the carbon and oxygen isotope content of CO2 within and above the forest canopy. In addition, we measured branch photosynthetic 13C and 18O discrimination alongside the 13C and 18O isotopic composition of the branch, stem and soil respiration during a 6-month period in 2007. In this talk, we will present the first results from this field campaign. References Seibt, U., Wingate, L., Berry, J.A. and Lloyd, J. (2006a) Non steady state effects in diurnal 18O discrimination by Picea sitchensis branches in the field. Plant, Cell and Environment Vol 29, 928-939. Seibt, U., Wingate, L., Lloyd, J. and Berry, J.A. (2006b) Diurnally variable δ18O signatures of soil CO2 fluxes indicate carbonic anhydrase activity in a forest soil. JGR

  7. Using sulfate oxygen isotopes to quantify sulfate formation pathways in the atmosphere: Lessons learned and open questions (United States)

    Alexander, B.


    The abundance of sulfate aerosol in the troposphere has implications for climate, air pollution, acid rain, and pH-dependent chemical reactions. The chemical formation mechanism of sulfate aerosol influences its abundance and its number and size distribution, with implications for both its direct and indirect climate impacts. Sulfate is mainly produced within the atmosphere by oxidation of its precursor, SO2. The oxygen isotopic composition (Δ17O = δ17O - 0.52 x δ18O) of sulfate (Δ17O(SO42-)) reflects the relative importance of different oxidants in the production of sulfate because the oxidants transfer unique oxygen isotope signatures to the oxidation product. Unlike δ18O, processes such as emissions, transport, and deposition do not directly impact the Δ17O value of sulfate. Comparison of observed and modeled Δ17O(SO42-) thus provides a unique means to assess a model's representation of the chemistry of sulfate formation. Large-scale models tend to produce reasonable agreement with observations of sulfate concentrations, but tend to overestimate observations of SO2. These models include gas-phase oxidation of SO2 by the hydroxyl radical, and in-cloud oxidation by hydrogen peroxide and ozone, while neglecting other, potentially important oxidation pathways. Comparison of modeled and observed Δ17O(SO42-) in the Arctic have shown that metal-catalyzed oxidation of SO2 in clouds is the dominant sulfate formation pathway in the northern mid- to high-latitudes during winter. Additional comparisons of modeled and observed Δ17O(SO42-) in the marine boundary layer (MBL) have enabled quantification of the role of sea salt aerosol for sulfate formation rates. These processes tend to increase sulfate formation rates while decreasing modeled concentrations of SO2, and tend to decrease the importance of sulfate formation in the gas-phase which is a prerequisite for new particle formation in the atmosphere. Halogen-containing oxidants such as HOBr have also been

  8. USGS42 and USGS43: Human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results (United States)

    Coplen, T.B.; Qi, H.


    Because there are no internationally distributed stable hydrogen and oxygen isotopic reference materials of human hair, the U.S. Geological Survey (USGS) has prepared two such materials, USGS42 and USGS43. These reference materials span values commonly encountered in human hair stable isotope analysis and are isotopically homogeneous at sample sizes larger than 0.2 mg. USGS42 and USGS43 human-hair isotopic reference materials are intended for calibration of δ(2)H and δ(18)O measurements of unknown human hair by quantifying (1) drift with time, (2) mass-dependent isotopic fractionation, and (3) isotope-ratio-scale contraction. While they are intended for measurements of the stable isotopes of hydrogen and oxygen, they also are suitable for measurements of the stable isotopes of carbon, nitrogen, and sulfur in human and mammalian hair. Preliminary isotopic compositions of the non-exchangeable fractions of these materials are USGS42(Tibetan hair)δ(2)H(VSMOW-SLAP) = -78.5 ± 2.3‰ (n = 62) and δ(18)O(VSMOW-SLAP) = +8.56 ± 0.10‰ (n = 18) USGS42(Indian hair)δ(2)H(VSMOW-SLAP) = -50.3 ± 2.8‰ (n = 64) and δ(18)O(VSMOW-SLAP) = +14.11 ± 0.10‰ (n = 18). Using recommended analytical protocols presented herein for δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurements, the least squares fit regression of 11 human hair reference materials is δ(2)H(VSMOW-SLAP) = 6.085δ(2)O(VSMOW-SLAP) - 136.0‰ with an R-square value of 0.95. The δ(2)H difference between the calibrated results of human hair in this investigation and a commonly accepted human-hair relationship is a remarkable 34‰. It is critical that readers pay attention to the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) of isotopic reference materials in publications, and they need to adjust the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurement results of human hair in previous publications, as needed, to ensure all results on are on the same scales.

  9. Carbon and oxygen stable isotope compositions of late Pleistocene mammal teeth from dolines of Ajoie (Northwestern Switzerland) (United States)

    Scherler, Laureline; Tütken, Thomas; Becker, Damien


    Fossils of megaherbivores from eight late Pleistocene 14C- and OSL-dated doline infillings of Ajoie (NW Switzerland) were discovered along the Transjurane highway in the Swiss Jura. Carbon and oxygen analyses of enamel were performed on forty-six teeth of large mammals (Equus germanicus, Mammuthus primigenius, Coelodonta antiquitatis, and Bison priscus), coming from one doline in Boncourt (~ 80 ka, marine oxygen isotope stage MIS5a) and seven in Courtedoux (51-27 ka, late MIS3), in order to reconstruct the paleoclimatic and paleoenvironmental conditions of the region. Similar enamel δ13C values for both periods, ranging from - 14.5 to - 9.2‰, indicate that the megaherbivores lived in a C3 plant-dominated environment. Enamel δ18OPO4 values range from 10.9 to 16.3‰ with a mean of 13.5 ± 1.0‰ (n = 46). Mean air temperatures (MATs) were inferred using species-specific δ18OPO4-δ18OH2O-calibrations for modern mammals and a present-day precipitation δ18OH2O-MAT relation for Switzerland. Similar average MATs of 6.6 ± 3.6°C for the deposits dated to ~ 80 ka and 6.5 ± 3.3°C for those dated to the interval 51-27 ka were estimated. This suggests that these mammals in the Ajoie area lived in mild periods of the late Pleistocene with MATs only about 2.5°C lower than modern-day temperatures.

  10. Exotic Higgs searches

    CERN Document Server

    Pelliccioni, Mario


    Exotic Higgs searches cover a wide range of signatures, thus leading to indications to new physics beyond Standard Model. We report a review on exotic Higgs searches for lepton flavour violating Higgs decays, for "mono-Higgs" searches, for Higgs decays to invisible and for high mass Higgs searches. Both ATLAS and CMS results will be shown, for Run-1 data statistics collected at the energy of $\\sqrt s$ = 7,8 TeV and for the first data collected during Run-2 phase at the energy of $\\sqrt s$ = 13 TeV.

  11. Supplements for exotic pets. (United States)

    Mejia-Fava, Johanna; Colitz, Carmen M H


    The use of supplements has become commonplace in an effort to complement traditional therapy and as part of long-term preventive health plans. This article discusses historical and present uses of antioxidants, vitamins, and herbs. By complementing traditional medicine with holistic and alternative nutrition and supplements, the overall health and wellness of exotic pets can be enhanced and balanced. Further research is needed for understanding the strengths and uses of supplements in exotic species. Going back to the animals' origin and roots bring clinicians closer to nature and its healing powers. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Link between benthic oxygen isotopes and magnetic susceptibility in the red-clay sequence on the Chinese Loess Plateau (United States)

    Nie, Junsheng; King, John W.; Fang, Xiaomin


    Recent rock magnetic work on the red-clay sequence on the Chinese Loess Plateau (CLP) convincingly demonstrates that the enhancement mechanisms of low-frequency magnetic susceptibility (i.e., measured at 470 Hz; χ lf) in the red-clay sequence are similar to those in the loess-paleosol sequence. Therefore, χ lf in the red-clay sequence should indicate precipitation intensity received by the CLP, as is the case in the overlying loess-paleosol sequence. Based on this result, we compared χ lf in the red-clay sequence with benthic oxygen isotope records. We infer that the primary precipitation source on the CLP varies over time in three phases: during 8.1-4.5 Ma, the East Asian summer monsoon dominates; during 4.5-4 Ma, the Polar Westerlies dominate; during 4-0 Ma, the East Asian summer monsoon dominates. We attribute these precipitation source shifts on the CLP to the closure of the Panama Seaway around 4.5 Ma and the Tibetan uplift during the interval 4-2.6 Ma.

  13. The sensitivity of the oxygen isotopes of ice core sulfate to changing oxidant concentrations since the preindustrial (United States)

    Sofen, E. D.; Alexander, B.; Kunasek, S. A.


    Changes in tropospheric oxidant concentrations since preindustrial times have implications for the ozone radiative forcing, lifetimes of reduced trace gases, aerosol formation, and human health but are highly uncertain. Measurements of the triple oxygen isotopes of sulfate in ice cores (described by Δ17OSO4 = δ17O - 0.52 × δ18O) provide one of the few constraints on paleo-oxidants. We use the GEOS-Chem global atmospheric chemical transport model to simulate changes in oxidant concentrations and the Δ17OSO4 between 1850 and 1990 to assess the sensitivity of Δ17OSO4 measurements in Greenland and Antarctic ice cores to changing tropospheric oxidant concentrations. The model indicates a 42% increase in the concentration of global mean tropospheric O3, a 10% decrease in OH, and a 58% increase in H2O2 between the preindustrial and present. Modeled Δ17OSO4 is consistent with measurements from ice core and aerosol samples. Model results indicate that the observed decrease in the Arctic Δ17OSO4 in spite of increasing O3 is due to the combined effects of increased sulfate formation by O2 catalyzed by anthropogenic transition metals and increased cloud water acidity. In Antarctica, the Δ17OSO4 is sensitive to relative changes of oxidant concentrations, but in a nonlinear fashion. Sensitivity studies explore the uncertainties in preindustrial emissions of oxidant precursors.

  14. Comment on: "Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements" by Kaiser (2011

    Directory of Open Access Journals (Sweden)

    D. P. Nicholson


    Full Text Available Kaiser (2011 has introduced an improved method for calculating gross productivity from the triple isotopic composition of dissolved oxygen in aquatic systems. His equation avoids approximations of previous methodologies, and also accounts for additional physical processes such as kinetic fractionation during invasion and evasion at the air-sea interface. However, when comparing his new approach to previous methods, Kaiser inconsistently defines the biological end-member with the result of overestimating the degree to which the various approaches of previous studies diverge. In particular, for his base case, Kaiser assigns a 17O excess to the product of photosynthesis (17δP that is too low, resulting in his result being ~30 % too high when compared to previous equations. When this is corrected, I find that Kaiser's equations are consistent with all previous study methodologies within about ±20 % for realistic conditions of metabolic balance (f and gross productivity (g. A methodological bias of ±20 % is of similar magnitude to current uncertainty in the wind-speed dependence of the air-sea gas transfer velocity, k, which directly impacts calculated gross productivity rates as well. While previous results could and should be revisited and corrected using the proposed improved equations, the magnitude of such corrections may be much less than implied by Kaiser.

  15. Diverse mineralogical and oxygen isotopic signatures recorded in CV3 carbonaceous chondrites (United States)

    Ishida, Hatsumi; Nakamura, Tomoki; Miura, Hitoshi; Kakazu, Yuki


    We describe the petrography and mineralogy of six CV3 carbonaceous chondrites. LAP02206, LAP02228, LAP04843, and GRA06101 are classified as oxidized Allende-like chondrites (CV3oxA). RBT04143 and QUE97186 are classified as members of the reduced subtype (CV3red). Chondrules in the CV3oxA chondrites show extensive Fe-Mg zoning. Fe-rich olivine in the rims of the CV3oxA chondrules are 16O-poor relative to Mg-rich olivine in the cores, suggesting that in addition to Fe and Mg, oxygen was exchanged between chondrules and matrix during weak thermal metamorphism. The CV3red chondrites appear to have formed through various processes. QUE97186 shows chondrule flattening with a preferred orientation, which is interpreted to have resulted from shock impact at a pressure of ˜20 GPa. The post-shock residual heat (˜1000 °C) is likely to be responsible for the restricted Fe/Mg ratios of matrix olivine. Based on the degree of Fe-Mg homogenization of matrix olivines, we estimate the spatial scale of the shock-heated region to be ˜1 m. RBT04143 is a breccia containing many clasts of two types of lithologies: reduced-type material and very weakly altered material.

  16. What governs the oxygen and hydrogen isotopic composition of precipitation? - A case for varying proportions of isotopically-distinct, convective and stratiform rain fractions (United States)

    Aggarwal, P. K.; araguas Araguas, L.; Belachew, D.; Schumacher, C.; Funk, A. B.; Longstaffe, F. J.; Terzer, S.


    Beginning with the pioneering work of Dansgaard in 1953, stable water isotope ratios have been observed to be different in precipitation from different clouds, such as convective showers and continuous frontal rain, hydrologically more or less organized systems, or those with or without `bright bands' in radar reflectivity. The variability in isotope ratios of precipitation has always been interpreted, however, using a Rayleigh distillation framework, with lower isotope ratios resulting from condensation at lower temperatures and/or greater air mass distillation, a lack of below-cloud evaporation or in-cloud re-cycling, etc. Rayleigh distillation based approaches do not account for the fact that tropical and midlatitude precipitation consists of varying proportions of two fundamental rain types - widespread but lower intensity, stratiform and spatially-limited but higher intensity, convective - which form under very different cloud dynamical and microphysical environments. Using rain type fraction and isotope data from a large set of monitoring stations, we will show that differences in cloud processes impart characteristic isotope signatures to the two rain types and that their changing proportions during storm events are primarily responsible for precipitation isotope variability. As a result, isotope ratios can be used to partition precipitation into convective or stratiform rain fractions, which is important for understanding cloud feedbacks and atmospheric circulation response to precipitation, as well as climate impacts on the water cycle. We will also discuss the changing character of tropical and midlatitude precipitation over the past several decades and its implications.

  17. Exotic particles in small and large ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, F.; Kluge, H.J. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Bollen, G. [European Organization for Nuclear Research, Geneva (Switzerland)


    The storage of exotic particles like antiprotons, radioactive isotopes, or highly charged ions in ion traps or storage rings has made possible high-accuracy experiments. This publication concentrates on mass spectrometry and lifetime measurements of such species. The principle of ion storage and recent experiments will be discussed. (author). 43 refs, 8 figs.

  18. Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance

    Energy Technology Data Exchange (ETDEWEB)

    Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.; Sawakuchi, Henrique O.; Da Cunha, Alan C.; Neu, Vania; Brito, Daimio C.; Da Silva Less, Diani F.; Diniz, Joel E. M.; De Matos Valerio, Aline; Kampel, Milton; Krusche, Alex V.; Richey, Jeffrey E.


    The Amazon River outgasses nearly an equivalent amount of CO2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO2 production since the recognition of a persistent state of CO2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capable of both decomposing high amounts of organic matter at lower trophic levels, driving CO2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O218O-O2) and O2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m3 d-1 at high water and 1.02 ± 0.55 g O m3 d-1 at low water. This translates to 41 ± 24% of the rate of O2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than

  19. Educating the exotic animal technician. (United States)

    Vander Veen, Kellie A; Schulte, Michelle S


    The thorough education of a skilled exotic animal technician is an ongoing process. Providing the educational tools is only the beginning. Building on the initial educational groundwork is required to excel. Veterinary technicians interested in exotic animal medicine must lobby to promote awareness of the demand for exotic pet care; be able to accept, adapt, and apply new data frequently; and receive constant support and encouragement from the exotic animal veterinarian.

  20. The Candelaria silver deposit, Nevada — preliminary sulphur, oxygen and hydrogen isotope geochemistry (United States)

    Thomson, B.; Fallick, A. E.; Boyce, A. J.; Rice, C.


    to + 13.9‰). Such enrichment probably occurred through isotopic exchange with the basement cherts during fluid ascent from a source pluton. Whole rock data for a propylitised porphyry ( δ 18O = + 14.2‰, δD = — 65‰) support a magmatic fluid source. However, δD results for fluid inclusions from several vein samples (mean = — 108 ± 14‰, 1 σ, n = 6) and for other dike and sediment whole rocks (mean = — 110 ± 13‰, 1 σ, n = 5) reveal the influence of meteoric waters. The timing of meteoric fluid incursion is unresolved, but possibilities include late-mineralisation groundwater flooding during cooling of the Early Jurassic progenitor porphyry system and/or meteoric fluid circulation driven by Late Cretaceous plutonism.

  1. Inter-annual Controls on Oxygen Isotopes of Precipitaion in the Asian Monsoon Region (United States)

    Yang, H.; Johnson, K. R.; Griffiths, M. L.; Yoshimura, K.


    The complex nature of speleothem δ18O from the Asian monsoon region is a result of the varying influences of monsoon strength, moisture source region, transport history, local cave hydrology and other effects on cave dripwater δ18O. In order to provide a more robust interpretation of speleothem δ18O data from the broader Asian monsoon region, we utilize existing simulations from the isotope-enabled GCM, IsoGSM (Yoshimura el al. 2008), to investigate the climatic controls on precipitation δ18O (δ18Op) at four cave locations: Dongge Cave, China (25°17' N, 108°5' E); Tham Mai Cave, Laos (20.75 N, 102.65 E); Mawmluh Cave, India (25°15'44''N, 91°52'54''E); and Qunf Cave, Oman (17°10' N, 54°18' E). Our composite speleothem records from Laos—a key site at the interface between the Indian and East Asian monsoon systems—will be used as a case study for interpreting speleothem δ18O in the South-East Asian Monsoon (SEAM) region. Our results show that δ18Op extracted from the grid point closest to four cave sites from IsoGSM shows very low correlation between δ18Op and local precipitation. δ18Op at Dongge cave reveals a negative correlation (0.4 to 0.5) with precipitation in the Bay of Bengal, suggesting that δ18Op from the East Asian monsoon area reflects upstream distillation over the Indian monsoon region. δ18Op in Laos exhibits a negative correlation with precipitation over the broad Indo-Pacific warm pool region, indicating increased convection over this area leads to more negative δ18Op over SE Asia. Given the low correlation between local precipitation and δ18Op at all four cave sites, we interpret the δ18Op at these locales as reflective of regional changes in hydroclimate, rather than local precipitation amount. In addition, δ18Op from IsoGSM at all fours sites, especially Qunf, Mawnluh, and Tham Mai cave, show a positive correlation with Pacific SSTs over the NINO3.4 region and in the western and northern Indian Ocean, suggesting that the

  2. Lithogeochemical, mineralogical analyses and oxygen-hydrogen isotopes of the Hercynian Koudiat Aïcha massive sulphide deposit, Morocco (United States)

    Lotfi, F.; Belkabir, A.; Brunet, S.; Brown, A. C.; Marcoux, E.


    with chlorite located in and adjacent to sulphide mineralization, whereas lower temperatures correlate with distal chlorite in both the footwall and hanging wall rocks. Chemical trends in altered footwall rocks are shown by absolute mass gains for Fe 2O 3total, MnO and MgO, by absolute mass losses for CaO, K 2O and Na 2O, and by a moderate loss in SiO 2. Oxygen and hydrogen isotope compositions of Koudiat Aïcha lithofacies (6.2-12.4‰ for oxygen and -51‰ to -36‰ for hydrogen) have also been used to determine the temperature and origin of metalliferous fluids. The couple plagioclase-amphibole of gabbros provides equilibrium temperatures between 310 and 380 °C and suggests that the heat source for the ore-forming fluid system may have been igneous. On the other hand, oxygen and hydrogen isotope ratios cluster between normal values for sedimentary and magmatic rocks, suggesting a magmatic-metamorphic origin for the ore fluid.

  3. Paleoceanographic changes of surface and deep water based on oxygen and carbon isotope records during the last 130 kyr identified in MD179 cores, off Joetsu, Japan Sea (United States)

    Ishihama, Saeko; Oi, Takeshi; Hasegawa, Shiro; Matsumoto, Ryo


    We reconstructed the paleoenvironmental history of surface and deep water over the last 130 kyr from oxygen and carbon isotope ratios of planktonic and benthic foraminifera in two cores (MD179-3312 and MD179-3304) from the Joetsu Basin, eastern margin of the Japan Sea. Our data showed that paleoceanographic changes such as influx of surface currents and vertical circulation were associated with global glacial-interglacial sea level change. Surface water conditions were influenced by the influx of Tsushima Current, East China Sea coastal or off-shore waters through the Tsushima Strait during interglacial or interstadial stages, and strongly affected by freshwater input during the glacial maximum. During interglacial maximums such as Marine Isotope Stages 1 and 5e, development of well-oxygenated bottom water was indicated. A density-stratified ocean with weak ventilation was inferred from the isotopic records of benthic foraminifera during the Last Glacial Maximum. Local negative excursions in carbon isotopes during deglacial or interglacial periods may suggest the dissolution of gas hydrates or methane seep activities.

  4. Exotic invasive plants (United States)

    Carolyn Hull Sieg; Barbara G. Phillips; Laura P. Moser


    Ecosystems worldwide are threatened by nonnative plant invasions that can cause undesirable, irreversible changes. They can displace native plants and animals, out-cross with native flora, alter nutrient cycling and other ecosystem functions, and even change an ecosystem's flammability (Walker and Smith 1997). After habitat loss, the spread of exotic species is...

  5. Exotic nuclear matter

    Directory of Open Access Journals (Sweden)

    Lenske H.


    Full Text Available Recent developments of nuclear structure theory for exotic nuclei are addressed. The inclusion of hyperons and nucleon resonances is discussed. Nuclear multipole response functions, hyperon interactions in infinite matter and in neutron stars and theoretical aspects of excitations of nucleon resonances in nuclei are discussed.

  6. Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): implications for the subduction of oceanic crust (United States)

    Putlitz, Benita; Matthews, Alan; Valley, John W.

    Oxygen and hydrogen stable isotope ratios of eclogite-facies metagabbros and metabasalts from the Cycladic archipelago (Greece) document the scale and timing of fluid-rock interaction in subducted oceanic crust. Close similarities are found between the isotopic compositions of the high-pressure rocks and their ocean-floor equivalents. High-pressure minerals in metagabbros have low δ18O values: garnet 2.6 to 5.9‰, glaucophane 4.3 to 7.1‰ omphacite 3.5 to 6.2‰. Precursor actinolite that was formed during the hydrothermal alteration of the oceanic crust by seawater analyses at 3.7 to 6.3‰. These compositions are in the range of the δ18O values of unaltered igneous oceanic crust and high-temperature hydrothermally altered oceanic crust. In contrast, high-pressure metabasalts are characterised by 18O-enriched isotopic compositions (garnet 9.2 to 11.5‰, glaucophane 10.6 to 12.5‰, omphacite 10.2 to 12.8‰), which are consistent with the precursor basalts having undergone low-temperature alteration by seawater. D/H ratios of glaucophane and actinolite are also consistent with alteration by seawater. Remarkably constant oxygen isotope fractionations, compatible with isotopic equilibrium, are observed among high-pressure minerals, with Δglaucophane-garnet= 1.37+/-0.24‰ and Δomphacite-garnet=0.72+/-0.24‰. For the estimated metamorphic temperature of 500°C, these fractionations yield coefficients in the equation Δ=A*106/T2 (in Kelvin) of Aglaucophane-garnet= 0.87+/-0.15 and Aomphacite-garnet=0.72+/-0.24. A fractionation of Δglaucophane-actinolite=0.94+/-0.21‰ is measured in metagabbros, and indicates that isotopic equilibrium was established during the metamorphic reaction in which glaucophane formed at the expense of actinolite. The preservation of the isotopic compositions of gabbroic and basaltic oceanic crust and the equilibrium fractionations among minerals shows that high-pressure metamorphism occurred at low water/rock ratios. The isotopic

  7. Reply to Nicholson's comment on "Consistent calculation of aquatic gross production from oxygen triple isotope measurements" by Kaiser (2011

    Directory of Open Access Journals (Sweden)

    J. Kaiser


    Full Text Available The comment by Nicholson (2011a questions the "consistency" of the "definition" of the "biological end-member" used by Kaiser (2011a in the calculation of oxygen gross production. "Biological end-member" refers to the relative oxygen isotope ratio difference between photosynthetic oxygen and Air-O2 (abbreviated 17δP and 18δP for 17O/16O and 18O/16O, respectively. The comment claims that this leads to an overestimate of the discrepancy between previous studies and that the resulting gross production rates are "30% too high". Nicholson recognises the improved accuracy of Kaiser's direct calculation ("dual-delta" method compared to previous approximate approaches based on 17O excess (17Δ and its simplicity compared to previous iterative calculation methods. Although he correctly points out that differences in the normalised gross production rate (g are largely due to different input parameters used in Kaiser's "base case" and previous studies, he does not acknowledge Kaiser's observation that iterative and dual-delta calculation methods give exactly the same g for the same input parameters (disregarding kinetic isotope fractionation during air-sea exchange. The comment is based on misunderstandings with respect to the "base case" 17δP and 18δP values. Since direct measurements of 17δP and 18δPdo not exist or have been lost, Kaiser constructed the "base case" in a way that was consistent and compatible with literature data. Nicholson showed that an alternative reconstruction of 17δP gives g values closer to previous studies. However, unlike Nicholson, we refrain from interpreting either reconstruction as a benchmark for the accuracy of g. A number of publications over the last 12 months

  8. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites:implications for the "Great Dunite Shortage" and HED-mesosiderite connection


    Greenwood, Richard C.; Barrat, Jean-Alix,; Scott, Edward R. D.; Haack, Henning; Buchanan, Paul C.; Franchi, Ian A.; Yamaguchi, Akira; Johnson, Diane; Bevan, Alex W.R.; Burbine, Thomas H.


    Evidence from iron meteorites indicates that a large number of differentiated planetesimals formed early in Solar System history. These bodies should have had well-developed olivine-rich mantles and consequentially such materials ought to be abundant both as asteroids and meteorites, which they are not. To investigate this "Great Dunite Shortage" we have undertaken a geochemical and oxygen isotope study of main-group pallasites and dunitic rocks from mesosiderites.Oxygen isotope analysis of 2...

  9. Stable Oxygen and Carbon Isotope Characteristics of Live Benthic Foraminifera from the Okhotsk Sea: Effects of Oceanography, Food Supply and Microhabitat Patterns (United States)

    Lembke-Jene, L.; Tiedemann, R.; Bubenshchikova, N.; Erlenkeuser, H.


    Paleoceanographic studies use benthic foraminiferal stable isotopes as proxies for interpretations of numerous parameters such as past oceanic circulation patterns, food supply, primary productivity, etc. However, only few studies have used live (rose Bengal-stained) populations to reliably calibrate stable isotope characteristics to bottom water and sediment chemistry of the surrounding environment. We report data from a study in the Okhotsk Sea, a region characterized by extreme climatic and oceanographic settings. Not only does this marginal basin of the NW-Pacific experience the southermost extent of seasonal ice cover in the entire Northern Hemisphere, it also shows extremely high primary productivity. These boundary conditions lead many to consider the Okhotsk Sea both as a modern analog for ecological and oceanographic conditions in ocean basins during past and a sensitive recorder of potential future climate change in high latitudes. We compare results of stable oxygen and carbon isotopes from the most abundant taxa to oxygen isotopic compositions of bottom water and carbon isotopes of bottom water DIC, nutrient inventories from the water column and productivity proxy-data from sediment surface profiles (chlorines, TOC, biogenic opal). Multicorer samples from the upper 10 cm at 15 sites were taken from a variety of settings with water depths ranging from less than 100 m to more than 3200 m. Results obtained show a wide range of interspecific carbon isotope values exceeding 2 per mil variability within neighbouring samples. Minimum values occur in deep endobenthic groups like Globobulima spp., whereas species living in a relatively wide depth range like V. sadonica or U. peregrina exhibit intermediate values between -0.7 and -1 per mil. Most measurements conducted to address intraspecific variability remain within a narrow range of less than 0.4 per mil. However, we do observe vertical trends with both increasing and decreasing carbon isotope gradients

  10. Paleoclimate of the Neoglacial and Roman Warm Period Reconstructed from Oxygen Isotope Ratios of Limpet Shells (Patella vulgata), Northwest Scotland (United States)

    Wang, T.; Surge, D. M.; Mithen, S.


    Paleoclimate reconstructions from different regions have reported abrupt climate change around 2800-2700 cal yr B.P. The timing of this abrupt climate change is close to the boundary between the Neoglacial (3300-2500 cal yr B.P.) and Roman Warm Period (2500-1600 cal yr B.P.). However, temporal and spatial variability observed in this climate change event raises controversies about the forcing factors driving it and why it has regional variability. Scotland lies in the North Atlantic Ocean, which responds sensitively to climate change. Therefore, even in the case of subtle climate change, the climate variability of Scotland should be able to capture such change. In this study, we expect that paleoclimate reconstructions of the Neoglacial and Roman Warm Period in Scotland will help improve our knowledge of abrupt climate change at 2800-2700 cal yr B.P. Archaeological shell deposits provide a rich source of climate proxy data preserved as oxygen isotope ratios in shell carbonate. Croig Cave on the Isle of Mull, Scotland, contains a nearly continuous accumulation of shells ranging from 800 BC-500 AD and possibly older. This range represents a broad chronology of human use from the late Bronze to Iron Ages and spans the Neoglacial through Roman Warm Period climate episodes. Here, we present seasonal temperature variability of the two climate episodes based on oxygen isotope ratios of ten limpet shells (Patella vulgata) from Croig Cave. Based on AMS dating (2 sigma calibration), the oldest shell was from 3480-3330 cal yr B.P. and the youngest shell was from 2060-1870 cal yr B.P. Our results indicated that estimated temperatures from the Neoglacial limpets average 6.44±0.56°C for coldest winters and 15.06±0.67°C for warmest summers. For the Roman Warm Period limpets, the average is 5.68±0.36°C for coldest winters and 14.14±0.81°C for warmest summers. We compared our estimated temperatures to the present sea surface temperature (SST) from 1961 to 1990 near our

  11. Oxygen, Magnesium, and Aluminum Isotopes in the Ivuna CAI: Re-Examining High-Temperature Fractionations in CI Chondrites (United States)

    Frank, D. R.; Huss, G. R.; Nagashima, K.; Zolensky, M. E.; Le, L.


    CI chondrites are thought to approximate the bulk solar system composition since they closely match the composition of the solar photosphere. Thus, chemical differences between a planetary object and the CI composition are interpreted to result from fractionations of a CI starting composition. This interpretation is often made despite the secondary mineralogy of CI chondrites, which resulted from low-T aqueous alteration on the parent asteroid(s). Prevalent alteration and the relatively large uncertainties in the photospheric abundances (approx. +/-5-10%) permit chemical fractionation of CI chondrites from the bulk solar system, if primary chondrules and/or CAIs have been altered beyond recognition. Isolated olivine and pyroxene grains that range from approx. 5 microns to several hundred microns have been reported in CI chondrites, and acid residues of Orgueil were found to contain refractory oxides with oxygen isotopic compositions matching CAIs. However, the only CAI found to be unambiguously preserved in a CI chondrite was identified in Ivuna. The Ivuna CAI's primary mineralogy, small size (approx.170 microns), and fine-grained igneous texture classify it as a compact type A. Aqueous alteration infiltrated large portions of the CAI, but other regions remain pristine. The major primary phases are melilite (Ak 14-36 ), grossmanite (up to 20.8 wt.% TiO 2 ), and spinel. Both melilite and grossmanite have igneous textures and zoning patterns. An accretionary rim consists primarily of olivine (Fa 2-17 ) and low-Ca pyroxene (Fs 2-10 ), which could be either surviving CI2 material or a third lithology.

  12. Early Cenomanian "hot greenhouse" revealed by oxygen isotope record of exceptionally well-preserved foraminifera from Tanzania (United States)

    Ando, Atsushi; Huber, Brian T.; MacLeod, Kenneth G.; Watkins, David K.


    The search into Earth's mid-Cretaceous greenhouse conditions has recently been stimulated by the Tanzania Drilling Project (TDP) which has recovered exceptionally well-preserved biogenic carbonates from subsurface pre-Neogene marine sediments in the eastern margin of central Africa. Published Tanzanian oxygen isotope records measured on exquisitely preserved foraminiferal tests, dating to as old as ~93 Ma, provided evidence for a Turonian "hot greenhouse" with very high and stable water-column temperatures. We have generated a comparable data set of exceptionally well-preserved foraminifera from a lower Cenomanian interval of TDP Site 24 spanning 99.9-95.9 Ma (planktonic foraminiferal Thalmanninella globotruncanoides Zone; nannofossil Corollithion kennedyi to Lithraphidites eccentricus Zones), thereby extending the age coverage of the Tanzanian foraminiferal δ18O record back by ~7 million years. Throughout the interval analyzed, the new foraminiferal δ18O data are consistently around -4.3‰ for surface-dwelling planktonic taxa and -1.9‰ for benthic Lenticulina spp., which translate to conservative paleotemperature estimates of >31°C at the surface and >17°C at the sea floor (upper bathyal depths). Considering the ~40°S Cenomanian paleolatitude of TDP Site 24, these estimates are higher than computer simulation results for accepted "normal" greenhouse conditions (those with up to 4X preindustrial pCO2 level) and suggest that the climate mode of the early Cenomanian was very similar to the Turonian hot greenhouse. Taking account of other comparable data sources from different regions, the hot greenhouse mode within the normal mid-Cretaceous greenhouse may have begun by the latest Albian, but the precise timing of the critical transition remains uncertain.

  13. Relationship between the Northern Pacific Gyre Oscillation and tree-ring cellulose oxygen isotopes in northeastern Japan (United States)

    Sakashita, Wataru; Miyahara, Hiroko; Yokoyama, Yusuke; Aze, Takahiro; Obrochta, Stephen P.; Nakatsuka, Takeshi


    The North Pacific Gyre Oscillation (NPGO) significantly imprints on hydrological fluctuations of the East Asian summer monsoon (EASM) region, but this has not yet been observed in proxy-based hydroclimate reconstructions. This study reports a tree-ring cellulose oxygen isotope (δ18O) record from northeastern Japan spanning A.D. 1927-2010, overlapping with instrumental data, which we analyzed to determine if tree-ring δ18O in northeastern Japan records a signal consistent with the NPGO. Our results indicate that the tree-ring δ18O has a significant negative correlation with May-June (MJ) precipitation, as well as with short-term MJ relative humidity variation. Time-lagged temporal-domain comparisons indicate that the tree-ring δ18O is significantly correlated with the following year March-April (MA) and MJ NPGO index before the North Pacific climate transition in the late 1980s, particularly on decadal timescales. These relationships between our tree-ring δ18O and the climate patterns in the North Pacific are consistent with the actual early-summer precipitation. Spatial spring and early-summer sea-surface temperature anomalies exhibit a NPGO-like pattern in the following year. Spatial early-summer sea-level pressure anomalies also indicate North Pacific Oscillation (NPO) like patterns in the western North Pacific. These results suggest a lagged response of the NPGO to the EASM climate changes, and tree-ring δ18O in northeast Japan has a potential linkage with NPGO index from winter to early summer of the following year.

  14. Seasonal variability of oxygen and hydrogen isotopes in a wetland system of the Yunnan-Guizhou Plateau, southwest China: a quantitative assessment of groundwater inflow fluxes (United States)

    Cao, Xingxing; Wu, Pan; Zhou, Shaoqi; Han, Zhiwei; Tu, Han; Zhang, Shui


    The Caohai Wetland serves as an important ecosystem on the Yunnan-Guizhou Plateau and as a nationally important nature reserve for migratory birds in China. In this study, surface water, groundwater and wetland water were collected for the measurement of environmental isotopes to reveal the seasonal variability of oxygen and hydrogen isotopes (δ18O, δD), sources of water, and groundwater inflow fluxes. Results showed that surface water and groundwater are of meteoric origin. The isotopes in samples of wetland water were well mixed vertically in seasons of both high-flow (September) and low-flow (April); however, marked seasonal and spatial variations were observed. During the high-flow season, the isotopic composition in surface wetland water varied from -97.13 to -41.73‰ for δD and from -13.17 to -4.70‰ for δ18O. The composition of stable isotopes in the eastern region of this wetland was lower than in the western region. These may have been influenced by uneven evaporation caused by the distribution of aquatic vegetation. During the low-flow season, δD and δ18O in the more open water with dead aquatic vegetation ranged from -37.11 to -11.77‰, and from -4.25 to -0.08‰, respectively. This may result from high evaporation rates in this season with the lowest atmospheric humidity. Groundwater fluxes were calculated by mass transfer and isotope mass balance approaches, suggesting that the water sources of the Caohai Wetland were mainly from groundwater in the high-flow season, while the groundwater has a smaller contribution to wetland water during the low-flow season.

  15. Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon (United States)

    Ankney, Meagan E.; Bacon, Charles R.; Valley, John W.; Beard, Brian L.; Johnson, Clark M.


    We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0–50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1–5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the

  16. Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon (United States)

    Ankney, Meagan E.; Bacon, Charles R.; Valley, John W.; Beard, Brian L.; Johnson, Clark M.


    We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0-50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an ;outside in; perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1-5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000-63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10-200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others. Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the highest U excess (≥5.8%) also

  17. JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Papenbrock, Thomas


    The grant “JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei ” (DOE DE-FG02-06ER41407) ran from 02/01/2006 thru 12/31/2013. JUSTIPEN is a venue for international collaboration between U.S.-based and Japanese scientists who share an interest in theory of rare isotopes. Since its inception JUSTIPEN has supported many visitors, fostered collaborations between physicists in the U.S. and Japan, and enabled them to deepen our understanding of exotic nuclei and their role in cosmos.

  18. Variability of the Asian summer monsoon during the penultimate glacial/interglacial period inferred from stalagmite oxygen isotope records from Yangkou cave, Chongqing, Southwestern China (United States)

    Li, T.-Y.; Shen, C.-C.; Huang, L.-J.; Jiang, X.-Y.; Yang, X.-L.; Mii, H.-S.; Lee, S.-Y.; Lo, L.


    The orbital-timescale dynamics of the Quaternary Asian summer monsoons (ASM) are frequently attributed to precession-dominated Northern Hemisphere summer insolation. However, this ASM variability is inferred primarily from oxygen isotope records of stalagmites, mainly from Sanbao cave in mainland China, and may not provide a comprehensive picture of ASM evolution. A new spliced stalagmite oxygen isotope record from Yangkou cave tracks summer monsoon precipitation variation from 124-206 thousand years ago in Chongqing, southwest China. When superimposed on the Sanbao record, the Yangkou-inferred precipitation time series is shown to support the strong ASM periods at marine isotope stages (MIS) 6.3, 6.5, and 7.1 and weak ASM intervals at MIS 6.2, 6.4, and 7.0. This consistency confirms that ASM events affected most of mainland China. We show that change in glacial/interglacial (G/IG) ASM intensity was also governed by the Walker Circulation by combining our results with published paleo-Pacific thermal and salinity records. One of the strongest ASM events over the past fiver G/IG cycles, at MIS 6.5, was enhanced by such zonal forcing associated with prevailing trade winds in the Pacific.

  19. Oxygen and silicon stable isotopes of diatom silica. Reconstructing changes in surface water hydrography and silicic acid utilization in the late Pleistocene subarctic Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Edith


    Deglacial variations in upper ocean nutrient dynamics and stratification in high latitudes, as well as associated changes in thermohaline overturning circulation, are thought to have played a key role in changing atmospheric CO{sub 2} concentrations. This thesis examines the relationship between past changes in subarctic Pacific upper ocean stratification and nutrient (silicic acid) utilization, using oxygen and silicon stable isotopes of diatom silica, for the first time at millennial-scale resolution and analyzed with a new and efficient instrumentation set-up. The isotopic data, presented in three manuscripts, show a consistent picture of millennial-scale variability in upper ocean stratification and silicic acid utilization during the last ∝50 ka BP, e.g. indicating that the subarctic Pacific was a source region for atmospheric CO{sub 2} during the last deglaciation (late Heinrich Stadial 1 and the Boelling/Alleroed). The presented results demonstrate the high potential of combined diatom oxygen and silicon stable isotope analysis especially for, but not restricted to, marine regions characterized by a low biogenic carbonate content like the subarctic Pacific and the Southern Ocean.

  20. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation. (United States)

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P


    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤1.8‰) occurred

  1. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation (United States)

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P.


    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8

  2. An integrated chemical and oxygen isotopic study of primitive olivine grains in picrites from the Emeishan Large Igneous Province, SW China: Evidence for oxygen isotope heterogeneity in mantle sources (United States)

    Yu, Song-Yue; Shen, Neng-Ping; Song, Xie-Yan; Ripley, Edward M.; Li, Chusi; Chen, Lie-Meng


    Recognition of the nature of potential mantle sources of continental flood basalts is complicated by possible overprinting related to crustal contamination as magmas migrate to the surface (Arndt and Christensen, 1992). However, in picritic lava flows primitive olivine phenocrysts that formed early in the crystallization sequence can potentially provide unperturbed information of their mantle source. We have carried out an integrated chemical and oxygen isotopic (in situ SIMS) study of primitive olivine grains (Fo ranging from 88 to 92.6 mol%) in the Emeishan picrites at different locations (Wulongba, Wuguijing, Tanglanghe and Maoniuping). We use these data to evaluate the geochemical nature of mantle sources for magmas from which the primitive olivine crystallized. The primitive olivine grains in the samples from Maoniuping, Wuguijing and Tanglanghe are characterized by mantle-like δ18O values (mean values are 5.1 ± 0.3‰ (2σ, n = 53), 5.2 ± 0.3‰ (2σ, n = 122) and 5.3 ± 0.3‰ (n = 25), respectively) coupled with generally low Fo contents (mean values are 88.7 ± 1.4 mol% (2σ, n = 53), 89.8 ± 1.8 mol% (2σ, n = 122) and 89.4 ± 1.8 mol% (2σ, n = 25), respectively). In contrast, the olivine grains in the samples from Wulongba are characterized by elevated δ18O values (mean = 5.6 ± 0.3‰ (2σ, n = 58)) coupled with generally higher Fo contents (mean = 91 ± 2.8 mol% (2σ, n = 58)) than primitive olivine in the samples from the other locations. Based on olivine compositions, primitive olivine in picrites from Maoniuping, Tanglanghe and Wuguijing are consistent with derivation from hybrid mantle sources containing similar proportions of peridotite and pyroxenite/eclogite components. The δ18O values of these primitive olivine grains are consistent with melting of plume source materials. The chemical composition of the primitive olivine from Wulongba are also consistent with derivation from a hybrid peridotite/pyroxenite source, but the high δ18O values

  3. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic (United States)

    Tappert, Ralf; McKellar, Ryan C.; Wolfe, Alexander P.; Tappert, Michelle C.; Ortega-Blanco, Jaime; Muehlenbachs, Karlis


    Estimating the partial pressure of atmospheric oxygen (pO2) in the geological past has been challenging because of the lack of reliable proxies. Here we develop a technique to estimate paleo-pO2 using the stable carbon isotope composition (δ13C) of plant resins-including amber, copal, and resinite-from a wide range of localities and ages (Triassic to modern). Plant resins are particularly suitable as proxies because their highly cross-linked terpenoid structures allow the preservation of pristine δ13C signatures over geological timescales. The distribution of δ13C values of modern resins (n = 126) indicates that (a) resin-producing plant families generally have a similar fractionation behavior during resin biosynthesis, and (b) the fractionation observed in resins is similar to that of bulk plant matter. Resins exhibit a natural variability in δ13C of around 8‰ (δ13C range: -31‰ to -23‰, mean: -27‰), which is caused by local environmental and ecological factors (e.g., water availability, water composition, light exposure, temperature, nutrient availability). To minimize the effects of local conditions and to determine long-term changes in the δ13C of resins, we used mean δ13C values (δ13Cmeanresin) for each geological resin deposit. Fossil resins (n = 412) are generally enriched in 13C compared to their modern counterparts, with shifts in δ13Cmeanresin of up to 6‰. These isotopic shifts follow distinctive trends through time, which are unrelated to post-depositional processes including polymerization and diagenesis. The most enriched fossil resin samples, with a δ13Cmeanresin between -22‰ and -21‰, formed during the Triassic, the mid-Cretaceous, and the early Eocene. Experimental evidence and theoretical considerations suggest that neither change in pCO2 nor in the δ13C of atmospheric CO2 can account for the observed shifts in δ13Cmeanresin. The fractionation of 13C in resin-producing plants (Δ13C), instead, is primarily influenced by

  4. Multiple Nebular Gas Reservoirs Recorded by Oxygen Isotope Variation in a Spinel-rich CAI in CO3 MIL 090019 (United States)

    Simon, J. I.; Simon, S. B.; Nguyen, A. N.; Ross, D. K.; Messenger, S.


    We conducted NanoSIMS O-isotopic imaging of a primitive spinel-rich CAI spherule (27-2) from the MIL 090019 CO3 chondrite. Inclusions such as 27-2 are proposed to record inner nebula processes during an epoch of rapid solar nebula evolution. Mineralogical and textural analyses suggest that this CAI formed by high temperature reactions, partial melting, and condensation. This CAI exhibits radial O-isotopic heterogeneity among multiple occurrences of the same mineral, reflecting interactions with distinct nebular O-isotopic reservoirs.

  5. Seasonality in the Western Mediterranean During the Last Glacial From Paired Oxygen Isotopes and Mg/Ca in Limpet Shells (United States)

    Ferguson, J. E.; Henderson, G. M.; Fa, D.; Finlayson, C.


    Molluscs have shown great potential to act as seasonal-resolution archives of sea-surface temperatures (SST) at mid to high latitudes, outside the range of tropical surface corals. Seasonal resolution climate records from higher latitudes are important to allow investigation of the role of seasonality in controlling mean climate on diverse timescales, and of the evolution of climate systems such as the North Atlantic Oscillation. Long sequences of intertidal mollusc shells are difficult to find due to sea level fluctuations over glacial- interglacial periods. This study makes use of Patella shells collected by Neanderthals and humans and transported inland to caves on Gibraltar over at least the last 120 kyrs. Some 30 fossil Patella shells were selected from several hundred excavated from Gorham's and Vanguard Caves at Gibraltar. Oxygen isotope analysis of micromilled samples of modern Patella shells from the Gibraltar coastline demonstrate that the shells accurately record absolute SSTs and capture more than 80% of the full seasonal range. Analysis of fossil Patella shells, dated using 14C, provides records of the change in absolute SST and seasonality during the last glacial. Paired Mg/Ca ratios of micromilled samples in modern Patella shells follow a consistent positive relationship with SST providing an independent paleothermometer, analogous with coral Sr/Ca. Applying this Mg/Ca-SST relationship to fossil Patella shells allows the independent reconstruction of the absolute values and range of SSTs and the reconstruction of seawater δ18O for the western Mediterranean. Results show a cooling of glacial summer SSTs from 36 kyr BP to the LGM with maximum cooling of glacial summer SSTs of 7.5 °C relative to modern. In contrast, winter SSTs show greater variability on millennial timescales with a maximum cooling of up to 10 °C. SST seasonality is therefore extended due to greater winter cooling but SST seasonality is highly variable as a result of large

  6. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-T sub c superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Creager, W.N.


    The far infrared reflectance and conductivity of (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I and TaS{sub 3} have been measured to determine the origin of a huge infrared resonance that dominates the charge density wave (CDW) dynamics along with the pinned acoustic phason mode in the related materials (TaSe{sub 4}){sub 2}I and K{sub 0. 3}MoO{sub 3}. The measurements cover frequencies from 3 to 700cm{sup {minus}1} and the temperature range from 15K to 300K. In the niobium-doped alloys (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I, the size and frequency of the giant infrared mode remain nearly constant as the impurity concentration x is increased. For TaS{sub 3}, the pinned acoustic phason near 0.5cm{sup {minus}1} dominates {var epsilon}({omega}) and an additional small mode lies near 9cm{sup {minus}1}. The latter mode is much smaller than the infrared mode in other CDW materials. These results rule out several models of a generic infrared mode'' in CDW excitations. They are compared in detail to the predictions of a recent theory attributing the infrared mode to a bound collective mode localized at impurity sites within the crystal. The transmittance of K{sub 0.3}MoO{sub 3} has been measured at 1.2K with a strong dc electric field applied across the crystal. Under these conditions, the charge density wave depins abruptly and carries large currents with near-zero differential resistance. For some samples, the low-frequency transmittance is enhanced slightly when the CDW depins. The magnitude of the oxygen isotope effect in the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} has been determined by substitution of {sup 18}O for {sup 16}O. A series of cross-exchanges was performed on high-quality polycrystalline specimens to eliminate uncertainties due to sample heat treatments and sample inhomogeneities.

  7. Oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system up to 0.7 mol/kg ionic strength at 25 °C (United States)

    Kim, Sang-Tae; Gebbinck, Christa Klein; Mucci, Alfonso; Coplen, Tyler B.


    To investigate the oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system, witherite (BaCO3) was precipitated quasi-instantaneously and quantitatively from Na-Cl-Ba-CO2 solutions of seawater-like ionic strength (I = 0.7 mol/kg) at two pH values (~7.9 and ~10.6) at 25 °C. The oxygen isotope composition of the witherite and the dissolved inorganic carbon speciation in the starting solution were used to estimate the oxygen isotope fractionations between HCO3¯ and H2O as well as between CO3 2 and H2O. Given the analytical error on the oxygen isotope composition of the witherite and uncertainties of the parent solution pH and speciation, oxygen isotope fractionation between NaHCO3° and HCO3¯, as well as between NaCO3¯ and CO3 2, is negligible under the experimental conditions investigated. The influence of dissolved NaCl concentration on the oxygen isotope fractionation in the aragonite-CO2-H2O-NaCl system also was investigated at 25 °C. Aragonite was precipitated from Na-Cl-Ca-Mg-(B)-CO2 solutions of seawater-like ionic strength using passive CO2 degassing or constant addition methods. Based upon our new experimental observations and published experimental data from lower ionic strength solutions by Kim et al. (2007b), the equilibrium aragonite-water oxygen isotope fractionation factor is independent of the ionic strength of the parent solution up to 0.7 mol/kg. Hence, our study also suggests that the aragonite precipitation mechanism is not affected by the presence of sodium and chloride ions in the parent solution over the range of concentrations investigated.

  8. Euroschool on Exotic Beams

    CERN Document Server

    Pfützner, Marek; The Euroschool on Exotic Beams, vol. IV


    This is the forth volume in a series of Lecture Notes based on the highly successful Euro Summer School on Exotic Beams. The aim of these notes is to provide a thorough introduction to radioactive ion-beam physics at the level of graduate students and young postdocs starting out in the field. Each volume covers a range of topics from nuclear theory to experiment and applications. Vol I has been published as LNP 651, Vol II has been published as LNP 700, and Vol. III has been published as LNP 764.

  9. ATLAS Exotic Searches

    Directory of Open Access Journals (Sweden)

    Bousson Nicolas


    Full Text Available Thanks to the outstanding performance of the Large Hadron Collider (LHC that delivered more than 2 fb−1 of proton-proton collision data at center-of-mass energy of 7 TeV, the ATLAS experiment has been able to explore a wide range of exotic models trying to address the questions unanswered by the Standard Model of particle physics. Searches for leptoquarks, new heavy quarks, vector-like quarks, black holes, hidden valley and contact interactions are reviewed in these proceedings.

  10. Combining tree-ring metal concentrations and lead, carbon and oxygen isotopes to reconstruct peri-urban atmospheric pollution

    National Research Council Canada - National Science Library

    Doucet, A; Savard, M M; Bégin, C; Marion, J; Smirnoff, A; Ouarda, T B M J


    In this study, we analysed the tree-ring metal concentrations and isotope ratios of five stands located in three contrasted settings to infer the diffuse air pollution history of the northern part of the Windsor...

  11. Mammal Research: Exotic Ungulates in Florida (United States)

    US Fish and Wildlife Service, Department of the Interior — A review, of the exotic ungulate industry in Florida was made by mailing questionnaires to exotic ungulate permittees, phone interviews, interviews with exotic...

  12. Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from water samples (United States)

    Hannon, Janet E.; Böhlke, John Karl; Mroczkowski, Stanley J.


    BaSO4 precipitated from mixed salt solutions by common techniques for SO isotopic analysis may contain quantities of H2O and NO that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that δ18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO and NO and the δ18O values of the H2O, NO, and SO. Typical δ18O errors are of the order of 0.5 to 1‰ in many sample types, and can be larger in samples containing atmospheric NO, which can cause similar errors in δ17O and Δ17O. These errors can be reduced by (1) ion chromatographic separation of SO from NO, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured δ18O values based on amounts and isotopic compositions of coexisting H2O and NO. These procedures are demonstrated for SO isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO sources and reaction mechanisms.

  13. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States (United States)

    Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy


    The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.

  14. Steady state or non-steady state? Identifying driving mechanisms of oxygen isotope signatures of leaf transpiration in functionally distinct plant species (United States)

    Dubbert, Maren; Kübert, Angelika; Cuntz, Matthias; Werner, Christiane


    accordance with our findings in the lab, species specific differences in the leaf water turn over time, significantly influenced the amount of time plants transpired at non-steady state during the day (Dubbert et al., 2013, 2014). Our results emphasize the significance of considering isotopic non-steady state of transpiration and specifically to account for the specific differences of plant species resulting from distinct physiological traits of their leaves when applying isoflux models in ecosystem studies. Dubbert, M; Cuntz, M; Piayda, A; Maguas, C; Werner, C: Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. J Hydrol (2013) Dubbert, M; Piayda, A; Cuntz, M; Correia, AC; Costa e Silva, F; Pereira, JS; Werner, C: Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange, Frontiers in Plant Science (2014a)

  15. LHCB : Exotic hadrons at LHCb

    CERN Multimedia

    Salazar De Paula, Leandro


    The latest years have seen a resurrection of interest in searches for exotic states motivated by tantalising observations by Belle and CDF. Using the data collected at pp collisions at 7 and 8 TeV by the LHCb experiment we present the unambiguous new observation of exotic charmonia hadrons produced in B decays.

  16. Oxygen, carbon and sulphur isotope studies in the Keban Pb-Zn deposits, eastern Turkey: An approach on the origin of hydrothermal fluids (United States)

    Kalender, Leyla


    Pb-Zn deposits are widespread and common in various parts of the Taurus Belt. Most of the deposits are of pyrometasomatic and hydrothermal origin. The Keban Pb-Zn deposits are located along the intrusive contact between the Paleozoic - Lower Triassic Keban Metamorphic Formation and the syenite porphyry of the Upper Cretaceous Keban igneous rocks. Various studies have already been carried out; using fluid inclusion studies on fluorite, calcite and quartz on the pyrite-chalcopyrite bearing Keban ore deposits. This study focuses on the interpretation of stable isotope compositions in connexion with fluid inclusion data. Sulphur isotope values (δ 34S) of pyrite are within the range of -0.59 to +0.17‰ V-CDT ( n = 10). Thus, the source of sulphur is considered to be magmatic, as evidenced by associated igneous rocks and δ 34S values around zero"0". Oxygen isotope values δ 18O of quartz vary between +10.5 and +19.9‰ (SMOW). However, δ 18O and δ 13C values of calcite related to re-crystallized limestone (Keban Metamorphic Formation) reach up to +27.3‰ (SMOW) and +1.6‰ (PDB), respectively. The δ 34S, δ 13C and δ 18O values demonstrate that skarn-type Pb-Zn deposits formed within syeno-monzonitic rocks and calc-schist contacts could have developed at low temperatures, by mixing metamorphic and meteoric waters in the final stages of magmatism.

  17. Determining the Spatial Influence of Imported and Local Water Sources to Municipal Tap Water Systems in the Southwestern United States Using Stable Isotopes of Oxygen and Hydrogen (United States)

    Stalker, J. C.; Kennedy, C. D.; Bowen, G. J.


    In arid and semi-arid parts of the southwestern USA, imported waters derived from large canal systems like the Colorado River Aqueduct, Los Angeles Aqueduct, and the California Aqueduct service a significant component of the regional water needs. These waters are sourced primarily from high altitude snowmelt runoff and have relatively low annually averaged stable isotope ratios of hydrogen and oxygen (δD, δ18O) (-99 to -127‰, -10 to -13‰,) when compared to water derived from local rainfall and surface river sources (-35 to -42 ‰, -5 to -7‰) in southern California, western Arizona, and southern Nevada. The distinct isotope signatures of these two waters can be used to differentiate the two sources in tap water from municipal systems. In this study, samples of tap water, aqueduct water, and surface water were collected throughout the Southwest to produce a series of maps of the spatial influence of imported water in municipal tap water. This data was then be used to develop mixing models to determine the relative importance of imported water regionally, and track the prominence of the movement of these imported waters after initial use and addition to a system. The use of isotopes to trace this anthropogenically introduced water is of interest to water management, resolving water rights issues and disputes, as well as environmental applications in ecological studies. Additionally these tracing methods may be applied worldwide in areas where the movement and dynamics of hydrologic systems are either unclear or unknown.

  18. A new route of oxygen isotope exchange in the solid phase: demonstration in CuSO4.5H2O. (United States)

    Danon, Albert; Saig, Avraham; Finkelstein, Yacov; Koresh, Jacob E


    Temperature-programmed desorption mass spectrometry (TPD-MS) measurements on [(18)O]water-enriched copper sulfate pentahydrate (CuSO(4).5H(2)(18)O) reveal an unambiguous occurrence of efficient oxygen isotope exchange between the water of crystallization and the sulfate in its CuSO(4) solid phase. To the best of our knowledge, the occurrence of such an exchange was never observed in a solid phase. The exchange process was observed during the stepwise dehydration (50-300 degrees C) of the compound. Specifically, the exchange promptly occurs somewhere between 160 and 250 degrees C; however, the exact temperature could not be resolved conclusively. It is shown that only the fifth, sulfate-associated, anionic H(2)O molecule participates in the exchange process and that the exchange seems to occur in a preferable fashion with, at the most, one oxygen atom in SO(4). Such an exchange, occurring below 250 degrees C, questions the common conviction of unfeasible oxygen exchange under geothermic conditions. This new oxygen exchange phenomenon is not exclusive to copper sulfate but is unambiguously observed also in other sulfate- and nitrate-containing minerals.

  19. Tracing the sources and cycling of phosphorus in river sediments using oxygen isotopes: Methodological adaptations and first results from a case study in France. (United States)

    Pistocchi, Chiara; Tamburini, Federica; Gruau, Gerard; Ferhi, André; Trevisan, Dominique; Dorioz, Jean-Marcel


    An essential aspect of eutrophication studies is to trace the ultimate origin of phosphate ions (P-PO 4 ) associated with the solid phase of river sediments, as certain processes can make these ions available for algae. However, this is not a straightforward task because of the diversity of allochthonous and autochthonous sources that can supply P-PO 4 to river sediments as well as the existence of in-stream processes that can change the speciation of these inputs and obscure the original sources. Here, we present the results of a study designed to explore the potentials, limitations and conditions for the use of the oxygen isotope composition of phosphate (δ 18 Op) extracted from river sediments for this type of tracing. We first tested if the method commonly applied to soils to purify P-PO 4 and to measure their δ 18 Op concentrations could be adapted to sediments. We then applied this method to a set of sediments collected in a river along a gradient of anthropogenic pressure and compared their isotopic signatures with those from samples that are representative of the potential P-PO 4 inputs to the river system (soils and riverbank material). The results showed that following some adaptations, the purification method could be successfully transposed to river sediments with a high level of P-PO 4 purification (>97%) and high δ 18 Op measurement repeatability and accuracy (river sediments ranged from 12.2 to 15.8‰. Moreover, a sharp increase (>3‰) in the sediment δ 18 Op value immediately downstream from the discharge point revealed the strong impact of municipal wastewater. The calculation of the theoretical equilibrium δ 18 O p values using the river water temperature and δ 18 O w showed that the downstream sediments were in equilibrium, which was not the case for the upstream sediments. This difference could be related to the contrast between the short residence time of the transfer system in the catchment head, which can preserve the isotopic

  20. Chemical and Structural Dependences of the Fractionation of Oxygen and Silicon Isotopes Between Rock-forming Minerals: a First-Principles Density Functional Study (United States)

    Meheut, M.; Schauble, E. A.


    Ab initio methods based on density functional theory have proven to be successful in reproducing the physical and chemical properties of complex systems. Within this framework, we have recently developed a methodology to predict equilibrium fractionation factors as a function of temperature (1). We use PBE functionals, combined with the use of pseudopotentials and planewave basis sets. Our previous work focused on the effect of the polymerization of the silicate network on Si-isotope fractionation (2), which had previously been predicted to be a determining factor. Our work does not confirm this assumption. In particular, a large fractionation was estimated between kaolinite and lizardite, despite identical polymerization structures. To investigate the origin of this fractionation, we studied minerals with structures closely related to lizardite and kaolinite, such as talc, pyrophyllite, muscovite and phlogopite. In terms of Si-isotope fractionation, muscovite is very similar to kaolinite (with Δ qtz-musc = 0.18 ‰ at 700°C) whereas talc and pyrophyllite appear significantly heavier than lizardite and kaolinite, respectively, despite their similar structures and cation contents (Δ qtz-talc = 0.35 ‰, Δ qtz-pyro = 0.08 ‰ at 700°C). In terms of O-isotopes fractionation, calculated quartz-muscovite and muscovite-water fractionations agree well with existing estimates at high temperature, based on experimental and empirical data. Interestingly, talc is calculated to be very similar to muscovite, whereas pyrophyllite will be significantly heavier (Δ qtz-pyro = 3.3 ‰ at 200°C ). Those similarities and differences will be discussed in terms of structures and cation contents. In previous studies, oxygen fractionation systematics have been related to the nature of the first neighbors of oxygen atoms (bond-type models), or to more precise structural features, through the modified increment method for example (3). We will critically analyze these concepts to help

  1. Hydrogen and oxygen isotope fractionation between brucite and aqueous NaCl solutions from 250 to 450°C (United States)

    Saccocia, Peter J.; Seewald, Jeffrey S.; Shanks, Wayne C.


    Hydrogen and oxygen isotope fractionation factors between brucite and aqueous NaCl solutions (1000lnαbr-sw) have been calibrated by experiment from 250 to 450°C at 0.5 Kb. For D/H fractionation, 1000lnα br-sw values are as follows: −32 ± 6‰ (250°C, 3.2 wt% NaCl), −21 ± 2‰ (350°C, 10.0 wt% NaCl), and −22 ± 2‰ (450°C, 3.2 wt% NaCl), indicating that brucite is depleted in D relative to coexisting aqueous NaCl solutions. These results are in good agreement with previous D/H fractionation factors determined in the brucite-water system, indicating that any effects of dissolved salt on D/H fractionation are relatively small, particularly in solutions with near seawater salinity. The maximum salt effect (+4‰) was observed in 10.0 wt% NaCl solutions at 350°C, suggesting that the addition of dissolved NaCl increases the amount of deuterium fractionated into mineral structures. For 18O/16O fractionation, 1000lnαbr-sw values in 3.0 wt% NaCl solutions are −6.0 ± 1.3‰, −5.6 ± 0.7‰ and −4.1 ± 0.2‰, at 250, 350, and 450°C, respectively, and −5.8 ± 0.6‰ in 10.0 wt % NaCl at 350°C. These data indicate that brucite is depleted in 18O relative to coexisting aqueous NaCl solutions and that the degree of depletion decreases slightly with increasing temperature and is not strongly dependent on salinity. We calculated 18O/16O brucite-water fractionation factors from available calibrations of the salt-effect on 18O/16O fractionation between coexisting phases. The resulting values were fit to the following equation that is valid from 250 to 450°C 1000ln αbr-w = 9.54 × 106T−2 − 3.53 × 104T−1 + 26.58 where T is temperature in Kelvins. These new data have been used to improve the prediction of 18O/16O fractionation factors in the talc-water and serpentine-water systems by modifying existing empirical bond-water models. The results of this analysis indicate that the δ18O composition of talc-brucite and serpentine

  2. Post-caldera volcanism: In situ measurement of U-Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera (United States)

    Bindeman, I.N.; Valley, J.W.; Wooden, J.L.; Persing, H.M.


    The Yellowstone Plateau volcanic field, the site of some of the largest known silicic volcanic eruptions, is the present location of NE-migrating hotspot volcanic activity. Most volcanic rocks in the Yellowstone caldera (0.6 Ma), which formed in response to the climactic eruption of 1000 km3 of Lava Creek Tuff (LCT), have unusually low oxygen isotope ratios. Ion microprobe analysis of both U-Pb age and ??18O in zircons from these low-??18O lavas reveals evidence of complex inheritance and remelting. A majority of analyzed zircons from low-??18O lavas erupted inside the Yellowstone caldera have cores that range in age from 2.4 to 0.7 Ma, significantly older than their eruption ages (0.5-0.4 Ma). These ages and the high-??18O cores indicate that these lavas are largely derived from nearly total remelting of normal-??18O Huckleberry Ridge Tuff (HRT) and other pre-LCT volcanic rocks. A post-HRT low-??18O lava shows similar inheritance of HRT-age zircons. The recycling of volcanic rocks by shallow remelting can change the water content and eruptive potential of magma. This newly proposed mechanism of intracaldera volcanism is best studied by combining in situ analysis of oxygen and U-Pb isotope ratios of individual crystals. ?? 2001 Elsevier Science B.V. All rights reserved.

  3. Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO2 near geologic vents in Yellowstone National Park

    Directory of Open Access Journals (Sweden)

    D. G. Williams


    Full Text Available In this study we explore the use of natural CO2 emissions in Yellowstone National Park (YNP in Wyoming, USA to study responses of natural vegetation to elevated CO2 levels. Radiocarbon (14C analysis of leaf biomass from a conifer (Pinus contortus; lodgepole pine and an invasive, non-native herb (Linaria dalmatica; Dalmation toadflax was used to trace the inputs of vent CO2 and quantify assimilation-weighted CO2 concentrations experienced by individual plants near vents and in comparable locations with no geologic CO2 exposure. The carbon and oxygen isotopic composition and nitrogen percent of leaf biomass from the same plants was used to investigate photosynthetic responses of these plants to naturally elevated atmospheric CO2 concentrations. The coupled shifts in carbon and oxygen isotope values suggest that dalmation toadflax responded to elevated CO2 exposure by increasing stomatal conductance with no change in photosynthetic capacity and lodgepole pine apparently responded by decreasing stomatal conductance and photosynthetic capacity. Lodgepole pine saplings exposed to elevated levels of CO2 likewise had reduced leaf nitrogen concentrations compared to plants with no enhanced CO2 exposure, further suggesting widespread and dominant conifer down-regulated photosynthetic capacity under elevated CO2 levels near geologic vents.

  4. Post-caldera volcanism: in situ measurement of U-Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera (United States)

    Bindeman, Ilya N.; Valley, John W.; Wooden, J. L.; Persing, Harold M.


    The Yellowstone Plateau volcanic field, the site of some of the largest known silicic volcanic eruptions, is the present location of NE-migrating hotspot volcanic activity. Most volcanic rocks in the Yellowstone caldera (0.6 Ma), which formed in response to the climactic eruption of 1000 km3 of Lava Creek Tuff (LCT), have unusually low oxygen isotope ratios. Ion microprobe analysis of both U-Pb age and δ18O in zircons from these low-δ18O lavas reveals evidence of complex inheritance and remelting. A majority of analyzed zircons from low-δ18O lavas erupted inside the Yellowstone caldera have cores that range in age from 2.4 to 0.7 Ma, significantly older than their eruption ages (0.5-0.4 Ma). These ages and the high-δ18O cores indicate that these lavas are largely derived from nearly total remelting of normal-δ18O Huckleberry Ridge Tuff (HRT) and other pre-LCT volcanic rocks. A post-HRT low-δ18O lava shows similar inheritance of HRT-age zircons. The recycling of volcanic rocks by shallow remelting can change the water content and eruptive potential of magma. This newly proposed mechanism of intracaldera volcanism is best studied by combining in situ analysis of oxygen and U-Pb isotope ratios of individual crystals.

  5. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado; Part IV, source of fluids, from oxygen, hydrogen, and carbon isotope studies (United States)

    Bethke, P.M.; Rye, R.O.


    The hydrogen isotopic composition of fluids responsible for formation of the near-surface silver-base metal vein deposits at Creede was measured by direct analysis of inclusion fluids in sphalerite, quartz, and rhodochrosite and was estimated from analyses of illite and chlorite. The oxygen isotopic composition was determined directly on inclusion fluids in sphalerite and was estimated from analyses of quartz, illite, rhodochrosite, siderite, and adularia. The carbon isotopic composition was estimated from analyses of rhodochrosite and siderite. The ranges in isotopic composition for water and CO2 in the fluids associated with the formation of each of the minerals is given below (number of determinations given in parentheses):Mineral delta D (sub H2) O ppm delta 18 O (sub H2) O ppm delta 13 C (sub CO2) ppmSphalerite -81 to -54 (4) -10.1 to -4.5 (4)Quartz -97 to -86 (4) -5.9 to 1.8 (18)Illite -62 to -50 (8) -1.6 to 1.2(7)Chlorite -64 to -55 (10) -2.2 to 0.8 (10)Adularia 4.2 (1)Rhodochrosite -82 to -78 (2) 4.2 to 9.4 (9) -5.7 to -4.2 (9)Siderite 4.9 to 9.9 (6) -6.9 to -2.7 (6)The delta D (sub H2) O and delta 18 O (sub H2) O values of fluids associated with the formation of sphalerite, quartz, illite/chlorite, and carbonate minerals differ substantially from one another, and these differences appear to have been maintained throughout the depositional history, regardless of the positions of the minerals in the paragenetic sequence.The data suggest that waters from three coexisting reservoirs fed the vein system alternately and episodically during vein formation, and apparently there was little mixing of the fluids from the different reservoirs. The hydrogen, oxygen, and carbon isotope data suggest that the carbonate waters were deep seated, probably dominantly magmatic, in origin. The sphalerite and illite/chlorite waters must have been dominantly meteoric in origin and substantially oxygen shifted by exchange with the volcanic country rocks. The quartz waters were

  6. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA (United States)

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.


    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. Strontium and oxygen isotopic profiles through 3km of hydrothermally altered oceanic crust in the Reykjanes Geothermal System, Iceland


    Marks, Naomi; Zierenberg, Robert A.; Schiffman, Peter


    © 2015 Elsevier B.V. The Iceland Deep Drilling Program well RN-17 was drilled 3km into a section of hydrothermally altered basaltic crust in the Reykjanes geothermal system in Iceland. The system is located on the landward extension of the Mid-Atlantic Ridge, and the circulating hydrothermal fluid is modified seawater, making Reykjanes a useful analog for mid-oceanic ridge hydrothermal systems. We have determined whole-rock Sr and O isotope compositions, and Sr isotope compositions of epidote...

  8. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers (United States)

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, Craig B.; Klein, E.M.


    Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~ 5.8‰ vs. expected values of ~ 6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites.

  9. Petrogenesis and provenance of ungrouped achondrite Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and titanium isotopes, and mid-IR spectroscopy (United States)

    Goodrich, Cyrena A.; Kita, Noriko T.; Yin, Qing-Zhu; Sanborn, Matthew E.; Williams, Curtis D.; Nakashima, Daisuke; Lane, Melissa D.; Boyle, Shannon


    Northwest Africa (NWA) 7325 is an ungrouped achondrite that has recently been recognized as a sample of ancient differentiated crust from either Mercury or a previously unknown asteroid. In this work we augment data from previous investigations on petrography and mineral compositions, mid-IR spectroscopy, and oxygen isotope compositions of NWA 7325, and add constraints from Cr and Ti isotope compositions on the provenance of its parent body. In addition, we identify and discuss notable similarities between NWA 7325 and clasts of a rare xenolithic lithology found in polymict ureilites. NWA 7325 has a medium grained, protogranular to poikilitic texture, and consists of 10-15 vol.% Mg-rich olivine (Fo 98), 25-30 vol.% diopside (Wo 45, Mg# 98), 55-60 vol.% Ca-rich plagioclase (An 90), and trace Cr-rich sulfide and Fe,Ni metal. We interpret this meteorite to be a cumulate that crystallized at ⩾1200 °C and very low oxygen fugacity (similar to the most reduced ureilites) from a refractory, incompatible element-depleted melt. Modeling of trace elements in plagioclase suggests that this melt formed by fractional melting or multi-stage igneous evolution. A subsequent event (likely impact) resulted in plagioclase being substantially remelted, reacting with a small amount of pyroxene, and recrystallizing with a distinctive texture. The bulk oxygen isotope composition of NWA 7325 plots in the range of ureilites on the CCAM line, and also on a mass-dependent fractionation line extended from acapulcoites. The ε54Cr and ε50Ti values of NWA 7325 exhibit deficits relative to terrestrial composition, as do ordinary chondrites and most achondrites. Its ε54Cr value is distinct from that of any analyzed ureilite, but is not resolved from that of acapulcoites (as represented by Acapulco). In terms of all these properties, NWA 7325 is unlike any known achondrite. However, a rare population of clasts found in polymict ureilites ("the magnesian anorthitic lithology") are strikingly

  10. Exotic nuclei explored at in-flight separators (United States)

    Nakamura, T.; Sakurai, H.; Watanabe, H.


    In-flight separators have played a significant role in the physics of exotic nuclei. In the last decade, in particular, this field has expanded rapidly with the advent of the new-generation (3rd-generation) in-flight-separator facility, the RI-beam Factory (RIBF) at RIKEN that was commissioned in 2007. In addition, new experimental methods, techniques and state-of-the-art detectors at in-flight separators have developed rapidly, which has contributed considerably to this progress. One can now reach very far from the stable nuclei towards the drip lines, and even beyond in some cases. Hundreds of new isotopes have been identified, and new exotic isomers have been observed. β decays and relevant γ decays, including isomeric states, have clarified many new aspects of nuclear structures. A variety of direct reactions, making the best use of in-flight rare isotope (RI) beams at intermediate/high energies, have been applied for a wide range of rare isotopes. New experimental results using these methods have shown that one needs a new framework to understand structures and dynamics of exotic nuclei, such as new or lost magic numbers, novel neutron halo/skin structures and relevant reactions/excitations. A wide range of reactions associated with nucleo-synthesis in the Universe and the equation of state (EoS) of neutron-rich nuclear matter have also been studied through experiments using rare isotopes available at in-flight separators. This review article focuses its attention on how recent experimental techniques have been developed and applied to exotic nuclei at in-flight separators. We also make remarks on prospects for the near future: in the era when the 3rd-generation RI-beam facilities based on in-flight separators are being completed world-wide.

  11. Origins and evolution of rhyolitic magmas in the central Snake River Plain: insights from coupled high-precision geochronology, oxygen isotope, and hafnium isotope analyses of zircon (United States)

    Colón, Dylan P.; Bindeman, Ilya N.; Wotzlaw, Jörn-Frederik; Christiansen, Eric H.; Stern, Richard A.


    We present new high-precision CA-ID-TIMS and in situ U-Pb ages together with Hf and O isotopic analyses (analyses performed all on the same grains) from four tuffs from the 15-10 Ma Bruneau-Jarbidge center of the Snake River Plain and from three rhyolitic units from the Kimberly borehole in the neighboring 10-6 Ma Twin Falls volcanic center. We find significant intrasample diversity in zircon ages (ranges of up to 3 Myr) and in δ18O (ranges of up to 6‰) and ɛHf (ranges of up to 24 ɛ units) values. Zircon rims are also more homogeneous than the associated cores, and we show that zircon rim growth occurs faster than the resolution of in situ dating techniques. CA-ID-TIMS dating of a subset of zircon grains from the Twin Falls samples reveals complex crystallization histories spanning 104-106 years prior to some eruptions, suggesting that magma genesis was characterized by the cyclic remelting of buried volcanic rocks and intrusions associated with previous magmatic episodes. Age-dependent trends in zircon isotopic compositions show that rhyolite production in the Yellowstone hotspot track is driven by the mixing of mantle-derived melts (normal δ18O and ɛHf) and a combination of Precambrian basement rock (normal δ18O and ɛHf down to - 60) and shallow Mesozoic and Cenozoic age rocks, some of which are hydrothermally altered (to low δ18O values) by earlier stages of Snake River Plain magmatism. These crustal melts hybridize with juvenile basalts and rhyolites to produce the erupted rhyolites. We also observe that the Precambrian basement rock is only an important component in the erupted magmas in the first eruption at each caldera center, suggesting that the accumulation of new intrusions quickly builds an upper crustal intrusive body which is isolated from the Precambrian basement and evolves towards more isotopically juvenile and lower-δ18O compositions over time.

  12. The influence of soil carbonic anhydrase on the partitioning of gross CO2 fluxes using the oxygen isotopes of CO2 and water. (United States)

    Wingate, L.; Ogée, J.; Cuntz, M.; Seibt, U.; Peylin, P.; Genty, B.; Reiter, I.; Grace, J.; (6-9, Colleagues


    Measuring terrestrial gross CO2 fluxes at large scales presents one of the main challenges in global carbon cycle research. The oxygen isotopic composition (δ18O) of atmospheric CO2 offers the possibility to partition net CO2 fluxes into photosynthesis and respiration at ecosystem, regional and global scales. This approach relies on a detailed knowledge of the δ18O signature of the terrestrial gross CO2 fluxes. The latter reflects the δ18O of leaf and soil water because CO2 exchanges isotopically with water. This exchange can be accelerated by the enzyme carbonic anhydrase (CA). The high CA content in leaves of plants amplifies the impact of leaf photosynthesis on the δ18O of atmospheric CO2 (δa) by enhancing the equilibration of atmospheric CO2 with isotopically enriched leaf water. Here, we report that the accelerated isotopic exchange between CO2 and water due to CA activity may be a widespread phenomenon in soils as well. Across a range of ecosystems, we found that CO2 hydration was 10 to 300 times faster than the uncatalysed rate, with highest values in the hottest ecosystems. At the global scale, accounting for soil CA activity dramatically shifts the influence of soil and leaf fluxes on δa, thus changing the estimates of terrestrial gross CO2 fluxes. At a time when new laser technologies are poised to deliver more extensive data coverage of variations in δa, our finding indicates that δa signals should enable us to constrain CO2 gross fluxes in regions where this information has been particularly difficult to obtain, such as in the tropics.

  13. The effects of α-cellulose extraction and blue-stain fungus on retrospective studies of carbon and oxygen isotope variation in live and dead trees† (United States)

    English, N.B.; McDowell, N.G.; Allen, C.D.; Mora, C.


    Tree-ring carbon and oxygen isotope ratios from live and recently dead trees may reveal important mechanisms of tree mortality. However, wood decay in dead trees may alter the δ13C and δ18O values of whole wood obscuring the isotopic signal associated with factors leading up to and including physiological death. We examined whole sapwood and α-cellulose from live and dead specimens of ponderosa pine (Pinus ponderosa), one-seed juniper (Juniperous monosperma), piñon pine (Pinus edulis) and white fir (Abies concolor), including those with fungal growth and beetle frass in the wood, to determine if α-cellulose extraction is necessary for the accurate interpretation of isotopic compositions in the dead trees. We found that the offset between the δ13C or δ18O values of α-cellulose and whole wood was the same for both live and dead trees across a large range of inter-annual and regional climate differences. The method of α-cellulose extraction, whether Leavitt-Danzer or Standard Brendel modified for small samples, imparts significant differences in the δ13C (up to 0.4‰) and δ18O (up to 1.2‰) of α-cellulose, as reported by other studies. There was no effect of beetle frass or blue-stain fungus (Ophiostoma) on the δ13C and δ18O of whole wood or α-cellulose. The relationships between whole wood and α-cellulose δ13C for ponderosa, piñon and juniper yielded slopes of ~1, while the relationship between δ18O of whole wood and α-cellulose was less clear. We conclude that there are few analytical or sampling obstacles to retrospective studies of isotopic patterns of tree mortality in forests of the western United States.

  14. Quantum and thermal ionic motion, oxygen isotope effect, and superexchange distribution in La2CuO4

    DEFF Research Database (Denmark)

    Haefliger, P. S.; Gerber, S.; Pramod, R.


    for theoretical estimates of the distribution of magnetic interaction parameters, J, in an effective one-band model for the cuprate plane. We find that ionic motion causes only small (1%) effects on the average value , which vary with temperature and O isotope, but results in dramatic (10-20%) fluctuations...

  15. Oxygen and carbon isotopes in terrestrial mollusk shells. From modern to fossil values, climatic impact on the mollusk diet. (United States)

    Metref, S.; Labonne, M.; Rousseau, D.; Rousseau, D.; Bentaleb, I.; Vianey-Liaud, M.


    Stable isotope studies on fossil material as well as on sediment have been very successful these past years indicating such method a very promising Quaternary paleonvironmental index for continental studies. Although most of the studies on fossil material was related to modern material collected near the fossil record, no precise analysis of the impact of the diet and precipitation was carried out in order to justify the previous assumptions. Here we present the results of two sets of analysis from terrestrial mollusk shells, a particularly good climate indicator. On one hand, individuals from hatched eggs of raised Helix aspersa were fed with different plants characteristic of the two main photosynthetic pathways (C3 and C4), and waters of different isotopic values. The shells were analyzed in order to observe the impact of the food diet and of the precipitation on the isotope content of the shell carbonate. On the other hand, the study of fossil shells (Vertigo modesta) from the loess series of the Great Plains, an area where shifts in photosynthetic pathways where detected during the last isotopic stage 2 (24,000-12,000 yr B.P.), is carried out. The interpretation of the results is based on those of the study of modern shells

  16. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva


    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  17. Online CO2 and H2 O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. (United States)

    Barbour, Margaret M; Evans, John R; Simonin, Kevin A; von Caemmerer, Susanne


    Mesophyll conductance significantly, and variably, limits photosynthesis but we currently have no reliable method of measurement for C4 plants. An online oxygen isotope technique was developed to allow quantification of mesophyll conductance in C4 plants and to provide an alternative estimate in C3 plants. The technique is compared to an established carbon isotope method in three C3 species. Mesophyll conductance of C4 species was similar to that in the C3 species measured, and declined in both C4 and C3 species as leaves aged from fully expanded to senescing. In cotton leaves, simultaneous measurement of carbon and oxygen isotope discrimination allowed the partitioning of total conductance to the chloroplasts into cell wall and plasma membrane versus chloroplast membrane components, if CO2 was assumed to be isotopically equilibrated with cytosolic water, and the partitioning remained stable with leaf age. The oxygen isotope technique allowed estimation of mesophyll conductance in C4 plants and, when combined with well-established carbon isotope techniques, may provide additional