WorldWideScience

Sample records for exonuclease structure molecular

  1. WRN Exonuclease Structure, Molecular Mechanism, and DNA EndProcessing Role

    Energy Technology Data Exchange (ETDEWEB)

    Perry, J. Jefferson P.; Yannone, Steven M.; Holden, Lauren G.; Hitomi, Chiharu; Asaithamby, Aroumougame; Han, Seungil; Cooper, PriscillaK.; Chen, David J.; Tainer, John A.

    2006-02-15

    WRN is unique among the five human RecQ DNA helicases by having a functional exonuclease domain (WRN-exo) and being defective in the premature aging and cancer-related disorder Werner syndrome. Here, we characterize WRN-exo crystal structures, biochemical activity and participation in DNA end-joining. Metal ion complex structures, active site mutations and activity assays reveal a two-metal-ion mediated nuclease mechanism. The DNA end-binding Ku70/80 complex specifically stimulates WRN-exo activity, and structure-based mutational inactivation of WRN-exo alters DNA end-joining in human cells. We furthermore establish structural and biochemical similarities of WRN-exo to DnaQ family replicative proofreading exonucleases, with WRN-specific adaptations consistent with dsDNA specificity and functionally important conformational changes. These results indicate WRN-exo is a human DnaQ family member and support analogous proof-reading activities that are stimulated by Ku70/80 with implications for WRN functions in age related pathologies and maintenance of genomic integrity.

  2. Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease.

    Science.gov (United States)

    Hastie, Kathryn M; King, Liam B; Zandonatti, Michelle A; Saphire, Erica Ollmann

    2012-01-01

    Lassa virus causes hemorrhagic fever characterized by immunosuppression. The nucleoprotein of Lassa virus, termed NP, binds the viral genome. It also has an additional enzymatic activity as an exonuclease that specifically digests double-stranded RNA (dsRNA). dsRNA is a strong signal to the innate immune system of viral infection. Digestion of dsRNA by the NP exonuclease activity appears to cause suppression of innate immune signaling in the infected cell. Although the fold of the NP enzyme is conserved and the active site completely conserved with other exonucleases in its DEDDh family, NP is atypical among exonucleases in its preference for dsRNA and its strict specificity for one substrate. Here, we present the crystal structure of Lassa virus NP in complex with dsRNA. We find that unlike the exonuclease in Klenow fragment, the double-stranded nucleic acid in complex with Lassa NP remains base-paired instead of splitting, and that binding of the paired complementary strand is achieved by "relocation" of a basic loop motif from its typical exonuclease position. Further, we find that just one single glycine that contacts the substrate strand and one single tyrosine that stacks with a base of the complementary, non-substrate strand are responsible for the unique substrate specificity. This work thus provides templates for development of antiviral drugs that would be specific for viral, rather than host exonucleases of similar fold and active site, and illustrates how a very few amino acid changes confer alternate specificity and biological phenotype to an enzyme.

  3. Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease.

    Directory of Open Access Journals (Sweden)

    Kathryn M Hastie

    Full Text Available Lassa virus causes hemorrhagic fever characterized by immunosuppression. The nucleoprotein of Lassa virus, termed NP, binds the viral genome. It also has an additional enzymatic activity as an exonuclease that specifically digests double-stranded RNA (dsRNA. dsRNA is a strong signal to the innate immune system of viral infection. Digestion of dsRNA by the NP exonuclease activity appears to cause suppression of innate immune signaling in the infected cell. Although the fold of the NP enzyme is conserved and the active site completely conserved with other exonucleases in its DEDDh family, NP is atypical among exonucleases in its preference for dsRNA and its strict specificity for one substrate. Here, we present the crystal structure of Lassa virus NP in complex with dsRNA. We find that unlike the exonuclease in Klenow fragment, the double-stranded nucleic acid in complex with Lassa NP remains base-paired instead of splitting, and that binding of the paired complementary strand is achieved by "relocation" of a basic loop motif from its typical exonuclease position. Further, we find that just one single glycine that contacts the substrate strand and one single tyrosine that stacks with a base of the complementary, non-substrate strand are responsible for the unique substrate specificity. This work thus provides templates for development of antiviral drugs that would be specific for viral, rather than host exonucleases of similar fold and active site, and illustrates how a very few amino acid changes confer alternate specificity and biological phenotype to an enzyme.

  4. Structures of human exonuclease I DNA complexes suggest a unified mechanism for nuclease family

    Science.gov (United States)

    Orans, Jillian; McSweeney, Elizabeth A.; Iyer, Ravi R.; Hast, Michael A.; Hellinga, Homme W.; Modrich, Paul; Beese, Lorena S.

    2011-01-01

    Summary Human exonuclease 1 (hExo1) plays important roles in DNA repair and recombination processes that maintain genomic integrity. It is a member of the 5′ structure-specific nuclease family of exonucleases and endonucleases that includes FEN-1, XPG, and GEN1. We present structures of hExo1 in complex with a DNA substrate, followed by mutagenesis studies, and propose a common mechanism by which this nuclease family recognizes and processes diverse DNA structures. hExo1 induces a sharp bend in the DNA at nicks or gaps. Frayed 5′ ends of nicked duplexes resemble flap junctions, unifying the mechanisms of endo- and exo-nucleolytic processing. Conformational control of a mobile region in the catalytic site suggests a mechanism for allosteric regulation by binding to protein partners. The relative arrangement of substrate binding sites in these enzymes provides an elegant solution to a complex geometrical puzzle of substrate recognition and processing. PMID:21496642

  5. Crystal structure of λ exonuclease in complex with DNA and Ca(2+).

    Science.gov (United States)

    Zhang, Jinjin; Pan, Xinlei; Bell, Charles E

    2014-12-02

    Bacteriophage λ exonuclease (λexo) is a ring-shaped homotrimer that resects double-stranded DNA ends in the 5'-3' direction to generate a long 3'-overhang that is a substrate for recombination. λexo is a member of the type II restriction endonuclease-like superfamily of proteins that use a Mg(2+)-dependent mechanism for nucleotide cleavage. A previous structure of λexo in complex with DNA and Mg(2+) was determined using a nuclease defective K131A variant to trap a stable complex. This structure revealed the detailed coordination of the two active site Mg(2+) ions but did not show the interactions involving the side chain of the conserved active site Lys-131 residue. Here, we have determined the crystal structure of wild-type (WT) λexo in complex with the same DNA substrate, but in the presence of Ca(2+) instead of Mg(2+). Surprisingly, there is only one Ca(2+) bound in the active site, near the position of Mg(A) in the structure with Mg(2+). The scissile phosphate is displaced by 2.2 Å relative to its position in the structure with Mg(2+), and the network of interactions involving the attacking water molecule is broken. Thus, the structure does not represent a catalytic configuration. However, the crystal structure does show clear electron density for the side chain of Lys-131, which is held in place by interactions with Gln-157 and Glu-129. By combining the K131A-Mg(2+) and WT-Ca(2+) structures, we constructed a composite model to show the likely interactions of Lys-131 during catalysis. The implications with regard to the catalytic mechanism are discussed.

  6. Human exonuclease 1 (EXO1) activity characterization and its function on FLAP structures

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bohr, Vilhelm A; Juel Rasmussen, Lene

    2015-01-01

    Human exonuclease 1 (EXO1) is involved in multiple DNA metabolism processes, including DNA repair and replication. Most of the fundamental roles of EXO1 have been described in yeast. Here, we report a biochemical characterization of human full-length EXO1. Prior to assay EXO1 on different DNA flap...

  7. A Structure-Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers.

    Science.gov (United States)

    Pan, Xinlei; Smith, Christopher E; Zhang, Jinjin; McCabe, Kimberly A; Fu, Jun; Bell, Charles E

    2015-10-06

    λ exonuclease (λexo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5'-strand into mononucleotides. The crystal structure of λexo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for tracking along the DNA. On the basis of this structure, it was proposed that dsDNA enters the open end of the channel, the 5'-strand is digested at one of the three active sites, and the 3'-strand passes through the narrow end of the channel to emerge out the back. This model was largely confirmed by the structure of the λexo-DNA complex, which further revealed that the enzyme unwinds the DNA by 2 bp prior to cleavage, to thread the 5'-end of the DNA into the active site. On the basis of this structure, an "electrostatic ratchet" model was proposed, in which the enzyme uses a hydrophobic wedge to insert into the base pairs to unwind the DNA, a two-metal mechanism for nucleotide hydrolysis, a positively charged pocket to bind to the terminal 5'-phosphate generated after each round of cleavage, and an arginine residue (Arg-45) to bind to the minor groove of the downstream end of the DNA. To test this model, in this study we have determined the effects of 11 structure-based mutations in λexo on DNA binding and exonuclease activities in vitro, and on DNA recombination in vivo. The results are largely consistent with the model for the mechanism that was proposed on the basis of the structure and provide new insights into the roles of particular residues of the protein in promoting the reaction. In particular, a key role for Arg-45 in DNA binding is revealed.

  8. Structural Determinant for Switching between the Polymerase and Exonuclease Modes in the PCNA-Replicative DNA Polymerase Complex

    Science.gov (United States)

    Nishida, Hirokazu; Mayanagi, Kouta; Ishino, Yoshizumi; Morikawa, Kosuke

    Proliferating cell nuclear antigen (PCNA) is responsible for the processivity of DNA polymerase. We determined the crystal structure of Pyrococcus furiosus DNA polymerase (PfuPol) complexed with a cognate monomeric PCNA, which allowed us to construct a convincing model of the polymerase-PCNA ring interaction. Electron microscopy analyses confirmed that this complex structure exists among the multiple functional configurations in solution. Together with data from mutational analyses, this structural study indicated that the novel interaction between a stretched loop of PCNA and the PfuPol Thumb domain is quite important, in addition to the authentic PCNA-polymerase recognition site (PIP box). A comparison of the present structures with the previously reported structures of polymerases complexed with DNA suggested that the second interaction site plays a crucial role in switching between the polymerase and exonuclease modes, by stabilizing only the polymerase mode. This proposed mechanism of fidelity control of replicative DNA polymerases was supported by experiments, in which a mutation within the second interaction site caused an enhancement in the exonuclease activity in the presence of PCNA.

  9. Structural Insights Into DNA Repair by RNase T—An Exonuclease Processing 3′ End of Structured DNA in Repair Pathways

    Science.gov (United States)

    Hsiao, Yu-Yuan; Fang, Woei-Horng; Lee, Chia-Chia; Chen, Yi-Ping; Yuan, Hanna S.

    2014-01-01

    DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3′ end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3′ end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3′ overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V–dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3′-end processing. PMID:24594808

  10. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression.

    Science.gov (United States)

    Hastie, Kathryn M; Kimberlin, Christopher R; Zandonatti, Michelle A; MacRae, Ian J; Saphire, Erica Ollmann

    2011-02-08

    Lassa fever virus, a member of the family Arenaviridae, is a highly endemic category A pathogen that causes 300,000-500,000 infections per year in Western Africa. The arenaviral nucleoprotein NP has been implicated in suppression of the host innate immune system, but the mechanism by which this occurs has remained elusive. Here we present the crystal structure at 1.5 Å of the immunosuppressive C-terminal portion of Lassa virus NP and illustrate that, unexpectedly, its 3D fold closely mimics that of the DEDDh family of exonucleases. Accompanying biochemical experiments illustrate that NP indeed has a previously unknown, bona fide exonuclease activity, with strict specificity for double-stranded RNA substrates. We further demonstrate that this exonuclease activity is essential for the ability of NP to suppress translocation of IFN regulatory factor 3 and block activation of the innate immune system. Thus, the nucleoprotein is a viral exonuclease with anti-immune activity, and this work provides a unique opportunity to combat arenaviral infections.

  11. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ

    Science.gov (United States)

    Fernandez-Leiro, Rafael; Conrad, Julian; Scheres, Sjors HW; Lamers, Meindert H

    2015-01-01

    The replicative DNA polymerase PolIIIα from Escherichia coli is a uniquely fast and processive enzyme. For its activity it relies on the DNA sliding clamp β, the proofreading exonuclease ε and the C-terminal domain of the clamp loader subunit τ. Due to the dynamic nature of the four-protein complex it has long been refractory to structural characterization. Here we present the 8 Å resolution cryo-electron microscopy structures of DNA-bound and DNA-free states of the PolIII-clamp-exonuclease-τc complex. The structures show how the polymerase is tethered to the DNA through multiple contacts with the clamp and exonuclease. A novel contact between the polymerase and clamp is made in the DNA bound state, facilitated by a large movement of the polymerase tail domain and τc. These structures provide crucial insights into the organization of the catalytic core of the replisome and form an important step towards determining the structure of the complete holoenzyme. DOI: http://dx.doi.org/10.7554/eLife.11134.001 PMID:26499492

  12. Exonuclease 1 and its versatile roles in DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Liu, Dekang; Rasmussen, Lene Juel

    2016-01-01

    Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin...

  13. A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin.

    Science.gov (United States)

    Mohammad Danesh, Noor; Ramezani, Mohammad; Sarreshtehdar Emrani, Ahmad; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2016-01-15

    Detection and quantitation of antibiotic residues in blood serum and animal foodstuffs are of great significance. In this study, an electrochemical aptasensor was developed for sensitive and selective detection of streptomycin, based on exonuclease I (Exo I), complimentary strand of aptamer (CS), Arch-shape structure of aptamer (Apt)-CS conjugate and gold electrode. The designed aptasensor inherits characteristics of gold including large surface area and high electrochemical conductivity, as well as high sensitivity and selectivity of aptamer toward its target, property of Arch-shape structure of Apt-CS conjugate to act as a gate and barrier for the access of redox probe to the surface of electrode and the function of Exo I as an enzyme which selectively digests the 3'-end of single stranded DNA (ssDNA). In the absence of streptomycin the gate remains closed. Thus, the electrochemical signal is weak. Upon addition of streptomycin, the Apt leaves the CS and binds to streptomycin and the Arch-shape structure is disassembled. Then, Exo I addition leads to a strong electrochemical signal. The designed electrochemical aptasensor exhibited high selectivity toward streptomycin with a limit of detection (LOD) as low as 11.4nM. Moreover, the developed electrochemical aptasensor was successfully used to detect streptomycin in milk and serum with LODs of 14.1 and 15.3nM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. exonuclease of Klenow fragment

    Indian Academy of Sciences (India)

    2013-11-06

    Nov 6, 2013 ... 1Department of Biochemistry and Molecular Biology, Preclinical Medicine College,. China Medical University, Shenyang, Liaoning Province, P.R. China. 2Animal Science and Veterinary Medicine College, Shenyang Agricultural University,. Shenyang ..... Moreover, internal cleavage site of RE should be ...

  15. Architecture of the Pol III–clamp–exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair

    Science.gov (United States)

    Toste Rêgo, Ana; Holding, Andrew N; Kent, Helen; Lamers, Meindert H

    2013-01-01

    DNA polymerase III (Pol III) is the catalytic α subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp β and the exonuclease ɛ that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III–clamp–exonuclease complex by chemical crosslinking combined with mass spectrometry and biochemical methods, providing the first structural view of the trimeric complex. Our analysis reveals that the exonuclease is sandwiched between the polymerase and clamp and enhances the binding between the two proteins by providing a second, indirect, interaction between the polymerase and clamp. In addition, we show that the exonuclease binds the clamp via the canonical binding pocket and thus prevents binding of the translesion DNA polymerase IV to the clamp, providing a novel insight into the mechanism by which the replication machinery can switch between replication, proofreading, and translesion synthesis. PMID:23549287

  16. Valency and molecular structure

    CERN Document Server

    Cartmell, E

    1977-01-01

    Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t

  17. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  18. Molecular electronic-structure theory

    CERN Document Server

    Helgaker, Trygve; Jorgensen, Poul

    2013-01-01

    Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource for researchers in quantum chemistry and anyone interested in the theory and its applications.

  19. Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity.

    Science.gov (United States)

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2009-04-01

    The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.

  20. Molecular electronic-structure theory

    CERN Document Server

    Helgaker, Trygve; Olsen, Jeppe

    2014-01-01

    Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluati

  1. Molecular structure of quinoa starch.

    Science.gov (United States)

    Li, Guantian; Zhu, Fan

    2017-02-20

    Quinoa starch has very small granules with unique properties. However, the molecular structure of quinoa starch remains largely unknown. In this study, composition and amylopectin molecular structure of 9 quinoa starch samples were characterised by chromatographic techniques. In particular, the amylopectin internal molecular structure, represented by φ, β-limit dextrins (LDs), was explored. Great variations in the composition and molecular structures were recorded among samples. Compared with other amylopectins, quinoa amylopectin showed a high ratio of short chain to long chains (mean:14.6) and a high percentage of fingerprint A-chains (Afp) (mean:10.4%). The average chain length, external chain length, and internal chain length of quinoa amylopectin were 16.6, 10.6, and 5.00 glucosyl residues, respectively. Pearson correlation and principal component analysis revealed some inherent correlations among structural parameters and a similarity of different samples. Overall, quinoa amylopectins are structurally similar to that from starches with A-type polymorph such as oat and amaranth starches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Prediction of molecular crystal structures

    CERN Document Server

    Beyer, T

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of parac...

  3. Nanogap structures for molecular nanoelectronics.

    Science.gov (United States)

    Motto, Paolo; Dimonte, Alice; Rattalino, Ismael; Demarchi, Danilo; Piccinini, Gianluca; Civera, Pierluigi

    2012-02-09

    This study is focused on the realization of nanodevices for nano and molecular electronics, based on molecular interactions in a metal-molecule-metal (M-M-M) structure. In an M-M-M system, the electronic function is a property of the structure and can be characterized through I/V measurements. The contact between the metals and the molecule was obtained by gold nanogaps (with a dimension of less than 10 nm), produced with the electromigration technique. The nanogap fabrication was controlled by a custom hardware and the related software system. The studies were carried out through experiments and simulations of organic molecules, in particular oligothiophenes.

  4. Exonuclease III footprinting on immobilized DNA templates.

    Science.gov (United States)

    Spitalny, Patrizia; Thomm, Michael

    2009-01-01

    DNA footprinting is a widely used method to locate the binding sites of protein on the DNA. It is based on the observation that a protein bound to DNA protects it from degradation by an enzyme or chemical reagent.Exonuclease III is a suitable probe to analyze the boundaries of a protein when it is necessary to eliminate any excess unbound DNA from the reaction to avoid background problems. In combination with biotin-labeled DNA that is bound to streptavidin-coated magnetic particles, information on the precise position of a DNA bound protein is available within a few hours. The position of the archaeal RNA polymerase at different stages of transcription in the Pyrococcus furiosus in vitro transcription system was analyzed by this method.

  5. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  6. CSMB | Center For Structural Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Structural Molecular Biologyat ORNL is dedicated to developing instrumentation and methods for determining the 3-dimensional structures of proteins,...

  7. Synthesis, Crystal Structure, Density Function Theory, Molecular ...

    African Journals Online (AJOL)

    Conclusion: The test compound has a moderate antimicrobial activity and the optimized molecular structure of the studied compound using B3LYP/6-31G (d,p) method showed good agreement with the reported x-ray structure. Keywords: Isoindoline-1, 3-dione, X-ray analysis, Density function theory, Antimicrobial, Molecular ...

  8. A domain in human EXOG converts apoptotic endonuclease to DNA-repair exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Michal R.; Yu, Wangsheng; Gmyrek, Aleksandra M.; White, Mark A.; Molineux, Ian J.; Lee, J. Ching; Yin, Y. Whitney

    2017-05-03

    Human EXOG (hEXOG) is a 5'-exonuclease that is crucial for mitochondrial DNA repair; the enzyme belongs to a nonspecific nuclease family that includes the apoptotic endonuclease EndoG. Here we report biochemical and structural studies of hEXOG, including structures in its apo form and in a complex with DNA at 1.81 and 1.85 Å resolution, respectively. A Wing domain, absent in other ββα-Me members, suppresses endonuclease activity, but confers on hEXOG a strong 5'-dsDNA exonuclease activity that precisely excises a dinucleotide using an intrinsic ‘tape-measure’. The symmetrical apo hEXOG homodimer becomes asymmetrical upon binding to DNA, providing a structural basis for how substrate DNA bound to one active site allosterically regulates the activity of the other. These properties of hEXOG suggest a pathway for mitochondrial BER that provides an optimal substrate for subsequent gap-filling synthesis by DNA polymerase γ.

  9. A label-free fluorescence assay for thrombin based on aptamer exonuclease protection and exonuclease III-assisted recycling amplification-responsive cascade zinc(II)-protoporphyrin IX/G-quadruplex supramolecular fluorescent labels.

    Science.gov (United States)

    Lv, Yanqin; Xue, Qingwang; Gu, Xiaohong; Zhang, Shuqiu; Liu, Jifeng

    2014-05-21

    A simple, label-free and sensitive fluorescence protein assay has been developed on the basis of aptamer exonuclease protection and exonuclease III (Exo III)-assisted recycling amplification-responsive cascade ZnPPIX/G-quadruplex supramolecular fluorescent labels. In the sensing system, a special aptamer probe containing the aptamer sequence at the 3'-terminus and the DNAzyme sequence at the 5'-terminus was applied, which has the capacity to recognize a protein target with high affinity and specificity. Exonuclease I (Exo I) can efficiently catalyze the degradation of free single stranded DNA probes in the 3' to 5' direction. In the presence of the target protein, the strong binding between the target protein and its aptamer can protect aptamer probes from degradation. Subsequently, the protected aptamer probes act as catalysators to trigger hybridization with the hairpin DNA probe that contains a partially "caged" G-quadruplex sequence. Upon interaction with the protected aptamer probes, the hairpin opens to yield the active G-quadruplex structure. In the presence of exonuclease III (Exo III), Exo III-assisted recycling amplification occurs generating numerous G-quadruplex supramolecular structures. The zinc(ii)-protoporphyrin IX (ZnPPIX) fluorophore binds to the G-quadruplexes and this results in the enhanced fluorescence of the fluorophore. The resulting fluorescence of the ZnPPIX/G-quadruplex provides the readout signal for the sensing event. Thrombin is used as the model analyte in the current proof-of-concept. The developed method was demonstrated to have very high sensitivity for the detection of proteins with a limit of detection of 0.2 pM without using washes or separations. In addition, this new method for protein detection is simple and inherits all the advantages of aptamers. The mechanism, moreover, may be generalized and used for other forms of protein analysis.

  10. Synthesis, molecular structure, spectroscopic investigations and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 8. Synthesis, molecular structure ... The molecular geometry and spectroscopic data of the title compound have been calculated by using the density functional method (B3LYP) invoking 6-311G(d,p) basis set. UV-Vis spectra of the two forms were recorded.

  11. Molecular Structure of Nucleic Acids

    Indian Academy of Sciences (India)

    A structure for nucleic acid has already been proposed by Pauling and Corey [1]. They kindly made'their manuscript available to us in advance of publication. Their model consists of three inter-twined chains, with the phosphates near the fibre axis, and the bases on the outside. In our opinion, this structure is unsatisfactory ...

  12. The Molecular Structure of Penicillin

    Science.gov (United States)

    Bentley, Ronald

    2004-01-01

    Overviews of the observations that constitute a structure proof for penicillin, specifically aimed at the general student population, are presented. Melting points and boiling points were criteria of purity and a crucial tool was microanalysis leading to empirical formulas.

  13. Blinded histopathological characterisation of POLE exonuclease domain-mutant endometrial cancers: sheep in wolf's clothing.

    Science.gov (United States)

    Van Gool, Inge C; Ubachs, Jef E H; Stelloo, Ellen; de Kroon, Cor D; Goeman, Jelle J; Smit, Vincent T H B M; Creutzberg, Carien L; Bosse, Tjalling

    2018-01-01

    POLE exonuclease domain mutations identify a subset of endometrial cancer (EC) patients with an excellent prognosis. The use of this biomarker has been suggested to refine adjuvant treatment decisions, but the necessary sequencing is not widely performed and is relatively expensive. Therefore, we aimed to identify histopathological and immunohistochemical characteristics to aid in the detection of POLE-mutant ECs. Fifty-one POLE-mutant endometrioid, 67 POLE-wild-type endometrioid and 15 POLE-wild-type serous ECs were included (total N = 133). An expert gynaecopathologist, blinded to molecular features, evaluated each case (two or more slides) for 16 morphological characteristics. Immunohistochemistry was performed for p53, p16, MLH1, MSH2, MSH6, and PMS2. POLE-mutant ECs were characterised by a prominent immune infiltrate: 80% showed peritumoral lymphocytes and 59% showed tumour-infiltrating lymphocytes, as compared with 43% and 28% of POLE-wild-type endometrioid ECs, and 27% and 13% of their serous counterparts (P < 0.01, all comparisons). Of POLE-mutant ECs, 33% contained tumour giant cells; this proportion was significantly higher than that in POLE-wild-type endometrioid ECs (10%; P = 0.003), but not significantly different from that in serous ECs (53%). Serous-like features were as often (focally) present in POLE-mutant as in POLE-wild-type endometrioid ECs (6-24%, depending on the feature). The majority of POLE-mutant ECs showed wild-type p53 (86%), negative/focal p16 (82%) and normal mismatch repair protein expression (90%). A simple combination of morphological and immunohistochemical characteristics (tumour type, grade, peritumoral lymphocytes, MLH1, and p53 expression) can assist in prescreening for POLE exonuclease domain mutations in EC, increasing the probability of a mutation being detected from 7% to 33%. This facilitates the use of this important prognostic biomarker in routine pathology. © 2017 John Wiley & Sons Ltd.

  14. Molecular Structure of Nucleic Acids–A Structure for Deoxyribose ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 11. Molecular Structure of Nucleic Acids – A Structure for Deoxyribose Nucleic Acid. J D Watson F H C Crick. Classics Volume 9 Issue 11 November 2004 pp 96-98 ...

  15. Learning surface molecular structures via machine vision

    Science.gov (United States)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-01

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  16. Molecular Structure of Human-Liver Glycogen.

    Directory of Open Access Journals (Sweden)

    Bin Deng

    Full Text Available Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets.

  17. Molecular structure, vibrational spectroscopic studies and natural ...

    Indian Academy of Sciences (India)

    pp. 845–860. Molecular structure, vibrational spectroscopic studies and natural bond orbital analysis of 7-amino-4-trifluoromethyl coumarin ..... [15] A Frisch, A B Nielsen and A J Holder, GAUSSIANVIEW Users Manual, Gaussian. Inc., Pittsburgh, PA (2000). [16] S Selladurai and K Subramanian, Acta Crystallogr. C48, 281 ...

  18. Molecular structure, vibrational spectroscopic studies and natural ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 74; Issue 5. Molecular structure ... The entropy of the title compound was also performed at HF using the hybrid functional BLYP and B3LYP with 6-31 G(d,p) as basis set levels of theory. Natural bond orbital (NBO) analysis of the title molecule is also carried out.

  19. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease.

    Science.gov (United States)

    Grieves, Jessica L; Fye, Jason M; Harvey, Scott; Grayson, Jason M; Hollis, Thomas; Perrino, Fred W

    2015-04-21

    The TREX1 gene encodes a potent DNA exonuclease, and mutations in TREX1 cause a spectrum of lupus-like autoimmune diseases. Most lupus patients develop autoantibodies to double-stranded DNA (dsDNA), but the source of DNA antigen is unknown. The TREX1 D18N mutation causes a monogenic, cutaneous form of lupus called familial chilblain lupus, and the TREX1 D18N enzyme exhibits dysfunctional dsDNA-degrading activity, providing a link between dsDNA degradation and nucleic acid-mediated autoimmune disease. We determined the structure of the TREX1 D18N protein in complex with dsDNA, revealing how this exonuclease uses a novel DNA-unwinding mechanism to separate the polynucleotide strands for single-stranded DNA (ssDNA) loading into the active site. The TREX1 D18N dsDNA interactions coupled with catalytic deficiency explain how this mutant nuclease prevents dsDNA degradation. We tested the effects of TREX1 D18N in vivo by replacing the TREX1 WT gene in mice with the TREX1 D18N allele. The TREX1 D18N mice exhibit systemic inflammation, lymphoid hyperplasia, vasculitis, and kidney disease. The observed lupus-like inflammatory disease is associated with immune activation, production of autoantibodies to dsDNA, and deposition of immune complexes in the kidney. Thus, dysfunctional dsDNA degradation by TREX1 D18N induces disease in mice that recapitulates many characteristics of human lupus. Failure to clear DNA has long been linked to lupus in humans, and these data point to dsDNA as a key substrate for TREX1 and a major antigen source in mice with dysfunctional TREX1 enzyme.

  20. 2004 Reversible Associations in Structure & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Edward Eisenstein Nancy Ryan Gray

    2005-03-23

    The Gordon Research Conference (GRC) on 2004 Gordon Research Conference on Reversible Associations in Structure & Molecular Biology was held at Four Points Sheraton, CA, 1/25-30/2004. The Conference was well attended with 82 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  1. Exploring RNA structure by integrative molecular modelling.

    Science.gov (United States)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-07-31

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded in three dimensions (3D) and used as building blocks assembled manually during a bioinformatic interactive process. Comparing the models to the corresponding crystal structures has validated the method as being powerful to predict the RNA topology and architecture while being less accurate regarding the prediction of base-base interactions. These aspects as well as the necessary steps towards automation will be discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Interplay of catalysis, fidelity, threading, and processivity in the exo- and endonucleolytic reactions of human exonuclease I

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuqian; Hellinga, Homme W.; Beese, Lorena S. (Duke-MED)

    2017-05-22

    Human exonuclease 1 (hExo1) is a member of the RAD2/XPG structure-specific 5'-nuclease superfamily. Its dominant, processive 5'–3' exonuclease and secondary 5'-flap endonuclease activities participate in various DNA repair, recombination, and replication processes. A single active site processes both recessed ends and 5'-flap substrates. By initiating enzyme reactions in crystals, we have trapped hExo1 reaction intermediates that reveal structures of these substrates before and after their exo- and endonucleolytic cleavage, as well as structures of uncleaved, unthreaded, and partially threaded 5' flaps. Their distinctive 5' ends are accommodated by a small, mobile arch in the active site that binds recessed ends at its base and threads 5' flaps through a narrow aperture within its interior. A sequence of successive, interlocking conformational changes guides the two substrate types into a shared reaction mechanism that catalyzes their cleavage by an elaborated variant of the two-metal, in-line hydrolysis mechanism. Coupling of substrate-dependent arch motions to transition-state stabilization suppresses inappropriate or premature cleavage, enhancing processing fidelity. The striking reduction in flap conformational entropy is catalyzed, in part, by arch motions and transient binding interactions between the flap and unprocessed DNA strand. At the end of the observed reaction sequence, hExo1 resets without relinquishing DNA binding, suggesting a structural basis for its processivity.

  3. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jingjin; Ma, Yefei [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Kong, Rongmei [The Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Zhang, Liangliang, E-mail: liangzhang319@163.com [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Yang, Wen; Zhao, Shulin [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China)

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS{sub 2}) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3′-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS{sub 2} nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS{sub 2} nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics. - Highlights: • A fluorescence polarization strategy for DNA glycosylase activity detection was developed. • The present method was based on WS{sub 2} nanosheet and exonuclease III co-assisted signal amplification. • A high sensitivity and desirable selectivity were achieved. • This method provides a promising universal platform for DNA

  4. The WRN exonuclease domain protects nascent strands from pathological MRE11/EXO1-dependent degradation

    National Research Council Canada - National Science Library

    Iannascoli, Chiara; Palermo, Valentina; Murfuni, Ivana; Franchitto, Annapaola; Pichierri, Pietro

    2015-01-01

    .... Here, we show that, in response to replication perturbation induced by low doses of the TOP1 inhibitor camptothecin, loss of the WRN exonuclease resulted in enhanced degradation and ssDNA formation...

  5. Molecular Models of Genetic and Organismic Structures

    CERN Document Server

    Baianu, I C

    2004-01-01

    In recent studies we showed that the earlier relational theories of organismic sets (Rashevsky,1967), Metabolic-Replication (M,R)-systems (Rosen,1958)and molecular sets (Bartholomay,1968) share a joint foundation that can be studied within a unified categorical framework of functional organismic structures (Baianu,1980. This is possible because all relational theories have a biomolecular basis, that is, complex structures such as genomes, cells,organs and biological organisms are mathematically represented in terms of biomolecular properties and entities,(that are often implicit in their representation axioms. The definition of organismic sets, for example, requires that certain essential quantities be determined from experiment: these are specified by special sets of values of general observables that are derived from physicochemical measurements(Baianu,1970; Baianu,1980; Baianu et al, 2004a.)Such observables are context-dependent and lead directly to natural transformations in categories and Topoi, that are...

  6. A general fluorescent sensor design strategy for "turn-on" activity detection of exonucleases and restriction endonucleases based on graphene oxide.

    Science.gov (United States)

    Zhang, Qi; Kong, De-Ming

    2013-11-07

    Using graphene oxide (GO) as a nanoquencher, a universal sensor design strategy was developed on the basis of significantly different binding affinities of GO to single-stranded DNAs (ss-DNAs) with different lengths. The proposed sensors could be used for the activity detection of both exonucleases and restriction endonucleases. To achieve this, a single-labeled fluorescent oligonucleotide probe, which had a single-stranded structure or a hairpin structure with a long single-stranded loop, was used. Such a probe could be efficiently absorbed on the surface of GO, resulting in the quenching of the fluorescent signal. Excision of the single-stranded probe by exonucleases or site-specific cleavage at the double-stranded stem of the hairpin probe by restriction endonuclease released fluorophore-labeled nucleotide, which could not be efficiently absorbed by GO, thus leading to increase in fluorescence of the corresponding sensing system. As examples, three sensors, which were used for activity detection of the exonuclease Exo 1 and the restriction endonucleases EcoR I and Hind III, were developed. These three sensors could specifically and sensitively detect the activities of Exo 1, EcoR I and Hind III with detection limits of 0.03 U mL(-1), 0.06 U mL(-1) and 0.04 U mL(-1), respectively. Visual detection was also possible.

  7. [Molecular structure and fractal analysis of oligosaccharide].

    Science.gov (United States)

    Liu, Wen-long; Wang, Lu-man; He, Dong-qi; Zhang, Tian-lan; Gou, Bao-di; Li, Qing

    2014-10-18

    To propose a calculation method of oligosaccharides' fractal dimension, and to provide a new approach to studying the drug molecular design and activity. By using the principle of energy optimization and computer simulation technology, the steady structures of oligosaccharides were found, and an effective way of oligosaccharides fractal dimension's calculation was further established by applying the theory of box dimension to the chemical compounds. By using the proposed method, 22 oligosaccharides' fractal dimensions were calculated, with the mean 1.518 8 ± 0.107 2; in addition, the fractal dimensions of the two activity multivalent oligosaccharides which were confirmed by experiments, An-2 and Gu-4, were about 1.478 8 and 1.516 0 respectively, while C-type lectin-like receptor Dectin-1's fractal dimension was about 1.541 2. The experimental and computational results were expected to help to find a class of glycoside drugs whose target receptor was Dectin-1. Fractal dimension, differing from other known macro parameters, is a useful tool to characterize the compound molecules' microscopic structure and function, which may play an important role in the molecular design and biological activity study. In the process of oligosaccharides drug screening, the fractal dimension of receptor and designed oligosaccharides or glycoclusters can be calculated respectively. The oligosaccharides with fractal dimension close to that of target receptor should then take priority compared with others, to get the drug molecules with latent activity.

  8. Use of T7 gene 6 exonuclease and phosphorothioated primers for the manipulation of HIV-1 infectious clones.

    Science.gov (United States)

    da Costa, L J; Tanuri, A

    1998-05-01

    A method is described for the efficient substitution, deletion or insertion of any desired DNA sequence into any viral infectious clones without the limitation of naturally occurring restriction sites. The technique employs the polymerase chain reaction combined with the resistance of 2'-deoxynucleotides 5'-O-(1-thiotriphosphate) dNTPs [S] bonds (phosphorothiate bonds) to the 5'-3' double strand specific T7 gene 6 exonuclease (T7 Exo) digestion. Primers used to amplify the DNA target regions being manipulated present three phosphorothioate bonds from the fifteenth base at the 5' end. The enzyme activity was shown to be completely inhibited by the presence of more than one phosphorothioate residue at the 5' end of the DNA molecules. When the amplification products are submitted to the exonuclease digestion the hydrolytic T7 Exo activity generates a short single strand DNA tail which contains the nucleotide integrity of the 3' strand. Since the ends of two independently amplified products overlap they can regenerate a stable recombinant structure when further combined in the same reaction tube in the presence of T4 DNA ligase. This new method can be used for manipulating an HIV-1 full-length clone belonging to subtype D replacing the env (gp120) gene for an F subtype sequence.

  9. Identification and genetic characterization of mutants of bacteriophage T4 defective in the ability to induce exonuclease A.

    Science.gov (United States)

    Warner, H R; Snustad, D P; Koerner, J F; Childs, J D

    1972-03-01

    A mutant of bacteriophage T4 unable to induce exonuclease A has been isolated. The mutation responsible for this defect maps between genes 39 and 56, in a region of the chromosome devoid of other known markers. Four deletion mutants lacking part of the genome located between genes 39 and 56 also fail to induce exonuclease A. The ability of all of these mutants to replicate suggests that exonuclease A is not essential for replication of phage T4.

  10. Identification and Genetic Characterization of Mutants of Bacteriophage T4 Defective in the Ability to Induce Exonuclease A 1

    Science.gov (United States)

    Warner, Huber R.; Snustad, D. Peter; Koerner, James F.; Childs, J. D.

    1972-01-01

    A mutant of bacteriophage T4 unable to induce exonuclease A has been isolated. The mutation responsible for this defect maps between genes 39 and 56, in a region of the chromosome devoid of other known markers. Four deletion mutants lacking part of the genome located between genes 39 and 56 also fail to induce exonuclease A. The ability of all of these mutants to replicate suggests that exonuclease A is not essential for replication of phage T4. PMID:4335658

  11. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair

    Science.gov (United States)

    Kadyrov, Farid A.; Genschel, Jochen; Fang, Yanan; Penland, Elisabeth; Edelmann, Winfried; Modrich, Paul

    2009-01-01

    Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5′ to 3′ hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch repair also exist. We have analyzed repair of nicked circular heteroduplex DNA in extracts of Exo1-deficient mouse embryo fibroblast cells. Exo1-independent repair under these conditions is MutLα-dependent and requires functional integrity of the MutLα endonuclease metal-binding motif. In contrast to the Exo1-dependent reaction, we have been unable to detect a gapped excision intermediate in Exo1-deficient extracts when repair DNA synthesis is blocked. A possible explanation for this finding has been provided by analysis of a purified system comprised of MutSα, MutLα, replication factor C, proliferating cell nuclear antigen, replication protein A, and DNA polymerase δ that supports Exo1-independent repair in vitro. Repair in this system depends on MutLα incision of the nicked heteroduplex strand and dNTP-dependent synthesis-driven displacement of a DNA segment spanning the mismatch. Such a mechanism may account, at least in part, for the Exo1-independent repair that occurs in eukaryotic cells, and hence the modest cancer predisposition of Exo1-deficient mammalian cells. PMID:19420220

  12. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shijia; Duan, Nuo; Ma, Xiaoyuan; Xia, Yu; Wang, Hongxin; Wang, Zhouping, E-mail: wangzp@jiangnan.edu.cn

    2013-06-11

    Graphical abstract: -- Highlights: •An ultrasensitive FRET aptasensor was developed for staphylococcal enterotoxin B determination. •SEB was recognized by SEB aptamer with high affinity and specificity. •The Mn{sup 2+} doped NaYF{sub 4}:Yb/Er UCNPs used as donor to quencher dye (BHQ{sub 3}) in new FRET. •The fluorescence intensity was prominently amplified using an exonuclease-catalyzed target recycling strategy. -- Abstract: An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA{sub 1}–UCNPs) and fluorescence quencher probes (complementary DNA{sub 2}–Black Hole Quencher{sub 3} (BHQ{sub 3})) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer–SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer–SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001–1 ng mL{sup −1} and a lower detection limit (LOD) of 0.3 pg mL{sup −1} SEB (at 3σ). The fabricated

  13. Molecular structure input on the web

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2010-02-01

    Full Text Available Abstract A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential. The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on technologies like JavaScript and Flash, is discussed.

  14. Exonuclease III-boosted cascade reactions for ultrasensitive SERS detection of nucleic acids.

    Science.gov (United States)

    Sun, Yudie; Peng, Pai; Guo, Ruiyan; Wang, Huihui; Li, Tao

    2018-05-01

    A variety of nucleic acid amplification techniques have been integrated into different detection methods to promote the development of sensitive and convenient analysis of nucleic acids. However, it is still in urgent need to develop amplified nucleic acid biosensors for the analysis of susceptible gene and even distinguishing single-base mismatched DNA in complex biological samples. Benefiting from the achieved detection strategies, here we boost isothermal nucleic acid amplification by resorting to enzyme amplification, and combine this two-stage amplification method with surface-enhanced Raman spectroscopy (SERS) to develop a signal-on nucleic acid detection platform. Due to the high cleavage efficiency of Exonuclease III (Exo III), a large amount of trigger DNA are produced to initiate multiple hybridization chain reaction circles. The product structure tagged with Tamra is then anchored onto the plasmonic SERS substrate and meanwhile enriched. It is demonstrated that this detection platform is sensitive toward the myocardial infarction disease related gene. A detection limit of 1 fM for the gene analysis in a linear relationship in the wide range from 1 fM to 10nM is achieved, better than most of previous counterparts. Meanwhile, our developed detection platform exhibits a high selectivity for the target gene over mismatched analogues. Our strategy provides a robust tool for signal amplification of gene detection even in blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Processing of A-form ssDNA by cryptic RNase H fold exonuclease PF2046.

    Science.gov (United States)

    Kim, Junsoo; Sambalkhundev, Gerelt-Od; Kim, Sulhee; Son, Jonghyeon; Han, Ah-Reum; Ko, Sul-Min; Hwang, Kwang Yeon; Lee, Woo Cheol

    2016-09-15

    RNase H fold protein PF2046 of Pyrococcus furiosus is a 3'-5' ssDNA exonuclease that cleaves after the second nucleotide from the 3' end of ssDNA and prefers poly-dT over poly-dA as a substrate. In our crystal structure of PF2046 complexed with an oligonucleotide of four thymidine nucleotides (dT4), PF2046 accommodates dT4 tightly in a groove and imposes steric hindrance on dT4 mainly by Phe220 such that dT4 assumes the A-form. As poly-dA prefer B-form due to the stereochemical restrictions, the A-form ssDNA binding by PF2046 should disfavor the processing of poly-dA. Phe220 variants display reduced activity toward poly-dA and the A-form appears to be a prerequisite for the processing by PF2046. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Synthesis, molecular structure, spectroscopic investigations and ...

    Indian Academy of Sciences (India)

    explosives, pesticides, drugs, and perfumes.8,9. With continued shrinking of the size of conven- tional silicon-based electronics, molecular electronics has been proposed to be the future nanoscale electronic devices.10 Recently, many potentially applicable molec- ular electronic devices, like molecular switches, field-.

  17. Molecular structure and motion in zero field magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  18. Second human protein with homology to the Escherichia coli abasic endonuclease exonuclease III.

    Science.gov (United States)

    Hadi, M Z; Wilson, D M

    2000-01-01

    There are two major apurinic/apyrimidinic (AP) endonuclease/3'-diesterase families designated after the Escherichia coli proteins exonuclease III (ExoIII) and endonuclease IV (EndoIV). These repair proteins function to excise mutagenic and cytotoxic AP sites or 3'-phosphate/phosphoglycolate groups from DNA. In mammals, the predominant repair endonuclease is Ape1, a homolog of ExoIII, whereas a mammalian homolog to EndoIV has not been identified to date. We have identified a human protein termed Ape2 that represents a subclass of the ExoIII family (exhibiting highest similarity to the Saccharomyces cerevisiae ETH1/APN2 gene product) and maintains many of the essential functional residues of the ExoIII-like proteins. The human protein is 518 amino acids with a predicted molecular mass of 57.3 kDa and a pI of 8.65. Unlike Ape1, this protein exhibited only weak ability to complement the repair defects of AP endonuclease/3'-repair-defective bacteria and yeast. Similarly, a weak, but specific, DNA-binding and incision activity for abasic site-containing substrates was observed with partially purified Ape2 protein. APE2 is located on the X chromosome at position p11.21 and consists of six exons. The transcript for APE2 is ubiquitously expressed, suggesting an important function for the encoded protein. An Ape2 green fluorescent fusion protein localized predominantly to the nucleus of HeLa cells, indicating a nuclear function; this localization was dependent on the C-terminal domain. We discuss our results in the context of the evolutionary conservation of the AP endonuclease families and their divergent activities and biological contributions.

  19. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  20. Theoretical study of electron transport throughout some molecular structures

    Science.gov (United States)

    Abbas, Mohammed A. A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2017-11-01

    The present work is a theoretical study of the electronic properties of some molecular structures. The system that takes into account in the study is left lead-donor-molecule-acceptor-right lead. The molecule, such as (phenyl, biphenyl, triphenyl, naphthalene, anthracene, and phenanthrene), is threaded by magnetic flux. This work contains two parts. First is computing density of states of the molecular structures as a closed system by density functional theory (DFT). Second is calculating the transmission probability and electric current of such molecular structures as an open system by steady-state theoretical model. Furthermore, the most important effects, taking into consideration are quantum interference, magnetic flux, and interface structure. Our results show that the connection of the molecule to the two leads, the number of rings, the magnetic flux, and the geometrical structure of the molecule play an important role in determining the energy gap of molecular structures.

  1. Nuclear localization of human DNA mismatch repair protein exonuclease 1 (hEXO1)

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Nielsen, Finn Cilius; Vinther, Lena

    2007-01-01

    Human exonuclease 1 (hEXO1) is implicated in DNA mismatch repair (MMR) and mutations in hEXO1 may be associated with hereditary nonpolyposis colorectal cancer (HNPCC). Since the subcellular localization of MMR proteins is essential for proper MMR function, we characterized possible nuclear locali...

  2. Theoretical study on the molecular and crystal structures of nitrogen ...

    Indian Academy of Sciences (India)

    mainly contributed by the p orbital of N atom and the valence band (HOCO) from the p orbital of F atom. Keywords. Molecular; crystal; structure; property; theoretical study. 1. Introduction ... the global search was confined to these groups only. By analyzing the simulation trajectory of molecular packing within seven space ...

  3. Structure prediction of subtilisin BPN' mutants using molecular dynamics methods

    OpenAIRE

    Heiner, Andreas P.; Berendsen, Herman J.C.; van Gunsteren, Wilfred F.

    2017-01-01

    In this paper we describe the achievements and pitfalls encountered in doing structure predictions of protein mutants using molecular dynamics simulation techniques in which properties of atoms are slowly changed as a function of time. Basically the method consists of a thermodynamic integration (slow growth) calculation used for free energy determination, but aimed at structure prediction; this allows for a fast determination of the mutant structure. We compared the calculated structure of t...

  4. 3D visualization of molecular structures in the MOGADOC database

    Science.gov (United States)

    Vogt, Natalja; Popov, Evgeny; Rudert, Rainer; Kramer, Rüdiger; Vogt, Jürgen

    2010-08-01

    The MOGADOC database (Molecular Gas-Phase Documentation) is a powerful tool to retrieve information about compounds which have been studied in the gas-phase by electron diffraction, microwave spectroscopy and molecular radio astronomy. Presently the database contains over 34,500 bibliographic references (from the beginning of each method) for about 10,000 inorganic, organic and organometallic compounds and structural data (bond lengths, bond angles, dihedral angles, etc.) for about 7800 compounds. Most of the implemented molecular structures are given in a three-dimensional (3D) presentation. To create or edit and visualize the 3D images of molecules, new tools (special editor and Java-based 3D applet) were developed. Molecular structures in internal coordinates were converted to those in Cartesian coordinates.

  5. Detection of Specific Polymerase Chain Reaction Product by Utilizing the 5' → 3' Exonuclease Activity of Thermus aquaticus DNA Polymerase

    National Research Council Canada - National Science Library

    Pamela M. Holland; Richard D. Abramson; Robert Watson; David H. Gelfand

    1991-01-01

    The 5' → 3' exonuclease activity of the thermostable enzyme Thermus aquaticus DNA polymerase may be employed in a polymerase chain reaction product detection system to generate a specific detectable signal...

  6. Characterising the Structure of Molecular Clouds

    Science.gov (United States)

    Wong, Graeme Francis

    The Interstellar Medium contains the building blocks of matter in our Galaxy and plays a vital role in the evolution of low mass star formation. The poorly studied molecular clouds of Lupus and Chamaeleon contain ongoing low mass star formation, and are in close proximity to our Solar System. While on the other hand the Carina molecular cloud, poorly observed in radio wavelength, is an active region of star formation and host some of the brightest stars known within our Galaxy. Using tracers like carbon monoxide, atomic neutral carbon, and ammonia, we are able to measure the temperature and density of the gas cloud. This information allows us to understand the initial conditions of the formation of low mass stars. Observations conducted with the 22-m Mopra radio telescope (located at the edge of the Warrumbungle Mountains near Coonabarabran), in the Carbon monoxide (CO) isotopologues 12 CO, 13 CO, C17O, and C18O (1-0) transitions, have mapped the Chamaeleon II cloud, an intermediate mass cloud within the Chamaeleon. Through the sub-arcminute maps, comparisons have been made to previous low resolution (2.5') maps which have been to resolve some of the dense clumps previously identified. Optical depth, column density, and excitation temperature derived from the CO maps, are consistent with previous results. A detailed comparison between identified C18O clumps have shown the different conditions occurring within the clumps, some of which contain or are located near a population of young stellar objects. The Northern region of the Carina Nebular Complex, was observed with NANTEN2, a 4-m radio telescope (located in the Chilean Atacama desert), in the 12CO (4-3) and [C I] 3P1-3P0 emission lines. Previous observations towards this region has either been at poor resolution or had limited coverage. The presented observations, strike a balance between the two; observing in sub-arcmin resolution (0.6') and with an area of 0.9° X 0.5° mapped. Excitation temperature of the 12

  7. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    in three dimensions (3D) and used as building blocks assembled manually during a bioinformatic interactive process. Comparing the models to the corresponding crystal structures has validated the method as being powerful to predict the RNA topology and architecture while being less accurate regarding...... the prediction of base-base interactions. These aspects as well as the necessary steps towards automation will be discussed....

  8. Molecular and crystal structure of ivalin

    Energy Technology Data Exchange (ETDEWEB)

    Coetzer, J. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Physical Research Lab.); Kruger, G.J.; Levendis, D.C. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Chemical Research Lab.)

    1982-01-01

    The bromoacetate derivative of ivalin, which is a sesquiterpene lactone, crystallizes in the space group P2/sub 1/, with two molecules in the unit cell. Its structure was solved by standard X-ray methods. Full-matrix least-squares refinement converged at R=0,052. The proposed stereochemistry has been confirmed.

  9. X-ray Molecular Structure of

    African Journals Online (AJOL)

    Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia, 4Medicinal and Pharmaceutical. Chemistry Department, Pharmaceutical and Drug Industries ... Nuclear magnetic resonance (1H-NMR and 13C-NMR) and mass spectrometry were used to confirm the chemical structure of the ...

  10. Molecular and structural aspects of oocyte maturation

    NARCIS (Netherlands)

    Hölzenspies, J.J.

    2009-01-01

    In the mammalian ovary, oocytes are contained within follicles, specialized structures that facilitate oocyte growth and development. During the reproductive cycle, several follicles are recruited into growth, and through a process of selection, one (human, cow) or several (mouse, pig) of these

  11. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ

    DEFF Research Database (Denmark)

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz

    2017-01-01

    of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable......DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...... changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform...

  12. Structural studies on Mycobacterium tuberculosis RecA: Molecular ...

    Indian Academy of Sciences (India)

    2015-01-11

    Jan 11, 2015 ... Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield informa- tion on the invariant and variable features of the geometry of the P-loop, ...

  13. Structural studies on Mycobacterium tuberculosis RecA: Molecular ...

    Indian Academy of Sciences (India)

    Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP ...

  14. Molecular dynamics of the structure and thermodynamics of dusty ...

    African Journals Online (AJOL)

    The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...

  15. Molecular Eigensolution Symmetry Analysis and Fine Structure

    Directory of Open Access Journals (Sweden)

    William G. Harter

    2013-01-01

    Full Text Available Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES. Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES used in Born-Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v, then applied to families of Oh clusters in SF6 spectra and to extreme clusters.

  16. Recombinant thermostable AP exonuclease from Thermoanaerobacter tengcongensis: cloning, expression, purification, properties and PCR application

    DEFF Research Database (Denmark)

    Dabrowski, Slawomir; Brillowska-Dabrowska, Anna; Ahring, Birgitte Kiær

    2013-01-01

    and transformed into Escherichia coli. The protein product showed high identity (80%) to human Ape1 nuclease, whereas to E. coli exonuclease III - 78%. This is the first prokaryotic AP nuclease that exhibits such high identity to human Ape1 nuclease. The very high expression level (57% of total soluble proteins......Apurinic/apyrimidinic (AP) sites in DNA are considered to be highly mutagenic and must be corrected to preserve genetic integrity, especially at high temperatures. The gene encoding a homologue of AP exonuclease was cloned from the thermophilic anaerobic bacterium Thermoanaerobacter tengcongensis......) of fully active and soluble His6-tagged Tte AP enzyme with His6-tag on C-terminal end was obtained in Escherichia coli Rosetta (DE3) pLysS. The active enzyme was purified up to 98% homogeneity in one chromatographic step using metal-affinity chromatography on Ni(2+)-IDA-Sepharose resin. The yield was 90 mg...

  17. DNA end resection by CtIP and exonuclease 1 prevents genomic instability

    DEFF Research Database (Denmark)

    Eid, Wassim; Steger, Martin; El-Shemerly, Mahmoud

    2010-01-01

    ). In this study, we show that the localization of EXO1 to DSBs depends on both CtIP and MRN. We also establish that CtIP interacts with EXO1 and restrains its exonucleolytic activity in vitro. Finally, we show that on exposure to camptothecin, depletion of EXO1 in CtIP-deficient cells increases the frequency......End resection of DNA-which is essential for the repair of DNA double-strand breaks (DSBs) by homologous recombination-relies first on the partnership between MRE11-RAD50-NBS1 (MRN) and CtIP, followed by a processive step involving helicases and exonucleases such as exonuclease 1 (EXO1...... of DNA-PK-dependent radial chromosome formation. Thus, our study identifies new functions of CtIP and EXO1 in DNA end resection and provides new information on the regulation of DSB repair pathways, which is a key factor in the maintenance of genome integrity....

  18. Ionization probes of molecular structure and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  19. Continuous Molecular Fields Approach Applied to Structure-Activity Modeling

    CERN Document Server

    Baskin, Igor I

    2013-01-01

    The Method of Continuous Molecular Fields is a universal approach to predict various properties of chemical compounds, in which molecules are represented by means of continuous fields (such as electrostatic, steric, electron density functions, etc). The essence of the proposed approach consists in performing statistical analysis of functional molecular data by means of joint application of kernel machine learning methods and special kernels which compare molecules by computing overlap integrals of their molecular fields. This approach is an alternative to traditional methods of building 3D structure-activity and structure-property models based on the use of fixed sets of molecular descriptors. The methodology of the approach is described in this chapter, followed by its application to building regression 3D-QSAR models and conducting virtual screening based on one-class classification models. The main directions of the further development of this approach are outlined at the end of the chapter.

  20. MOSBY: a molecular structure viewer program with portability and extensibility.

    Science.gov (United States)

    Ueno, Yutaka; Asai, Kiyoshi

    2002-03-01

    A molecular structure viewer program, MOSBY has been developed for studies that use atomic coordinates to understand the structures of protein molecules. The program is designed to be portable with a comprehensive user interface by our high-throughput graphics library. In addition, it cooperates with extension modules customized for individual research topics and analysis. For example, an electron density module loads and displays electron density maps derived in X-ray crystallographic analysis superimposed to an atomic model. A molecular dynamics module reads a trajectory file of the results of molecular dynamics calculations and animates the structure. These plug-in modules are devised to function without modification to the MOSBY program. For variations of analysis and calculations with atomic coordinates, the portability and extensibility illustrated by MOSBY play an important rule in scientific computational tools with active software development.

  1. Exonuclease hDIS3L2 specifies an exosome-independent 3'-5' degradation pathway of human cytoplasmic mRNA

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon; Damgaard, Christian Kroun; Tomecki, Rafal

    2013-01-01

    Turnover of mRNA in the cytoplasm of human cells is thought to be redundantly conducted by the monomeric 5'-3' exoribonuclease hXRN1 and the 3'-5' exoribonucleolytic RNA exosome complex. However, in addition to the exosome-associated 3'-5' exonucleases hDIS3 and hDIS3L, the human genome encodes...... another RNase II/R domain protein-hDIS3L2. Here, we show that hDIS3L2 is an exosome-independent cytoplasmic mRNA 3'-5' exonuclease, which exhibits processive activity on structured RNA substrates in vitro. hDIS3L2 associates with hXRN1 in an RNA-dependent manner and can, like hXRN1, be found on polysomes....... The impact of hDIS3L2 on cytoplasmic RNA metabolism is revealed by an increase in levels of cytoplasmic RNA processing bodies (P-bodies) upon hDIS3L2 depletion, which also increases half-lives of investigated mRNAs. Consistently, RNA sequencing (RNA-seq) analyses demonstrate that depletion of hDIS3L2, like...

  2. Molecular structures guide the engineering of chromatin.

    Science.gov (United States)

    Tekel, Stefan J; Haynes, Karmella A

    2017-07-27

    Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Exosome Cofactors Connect Transcription Termination to RNA Processing by Guiding Terminated Transcripts to the Appropriate Exonuclease within the Nuclear Exosome.

    Science.gov (United States)

    Kim, Kyumin; Heo, Dong-Hyuk; Kim, Iktae; Suh, Jeong-Yong; Kim, Minkyu

    2016-06-17

    The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity.

    Science.gov (United States)

    Hu, Qian-Nan; Deng, Zhe; Hu, Huanan; Cao, Dong-Sheng; Liang, Yi-Zeng

    2011-09-01

    Biochemical reactions play a key role to help sustain life and allow cells to grow. RxnFinder was developed to search biochemical reactions from KEGG reaction database using three search criteria: molecular structures, molecular fragments and reaction similarity. RxnFinder is helpful to get reference reactions for biosynthesis and xenobiotics metabolism. RxnFinder is freely available via: http://sdd.whu.edu.cn/rxnfinder. qnhu@whu.edu.cn.

  5. Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments.

    Science.gov (United States)

    Shen, Rong; Han, Wei; Fiorin, Giacomo; Islam, Shahidul M; Schulten, Klaus; Roux, Benoît

    2015-10-01

    The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with

  6. Microspectroscopy as applied to the study of wood molecular structure

    OpenAIRE

    Fackler, Karin; Thygesen, Lisbeth Garbrecht

    2013-01-01

    Microspectroscopy gives access to spatially resolved information on the molecular structure and chemical composition of a material. For a highly heterogeneous and anisotropic material like wood, such information is essential when assessing structure/property relationships such as moisture-induced dimensional changes, decay resistance or mechanical properties. It is, however, important to choose the right technique for the purpose at hand and to apply it in a suitable way if any new insights a...

  7. Learning Molecular Structures in a Tangible Augmented Reality Environment

    Science.gov (United States)

    Asai, Kikuo; Takase, Norio

    This article presents the characteristics of using a tangible table top environment produced by augmented reality (AR), aimed at improving the environment in which learners observe three-dimensional molecular structures. The authors perform two evaluation experiments. A performance test for a user interface demonstrates that learners with a…

  8. Synthesis and molecular structure of manganese complexes with ...

    Indian Academy of Sciences (India)

    Administrator

    Synthesis and molecular structure of manganese complexes with hindered N3 ligand. UDAI P SINGHa, R SINGHa, S HIKICHIb and Y MORO-OKAb ... O–N distances in this complex are shorter (011-N82, 2·76(1) Å) than the range of distances expected for a hydrogen bond between the peroxide and the imidazole proton.

  9. Molecular and vibrational structure of 2,2'-dihydroxybenzophenone

    DEFF Research Database (Denmark)

    Birklund Andersen, Kristine; Langgård, M.; Spanget-Larsen, Jens

    1999-01-01

    2,2'-dihydroxybenzophenone (DHBP) contains similar bifold intramolecular H-bonding as the psoriatic drug anthralin, but because of steric interference the phenolic rings are twisted in a propeller-like manner, resulting in a molecular structure of C2 symmetry. In contrast to the case of C2v...

  10. Molecular cloning, sequence analysis and structure prediction of the ...

    African Journals Online (AJOL)

    Molecular cloning, sequence analysis and structure prediction of the related to b 0,+ amino acid transporter (rBAT) in Cyprinus carpio L. ... The amplified product was 2370 bp, including a 42 bp 5'-untranslated region, a 288 bp 3'-untranslated region, and a 2040 bp open reading frame (ORF), which encoded 679 amino acids ...

  11. Density functional studies of molecular structures of N-methyl ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 112; Issue 1. Density functional studies of molecular structures of N-methyl formamide, N,N-dimethyl formamide, and N,N-dimethyl acetamide. V Renugopalakrishnan G Madrid G Cuevas A T Hagler. Physical and Theoretical Volume 112 Issue 1 February 2000 pp 35- ...

  12. Exploring antioxidant reactivity and molecular structure of phenols ...

    Indian Academy of Sciences (India)

    Phenolic compounds can be considered as themost important bioactive compounds in Mediterranean diet. However, many of the complex connections between phenols antioxidant reactivity and their molecular structure remain unsolved. To shine light on these issues, the antioxidant reactivity of 15 relevant phenolic ...

  13. Molecular epidemiology and population structure of bovine Streptococcus uberis

    DEFF Research Database (Denmark)

    Rato, M G; Bexiga, R; Nunes, S F

    2008-01-01

    The molecular epidemiology and population structure of 30 bovine subclinical mastitis field isolates of Streptococcus uberis, collected from 6 Portuguese herds (among 12 farms screened) during 2002 and 2003, were examined by using pulsed-field gel electrophoresis (PFGE) for clustering of the isol...

  14. CNDO/SCF molecular orbital structural studies and charge transfer ...

    African Journals Online (AJOL)

    CNDO/SCF molecular orbital structural studies and charge transfer complex formation between 4,4'-dimethoxydiquinone and uracil. ... potentials and the electron affinities of the studied molecules have been calculated in addition to their charge densities giving the columbic potential energy of the donor and acceptor.

  15. Learning Molecular Structures in a Tangible Augmented Reality Environment

    Science.gov (United States)

    Asai, Kikuo; Takase, Norio

    2011-01-01

    This article presents the characteristics of using a tangible table top environment produced by augmented reality (AR), aimed at improving the environment in which learners observe three-dimensional molecular structures. The authors perform two evaluation experiments. A performance test for a user interface demonstrates that learners with a…

  16. Physiochemical Characteristics and Molecular Structures for Digestible Carbohydrates of Silages.

    Science.gov (United States)

    Refat, Basim; Prates, Luciana L; Khan, Nazir A; Lei, Yaogeng; Christensen, David A; McKinnon, John J; Yu, Peiqiang

    2017-10-18

    The main objectives of this study were (1) to assess the magnitude of differences among new barley silage varieties (BS) selected for varying rates of in vitro neutral detergent fiber (NDF) digestibility (ivNDFD; Cowboy BS with higher ivNDFD, Copeland BS with intermediate ivNDFD, and Xena BS with lower ivNDFD) with regard to their carbohydrate (CHO) molecular makeup, CHO chemical fractions, and rumen degradability in dairy cows in comparison with a new corn silage hybrid (Pioneer 7213R) and (2) to quantify the strength and pattern of association between the molecular structures and digestibility of carbohydrates. The carbohydrate-related molecular structure spectral data was measured using advanced vibrational molecular spectroscopy (FT/IR). In comparison to BS, corn silage showed a significantly (P carbohydrates were significantly (P carbohydrate content of the silages. In conclusion, the univariate approach with only one-factor consideration (ivNDFD) might not be a satisfactory method for evaluating and ranking BS quality. FT/IR molecular spectroscopy can be used to evaluate silage quality rapidly, particularly the digestible fiber content.

  17. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    Science.gov (United States)

    Zhao, Song-Feng; Huang, Fang; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov–Popov–Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  18. Unequivocal determination of complex molecular structures using anisotropic NMR measurements.

    Science.gov (United States)

    Liu, Yizhou; Saurí, Josep; Mevers, Emily; Peczuh, Mark W; Hiemstra, Henk; Clardy, Jon; Martin, Gary E; Williamson, R Thomas

    2017-04-07

    Assignment of complex molecular structures from nuclear magnetic resonance (NMR) data can be prone to interpretational mistakes. Residual dipolar couplings and residual chemical shift anisotropy provide a spatial view of the relative orientations between bonds and chemical shielding tensors, respectively, regardless of separation. Consequently, these data constitute a reliable reporter of global structural validity. Anisotropic NMR parameters can be used to evaluate investigators' structure proposals or structures generated by computer-assisted structure elucidation. Application of the method to several complex structure assignment problems shows promising results that signal a potential paradigm shift from conventional NMR data interpretation, which may be of particular utility for compounds not amenable to x-ray crystallography. Copyright © 2017, American Association for the Advancement of Science.

  19. Building bridges between cellular and molecular structural biology.

    Science.gov (United States)

    Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J

    2017-07-06

    The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.

  20. ESOL: estimating aqueous solubility directly from molecular structure.

    Science.gov (United States)

    Delaney, John S

    2004-01-01

    This paper describes a simple method for estimating the aqueous solubility (ESOL--Estimated SOLubility) of a compound directly from its structure. The model was derived from a set of 2874 measured solubilities using linear regression against nine molecular properties. The most significant parameter was calculated logP(octanol), followed by molecular weight, proportion of heavy atoms in aromatic systems, and number of rotatable bonds. The model performed consistently well across three validation sets, predicting solubilities within a factor of 5-8 of their measured values, and was competitive with the well-established "General Solubility Equation" for medicinal/agrochemical sized molecules.

  1. Molecular dynamics simulations: from structure function relationships to drug discovery.

    Science.gov (United States)

    Nair, Pramod C; Miners, John O

    2014-01-01

    Molecular dynamics (MD) simulation is an emerging in silico technique with potential applications in diverse areas of pharmacology. Over the past three decades MD has evolved as an area of importance for understanding the atomic basis of complex phenomena such as molecular recognition, protein folding, and the transport of ions and small molecules across membranes. The application of MD simulations in isolation and in conjunction with experimental approaches have provided an increased understanding of protein structure-function relationships and demonstrated promise in drug discovery.

  2. Polydopamine and eumelanin molecular structures investigated with ab initio calculations.

    Science.gov (United States)

    Chen, Chun-Teh; Martin-Martinez, Francisco J; Jung, Gang Seob; Buehler, Markus J

    2017-02-01

    A set of computational methods that contains a brute-force algorithmic generation of chemical isomers, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations is reported and applied to investigate nearly 3000 probable molecular structures of polydopamine (PDA) and eumelanin. All probable early-polymerized 5,6-dihydroxyindole (DHI) oligomers, ranging from dimers to tetramers, have been systematically analyzed to find the most stable geometry connections as well as to propose a set of molecular models that represents the chemically diverse nature of PDA and eumelanin. Our results indicate that more planar oligomers have a tendency to be more stable. This finding is in good agreement with recent experimental observations, which suggested that PDA and eumelanin are composed of nearly planar oligomers that appear to be stacked together via π-π interactions to form graphite-like layered aggregates. We also show that there is a group of tetramers notably more stable than the others, implying that even though there is an inherent chemical diversity in PDA and eumelanin, the molecular structures of the majority of the species are quite repetitive. Our results also suggest that larger oligomers are less likely to form. This observation is also consistent with experimental measurements, supporting the existence of small oligomers instead of large polymers as main components of PDA and eumelanin. In summary, this work brings an insight into the controversial structure of PDA and eumelanin, explaining some of the most important structural features, and providing a set of molecular models for more accurate modeling of eumelanin-like materials.

  3. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    Science.gov (United States)

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-12-19

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. Copyright © 2014 John Wiley & Sons, Inc.

  4. DATEL: A Scarless and Sequence-Independent DNA Assembly Method Using Thermostable Exonucleases and Ligase.

    Science.gov (United States)

    Jin, Peng; Ding, Wenwen; Du, Guocheng; Chen, Jian; Kang, Zhen

    2016-09-16

    DNA assembly is a pivotal technique in synthetic biology. Here, we report a scarless and sequence-independent DNA assembly method using thermal exonucleases (Taq and Pfu DNA polymerases) and Taq DNA ligase (DATEL). Under the optimized conditions, DATEL allows rapid assembly of 2-10 DNA fragments (1-2 h) with high accuracy (between 74 and 100%). Owing to the simple operation system with denaturation-annealing-cleavage-ligation temperature cycles in one tube, DATEL is expected to be a desirable choice for both manual and automated high-throughput assembly of DNA fragments, which will greatly facilitate the rapid progress of synthetic biology and metabolic engineering.

  5. Hydroxyflavone metal complexes - molecular structure, antioxidant activity and biological effects.

    Science.gov (United States)

    Samsonowicz, Mariola; Regulska, Ewa; Kalinowska, Monika

    2017-08-01

    High content of hydroxyflavones in fruits, vegetables, cereals and herbs makes them a common component of the human diet. Because of their antioxidant, antiviral, antibacterial, anti-inflammatory, anticancer properties they still pay an attention of many scientific centers. Hydroxyflavones may form complexes with metal cations, and their chelating properties differ significantly depending on the number and position of hydroxyl substituents in the ring. Synthesis of new complexes of hydroxyflavones allows for improvement biological properties, stability, water-solubility, hydrophilicity, bioavailability comparing with the parent hydroxyflavones. It expands the applicability of hydroxyflavones as food additives, diet supplements, preservatives or drug. This paper reviews on the procedures of synthesis of metal complexes with hydroxyflavones, their molecular structure, mode of coordinations, spectroscopic properties and their biological activity. The dependency between the biological activity of these compounds and their molecular structure is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins.

    Science.gov (United States)

    Couvineau, Alain; Laburthe, Marc

    2012-05-01

    The vasoactive intestinal peptide (VIP) is a neuropeptide with wide distribution in both central and peripheral nervous systems, where it plays important regulatory role in many physiological processes. VIP displays a large biological functions including regulation of exocrine secretions, hormone release, fetal development, immune responses, etc. VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. The mechanism of action of VIP implicates two subtypes of receptors (VPAC1 and VPAC2), which are members of class B receptors belonging to the super-family of GPCR. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC receptors. The structure-function relationship of VPAC1 receptor has been extensively studied, allowing to understand the molecular basis for receptor affinity, specificity, desensitization and coupling to adenylyl cyclase. Those studies have clearly demonstrated the crucial role of the N-terminal ectodomain (N-ted) of VPAC1 receptor in VIP recognition. By using different approaches including directed mutagenesis, photoaffinity labelling, NMR, molecular modelling and molecular dynamic simulation, it has been shown that the VIP molecule interacts with the N-ted of VPAC1 receptor, which is itself structured as a 'Sushi' domain. VPAC1 receptor also interacts with a few accessory proteins that play a role in cell signalling of receptors. Recent advances in the structural characterization of VPAC receptor and more generally of class B GPCRs will lead to the design of new molecules, which could have considerable interest for the treatment of inflammatory and neuro-degenerative diseases. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Exponential Repulsion Improves Structural Predictability of Molecular Docking

    Czech Academy of Sciences Publication Activity Database

    Bazgier, Václav; Berka, K.; Otyepka, M.; Banáš, P.

    2016-01-01

    Roč. 37, č. 28 (2016), s. 2485-2494 ISSN 0192-8651 Institutional support: RVO:61389030 Keywords : cyclin-dependent kinases * structure-based design * scoring functions * cdk2 inhibitors * force-field * ligand interactions * drug discovery * purine * potent * protein-kinase-2 * molecular docking * dock 6.6 * drug design * cyclin-dependent kinase 2 * directory of decoys Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.229, year: 2016

  8. The Structure of Human Neuromuscular Junctions: Some Unanswered Molecular Questions

    Directory of Open Access Journals (Sweden)

    Clarke R. Slater

    2017-10-01

    Full Text Available The commands that control animal movement are transmitted from motor neurons to their target muscle cells at the neuromuscular junctions (NMJs. The NMJs contain many protein species whose role in transmission depends not only on their inherent properties, but also on how they are distributed within the complex structure of the motor nerve terminal and the postsynaptic muscle membrane. These molecules mediate evoked chemical transmitter release from the nerve and the action of that transmitter on the muscle. Human NMJs are among the smallest known and release the smallest number of transmitter “quanta”. By contrast, they have the most deeply infolded postsynaptic membranes, which help to amplify transmitter action. The same structural features that distinguish human NMJs make them particularly susceptible to pathological processes. While much has been learned about the molecules which mediate transmitter release and action, little is known about the molecular processes that control the growth of the cellular and subcellular components of the NMJ so as to give rise to its mature form. A major challenge for molecular biologists is to understand the molecular basis for the development and maintenance of functionally important aspects of NMJ structure, and thereby to point to new directions for treatment of diseases in which neuromuscular transmission is impaired.

  9. Nanoparticle Probes for Structural and Functional Photoacoustic Molecular Tomography

    Directory of Open Access Journals (Sweden)

    Haobin Chen

    2015-01-01

    Full Text Available Nowadays, nanoparticle probes have received extensive attention largely due to its potential biomedical applications in structural, functional, and molecular imaging. In addition, photoacoustic tomography (PAT, a method based on the photoacoustic effect, is widely recognized as a robust modality to evaluate the structure and function of biological tissues with high optical contrast and high acoustic resolution. The combination of PAT with nanoparticle probes holds promises for detecting and imaging diseased tissues or monitoring their treatments with high sensitivity. This review will introduce the recent advances in the emerging field of nanoparticle probes and their preclinical applications in PAT, as well as relevant perspectives on future development.

  10. Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure

    Science.gov (United States)

    2014-08-30

    paste consisting of starting configuration of dry cement powder and water mixture by itself is a complex, multi-scale material system. Though...high pressure molecular structural behavior of the hydrated CSH. Portland cement in the powder form consists of four different major constituents...Tricalcium silicate (C3S), Di-Calcium silicate (C2S), Tri-Calcium aluminate (C3A), and Tetra calcium aluminoferrite (C4AF) [1]. Different mixture

  11. Digestion of individual DNA molecules by lambda-exonuclease at liquid-solid interface.

    Science.gov (United States)

    Kang, Seong Ho; Lee, Seungah; Yeung, Edward S

    2010-07-01

    Enzyme digestion of single DNA molecules was directly observed in real time by dual-color total internal reflection fluorescence microscopy (TIRFM). Individual lambda-DNA molecules labeled with the fluorescent dye, YOYO-1, were stretched in a laminar flow stream and immobilized on a bare fused-silica prism surface based on hydrophobic and electrostatic interactions. Enzyme digestion was initiated by the influx of lambda-exonuclease enzyme via capillary force. When the dye : bp ratio was higher than 1 : 20, the exact digestion rate could not be measured because of induced photocleavage of the DNA molecules. At a dye : bp ratio of 1 : 50, shortening of the DNA strand was recorded in real time. Unlike previous studies, the length-based digestion rate of lambda-exonuclease showed 3 distinct values in the range of 0.173(+/-0.024) to 0.462(+/-0.152) microm s(-1) at 37 degrees C. That is, different enzyme molecules exhibit different digestion dynamics. Digestion was also monitored based on the decrease in fluorescence intensity, but uncertainties were much larger due to the distance dependent excitation intensity in the TIRF mode.

  12. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair

    Science.gov (United States)

    Nimonkar, Amitabh V.; Özsoy, A. Zeynep; Genschel, Jochen; Modrich, Paul; Kowalczykowski, Stephen C.

    2008-01-01

    The error-free repair of double-stranded DNA breaks by homologous recombination requires processing of broken ends. These processed ends are substrates for assembly of DNA strand exchange proteins that mediate DNA strand invasion. Here, we establish that human BLM helicase, a member of the RecQ family, stimulates the nucleolytic activity of human exonuclease 1 (hExo1), a 5′→3′ double-stranded DNA exonuclease. The stimulation is specific because other RecQ homologs fail to stimulate hExo1. Stimulation of DNA resection by hExo1 is independent of BLM helicase activity and is, instead, mediated by an interaction between the 2 proteins. Finally, we show that DNA ends resected by hExo1 and BLM are used by human Rad51, but not its yeast or bacterial counterparts, to promote homologous DNA pairing. This in vitro system recapitulates initial steps of homologous recombination and provides biochemical evidence for a role of BLM and Exo1 in the initiation of recombinational DNA repair. PMID:18971343

  13. Structural characterization of polymorphs and molecular complexes of finasteride

    Science.gov (United States)

    Wawrzycka, Irena; Stȩpniak, Krystyna; Matyjaszczyk, Sławomir; Kozioł, Anna E.; Lis, Tadeusz; Abboud, Khalil A.

    1999-01-01

    The molecular structure of finasteride, 17 β-( N-tert-butylcarbamoyl)-4-aza-5 α-androst-1-en-3-one, and structures of three related crystalline forms have been determined by X-ray analysis. The rigid steroid skeleton of the molecule adopts a half-chair/chair/chair/half-chair conformation. Two peptide groups, one cyclic (lactam) in the ring A and a second being a part of the substituent at C17, are the main factors influencing intermolecular contacts. Different hydrogen-bond interactions of these hydrophilic groups are observed in the crystal structures. An infinite ribbon of finasteride molecules is formed between lactam groups in the orthorhombic homomolecular crystal ( 1) obtained from an ethanol solution. The linear molecular complex finasteride-acetic acid ( 1a) is connected by hydrogen bonds between the lactam of finasteride and the carboxyl group of acetic acid. The crystallization from an ethyl acetate solution gives a complex structure of bis-finasteride monohydrate ethyl acetate clathrate ( 1b) with guest molecule disordered in channels. Crystals of a second (monoclinic) finasteride polymorph ( 2) were obtained during thermal decomposition of 1a, and sublimation of 1, 1a and 1b. Two polymorphic forms show different IR spectra.

  14. Relationship between molecular structure and Raman spectra of quinolines

    Science.gov (United States)

    Frosch, Torsten; Popp, Jürgen

    2009-04-01

    DFT calculations were applied to investigate the relationship between the molecular structure and the Raman spectra of quinolines. A variety of different quinolines with increasing complexity was investigated and an aminoquinoline nucleus was found that describes the Raman spectrum of protonated chloroquine. It was discovered that the biological important, rigid C7-chloro group and C4-side chain of chloroquine significantly disturb certain molecular vibrations. The protonation at the N1 position causes dramatic changes of the Raman bands in the wavenumber region between 1500 cm -1 and 1650 cm -1. These bands are putative marker bands of the aminoquinoline drugs for π-π interactions to the hematin targets in malaria infected cells. The calculation of the normal modes and the illustration of the associated atomic displacements are very valuable for a deeper understanding of the associated bands in the Raman spectra.

  15. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  16. Insights into molecular structure and digestion rate of oat starch.

    Science.gov (United States)

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  18. Surface Structure of Hydroxyapatite from Simulated Annealing Molecular Dynamics Simulations.

    Science.gov (United States)

    Wu, Hong; Xu, Dingguo; Yang, Mingli; Zhang, Xingdong

    2016-05-10

    The surface structure of hydroxyapatite (HAP) is crucial for its bioactivity. Using a molecular dynamics simulated annealing method, we studied the structure and its variation with annealing temperature of the HAP (100) surface. In contrast to the commonly used HAP surface model, which is sliced from HAP crystal and then relaxed at 0 K with first-principles or force-field calculations, a new surface structure with gradual changes from ordered inside to disordered on the surface was revealed. The disordering is dependent on the annealing temperature, Tmax. When Tmax increases up to the melting point, which was usually adopted in experiments, the disordering increases, as reflected by its radial distribution functions, structural factors, and atomic coordination numbers. The disordering of annealed structures does not show significant changes when Tmax is above the melting point. The thickness of disordered layers is about 10 Å. The surface energy of the annealed structures at high temperature is significantly less than that of the crystal structure relaxed at room temperature. A three-layer model of interior, middle, and surface was then proposed to describe the surface structure of HAP. The interior layer retains the atomic configurations in crystal. The middle layer has its atoms moved and its groups rotated about their original locations. In the surface layer, the atomic arrangements are totally different from those in crystal. In particular for the hydroxyl groups, they move outward and cover the Ca(2+) ions, leaving holes occupied by the phosphate groups. Our study suggested a new model with disordered surface structures for studying the interaction of HAP-based biomaterials with other molecules.

  19. Recombination in Escherichia coli V. Genetic analysis of recombinants from crosses with recipients deficient in ATP-dependent exonuclease activity

    NARCIS (Netherlands)

    Haan, P.G. de; Hoekstra, W.P.M.; Verhoef, C.

    A genetic analysis of recombinants from crosses with recombination-deficient recipients, lacking the ATP-dependent exonuclease activity, demonstrated differences in the inheritance pattern of donor markers compared with a Rec+ recipient. In particular the donor markers proximal to the transfer

  20. Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks

    DEFF Research Database (Denmark)

    Liberti, Sascha E; Andersen, Sofie Dabros; Wang, Jing

    2011-01-01

    Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phas...

  1. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....... of the impurity. Transforming the equation to the noninertial frame of reference coupled with the center of mass we investigate the soliton behavior in the close vicinity of the impurity. With the help of the lens transformation we show that the soliton width is governed by an Ermakov-Pinney equation. We also...

  2. The giant molecular cloud Monoceros R2. 1: Shell structure

    Science.gov (United States)

    Xie, Taoling; Goldsmith, Paul F.

    1994-01-01

    We have obtained a 45 sec resolution, Nyquist-sampled map in CO J = 1-0 covering approximately a 3 deg x 3 deg region of the giant molecular cloud Monoceros R2. The map consists of 167,000 spectra observed with the 15 element focal-plane array system on the FCRAO 14 m telescope. The data reveal that the large-scale structure of Mon R2 is dominated by a is approximately 30 pc diameter largely hemispherical shell containing approximately 4 x 10(exp 4) solar mass of molecular material and expanding at approximately 3-4 km s(exp -1) with symmetric axis roughly along the line of sight. The dynamical timescale of the shell is estimated to be approximately 4 x 10(exp 6) yr, which is consistent with the age of main-sequence stars powering the clusters of reflection nebulea in this region. There is no evidence for a redshifted shell on the far side of the interior 'bubble,' which is largely devoid of molecular material. Distortions of the shell are obvious, suggesting inhomogeneity of the cloud and possible presence of a magnetic field prior to its formation. Dense clumps in Mon R2, including the main core and the GGD 12-15 core, appear to be condensations located on the large shell. The reflection nebulea with their illuminating stars as well as embedded IRAS sources suggest that triggered star formation has taken place over a large part of the Mon R2 shell.

  3. Molecular Docking and Structure-Based Drug Design Strategies

    Directory of Open Access Journals (Sweden)

    Leonardo G. Ferreira

    2015-07-01

    Full Text Available Pharmaceutical research has successfully incorporated a wealth of molecular modeling methods, within a variety of drug discovery programs, to study complex biological and chemical systems. The integration of computational and experimental strategies has been of great value in the identification and development of novel promising compounds. Broadly used in modern drug design, molecular docking methods explore the ligand conformations adopted within the binding sites of macromolecular targets. This approach also estimates the ligand-receptor binding free energy by evaluating critical phenomena involved in the intermolecular recognition process. Today, as a variety of docking algorithms are available, an understanding of the advantages and limitations of each method is of fundamental importance in the development of effective strategies and the generation of relevant results. The purpose of this review is to examine current molecular docking strategies used in drug discovery and medicinal chemistry, exploring the advances in the field and the role played by the integration of structure- and ligand-based methods.

  4. Molecular structure and reversible photodegradation in anthraquinone dyes

    CERN Document Server

    Dhakal, Prabodh

    2016-01-01

    Reversible photodegradation is a process that has been observed in several dye molecules, but the underlying mechanisms are not still well understood. In this contribution, we characterize a series of anthraquinone dyes to determine how self-healing depends on molecular structure. Past studies have used probing techniques that rely on linear absorption, two-photon fluorescence, and amplified spontaneous emission. Each of these probes provide an indirect measure of the populations of the damaged and undamaged species, requiring calibrations or assumptions to be made that might affect the accuracy of the results. The present studies use fluorescence as a probe, which is shown to directly measure the undamaged population. It is found that certain anthraquinone classes share common structural features that are associated with self healing. Furthermore, the time and temperature dependence of photodegradation and self-healing is found to be consistent with the domain model of self healing.

  5. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    Science.gov (United States)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  6. Chemical structure and properties of low-molecular furin inhibitors

    Directory of Open Access Journals (Sweden)

    T. V. Osadchuk

    2016-12-01

    Full Text Available The review is devoted to the analysis of the relationship between a chemical structure and properties of low-molecular weight inhibitors of furin, the most studied proprotein convertase, which is involved in the development of some pathologies, such as oncologic diseases, viral and bacterial infections, etc. The latest data concerning the influence of peptides, pseudo-peptides, aromatic and heterocyclic compounds, some natural ones such as flavonoids, coumarins, and others on enzyme inactivation are considered. The power of furin inhibition is shown to rise with the increasing number of positively charged groups in the structure of these compounds. Peptidomimetics (Ki = 5-8 pM are shown to be the most effective furin inhibitors. The synthesized substances, however, have not been used in practical application yet. Nowadays it is very important to find more selective inhibitors, improve their stability, bioavailability and safety for the human organism.

  7. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianjun [University of South Florida, Tampa (USF); Cheng, Xiaolin [ORNL; Monticelli, Luca [Institut National de la Santé et de la Recherche Médicale (INSERM) and INTS, France; Heberle, Frederick A [ORNL; Kucerka, Norbert [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,; Tieleman, D. Peter [University of Calgary, ALberta, Canada; Katsaras, John [ORNL

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  8. Electronic and Magnetic Structure of Octahedral Molecular Sieves

    Science.gov (United States)

    Morey-Oppenheim, Aimee M.

    The major part of this research consists of magnetic and electronic studies of metal doped cryptomelane-type manganese oxide octahedral molecular sieves (KOMS-2). The second part of this study involves the magnetic characterization of cobalt doped MCM-41 before and after use in the synthesis of single walled carbon nanotubes. Manganese oxides have been used widely as bulk materials in catalysis, chemical sensors, and batteries due to the wide range of possible stable oxidation states. The catalytic function of manganese oxides is further tuned by doping the material with numerous transition metals. It is of particular interest the oxidation states of Mn present after doping. New titrations to determine the oxidation state of Mn were investigated. To further examine the structure of KOMS-2, the magnetic contribution of dopant metals was also examined. The KOMS-2 structure having both diamagnetic and paramagnetic metal ions substitutions was studied. MCM-41 with the incorporation of cobalt into the structure was analyzed for its magnetic properties. The material undergoes significant structural change during the synthesis of single walled carbon nanotubes. It was the focus of this portion of the research to do a complete magnetic profile of both the before and after reaction material.

  9. Molecular Modeling and Structural Analysis of Arylesterase of Ancylostoma Duodenale.

    Science.gov (United States)

    Panda, Subhamay; Panda, Santamay; Kumari, Leena

    2016-01-01

    Parasitic worm infection of humans is one of the most commonly prevalent helminth infection that has imposed great impact on society and public health in the developing world. The two species of hookworm, namely Ancylostoma duodenale and Necator americanus may be primarily responsible for causing parasitic infections in human beings. The highly prevalent areas for Ancylostoma duodenale infections are mainly India, Middle East, Australia, northern Africa and other parts of the world. The serum arylesterases/paraoxonases are family of enzymes that is involved in the hydrolysis of a number of organophosphorus insecticides to the nontoxic products. The participation of the enzymes in the breakdown of a variety of organophosphate substrates that is generally made up of paraoxon and numerous aromatic carboxylic acid esters (e.g., phenyl acetate), and hence combats the toxic effect of organophosphates. The aim of the present investigation is to evaluate the arylesterases of Ancylostoma duodenale giving special importance to structure generation, validation of the generated models, distribution of secondary structural elements and positive charge distribution over the structure. By the implementation of comparative modeling approach we propose the first molecular model structure of arylesterases of Ancylostoma duodenale.

  10. Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria

    DEFF Research Database (Denmark)

    Zhang, Qingfeng; Siegel, T Nicolai; Martins, Rafael M

    2014-01-01

    malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin......RNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally......, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality....

  11. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    Science.gov (United States)

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  12. Amino Acid Molecular Units: Building Primary and Secondary Protein Structures

    Directory of Open Access Journals (Sweden)

    Aparecido R. Silva

    2008-05-01

    Full Text Available In order to guarantee the learning quality and suitable knowledge  use  about structural biology, it is fundamental to  exist, since the beginning of  students’ formation, the possibility of clear visualization of biomolecule structures. Nevertheless, the didactic books can only bring  schematic  drawings; even more elaborated figures and graphic computation  do not permit the necessary interaction.  The representation of three-dimensional molecular structures with ludic models, built with representative units, have supplied to the students and teachers a successfully experience to  visualize such structures and correlate them to the real molecules.  The design and applicability of the representative units were discussed with researchers and teachers before mould implementation.  In this stage  it  will be presented the  developed  kit  containing the  representative  plastic parts of the main amino acids.  The kit can demonstrate the interaction among the amino acids  functional groups  (represented by colors, shapes,  sizes and  the peptidic bonds between them  facilitating the assembly and visuali zation of the primary and secondary protein structure.  The models were designed for  Ca,  amino,  carboxyl groups  and  hydrogen. The  lateral chains have  well defined models that represent their geometrical shape.  The completed kit set  will be presented in this meeting (patent requested.  In the last phase of the project will be realized  an effective evaluation  of the kit  as a facilitative didactic tool of the teaching/learning process in the Structural Molecular Biology area.

  13. Molecular Clouds in the North American and Pelican Nebulae: Structures

    Science.gov (United States)

    Zhang, Shaobo; Xu, Ye; Yang, Ji

    2014-03-01

    We present observations of a 4.25 deg2 area toward the North American and Pelican Nebulae in the J = 1-0 transitions of 12CO, 13CO, and C18O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M ⊙ pc-2 and a mean H2 column density of 5.8, 3.4, and 11.9 × 1021 cm-2 for 12CO, 13CO, and C18O, respectively. We obtain a total mass of 5.4 × 104 M ⊙ (12CO), 2.0 × 104 M ⊙ (13CO), and 6.1 × 103 M ⊙ (C18O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (~10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of 13CO emission range within 2-10 pc2 with mass of (1-5) × 103 M ⊙ and line width of a few km s-1. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the 13CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  14. Chilo iridescent virus (CIV) ORF 012L encodes a protein with both exonuclease and endonuclease functions.

    Science.gov (United States)

    Dizman, Yesim Akturk; Muratoglu, Hacer; Sandalli, Cemal; Nalcacioglu, Remziye; Demirbag, Zihni

    2016-11-01

    Chilo iridescent virus (CIV) is the type member of the genus Iridovirus within the family Iridoviridae. The virions of CIV contain a single linear dsDNA molecule that is circularly permuted and terminally redundant. The genome of CIV contains an open reading frame (ORF 012L) encoding a protein homologous to exonuclease II of Schizosaccharomyces pombe. In this study, we focused on the characterization of CIV ORF 012L. The target ORF was cloned into the pET28a vector, expressed in E. coli strain BL21 (DE3) pLysS with an N-terminal His tag and purified to homogeneity by using Ni-NTA affinity chromatography. Biochemical characterization of the purified CIV 012L confirmed that this viral protein is a functional 5'-3' exonuclease that digests 3'-biotin-labelled oligonucleotides and linear double-stranded DNA (dsDNA) molecules from their 5' termini in a highly processive manner. CIV 012L also has a potent endonuclease activity on dsDNA in vitro. In addition, CIV 012L converted supercoiled plasmid DNA (replicative form I, RFI) into the open circular form (RFII) and then open circular form into linear form (RFIII). Endonuclease activity of CIV 012L was optimal in the presence of 10 mM Mg(2+) or 30 mM Mn(2+) ions and at 150 mM NaCl or KCl salt concentrations. The highest endonuclease activity was obtained at pH 8, and it reached a maximum at 55 °C. The CIV 012L protein showed deficiencies for both double- and single-stranded RNAs.

  15. Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles.

    Science.gov (United States)

    Hu, Qinglin; Bai, Xuan; Hu, Guoqing; Zuo, Yi Y

    2017-07-25

    The growing risk of human exposure to airborne nanoparticles (NPs) causes a general concern on the biosafety of nanotechnology. Inhaled NPs can deposit in the deep lung at which they interact with the pulmonary surfactant (PS). Despite the increasing study of nano-bio interactions, detailed molecular mechanisms by which inhaled NPs interact with the natural PS system remain unclear. Using coarse-grained molecular dynamics simulation, we studied the interaction between NPs and the PS system in the alveolar fluid. It was found that regardless of different physicochemical properties, upon contacting the PS, both silver and polystyrene NPs are immediately coated with a biomolecular corona that consists of both lipids and proteins. Structure and molecular conformation of the PS corona depend on the hydrophobicity of the pristine NPs. Quantitative analysis revealed that lipid composition of the corona formed on different NPs is relatively conserved and is similar to that of the bulk phase PS. However, relative abundance of the surfactant-associated proteins, SP-A, SP-B, and SP-C, is notably affected by the hydrophobicity of the NP. The PS corona provides the NPs with a physicochemical barrier against the environment, equalizes the hydrophobicity of the pristine NPs, and may enhance biorecognition of the NPs. These modifications in physicochemical properties may play a crucial role in affecting the biological identity of the NPs and hence alter their subsequent interactions with cells and other biological entities. Our results suggest that all studies of inhalation nanotoxicology or NP-based pulmonary drug delivery should consider the influence of the PS corona.

  16. Structured illumination microscopy for vibrational molecular imaging (Conference Presentation)

    Science.gov (United States)

    Watanabe, Kozue; Palonpon, Almar F.; Smith, Nicholas I.; Chiu, Liang-da; Kasai, Atsushi; Hashimoto, Hitoshi; Kawata, Satoshi; Fujita, Katsumasa

    2016-09-01

    Raman microscopy is a powerful tool for analytical imaging. The wavelength shift of Raman scattering corresponds to molecular vibrational energy. Therefore, we can access rich chemical information, such as distribution, concentration, and chemical environment of sample molecules. Despite these strengths of Raman microscopy, the spatial resolution has been a limiting factor for many practical applications. In this study, we developed a large-area, high-resolution Raman microscope by utilizing structured illumination microscopy (SIM) to overcome the spatial resolution limit. A structured line-illumination (SLI) Raman microscope was constructed. The structured illumination is introduced along the line direction by the interference of two line-shaped beams. In SIM, the spatial frequency mixing between structured illumination and Raman scattering from the sample allows access to the high spatial frequency information beyond the conventional cut-off. As a result, the FWHM of 40-nm fluorescence particle images showed a clear resolution enhancement in the line direction: 366 nm in LI and 199 nm in SLI microscope. Using the developed microscope, we successfully demonstrated high-resolution Raman imaging of various kinds of specimens, such as few-layer graphene, graphite, mouse brain tissue, and polymer nanoparticles. The high resolution Raman images showed the capability to extract original spectral features from the mixed Raman spectra of a multi-component sample because of the enhanced spatial resolution, which is advantageous in observing complex spectral features. The Raman microscopy technique reported here enables us to see the detailed chemical structures of chemical, biological, and medical samples with a spatial resolution smaller than 200 nm.

  17. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  18. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  19. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Molecular and structural antioxidant defenses against oxidative stress in animals.

    Science.gov (United States)

    Pamplona, Reinald; Costantini, David

    2011-10-01

    In this review, it is our aim 1) to describe the high diversity in molecular and structural antioxidant defenses against oxidative stress in animals, 2) to extend the traditional concept of antioxidant to other structural and functional factors affecting the "whole" organism, 3) to incorporate, when supportable by evidence, mechanisms into models of life-history trade-offs and maternal/epigenetic inheritance, 4) to highlight the importance of studying the biochemical integration of redox systems, and 5) to discuss the link between maximum life span and antioxidant defenses. The traditional concept of antioxidant defenses emphasizes the importance of the chemical nature of molecules with antioxidant properties. Research in the past 20 years shows that animals have also evolved a high diversity in structural defenses that should be incorporated in research on antioxidant responses to reactive species. Although there is a high diversity in antioxidant defenses, many of them are evolutionary conserved across animal taxa. In particular, enzymatic defenses and heat shock response mediated by proteins show a low degree of variation. Importantly, activation of an antioxidant response may be also energetically and nutrient demanding. So knowledge of antioxidant mechanisms could allow us to identify and to quantify any underlying costs, which can help explain life-history trade-offs. Moreover, the study of inheritance mechanisms of antioxidant mechanisms has clear potential to evaluate the contribution of epigenetic mechanisms to stress response phenotype variation.

  1. A new parametrizable model of molecular electronic structure

    CERN Document Server

    Laikov, Dimitri N

    2011-01-01

    A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the paramtrization procedure -- making a direct link...

  2. Effect of processing on carbon molecular sieve structure and performance

    KAUST Repository

    Das, Mita

    2010-11-01

    Sub-micron sized carbon molecular sieve (CMS) materials were produced via ball milling for subsequent use in hybrid material formation. A detailed analysis of the effects of the milling process in the presence of different milling environments is reported. The milling process apparently alters the molecular scale structure and properties of the carbon material. Three cases: unmilled, air milled and nitrogen milled, were analyzed in this work. The property changes were probed using equilibrium sorption experiments with different gases. Furthermore, WAXD and BET results also showed differences between milling processes. Finally in order to improve the interfacial polymer-sieve region of hybrid membranes, the CMS surface was chemically modified with a linkage unit capable of covalently bonding the polymer to the sieve. A published single-wall carbon nanotube (SWCNTs) modification method was adopted to attach a primary aromatic amine to the surface. Several aspects including rigidity, chemical composition, bulky groups and length were considered in selecting the preferred linkage unit. Fortunately kinetic and equilibrium sorption properties of the modified sieves showed very little difference from unmodified samples, suggesting that the linkage unit is not excessively filling or obstructing access to the pores of the CMSs during the modification process. © 2010 Elsevier Ltd. All rights reserved.

  3. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1975-01-01

    The success of the first edition of this book has encouraged us to revise and update it. In the second edition we have attempted to further clarify por­ tions of the text in reference to point symmetry, keeping certain sections and removing others. The ever-expanding interest in solids necessitates some discussion on space symmetry. In this edition we have expanded the discus­ sion on point symmetry to include space symmetry. The selection rules in­ clude space group selection rules (for k = 0). Numerous examples are pro­ vided to acquaint the reader with the procedure necessary to accomplish this. Recent examples from the literature are given to illustrate the use of group theory in the interpretation of molecular spectra and in the determination of molecular structure. The text is intended for scientists and students with only a limited theoretical background in spectroscopy. For this reason we have presented detailed procedures for carrying out the selection rules and normal coor­ dinate treatment of ...

  4. Unraveling the Structure of Ultracold Mesoscopic Collinear Molecular Ions

    Science.gov (United States)

    Schurer, J. M.; Negretti, A.; Schmelcher, P.

    2017-08-01

    We present an in-depth many-body investigation of the so-called mesoscopic molecular ions that can buildup when an ion is immersed into an atomic Bose-Einstein condensate in one dimension. To this end, we employ the multilayer multiconfiguration time-dependent Hartree method for mixtures of ultracold bosonic species for solving the underlying many-body Schrödinger equation. This enables us to unravel the actual structure of such massive charged molecules from a microscopic perspective. Laying out their phase diagram with respect to atom number and interatomic interaction strength, we determine the maximal number of atoms bound to the ion and reveal spatial densities and molecular properties. Interestingly, we observe a strong interaction-induced localization, especially for the ion, that we explain by the generation of a large effective mass, similarly to ions in liquid Helium. Finally, we predict the dynamical response of the ion to small perturbations. Our results provide clear evidence for the importance of quantum correlations, as we demonstrate by benchmarking them with wave function ansatz classes employed in the literature.

  5. Calculations of optical rotation: Influence of molecular structure

    Directory of Open Access Journals (Sweden)

    Yu Jia

    2012-01-01

    Full Text Available Ab initio Hartree-Fock (HF method and Density Functional Theory (DFT were used to calculate the optical rotation of 26 chiral compounds. The effects of theory and basis sets used for calculation, solvents influence on the geometry and values of calculated optical rotation were all discussed. The polarizable continuum model, included in the calculation, did not improve the accuracy effectively, but it was superior to γs. Optical rotation of five or sixmembered of cyclic compound has been calculated and 17 pyrrolidine or piperidine derivatives which were calculated by HF and DFT methods gave acceptable predictions. The nitrogen atom affects the calculation results dramatically, and it is necessary in the molecular structure in order to get an accurate computation result. Namely, when the nitrogen atom was substituted by oxygen atom in the ring, the calculation result deteriorated.

  6. Coding considerations for standalone molecular dynamics simulations of atomistic structures

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

  7. Guiding lead optimization with GPCR structure modeling and molecular dynamics.

    Science.gov (United States)

    Heifetz, Alexander; James, Tim; Morao, Inaki; Bodkin, Michael J; Biggin, Philip C

    2016-10-01

    G-protein coupled receptor (GPCR) modeling approaches are widely used in the hit-to-lead and lead optimization stages of drug discovery. Modern protocols that involve molecular dynamics simulation can address key issues such as the free energy of binding (affinity), ligand-induced GPCR flexibility, ligand binding kinetics, conserved water positions and their role in ligand binding and the effects of mutations. The goals of these calculations are to predict the structures of the complexes between existing ligands and their receptors, to understand the key interactions and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this review we present a brief survey of various computational approaches illustrated through a hierarchical GPCR modeling protocol and its prospective application in three industrial drug discovery projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Molecular structure and exciton dynamics in organic conjugated polymers

    Science.gov (United States)

    Thomas, Alan K.

    , quenchable, isolated singlet excitations. The structure of J aggregates which leads to isolated excitations, and the role which inter-chain contact sites play in triplet formation from these singlet excitations is revealed. New structure-function relationships were uncovered in poly (3-alkyl-thienylenevinylene) (P3ATV) derivatives using resonance Raman and photocurrent spectroscopies. Time-dependent spectroscopic theory was used to interpret experimental Raman and absorption spectra that revealed the presence of structural polymorphs. These polymorphs provide an explanation of the spectroscopic evidence without presumption of a deactivating dark state in this unusually non-fluorescence material. Photovoltaic devices constructed from blends of poly (2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) and PCBM blends were examined using Raman and photocurrent imaging techniques. These techniques were used to identify different packing states in blended thin films and correlate photocurrent production with local order. Intensity modulated spectroscopic techniques (IMPS) were then used to locate regions of non-geminate charge recombination at interfaces between amorphous and crystalline regions in working devices. Next, P3HT/PCBM OPV devices were exposed to ionizing radiation in a vacuum chamber. These devices were characterized before and after exposure, using standardized solar cell tests, Raman imaging, wide-field IMPS, and IMVS spectroscopies. An analysis of the spectroscopic data determined that the donor polymer is highly resistant to radiation damage, and that the degradation of device performance is due to an effect (cross-linking or degradation) within aggregates of the acceptor. This dissertation concludes with an interpretation of the significance of the findings contained herein to organic electronics, followed by a brief outlook for future work in these fields. Potential theories to describe and predict molecular interactions for organic polymers in

  9. Molecular structure-adsorption study on current textile dyes.

    Science.gov (United States)

    Örücü, E; Tugcu, G; Saçan, M T

    2014-01-01

    This study was performed to investigate the adsorption of a diverse set of textile dyes onto granulated activated carbon (GAC). The adsorption experiments were carried out in a batch system. The Langmuir and Freundlich isotherm models were applied to experimental data and the isotherm constants were calculated for 33 anthraquinone and azo dyes. The adsorption equilibrium data fitted more adequately to the Langmuir isotherm model than the Freundlich isotherm model. Added to a qualitative analysis of experimental results, multiple linear regression (MLR), support vector regression (SVR) and back propagation neural network (BPNN) methods were used to develop quantitative structure-property relationship (QSPR) models with the novel adsorption data. The data were divided randomly into training and test sets. The predictive ability of all models was evaluated using the test set. Descriptors were selected with a genetic algorithm (GA) using QSARINS software. Results related to QSPR models on the adsorption capacity of GAC showed that molecular structure of dyes was represented by ionization potential based on two-dimensional topological distances, chromophoric features and a property filter index. Comparison of the performance of the models demonstrated the superiority of the BPNN over GA-MLR and SVR models.

  10. Bonding and structure in dense multi-component molecular mixtures.

    Science.gov (United States)

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  11. Retinal structure, function, and molecular pathologic features in gyrate atrophy.

    Science.gov (United States)

    Sergouniotis, Panagiotis I; Davidson, Alice E; Lenassi, Eva; Devery, Sophie R; Moore, Anthony T; Webster, Andrew R

    2012-03-01

    To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy. Retrospective case series. Seven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy. Detailed ophthalmologic examination, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography, and microperimetry testing were performed. The coding region and intron-exon boundaries of ornithine aminotransferase (OAT) were analyzed. OAT mRNA was isolated from peripheral blood leucocytes of 1 patient and analyzed. OAT mutation status and resultant clinical, structural, and functional characteristics. Funduscopy revealed circular areas of chorioretinal atrophy, and FAF imaging showed sharply demarcated areas of increased or preserved signal in all 7 patients. Spectral-domain optical coherence tomography revealed multiple intraretinal cystic spaces and hyperreflective deposit in the ganglion cell layer of all study subjects. Round tubular, rosette-like structures located in the outer nuclear layer of the retinae of the 4 older patients were observed (termed outer retinal tubulation). Thickening was evident in the foveolae of younger patients, despite the posterior pole appearing relatively preserved. Macular function, assessed by microperimetry, was preserved over areas of normal or increased autofluorescence. However, sensitivity was reduced even in structurally intact parts of the retina. The molecular pathologic features were determined in all study subjects: 9 mutations, 4 novel, were detected in the OAT gene. OAT mRNA was isolated from blood leukocytes, and monoallelic expression of a mutated allele was demonstrated in 1 patient. Fundus autofluorescence imaging can reveal the extent of neurosensory dysfunction in gyrate atrophy patients. Macular edema is a uniform finding; the fovea is relatively thick in early stages of disease and retinal tubulation is present in advanced disease

  12. Molecular tailoring approach for exploring structures, energetics and ...

    Indian Academy of Sciences (India)

    Molecular Tailoring Approach (MTA) is a method developed for enabling ab initio calculations on prohibitively large molecules or atomic/molecular clusters. A brief review of MTA, a linear scaling technique based on set inclusion and exclusion principle, is provided. The Molecular Electrostatic Potential (MESP) of smaller ...

  13. Molecular crowding effects on conformation and stability of G-quadruplex DNA structure: insights from molecular dynamics simulation.

    Science.gov (United States)

    Verdian Doghaei, A; Housaindokht, M R; Bozorgmehr, M R

    2015-01-07

    Intracellular space is highly crowded with different biomolecules such as proteins, nucleic acids and ions. Therefore molecular crowding is a crucial factor in determining the structure, stability and function of G-quadruplexs. The effect of crowding on the DNA G-quadruplexes structure and stability has been studied by experimental methods, but it hasn't been known how crowding agents stabilize the G-quadruplex structure in molecular level yet. Here, we present a molecular dynamics investigation over the effect of molecular crowding, imitated here by ethanol, on the stability of G-quadruplex structure both in presence and absence of stabilizing K(+) cations. It was demonstrated that G-quadruplex structure in the water collapses in the absence of this cation, while ethanol stabilizes the structure of G-quadruplex by the excluded volume and decreases the water activity. The presence of ethanol can increase the stability of the Hoogsteen hydrogen bonds within the G-quartet. To understand the importance of cations, simulation has been performed on the cation containing G-quadruplex in the presence of ethanol with different concentrations. Molecular dynamics simulations of the structure and stability of human telomeric G-quadruplex in ethanol containing solution has enhanced our understanding on how the parallel-stranded G-quadruplex is affected in a condition where the water content is reduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cell cycle profiling by image and flow cytometry: The optimised protocol for the detection of replicational activity using 5-Bromo-2'-deoxyuridine, low concentration of hydrochloric acid and exonuclease III.

    Science.gov (United States)

    Ligasová, Anna; Konečný, Petr; Frydrych, Ivo; Koberna, Karel

    2017-01-01

    The approach for the detection of replicational activity in cells using 5-bromo-2'-deoxyuridine, a low concentration of hydrochloric acid and exonuclease III is presented in the study. The described method was optimised with the aim to provide a fast and robust tool for the detection of DNA synthesis with minimal impact on the cellular structures using image and flow cytometry. The approach is based on the introduction of breaks into the DNA by the low concentration of hydrochloric acid followed by the subsequent enzymatic extension of these breaks using exonuclease III. Our data showed that the method has only a minimal effect on the tested protein localisations and is applicable both for formaldehyde- and ethanol-fixed cells. The approach partially also preserves the fluorescence of the fluorescent proteins in the HeLa cells expressing Fluorescent Ubiquitin Cell Cycle Indicator. In the case of the short labelling pulses that disabled the use of 5-ethynyl-2'-deoxyuridine because of the low specific signal, the described method provided a bright signal enabling reliable recognition of replicating cells. The optimized protocol was also successfully tested for the detection of trifluridine, the nucleoside used as an antiviral drug and in combination with tipiracil also for the treatment of some types of cancer.

  15. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters

    2016-03-01

    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  16. Population structure in Tunisian indigenous rabbit ascertained using molecular information

    Directory of Open Access Journals (Sweden)

    Manel Ben Larbi

    2014-09-01

    Full Text Available Understanding the genetic structure of domestic species provides a window into the process of domestication. This study attempts to offer an insight into the prevailing genetic status of Tunisian indigenous rabbit breeds using molecular markers. Thirty-six microsatellite loci were used to provide a comprehensive insight into the genetic status and relationship among 12 Tunisian indigenous rabbit populations. A total of 264 rabbits from villages of the Tozeur and Kebili regions were studied. Standard statistics parameters of genetic variability within and between populations were calculated. The observed heterozygosity, unbiased expected heterozygosity and the effective number of alleles were used to assess the genetic variation of each indigenous breed. Results show a high genetic diversity and observed heterozygosity ranged between 0.3 and 0.5, which implies that there is an abundant genetic variation stored in Tunisian indigenous rabbit breeds. Significant population differentiation was observed (Fst=0.11, which means that most of the genetic variation resides within breeds. The percentage of individuals correctly classified to their population was 85%. Breeds with more than one breeder origin were divided into subgroups, due to differences in gene frequencies between breeders, which in some cases creates a genetic differentiation even higher than that observed between distinct breeds. The current study is the first detailed analysis of the genetic diversity of Tunisian indigenous rabbit populations. The data generated here provides valuable information about the genetic structure of the 12 rabbit populations and this can be used to designate priorities for their conservation.

  17. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  18. Modeling Carbon and Hydrocarbon Molecular Structures in EZTB

    Science.gov (United States)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that models the electronic and mechanical aspects of hydrocarbon molecules and carbon molecular structures on the basis of first principles has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure, which is summarized briefly in the immediately preceding article. Of particular interest, this module can model carbon crystals and nanotubes characterized by various coordinates and containing defects, without need to adjust parameters of the physical model. The module has been used to study the changes in electronic properties of carbon nanotubes, caused by bending of the nanotubes, for potential utility as the basis of a nonvolatile, electriccharge- free memory devices. For example, in one application of the module, it was found that an initially 50-nmlong carbon, (10,10)-chirality nanotube, which is a metallic conductor when straight, becomes a semiconductor with an energy gap of .3 meV when bent to a lateral displacement of 4 nm at the middle.

  19. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.

    Science.gov (United States)

    Walsh, Tiffany R

    2017-07-18

    An in-depth appreciation of how to manipulate the molecular-level recognition between peptides and aqueous materials interfaces, including nanoparticles, will advance technologies based on self-organized metamaterials for photonics and plasmonics, biosensing, catalysis, energy generation and harvesting, and nanomedicine. Exploitation of the materials-selective binding of biomolecules is pivotal to success in these areas and may be particularly key to producing new hierarchically structured biobased materials. These applications could be accomplished by realizing preferential adsorption of a given biomolecule onto one materials composition over another, one surface facet over another, or one crystalline polymorph over another. Deeper knowledge of the aqueous abiotic-biotic interface, to establish clear structure-property relationships in these systems, is needed to meet this goal. In particular, a thorough structural characterization of the surface-adsorbed peptides is essential for establishing these relationships but can often be challenging to accomplish via experimental approaches alone. In addition to myriad existing challenges associated with determining the detailed molecular structure of any molecule adsorbed at an aqueous interface, experimental characterization of materials-binding peptides brings new, complex challenges because many materials-binding peptides are thought to be intrinsically disordered. This means that these peptides are not amenable to experimental techniques that rely on the presence of well-defined secondary structure in the peptide when in the adsorbed state. To address this challenge, and in partnership with experiment, molecular simulations at the atomistic level can bring complementary and critical insights into the origins of this abiotic/biotic recognition and suggest routes for manipulating this phenomenon to realize new types of hybrid materials. For the reasons outlined above, molecular simulation approaches also face

  20. Equilibration of experimentally determined protein structures for molecular dynamics simulation.

    Science.gov (United States)

    Walton, Emily B; Vanvliet, Krystyn J

    2006-12-01

    Preceding molecular dynamics simulations of biomolecular interactions, the molecule of interest is often equilibrated with respect to an initial configuration. This so-called equilibration stage is required because the input structure is typically not within the equilibrium phase space of the simulation conditions, particularly in systems as complex as proteins, which can lead to artifactual trajectories of protein dynamics. The time at which nonequilibrium effects from the initial configuration are minimized-what we will call the equilibration time-marks the beginning of equilibrium phase-space exploration. Note that the identification of this time does not imply exploration of the entire equilibrium phase space. We have found that current equilibration methodologies contain ambiguities that lead to uncertainty in determining the end of the equilibration stage of the trajectory. This results in equilibration times that are either too long, resulting in wasted computational resources, or too short, resulting in the simulation of molecular trajectories that do not accurately represent the physical system. We outline and demonstrate a protocol for identifying the equilibration time that is based on the physical model of Normal Mode Analysis. We attain the computational efficiency required of large-protein simulations via a stretched exponential approximation that enables an analytically tractable and physically meaningful form of the root-mean-square deviation of atoms comprising the protein. We find that the fitting parameters (which correspond to physical properties of the protein) fluctuate initially but then stabilize for increased simulation time, independently of the simulation duration or sampling frequency. We define the end of the equilibration stage--and thus the equilibration time--as the point in the simulation when these parameters attain constant values. Compared to existing methods, our approach provides the objective identification of the time at

  1. DNA sequencing with stacked nanopores and exonuclease: A simulation-based analysis.

    Science.gov (United States)

    Sampath, Gopalan

    2016-09-01

    Experiments have shown that DNA can be sequenced using an electrolytic cell with a nanopore and an exonuclease enzyme in the cis chamber that cleaves the leading mononucleotide in a strand of DNA. The base therein can be identified with an accuracy of 80-90% by the level of the current blockade caused in the pore; a biological adapter inside slows down the cleaved mononucleotide and lowers the detection bandwidth required. In this approach, which has been mathematically modeled, analyzed, and simulated, mononucleotides are likely to be lost to diffusion or enter the pore out of order. To remedy this, a modified cell with three stacked nanopores (named UNP, MNP, and DNP) and the enzyme attached to the trans side of UNP is proposed and modeled. Mononucleotide translocation is simulated with the random walk of a dimensionless particle; the results show that the cleaved mononucleotides translocate through MNP and DNP in sequence order without loss. If this holds in practice then with a suitably designed adapter and compatible enzyme turnover rates sequencing accuracy would be limited only by the accuracy of mononucleotide discrimination. Potential implementation issues are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 14-3-3 Proteins regulate exonuclease 1-dependent processing of stalled replication forks.

    Directory of Open Access Journals (Sweden)

    Kim Engels

    2011-04-01

    Full Text Available Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined role under DNA replication stress. Exonuclease 1 (Exo1 processes stalled replication forks in checkpoint-defective yeast cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-3-deficient cells fail to induce Mec1-dependent Exo1 hyperphosphorylation and accumulate Exo1-dependent ssDNA gaps at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication stress.

  3. Novel 5' exonuclease-based real-time PCR assay for the detection of t(14;18)(q32;q21) in patients with follicular lymphoma.

    Science.gov (United States)

    Luthra, R; McBride, J A; Cabanillas, F; Sarris, A

    1998-07-01

    The exonuclease-based real-time polymerase chain reaction (PCR) exploits 5'-->3' exonuclease activity of Taq polymerase and measures PCR product accumulation as the reaction proceeds through a dual-labeled fluorogenic probe. The utility of this exonuclease-based PCR assay as a rapid alternative to conventional PCR for follicular lymphoma-associated t(14;18)(q32;q21) was evaluated in this study. The specificity of the assay for t(14;18) involving bcl-2 and immunoglobulin heavy-chain joining region (JH) genes was assessed by analyzing DNA from 53 patients (38 B-cell non-Hodgkin's lymphomas and 15 nonneoplastic proliferations) and correlating the exonuclease PCR data with conventional PCR results. bcl-2/JH fusion sequences were detected by exonuclease-based PCR in 24 of 25 cases shown to be bcl-2 rearranged by conventional PCR. Fusion sequences were not detected in patients who were negative by conventional PCR. The overall concordance between the two assays was 98% (52 of 53 cases concordant positive or negative). In a serial dilution study using t(14;18)-positive cell line DNA, exonuclease-based PCR detected fusion sequences at DNA concentrations of 5 pg, equivalent to 0.6 to 0.8 genomes per reaction. Thus, this study demonstrated that exonuclease-based PCR for t(14;18) is both specific and highly sensitive. The elimination of the post-PCR amplicon detection steps and the ability to quantitate the input target DNA sequences make this assay ideal for routine diagnostics and monitoring minimal residual disease.

  4. A Structural and Molecular Approach for the Study Biomarkers

    Science.gov (United States)

    Thomas-Keprta, Kathie; Vali, Hojatollah; Sears, S. Kelly; Roh, Yul

    2001-01-01

    Investigation of the nucleation and growth of crystals in both abiotic and biotic systems is critical to seemingly diverse disciplines of geology, biology, environmental science, and astrobiology. While there are abundant studies devoted to the determination of the structure and composition of inorganic crystals, as well as to the development of thermodynamic and kinetic models, it is only recently that research efforts have been directed towards understanding mineralization in biological systems (i.e., biomineralization). Biomineralization refers to the processes by which living organisms form inorganic solids. Studies of the processes of biomineralization under low temperature aqueous conditions have focused primarily on magnetite forming bacteria and shell forming marine organisms. Many of the biological building materials consist of inorganic minerals (calcium carbonate, calcium phosphate, silica or iron oxide) intricately combined with organic polymers (like proteins). More recently, efforts have been undertaken to explore the nature of biological activities in ancient rocks. In the absence of well-preserved microorganisms or genetic material required for the polmerase chain reaction (PCR) method in molecular phylogenetic studies, using biominerals as biomarkers offers an alternative approach for the recognition of biogenic activity in both terrestrial and extraterrestrial environments. The primary driving force in biomineralization is the interaction between organic and inorganic phases. Thus, the investigation of the ultrastructure and the nature of reactions at the molecular level occurring at the interface between inorganic and organic phases is essential to understanding the processes leading to the nucleation and growth of crystals. It is recognized that crystal surfaces can serve as the substrate for the organization of organic molecules that lead to the formation of polymers and other complex organic molecules, and in discussions of the origins of life

  5. Neurobiological mechanisms of treatment resistant depression: Functional, structural and molecular imaging studies

    NARCIS (Netherlands)

    de Kwaasteniet, B.P.

    2015-01-01

    This thesis investigated the neurobiological mechanisms of TRD using functional, structural and molecular imaging studies. First the neurobiological mechanisms of MDD were investigated and revealed decreased functional connectivity between the ventral and dorsal network. Thereafter, structural

  6. Computational molecular technology towards macroscopic chemical phenomena-molecular control of complex chemical reactions, stereospecificity and aggregate structures

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Masataka [Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Honmachi, Kawaguchi 332-0012 (Japan); ESICB, Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 615-8520 (Japan)

    2015-12-31

    A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.

  7. Molecular, structural, and phylogenetic analyses of Taxus chinensis JAZs.

    Science.gov (United States)

    Zhang, Meng; Chen, Ying; Nie, Lin; Jin, Xiaofei; Fu, Chunhua; Yu, Longjiang

    2017-07-15

    Taxus spp. are ancient gymnosperms that produce a unique secondary metabolite, namely, taxol, an anticancer drug. JAZ proteins are key regulators of the JA signaling pathway, which control taxol biosynthesis. However, the JAZ proteins of Taxus spp. are poorly studied. In this work, nine JAZ genes from Taxus chinensis were identified using our previous transcriptome data and named as TcJAZ1-TcJAZ9. Of these nine TcJAZ proteins, eight contain Jas and TIFY domains, and the Jas domain of TcJAZ6 is incomplete. Most TcJAZs and PsJAZs are not related to AtJAZs and OsJAZs. Phylogenetic analysis divided all JAZ proteins from Arabidopsis thaliana, Oryza sativa, Picea sitchensis, and T. chinensis into eight subgroups; gymnosperms JAZs were classified into subgroups V-VIII, and angiosperm JAZs were categorized into subgroups I-V. Three motifs of subgroups VI-VIII were identified in gymnosperm JAZs, indicating that gymnosperm JAZ proteins exhibit a different evolutionary process from those of angiosperms. The expression patterns of nine TcJAZs showed that TcJAZ2/3/8 was a key regulator, indicating their important roles in T. chinensis. Results revealed that gymnosperm JAZs differ from angiosperm JAZs in terms of molecular structure. Three novel conserved motifs were found in TcJAZs and PsJAZs. This study provides a basis for research on JA regulatory system in Taxus spp. and for elucidating the significance of JA signaling pathway to land plants. Copyright © 2017. Published by Elsevier B.V.

  8. Structural Characteristics of Low Molecular Weight Laminarin Prepared by Ionizing Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Chonnam National University, Gwangju (Korea, Republic of)

    2013-12-15

    Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, molecular structure of low molecular weight laminarin prepared by ionizing irradiation was studied. Low molecular weight laminarin samples of 13.5, 8.5, 7, and 6 kDa were obtained from 15 kDa laminarin by irradiation. From gel permeation chromatography data, low molecular weight laminarin was shown to have low polydispersity. To define the changes of functional groups in laminarin with different molecular weights, Fourier-transform infrared analysis was carried out. There was found no significant changes of functional groups in low molecular weight laminarin, except the increase of carbonyl group. The granular fissures from scanning electron microscopy showed the breakage of glycosidic bond in low molecular weight laminarin. These results could be utilized for the investigation of the enhanced biological activities of low molecular weight polysaccharides including laminarin.

  9. An Insight towards Conceptual Understanding: Looking into the Molecular Structures of Compounds

    Science.gov (United States)

    Uyulgan, Melis Arzu; Akkuzu, Nalan

    2016-01-01

    The subject of molecular structures is one of the most important and complex subject in chemistry which a majority of the undergraduate students have difficulties to understand its concepts and characteristics correctly. To comprehend the molecular structures and their characteristics the students need to understand related subjects such as Lewis…

  10. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang

    2017-08-01

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.

  11. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M; Prates, Luciana L; Yu, Peiqiang

    2017-08-05

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development.

    Science.gov (United States)

    Chen, Zhen; Wilmanns, Matthias; Zeng, An-Ping

    2010-10-01

    The future of industrial biotechnology requires efficient development of highly productive and robust strains of microorganisms. Present praxis of strain development cannot adequately fulfill this requirement, primarily owing to the inability to control reactions precisely at a molecular level, or to predict reliably the behavior of cells upon perturbation. Recent developments in two areas of biology are changing the situation rapidly: structural biology has revealed details about enzymes and associated bioreactions at an atomic level; and synthetic biology has provided tools to design and assemble precisely controllable modules for re-programming cellular metabolic circuitry. However, because of different emphases, to date, these two areas have developed separately. A linkage between them is desirable to harness their concerted potential. We therefore propose structural synthetic biotechnology as a new field in biotechnology, specifically for application to the development of industrial microbial strains. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    Science.gov (United States)

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-05

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Advanced synchrotron-based and globar-sourced molecular (micro) spectroscopy contributions to advances in food and feed research on molecular structure, mycotoxin determination, and molecular nutrition.

    Science.gov (United States)

    Shi, Haitao; Yu, Peiqiang

    2017-04-17

    Mycotoxin contamination has been a worldwide problem for food and feeds production for a long time. There is an obviously increased focus of the food and feed industry toward the reduction of mycotoxin concentration in both the raw materials and finished products. Therefore, both effective qualitative and quantitative techniques for the determination of mycotoxins are required to minimize their harmful effects. Conventional wet chemical methods usually are time-consuming, expensive, and rely on complex extraction and cleanup pretreatments. Synchrotron-based and globar-based molecular spectroscopy have shown great potential to be developed as rapid and nondestructive tools for the determination of molecular structure, molecular nutrition and mycotoxins in feed and food. This article reviews the common types of mycotoxins in feed and food, their toxicity, as well as the conventional detection methods. The principle of advanced molecular spectroscopy techniques and their application prospects for mycotoxin detection are discussed. Recent progress in food and feed research with molecular spectroscopy techniques is highlighted. This review provides a potential and insight into how to determine the structure and mycotoxins of feed and food on a molecular basis with advanced Synchrotron-based and globar-based molecular (micro) spectroscopy.

  15. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center.

    Science.gov (United States)

    Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-01

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  16. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  17. A novel method for detection of dioxins. Exonuclease protection mediated PCR assay

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.Q.; Sun, X.; Li, F.; Li, B.S. [Huazhong Univ. of Science and Technology, Wuhan, HB (China). Tongji Medical College

    2004-09-15

    The aromatic hydrocarbon receptor (AhR) is a ligand-actived transcription factor that mediates many of the biologic and toxicologic effects of dioxin-like chemicals (DLCs), such as 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD). Numerous AhR-based bioassays for identification and detection of DLCs have been developed in vitro. Such as the chemical-activated luciferase gene expression (CALUX), ethoxyresolufin-O-deethylase (EROD) activity are sometimes represented as the next best system when compared with whole body or in vivo systems. However, cell systems can be affected by the toxic chemical itself during the assay, thus confusing problems couldn't be avoided in the assay. Incorporation of metabolism in cell systems with uncertain consequences prolongs assay complexity and time. Thus these drawbacks limit the utility of cell systems for screening purposes. Most cell-free bioassays require radioactivity, such as the gel retardation of AhR binding (GRAB) assay, or antibody of AhR or ligand, which are unfeasible for some laboratories. Here a cell-free bioanalysis method, Exonuclease Protection Mediated PCR (EPM-PCR) bioassay, was established for detection of AhR ligands based on the binding of the dioxin:AhR complex to the specific DNA. EPM-PCR can provide indirect detection of ligands by quantification of the specific AhR-binding DNA, no necessary of any DNA labeling and sophisticated equipments. This new bioassay not only has the higher sensitivity and specificity, but it is rapid and easy to perform.

  18. M3: an integrative framework for structure determination of molecular machines.

    Science.gov (United States)

    Karaca, Ezgi; Rodrigues, João P G L M; Graziadei, Andrea; Bonvin, Alexandre M J J; Carlomagno, Teresa

    2017-09-01

    We present a broadly applicable, user-friendly protocol that incorporates sparse and hybrid experimental data to calculate quasi-atomic-resolution structures of molecular machines. The protocol uses the HADDOCK framework, accounts for extensive structural rearrangements both at the domain and atomic levels and accepts input from all structural and biochemical experiments whose data can be translated into interatomic distances and/or molecular shapes.

  19. Insights from the Molecular Dynamics Simulation of Cellobiohydrolase Cel6A Molecular Structural Model from Aspergillus fumigatus NITDGPKA3.

    Science.gov (United States)

    Dodda, Subba Reddy; Sarkar, Nibedita; Aikat, Kaustav; Krishnaraj, Navanietha R; Bhattacharjee, Sanchari; Bagchi, Angshuman; Mukhopadhyay, Sudit S

    2016-01-01

    Global demand for bioethanol is increasing tremendously as it could help to replace the conventional fossil fuel and at the same time supporting the bioremediation of huge volume of cellulosic wastes generated from different sources. Ideal genetic engineering approaches are essential to improve the efficacy of the bioethanol production processes for real time applications. A locally isolated fungal strain Aspergillus fumigatus NITDGPKA3 was used in our laboratory for the hydrolysis of lignocellulose with good cellulolytic activity when compared with other contemporary fungal strains. An attempt is made to sequence the cellobiohydrolases (CBHs) of A. fumigatus NITDGPKA3, model its structure to predict its catalytic activity towards improving the protein by genetic engineering approaches. Herein, the structure of the sequenced Cellobiohydrolases (CBHs) of A. fumigatus NITDGPKA3, modelled by homology modelling and its validation is reported. Further the catalytic activity of the modelled CBH enzyme was assessed by molecular docking analysis. Phylogenetic analysis showed that CBH from A. fumigatus NITDGPKA3 belongs to the Glycohydro 6 (Cel6A) super family. Molecular modeling and molecular dynamics simulation suggest the structural and functional mechanism of the enzyme. The structures of both the cellulose binding (CBD) and catalytic domain (CD) have been compared with most widely studied CBH of Trichoderma reesei. The molecular docking with cellulose suggests that Gln 248, Pro 287, Val236, Asn284, and Ala288 are the main amino acids involved in the hydrolysis of the β, 1-4, glycosidic bonds of cellulose.

  20. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Huang Jian-dong

    2011-04-01

    Full Text Available Abstract Background SXT is an integrating conjugative element (ICE originally isolated from Vibrio cholerae, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo and single strand annealing protein (S065, SXT-Bet encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively. Results SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn2+ or Mg2+ ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb. When co-expressed in E. coli cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo. Conclusions The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected V

  1. A Molecular Dynamics Approach to Grain Boundary Structure and Migration

    DEFF Research Database (Denmark)

    Cotterill, R. M. J.; Leffers, Torben; Lilholt, Hans

    1974-01-01

    It has been demonstrated that grain boundary formation from the melt can be simulated by the molecular dynamics method. The space between two mutually-misoriented crystal slabs was filled with atoms in a random manner and this liquid was then cooled until crystallization occurred. The general...

  2. Investigation of structure of noise component in molecular spectra

    Science.gov (United States)

    Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.; Salakhov, M. Kh

    2015-05-01

    In the work the noise component of molecular spectra is investigated by use the Hurst index which is the quantitative parameter of memory effects. It was shown that the low- frequency noise component predominates. The Hurst index is from 0.6 to 0.7 for the studied FTIR spectra registered at different temperatures.

  3. Molecular-Field Calculation of the Magnetic Structure in Erbium

    DEFF Research Database (Denmark)

    Jensen, J.

    1976-01-01

    A molecular-field calculation of the magnetic configurations in Er is found to reproduce the neutron diffraction results of the three different magnetic phases and to give a reasonable fit to the magnetization data at 4.2K. The two-ion coupling is considered to be described by the inter...

  4. Dynamics of Structural Phase Transformations Using Molecular Dynamics

    Science.gov (United States)

    2013-12-08

    corresponding to a universal molecular simulation method, Journal of Fluid Mechanics, (12 2011): 0. doi: 10.1017/jfm.2011.483 Amin Aghaei, Kaushik...Materials Science at the Center for Nonlinear Analysis, June 2013. -- Fluids and Materials Seminar in the School of Mathematics, University of Bristol... Mecanique des Materiaux Seminar, University of Metz, June 2010. Contributed conference proceedings: -- European Materials Research Society

  5. Investigating Molecular Structures of Bio-Fuel and Bio-Oil Seeds as Predictors To Estimate Protein Bioavailability for Ruminants by Advanced Nondestructive Vibrational Molecular Spectroscopy.

    Science.gov (United States)

    Ban, Yajing; L Prates, Luciana; Yu, Peiqiang

    2017-10-18

    This study was conducted to (1) determine protein and carbohydrate molecular structure profiles and (2) quantify the relationship between structural features and protein bioavailability of newly developed carinata and canola seeds for dairy cows by using Fourier transform infrared molecular spectroscopy. Results showed similarity in protein structural makeup within the entire protein structural region between carinata and canola seeds. The highest area ratios related to structural CHO, total CHO, and cellulosic compounds were obtained for carinata seeds. Carinata and canola seeds showed similar carbohydrate and protein molecular structures by multivariate analyses. Carbohydrate molecular structure profiles were highly correlated to protein rumen degradation and intestinal digestion characteristics. In conclusion, the molecular spectroscopy can detect inherent structural characteristics in carinata and canola seeds in which carbohydrate-relative structural features are related to protein metabolism and utilization. Protein and carbohydrate spectral profiles could be used as predictors of rumen protein bioavailability in cows.

  6. Earle K. Plyler Prize for Molecular Spectroscopy & Dynamics Lecture: Broadband Rotational Spectroscopy for Chemical Kinetics, Molecular Structure, and Analytical Chemistry

    Science.gov (United States)

    Pate, Brooks

    2013-03-01

    Advances in high-speed digital electronics have enabled a new generation of molecular rotational spectroscopy techniques that provide instantaneous broadband spectral coverage. These techniques use a chirped excitation pulse to coherently excite the molecular sample over a spectral bandwidth of 10 GHz or larger through rapid passage. The subsequent time-domain emission is recorded using high-speed digitizers (up to 100 Gigasample/s) and the frequency domain spectrum is produced by fast Fourier transformation. The chirped-pulse Fourier transform (CP-FT) method has been implemented in the microwave frequency range (2-40 GHz) for studies of cold samples in pulsed jet sources and in the mm-wave/terahertz (THz) frequency range for studies of samples at room-temperature. The method has opened new applications for molecular rotational spectroscopy in the area of chemical kinetics where dynamic rotational spectroscopy is used to measure the rates of unimolecular isomerization reactions in highly excited molecules prepared by pulsed infrared laser excitation. In these applications, the isomerization rate is obtained from an analysis of the overall line shapes which are modified by chemical exchange leading to coalescence behavior similar to the effect in NMR spectroscopy. The sensitivity of the method and the ability to extend it to low frequency (2-8 GHz) have significantly increased the size range of molecules and molecular clusters for structure determination using isotopic substitution to build up the 3D molecular structures atom-by-atom. Application to the structure of water clusters with up to 15 water molecules will be presented. When coupled with advances in solid-state mm-wave/THz devices, this method provides a direct digital technique for analytical chemistry of room-temperature gases based on molecular rotational spectroscopy. These high-throughput methods can analyze complex sample mixtures with unmatched chemical selectivity and short analysis times. Work

  7. The Atom in a Molecule: Implications for Molecular Structure and Properties

    Science.gov (United States)

    2016-05-23

    Briefing Charts 3. DATES COVERED (From - To) 01 February 2016 – 23 May 2016 4. TITLE AND SUBTITLE The atom in a molecule: Implications for molecular...For presentation at American Physical Society - Division of Atomic , Molecular, and Optical Physics (May 2016) PA Case Number: #16075; Clearance Date...10 Energy (eV) R C--H (au) R C--H(au) The Atom in a Molecule: Implications for Molecular Structures and Properties P. W. Langhoff, Chemistry

  8. Structural and dipolar fluctuations in liquid water: a Car–Parrinello molecular dynamics study

    OpenAIRE

    Skarmoutsos, Ioannis; Masia, Marco; Guàrdia Manuel, Elvira

    2016-01-01

    A Car–Parrinello molecular dynamics simulation was performed to investigate the local tetrahedral order, molecular dipole fluctuations and their interrelation with hydrogen bonding in liquid water. Water molecules were classified in three types, exhibiting low, intermediate and high tetrahedral order. Transitions from low to high tetrahedrally ordered structures take place only through transitions to the intermediate state. The molecular dipole moments depend strongly on the tetrahedral order...

  9. Study of percolation behavior depending on molecular structure design

    Science.gov (United States)

    Yu, Ji Woong; Lee, Won Bo

    Each differently designed anisotropic nano-crystals(ANCs) are studied using Langevin dynamic simulation and their percolation behaviors are presented. Popular molecular dynamics software LAMMPS was used to design the system and perform the simulation. We calculated the minimum number density at which percolation occurs(i.e. percolation threshold), radial distribution function, and the average number of ANCs for a cluster. Electrical conductivity is improved when the number of transfers of electrons between ANCs, so called ''inter-hopping process'', which has the considerable contribution to resistance decreases and the number of inter-hopping process is directly related with the concentration of ANCs. Therefore, with the investigation of relationship between molecular architecture and percolation behavior, optimal design of ANC can be achieved.

  10. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...... the influence of spectral properties and dimensionality of the molecular system on the algorithm efficiency. We test two algorithms, the MinMax and Lanczos, for spectral estimation from an MD trajectory, and use this to derive a practical scheme of time step adaptation in MD relaxation algorithms to improve...... efficiency. We also discuss the implementation aspects. Secondly, we explore the final state refinement acceleration by a combination with the conjugate gradient technique, where the key ingredient is an implicit corrector step. Finally, we test the feasibility of passive Hessian matrix accumulation from...

  11. Conductance Switching and Organization of Two Structurally Related Molecular Wires on Gold

    NARCIS (Netherlands)

    Stan, Razvan C.; Kros, Alexander; Akkilic, Namik; Appel, Jeroen; Sanghamitra, Nusrat J.M.

    2015-01-01

    The self-assembly and electron transfer properties of adsorbed organic molecules are of interest for the construction of miniaturized molecular circuitries. We have investigated with scanning probe microscopy the self-organization of two structurally related molecular wires embedded within a

  12. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter

    2015-01-01

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...

  13. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  14. Molecular conformation and liquid structure of 2-propanol through ...

    Indian Academy of Sciences (India)

    (5c) where gij(r)=1+. 1. 2π2ρr. ∫ ∞. 0. QHij(Q) sin(Qr)dQ. 3.2 Molecular conformation analysis. In alcohols, the effects of intermolecular hydrogen bonding persist at high Q [15] and as a result Hd(Q) continues to exhibit oscillatory behaviour, positive and negative over Hm(Q). The function Hd(Q) however, tends to vanish ...

  15. Molecular Structures and Functional Relationships in Clostridial Neurotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan S.

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here.

  16. Mapping chemical performance on molecular structures using locally interpretable explanations

    CERN Document Server

    Whitmore, Leanne S; Hudson, Corey M

    2016-01-01

    In this work, we present an application of Locally Interpretable Machine-Agnostic Explanations to 2-D chemical structures. Using this framework we are able to provide a structural interpretation for an existing black-box model for classifying biologically produced fuel compounds with regard to Research Octane Number. This method of "painting" locally interpretable explanations onto 2-D chemical structures replicates the chemical intuition of synthetic chemists, allowing researchers in the field to directly accept, reject, inform and evaluate decisions underlying inscrutably complex quantitative structure-activity relationship models.

  17. Quantitative structure-activity relationship correlation between molecular structure and the Rayleigh enantiomeric enrichment factor.

    Science.gov (United States)

    Jammer, S; Rizkov, D; Gelman, F; Lev, O

    2015-08-01

    It was recently demonstrated that under environmentally relevant conditions the Rayleigh equation is valid to describe the enantiomeric enrichment - conversion relationship, yielding a proportional constant called the enantiomeric enrichment factor, εER. In the present study we demonstrate a quantitative structure-activity relationship model (QSAR) that describes well the dependence of εER on molecular structure. The enantiomeric enrichment factor can be predicted by the linear Hansch model, which correlates biological activity with physicochemical properties. Enantioselective hydrolysis of sixteen derivatives of 2-(phenoxy)propionate (PPMs) have been analyzed during enzymatic degradation by lipases from Pseudomonas fluorescens (PFL), Pseudomonas cepacia (PCL), and Candida rugosa (CRL). In all cases the QSAR relationships were significant with R(2) values of 0.90-0.93, and showed high predictive abilities with internal and external validations providing QLOO(2) values of 0.85-0.87 and QExt(2) values of 0.8-0.91. Moreover, it is demonstrated that this model enables differentiation between enzymes with different binding site shapes. The enantioselectivity of PFL and PCL was dictated by electronic properties, whereas the enantioselectivity of CRL was determined by lipophilicity and steric factors. The predictive ability of the QSAR model demonstrated in the present study may serve as a helpful tool in environmental studies, assisting in source tracking of unstudied chiral compounds belonging to a well-studied homologous series.

  18. Molecular and electronic structure of osmium complexes confined to Au(111) surfaces using a self-assembled molecular bridge

    Energy Technology Data Exchange (ETDEWEB)

    Llave, Ezequiel de la; Herrera, Santiago E.; Adam, Catherine; Méndez De Leo, Lucila P.; Calvo, Ernesto J.; Williams, Federico J., E-mail: fwilliams@qi.fcen.uba.ar [INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA (Argentina)

    2015-11-14

    The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.

  19. Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure-Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations.

    Science.gov (United States)

    Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-lin; Du, Guan-hua

    2016-05-01

    A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2)) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives. © 2015 John Wiley & Sons A/S.

  20. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday.

    Science.gov (United States)

    Cramer, Patrick

    2017-08-18

    Here, I discuss the development and future of structural molecular biology, concentrating on the eukaryotic transcription machinery and reflecting on John Kendrew's legacy from a personal perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Stimulation of 3'-->5' exonuclease and 3'-phosphodiesterase activities of yeast apn2 by proliferating cell nuclear antigen.

    Science.gov (United States)

    Unk, Ildiko; Haracska, Lajos; Gomes, Xavier V; Burgers, Peter M J; Prakash, Louise; Prakash, Satya

    2002-09-01

    The Apn2 protein of Saccharomyces cerevisiae contains 3'-->5' exonuclease and 3'-phosphodiesterase activities, and these activities function in the repair of DNA strand breaks that have 3'-damaged termini and which are formed in DNA by the action of oxygen-free radicals. Apn2 also has an AP endonuclease activity and functions in the removal of abasic sites from DNA. Here, we provide evidence for the physical and functional interaction of Apn2 with proliferating cell nuclear antigen (PCNA). As indicated by gel filtration and two-hybrid studies, Apn2 interacts with PCNA both in vitro and in vivo and mutations in the consensus PCNA-binding motif of Apn2 abolish this interaction. Importantly, PCNA stimulates the 3'-->5' exonuclease and 3'-phosphodiesterase activities of Apn2. We have examined the involvement of the interdomain connector loop (IDCL) and of the carboxy-terminal domain of PCNA in Apn2 binding and found that Apn2 binds PCNA via distinct domains dependent upon whether the binding is in the absence or presence of DNA. In the absence of DNA, Apn2 binds PCNA through its IDCL domain, whereas in the presence of DNA, when PCNA has been loaded onto the template-primer junction by replication factor C, the C-terminal domain of PCNA mediates the binding.

  2. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions.

    Science.gov (United States)

    Hirokawa, Nobutaka

    2011-01-01

    Cells transport and sort various proteins and lipids following synthesis as distinct types of membranous organelles and protein complexes to the correct destination at appropriate velocities. This intracellular transport is fundamental for cell morphogenesis, survival and functioning not only in highly polarized neurons but also in all types of cells in general. By developing quick-freeze electron microscopy (EM), new filamentous structures associated with cytoskeletons are uncovered. The characterization of chemical structures and functions of these new filamentous structures led us to discover kinesin superfamily molecular motors, KIFs. In this review, I discuss the identification of these new structures and characterization of their functions using molecular cell biology and molecular genetics. KIFs not only play significant roles by transporting various cargoes along microtubule rails, but also play unexpected fundamental roles on various important physiological processes such as learning and memory, brain wiring, development of central nervous system and peripheral nervous system, activity-dependent neuronal survival, development of early embryo, left-right determination of our body and tumourigenesis. Furthermore, by combining single-molecule biophysics with structural biology such as cryo-electrom microscopy and X-ray crystallography, atomic structures of KIF1A motor protein of almost all states during ATP hydrolysis have been determined and a common mechanism of motility has been proposed. Thus, this type of studies could be a good example of really integrative multidisciplinary life science in the twenty-first century.

  3. A parity function for studying the molecular electronic structure

    DEFF Research Database (Denmark)

    Schmider, Hartmut

    1996-01-01

    Sections through the molecular Wigner function with zero momentum variable are shown to provide important information about the off-diagonal regions of the spinless one-particle reduced density matrix. Since these regions are characteristic for the bonding situation in molecules, the sections...... are qualitatively even more affected by the presence of chemical bonds than a complementary projection, the reciprocal form factor. In this paper we discuss, on the grounds of a variety of examples, how this rather simple function may aid the understanding of the chemical bond on a one-particle level. (C) 1996...

  4. Structures of water molecular nanotube induced by axial tensile strains

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Key Laboratory of Liquid Structures and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University (China)], E-mail: lihuilmy@hotmail.com; Zhang, X.Q. [Physics Department, Ocean University of China, Qingdao (China); Liew, K.M. [Department of Building and Constructions, City University of Hong Kong, Kowloon (Hong Kong); Liu, X.F. [Key Laboratory of Liquid Structures and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University (China)

    2008-10-06

    Five well-ordered nano-ice structures embedded in carbon nanotubes are obtained in this study. These five nano-ice phases all exhibit single walled tubular morphologies, including the pentagon, hexagon ice nanotubes whose structures are quite different from bulk ice. Our simulation results indicate that water molecules tend to rearrange into surface ring structures to reduce the number of free OH groups. The structural behavior of these ice nanotubes inside CNTs subject to axial stress is also investigated. The ice nanotubes tend to be drawn to ice nanorings or ice nanospring during the mechanical stretching. The distribution function exhibits typical order-to-disorder transition of the water network confined in carbon nanotube during the stretching. By analysis, we suggest that it is unlikely that additional water molecules will enter the tubes because of the increased volume available if the tubes are stretched at contact with a water reservoir.

  5. Structural and magnetic correlations in liquid oxygen an ab initio molecular dynamics study

    CERN Document Server

    Oda, T

    2003-01-01

    We have carried out an ab initio molecular dynamics simulation of liquid oxygen, a molecular fluid in which the individual O sub 2 units carry a molecular magnetic moment. In addition to the atomic and electronic structures, our simulation describes the evolution of the noncollinear magnetic structure. The atomic structure shows a strong preference for parallel alignment of first-neighbour molecules. The magnetic structure shows strong short-range antiferromagnetic correlations, in agreement with spin-polarized neutron diffraction data. The short-range correlations, observed in both the structural and magnetic properties, primarily result from appropriate trajectories of colliding O sub 2 molecules. Our simulation also reveals the occurrence of several long-living O sub 4 units which survive for time periods longer than four times the average residence time observed during collisions.

  6. Accessing gap-junction channel structure-function relationships through molecular modeling and simulations.

    Science.gov (United States)

    Villanelo, F; Escalona, Y; Pareja-Barrueto, C; Garate, J A; Skerrett, I M; Perez-Acle, T

    2017-01-17

    Gap junction channels (GJCs) are massive protein channels connecting the cytoplasm of adjacent cells. These channels allow intercellular transfer of molecules up to ~1 kDa, including water, ions and other metabolites. Unveiling structure-function relationships coded into the molecular architecture of these channels is necessary to gain insight on their vast biological function including electrical synapse, inflammation, development and tissular homeostasis. From early works, computational methods have been critical to analyze and interpret experimental observations. Upon the availability of crystallographic structures, molecular modeling and simulations have become a valuable tool to assess structure-function relationships in GJCs. Modeling different connexin isoforms, simulating the transport process, and exploring molecular variants, have provided new hypotheses and out-of-the-box approaches to the study of these important channels. Here, we review foundational structural studies and recent developments on GJCs using molecular modeling and simulation techniques, highlighting the methods and the cross-talk with experimental evidence. By comparing results obtained by molecular modeling and simulations techniques with structural and functional information obtained from both recent literature and structural databases, we provide a critical assesment of structure-function relationships that can be obtained from the junction between theoretical and experimental evidence.

  7. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1969-01-01

    This volume is a consequence of a series of seminars presented by the authors at the Infrared Spectroscopy Institute, Canisius College, Buffalo, New York, over the last nine years. Many participants on an intermediate level lacked a sufficient background in mathematics and quantum mechan­ ics, and it became evident that a non mathematical or nearly nonmathe­ matical approach would be necessary. The lectures were designed to fill this need and proved very successful. As a result of the interest that was developed in this approach, it was decided to write this book. The text is intended for scientists and students with only limited theore­ tical background in spectroscopy, but who are sincerely interested in the interpretation of molecular spectra. The book develops the detailed selection rules for fundamentals, combinations, and overtones for molecules in several point groups. Detailed procedures used in carrying out the normal coordinate treatment for several molecules are also presented. Numerous examples...

  8. Electronic structure, transport, and collective effects in molecular layered systems

    Directory of Open Access Journals (Sweden)

    Torsten Hahn

    2017-10-01

    Full Text Available The great potential of organic heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc and a flourinated copper phthalocyanine–manganese phthalocyanine (F16CoPc/MnPc heterostructure, are investigated by means of density functional theory (DFT and the non-equilibrium Green’s function (NEGF approach. Furthermore, a master-equation-based approach is used to include electronic correlations beyond the mean-field-type approximation of DFT. We describe the essential theoretical tools to obtain the parameters needed for the master equation from DFT results. Finally, an interacting molecular monolayer is considered within a master-equation approach.

  9. Structural analysis of the yeast exosome Rrp6p–Rrp47p complex by small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dedic, Emil; Seweryn, Paulina; Jonstrup, Anette Thyssen; Flygaard, Rasmus Koch [Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Fedosova, Natalya U. [Department of Biomedicine, Ole Worms Allé 6, Aarhus University, DK-8000 Aarhus C (Denmark); Hoffmann, Søren Vrønning [Institute for Storage Ring Facilities (ISA), Department of Physics and Astronomy, Ny Munkegade 120, Aarhus University, DK-8000 Aarhus C (Denmark); Boesen, Thomas [Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Brodersen, Ditlev Egeskov, E-mail: deb@mb.au.dk [Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark)

    2014-07-18

    Highlights: • We show that S. cerevisiae Rrp6p and Rrp47p stabilise each other in vitro. • We determine molecular envelopes of the Rrp6p–Rrp47p complex by SAXS. • Rrp47p binds at the top of the Rrp6p exonuclease domain. • Rrp47p modulates the activity of Rrp6p on a variety of RNA substrates. • Rrp47p does not affect RNA affinity by Rrp6p. - Abstract: The RNase D-type 3′–5′ exonuclease Rrp6p from Saccharomyces cerevisiae is a nuclear-specific cofactor of the RNA exosome and associates in vivo with Rrp47p (Lrp1p). Here, we show using biochemistry and small-angle X-ray scattering (SAXS) that Rrp6p and Rrp47p associate into a stable, heterodimeric complex with an elongated shape consistent with binding of Rrp47p to the nuclease domain and opposite of the HRDC domain of Rrp6p. Rrp47p reduces the exonucleolytic activity of Rrp6p on both single-stranded and structured RNA substrates without significantly altering the affinity towards RNA or the ability of Rrp6p to degrade RNA secondary structure.

  10. The Structural, Functional and Molecular Organization of the Brainstem

    Directory of Open Access Journals (Sweden)

    Rudolf eNieuwenhuys

    2011-06-01

    Full Text Available According to Wilhelm His (1891, 1893 the brainstem consists of two longitudinal zones, the dorsal alar plate (sensory in nature and the ventral basal plate (motor in nature. Johnston and Herrick indicated that both plates can be subdivided into separate somatic and visceral zones, distinguishing somatosensory and viscerosensory zones within the alar plate, and visceromotor and somatomotor zones within the basal plate. To test the validity of this ‘four-functional-zones’ concept, I developed a topological procedure, surveying the spatial relationships of the various cell masses in the brainstem in a single figure. Brainstems of 16 different anamniote species were analyzed, and revealed that the brainstems are clearly divisible into four morphological zones, which correspond largely with the functional zones of Johnston and Herrick. Exceptions include (1 the magnocellular vestibular nucleus situated in the viscerosensory zone; (2 the basal plate containing a number of evidently non-motor centres (superior and inferior olives. Nevertheless the ‘functional zonal model’ has explanatory value. Thus, it is possible to interpret certain brain specializations related to particular behavioural profiles, as ‘local hypertrophies’ of one or two functional columns. Recent developmental molecular studies on brains of birds and mammals confirmed the presence of longitudinal zones, and also showed molecularly defined transverse bands or neuromeres throughout development. The intersecting boundaries of the longitudinal zones and the transverse bands appeared to delimit radially arranged histogenetic domains. Because neuromeres have been observed in embryonic and larval stages of numerous anamniote species, it may be hypothesized that the brainstems of all vertebrates share a basic organizational plan, in which intersecting longitudinal and transverse zones form fundamental histogenetic and genoarchitectonic units.

  11. Molecular dynamics simulations of single siloxane dendrimers: Molecular structure and intramolecular mobility of terminal groups.

    Science.gov (United States)

    Kurbatov, A O; Balabaev, N K; Mazo, M A; Kramarenko, E Yu

    2018-01-07

    Molecular dynamics simulations of two types of isolated siloxane dendrimers of various generations (from the 2nd to the 8th) have been performed for temperatures ranging from 150 K to 600 K. The first type of dendrimer molecules has short spacers consisting of a single oxygen atom. In the dendrimers of the second type, spacers are longer and comprised of two oxygen atoms separated by a single silicon atom. A comparative analysis of molecular macroscopic parameters such as the gyration radius and the shape factor as well as atom distributions within dendrimer interior has been performed for varying generation number, temperature, and spacer length. It has been found that the short-spacer dendrimers of the 7th and 8th generations have a stressed central part with elongated bonds and deformed valence angles. Investigation of the time evolution of radial displacements of the terminal Si atoms has shown that a fraction of the Si groups have a reduced mobility. Therefore, rather long time trajectories (of the order of tens of nanoseconds) are required to study dendrimer intramolecular dynamics.

  12. Three decades of structure- and property-based molecular design

    DEFF Research Database (Denmark)

    Müller, Klaus

    2014-01-01

    -oriented medicinal chemistry. The exploration of oxetane is given as an example. For the sake of brevity, this account cannot detail all further developments that have taken place in each individual area of structure- and property-based drug discovery and it can only hint at important developments in other...

  13. Molecular flexibility and structural instabilities in crystalline L-methionine

    NARCIS (Netherlands)

    Fischer, Jennifer; Lima, Jose A.; Freire, Paulo T. C.; Melo, Francisco E. A.; Havenith, Remco W. A.; Mendes Filho, Josue; Broer, Ria; Eckert, Juergen; Bordallo, Heloisa N.

    2013-01-01

    We have investigated the dynamics in polycrystalline samples of L-methionine related to the structural transition at about 307 K by incoherent inelastic and quasielastic neutron scattering, X-ray powder diffraction as well as ab-initio calculations. L-Methionine is a sulfur amino acid which can be

  14. The molecular structural features controlling stickiness in cooked rice, a major palatability determinant

    Science.gov (United States)

    Li, Hongyan; Fitzgerald, Melissa A.; Prakash, Sangeeta; Nicholson, Timothy M.; Gilbert, Robert G.

    2017-03-01

    The stickiness of cooked rice is important for eating quality and consumer acceptance. The first molecular understanding of stickiness is obtained from leaching and molecular structural characteristics during cooking. Starch is a highly branched glucose polymer. We find (i) the molecular size of leached amylopectin is 30 times smaller than that of native amylopectin while (ii) that of leached amylose is 5 times smaller than that of native amylose, (iii) the chain-length distribution (CLD: the number of monomer units in a chain on the branched polymer) of leached amylopectin is similar to native amylopectin while (iv) the CLD of leached amylose is much narrower than that of the native amylose, and (v) mainly amylopectin, not amylose, leaches out of the granule and rice kernel during cooking. Stickiness is found to increase with decreasing amylose content in the whole grain, and, in the leachate, with increasing total amount of amylopectin, the proportion of short amylopectin chains, and amylopectin molecular size. Molecular adhesion mechanisms are put forward to explain this result. This molecular structural mechanism provides a new tool for rice breeders to select cultivars with desirable palatability by quantifying the components and molecular structure of leached starch.

  15. First principles investigations of electronic structure and transport properties of graphitic structures and single molecular junctions

    Science.gov (United States)

    Owens, Jonathan R.

    properties of the IV curves of single molecule nano-junctions. Specifically, these systems consist of a zinc-porphyrin molecule coupled between two gold electrodes, i.e., a nano-gap. The first observation we want to explain is the asymmetric nature of the experimental IV curve for this porphyrin system, where the IV curve is skewed heavily to the negative bias region. Using a plane-wave DFT calculation, we present the density of states of the porphyrin molecule (both in the presence and absence of the electrodes) and indeed see highly delocalized states (as confirmed by site-projection of the DOS) only in the negative bias region, meaning that the channels with high transmission probability reside there, in agreement with experimental observation. The next problem studied pertains to observed switching in an experimentally-measured IV curve, this time of a longer zinc porphyrin molecule, still within a gold nano-gap. The switching behavior is observed only at 300K, not at 4.2K. The temperature-dependance of this problem renders our previous toolset of DFT calculations void; DFT is a ground-state theory. Instead, we employ a density functional-based tight-binding (DFTB) approach in a molecular dynamics simulation. Basically, the structural configuration evaluated at each time step is based on a tight-binding electronic structure calculation, instead of a typical MD force field. Trajectories are presented at varying temperatures and electric field strengths. Indeed, we observe a conformation of the porphyrin molecule between two configurations of the dihedral angle of the central nitrogen ring, ±15. {o} at 300K, but not 4.2K. These confirmations are equally likely, i.e., the structure assumes these configurations an equal number of teams, meaning the average structure has an angle of 0. {o}. After computing the DOS of all three aforementioned configurations (0. {text{o}} and ±15. {text{o}}), we indeed see a difference between the DOS curves at ±15. {text{o}} (which are

  16. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, David S.

    2008-07-15

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  17. Revealing structural and dynamical properties of high density lipoproteins through molecular simulations

    DEFF Research Database (Denmark)

    Koivuniemi, A.; Vattulainen, I.

    2012-01-01

    The structure and function of high density lipoprotein (HDL) particles have intrigued the scientific community for decades because of their crucial preventive role in coronary heart disease. However, it has been a taunting task to reveal the precise molecular structure and dynamics of HDL. Further...

  18. Using Molecular Visualization to Explore Protein Structure and Function and Enhance Student Facility with Computational Tools

    Science.gov (United States)

    Terrell, Cassidy R.; Listenberger, Laura L.

    2017-01-01

    Recognizing that undergraduate students can benefit from analysis of 3D protein structure and function, we have developed a multiweek, inquiry-based molecular visualization project for Biochemistry I students. This project uses a virtual model of cyclooxygenase-1 (COX-1) to guide students through multiple levels of protein structure analysis. The…

  19. Elucidation of Drug Metabolite Structural Isomers Using Molecular Modeling Coupled with Ion Mobility Mass Spectrometry.

    Science.gov (United States)

    Reading, Eamonn; Munoz-Muriedas, Jordi; Roberts, Andrew D; Dear, Gordon J; Robinson, Carol V; Beaumont, Claire

    2016-02-16

    Ion mobility-mass spectrometry (IM-MS) in combination with molecular modeling offers the potential for small molecule structural isomer identification by measurement of their gas phase collision cross sections (CCSs). Successful application of this approach to drug metabolite identification would facilitate resource reduction, including animal usage, and may benefit other areas of pharmaceutical structural characterization including impurity profiling and degradation chemistry. However, the conformational behavior of drug molecules and their metabolites in the gas phase is poorly understood. Here the gas phase conformational space of drug and drug-like molecules has been investigated as well as the influence of protonation and adduct formation on the conformations of drug metabolite structural isomers. The use of CCSs, measured from IM-MS and molecular modeling information, for the structural identification of drug metabolites has also been critically assessed. Detection of structural isomers of drug metabolites using IM-MS is demonstrated and, in addition, a molecular modeling approach has been developed offering rapid conformational searching and energy assessment of candidate structures which agree with experimental CCSs. Here it is illustrated that isomers must possess markedly dissimilar CCS values for structural differentiation, the existence and extent of CCS differences being ionization state and molecule dependent. The results present that IM-MS and molecular modeling can inform on the identity of drug metabolites and highlight the limitations of this approach in differentiating structural isomers.

  20. BODIL: a molecular modeling environment for structure-function analysis and drug design

    Science.gov (United States)

    Lehtonen, Jukka V.; Still, Dan-Johan; Rantanen, Ville-v.; Ekholm, Jan; Björklund, Dag; Iftikhar, Zuhair; Huhtala, Mikko; Repo, Susanna; Jussila, Antti; Jaakkola, Jussi; Pentikäinen, Olli; Nyrönen, Tommi; Salminen, Tiina; Gyllenberg, Mats; Johnson, Mark S.

    2004-06-01

    BODIL is a molecular modeling environment geared to help the user to quickly identify key features of proteins critical to molecular recognition, especially (1) in drug discovery applications, and (2) to understand the structural basis for function. The program incorporates state-of-the-art graphics, sequence and structural alignment methods, among other capabilities needed in modern structure-function-drug target research. BODIL has a flexible design that allows on-the-fly incorporation of new modules, has intelligent memory management, and fast multi-view graphics. A beta version of BODIL and an accompanying tutorial are available at http://www.abo.fi/fak/mnf/bkf/research/johnson/bodil.html

  1. Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations.

    Science.gov (United States)

    Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r 2 Pred ) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.

  2. Molecular and supra-molecular structure of waxy starches developed from cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Rolland-Sabaté, Agnès; Sanchez, Teresa; Buléon, Alain; Colonna, Paul; Ceballos, Hernan; Zhao, Shan-Shan; Zhang, Peng; Dufour, Dominique

    2013-02-15

    The aim of this work was to characterize the amylopectin of low amylose content cassava starches obtained from transgenesis comparatively with a natural waxy cassava starch (WXN) discovered recently in CIAT (International Center for Tropical Agriculture). Macromolecular features, starch granule morphology, crystallinity and thermal properties of these starches were determined. M¯(w) of amylopectin from the transgenic varieties are lower than WXN. Branched and debranched chain distributions analyses revealed slight differences in the branching degree and structure of these amylopectins, principally on DP 6-9 and DP>37. For the first time, a deep structural characterization of a series of transgenic lines of waxy cassava was carried out and the link between structural features and the mutated gene expression approached. The transgenesis allows to silenced partially or totally the GBSSI, without changing deeply the starch granule ultrastructure and allows to produce clones with similar amylopectin as parental cassava clone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. NATO Advanced Study Institute on Electronic Structure of Polymers and Molecular Crystals

    CERN Document Server

    Ladik, János

    1975-01-01

    The NATO Advanced Study Institute on "Electronic Structure of Polymers and Molecular Crystals" was held at the Facultes Universi­ taires de Namur (F.U.N.) from September 1st till September 14th, 1974. We wish to express our appreciation to the NATO Scientific Affairs Division whose generous support made this Institute possible and to the Facultes Universitaires de Namur and the Societe Chimique de Belgique which provided fellowships and travel grants to a number of students. This volume contains the main lectures about the basic principles of the field and about different recent developments of the theory of the electronic structure of polymers and molecular crystals. The school started with the presentation of the basic SCF-LCAO theory of the electronic structure of periodic polymers and molecular crystals (contributions by Ladik, Andre & Delhalle) showing how a combination of quantum chemical and solid state physical methods can provide band structures for these systems. The numerical aspects of these ...

  4. Structured water and water-polymer interactions in hydrogels of molecularly imprinted polymers.

    Science.gov (United States)

    Zhao, Zhi-Jian; Wang, Qi; Zhang, Li; Wu, Tao

    2008-06-26

    Recently, molecular imprinting technology has fleetly developed for applications in different fields. It shows great potential in sensor design, drug delivery, chromatography separation, catalysis, chiral synthesis, and especially in the molecular recognition field. In this work, a cubic model of a hydrogel network was developed and an infinite hydrogel backbone network was constructed for molecular dynamics simulation. The water structure and water-polymer interaction was investigated from the radial distribution function and the viewpoint of the hydrogen-bonding system. It is found that the hydrogen bonds between polymer and water strongly depress the diffusion of water molecules and enhance the structure of water in the system. The greater the network mesh size of the polymer, the weaker the structure of the water. The decreasing of the density of hydrogen bonds between polymer and water is the major factor that leads to the weakening of water structure.

  5. Laboratory spectra of C60 and related molecular structures

    Science.gov (United States)

    Janca, J.; Solc, M.; Vetesnik, M.

    1994-01-01

    The electronic spectra of fullerene structures in high frequency discharge are studied in the plasma chemistry laboratory of the Faculty of Science of Masaryk University in Brno. The ultraviolet and visual spectra are investigated in order to be compared with the diffuse interstellar bands and interpreted within the theory of quantum mechanics. The preliminary results of the study are presented here in the form of a poster.

  6. The crystal and molecular structure of ammonium titanyl oxalate

    NARCIS (Netherlands)

    van de Velde, G.M.H.; Harkema, Sybolt; Gellings, P.J.

    1974-01-01

    Ammonium titanyl oxalate monohydrate, (NH4)2 TiO(C2O4)2·H2O, is monoclinic with cell parameters A = 13.473(2), B = 11.329(1), C = 17.646(2) Å, β = 126.66(1)°. The space group is P21/c with Z = 8, dc = 1.808 g cm−3 and dm = 1.80 g cm−3. The crystal structure was determined from single-crystal

  7. Molecular Analyses Reveal Unexpected Genetic Structure in Iberian Ibex Populations.

    Science.gov (United States)

    Angelone-Alasaad, Samer; Biebach, Iris; Pérez, Jesús M; Soriguer, Ramón C; Granados, José E

    2017-01-01

    Genetic differentiation in historically connected populations could be the result of genetic drift or adaptation, two processes that imply a need for differing strategies in population management. The aim of our study was to use neutral genetic markers to characterize C. pyrenaica populations genetically and examine results in terms of (i) demographic history, (ii) subspecific classification and (iii) the implications for the management of Iberian ibex. We used 30 neutral microsatellite markers from 333 Iberian ibex to explore genetic diversity in the three main Iberian ibex populations in Spain corresponding to the two persisting subspecies (victoria and hispanica). Our molecular analyses detected recent genetic bottlenecks in all the studied populations, a finding that coincides with the documented demographic decline in C. pyrenaica in recent decades. Genetic divergence between the two C. pyrenaica subspecies (hispanica and victoriae) was substantial (FST between 0.39 and 0.47). Unexpectedly, we found similarly high genetic differentiation between two populations (Sierra Nevada and Maestrazgo) belonging to the subspecies hispanica. The genetic pattern identified in our study could be the result of strong genetic drift due to the severe genetic bottlenecks in the studied populations, caused in turn by the progressive destruction of natural habitat, disease epidemics and/or uncontrolled hunting. Previous Capra pyrenaica conservation decision-making was based on the clear distinction between the two subspecies (victoriae and hispanica); yet our paper raises questions about the usefulness for conservation plans of the distinction between these subspecies.

  8. Molecular structures of viruses from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Hecht, Lutz; Syme, Christopher D.

    2002-01-01

    A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity to chira......A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity...... (top component) of cowpea mosaic virus from those of the intact middle and bottom-upper components separated by means of a caesium chloride density gradient, the ROA spectrum of the viral RNA was obtained, which revealed that the RNA takes up an A-type single-stranded helical conformation...... and that the RNA conformations in the middle and bottom-upper components are very similar. This information is not available from the X-ray crystal structure of cowpea mosaic virus since no nucleic acid is visible....

  9. The exonuclease domain of Lassa virus nucleoprotein is involved in antigen-presenting-cell-mediated NK cell responses.

    Science.gov (United States)

    Russier, Marion; Reynard, Stéphanie; Carnec, Xavier; Baize, Sylvain

    2014-12-01

    Lassa virus is an Old World Arenavirus which causes Lassa hemorrhagic fever in humans, mostly in West Africa. Lassa fever is an important public health problem, and a safe and effective vaccine is urgently needed. The infection causes immunosuppression, probably due to the absence of activation of antigen-presenting cells (dendritic cells and macrophages), low type I interferon (IFN) production, and deficient NK cell function. However, a recombinant Lassa virus carrying D389A and G392A substitutions in the nucleoprotein that abolish the exonuclease activity and IFN activation loses its inhibitory activity and induces strong type I IFN production by dendritic cells and macrophages. We show here that during infection by this mutant Lassa virus, antigen-presenting cells trigger efficient human NK cell responses in vitro, including production of IFN-γ and cytotoxicity. NK cell activation involves close contact with both antigen-presenting cells and soluble factors. We report that infected dendritic cells and macrophages express the NKG2D ligands major histocompatibility complex (MHC) class I-related chains A and B and that they may produce interleukin-12 (IL-12), IL-15, and IL-18, all involved in NK cell functions. NK cell degranulation is significantly increased in cocultures, suggesting that NK cells seem to kill infected dendritic cells and macrophages. This work confirms the inhibitory function of Lassa virus nucleoprotein. Importantly, we demonstrate for the first time that Lassa virus nucleoprotein is involved in the inhibition of antigen-presenting cell-mediated NK cell responses. The pathogenesis and immune responses induced by Lassa virus are poorly known. Recently, an exonuclease domain contained in the viral nucleoprotein has been shown to be able to inhibit the type I IFN response by avoiding the recognition of viral RNA by cell sensors. Here, we studied the responses of NK cells to dendritic cells and macrophages infected with a recombinant Lassa virus in

  10. Structure of beryllium isotopes in fermionic molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Bahram Ramin

    2009-02-16

    Modern theoretical nuclear physics faces two major challenges. The first is finding a suitable interaction, which describes the forces between nucleons. The second challenge is the solution of the nuclear many-body problem for a given nucleus while applying a realistic potential. The potential used in the framework of this thesis is based on the Argonne AV18 potential. It was transformed by means of the Unitary Correlation Operator Method (UCOM) to optimize convergence. The usual phenomenological corrections were applied to improve the potential for the Hilbert space used in Fermionic Molecular Dynamics (FMD). FMD is an approach to solve the nuclear many-body problem. It uses a single-particle basis which is a superposition of Gaussian distributions in phase-space. The most simple many-body state is the antisymmetric product of the singleparticle states: a Slater determinant, the so called intrinsic state. This intrinsic state is projected on parity, total angular momentum and a center of mass momentum zero. The Hilbert space is spanned by several of these projected states. The states are obtained by minimizing their energy while demanding certain constraints. The expectation values of Slater determinants, parity projected and additionally total angular momentum projected Slater determinants are used. The states that are relevant in the low energy regime are obtained by diagonalization. The lowest moments of the mass-, proton- or neutron-distribution and the excitation in proton- and neutron-shells of a harmonic oscillator are some of the used constraints. The low energy regime of the Beryllium isotopes with masses 7 to 14 is calculated by using these states. Energies, radii, electromagnetic transitions, magnetic moments and point density distributions of the low lying states are calculated and are presented in this thesis. (orig.)

  11. A Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification

    Directory of Open Access Journals (Sweden)

    Xia Li

    2016-10-01

    Full Text Available Bisphenol A (BPA detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA/Exonuclease III (Exo III-combined cascade amplification strategy. First, the duplex DNA probe (RP with anti-BPA aptamer and trigger sequence was designed for BPA recognition and signal amplification. Next, under the action of BPA, the trigger probe was liberated from RP to initiate RCA reaction as primary amplification. Subsequently, the RCA products were used to trigger Exo III assisted secondary amplification with the help of hairpin probes, producing plenty of “G-quadruplex” in lantern-like structures. Finally, the continuously enriched “G-quadruplex lanterns” were lightened by zinc(II-protoporphyrin IX (ZnPPIX generating enhanced fluorescence signals. By integrating the primary RCA and secondary Exo III mediated cascade amplification strategy, this method displayed an excellent sensitivity with the detection limits of 5.4 × 10−17 M. In addition, the anti-BPA aptamer exhibits high recognition ability with BPA, guaranteeing the specificity of detection. The reporter signal probe (G-quadruplex with ZnPPIX provides a label-free fluorescence signals readout without complicated labeling procedures, making the method simple in design and cost-effective in operation. Moreover, environmental samples analysis was also performed, suggesting that our strategy was reliable and had a great potential application in environmental monitoring.

  12. FlaME: Flash Molecular Editor - a 2D structure input tool for the web

    Directory of Open Access Journals (Sweden)

    Dallakian Pavel

    2011-02-01

    Full Text Available Abstract Background So far, there have been no Flash-based web tools available for chemical structure input. The authors herein present a feasibility study, aiming at the development of a compact and easy-to-use 2D structure editor, using Adobe's Flash technology and its programming language, ActionScript. As a reference model application from the Java world, we selected the Java Molecular Editor (JME. In this feasibility study, we made an attempt to realize a subset of JME's functionality in the Flash Molecular Editor (FlaME utility. These basic capabilities are: structure input, editing and depiction of single molecules, data import and export in molfile format. Implementation The result of molecular diagram sketching in FlaME is accessible in V2000 molfile format. By integrating the molecular editor into a web page, its communication with the HTML elements on this page is established using the two JavaScript functions, getMol( and setMol(. In addition, structures can be copied to the system clipboard. Conclusion A first attempt was made to create a compact single-file application for 2D molecular structure input/editing on the web, based on Flash technology. With the application examples presented in this article, it could be demonstrated that the Flash methods are principally well-suited to provide the requisite communication between the Flash object (application and the HTML elements on a web page, using JavaScript functions.

  13. A molecular dynamics study of the role of molecular water on the structure and mechanics of amorphous geopolymer binders

    Science.gov (United States)

    Sadat, Mohammad Rafat; Bringuier, Stefan; Asaduzzaman, Abu; Muralidharan, Krishna; Zhang, Lianyang

    2016-10-01

    In this paper, molecular dynamics simulations are used to study the effect of molecular water and composition (Si/Al ratio) on the structure and mechanical properties of fully polymerized amorphous sodium aluminosilicate geopolymer binders. The X-ray pair distribution function for the simulated geopolymer binder phase showed good agreement with the experimentally determined structure in terms of bond lengths of the various atomic pairs. The elastic constants and ultimate tensile strength of the geopolymer binders were calculated as a function of water content and Si/Al ratio; while increasing the Si/Al ratio from one to three led to an increase in the respective values of the elastic stiffness and tensile strength, for a given Si/Al ratio, increasing the water content decreased the stiffness and strength of the binder phase. An atomic-scale analysis showed a direct correlation between water content and diffusion of alkali ions, resulting in the weakening of the AlO4 tetrahedral structure due to the migration of charge balancing alkali ions away from the tetrahedra, ultimately leading to failure. In the presence of water molecules, the diffusion behavior of alkali cations was found to be particularly anomalous, showing dynamic heterogeneity. This paper, for the first time, proves the efficacy of atomistic simulations for understanding the effect of water in geopolymer binders and can thus serve as a useful design tool for optimizing composition of geopolymers with improved mechanical properties.

  14. Ion pair structures in aqueous KSCN solution: Classical and quantum mechanical/molecular mechanical molecular dynamic simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Manik Kumer; Choi, Cheol Ho [Dept. of Chemistry and Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University, Daegu (Korea, Republic of); Choi, Jun Ho; Cho, Min Haeng [Dept. of Chemistry, Korea University, Seoul (Korea, Republic of)

    2015-03-15

    Ion pair formation and dissociation are fundamental processes in electrolyte solutions so that understanding thermodynamic stabilities and dynamic aspects of ion pairs is of great importance. The structures of various ion pair states are here studied by carrying out classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations of aqueous KSCN solutions. A few different solvent potential models are considered and the resulting ion pair structures are directly compared. In particular, when KSCN is treated quantum mechanically and effective fragment potential (EFP) model for water is used, we found two stable forms of ion pairs that can be considered as contact ion pair (CIP) and solvent separated ion pair (SSIP), where the interionic distances between K{sup +} and SCN {sup −} are found to be 4.0 and 5.5 Å, respectively. QM/EFP-MD further indicates that the nitrogen side of SCN {sup −} is preferentially interacting with K{sup +} in CIP. However, the corresponding CIP appears at 3.0 Å interionic distance in fully classical MD simulation at a higher KSCN concentration. Nonetheless, both QM/EFP and classical MD simulation results show that the CIP state appears to be more stable than SSIP. From the site-site radial distribution functions (RDF) calculated from the QM/MM and classical MD trajectories, detailed ion pair structures and surrounding solvent configurations are further elucidated.

  15. Thermodynamic Stability of Structure H Hydrates Based on the Molecular Properties of Large Guest Molecules

    Directory of Open Access Journals (Sweden)

    Ryo Ohmura

    2012-02-01

    Full Text Available This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the best stability. Also, at a given molecule size, better stability may be available when the large molecule guest substance has a larger molar mass.

  16. Structural and dipolar fluctuations in liquid water: A Car-Parrinello molecular dynamics study

    Science.gov (United States)

    Skarmoutsos, Ioannis; Masia, Marco; Guardia, Elvira

    2016-03-01

    A Car-Parrinello molecular dynamics simulation was performed to investigate the local tetrahedral order, molecular dipole fluctuations and their interrelation with hydrogen bonding in liquid water. Water molecules were classified in three types, exhibiting low, intermediate and high tetrahedral order. Transitions from low to high tetrahedrally ordered structures take place only through transitions to the intermediate state. The molecular dipole moments depend strongly on the tetrahedral order and hydrogen bonding. The average dipole moment of water molecules with a strong tetrahedral order around them comes in excellent agreement with previous estimations of the dipole moment of ice Ih molecules.

  17. Coalescence of silver unidimensional structures by molecular dynamics simulation; Coalescencia de estructuras unidimensionales de plata por simulacion dinamica molecular

    Energy Technology Data Exchange (ETDEWEB)

    Perez A, M.; Gutierrez W, C.E.; Mondragon, G. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Arenas, J. [IFUNAM, 04510 Mexico D.F. (Mexico)

    2007-07-01

    The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)

  18. Searching molecular structure databases with tandem mass spectra using CSI:FingerID.

    Science.gov (United States)

    Dührkop, Kai; Shen, Huibin; Meusel, Marvin; Rousu, Juho; Böcker, Sebastian

    2015-10-13

    Metabolites provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually rely on tandem MS to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. We present a method for searching molecular structure databases using tandem MS data of small molecules. Our method computes a fragmentation tree that best explains the fragmentation spectrum of an unknown molecule. We use the fragmentation tree to predict the molecular structure fingerprint of the unknown compound using machine learning. This fingerprint is then used to search a molecular structure database such as PubChem. Our method is shown to improve on the competing methods for computational metabolite identification by a considerable margin.

  19. Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiao; Yang, Hanjing; Arutiunian, Vagan; Fang, Yao; Besse, Guillaume; Morimoto, Cherie; Zirkle, Brett; Chen, Xiaojiang S. (USC)

    2017-05-30

    The catalytic activity of human cytidine deaminase APOBEC3B (A3B) has been correlated with kataegic mutational patterns within multiple cancer types. The molecular basis of how the N-terminal non-catalytic CD1 regulates the catalytic activity and consequently, biological function of A3B remains relatively unknown. Here, we report the crystal structure of a soluble human A3B-CD1 variant and delineate several structural elements of CD1 involved in molecular assembly, nucleic acid interactions and catalytic regulation of A3B. We show that (i) A3B expressed in human cells exists in hypoactive high-molecular-weight (HMW) complexes, which can be activated without apparent dissociation into low-molecular-weight (LMW) species after RNase A treatment. (ii) Multiple surface hydrophobic residues of CD1 mediate the HMW complex assembly and affect the catalytic activity, including one tryptophan residue W127 that likely acts through regulating nucleic acid binding. (iii) One of the highly positively charged surfaces on CD1 is involved in RNA-dependent attenuation of A3B catalysis. (iv) Surface hydrophobic residues of CD1 are involved in heterogeneous nuclear ribonucleoproteins (hnRNPs) binding to A3B. The structural and biochemical insights described here suggest that unique structural features on CD1 regulate the molecular assembly and catalytic activity of A3B through distinct mechanisms.

  20. Theoretical study on molecular packing and electronic structure of bi-1,3,4-oxadiazole derivatives

    KAUST Repository

    Wang, Haitao

    2014-01-01

    The molecular aggregation structure of 5,5′-bis(naphthalen-2-yl)-2,2′-bi(1,3,4-oxadiazole) (BOXD-NP) was studied by computing the intermolecular interaction potential energy surface (PES) at density functional theory level based on a dimer model. All B3LYP, CAM-B3LYP and M062x functionals can yield a reliable isolated molecular geometry. The conformation of BOXD-NP obtained with all methods is perfectly planar, indicating good conjugation ability between oxadiazole and naphthalene rings. The vibrational frequencies of BOXD-NP were also calculated using the B3LYP/6-311+G∗∗ method, which showed great consistency with the experimental observations and makes the assignments of the IR spectra more solid. It was revealed that the lowest excited state of BOXD-NP should be assigned as a highly allowed π-π∗ state by TD-DFT calculation. Considering the non-covalent interactions in molecular aggregates, the M062x functional was applied in the construction of the PES. Besides the packing structure found in the crystals, PES also predicted several stable structures, indicating that PES has great ability in guiding molecular self-assembly. Symmetry Adapted Perturbation Theory (SAPT) analysis on these energy-minimum molecular stacking structures revealed that London dispersion forces are the strongest attractive component in the binding. This journal is

  1. Molecular modeling and structure-activity relationships for a series of benzimidazole derivatives as cruzain inhibitors.

    Science.gov (United States)

    Pauli, Ivani; Ferreira, Leonardo G; de Souza, Mariana L; Oliva, Glaucius; Ferreira, Rafaela S; Dessoy, Marco A; Slafer, Brian W; Dias, Luiz C; Andricopulo, Adriano D

    2017-05-01

    Chagas disease is endemic in Latin America and no effective treatment is available. Efforts in drug research have focused on several enzymes from Trypanosoma cruzi, among which cruzain is a validated pharmacological target. Chemometric analyses were performed on the data set using the hologram quantitative structure-activity relationship, comparative molecular field analysis and comparative molecular similarity index analysis methods. Docking simulations were executed using the crystallographic structure of cruzain in complex with a benzimidazole inhibitor. The top-scoring enzyme-inhibitor complexes were selected for the development of the 3D quantitative structure-activity relationship (QSAR) models and to assess the inhibitor binding modes and intermolecular interactions. Benzimidazole derivatives as cruzain inhibitors were used in molecular docking and QSAR studies. Significant statistical indicators were obtained, and the best models demonstrated high predictive ability for an external test set (r 2pred = 0.65, 0.94 and 0.82 for hologram QSAR, comparative molecular field analysis and comparative molecular similarity index analysis, respectively). Additionally, the graphical information of the chemometric analyses demonstrated substantial complementarity with the enzyme-binding site. These results demonstrate the relevance of the QSAR models to guide the design of structurally related benzimidazole derivatives with improved potency.

  2. Molecular and crystal structure of Cobalt(II) hydroselenite dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Gulya, A.P.; Shova, S.G.; Rudik, V.F. [Moldova State Univ. (Russian Federation)] [and others

    1994-05-01

    The results of the synthesis of [Co(HSeO{sub 3}){sub 2}(H{sub 2}O){sub 2}] and its examination both in solution and in solid state by the NMR method, IR spectroscopy, thermogravimetry, magnetochemistry, and x-ray diffraction analysis (R = 0.064) are given. The crystal has monoclinic symmetry. The unit cell parameters are a = 7.985(2) {angstrom}, b = 7.096(3) {angstrom}, c = 6.814(1) {angstrom}, {gamma} = 113.19(3){degree}, space group P2{sub 1}/n and Z = 2. The structure consists of [Co(HSeO{sub 3}){sub 2}(H{sub 2}O){sub 2}] centrosymmetric complexes. The coordination polyhedron of cobalt represents a distorted octahedron formed by the oxygen atoms of two water molecules and four selenite ions. The compound is of interest because it has the ability to introduce selenium into biomass and offers promise for the preparation of selenium-containing drugs.

  3. Exploring astrobiology using in silico molecular structure generation

    Science.gov (United States)

    Meringer, Markus; Cleaves, H. James

    2017-11-01

    The origin of life is typically understood as a transition from inanimate or disorganized matter to self-organized, `animate' matter. This transition probably took place largely in the context of organic compounds, and most approaches, to date, have focused on using the organic chemical composition of modern organisms as the main guide for understanding this process. However, it has gradually come to be appreciated that biochemistry, as we know it, occupies a minute volume of the possible organic `chemical space'. As the majority of abiotic syntheses appear to make a large set of compounds not found in biochemistry, as well as an incomplete subset of those that are, it is possible that life began with a significantly different set of components. Chemical graph-based structure generation methods allow for exhaustive in silico enumeration of different compound types and different types of `chemical spaces' beyond those used by biochemistry, which can be explored to help understand the types of compounds biology uses, as well as to understand the nature of abiotic synthesis, and potentially design novel types of living systems. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  4. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    Directory of Open Access Journals (Sweden)

    Fei Shi

    2011-01-01

    Full Text Available Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions.

  5. CH5M3D: an HTML5 program for creating 3D molecular structures.

    Science.gov (United States)

    Earley, Clarke W

    2013-11-18

    While a number of programs and web-based applications are available for the interactive display of 3-dimensional molecular structures, few of these provide the ability to edit these structures. For this reason, we have developed a library written in JavaScript to allow for the simple creation of web-based applications that should run on any browser capable of rendering HTML5 web pages. While our primary interest in developing this application was for educational use, it may also prove useful to researchers who want a light-weight application for viewing and editing small molecular structures. Molecular compounds are drawn on the HTML5 Canvas element, with the JavaScript code making use of standard techniques to allow display of three-dimensional structures on a two-dimensional canvas. Information about the structure (bond lengths, bond angles, and dihedral angles) can be obtained using a mouse or other pointing device. Both atoms and bonds can be added or deleted, and rotation about bonds is allowed. Routines are provided to read structures either from the web server or from the user's computer, and creation of galleries of structures can be accomplished with only a few lines of code. Documentation and examples are provided to demonstrate how users can access all of the molecular information for creation of web pages with more advanced features. A light-weight (≈ 75 kb) JavaScript library has been made available that allows for the simple creation of web pages containing interactive 3-dimensional molecular structures. Although this library is designed to create web pages, a web server is not required. Installation on a web server is straightforward and does not require any server-side modules or special permissions. The ch5m3d.js library has been released under the GNU GPL version 3 open-source license and is available from http://sourceforge.net/projects/ch5m3d/.

  6. A Self-Assisting Protein Folding Model for Teaching Structural Molecular Biology.

    Science.gov (United States)

    Davenport, Jodi; Pique, Michael; Getzoff, Elizabeth; Huntoon, Jon; Gardner, Adam; Olson, Arthur

    2017-04-04

    Structural molecular biology is now becoming part of high school science curriculum thus posing a challenge for teachers who need to convey three-dimensional (3D) structures with conventional text and pictures. In many cases even interactive computer graphics does not go far enough to address these challenges. We have developed a flexible model of the polypeptide backbone using 3D printing technology. With this model we have produced a polypeptide assembly kit to create an idealized model of the Triosephosphate isomerase mutase enzyme (TIM), which forms a structure known as TIM barrel. This kit has been used in a laboratory practical where students perform a step-by-step investigation into the nature of protein folding, starting with the handedness of amino acids to the formation of secondary and tertiary structure. Based on the classroom evidence we collected, we conclude that these models are valuable and inexpensive resource for teaching structural molecular biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.

    2016-09-27

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  8. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes

    Science.gov (United States)

    Samsonowicz, Mariola; Regulska, Ewa

    2017-02-01

    Flavonols with varied hydroxyl substitution can act as strong antioxidants. Thanks to their ability to chelate metals as well as to donate hydrogen atoms they have capacity to scavenge free radicals. Their metal complexes are often more active in comparison with free ligands. They exhibit interesting biological properties, e.g. anticancer, antiphlogistic and antibacterial. The relationship between molecular structure and their biological properties was intensively studied using spectroscopic methods (UV-Vis, IR, Raman, NMR, ESI-MS). The aim of this paper is review on spectroscopic analyses of molecular structure and biological activity of hydroxyflavonol metal complexes.

  9. Lithium diffusion in silicon and induced structure disorder: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Huanyu Wang

    2013-11-01

    Full Text Available Using molecular dynamics method, we investigate the diffusion property of lithium in different silicon structures and silicon structure's disorder extent during lithium's diffusion process. We find that the pathway and the incident angle between the direction of barrier and diffusion of lithium are also the essential factors to the lithium's diffusion property in silicon anode besides the barrier. Smaller incident angle could decrease the scattering of lithium in silicon structure effectively. Moreover, lithium diffuses easier in the Li-Si alloy structure of higher lithium concentration with deeper injection depth. The silicon's structure will be damaged gradually during the charge and discharge process. However, it will also recover to initial state to a great extent after relaxation. Therefore, the damage of lithium diffusion to silicon anode in the structure of low lithium concentration is reversible to a great degree. In addition, the silicon structure of crystal orientation perform better properties in both lithium's diffusivity and structural stability.

  10. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    Directory of Open Access Journals (Sweden)

    Natalie Heffernan

    2015-01-01

    Full Text Available Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis. Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs. These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  11. The study on molecular structure and microbiological activity of alkali metal 3-hydroxyphenylycetates

    Science.gov (United States)

    Samsonowicz, M.; Regulska, E.; Kowczyk-Sadowy, M.; Butarewicz, A.; Lewandowski, W.

    2017-10-01

    The biological activity of chemical compounds depends on their molecular structure. In this paper molecular structure of 3-hydroxyphenylacetates in comparison to 3-hydroxyphenylacetic acid was studied. FT-IR, FT-Raman and NMR spectroscopy and density functional theory (DFT) calculations was used. The B3LYP/6-311++G(d,p) hybrid functional method was used to calculate optimized geometrical structures of studied compounds. The Mulliken, APT, MK, ChelpG and NBO atomic charges as well as dipole moment and energy values were calculated. Theoretical chemical shifts in NMR spectra and the wavenumbers and intensities of the bands in vibrational spectra were analyzed. Calculated parameters were compared to experimental characteristic of studied compounds. Microbiological analysis of studied compounds was performed relative to: Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella oxytoca. The relationship between spectroscopic and structure parameters of studied compounds in regard to their activity was analyzed.

  12. De Novo generation of molecular structures using optimization to select graphs on a given lattice

    DEFF Research Database (Denmark)

    Bywater, R.P.; Poulsen, Thomas Agersten; Røgen, Peter

    2004-01-01

    model, used in medicinal chemistry to guide de novo design or selection of suitable structures from compound databases. We propose here a method that efficiently links up a selected number of required atom positions while at the same time directing the emergent molecular skeleton to avoid forbidden...... positions. The linkage process takes place on a lattice whose unit step length and overall geometry is designed to match typical architectures of organic molecules. We use an optimization method to select from the many different graphs possible. The approach is demonstrated in an example where crystal......A recurrent problem in organic chemistry is the generation of new molecular structures that conform to some predetermined set of structural constraints that are imposed in an endeavor to build certain required properties into the newly generated structure. An example of this is the pharmacophore...

  13. Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions.

    Science.gov (United States)

    Morteza Najarian, Amin; McCreery, Richard L

    2017-04-25

    Carbon-based molecular junctions consisting of aromatic oligomers between conducting sp(2) hybridized carbon electrodes exhibit structure-dependent current densities (J) when the molecular layer thickness (d) exceeds ∼5 nm. All four of the molecular structures examined exhibit an unusual, nonlinear ln J vs bias voltage (V) dependence which is not expected for conventional coherent tunneling or activated hopping mechanisms. All molecules exhibit a weak temperature dependence, with J increasing typically by a factor of 2 over the range of 200-440 K. Fluorene and anthraquinone show linear plots of ln J vs d with nearly identical J values for the range d = 3-10 nm, despite significant differences in their free-molecule orbital energy levels. The observed current densities for anthraquinone, fluorene, nitroazobenzene, and bis-thienyl benzene for d = 7-10 nm show no correlation with occupied (HOMO) or unoccupied (LUMO) molecular orbital energies, contrary to expectations for transport mechanisms based on the offset between orbital energies and the electrode Fermi level. UV-vis absorption spectroscopy of molecular layers bonded to carbon electrodes revealed internal energy levels of the chemisorbed films and also indicated limited delocalization in the film interior. The observed current densities correlate well with the observed UV-vis absorption maxima for the molecular layers, implying a transport mechanism determined by the HOMO-LUMO energy gap. We conclude that transport in carbon-based aromatic molecular junctions is consistent with multistep tunneling through a barrier defined by the HOMO-LUMO gap, and not by charge transport at the electrode interfaces. In effect, interfacial "injection" at the molecule/electrode interfaces is not rate limiting due to relatively strong electronic coupling, and transport is controlled by the "bulk" properties of the molecular layer interior.

  14. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures

    Science.gov (United States)

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH3 asymmetric, CH2 asymmetric, CH3 symmetric and CH2 symmetric groups, (ii) unsaturation (Cdbnd C) group, and (iii) carbonyl ester (Cdbnd O) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality.

  15. NATO Advanced Research Workshop on Vectorization of Advanced Methods for Molecular Electronic Structure

    CERN Document Server

    1984-01-01

    That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga­ tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider­ able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi­ lity of computers have let theorists apply their methods to prob­ lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com­ plete information on molecular properties. We can surel...

  16. Molecular structure-affinity relationship of bufadienolides and human serum albumin in vitro and molecular docking analysis.

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    Full Text Available The development of bufadienolides as anti-tumor agents is limited due to poor pharmacokinetic properties regarding drug half-lives and toxicity in vivo. These serious factors might be improved by increasing the drug/albumin-binding ratio. This study therefore investigated the relationship between the structural properties of nine bufadienolides and their affinities for human serum albumin (HSA by a fluorescence spectroscopy-based analysis and molecular docking. Fluorescence quenching data showed that the interaction of each bufadienolide with HSA formed a non-fluorescent complex, while thermodynamic parameters revealed negative ΔS and ΔH values, corresponding to changes in enthalpy and entropy, respectively. The structural differences between the various bufadienolides markedly influenced their binding affinity for HSA. With the exception of a C = O bond at the C12 position that decreased the binding affinity for HSA, other polar groups tended to increase the affinity, especially a hydroxyl (OH group at assorted bufadienolide sites. The rank order of binding affinities for drugs with tri-hydroxyl groups was as follows: 11-OH > 5-OH > 16-OH; in addition, 16-acetoxy (OAc, 10-aldehyde and 14-epoxy constituents notably enhanced the binding affinity. Among these groups, 11-OH and 16-acetyl were especially important for a seamless interaction between the bufadienolides and HSA. Furthermore, molecular docking analysis revealed that either an 11-OH or a 16-OAc group spatially close to a five-membered lactone ring significantly facilitated the anchoring of these compounds within site I of the HSA pocket via hydrogen bonding (H-bonding with Tyr150 or Lys199, respectively. In summary, bufadienolide structure strongly affects binding with HSA, and 11-OH or 16-OAc groups improve the drug association with key amino acid residues. This information is valuable for the prospective development of bufadienolides with improved pharmacological profiles as novel

  17. Molecular structure of poly(methyl methacrylate) surface II: Effect of stereoregularity examined through all-atom molecular dynamics.

    Science.gov (United States)

    Jha, Kshitij C; Zhu, He; Dhinojwala, Ali; Tsige, Mesfin

    2014-11-04

    Utilizing all-atom molecular dynamics (MD), we have analyzed the effect of tacticity and temperature on the surface structure of poly(methyl methacrylate) (PMMA) at the polymer-vacuum interface. We quantify these effects primarily through orientation, measured as the tilt with respect to the surface normal, and the surface number densities of the α-methyl, ester-methyl, carbonyl, and backbone methylene groups. Molecular structure on the surface is a complex interplay between orientation and number densities and is challenging to capture through sum frequency generation (SFG) spectroscopy alone. Independent quantification of the number density and orientation of chemical groups through all-atom MD presents a comprehensive model of stereoregular PMMA on the surface. SFG analysis presented in part I of this joint publication measures the orientation of molecules that are in agreement with MD results. We observe the ester-methyl groups as preferentially oriented, irrespective of tacticity, followed by the α-methyl and carbonyl groups. SFG spectroscopy also points to ester-methyl being dominant on the surface. The backbone methylene groups show a very broad angular distribution, centered along the surface plane. The surface number density ratios of ester-methyl to α-methyl groups show syndiotactic PMMA having the lowest value. Isotactic PMMA has the highest ratios of ester- to α-methyl. These subtle trends in the relative angular orientation and number densities that influence the variation of surface structure with tacticity are highlighted in this article. A more planar conformation of the syndiotactic PMMA along the surface (x-y plane) can be visualized through the trajectories from all-atom MD. Results from conformation tensor calculations for chains with any of their segments contributing to the surface validate the visual observation.

  18. Environmental and Climatic Determinants of Molecular Diversity and Genetic Population Structure in a Coenagrionid Damselfly

    OpenAIRE

    Maren Wellenreuther; Sánchez-Guillén, Rosa A.; Adolfo Cordero-Rivera; Svensson, Erik I.; Bengt Hansson

    2011-01-01

    Identifying environmental factors that structure intraspecific genetic diversity is of interest for both habitat preservation and biodiversity conservation. Recent advances in statistical and geographical genetics make it possible to investigate how environmental factors affect geographic organisation and population structure of molecular genetic diversity within species. Here we present a study on a common and wide ranging insect, the blue tailed damselfly Ischnuraelegans, which has been the...

  19. The molecular structure of quinuclidine obtained by high resolution microwave spectroscopy

    Science.gov (United States)

    Consalvo, Daniela; Stahl, Wolfgang

    1998-06-01

    The rotational spectra of all 13C- and 15N- substituted isotopomers of quinuclidine (or 1-azabicyclo[2.2.2]octane, ABCO), C 7H 13N, in their natural abundance have been measured for the first time in the region 4-20 GHz employing pulsed molecular beam Fourier transform microwave spectroscopy (MB-FTMW). Their analysis yielded accurate rotational constants which allowed to determine the ground state heavy atom rs structure and the global r0-structure.

  20. Discovering multi–level structures in bio-molecular data through the Bernstein inequality

    OpenAIRE

    Valentini Giorgio; Bertoni Alberto

    2008-01-01

    Abstract Background The unsupervised discovery of structures (i.e. clusterings) underlying data is a central issue in several branches of bioinformatics. Methods based on the concept of stability have been recently proposed to assess the reliability of a clustering procedure and to estimate the “optimal” number of clusters in bio-molecular data. A major problem with stability-based methods is the detection of multi-level structures (e.g. hierarchical functional classes of genes), and the asse...

  1. Glossary of Class Names of Polymers Based on Chemical Structure and Molecular Architecture (IUPAC Recommendations 2009

    Directory of Open Access Journals (Sweden)

    Jarm, V.

    2012-03-01

    Full Text Available This IUPAC's document classifies 111 polymer classes into three groups according to their chemical structure and molecular architecture. For each class, its name, short definition, its characteristic structural feature, an example, and relations to other polymer classes, are given. As the first classification for numerous commonly used polymers (organic, inorganic, synthetic, natural this document improves the knowledge and communication in the field.

  2. The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.

    Science.gov (United States)

    Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M

    2016-09-07

    Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Linear hydrogen adsorbate structures on graphite induced by self-assembled molecular monolayers

    DEFF Research Database (Denmark)

    Nilsson, Louis; Sljivancanin, Zeljko; Balog, Richard

    2012-01-01

    Combined scanning tunnelling microscopy measurements and density functional theory calculations reveal a method to induce linear structures of hydrogen adsorbates on graphite by covering the surface with a self-assembled molecular monolayer of cyanuric acid and exposing it to atomic hydrogen...

  4. (TMTSF)2X materials and structural implications for low-dimensional polymeric and disordered molecular semiconductors

    DEFF Research Database (Denmark)

    Bechgaard, Klaus; Nielsen, Martin Meedom; Krebs, Frederik C

    2000-01-01

    The structural characteristics and the relation to the electronic properties of three types of molecular materials are discussed. In TMTSF2X salts a triclinic unit cell it suggested to be important in avoiding a 2k(F) Peierls distortion. In polythiophenes appropriate ordering of microcrystallites...

  5. The History of Molecular Structure Determination Viewed through the Nobel Prizes.

    Science.gov (United States)

    Jensen, William P.; Palenik, Gus J.; Suh, Il-Hwan

    2003-01-01

    Discusses the importance of complex molecular structures. Emphasizes their individual significance through examination of the Nobel Prizes of the 20th century. Highlights prizes awarded to Conrad Rontgen, Francis H.C. Crick, James D. Watson, Maurice H.F. Wilkins, and others. (SOE)

  6. Refinement of homology-based protein structures by molecular dynamics simulation techniques

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to

  7. Origami: A Versatile Modeling System for Visualising Chemical Structure and Exploring Molecular Function

    Science.gov (United States)

    Davis, James; Leslie, Ray; Billington, Susan; Slater, Peter R.

    2010-01-01

    The use of "Origami" is presented as an accessible and transferable modeling system through which to convey the intricacies of molecular shape and highlight structure-function relationships. The implementation of origami has been found to be a versatile alternative to conventional ball-and-stick models, possessing the key advantages of being both…

  8. Looking beyond Lewis Structures: A General Chemistry Molecular Modeling Experiment Focusing on Physical Properties and Geometry

    Science.gov (United States)

    Linenberger, Kimberly J.; Cole, Renee S.; Sarkar, Somnath

    2011-01-01

    We present a guided-inquiry experiment using Spartan Student Version, ready to be adapted and implemented into a general chemistry laboratory course. The experiment provides students an experience with Spartan Molecular Modeling software while discovering the relationships between the structure and properties of molecules. Topics discussed within…

  9. Efficient 3D Kinetic Monte Carlo Method for Modeling of Molecular Structure and Dynamics

    DEFF Research Database (Denmark)

    Panshenskov, Mikhail; Solov'yov, Ilia; Solov'yov, Andrey V.

    2014-01-01

    Self-assembly of molecular systems is an important and general problem that intertwines physics, chemistry, biology, and material sciences. Through understanding of the physical principles of self-organization, it often becomes feasible to control the process and to obtain complex structures...

  10. Laser-induced blurring of molecular structure information in high harmonic spectroscopy

    DEFF Research Database (Denmark)

    Risoud, Francois; Leveque, Camille; Labeye, Marie

    2017-01-01

    High harmonic spectroscopy gives access to molecular structure with Angstrom resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrodinger equation, either numer...

  11. Formation, Molecular Structure, and Morphology of Humins in Biomass Conversion : Influence of Feedstock and Processing Conditions

    NARCIS (Netherlands)

    van Zandvoort, Ilona; Wang, Yuehu; Rasrendra, Carolus B.; van Eck, Ernst R. H.; Bruijnincx, Pieter C. A.; Heeres, Hero J.; Weckhuysen, Bert M.

    Neither the routes through which humin byproducts are formed, nor their molecular structure have yet been unequivocally established. A better understanding of the formation and physicochemical properties of humins, however, would aid in making biomass conversion processes more efficient. Here, an

  12. Molecular Docking of Enzyme Inhibitors: A Computational Tool for Structure-Based Drug Design

    Science.gov (United States)

    Rudnitskaya, Aleksandra; Torok, Bela; Torok, Marianna

    2010-01-01

    Molecular docking is a frequently used method in structure-based rational drug design. It is used for evaluating the complex formation of small ligands with large biomolecules, predicting the strength of the bonding forces and finding the best geometrical arrangements. The major goal of this advanced undergraduate biochemistry laboratory exercise…

  13. STRUCTURE PREDICTION OF SUBTILISIN BPN' MUTANTS USING MOLECULAR-DYNAMICS METHODS

    NARCIS (Netherlands)

    HEINER, AP; BERENDSEN, HJC; VANGUNSTEREN, WF

    In this paper we describe the achievements and pitfalls encountered in doing structure predictions of protein mutants using molecular dynamics simulation techniques in which properties of atoms are slowly changed as a function of time. Basically the method consists of a thermodynamic integration

  14. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    CERN Document Server

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  15. Molecular Structural Characteristics of Polysaccharide Fractions from Canarium album (Lour.) Raeusch and Their Antioxidant Activities.

    Science.gov (United States)

    Zeng, Hongliang; Miao, Song; Zheng, Baodong; Lin, Shan; Jian, Yeye; Chen, Shen; Zhang, Yi

    2015-11-01

    The objective of this study was to investigate the multiple relations between the preliminary molecular structural characteristics and antioxidant activities of polysaccharides from Canarium album (Lour.) Raeusch (CPS). Three polysaccharide fractions, CPS1, CPS2, and CPS3, were isolated from CPS by column chromatography. CPS1 and CPS3 were mainly composed of neutral polysaccharides linked by α- and β-glycosidic linkages while CPS2 was pectin polysaccharides mainly linked by β-glycosidic linkages. According to the SEC-MALLS-RI system, the molecular weight of CPS1 was greater compared to CPS2 and CPS3, and the molecular weight and radius of CPS did not display positive correlation. The chain conformation analysis indicated CPS1 and CPS2 were typical highly branched polysaccharides while CPS3 existed as a globular shape in aqueous. Furthermore, the antioxidant activity of CPS2 was better than that of CPS3, while that of CPS1 was the weakest. The antioxidant activities of polysaccharide fractions were affected by their monosaccharide composition, glycosidic linkage, molecular weight, and chain conformation. This functional property was a result of a combination of multiple molecular structural factors. CPS2 was the major antioxidant component of CPS and it could be exploited as a valued antioxidant product. The molecular structural characteristics, antioxidant activities, and structure-function relationships of polysaccharide fractions from Canarium album were first investigated in this study. The results provided background and practical knowledge for the deep-processed products of C. album with high added value. CPS2 was the major antioxidant component of CPS, which could be exploited as a valued antioxidant ingredient in food and pharmaceutical industries. © 2015 Institute of Food Technologists®

  16. Molecular structure of starch isolated from jackfruit and its relationship with physicochemical properties.

    Science.gov (United States)

    Zhang, Yanjun; Zhang, Yutong; Xu, Fei; Wu, Gang; Tan, Lehe

    2017-10-18

    The molecular structure of starches isolated from five jackfruits (M2, M3, M4, M8 and X1) and its relationship with physicochemical properties were investigated. Although they had uniform amylose (AM) content, the five jackfruit starches displayed different physicochemical properties, including their pasting, thermal, crystal and texture properties. Furthermore, differences in the molecular structure (i.e., average weight-average molar mass (Mw) of amylose and amylopectin (AP) as well as the same AP fine structure) were also found in the five jackfruit starches. The results indicated that jackfruit starch with a larger Mw of amylose and proportions of DP 25-36, DP ≥ 37 and chain length had a lower peak viscosity, breakdown, final viscosity, setback and adhesiveness, but a higher pasting and gelatinization temperature, gelatinization temperature range, gelatinization enthalpy and relative crystallinity. Xiangyinsuo 1 hao (X1) starch, which originated from Xinglong in Hainan province, China, had special physicochemical properties, which were ascribed to its lower amylopectin Mw, smaller particle size, and perfect amylopectin structure. The results showed that the most important intrinsic factors that could determine the physicochemical properties of starch were its molecular structure, including the Mw of amylose and AP as well as a fine AP structure.

  17. Molecular modeling study of uranyl nitrate extraction with monoamides. 2: Molecular mechanics and lipophilicity calculations -- Structure-activity relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rabbe, C.; Madic, C. [CEA-DCC-DRRV, Bagnols-sur-Ceze (France); Sella, C. [E.S.P.C.I., Paris (France). Lab. de Chimie Analytique; Godard, A. [INSA Rouen, Mont-Saint-Aignan (France)

    1999-01-01

    This report describes the second part of a theoretical approach aimed at establishing structure-activity relationships in a data base made of twenty-two monoamides (A) used as uranium (VI) nitrate extractants. It was found that predominant factors determining the extracting ability of a monoamide are of three kinds: (1) electron density of the coordinating atoms or groups, which should be as high as possible; (2) steric effects, which should be as low as possible; and (3) lipophilicity of the ligands, which should be above a minimum threshold value. In the first paper of this series, quantum chemistry calculations were reported to account for electronic properties of the ligands. This second paper reports molecular mechanics calculations made on UO{sub 2}(NO{sub 3}){sub 2}A{sub 2} complexes in order to determine the influence of steric effects on the formation of these compounds. Calculations of monoamide lipophilicity using Rekker`s method showed that all the molecules of the data base were lipophilic enough and, consequently, that this parameter was not significantly important for the extraction of uranyl nitrate by these monoamides. A quantitative relationship was established between the U(VI) distribution ratio and the two parameters, calculated by quantum chemistry and molecular mechanics methods.

  18. The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene

    Directory of Open Access Journals (Sweden)

    2010-02-01

    Full Text Available This study is devoted to the investigation of the effect of molecular mass on the α-, β- and γ-crystallization tendency of isotactic polypropylene (iPP. The crystalline structure was studied by wide angle X-ray scattering (WAXS and by polarised light microscopy (PLM. The melting and crystallization characteristics were determined by differential scanning calorimetry (DSC. The results indicate clearly that iPP with low molecular mass crystallizes essentially in α-modification. However, it crystallizes in β-form in the presence of a highly efficient and selective β-nucleating agent. The α- and β-modifications form in wide molecular mass range. The decreasing molecular mass results in increased structural instability in both α- and β-modifications and consequently enhanced inclination to recrystallization during heating. The formation of γ-modification could not be observed, although some literature sources report that γ-form develops in iPP with low molecular mass.

  19. Similarity boosted quantitative structure-activity relationship--a systematic study of enhancing structural descriptors by molecular similarity.

    Science.gov (United States)

    Girschick, Tobias; Almeida, Pedro R; Kramer, Stefan; Stålring, Jonna

    2013-05-24

    The concept of molecular similarity is one of the most central in the fields of predictive toxicology and quantitative structure-activity relationship (QSAR) research. Many toxicological responses result from a multimechanistic process and, consequently, structural diversity among the active compounds is likely. Combining this knowledge, we introduce similarity boosted QSAR modeling, where we calculate molecular descriptors using similarities with respect to representative reference compounds to aid a statistical learning algorithm in distinguishing between different structural classes. We present three approaches for the selection of reference compounds, one by literature search and two by clustering. Our experimental evaluation on seven publicly available data sets shows that the similarity descriptors used on their own perform quite well compared to structural descriptors. We show that the combination of similarity and structural descriptors enhances the performance and that a simple stacking approach is able to use the complementary information encoded by the different descriptor sets to further improve predictive results. All software necessary for our experiments is available within the cheminformatics software framework AZOrange.

  20. A novel method for detecting polymerase chain reaction product utilizing the 5 prime yields 3 prime exonuclease activity of Thermus aquaticus DNA polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Holland, P.M.; Watson, R.; Abramson, R.D.; Gelfand, D.H. (Cetus Corp., Emeryville, CA (United States))

    1991-03-11

    The polymerase chain reaction (PCR) method of DNA amplification is a powerful and sensitive technique which has been greatly simplified by the use of the thermostable enzyme Thermus aquaticus (Taq) DNA polymerase. In addition to its polymerase activity, Taq DNA polymerase also has a 5{prime}{yields}3{prime} exonuclease activity. Utilizing this activity, the authors have developed a PCR detection method which generates signal simultaneously with target sequence amplification. No additional probing, blotting or hybridization assays of amplified product are necessary. A 5{prime}{yields}3{prime} exonuclease cleaves 5{prime} terminal nucleotides of nicked double stranded DNA. The authors have generated a substrate suitable for exonuclease activity in a PCR assay by the addition of a labeled oligonucleotide probe designed to hybridize within the target sequence. During amplification, the 5{prime}{yields}3{prime} exonuclease activity of Taq DNA polymerase degrades the probe into smaller fragments which can be differentiated from undegraded probe. The presence of probe does not influence PCR product formation. Hydrolysis occurs only when probe is bound specifically to template. The presence of high complexity DNA in the PCR mixture does not compromise the specificity of probe interaction. In a PCR assay, the amount of detectable label may be modified by altering cycle number, target copy number or probe concentration. The size of labeled fragments may also be modified by varying base composition of the probe. This detection method is advantageous over present day procedures in that it is neither labor intensive nor requires significant skills. The minimal sample handling could reduce the risk of sample contamination, thereby increasing accuracy.

  1. The exonuclease activity of hPMC2 is required for transcriptional regulation of the QR gene and repair of estrogen-induced abasic sites.

    Science.gov (United States)

    Krishnamurthy, N; Ngam, C R; Berdis, A J; Montano, M M

    2011-11-24

    We have previously reported that the expression of antioxidative stress enzymes is upregulated by trans-hydroxytamoxifen (TOT) in breast epithelial cell lines providing protection against estrogen-induced DNA damage. This regulation involves Estrogen Receptor β (ERβ) recruitment to the Electrophile Response Element (EpRE) and a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2). We have also demonstrated that ERβ and hPMC2 are required for TOT-dependent recruitment of poly (ADP-ribose) polymerase 1 (PARP-1) and Topoisomerase IIβ (Topo IIβ) to the EpRE. Sequence analysis reveals that the C-terminus of hPMC2 encodes a putative exonuclease domain. Using in vitro kinetic assays, we found that hPMC2 is a 3'-5' non-processive exonuclease that degrades both single-stranded and double-stranded substrates. Mutation of two conserved carboxylate residues drastically reduced the exonuclease activity of hPMC2, indicating the relative importance of the catalytic residues. Western blot analysis of breast cancer cell lines for Quinone Reductase (QR) levels revealed that the intrinsic exonuclease activity of hPMC2 was required for TOT-induced QR upregulation. Chromatin immunoprecipitation (ChIP) assays also indicated that hPMC2 was involved in the formation of strand breaks observed with TOT treatment and is specific for the EpRE-containing region of the QR gene. We also determined that the transcription factor NF-E2-related factor-2 (Nrf2) is involved in the specificity of hPMC2 for the EpRE. In addition, we determined that the catalytic activity of hPMC2 is required for repair of abasic sites that result from estrogen-induced DNA damage. Thus, our study provides a mechanistic basis for transcriptional regulation by hPMC2 and provides novel insights into its role in cancer prevention.

  2. Molecular Dynamics Simulations of E. coli MsbA Transmembrane Domain: Formation of a Semipore Structure

    Science.gov (United States)

    Haubertin, David Y.; Madaoui, Hocine; Sanson, Alain; Guérois, Raphaël; Orlowski, Stéphane

    2006-01-01

    The human P-glycoprotein (MDR1/P-gp) is an ATP-binding cassette (ABC) transporter involved in cellular response to chemical stress and failures of anticancer chemotherapy. In the absence of a high-resolution structure for P-gp, we were interested in the closest P-gp homolog for which a crystal structure is available: the bacterial ABC transporter MsbA. Here we present the molecular dynamics simulations performed on the transmembrane domain of the open-state MsbA in a bilayer composed of palmitoyl oleoyl phosphatidylethanolamine lipids. The system studied contained more than 90,000 atoms and was simulated for 50 ns. This simulation shows that the open-state structure of MsbA can be stable in a membrane environment and provides invaluable insights into the structural relationships between the protein and its surrounding lipids. This study reveals the formation of a semipore-like structure stabilized by two key phospholipids which interact with the hinge region of the protein during the entire simulation. Multiple sequence alignments of ABC transporters reveal that one of the residues involved in the interaction with these two phospholipids are under a strong selection pressure specifically applied on the bacterial homologs of MsbA. Hence, comparison of molecular dynamics simulation and phylogenetic data appears as a powerful approach to investigate the functional relevance of molecular events occurring during simulations. PMID:16782794

  3. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  4. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    Science.gov (United States)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  5. Structure and mechanical characterization of DNA i-motif nanowires by molecular dynamics simulation

    CERN Document Server

    Singh, Raghvendra Pratap; Cleri, Fabrizio

    2013-01-01

    We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual stacked C*C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression and bending deformation with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young's and bending moduli of the nanowire, as wel as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to...

  6. Molecular Dynamics Study of Carbon Nanotubes/Polyamide Reverse Osmosis Membranes: Polymerization, Structure, and Hydration.

    Science.gov (United States)

    Araki, Takumi; Cruz-Silva, Rodolfo; Tejima, Syogo; Takeuchi, Kenji; Hayashi, Takuya; Inukai, Shigeki; Noguchi, Toru; Tanioka, Akihiko; Kawaguchi, Takeyuki; Terrones, Mauricio; Endo, Morinobu

    2015-11-11

    Carbon nanotubes/polyamide (PA) nanocomposite thin films have become very attractive as reverse osmosis (RO) membranes. In this work, we used molecular dynamics to simulate the influence of single walled carbon nanotubes (SWCNTs) in the polyamide molecular structure as a model case of a carbon nanotubes/polyamide nanocomposite RO membrane. It was found that the addition of SWCNTs decreases the pore size of the composite membrane and increases the Na and Cl ion rejection. Analysis of the radial distribution function of water confined in the pores of the membranes shows that SWCNT+PA nanocomposite membranes also exhibit smaller clusters of water molecules within the membrane, thus suggesting a dense membrane structure (SWCNT+PA composite membranes were 3.9% denser than bare PA). The results provide new insights into the fabrication of novel membranes reinforced with tubular structures for enhanced desalination performance.

  7. Relation between molecular electronic structure and nuclear spin-induced circular dichroism

    DEFF Research Database (Denmark)

    Štěpánek, Petr; Coriani, Sonia; Sundholm, Dage

    2017-01-01

    The recently theoretically described nuclear spin-induced circular dichroism (NSCD) is a promising method for the optical detection of nuclear magnetization. NSCD involves both optical excitations of the molecule and hyperfine interactions and, thus, it offers a means to realize a spectroscopy...... with the spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only reflects the local molecular structure in the ground electronic state...... are discussed. The results underline NSCD spectroscopy as a plausible tool with a power for the identification of not only different molecules, but their specific structures as well....

  8. Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles

    Science.gov (United States)

    Chang, Jia-Cheng; Tseng, Shin-Han; Lai, Chien-Chen; Liu, Yi-Hung; Peng, Shie-Ming; Chiu, Sheng-Hsien

    2017-02-01

    Daisy chains (DCs) are garlands of flowers that can be worn as bracelets and necklaces. As a result of their beautiful interlocked structures and possible muscle-like motions, cyclic molecular DCs ([cn]DCs, where n is the number of repeating units) have long been attractive synthetic targets for supramolecular chemists. Herein we report artificial molecular muscles that—unlike one-dimensional (1D) biological muscles—contract and stretch in 2D or 3D. These systems have the structures of [c3]- and [c4]DCs with subcomponents that operate as molecular switches, powered through the addition or removal of Zn2+ ions to impart muscle-like behaviour. We assembled these [c3]- and [c4]DCs selectively by exploiting structural rigidity, coordination geometries and bond rotational barriers that disfavoured the formation of smaller homologues. The switching phenomena of our [c3]- and [c4]DCs resulted in the contracted molecular muscles stretching by approximately 23 and 36%, respectively, comparable to the value (27%) for linear biological muscles.

  9. Molecules and Models The molecular structures of main group element compounds

    CERN Document Server

    Haaland, Arne

    2008-01-01

    This book provides a systematic description of the molecular structures and bonding in simple compounds of the main group elements with particular emphasis on bond distances, bond energies and coordination geometries. The description includes the structures of hydrogen, halogen and methyl derivatives of the elements in each group, some of these molecules are ionic, some polar covalent. The survey of molecules whose structures conform to well-established trends is followed byrepresentative examples of molecules that do not conform. We also describe electron donor-acceptor and hydrogen bonded co

  10. Atomic structure evolution during solidification of liquid niobium from ab initio molecular dynamics simulations.

    Science.gov (United States)

    Debela, T T; Wang, X D; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-02-05

    Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt-Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.

  11. Reconstruction of three-dimensional molecular structure from diffraction of laser-aligned molecules

    Science.gov (United States)

    Yang, Jie; Makhija, Varun; Kumarappan, Vinod; Centurion, Martin

    2014-01-01

    Diffraction from laser-aligned molecules has been proposed as a method for determining 3-D molecular structures in the gas phase. However, existing structural retrieval algorithms are limited by the imperfect alignment in experiments and the rotational averaging in 1-D alignment. Here, we demonstrate a two-step reconstruction comprising a genetic algorithm that corrects for the imperfect alignment followed by an iterative phase retrieval method in cylindrical coordinates. The algorithm was tested with simulated diffraction patterns. We show that the full 3-D structure of trifluorotoluene, an asymmetric-top molecule, can be reconstructed with atomic resolution. PMID:26798781

  12. Reconstruction of three-dimensional molecular structure from diffraction of laser-aligned molecules

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2014-07-01

    Full Text Available Diffraction from laser-aligned molecules has been proposed as a method for determining 3-D molecular structures in the gas phase. However, existing structural retrieval algorithms are limited by the imperfect alignment in experiments and the rotational averaging in 1-D alignment. Here, we demonstrate a two-step reconstruction comprising a genetic algorithm that corrects for the imperfect alignment followed by an iterative phase retrieval method in cylindrical coordinates. The algorithm was tested with simulated diffraction patterns. We show that the full 3-D structure of trifluorotoluene, an asymmetric-top molecule, can be reconstructed with atomic resolution.

  13. History, Classification, Molecular Structure and Properties of Dendrimers which are a New Concept in Textile

    Directory of Open Access Journals (Sweden)

    Osman NAMIRTI

    2011-02-01

    Full Text Available Over the last 20 years polymer chemistry has created a number of non-lineer structures and introduction of a large number of branches during the polymer synthesis leads to obtain molecules with many end groups. Two types of these polymers are regularly branched "dendrimers" and "hyperbranched polymers" where branching is formed randomly. In this article knowledge about history, classification, molecular structure and properties of dendrimers which have found various application areas also in textile due to their special structures is given.

  14. Atomic-scale structure of dislocations revealed by scanning tunneling microscopy and molecular dynamics

    DEFF Research Database (Denmark)

    Christiansen, Jesper; Morgenstern, K.; Schiøtz, Jakob

    2002-01-01

    The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations......, the simulations can be used to determine dislocation structure and orientation in the near-surface region. In a similar way, the subsurface structure of other extended defects can be studied. The simulations show dislocations to reorient the partials in the surface region leading to an increased splitting width...

  15. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  16. Validation of Molecular Dynamics Simulations for Prediction of Three-Dimensional Structures of Small Proteins.

    Science.gov (United States)

    Kato, Koichi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Oda, Akifumi

    2017-10-12

    Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.

  17. Structural dynamics of overcrowded alkene-based molecular motors during thermal isomerization.

    Science.gov (United States)

    Cnossen, Arjen; Kistemaker, Jos C M; Kojima, Tatsuo; Feringa, Ben L

    2014-02-07

    Synthetic light-driven rotary molecular motors show complicated structural dynamics during the rotation process. A combination of DFT calculations and various spectroscopic techniques is employed to study the effect of the bridging group in the lower half of the molecule on the conformational dynamics. It was found that the extent to which the bridging group can accommodate the increased folding in the transition state is the main factor in rationalizing the differences in barrier height and, as a consequence, the rotary speed. These findings will be essential in designing future rotary molecular motors.

  18. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  19. Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase.

    Science.gov (United States)

    Baños, Benito; Lázaro, José M; Villar, Laurentino; Salas, Margarita; de Vega, Miguel

    2008-10-01

    Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolX(Bs)), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolX(Bs) possesses an intrinsic 3'-5' exonuclease activity specialized in resecting unannealed 3'-termini in a gapped DNA substrate. Biochemical analysis of a PolX(Bs) deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3'-5' exonuclease activity of PolX(Bs) resides in its PHP domain. Furthermore, site-directed mutagenesis of PolX(Bs) His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3'-termini resection by the 3'-5' exonuclease activity of PolX(Bs) in the DNA repair context are discussed.

  20. Spectroscopic impact on protein and carbohydrate inherent molecular structures of barley, oat and corn combined with wheat DDGS

    OpenAIRE

    Abeysekara, S.; Damiran, D.; Yu, P.

    2011-01-01

    The objectives of this experiment were to use non-invasive and non-destructive infrared molecular spectroscopy as a novel approach to explore and identify protein and carbohydrate molecular structure spectral features of DDGS (dried distillers grain solubles from wheat, Triticum aestivum) and its combinations with barley (Hordeum vulgare), corn (Zea mays) and oat (Avena sativa). The spectral parameters assessed in this study included amides, protein molecular structures of α-helix and β-sheet...

  1. Modelling molecular structures for computer-assisted studies of drug structure-activity relations

    Energy Technology Data Exchange (ETDEWEB)

    Jerman-Blazic, B.; Randic, M.

    1983-01-01

    The characterizations of structure by selected graph invariant is used as an element for model building in the study of quantitative structure activity relations. The path numbers Pi were adopted as the basic graph invariants. Euclidian distance between two sequences of path numbers, which are considered as position vectors in an n-dimensional space, was the measure of similarity between the two structures. The results, which proceeded from the application of the method on a set of 38 substituted barbituratic acids show that path enumeration model offer suitable basis for QSAR analysis and deserve further attention.

  2. Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer

    DEFF Research Database (Denmark)

    Solov'yov, Ilia A.; Korol, Andrei V.; Solov'yov, Andrey V.

    efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer......This book introduces readers to MesoBioNano (MBN) Explorer - a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface - the MBN Studio - which enables the set......, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science - ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system's energy, to optimizing molecular structure, and to exploring the various facets...

  3. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, Navdeep S. [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany); University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Schreiber, Kathrin [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany); Pröpper, Kevin [University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Becker, Stefan [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany); Usón, Isabel [Instituto de Biologia Molecular de Barcelona (IBMB–CSIC), Barcelona Science Park, Baldiri Reixach 15, 08028 Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), (Spain); Sheldrick, George M. [University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Gärtner, Jutta; Krätzner, Ralph, E-mail: rkraetz@gwdg.de; Steinfeld, Robert, E-mail: rkraetz@gwdg.de [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany)

    2014-05-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.

  4. Building Proteins in a Day: Efficient 3D Molecular Structure Estimation with Electron Cryomicroscopy.

    Science.gov (United States)

    Punjani, Ali; Brubaker, Marcus A; Fleet, David J

    2017-04-01

    Discovering the 3D atomic-resolution structure of molecules such as proteins and viruses is one of the foremost research problems in biology and medicine. Electron Cryomicroscopy (cryo-EM) is a promising vision-based technique for structure estimation which attempts to reconstruct 3D atomic structures from a large set of 2D transmission electron microscope images. This paper presents a new Bayesian framework for cryo-EM structure estimation that builds on modern stochastic optimization techniques to allow one to scale to very large datasets. We also introduce a novel Monte-Carlo technique that reduces the cost of evaluating the objective function during optimization by over five orders of magnitude. The net result is an approach capable of estimating 3D molecular structure from large-scale datasets in about a day on a single CPU workstation.

  5. DFT study of the molecular and crystal structure and vibrational analysis of cisplatin

    Science.gov (United States)

    Georgieva, I.; Trendafilova, N.; Dodoff, N.; Kovacheva, D.

    2017-04-01

    DFT and periodic-DFT (PAW-PBE method, code VASP) calculations have been performed to study the structural and vibrational characteristics of cis-diamminedichloroplatinum(II) (cisplatin) at molecular and outside molecular level. To estimate the effect of the intermolecular interactions in crystal on the structural and vibrational properties of cisplatin, three theoretical models are considered in the present study: monomer (isolated molecule), hydrogen bonded dimer and periodic solid state structures. The work focused on the role of the theoretical models for correct modeling and prediction of geometrical and vibrational parameters of cisplatin. It has been found that the elaborate three-dimensional intermolecular hydrogen bonding network in the crystalline cisplatin significantly influences the structural and vibrational pattern of cisplatin and therefore the isolated cisplatin molecule is not the correct computational model regardless of the theoretical level used. To account for the whole intermolecular hydrogen bonding network in direction of both a and c axis and for more reliable calculations of structural and vibrational parameters periodic DFT calculations were carried out in the full crystalline periodic environment with the known lattice parameters for each cisplatin polymorph phase. The model calculations performed both at molecular level and for the periodic structures of alpha and beta cisplatin polymorph forms revealed the decisive role of the extended theoretical model for reliable prediction of the structural and vibrational characteristics of cisplatin. The powder diffraction pattern and the calculated IR and Raman spectra predicted beta polymorph form of our cisplatin sample freshly synthesized for the purposes of the present study using the Dhara's method. The various rotamers realized in the polymorph forms of cisplatin were explained by the low population of the large number of rotamers in solution as well as with the high rotamer

  6. Predicting anti-androgenic activity of bisphenols using molecular docking and quantitative structure-activity relationships.

    Science.gov (United States)

    Yang, Xianhai; Liu, Huihui; Yang, Qian; Liu, Jining; Chen, Jingwen; Shi, Lili

    2016-11-01

    Both in vivo and in vitro assay indicated that bisphenols can inhibit the androgen receptor. However, the underlying antagonistic mechanism is unclear. In this study, molecular docking was employed to probe the interaction mechanism between bisphenols and human androgen receptor (hAR). The binding pattern of ligands in hAR crystal structures was also analyzed. Results show that hydrogen bonding and hydrophobic interactions are the dominant interactions between the ligands and hAR. The critical amino acid residues involved in forming hydrogen bonding between bisphenols and hAR is Asn 705 and Gln 711. Furthermore, appropriate molecular structural descriptors were selected to characterize the non-bonded interactions. Stepwise multiple linear regressions (MLR) analysis was employed to develop quantitative structure-activity relationship (QSAR) models for predicting the anti-androgenic activity of bisphenols. Based on the QSAR development and validation guideline issued by OECD, the goodness-of-fit, robustness and predictive ability of constructed QSAR model were assessed. The model application domain was characterized by the Euclidean distance and Williams plot. The mechanisms of the constructed model were also interpreted based on the selected molecular descriptors i.e. the number of hydroxyl groups (nROH), the most positive values of the molecular surface potential (Vs,max) and the lowest unoccupied molecular orbital energy (ELUMO). Finally, based on the model developed, the data gap for other twenty-six bisphenols on their anti-androgenic activity was filled. The predicted results indicated that the anti-androgenic activity of seven bisphenols was higher than that of bisphenol A. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair

    Directory of Open Access Journals (Sweden)

    Yuchen Zhang

    2015-10-01

    Full Text Available The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3–90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers.

  8. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair.

    Science.gov (United States)

    Zhang, Yuchen; Alsop, Richard J; Soomro, Asfia; Yang, Fei-Chi; Rheinstädter, Maikel C

    2015-01-01

    The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3-90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers.

  9. Molecular Structure and Dynamics Probed by Photoionization Out of Rydberg States

    Science.gov (United States)

    Rudakov, Fedor

    2017-06-01

    Probing the structure of a molecule as a chemical reaction unfolds has been a long standing goal in chemical physics. Most spectroscopic and diffraction techniques work well when the molecules are cold and thus vibrational motion is minimized. Yet, the very ability of a molecule to undergo structural changes implies that a significant amount of energy resides within the molecule. In order to probe structures of even medium sized molecules on an ultrafast time scale a technique that is sensitive to the molecular structure, yet insensitive to the vibrational motion is required. In our research we demonstrated that Rydberg electrons are remarkably sensitive to the molecular structure. Photoionization of a molecule out of Rydberg states reveals a purely electronic spectrum which is largely insensitive to vibrational motion. The talk illustrates how Rydberg electrons can serve as a probe for ultrafast structural dynamics in polyatomic molecules. The talk also demonstrates that photoionization through Rydberg states can be utilized for non-intrusive detection of polyatomic combustion intermediates in flames.

  10. Self-Assembled DNA Structures for Molecular Force Measurement: A Magnetically Actuated Approach

    Science.gov (United States)

    Armstrong, M.; Lauback, S.; Miller, C.; Peace, C.; Castro, C.; Sooryakumar, R.

    2015-03-01

    Understanding molecular forces is important to comprehend many of the underlying properties of molecular machines and biological processes. The relevant forces in these cases often lie in the picoNewton range, and thus experiments on individual biomolecules must integrate techniques capable of measuring such forces. A mechanical system to measure molecular forces associated with interacting DNA strands is being developed by using self-assembled DNA nanostructures and super-paramagnetic beads. The DNA nanostructure consists of single-stranded DNA molecules which can be folded into a precise compact geometry using hundreds of short oligonucleotides, i.e., staples, via programmed molecular self-assembly. These nanostructures can be polymerized into micron-scale filaments. By functionalizing the filament ends with bispecific conjugate staples, the structure can be attached to a surface as well as labeled with magnetic beads in order to apply a force on the system. External magnetic fields provide the means to maneuver and manipulate the magnetically labeled DNA structures. Preliminary findings associated with the DNA constructs and their manipulation lay the groundwork to establish real-time control of DNA nanodevices with micromanipulation.

  11. From molecular systems to continuum solids: A multiscale structure and dynamics.

    Science.gov (United States)

    Tong, Qi; Li, Shaofan

    2015-08-14

    We propose a concurrent multiscale molecular dynamics for molecular systems in order to apply macroscale mechanical boundary conditions such as traction and average displacement for solid state materials, which is difficult to do in traditional molecular dynamics where boundary conditions are applied in terms of forces and displacements on selected particles. The multiscale model is systematically constructed in terms of multiscale structures of kinematics, force field, and dynamical equations. The idea is to extend the Anderson-Parrinello-Rahman molecular dynamics to the cases that have arbitrary finite domain and boundary, thus the model is capable of solving inhomogeneous, non-equilibrium problems. The macroscale stress loading on a representative volume element with periodic boundary condition is generalized to all kinds of macroscale mechanical boundary conditions. Unlike most multiscale techniques, our theory is aimed at understanding fundamental physics rather than achieving computing efficiency. Examples of problems with prescribed average displacements and surface tractions are presented to demonstrate the validity of the proposed multiscale molecular dynamics.

  12. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol

    Science.gov (United States)

    Moorthi, P. P.; Gunasekaran, S.; Swaminathan, S.; Ramkumaar, G. R.

    2015-02-01

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule.

  13. Molecular structure in correlation with electrochemical properties of mixed-ligand cobalt(III complexes

    Directory of Open Access Journals (Sweden)

    K. BABIĆ-SAMARDZIJA

    2008-07-01

    Full Text Available Four mixed-ligand cobalt(III complexes (1–4 of the general formula [Co(Rdtccyclam](ClO42 and [Co(Raccyclam](ClO42 (cyclam = 1,4,8,11-tetraazacyclotetradecane; Rdtc = thiomorpholine-(Timdtc or 2-methylpiperidine-(2-Mepipdtc dithiocarbamates; Rac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato (Hfac or 2,2,6,6-tetramethyl-3,5-heptanedionato (Tmhd, respectively were electro­chemically examined on a glassy carbon and an iron electrode in perchloric acid solution. The obtained results showed the influence of these complexes on hydrogen evolution, the oxygen reduction reaction and iron dissolution. The exhibited effects of the complexes on these reactions depend on structure related to the bidentate dithiocarbamato or b-diketonato ligand. The electrochemical properties of the complexes were correlated with molecular structure and parameters derived from spectral analysis and molecular modeling.

  14. Synthesis of a specified, silica molecular sieve by using computationally predicted organic structure-directing agents.

    Science.gov (United States)

    Schmidt, Joel E; Deem, Michael W; Davis, Mark E

    2014-08-04

    Crystalline molecular sieves are used in numerous applications, where the properties exploited for each technology are the direct consequence of structural features. New materials are typically discovered by trial and error, and in many cases, organic structure-directing agents (OSDAs) are used to direct their formation. Here, we report the first successful synthesis of a specified molecular sieve through the use of an OSDA that was predicted from a recently developed computational method that constructs chemically synthesizable OSDAs. Pentamethylimidazolium is computationally predicted to have the largest stabilization energy in the STW framework, and is experimentally shown to strongly direct the synthesis of pure-silica STW. Other OSDAs with lower stabilization energies did not form STW. The general method demonstrated here to create STW may lead to new, simpler OSDAs for existing frameworks and provide a way to predict OSDAs for desired, theoretical frameworks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Intra- and inter-molecular terms in the structure factor of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Longelin, S.; Cavillon, F.; Idrissi, A.; Leclercq-Hugeux, F.; Damay, P

    2004-07-15

    A methodology for the analysis of the structure factor of molecular liquids obtained by neutron scattering at large momentum transfers in terms of molecular structure and intermolecular interactions is reported. First, an accurate adjustment of the intramolecular term at large angles is obtained; the stability of the fit, the analysis of the covariance matrix and of the quality factor when varying the investigated q range are severe tests of a correct evaluation of the short-range rigid interactions. Subtracting the intramolecular contribution, it is then possible to reach the intermolecular term, giving access to smoother interactions remaining in the low q-range. Applications to the characterisation of libration in C{sub 2}D{sub 6}, H-bonding in N-methylformamide and to the analysis of urea-urea interactions in water are given.

  16. Molecular Dynamics Simulation of the Structure and Properties of Lithium Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J-J; Cygan, R.T.; Alam, T.M.

    1999-07-09

    A new forcefield model was developed for the computer simulation of phosphate materials that have many important applications in the electronics and biomedical industries. The model provides a fundamental basis for the evaluation of phosphate glass structure and thermodynamics. Molecular dynamics simulations of a series of lithium phosphate glass compositions were performed using the forcefield model. A high concentration of three-membered rings (P{sub 3}O{sub 3}) occurs in the glass of intermediate composition (0.2 Li{sub 2}O {center_dot} 0.8P{sub 2}O{sub 5}) that corresponds to the minimum in the glass transition temperature curve for the compositional series. Molecular orbital calculations of various phosphate ring clusters indicate an increasing stabilization of the phosphate ring structure going from two- to four-membered rings.

  17. Molecular structures of alkaline-earth-metal metallocenes: Electron diffraction and ab initio investigations

    Energy Technology Data Exchange (ETDEWEB)

    Blom, R.; Faegri, K. Jr.; Volden, H.V. (Univ. of Oslo (Norway))

    1990-02-01

    The thermal average molecular structures of Sr(C{sub 5}Me{sub 5}){sub 2} and Ba(C{sub 5}Me{sub 5}){sub 2} have been determined by gas electron diffraction. For both compounds the experimental data are consistent with molecular models where the C{sub 5}Me{sub 5} rings are approximately {eta}{sup 5}-bonded to the metals and with ring centroid-metal-ring centroid angles close to 150{degree}. The metal-carbon bond distances are r{sub a}(Sr-C) = 275.0 (8) pm and r{sub a}(Ba-C) = 289.8 (10) pm (mean values). The experimental results are compared to calculations on the model compounds Mg(C{sub 5}H{sub 5}){sub 2} and Ca(C{sub 5}H{sub 5}){sub 2} in a discussion of the bonding and structure of alkaline-earth-metal metallocenes.

  18. Mechanism of ganciclovir-induced chain termination revealed by resistant viral polymerase mutants with reduced exonuclease activity.

    Science.gov (United States)

    Chen, Han; Beardsley, G Peter; Coen, Donald M

    2014-12-09

    Many antiviral and anticancer drugs are nucleoside analogs that target polymerases and cause DNA chain termination. Interestingly, ganciclovir (GCV), the first line of therapy for human cytomegalovirus (HCMV) infections, induces chain termination despite containing the equivalent of a 3'-hydroxyl group. Certain HCMV GCV resistance (GCV(r)) mutations, including ones associated with treatment failures, result in substitutions in the 3'-5' exonuclease (Exo) domain of the catalytic subunit of the viral DNA polymerase (Pol). To investigate how these mutations confer resistance, we overexpressed and purified wild-type (WT) HCMV Pol and three GCV(r) Exo mutants. Kinetic studies provided little support for resistance being due to effects on Pol binding or incorporation of GCV-triphosphate. The mutants were defective for Exo activity on all primer templates tested, including those with primers terminating with GCV, arguing against the mutations increasing excision of the incorporated drug. However, although the WT enzyme terminated DNA synthesis after incorporation of GCV-triphosphate and an additional nucleotide (N+1), the Exo mutants could efficiently synthesize DNA to the end of such primer templates. Notably, the Exo activity of WT Pol rapidly and efficiently degraded N+2 primer templates to N+1 products that were not further degraded. On N+1 primer templates, WT Pol, much more than the Exo mutants, converted the incoming deoxynucleoside triphosphate to its monophosphate, indicative of rapid addition and removal of incorporated nucleotides ("idling"). These results explain how GCV induces chain termination and elucidate a previously unidentified mechanism of antiviral drug resistance.

  19. Characterization of the mammalian RNA exonuclease 5/NEF-sp as a testis-specific nuclear 3' → 5' exoribonuclease.

    Science.gov (United States)

    Silva, Sara; Homolka, David; Pillai, Ramesh S

    2017-09-01

    Ribonucleases catalyze maturation of functional RNAs or mediate degradation of cellular transcripts, activities that are critical for gene expression control. Here we identify a previously uncharacterized mammalian nuclease family member NEF-sp (RNA exonuclease 5 [REXO5] or LOC81691) as a testis-specific factor. Recombinant human NEF-sp demonstrates a divalent metal ion-dependent 3' → 5' exoribonuclease activity. This activity is specific to single-stranded RNA substrates and is independent of their length. The presence of a 2'-O-methyl modification at the 3' end of the RNA substrate is inhibitory. Ectopically expressed NEF-sp localizes to the nucleolar/nuclear compartment in mammalian cell cultures and this is dependent on an amino-terminal nuclear localization signal. Finally, mice lacking NEF-sp are viable and display normal fertility, likely indicating overlapping functions with other nucleases. Taken together, our study provides the first biochemical and genetic exploration of the role of the NEF-sp exoribonuclease in the mammalian genome. © 2017 Silva et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Mass Derivatives of Molecular Parameters and Distortions in r((2))(m) Structures.

    Science.gov (United States)

    Watson, James K. G.

    2001-05-01

    Expressions are derived for the derivatives of various molecular vibration-rotation parameters with respect to atomic masses. These are applied to determine an expression for the mass derivatives of the zero-point moments of inertia, and hence the theoretical substitution coordinates. It is then possible to calculate the distortions in structures determined by means of the r((2))(m) method. The latter agree well with the distortions found in r((2))(m) fits of synthetic data. Copyright 2001 Academic Press.

  1. Effect of water vapour on the molecular structures of supported vanadium oxide catalysts at elevated temperatures

    NARCIS (Netherlands)

    Jehng, Jih-Mirn; Deo, G.; Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    The effect of water vapor on the molecular structures of V2O3-supported catalysts (SiO2, Al2o3, TiO2, and CeO2) was investigated by in situ Raman spectroscopy as a function of temperature (from 500°C to 120°C). Under dry conditions only isolated surface VO4 species are present on the dehydrated SiO2

  2. Control of a two-dimensional molecular structure by cooperative halogen and hydrogen bonds

    OpenAIRE

    Yasuda, Satoshi; Furuya, Atom; Murakoshi, Kei

    2014-01-01

    The cooperative effect of hydrogen and halogen bonds on the two-dimensional (2D) molecular arrangement on highly oriented pyrolytic graphite (HOPG) was studied by scanning tunneling microscopy. The terephthalic acid (TPA) molecule, which has two carboxyl groups attached at the para positions of a benzene ring, formed a one-dimensional (1D) linear non-covalent network structure on HOPG by hydrogen bonds between the carboxyl groups of neighboring molecules. However, unlike the TPA molecule, Br ...

  3. X-ray diffraction and molecular-dynamics studies: Structural analysis of phases in diglyceride monolayers

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Larsen, Niels Bent; Bjørnholm, T.

    1998-01-01

    We report a detailed structural analysis of the phases of 1,2-sn-dipalmitoylglycerol Langmuir monolayers at room temperature. Pressure-induced transitions have been investigated by combination of molecular-dynamics simulations and grazing-incidence x-ray diffraction (XRD). The diglyceride film...... indicate that in the simulated monolayer the finite size with periodic boundary conditions imposes a higher degree of order....

  4. Molecular variability and genetic structure of Chrysodeixis includens (Lepidoptera: Noctuidae), an important soybean defoliator in Brazil

    OpenAIRE

    Janine Palma; Kevin Maebe; Jerson Vanderlei Carús Guedes; Guy Smagghe

    2015-01-01

    This study provides the first genetic characterization of the soybean looper, Chrysodeixis includens (Walker, 1857), an important defoliating pest species of soybean crops in Brazil. Population genetic variability and the genetic structure of C. includens populations were evaluated by using ISSR markers with samples from the major soybean producing regions in Brazil in the growing seasons 2011/2012. Seven different primers were applied for population characterization of the molecular variabil...

  5. Resolving detailed molecular structures in complex organic mixtures and modeling their secondary organic aerosol formation

    Science.gov (United States)

    Goodman-Rendall, Kevin A. S.; Zhuang, Yang R.; Amirav, Aviv; Chan, Arthur W. H.

    2016-03-01

    Characterization of unresolved complex mixtures (UCMs) remains an ongoing challenge towards developing detailed and accurate inputs for modeling secondary organic aerosol (SOA) formation. Traditional techniques based on gas chromatography/electron impact-mass spectrometry induce excessive fragmentation, making it difficult to speciate and quantify isomers precisely. The goal of this study is to identify individual organic isomers by gas chromatography/mass spectrometry with supersonic molecular beam (SMB-GC/MS, also known as GC/MS with Cold EI) and to incorporate speciated isomers into an SOA model that accounts for the specific structures elucidated. Two samples containing atmospherically relevant UCMs are analyzed. The relative isomer distributions exhibit remarkably consistent trends across a wide range of carbon numbers. Constitutional isomers of different alkanes are speciated and individually quantified as linear, branched - for the first time by position of branching - multiply branched, or unsaturated - by degree of ring substitution and number of rings. Relative amounts of exact molecular structures are used as input parameters in an SOA box model to study the effects of molecular structures on SOA yields and volatility evolution. Highly substituted cyclic, mono-substituted cyclic, and linear species have the highest SOA yields while branched alkanes formed the least SOA. The rate of functionalization of a representative UCM is found to be in agreement with current volatility basis set (VBS) parameterizations based on detailed knowledge of composition and known oxidation mechanisms, confirming the validity of VBS parameters currently used in air quality models.

  6. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure

    Directory of Open Access Journals (Sweden)

    Derek Mendez

    2016-11-01

    Full Text Available During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS, which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL is an excellent tool for CXS experiments. A protocol is outlined for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA. From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. It is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.

  7. Biogeography of soil organic matter molecular structure across multiple soil size fractions

    Science.gov (United States)

    Meier, C. L.; Neff, J.

    2009-12-01

    Recent work suggests that there is a common soil decomposition sequence whereby plant inputs are metabolized into a physiologically constrained set of compounds originating from microbes that may persist in soil over relatively long time-scales. Plant inputs tend to be found in coarse particulate fractions (>180 μm) with relatively fast turnover times, while microbially derived compounds tend to accrue in the finer silt + clay fractions (180 μm would be chemically similar, and would be characterized by lignin and other plant-derived compounds; and 2) fractions 180 μm fractions (pplant material is not incorporated into soil C pools with relatively long turnover times. However, a principal components analysis (PCA) showed that the >180 μm coarse particulate fractions also contained compounds associated with microbial origins, indicating that microbial C is not limited to <53 μm size fractions. The PCA also revealed that samples within each of the three size fractions did not cluster together (i.e. they did not share a common molecular structure), but we did note that: 1) cold alpine and sub-alpine sites were unique and chemically similar; and 2) tropical forest soils were unique and chemically similar. Moreover, we observed large differences in molecular structure for dry desert/savannah sites with varying vegetation types (trees vs. grass) and varying geologic substrates. Taken together, these observations argue that temperature, vegetation, and underlying geology influence soil molecular structure, but support for a common decomposition sequence is mixed.

  8. Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2011-12-01

    Full Text Available Structural parameters of a range of over 100 meso-substituted zinc porphyrins were reviewed and compared to show how far the nature of the functional group may affect the interatomic distances and bond angles within the porphyrin core. It was proved that even despite evident deformations of the molecular structure, involving twisting of the porphyrin's central plane, the coupled π-bonding system remains flexible and stable. DFT calculations were applied to a number of selected porphyrins representative for the reviewed compounds to emphasize the relevance of theoretical methods in structural investigations of complex macrocyclic molecular systems. Experimental and DFT-simulated IR spectral data were reported and analyzed in context of the individual molecular features introduced by the meso substituents into the porphyrin moiety base. Raw experimental spectral data, including 1H- and 13C-NMR, UV-Vis, FTIR, XRD, and other relevant physicochemical details have been provided for a specially chosen reference zinc porphyrin functionalized by tert-butylphenyl groups.

  9. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Directory of Open Access Journals (Sweden)

    Benjamin Allen

    2015-02-01

    Full Text Available Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  10. Single-crystal Ih ice surfaces unveil connection between macroscopic and molecular structure.

    Science.gov (United States)

    Brumberg, Alexandra; Hammonds, Kevin; Baker, Ian; Backus, Ellen H G; Bisson, Patrick J; Bonn, Mischa; Daghlian, Charles P; Mezger, Markus D; Shultz, Mary Jane

    2017-05-23

    Physics and chemistry of ice surfaces are not only of fundamental interest but also have important impacts on biological and environmental processes. As ice surfaces-particularly the two prism faces-come under greater scrutiny, it is increasingly important to connect the macroscopic faces with the molecular-level structure. The microscopic structure of the ubiquitous ice Ih crystal is well-known. It consists of stacked layers of chair-form hexagonal rings referred to as molecular hexagons. Crystallographic unit cells can be assembled into a regular right hexagonal prism. The bases are labeled crystallographic hexagons. The two hexagons are rotated 30° with respect to each other. The linkage between the familiar macroscopic shape of hexagonal snowflakes and either hexagon is not obvious per se. This report presents experimental data directly connecting the macroscopic shape of ice crystals and the microscopic hexagons. Large ice single crystals were used to fabricate samples with the basal, primary prism, or secondary prism faces exposed at the surface. In each case, the same sample was used to capture both a macroscopic etch pit image and an electron backscatter diffraction (EBSD) orientation density function (ODF) plot. Direct comparison of the etch pit image and the ODF plot compellingly connects the macroscopic etch pit hexagonal profile to the crystallographic hexagon. The most stable face at the ice-water interface is the smallest area face at the ice-vapor interface. A model based on the molecular structure of the prism faces accounts for this switch.

  11. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Hiroki, E-mail: matsubara@microheat.ifs.tohoku.ac.jp; Kikugawa, Gota; Ohara, Taku [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Bessho, Takeshi; Yamashita, Seiji [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T{sub c}) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs.

  12. Pectobacterium atrosepticum exopolysaccharides: identification, molecular structure, formation under stress and in planta conditions.

    Science.gov (United States)

    Gorshkov, Vladimir; Islamov, Bakhtiyar; Mikshina, Polina; Petrova, Olga; Burygin, Gennady; Sigida, Elena; Shashkov, Alexander; Daminova, Amina; Ageeva, Marina; Idiyatullin, Bulat; Salnikov, Vadim; Zuev, Yuriy; Gorshkova, Tatyana; Gogolev, Yuri

    2017-11-01

    In the present study, we identified exopolysaccharides of the harmful phytopathogenic bacterium Pectobacterium atrosepticum SCRI1043 and characterized the molecular structure of these polymers. The synthesis of the target polysaccharides was shown to be induced under starvation conditions. Moreover, intensive accumulation of exopolysaccharides occurred during the colonization by bacteria of the xylem vessels of infected plants, where microorganisms formed specific 3D "multicellular" structures-bacterial emboli. Thus, the identified polymers are likely to be involved in the adaptation and virulence of bacteria of Pectobacterium genus. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Quantum chemistry the development of ab initio methods in molecular electronic structure theory

    CERN Document Server

    Schaefer III, Henry F

    2004-01-01

    This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi

  14. Cupin: A candidate molecular structure for the Nep1-like protein family

    OpenAIRE

    Pereira Gonçalo AG; Cabrera Odalys G; Echeverrigaray Sérgio; Lemke Ney; Sinigaglia Marialva; Cechin Adelmo L; Mombach José CM

    2008-01-01

    Abstract Background NEP1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis. Some NLPs induce a hypersensitive-like response in dicot plants though the basis for this response remains unclear. In addition, the spatial structure and the role of these highly conserved proteins are not known. Results We predict a 3d-structure for the β-rich section of the NLPs based on alignments, prediction tools and molecular dynamics. We calculated a consensus sequence from 42 NL...

  15. Electronic and magnetic structure of LaSr-2×4 manganese oxide molecular sieve nanowires.

    Science.gov (United States)

    Gazquez, Jaume; Carretero-Genevrier, Adrián; Gich, Martí; Mestres, Narcís; Varela, María

    2014-06-01

    In this study we combine scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic circular dichroism to get new insights into the electronic and magnetic structure of LaSr-2×4 manganese oxide molecular sieve nanowires integrated on a silicon substrate. These nanowires exhibit ferromagnetism with strongly enhanced Curie temperature (T c >500 K), and we show that the new crystallographic structure of these LaSr-2×4 nanowires involves spin orbital coupling and a mixed-valence Mn3+/Mn4+, which is a must for ferromagnetic ordering to appear, in line with the standard double exchange explanation.

  16. Lyotropic structure of poly(aniline N-alkylsulfonate)s by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jee Hwan [Kumho Chem. Lab., Korea Kumho Petrochem. Co., Ltd., P.O. Box 64, Yuseong, Taejeon 305-600 (Korea, Republic of); Kim, Jonghun [Kumho Chem. Lab., Korea Kumho Petrochem. Co., Ltd., P.O. Box 64, Yuseong, Taejeon 305-600 (Korea, Republic of); Lee, Kwanyoung [Kumho Chem. Lab., Korea Kumho Petrochem. Co., Ltd., P.O. Box 64, Yuseong, Taejeon 305-600 (Korea, Republic of); Lee, Hosull [Kumho Chem. Lab., Korea Kumho Petrochem. Co., Ltd., P.O. Box 64, Yuseong, Taejeon 305-600 (Korea, Republic of); Kim, Eunkyoung [Adv. Polym. Div., Korea Research Inst. of Chem. Tech., P.O. Box 107, Yuseong, Taejeon 305-600 (Korea, Republic of); Rhee, Suh Bong [Adv. Polym. Div., Korea Research Inst. of Chem. Tech., P.O. Box 107, Yuseong, Taejeon 305-600 (Korea, Republic of)

    1995-03-01

    The molecular dynamics simulation has been performed to investigate the liquid crystalline structure of poly(aniline N-alkylsulfonate)s, where alkyls are propyl, butyl, and pentyl. In the initial model for calculation, each layer of liquid crystalline assembly was regularly spaced and water molecules were incorporated as solvent. The equilibrated orientation shows tilted alkylsulfonate chains and structural variation of polymer backbone. The interchain distances obtained by N-N radial distribution function are 11A in the parallel direction and 5 similar 6A in the vertical direction. (orig.)

  17. The molecular structure of niobium pentachloride by quantum chemical calculations and gas electron diffraction

    Science.gov (United States)

    Gove, S. K.; Gropen, O.; Fægri, K.; Haaland, A.; Martinsen, K.-G.; Strand, T. G.; Volden, H. V.; Swang, O.

    1999-08-01

    The molecular structure of NbCl 5 was determined experimentally by gas electron diffraction and computationally by structure optimisation of D 3h models. The bond distances obtained by ab initio calculations with very large basis sets, relativistic effects included through the one-electron Douglas-Kroll method and all electrons correlated at the MP2 level and by gas electron diffraction are: (calc/exp) Nb-Cl ax=230.7/230.6(5) pm and Nb-Cl eq=227.0/227.5(4) pm.

  18. Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase.

    Science.gov (United States)

    McCorvie, Thomas J; Kopec, Jolanta; Pey, Angel L; Fitzpatrick, Fiona; Patel, Dipali; Chalk, Rod; Shrestha, Leela; Yue, Wyatt W

    2016-06-01

    Classic galactosemia is a potentially lethal disease caused by the dysfunction of galactose 1-phosphate uridylyltransferase (GALT). Over 300 disease-associated GALT mutations have been reported, with the majority being missense changes, although a better understanding of their underlying molecular effects has been hindered by the lack of structural information for the human enzyme. Here, we present the 1.9 Å resolution crystal structure of human GALT (hGALT) ternary complex, revealing a homodimer arrangement that contains a covalent uridylylated intermediate and glucose-1-phosphate in the active site, as well as a structural zinc-binding site, per monomer. hGALT reveals significant structural differences from bacterial GALT homologues in metal ligation and dimer interactions, and therefore is a zbetter model for understanding the molecular consequences of disease mutations. Both uridylylation and zinc binding influence the stability and aggregation tendency of hGALT. This has implications for disease-associated variants where p.Gln188Arg, the most commonly detected, increases the rate of aggregation in the absence of zinc likely due to its reduced ability to form the uridylylated intermediate. As such our structure serves as a template in the future design of pharmacological chaperone therapies and opens new concepts about the roles of metal binding and activity in protein misfolding by disease-associated mutants. © The Author 2016. Published by Oxford University Press.

  19. Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications

    Energy Technology Data Exchange (ETDEWEB)

    Noridomi, Kaori; Watanabe, Go; Hansen, Melissa N.; Han, Gye Won; Chen, Lin (USC)

    2017-04-25

    The nicotinic acetylcholine receptor (nAChR) is a major target of autoantibodies in myasthenia gravis (MG), an autoimmune disease that causes neuromuscular transmission dysfunction. Despite decades of research, the molecular mechanisms underlying MG have not been fully elucidated. Here, we present the crystal structure of the nAChR α1 subunit bound by the Fab fragment of mAb35, a reference monoclonal antibody that causes experimental MG and competes with ~65% of antibodies from MG patients. Our structures reveal for the first time the detailed molecular interactions between MG antibodies and a core region on nAChR α1. These structures suggest a major nAChR-binding mechanism shared by a large number of MG antibodies and the possibility to treat MG by blocking this binding mechanism. Structure-based modeling also provides insights into antibody-mediated nAChR cross-linking known to cause receptor degradation. Our studies establish a structural basis for further mechanistic studies and therapeutic development of MG.

  20. In-silico bonding schemes to encode chemical bonds involving sharing of electrons in molecular structures.

    Science.gov (United States)

    Punnaivanam, Sankar; Sathiadhas, Jerome Pastal Raj; Panneerselvam, Vinoth

    2016-05-01

    Encoding of covalent and coordinate covalent bonds in molecular structures using ground state valence electronic configuration is achieved. The bonding due to electron sharing in the molecular structures is described with five fundamental bonding categories viz. uPair-uPair, lPair-uPair, uPair-lPair, vPair-lPair, and lPair-lPair. The involvement of lone pair electrons and the vacant electron orbitals in chemical bonding are explained with bonding schemes namely "target vacant promotion", "source vacant promotion", "target pairing promotion", "source pairing promotion", "source cation promotion", "source pairing double bond", "target vacant occupation", and "double pairing promotion" schemes. The bonding schemes are verified with a chemical structure editor. The bonding in the structures like ylides, PCl5, SF6, IF7, N-Oxides, BF4(-), AlCl4(-) etc. are explained and encoded unambiguously. The encoding of bonding in the structures of various organic compounds, transition metals compounds, coordination complexes and metal carbonyls is accomplished. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Molecular structure and modeling studies of azobenzene derivatives containing maleimide groups.

    Science.gov (United States)

    Cojocaru, Corneliu; Airinei, Anton; Fifere, Nicusor

    2013-01-01

    The molecular orbital calculations have been carried out to investigate the structure and stability of (E) / (Z) isomers of some azobenzene derivatives containing maleimide groups. A special attention has been devoted to the compound (E)-1, (E)-1-(4-(phenyldiazenyl)phenyl)-1H-pyrrole-2,5-dione, for which the available crystallographic experimental data have been used to validate the modeling structures computed at the theoretical levels AM1, PM3, RHF/6-31+G(d,p) and B3LYP/6-31+G(d,p). To this end, the discrepancy between experimental and calculated structural parameters has been ascertained in terms of root-mean-square deviation (RMSD). The quantum calculations at the level RHF/6-31+G(d,p) yield the most accurate results on (E)-1 structure giving a deviation error from crystallographic data of about 5.00% for bond lengths and 0.97% for interatomic angles. The theoretical electronic absorption spectra of azobenzene derivatives of concern have been computed by means of configuration-interaction method (CI) at the level of semi-empirical Hamiltonians (AM1 and PM3). Likewise, the molecular energy spectra, electrostatic potential and some quantitative structure activity relationship (QSAR) properties of studied molecules have been computed and discussed in the paper.

  2. Protein Structure Refinement via Molecular-Dynamics Simulations: What works and what does not?

    Science.gov (United States)

    Feig, Michael; Mirjalili, Vahid

    2017-01-01

    Protein structure refinement during CASP11 by the Feig group is described. Molecular dynamics simulations were used in combination with an improved selection and averaging protocol. On average, modest refinement was achieved with some targets improved significantly. Analysis of the CASP submission from our group focused on refinement success vs. amount of sampling, refinement of different secondary structure elements and whether refinement varied as a function of which group provided initial models. The refinement of local stereochemical features was examined via the MolProbity score and an updated protocol was developed that can generate high-quality structures with very low MolProbity scores for most starting structures with modest computational effort. PMID:26234208

  3. Structural Characterization of the Low-Molecular-Weight Heparin Dalteparin by Combining Different Analytical Strategies

    Directory of Open Access Journals (Sweden)

    Antonella Bisio

    2017-06-01

    Full Text Available A number of low molecular weight heparin (LMWH products are available for clinical use and although all share a similar mechanism of action, they are classified as distinct drugs because of the different depolymerisation processes of the native heparin resulting in substantial pharmacokinetic and pharmacodynamics differences. While enoxaparin has been extensively investigated, little information is available regarding the LMWH dalteparin. The present study is focused on the detailed structural characterization of Fragmin® by LC-MS and NMR applied both to the whole drug and to its enzymatic products. For a more in-depth approach, size homogeneous octasaccharide and decasaccharide components together with their fractions endowed with high or no affinity toward antithrombin were also isolated and their structural profiles characterized. The combination of different analytical strategies here described represents a useful tool for the assessment of batch-to-batch structural variability and for comparative evaluation of structural features of biosimilar products.

  4. Molecular dynamics simulations of the structure evolutions of Cu-Zr metallic glasses under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Lin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Tian, Zean; Xiao, Shifang [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Ao, Bingyun [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Chen, Piheng, E-mail: chenpiheng@caep.cn [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Hu, Wangyu [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2017-02-15

    Highlights: • The structural evolution of Cu{sub 64.5}Zr{sub 35.5} MG under irradiation was studied. • The structure clusters were analyzed using the LSCA method. • Most of these radiation damages have been self-recovered quickly. - Abstract: Molecular dynamics simulations have been performed to investigate the structural evolution of Cu{sub 64.5}Zr{sub 35.5} metallic glasses under irradiation. The largest standard cluster analysis (LSCA) method was used to quantify the microstructure within the collision cascade regions. It is found that the majority of clusters within the collision cascade regions are full and defective icosahedrons. Not only the smaller structures (common neighbor subcluster) but also primary clusters greatly changed during the collision cascades; while most of these radiation damages self-recover quickly in the following quench states. These findings indicate the Cu-Zr metallic glasses have excellent irradiation-resistance properties.

  5. A model of the molecular structure of toxin III from Anemonia sulcata.

    Science.gov (United States)

    Smythies, J R

    1981-06-01

    A Chou and Fasman analysis of the Toxin III from Anemonia sulcata reveals that this short polypeptide (27 residues) probably is mostly made up of a nearly continuous beta-turn structure (7 beta-turns). This structure allows only one possible solution of disulfide bond formation (3-23, 4-17, 6-17). The resulting rigid structure has very few degrees of freedom. Molecular models indicate that one side of the molecule bearing tyr(7), trp(8), pro(25), glu(20) and lys(20) is very similar in its three-dimensional structure to that part of the molecule of variant III toxin from Centruroides sculpturatus as revealed by x-ray crystallography, bearing tyr(4), trp(47), gly(3), glu(2) and lys(1), all of which are invariant or allow only very conservative substitutions. This analysis, therefore, suggests a specific conformation for Toxin III.

  6. Effects of molecular structural variants on serum Krebs von den Lungen-6 levels in sarcoidosis

    Directory of Open Access Journals (Sweden)

    Shigemura Masahiko

    2012-07-01

    Full Text Available Abstract Background Serum Krebs von den Lungen-6 (KL-6, which is classified as human mucin-1 (MUC1, is used as a marker of sarcoidosis and other interstitial lung diseases. However, there remain some limitations due to a lack of information on the factors contributing to increased levels of serum KL-6. This study was designed to investigate the factors contributing to increased levels of serum KL-6 by molecular analysis. Methods Western blot analysis using anti-KL-6 antibody was performed simultaneously on the bronchoalveolar lavage fluid (BALF and serum obtained from 128 subjects with sarcoidosis. Results KL-6/MUC1 in BALF showed three bands and five band patterns. These band patterns were associated with the MUC1 genotype and the KL-6 levels. KL-6/MUC1 band patterns in serum were dependent on molecular size class in BALF. Significantly increased levels of serum KL-6, serum/BALF KL-6 ratio and serum soluble interleukin 2 receptor were observed in the subjects with influx of high molecular size KL-6/MUC1 from the alveoli to blood circulation. The multivariate linear regression analysis involving potentially relevant variables such as age, gender, smoking status, lung parenchymal involvement based on radiographical stage and molecular size of KL-6/MUC1 in serum showed that the molecular size of KL-6/MUC1 in serum was significant independent determinant of serum KL-6 levels. Conclusions The molecular structural variants of KL-6/MUC1 and its leakage behavior affect serum levels of KL-6 in sarcoidosis. This information may assist in the interpretation of serum KL-6 levels in sarcoidosis.

  7. Structural and mechanical properties of organogels: Role of oil and gelator molecular structure.

    Science.gov (United States)

    Cerqueira, Miguel A; Fasolin, Luiz H; Picone, Carolina S F; Pastrana, Lorenzo M; Cunha, Rosiane L; Vicente, António A

    2017-06-01

    This work aims at evaluating the influence of oil and gelator structure on organogels' properties through rheological measurements, polarized microscopy and small-angle X-ray scattering (SAXS). Four different food-grade gelators (glyceryl tristearate - GT; sorbitan tristearate - ST; sorbitan monostearate - SM and glyceryl monostearate - GM) were tested in medium-chain triglyceride and high oleic sunflower (MCT and LCT, respectively) oil phases. Organogels were prepared by mixing the oil phase and gelator at different concentrations (5, 10, 15, 20 and 25%) at 80°C during 30min. All organogels presented birefringence confirming the formation of a crystalline structure that changed with the increase of the gelator concentration. Through the evaluation of SAXS peaks it has been confirmed that all structures were organized as lamellas but with different d-spacing values. These particularities at micro- and nanoscale level lead to differences in rheological properties of organogels. Results showed that the oil type (i.e. medium- and long-chain triglyceride) and hydrophilic head of gelators (i.e. sorbitan versus glyceryl) exert influence on the organogels physical properties, but the presence of monostearate leads to the formation of stronger organogels. Moreover, gels produced with LCT were stronger and gelled at lower organogelator concentration than MCT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Partially collapsed cristobalite structure in the non molecular phase V in CO2

    Science.gov (United States)

    Santoro, M.; Gorelli, F.; Bini, R.; Haines, J.; Cambon, O.; Levelut, C.; Montoya, J.; Scandolo, S.

    2012-12-01

    Non molecular CO2 has been a leading subject of study in high pressure physics and chemistry for the past decade. It gives rise to a novel carbon chemistry and has implications for planetary science. The phase diagram of CO2 includes several non molecular phases above 30 GPa. Among these materials CO2-V is the first discovered. CO2-V appears to be similar to some extent to silica and is relatively hard, but its structure is controversial. Simulation studies show that the thermodynamic phase corresponding to CO2-V should be a beta-cristobalite related structure (I-42d) with tetrahedral carbon coordination similar to silicon in SiO2, whereas the structure reported experimentally appears to be highly metastable. We investigated CO2-V obtained from molecular CO2 at 40-50 GPa and T>1500 K by synchrotron X-ray diffraction, optical spectroscopy, and computer simulations (Santoro et al., PNAS 2012). The structure refined by the Rietveld method is a partially collapsed variant of beta-cristobalite SiO2, space group I-42d, in which the CO4 tetrahedra are tilted by 38.4° about the c-axis. The existence of CO4 tetrahedra (average O-C-O angle of 109.5°) is demonstrated. This significantly adds to the knowledge of the chemistry of carbon, which now forms mineral phases similar to SiO2 and has potential implications for the Earth interior.he structure of CO2-V (I-42d) at 43 GPa.

  9. Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Galo E. Balatti

    2017-10-01

    Full Text Available In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG model within the MARTINI force field; we simulated the peptide–lipid system from three different initial configurations: (a peptides in water in the presence of a pre-equilibrated lipid bilayer; (b peptides inside the hydrophobic core of the membrane; and (c random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide–lipid ratios. The exploration of the possible lipid–peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies.

  10. Molecular structure and thermodynamic predictions to create highly sensitive microRNA biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Larkey, Nicholas E.; Brucks, Corinne N.; Lansing, Shan S.; Le, Sophia D.; Smith, Natasha M.; Tran, Victoria; Zhang, Lulu; Burrows, Sean M., E-mail: sean.burrows@oregonstate.edu

    2016-02-25

    Many studies have established microRNAs (miRNAs) as post-transcriptional regulators in a variety of intracellular molecular processes. Abnormal changes in miRNA have been associated with several diseases. However, these changes are sometimes subtle and occur at nanomolar levels or lower. Several biosensing hurdles for in situ cellular/tissue analysis of miRNA limit detection of small amounts of miRNA. Of these limitations the most challenging are selectivity and sensor degradation creating high background signals and false signals. Recently we developed a reporter+probe biosensor for let-7a that showed potential to mitigate false signal from sensor degradation. Here we designed reporter+probe biosensors for miR-26a-2-3p and miR-27a-5p to better understand the effect of thermodynamics and molecular structures of the biosensor constituents on the analytical performance. Signal changes from interactions between Cy3 and Cy5 on the reporters were used to understand structural aspects of the reporter designs. Theoretical thermodynamic values, single stranded conformations, hetero- and homodimerization structures, and equilibrium concentrations of the reporters and probes were used to interpret the experimental observations. Studies of the sensitivity and selectivity revealed 5–9 nM detection limits in the presence and absence of interfering off-analyte miRNAs. These studies will aid in determining how to rationally design reporter+probe biosensors to overcome hurdles associated with highly sensitive miRNA biosensing. - Highlights: • Challenges facing highly sensitive miRNA biosensor designs are addressed. • Thermodynamic and molecular structure design metrics for reporter+probe biosensors are proposed. • The influence of ideal and non-ideal reporter hairpin structures on reporter+probe formation and signal change are discussed. • 5–9 nM limits of detection were observed with no interference from off-analytes.

  11. Correlation study between molecular structure of sesquiterpene lactones and the selective adsorption performance of molecularly imprinted polymers.

    Science.gov (United States)

    Yin, Xiaoying; Liu, Qingshan; Ma, Xingxia; Zhou, Xudong; Zhao, Mingbo; Tu, Pengfei

    2014-08-08

    We preliminarily report that the structure of template molecules and target components correlates with the selective adsorption performance of molecularly imprinted polymer (MIPs) in sesquiterpene lactones. Template molecules involved three categories of sesquiterpene lactones with distinct ring systems: 5-mem lactone ring atractylenolide III, 7-mem lactone ring dehydrocostus lactone, and 10-mem lactone ring costunolide lactone, of which the conformations were verified by variable-temperature (1)H NMR spectroscopy. Reciprocal MIPs were prepared by precipitation polymerization and employed as selective sorbents in the columns of solid phase extraction (SPE). These columns were further used for enriching the mixed adsorption solution of sesquiterpene lactone ingredients and reference components. Finally, the extract of Radix Aucklandiae, a Chinese medicine herb, was used to verify the efficiency of this method. Our results demonstrate that the steric conformational stability of molecules is associated with the selective adsorption of their corresponding MIPs. We have further observed that the maximum adsorption capacity occurs when the target molecule conformation is consistent with that of the template molecule. The addition of more hydrophilic groups correlates with weaker adsorption of MIPs. Our findings provide important information to help guide the selection of appropriate template molecules for synthesis of MIPs with specific adsorption. Copyright © 2014. Published by Elsevier B.V.

  12. Structural conversion of the transformer protein RfaH: new insights derived from protein structure prediction and molecular dynamics simulations.

    Science.gov (United States)

    Balasco, Nicole; Barone, Daniela; Vitagliano, Luigi

    2015-01-01

    Recent structural investigations have shown that the C-terminal domain (CTD) of the transcription factor RfaH undergoes unique structural modifications that have a profound impact into its functional properties. These modifications cause a complete change in RfaH(CTD) topology that converts from an α-hairpin to a β-barrel fold. To gain insights into the determinants of this major structural conversion, we here performed computational studies (protein structure prediction and molecular dynamics simulations) on RfaH(CTD). Although these analyses, in line with literature data, suggest that the isolated RfaH(CTD) has a strong preference for the β-barrel fold, they also highlight that a specific region of the protein is endowed with a chameleon conformational behavior. In particular, the Leu-rich region (residues 141-145) has a good propensity to adopt both α-helical and β-structured states. Intriguingly, in the RfaH homolog NusG, whose CTD uniquely adopts the β-barrel fold, the corresponding region is rich in residues as Val or Ile that present a strong preference for the β-structure. On this basis, we suggest that the presence of this Leu-rich element in RfaH(CTD) may be responsible for the peculiar structural behavior of the domain. The analysis of the sequences of RfaH family (PfamA code PF02357) unraveled that other members potentially share the structural properties of RfaH(CTD). These observations suggest that the unusual conformational behavior of RfaH(CTD) may be rare but not unique.

  13. Detecting Molecular Features of Spectra Mainly Associated with Structural and Non-Structural Carbohydrates in Co-Products from BioEthanol Production Using DRIFT with Uni- and Multivariate Molecular Spectral Analyses

    OpenAIRE

    Zhiyuan Niu; Daalkhaijav Damiran; Arash Azarfar; Peiqiang Yu

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. ...

  14. Studies of the surface structures of molecular crystals and of adsorbed molecular monolayers on the (111) crystal faces of platinum and silver by low-energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Firment, L.E.

    1977-01-01

    The structures of molecular crystal surfaces were investigated for the first time by the use of low-energy electron diffraction (LEED). The experimental results from a variety of molecular crystals were examined and compared as a first step towards understanding the properties of these surfaces on a microscopic level. The method of sample preparation employed, vapor deposition onto metal single-crystal substrates at low temperatures in ultrahigh vacuum, allowed concurrent study of the structures of adsorbed monolayers on metal surfaces and of the growth processes of molecular films on metal substrates. The systems investigated were ice, ammonia, naphthalene, benzene, the n-paraffins (C/sub 3/ to C/sub 8/), cyclohexane, trioxane, acetic acid, propionic acid, methanol, and methylamine adsorbed and condensed on both Pt(111) and Ag(111) surfaces. Electron-beam-induced damage of the molecular surfaces was observed after electron exposures of 10/sup -4/ A sec cm/sup -2/ at 20 eV. Aromatic molecular crystal samples were more resistant to damage than samples of saturated molecules. The quality and orientation of the grown molecular crystal films were influenced by substrate preparation and growth conditions. Forty ordered monolayer structures were observed. 110 figures, 22 tables, 162 references.

  15. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy.

    Science.gov (United States)

    Jarvis, Samuel Paul

    2015-08-21

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions.

  16. Microscopic Structure and Solubility Predictions of Multifunctional Solids in Supercritical Carbon Dioxide: A Molecular Simulation Study.

    Science.gov (United States)

    Noroozi, Javad; Paluch, Andrew S

    2017-02-23

    Molecular dynamics simulations were employed to both estimate the solubility of nonelectrolyte solids, such as acetanilide, acetaminophen, phenacetin, methylparaben, and lidocaine, in supercritical carbon dioxide and understand the underlying molecular-level driving forces. The solubility calculations involve the estimation of the solute's limiting activity coefficient, which may be computed using conventional staged free-energy calculations. For the case of lidocaine, wherein the infinite dilution approximation is not appropriate, we demonstrate how the activity coefficient at finite concentrations may be estimated without additional effort using the dilute solution approximation and how this may be used to further understand the solvation process. Combining with experimental pure-solid properties, namely, the normal melting point and enthalpy of fusion, solubilities were estimated. The results are in good quantitative agreement with available experimental data, suggesting that molecular simulations may be a powerful tool for understanding supercritical processes and the design of carbon dioxide-philic molecular systems. Structural analyses were performed to shed light on the microscopic details of the solvation of different functional groups by carbon dioxide and the observed solubility trends.

  17. Multiscale modeling of complex molecular structure and dynamics with MBN Explorer

    CERN Document Server

    Solov’yov, Ilia A; Solov’yov, Andrey V

    2017-01-01

    This book introduces readers to MesoBioNano (MBN) Explorer – a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface – the MBN Studio – which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science – ranging from the nano- to the meso-scale. MBN Explorer is particularly suited to computing the system’s energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potenti...

  18. Role of Surfactant Molecular Structure on Self Assembly: Aqueous SDBS on Carbon Nanotubes

    Science.gov (United States)

    Suttipong, Manaswee; Thompson, John R.; Tummala, Naga Rajesh; Kitiyanan, Boonyarach; Striolo, Alberto

    2011-03-01

    Stabilizing aqueous dispersions of carbon nanotubes mono-dispersed in diameter and chirality remains elusive. Surfactants have proven useful in deploying ultra-centrifugation techniques, but the molecular mechanism responsible for their effectiveness remains not fully understood. Based on a number of recent molecular simulation results, including those from our group, it appears that the morphology of the self-assembled surfactant aggregates on the carbon nanotubes strongly affects the effective potential of mean force between pairs of interacting carbon nanotubes. In this work we explore the effect of surfactant molecular structure on the properties of aqueous surfactant self-assembled aggregates. We employ equilibrium all-atom molecular dynamics simulations. We consider the surfactant SDBS (sodium dodecyl benzene sulfonate) with benzene ring located on the fifth or on the twelfth carbon atom in the tail, and the surfactant AOT [sodium bis(2-ethylhexyl) sulfosuccinate]. The simulations are conducted at room conditions for different surface coverages on (6,6), (12,12), and (20,20) single walled carbon nanotubes. These new results will help us identify the surfactant properties that allow us to manipulate nanotube-nanotube effective interactions. Research supported by the Department of Energy via CANTEC.

  19. Weak links between fast mobility and local structure in molecular and atomic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Bernini, S. [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Puosi, F. [Laboratoire de Physique de l’École Normale Supérieure de Lyon, UMR CNRS 5672, 46 allée d’Italie, 69007 Lyon (France); Leporini, D., E-mail: dino.leporini@df.unipi.it [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); IPCF-CNR, UOS Pisa, Pisa (Italy)

    2015-03-28

    We investigate by molecular-dynamics simulations, the fast mobility—the rattling amplitude of the particles temporarily trapped by the cage of the neighbors—in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes.

  20. Environmental and climatic determinants of molecular diversity and genetic population structure in a coenagrionid damselfly.

    Directory of Open Access Journals (Sweden)

    Maren Wellenreuther

    Full Text Available Identifying environmental factors that structure intraspecific genetic diversity is of interest for both habitat preservation and biodiversity conservation. Recent advances in statistical and geographical genetics make it possible to investigate how environmental factors affect geographic organisation and population structure of molecular genetic diversity within species. Here we present a study on a common and wide ranging insect, the blue tailed damselfly Ischnuraelegans, which has been the target of many ecological and evolutionary studies. We addressed the following questions: (i Is the population structure affected by longitudinal or latitudinal gradients?; (ii Do geographic boundaries limit gene flow?; (iii Does geographic distance affect connectivity and is there a signature of past bottlenecks?; (iv Is there evidence of a recent range expansion and (vi what is the effect of geography and climatic factors on population structure? We found low to moderate genetic sub-structuring between populations (mean F(ST = 0.06, D(est = 0.12, and an effect of longitude, but not latitude, on genetic diversity. No significant effects of geographic boundaries (e.g. water bodies were found. F(ST-and D(est-values increased with geographic distance; however, there was no evidence for recent bottlenecks. Finally, we did not detect any molecular signatures of range expansions or an effect of geographic suitability, although local precipitation had a strong effect on genetic differentiation. The population structure of this small insect has probably been shaped by ecological factors that are correlated with longitudinal gradients, geographic distances, and local precipitation. The relatively weak global population structure and high degree of genetic variation within populations suggest that I. elegans has high dispersal ability, which is consistent with this species being an effective and early coloniser of new habitats.

  1. Molecular characterization of pouched amphistome parasites (Trematoda: Gastrothylacidae) using ribosomal ITS2 sequence and secondary structures.

    Science.gov (United States)

    Ghatani, S; Shylla, J A; Tandon, V; Chatterjee, A; Roy, B

    2012-03-01

    Members of the family Gastrothylacidae (Trematoda: Digenea: Paramphistomata) are parasitic in ruminants throughout Africa and Asia. In north-east India, five species of pouched amphistomes, namely Fischoederius cobboldi, F. elongatus, Gastrothylax crumenifer, Carmyerius spatiosus and Velasquezotrema tripurensis, belonging to this family have been reported so far. In the present study, the molecular phylogeny of these five gastrothylacid species is derived using the second internal transcribed spacer (ITS2) sequence and secondary structure analyses. ITS2 sequence analysis was carried out to see the occurrence of interspecific variations among the species. Phylogenetic analyses were performed for primary sequence data alone as well as the combined sequence-structure information using neighbour-joining and Bayesian approaches. The sequence analysis revealed that there exist considerable interspecific variations among the various gastrothylacid fluke species. In contrast, the inferred secondary structures for the five species using minimum free energy modelling showed structural identities, in conformity with the core four-helix domain structure that has been recently identified as common to almost all eukaryotic taxa. The phylogenetic tree reconstructed using combined sequence-structure data showed a better resolution, as compared to the one using sequence data alone, with the gastrothylacid species forming a monophyletic group that is well separated from members of the other family, Paramphistomidae, of the amphistomid flukes group. The study provides the molecular characterization based on primary sequence data of the rDNA ITS2 region of the gastrothylacid amphistome flukes. Results also demonstrate the phylogenetic utility of the ITS2 sequence-secondary structure data for inferences at higher taxonomic levels.

  2. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage.

    Science.gov (United States)

    Lei, Yaogeng; Hannoufa, Abdelali; Yu, Peiqiang

    2017-01-29

    Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.

  3. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    Science.gov (United States)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  4. Performances and working mechanism of a novel polycarboxylate superplasticizer synthesized through changing molecular topological structure.

    Science.gov (United States)

    Liu, Xiao; Guan, Jianan; Lai, Guanghong; Wang, Ziming; Zhu, Jie; Cui, Suping; Lan, Mingzhang; Li, Huiqun

    2017-10-15

    A novel star-shaped polycarboxylate superplasticizer (SPCE) was synthesized through a simple two-step method. 1 H Nuclear Magnetic Resonance ( 1 H NMR) and Infrared Spectroscopy (IR) measurements were used for structural characterization. SPCE and comb-shaped polycarboxylate superplasticizer (CPCE) with same molecular weights were designed and synthesized. The cement paste containing SPCE exhibited better fluidity, fluidity retention, water reduction, 25% lower saturated dosage of PCE, 10% longer setting time, lower hydration heat, more delayed hydration heat evolution and lower amount of hydration products at early ages. Furthermore, the adsorption behavior of SPCE and CPCE in cement pastes and the zeta potential were investigated, and then the working mechanism of SPCE was theoretically explained. It is interesting that changing topological structure from comb-shape to star-shape can achieve the optimization of dispersion effect, and further improve the working effectiveness. The aims of this study are to provide a new avenue to synthesize superplasticizer with novel structure achieving the chemical diversity of superplasticizer structure, and to verify the contribution of optimizing molecular shape. This new type of superplasticizer can be used as a rheology modifying agent in fresh cement-based materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures

    Science.gov (United States)

    Rosas-Trigueros, Jorge Luis; Correa-Basurto, José; Guadalupe Benítez-Cardoza, Claudia; Zamorano-Carrillo, Absalom

    2011-01-01

    Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment. PMID:21936009

  6. Optical and Structural Properties of ESIPT Inspired HBT-Fluorene Molecular Aggregates and Liquid Crystals.

    Science.gov (United States)

    Padalkar, Vikas S; Tsutsui, Yusuke; Sakurai, Tsuneaki; Sakamaki, Daisuke; Tohnai, Norimitsu; Kato, Kenichi; Takata, Masaki; Akutagawa, Tomoyuki; Sakai, Ken-Ichi; Seki, Shu

    2017-11-16

    In bulk materials, positional isomers not only help in understanding how slight difference in molecular structure alters the crystal packing and optical properties, but also play a key role in developing new type of materials for functional applications. A detailed study on the photophysical properties of fluorene-HBT positional isomers in solution and in the solid state providing a molecular level understanding of the factors which influence fluorescence behavior is reported. Two molecules Ia and IIa were synthesized by Suzuki coupling reaction and their photophysical properties were compared to positional isomers Ib and IIb. Crystal structure analyses and density functional theory (DFT) computation studies were performed to understand structure-properties relation and the results reveal that changing substitution pattern has a marked influence on their packing modes and luminescence properties. Strong noncovalent interactions (π-π) in the solid state hamper the excited state intramolecular proton transfer (ESIPT) process which causes fluorescence quenching in the solid state (Ia and IIa = Φf, 28-40%; Ib and IIb = Φf, 55-67%). Compounds show solvent-responsive and aggregation induced emission (AIE) properties. Bent structures of Ia with double and symmetric substitution of ESIPT motifs exhibit particularly unique condensed phase upon heating, confirmed as a nematic liquid crystalline phase, and this is the first report on the ESIPT and AIE active liquid crystalline materials with a banana-shaped molecule.

  7. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yaogeng; Hannoufa, Abdelali; Yu, Peiqiang

    2017-01-29

    Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.

  8. Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Debora Lika, E-mail: dmakino@biochem.mpg.de; Conti, Elena [Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany)

    2013-11-01

    The crystallographic steps towards the structure determination of a complete eukaryotic exosome complex bound to RNA are presented. Phasing of this 11-protein subunit complex was carried out via molecular replacement. The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3′ degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryotic exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented.

  9. Xanthomonas citri pv. citri Pathotypes: LPS Structure and Function as Microbe-Associated Molecular Patterns.

    Science.gov (United States)

    Di Lorenzo, Flaviana; Silipo, Alba; Andersen Gersby, Lotte Bettina; Palmigiano, Angelo; Lanzetta, Rosa; Garozzo, Domenico; Boyer, Claudine; Pruvost, Olivier; Newman, Mari-Anne; Molinaro, Antonio

    2017-04-18

    Xanthomonas citri pv. citri is the pathogen responsible for Asiatic citrus canker, one of the most serious citrus diseases worldwide. The lipopolysaccharide (LPS) molecule has been demonstrated to be involved in X. citri pv. citri virulence. Despite enormous progress in investigations of the molecular mechanisms for bacterial pathogenicity, determination of the detailed LPS structure-activity relationship is limited, as the current knowledge is mainly based on structural determination of one X. citri pv. citri strain. As X. citri pv. citri strains are distinguished into three main pathogenicity groups, we characterized the full structure of the LPS from two pathotypes that differ in their host-range specificity. This revealed an intriguing difference in LPS O-chain structure. We also tested the LPSs and isolated lipid A moieties for their ability to act as microbe-associated molecular patterns in Arabidopsis thaliana. Both LPS/lipid As induced ROS accumulation, but no difference was observed between the two pathotypes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stability of Y/MCM-48 composite molecular sieve with mesoporous and microporous structures

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2014-12-01

    Full Text Available Y/MCM-48 composite molecular sieve was hydrothermally synthesized at different crystallization temperatures and crystallization times using ethyl orthosilicate as Si source and cetyltrimethyl ammonium bromide as template with the aid of fluoride ions and was characterized by X-ray diffraction, N2 physical adsorption technique, scanning electron microscopy and transmission electron microscopy. The thermal, hydrothermal, acidic, and basic stabilities of the Y/MCM-48 composite were investigated. The results show that Y/MCM-48 composite molecular sieve with meso- and microporous structures was synthesized successfully at 120 °C for 36 h. The Y/MCM-48 composite has the surface area of 864 m2/g and the average pore size is ca. 2.48 nm. The bi-porous structure in composite molecular sieve still maintains its stability even after thermal treatment at 800 °C for 4 h or hydrothermal treatment at 100 °C for 48 h. After treatment in 1 mol/L hydrochloric acid solution or 1 mol/L sodium hydroxide solution for 48 h, the Y/MCM-48 composite exhibits good acidic stability. The acidic stability is superior to the basic stability at the same treatment time.

  11. Correlation spectroscopy and molecular dynamics simulations to study the structural features of proteins.

    Directory of Open Access Journals (Sweden)

    Antonio Varriale

    Full Text Available In this work, we used a combination of fluorescence correlation spectroscopy (FCS and molecular dynamics (MD simulation methodologies to acquire structural information on pH-induced unfolding of the maltotriose-binding protein from Thermus thermophilus (MalE2. FCS has emerged as a powerful technique for characterizing the dynamics of molecules and it is, in fact, used to study molecular diffusion on timescale of microsecond and longer. Our results showed that keeping temperature constant, the protein diffusion coefficient decreased from 84±4 µm(2/s to 44±3 µm(2/s when pH was changed from 7.0 to 4.0. An even more marked decrease of the MalE2 diffusion coefficient (31±3 µm(2/s was registered when pH was raised from 7.0 to 10.0. According to the size of MalE2 (a monomeric protein with a molecular weight of 43 kDa as well as of its globular native shape, the values of 44 µm(2/s and 31 µm(2/s could be ascribed to deformations of the protein structure, which enhances its propensity to form aggregates at extreme pH values. The obtained fluorescence correlation data, corroborated by circular dichroism, fluorescence emission and light-scattering experiments, are discussed together with the MD simulations results.

  12. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation

    KAUST Repository

    Briceño, Kelly

    2012-10-01

    A high molecular weight polyimide (Matrimid) was used as a precursor for fabricating supported carbon molecular sieve membranes without crack formation at 550-700°C pyrolysis temperature. A one-step polymer (polyimide) coating method as precursor of carbon layer was used without needing a prior modification of a TiO 2 macroporous support. The following fabrication variables were optimized and studied to determine their effect on the carbon structure: polymeric solution concentration, solvent extraction, heating rate and pyrolysis temperature. Two techniques (Thermogravimetric analysis and Raman spectroscopy) were used to determine these effects on final carbon structure. Likewise, the effect of the support was also reported as an additional and important variable in the design of supported carbon membranes. Atomic force microscopy and differential scanning calorimetry quantified the degree of influence. Pure gas permeation tests were performed using CH 4, CO, CO 2 and H 2. The presence of a molecular sieving mechanism was confirmed after defects were plugged with PDMS solution at 12wt%. Gas selectivities higher than Knudsen theoretical values were reached with membranes obtained over 650°C, showing as best values 4.46, 4.70 and 10.62 for H 2/N 2, H 2/CO and H 2/CH 4 ratio, respectively. Permeance values were over 9.82×10 -9mol/(m 2Pas)during pure hydrogen permeation tests. © 2012 Elsevier B.V.

  13. Thiobiuret based Ni(II) and Co(III) complexes: Synthesis, molecular structures and DFT studies

    Science.gov (United States)

    Sherzaman, Saira; Sadiq-ur-Rehman; Ahmed, Muhammad Naeem; Khan, Bilal Ahmad; Mahmood, Tariq; Ayub, Khurshid; Tahir, Muhammad Nawaz

    2017-11-01

    Synthesis, molecular structures and DFT investigations of two new complexes of Ni(II) and Co(III) with (Z)-3-(3,3-dimethylbutanoyl)-1,1-diethyl-2-thiobiuret ligand are reported. Characterization of these complexes was achieved by spectroanalytical techniques (FT-IR, UV-vis and 1H NMR), and the structures were finally confirmed unequivocally by single crystal X-ray diffraction analysis. The obtained data of UV-vis, FT-IR and 1HNMR were compared with the literature values which satisfactorily confirmed the synthesis of ligand and their complexes. X-ray studies revealed the square planar and octahedral geometry of both Ni(II) and Co(III) complexes, respectively. Density functional theory (DFT) studies were performed to compare the theoretical results with experimental (X-ray as well as spectroanalytical) results, and good correlation was observed. Frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) analyses revealed the reactivity and charge distribution in both complexes.

  14. Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents

    Science.gov (United States)

    Park, Chanbum; Kanduč, Matej; Chudoba, Richard; Ronneburg, Arne; Risse, Sebastian; Ballauff, Matthias; Dzubiella, Joachim

    2018-01-01

    The performance of modern lithium-sulfur (Li/S) battery systems critically depends on the electrolyte and solvent compositions. For fundamental molecular insights and rational guidance of experimental developments, efficient and sufficiently accurate molecular simulations are thus in urgent need. Here, we construct a molecular dynamics (MD) computer simulation model of representative state-of-the art electrolyte-solvent systems for Li/S batteries constituted by lithium-bis(trifluoromethane)sulfonimide (LiTFSI) and LiNO3 electrolytes in mixtures of the organic solvents 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL). We benchmark and verify our simulations by comparing structural and dynamic features with various available experimental reference systems and demonstrate their applicability for a wide range of electrolyte-solvent compositions. For the state-of-the-art battery solvent, we finally calculate and discuss the detailed composition of the first lithium solvation shell, the temperature dependence of lithium diffusion, as well as the electrolyte conductivities and lithium transference numbers. Our model will serve as a basis for efficient future predictions of electrolyte structure and transport in complex electrode confinements for the optimization of modern Li/S batteries (and related devices).

  15. Effect of repeated cycled crystallization on digestibility and molecular structure of glutinous Bora rice starch.

    Science.gov (United States)

    Borah, Pallab Kumar; Deka, Sankar Chandra; Duary, Raj Kumar

    2017-05-15

    The effects of repeated cycled crystallization on the digestibility and molecular structure of glutinous Bora rice starch were investigated. Temperature cycle 4/45°C; cycle duration 5d; time interval of cycles 24h; and starch to water ratio 1:2 were found to be optimum for SDS (slow digestible starch) product development. The SDS content increased from 18.01±2.11% to 82.81±2.34%. An increase in the resistance to digestion, crystallinity, molecular weight, polydispersity and molecular order was observed in the optimal SDS product. Notably, the FT-IR peak at 947cm-1 and XRD peaks at 2θ≈13° and 20° in the optimal SDS product indicated the formation of V-type complexes even without the presence of co-polymers. Birefringence studies showed a loss of typical Maltese cross in the SDS product and revealed a reorientation of crystalline structures within starch granules, suggestive of imperfect crystallite development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. New Diethyl Ammonium Salt of Thiobarbituric Acid Derivative: Synthesis, Molecular Structure Investigations and Docking Studies

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2015-11-01

    Full Text Available The synthesis of the new diethyl ammonium salt of diethylammonium(E-5-(1,5-bis(4-fluorophenyl-3-oxopent-4-en-1-yl-1,3-diethyl-4,6-dioxo-2-thioxohexaydropyrimidin-5-ide 3 via a regioselective Michael addition of N,N-diethylthiobarbituric acid 1 to dienone 2 is described. In 3, the carboanion of the thiobarbituric moiety is stabilized by the strong intramolecular electron delocalization with the adjacent carbonyl groups and so the reaction proceeds without any cyclization. The molecular structure investigations of 3 were determined by single-crystal X-ray diffraction as well as DFT computations. The theoretically calculated (DFT/B3LYP geometry agrees well with the crystallographic data. The effect of fluorine replacement by chlorine atoms on the molecular structure aspects were investigated using DFT methods. Calculated electronic spectra showed a bathochromic shift of the π-π* transition when fluorine is replaced by chlorine. Charge decomposition analyses were performed to study possible interaction between the different fragments in the studied systems. Molecular docking simulations examining the inhibitory nature of the compound show an anti-diabetic activity with Pa (probability of activity value of 0.229.

  17. Estimating Grass-Soil Bioconcentration of Munitions Compounds from Molecular Structure.

    Science.gov (United States)

    Torralba Sanchez, Tifany L; Liang, Yuzhen; Di Toro, Dominic M

    2017-10-03

    A partitioning-based model is presented to estimate the bioconcentration of five munitions compounds and two munition-like compounds in grasses. The model uses polyparameter linear free energy relationships (pp-LFERs) to estimate the partition coefficients between soil organic carbon and interstitial water and between interstitial water and the plant cuticle, a lipid-like plant component. Inputs for the pp-LFERs are a set of numerical descriptors computed from molecular structure only that characterize the molecular properties that determine the interaction with soil organic carbon, interstitial water, and plant cuticle. The model is validated by predicting concentrations measured in the whole plant during independent uptake experiments with a root-mean-square error (log predicted plant concentration-log observed plant concentration) of 0.429. This highlights the dominant role of partitioning between the exposure medium and the plant cuticle in the bioconcentration of these compounds. The pp-LFERs can be used to assess the environmental risk of munitions compounds and munition-like compounds using only their molecular structure as input.

  18. Using vibrational infrared biomolecular spectroscopy to detect heat-induced changes of molecular structure in relation to nutrient availability of prairie whole oat grains on a molecular basis.

    Science.gov (United States)

    Rahman, M D Mostafizar; Theodoridou, Katerina; Yu, Peiqiang

    2016-01-01

    To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this study was to investigate the effect of heat processing methods on interaction between nutrient availability and molecular structure in terms of functional groups that are related to protein and starch inherent structure of oat grains with two continued years and three replication of each year. The oat grains were kept as raw (control) or heated in an air-draft oven (dry roasting: DO) at 120 °C for 60 min and under microwave irradiation (MIO) for 6 min. The molecular structure features were revealed by vibrational infrared molecular spectroscopy. The results showed that rumen degradability of dry matter, protein and starch was significantly lower (P grains are more sensitive to microwave irradiation than dry heating in terms of protein and starch molecular profile and nutrient availability in ruminants.

  19. Applications of the Information Theory to Problems of Molecular Electronic Structure and Chemical Reactivity

    Directory of Open Access Journals (Sweden)

    Roman F. Nalewajski

    2002-04-01

    Full Text Available Abstract: Recent studies on applications of the information theoretic concepts to molecular systems are reviewed. This survey covers the information theory basis of the Hirshfeld partitioning of molecular electron densities, its generalization to many electron probabilities, the local information distance analysis of molecular charge distributions, the charge transfer descriptors of the donor-acceptor reactive systems, the elements of a “thermodynamic” description of molecular charge displacements, both “vertical” (between molecular fragments for the fixed overall density and “horizontal” (involving different molecular densities, with the entropic representation description provided by the information theory. The average uncertainty measures of bond multiplicities in molecular “communication” systems are also briefly summarized. After an overview of alternative indicators of the information distance (entropy deficiency, missing information between probability distributions the properties of the “stockholder” densities, which minimize the entropy deficiency relative to the promolecule reference, are summarized. In particular, the surprisal analysis of molecular densities is advocated as an attractive information-theoretic tool in the electronic structure theory, supplementary to the familiar density difference diagrams. The subsystem information density equalization rules satisfied by the Hirshfeld molecular fragments are emphasized: the local values of alternative information distance densities of subsystems are equal to the corresponding global value, characterizing the molecule as a whole. These local measures of the information content are semi-quantitatively related to the molecular density difference function. In the density functional theory the effective external potentials of molecular fragments are defined, for which

  20. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity

    Science.gov (United States)

    Sharma, Anamika; Ghabbour, Hazem; Khan, Shams Tabrez; de la Torre, Beatriz G.; Albericio, Fernando; El-Faham, Ayman

    2017-10-01

    A new series of pyrazole-containing s-triazine derivatives were synthesized by reaction of the corresponding s-triazinyl hydrazine derivatives with acetylacetone in the presence of HClO4 or DMF/TEA. The former method allowed the preparation of the target products with higher yields. All compounds were fully characterized. X-ray single crystal diffraction for two representative compounds (4-(4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)morpholine and N-benzyl-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)-1,3,5-triazin-2-amine) was studied and the molecular structures were optimized using the DFT/B3LYP method. The structures were found to be in agreement with X-ray structures. The antimicrobial and antifungal activity of the prepared compounds were tested against the growth of several microorganisms.

  1. A proposed 3D structure for crotamine based on homology building, molecular simulations and circular dichroism.

    Science.gov (United States)

    Siqueira, A M; Martins, N F; De Lima, M E; Diniz, C R; Cartier, A; Brown, D; Maigret, B

    2002-03-01

    Crotamine, isolated from the venom of the South American rattlesnake Crotalus durissus terrificus is a strongly basic 42-amino acid polypeptide belonging to the small basic myotoxin family. As no tridimensional structure is available for this myotoxin subfamily, despite its important pharmacological interest, we propose in this paper a theoretical 3D model for crotamine. Starting from a homology modelling procedure, followed by intensive molecular dynamics (MD) simulations in water and complementary CD experiments, the designed 3D model is the first example of a tridimensional structure in this family of small basic myotoxins. Crotamine, therefore, belongs to a newly identified structural family presenting a common fold also found in beta-defensin and antopleurine-B. The proposed 3D model will be used for future calculations about crotamine aggregation and interaction with membranes.

  2. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Xiang, Ye; Du, Jincheng; Smedskjær, Morten Mattrup

    2013-01-01

    the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role......Addition of alumina to sodium silicate glasses considerably improves the mechanical properties and chemical durability and changes other properties such as ionic conductivity and melt viscosity. As a result, aluminosilicate glasses find wide industrial and technological applications including...... of aluminum as a function of chemical composition in these glasses. The short- and medium-range structures such as aluminum coordination, bond angle distribution around cations, Qn distribution (n bridging oxygen per network forming tetrahedron), and ring size distribution have been systematically studied...

  3. Molecular dynamics simulation studies of structural and dynamical properties of rapidly quenched Al

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.; Liu, C. Y.; Jia, Y.; Yue, G. Q.; Ke, F. S.; Zhao, H. B.; Chen, L. Y.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.

    2014-01-01

    The structural and dynamical properties of rapidly quenched Al are studied by molecular dynamics simulations. The pair-correlation function of high temperature liquid Al agrees well with the experimental results. Different cooling rates are applied with high cooling rates leading to glass formation, while low cooling rates leading to crystallization. The local structures are characterized by Honeycutt–Andersen indices and Voronoi tessellation analysis. The results show that for high cooling rates, the local structures of the liquid and glassy Al are predominated by icosahedral clusters, together with considerable amount of face-centered cubic and hexagonal close packed short-range orders. These short-range order results are further confirmed using the recently developed atomic cluster alignment method. Moreover, the atomic cluster alignment clearly shows the crystal nucleation process in supercooled liquid of Al. Finally, the mean square displacement for the liquid is also analyzed, and the corresponding diffusion coefficient as a function of temperature is calculated.

  4. Structural characterization of a recombinant fusion protein by instrumental analysis and molecular modeling.

    Directory of Open Access Journals (Sweden)

    Zhigang Wu

    Full Text Available Conbercept is a genetically engineered homodimeric protein for the treatment of wet age-related macular degeneration (wet AMD that functions by blocking VEGF-family proteins. Its huge, highly variable architecture makes characterization and development of a functional assay difficult. In this study, the primary structure, number of disulfide linkages and glycosylation state of conbercept were characterized by high-performance liquid chromatography, mass spectrometry, and capillary electrophoresis. Molecular modeling was then applied to obtain the spatial structural model of the conbercept-VEGF-A complex, and to study its inter-atomic interactions and dynamic behavior. This work was incorporated into a platform useful for studying the structure of conbercept and its ligand binding functions.

  5. Quantitative structure-activity relationship and molecular docking studies on designing inhibitors of the perforin.

    Science.gov (United States)

    Song, Fucheng; Cui, Lianhua; Piao, Jinmei; Liang, Hui; Si, Hongzong; Duan, Yunbo; Zhai, Honglin

    2017-10-01

    Quantitative structure-activity relationship (QSAR) studies were performed on a series of 5-arylidene-2thioxoimidazolidin-4-ones derivatives as the inhibitors of perforin and to gain insights about the structural determinants for designing new drug molecules. The heuristic method could explore the descriptors responsible for bioactivity and gain a best linear model with R2 .82. Gene expression programming method generated a novel nonlinear function model with R2 .92 for training set and R2 .85 for test set. The predicted IC50 by QSAR, molecular docking analysis, and property explorer applet show that 42a acts as a well-pleasing potent inhibitor for perforin. This study may lay a reliable theoretical foundation for the development of designing perforin inhibitor structures. © 2017 John Wiley & Sons A/S.

  6. Structures of Human Pumilio with Noncognate RNAs Reveal Molecular Mechanisms for Binding Promiscuity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta,Y.; Nair, D.; Wharton, R.; Aggarwal, A.

    2008-01-01

    Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycBreverse and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, in effect, acting as a 'spacer.' The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.

  7. Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory

    KAUST Repository

    Chremos, Alexandros

    2011-01-01

    The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecular dynamics simulations and density-functional theory. At low temperatures and moderate to high oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the oligomer brush configuration obtained from the simulations can be explained by a density-functional theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the structure factor at small wave numbers attains a value much smaller than the corresponding hard-sphere suspension, the first peak of the pair distribution function is enhanced due to entropic attractions among the particles, and the oligomer brush expands with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains. © 2011 American Institute of Physics.

  8. Materials for organic photovoltaics: insights from detailed structural models and molecular simulations

    Science.gov (United States)

    Casalegno, Mosè; Baggioli, Alberto; Famulari, Antonino; Meille, Stefano V.; Nicolini, Tommaso; Po, Riccardo; Raos, Guido

    2012-10-01

    This paper contains a brief discussion of the role of detailed structural and computational studies, within the general field of organic photovoltaics. We review some of our recent work on poly(3-butylthiophene) (P3BT) and on [6,6]phenyl-C61-butyric acid methyl ester (PCBM). The first is a prototypical hole-transporting material, whose crystal forms I.' and II were solved by us through the combined use of powder Xray diffraction, electron diffraction and molecular modelling. PCBM is a widely used fullerene derivative with electron-transporting properties. It has a rich polymorphism, which to date remains largely unexplored. Our molecular dynamics simulations have revealed interesting features of its solid-state organization, including that in the amorphous phase.

  9. The molecular structure of diethyl cadmium determined by gas-phase electron diffraction

    Science.gov (United States)

    Almond, Matthew J.; Beer, Michael P.; Page, Elizabeth M.; Rice, David A.; Hagen, Kolbjørn; Volden, Hans Vidar

    1993-10-01

    The molecular structure of diethyl cadmium (C 2H 5) 2Cd, has been studied by gas-phase electron diffraction. The molecule was found to consist of a central linear CCdC fragment terminated at each end by a methyl group From consideration of the data it seems that there is a substantial degree of rotation about the CdC bonds Results from a model in which free rotation about the CdC bonds was assumed yielded the following values for the molecular parameters: rg(CdC) = 2.133(6) Å, rg(CC) = 1.537(7) Å, ∠CdCC = 115.81(1.1)°.

  10. Synthesis, crystal structure, and in vitro and in silico molecular docking of novel acyl thiourea derivatives

    Science.gov (United States)

    Haribabu, Jebiti; Subhashree, Govindarajulu Rangabashyam; Saranya, Sivaraj; Gomathi, Kannayiram; Karvembu, Ramasamy; Gayathri, Dasararaju

    2015-08-01

    In the present study, a series of six biologically active substituted acyl thiourea compounds (1-6) has been synthesized from cyclohexanecarbonyl isothiocyanate and various primary amines (2-methyl aniline, aniline, 4-methoxy aniline, 4-ethoxy aniline, benzyl amine and 2-methoxy aniline). The synthesized compounds were characterized by elemental analyses, UV-Visible, FT-IR, 1H & 13C NMR and mass spectroscopic techniques. Three dimensional molecular structure of two compounds (1 and 5) was determined by single crystal X-ray crystallography. All the synthesized compounds show good anti-oxidant and anti-haemolytic activities. In silico molecular docking studies were performed to screen against DprE1 and HSP90 enzymes targeting tuberculosis and cancer respectively.

  11. Polysaccharides As Viscosupplementation Agents: Structural Molecular Characteristics but Not Rheology Appear Crucial to the Therapeutic Response

    Directory of Open Access Journals (Sweden)

    Rita C. Machado

    2017-06-01

    Full Text Available IntroductionMost clinical studies and basic research document viscosupplementation (VS in terms of effectiveness and safety, but only a few highlight its molecular mechanisms of action. Besides, there is generally focus on hyaluronic acid (HA as being the most relevant polysaccharide to reach the clinical endpoints, attributing its effect mainly to its unique viscoelastic properties, related to a high-molecular weight and gel formulation. Usually, studies do not approach the possible biological pathways where HA may interfere, and there is a lack of reports on other biocompatible polysaccharides that could be of use in VS.AimWe briefly review the main proposed mechanisms of action of intra-articular hyaluronic acid (IA-HA treatment and discuss its effectiveness focusing on the role of rheological and intrinsic structural molecular properties of polysaccharides in providing a therapeutic effect.MethodsWe conducted a literature search using PubMed database to find articles dealing with the mechanisms of action of IA-HA treatment and/or emphasizing how the structural properties of the polysaccharide used influenced the clinical outcomes.Discussion/conclusionHA is involved in numerous biochemical interactions that may explain the clinical benefits of VS, most of them resulting from HA–cluster of differentiation 44 receptor interaction. There are other important aspects apart from the molecular size or the colloidal state of the IA-HA involved in VS efficiency that still need to be consolidated. Indeed, it seems that clinical response may be dependent on the intrinsic properties of the polysaccharide, regardless of being HA, rather than to rheology, posing some controversy to previous beliefs.

  12. Molecular Basis of Clay Mineral Structure and Dynamics in Subsurface Engineering Applications

    Science.gov (United States)

    Cygan, R. T.

    2015-12-01

    Clay minerals and their interfaces play an essential role in many geochemical, environmental, and subsurface engineering applications. Adsorption, dissolution, precipitation, nucleation, and growth mechanisms, in particular, are controlled by the interplay of structure, thermodynamics, kinetics, and transport at clay mineral-water interfaces. Molecular details of these processes are typically beyond the sensitivity of experimental and analytical methods, and therefore require accurate models and simulations. Also, basal surfaces and interlayers of clay minerals provide constrained interfacial environments to facilitate the evaluation of these complex processes. We have developed and used classical molecular and quantum methods to examine the complex behavior of clay mineral-water interfaces and dynamics of interlayer species. Bulk structures, swelling behavior, diffusion, and adsorption processes are evaluated and compared to experimental and spectroscopic findings. Analysis of adsorption mechanisms of radionuclides on clay minerals provides a scientific basis for predicting the suitability of engineered barriers associated with nuclear waste repositories and the fate of contaminants in the environment. Similarly, the injection of supercritical carbon dioxide into geological reservoirs—to mitigate the impact of climate change—is evaluated by molecular models of multi-fluid interactions with clay minerals. Molecular dynamics simulations provide insights into the wettability of different fluids—water, electrolyte solutions, and supercritical carbon dioxide—on clay surfaces, and which ultimately affects capillary fluid flow and the integrity of shale caprocks. This work is supported as part of Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program

  13. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Swaminathan, S; Ramkumaar, G R

    2015-02-25

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Synthesis, molecular structure, quantum mechanical studies and urease inhibition assay of two new isatin derived sulfonylhydrazides

    Science.gov (United States)

    Arshad, Muhammad; Jadoon, Mehwish; Iqbal, Zafar; Fatima, Mehwish; Ali, Muhammad; Ayub, Khurshid; Qureshi, Ashfaq Mahmood; Ashraf, Muhammad; Arshad, Muhammad Nadeem; Asiri, Abdullah M.; Waseem, Amir; Mahmood, Tariq

    2017-04-01

    Two new isatin derivatives (E)-N‧-(1-allyl-2-oxoindolin-3-ylidene)-4-methylbenzenesulfono-hydrazide (5) and (E)-N‧-(1-allyl-2-oxoindolin-3-ylidene)-4-chlorobenzenesulfono-hydrazide (6) were synthesized in good yields by adopting two component synthetic methodology. The structure elucidation was accomplished with the help of UV-vis., FT-IR and NMR (1H and 13C) spectroscopic techniques. Suitable crystals were grown by slow evaporation method and structures were confirmed unequivocally with the help of single crystal X-ray diffraction analysis. Both isatin derivatives 5 and 6 exist in triclinic crystal packing having space group P-1. Crystal structures of both compounds showed that the geometries are stabilized by several intermolecular hydrogen bonds. Quantum mechanical calculations performed at density functional theory (DFT) level confirmed the experimental spectroscopic (UV-vis., FT-IR and 1H NMR) as well as X-ray diffraction results. Kinetic stability, reactivity, electrophilicity and nucleophilic behavior of both the derivatives was elaborated using frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) analyses. Enzyme inhibition potential of both compounds was tested in vitro against Bacillus pasteurii urease and both compounds retarded the enzymatic activity with IC50 values of 39.46 ± 0.12 μM and 148.35 ± 0.16 μM respectively.

  15. On the emergence of molecular structure from atomic shape in the 1/r2 harmonium model.

    Science.gov (United States)

    Müller-Herold, Ulrich

    2006-01-07

    The formal similarity of the three-body Hamiltonians for helium and the hydrogen molecule ion is used to demonstrate the unfolding of a rotating dumbbell-like proton distribution from a (1s)2-type electron distribution by smooth variation of the particles' masses in the 1/r2 harmonium model. The 1/r2 harmonium is an exactly solvable modification of the harmonium model (also known as Hooke's law atom) where the attraction between different particles is harmonic and the repulsion between the two equal particles is given by a 1/r2 potential. The dumbbell-like molecular structure appears as an expression of increasing spatial correlation due to increasing mass. It gradually appears in the one-density distribution of the two equal particles if their mass exceeds a critical value depending on the mass of the third particle. For large mass of the equal particles, their one-density distribution approaches an asymptotic form derived from the Born-Oppenheimer treatment of H2+ in the 1/r2 harmonium model. Below the critical value, the one density is a spherical, Gaussian-type atomic density distribution with a maximum at the center of mass. The topological transition at the critical value separates molecular structure and atomic shape as two qualitatively different manifestations of spatial structure.

  16. Structure and Mechanical Characterization of DNA i-Motif Nanowires by Molecular Dynamics Simulation

    Science.gov (United States)

    Singh, Raghvendra Pratap; Blossey, Ralf; Cleri, Fabrizio

    2013-01-01

    We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual C⋅C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression, and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young’s and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties. PMID:24359754

  17. Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition.

    Science.gov (United States)

    Shieh, Sean R; Jarrige, Ignace; Wu, Min; Hiraoka, Nozomu; Tse, John S; Mi, Zhongying; Kaci, Linada; Jiang, Jian-Zhong; Cai, Yong Q

    2013-11-12

    Knowledge of the high-pressure behavior of carbon dioxide (CO2), an important planetary material found in Venus, Earth, and Mars, is vital to the study of the evolution and dynamics of the planetary interiors as well as to the fundamental understanding of the C-O bonding and interaction between the molecules. Recent studies have revealed a number of crystalline polymorphs (CO2-I to -VII) and an amorphous phase under high pressure-temperature conditions. Nevertheless, the reported phase stability field and transition pressures at room temperature are poorly defined, especially for the amorphous phase. Here we shed light on the successive pressure-induced local structural changes and the molecular-to-nonmolecular transition of CO2 at room temperature by performing an in situ study of the local electronic structure using X-ray Raman scattering, aided by first-principle exciton calculations. We show that the transition from CO2-I to CO2-III was initiated at around 7.4 GPa, and completed at about 17 GPa. The present study also shows that at ~37 GPa, molecular CO2 starts to polymerize to an extended structure with fourfold coordinated carbon and minor CO3 and CO-like species. The observed pressure is more than 10 GPa below previously reported. The disappearance of the minority species at 63(± 3) GPa suggests that a previously unknown phase transition within the nonmolecular phase of CO2 has occurred.

  18. Dependence of hotspot criticality on molecular structure: amorphous vs. crystalline RDX

    Science.gov (United States)

    Sakano, Michael; Hamilton, Brenden; Islam, Md Mahbubul; Strachan, Alejandro

    2017-06-01

    Recent large-scale molecular dynamics (MD) simulations showed that hotspots resulting from the dynamical collapse of a void are significantly more reactive that nominally identical ones (in terms of size and thermodynamic conditions) but created under equilibrium conditions. In this work we assess whether the molecular disorder caused by the pore collapse is the main culprit for the increased reactivity of the dynamical hot spot. We use MD with the reactive force field ReaxFF to characterize the kinetics of decomposition of crystalline and amorphous RDX and to characterize the criticality of cylindrical hotspots in both materials. The simulations indicate negligible differences in the reactivity between the two structures when subjected to homogeneous heating. We also studied the chemical decomposition and reaction of cylindrical hotspots of various sizes and temperatures in the two structures. Our preliminary results indicate that hotspots in amorphous RDX are more reactive and, for a given size, transition to a deflagration wave at lower temperatures. We will discuss the possible origin of these surprising observation, including differences in thermal conductivity, temperature-induced structural transformations and the difference in exothermicity between the two systems..

  19. Structural insights into the molecular mechanism of the m(6)A writer complex.

    Science.gov (United States)

    Śledź, Paweł; Jinek, Martin

    2016-09-14

    Methylation of adenosines at the N(6) position (m(6)A) is a dynamic and abundant epitranscriptomic mark that regulates critical aspects of eukaryotic RNA metabolism in numerous biological processes. The RNA methyltransferases METTL3 and METTL14 are components of a multisubunit m(6)A writer complex whose enzymatic activity is substantially higher than the activities of METTL3 or METTL14 alone. The molecular mechanism underpinning this synergistic effect is poorly understood. Here we report the crystal structure of the catalytic core of the human m(6)A writer complex comprising METTL3 and METTL14. The structure reveals the heterodimeric architecture of the complex and donor substrate binding by METTL3. Structure-guided mutagenesis indicates that METTL3 is the catalytic subunit of the complex, whereas METTL14 has a degenerate active site and plays non-catalytic roles in maintaining complex integrity and substrate RNA binding. These studies illuminate the molecular mechanism and evolutionary history of eukaryotic m(6)A modification in post-transcriptional genome regulation.

  20. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study

    Science.gov (United States)

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.

    2017-11-01

    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.

  1. Structure Based Drug Design for HIM Protease: From Molecular Modeling to Cheminformatics

    Energy Technology Data Exchange (ETDEWEB)

    Volarath, Patra; Weber, Irene T.; Harrison, Robert W. (GSU)

    2008-06-06

    Significant progress over the past decade in virtual representations of molecules and their physicochemical properties has produced new drugs from virtual screening of the structures of single protein molecules by conventional modeling methods. The development of clinical antiviral drugs from structural data for HIV protease has been a major success in structure based drug design. Techniques for virtual screening involve the ranking of the affinity of potential ligands for the target site on a protein. Two main alternatives have been developed: modeling of the target protein with a series of related ligand molecules, and docking molecules from a database to the target protein site. The computational speed and prediction accuracy will depend on the representation of the molecular structure and chemistry, the search or simulation algorithm, and the scoring function to rank the ligands. Moreover, the general challenges in modern computational drug design arise from the profusion of data, including whole genomes of DNA, protein structures, chemical libraries, affinity and pharmacological data. Therefore, software tools are being developed to manage and integrate diverse data, and extract and visualize meaningful relationships. Current areas of research include the development of searchable chemical databases, which requires new algorithms to represent molecules and search for structurally or chemically similar molecules, and the incorporation of machine learning techniques for data mining to improve the accuracy of predictions. Examples will be presented for the virtual screening of drugs that target HIV protease.

  2. Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis.

    Science.gov (United States)

    Dago, Angel E; Schug, Alexander; Procaccini, Andrea; Hoch, James A; Weigt, Martin; Szurmant, Hendrik

    2012-06-26

    Signal transduction proteins such as bacterial sensor histidine kinases, designed to transition between multiple conformations, are often ruled by unstable transient interactions making structural characterization of all functional states difficult. This study explored the inactive and signal-activated conformational states of the two catalytic domains of sensor histidine kinases, HisKA and HATPase. Direct coupling analyses, a global statistical inference approach, was applied to >13,000 such domains from protein databases to identify residue contacts between the two domains. These contacts guided structural assembly of the domains using MAGMA, an advanced molecular dynamics docking method. The active conformation structure generated by MAGMA simultaneously accommodated the sequence derived residue contacts and the ATP-catalytic histidine contact. The validity of this structure was confirmed biologically by mutation of contact positions in the Bacillus subtilis sensor histidine kinase KinA and by restoration of activity in an inactive KinA(HisKA):KinD(HATPase) hybrid protein. These data indicate that signals binding to sensor domains activate sensor histidine kinases by causing localized strain and unwinding at the end of the C-terminal helix of the HisKA domain. This destabilizes the contact positions of the inactive conformation of the two domains, identified by previous crystal structure analyses and by the sequence analysis described here, inducing the formation of the active conformation. This study reveals that structures of unstable transient complexes of interacting proteins and of protein domains are accessible by applying this combination of cross-validating technologies.

  3. Microwave measurements of the spectra and molecular structure for phthalic anhydride

    Science.gov (United States)

    Pejlovas, Aaron M.; Sun, Ming; Kukolich, Stephen G.

    2014-05-01

    The microwave rotational spectrum for phthalic anhydride (PhA) has been measured in the 4-14 GHz microwave region using a pulsed-beam Fourier transform (PBFT) Flygare-Balle type microwave spectrometer. Initially, the molecular structure was calculated using Gaussian 09 suite with mp2/6-311++G** basis and the calculations were used in predicting spectra for the measured isotopologues. The experimental rotational transition frequencies were measured and used to calculate the rotational and centrifugal distortion constants. The rotational constants for the normal isotopologue, four unique 13C substituted isotopologues and two 18O isotologues, were used in a least squares fit to determine nearly all structural parameters for this molecule. Since no substitutions were made at hydrogen sites, the calculated positions of the hydrogen atoms relative to the bonded carbon atoms were used in the structure determination. The rotational constants for the parent isotopologue were determined to be A = 1801.7622(9) MHz, B = 1191.71816(26) MHz, C = 717.44614(28) MHz. Small values for the centrifugal distortion constants were obtained; DJ = 0.0127 kHz, DJK = 0.0652 kHz, and DK = -0.099 kHz, indicating a fairly rigid structure. The structure of PhA is planar with a negative inertial defect of Δ = -0.154 amu Å2. Structural parameters from the mp2 and DFT calculations are in quite good agreement with measured parameters.

  4. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  5. Three oxime ether derivatives: Synthesis, crystallographic study, electronic structure and molecular electrostatic potential calculation

    Science.gov (United States)

    Dey, Tanusri; Praveena, Koduru Sri Shanthi; Pal, Sarbani; Mukherjee, Alok Kumar

    2017-06-01

    Three oxime ether derivatives, (E)-3-methoxy-4-(prop-2-ynyloxy)-benzaldehyde-O-prop-2-ynyl-oxime (C14H13NO3) (2), benzophenone-O-prop-2-ynyl-oxime (C16H13NO) (3) and (E)-2-chloro-6-methylquinoline-3-carbaldehyde-O-prop-2-ynyl-oxime (C14H11ClN2O) (4), have been synthesized and their crystal structures have been determined. The DFT optimized molecular geometries in 2-4 agree closely with those obtained from the crystallographic study. An interplay of intermolecular Csbnd H⋯O, Csbnd H⋯N, Csbnd H⋯Cl and Csbnd H···π(arene) hydrogen bonds and π···π interactions assembles molecules into a 2D columnar architecture in 2, a 1D molecular ribbon in 3 and a 3D framework in 4. Hirshfeld surface analysis showed that the structures of 2 and 3 are mainly characterized by H⋯H, H⋯C and H⋯O contacts but some contribution of H⋯N and H⋯Cl contacts is also observed in 4. Hydrogen-bond based interactions in 2-4 have been complemented by calculating molecular electrostatic potential (MEP) surfaces. The electronic structures of molecules reveal that the estimated band gap in 3, in which both aldehyde hydrogen atoms of formaldehyde-O-prop-2-ynyl-oxime (1) have been substituted by two benzene rings, is higher than that of 2 and 4 with only one aldehyde hydrogen atom replaced.

  6. The structure of PX{sub 3} (X = Cl, Br, I) molecular liquids from X-ray diffraction, molecular dynamics simulations, and reverse Monte Carlo modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pothoczki, Szilvia, E-mail: pothoczki.szilvia@wigner.mta.hu; Temleitner, László; Pusztai, László [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, 1121 Budapest (Hungary)

    2014-02-07

    Synchrotron X-ray diffraction measurements have been conducted on liquid phosphorus trichloride, tribromide, and triiodide. Molecular Dynamics simulations for these molecular liquids were performed with a dual purpose: (1) to establish whether existing intermolecular potential functions can provide a picture that is consistent with diffraction data and (2) to generate reliable starting configurations for subsequent Reverse Monte Carlo modelling. Structural models (i.e., sets of coordinates of thousands of atoms) that were fully consistent with experimental diffraction information, within errors, have been prepared by means of the Reverse Monte Carlo method. Comparison with reference systems, generated by hard sphere-like Monte Carlo simulations, was also carried out to demonstrate the extent to which simple space filling effects determine the structure of the liquids (and thus, also estimating the information content of measured data). Total scattering structure factors, partial radial distribution functions and orientational correlations as a function of distances between the molecular centres have been calculated from the models. In general, more or less antiparallel arrangements of the primary molecular axes that are found to be the most favourable orientation of two neighbouring molecules. In liquid PBr{sub 3} electrostatic interactions seem to play a more important role in determining intermolecular correlations than in the other two liquids; molecular arrangements in both PCl{sub 3} and PI{sub 3} are largely driven by steric effects.

  7. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Aymar, M.; Dulieu, O. [Laboratoire Aime Cotton, CNRS, UPR3321, Ba circumflex t. 505, Univ Paris-Sud, 91405 Orsay Cedex (France); Guerout, R. [Laboratoire Kastler-Brossel, CNRS, ENS, Univ Pierre et Marie Curie case 74, Campus Jussieu, F-75252 Paris Cedex 05 (France)

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  8. Mapping Molecular Function to Biological Nanostructure: Combining Structured Illumination Microscopy with Fluorescence Lifetime Imaging (SIM + FLIM

    Directory of Open Access Journals (Sweden)

    Frederik Görlitz

    2017-07-01

    Full Text Available We present a new microscope integrating super-resolved imaging using structured illumination microscopy (SIM with wide-field optically sectioned fluorescence lifetime imaging (FLIM to provide optical mapping of molecular function and its correlation with biological nanostructure below the conventional diffraction limit. We illustrate this SIM + FLIM capability to map FRET readouts applied to the aggregation of discoidin domain receptor 1 (DDR1 in Cos 7 cells following ligand stimulation and to the compaction of DNA during the cell cycle.

  9. Insights into the structural and functional aspects of rela by molecular modeling and docking calculations.

    Digital Repository Service at National Institute of Oceanography (India)

    Nath I.V.A.; LokaBharathi, P.A.; Deobagkar, D.D.

    ]. The systematic and programmed expression of RelA and SpoT together regulate the (p)ppGpp biosynthesis pathway in Gram negative bacteria [11, 17-19]. The molecular architecture of SpoT and RelA is characterized by a catalytic N-terminus and a regulatory C... in vacuo by GROMOS96 force field implemented in SPDBV [44]. The stereochemical quality of the refined structures was evaluated by Profunc PROCHECK [45] and ProSA Z-score [46] programs. A) B) Fig. 1: Sequence alignment of RelA sequences with 1VJ7A. A...

  10. Lanthanum Influence on EuAlO3 Perovskite Structural Properties: Experimental and Molecular Dynamics Studies

    Directory of Open Access Journals (Sweden)

    Enrique Lima

    2012-01-01

    Full Text Available X-ray diffraction, 27Al MAS NMR, and FTIR spectra along with results of molecular dynamics simulations were used to characterise LaxEu1−xAlO3 perovskites for x=0.3,  0.1. Experimental and simulation results show that local changes in the perovskite-like structure can be achieved as lanthanum ions substitute europium ones. The introduction of La3+ ions in the EuAlO3 parent causes an increase in the mobility of oxygen network.

  11. Theoretical studies on the molecular structure, conformational preferences, topological and vibrational analysis of allicin

    Science.gov (United States)

    Durlak, Piotr; Berski, Sławomir; Latajka, Zdzisław

    2016-01-01

    The molecular structure, conformational preferences, topological and vibrational analysis of allicin has been investigated at two different approaches. Calculations have been carried out on static (DFT and MP2) levels with an assortment of Dunning's basis sets and dynamic CPMD simulations. In this both case within the isolated molecule approximation. The results point out that at least twenty different conformers coexist on the PES as confirmed by the flexible character of this molecule. The topological analysis of ELF showed very similar nature of the Ssbnd S and Ssbnd O bonds. The infrared spectrum has been calculated, and a comparative vibrational analysis has been performed.

  12. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, David K [State Univ. of New York (SUNY), Geneseo, NY (United States)

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  13. Two-dimensional dynamics of a free molecular chain with a secondary structure

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Savin, A.V.

    1996-01-01

    A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model of an anharmo......) supersonic pulses of longitudinal compression propagating together with localized transverse thickening (bulge) have been found. Some peculiar stability properties of these two-component soliton solutions have been discovered by using numerical techniques developed in this paper....

  14. Are the program packages for molecular structure calculations really black boxes?

    Directory of Open Access Journals (Sweden)

    ANA MRAKOVIC

    2007-12-01

    Full Text Available In this communication it is shown that the widely held opinion that compact program packages for quantum–mechanical calculations of molecular structure can safely be used as black boxes is completely wrong. In order to illustrate this, the results of computations of equilibrium bond lengths, vibrational frequencies and dissociation energies for all homonuclear diatomic molecules involving the atoms from the first two rows of the Periodic Table, performed using the Gaussian program package are presented. It is demonstrated that the sensible use of the program requires a solid knowledge of quantum chemistry.

  15. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein Digestibility and Solubility

    Directory of Open Access Journals (Sweden)

    Mingmei Bai

    2016-08-01

    Full Text Available The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller’s dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003; moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004. On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001 and solubility (p = 0.002. These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins.

  16. Development of structure-property relationships for intrinsically microporous polymers through molecular simulations

    Science.gov (United States)

    Hart, Kyle E.

    Creating a safe and effective means to store and/or capture small molecules is of paramount importance, as these processes are some of the highest energy consumers today. New materials will have profound impacts on various environmentally conscious applications, such as alternative fuel storage, hydrogen recovery, natural gas purification, and carbon dioxide capture and storage. Designing a material that meets the demanding performance criteria of real-world use has proven a challenging endeavor, but microporous polymers are a promising alternative. This is primarily due to the material's pore sizes being on the order of molecular dimensions, while simultaneously retaining the ability for the polymer-gas physicochemical interactions to be tailored for specific gas separation applications. Both experimental and computational investigations have shown that seemingly minor changes in the chemical structure can have a profound effect on the gas adsorption and separation properties of a polymeric material; however, the vast number of possible functionalities makes the evaluation of potential structures a daunting challenge. This dissertation focuses on developing and utilizing computationally efficient means to analyze candidate polymeric materials for use in carbon dioxide adsorption and separation applications. After validating the simulation models for structural and adsorptive performance, several important structure-property relationships are described. In particular, this work proposes and analyzes multiple families of functionalized polymers of intrinsic microporosity, from which we obtain important design principles of gas separation performance. It is shown that the explicit modeling of a polymer's micropore structure facilitates a fundamental understanding of the nature of the polymer-gas interactions, which was used as a means to reveal the most influential pore characteristics for each application. The molecular simulation results discussed here will aid

  17. A label-free G-quadruplex-based mercury detection assay employing the exonuclease III-mediated cleavage of T?Hg2+?T mismatched DNA

    OpenAIRE

    Wang, Wanhe; Kang, Tian-Shu; Chan, Philip Wai Hong; Lu, Jin-Jian; Chen, Xiu-Ping; Leung, Chung-Hang; Ma, Dik-Lung

    2015-01-01

    We report herein the use of an exonuclease III and G-quadruplex probe to construct a G-quadruplex-based luminescence detection platform for Hg2+. Unlike common DNA-based Hg2+ detection methods, when using the dsDNA probe to monitor the hairpin formation, the intercalation of the dsDNA probe may be influenced by the distortion of dsDNA. This ?mix-and-detect? methodology utilized the G-quadruplex probe as the signal transducer and is simple, rapid, convenient to use and can detect down to 20 nM...

  18. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins

    DEFF Research Database (Denmark)

    Foulk, M. S.; Urban, J. M.; Casella, Cinzia

    2015-01-01

    Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (lambda-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent...... are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K...

  19. Stimulation of 3′→5′ Exonuclease and 3′-Phosphodiesterase Activities of Yeast Apn2 by Proliferating Cell Nuclear Antigen

    OpenAIRE

    Unk, Ildiko; Haracska, Lajos; Gomes, Xavier V.; Burgers, Peter M. J.; Prakash, Louise; Prakash, Satya

    2002-01-01

    The Apn2 protein of Saccharomyces cerevisiae contains 3′→5′ exonuclease and 3′-phosphodiesterase activities, and these activities function in the repair of DNA strand breaks that have 3′-damaged termini and which are formed in DNA by the action of oxygen-free radicals. Apn2 also has an AP endonuclease activity and functions in the removal of abasic sites from DNA. Here, we provide evidence for the physical and functional interaction of Apn2 with proliferating cell nuclear antigen (PCNA). As i...

  20. Relationship between molecular structure of cereal dietary fiber and health effects: focus on glucose/insulin response and gut health.

    Science.gov (United States)

    Gemen, Raymond; de Vries, Jan F; Slavin, Joanne L

    2011-01-01

    Epidemiological and animal data show associations between whole grain and dietary fiber intakes and disease risk reduction. Dietary fiber can be considered a "black box" since its molecular structure can vary significantly. Limited data are available linking the health effects of dietary fiber to certain molecular structures. The present review was conducted to examine the existing knowledge of structure/effect relationships with a focus on human intervention studies that examined the relationships between the molecular structure of cereal dietary fiber and both the blood glucose and insulin responses and gut health. An extensive search of the existing literature was conducted using the PubMed database for the period 1993-2008. Of 48 publications originally identified using the search criteria, 13 provided molecular information in conjunction with fiber type. Several indications show a link between molecular structure and physiological effects. Limited data from human intervention trials are available to verify hypotheses derived from in vitro studies that relate the molecular structure of cereal dietary fiber to both insulin and glucose response and gut health. © 2011 International Life Sciences Institute.

  1. Molecular view modeling of atmospheric organic particulate matter: Incorporating molecular structure and co-condensation of water

    Science.gov (United States)

    Pankow, James F.; Marks, Marguerite C.; Barsanti, Kelley C.; Mahmud, Abdullah; Asher, William E.; Li, Jingyi; Ying, Qi; Jathar, Shantanu H.; Kleeman, Michael J.

    2015-12-01

    Most urban and regional models used to predict levels of organic particulate matter (OPM) are based on fundamental equations for gas/particle partitioning, but make the highly simplifying, anonymized-view (AV) assumptions that OPM levels are not affected by either: a) the molecular characteristics of the condensing organic compounds (other than simple volatility); or b) co-condensation of water as driven by non-zero relative humidity (RH) values. The simplifying assumptions have allowed parameterized chamber results for formation of secondary organic aerosol (SOA) (e.g., ;two-product; (2p) coefficients) to be incorporated in chemical transport models. However, a return towards a less simplistic (and more computationally demanding) molecular view (MV) is needed that acknowledges that atmospheric OPM is a mixture of organic compounds with differing polarities, water, and in some cases dissolved salts. The higher computational cost of MV modeling results from a need for iterative calculations of the composition-dependent gas/particle partition coefficient values. MV modeling of OPM that considered water uptake (but not dissolved salts) was carried out for the southeast United States for the period August 29 through September 7, 2006. Three model variants were used at three universities: CMAQ-RH-2p (at PSU), UCD/CIT-RH-2p (at UCD), and CMAQ-RH-MCM (at TAMU). With the first two, MV structural characteristics (carbon number and numbers of functional groups) were assigned to each of the 2p products used in CMAQv.4.7.1 such that resulting predicted Kp,i values matched those in CMAQv.4.7.1. When water uptake was allowed, most runs assumed that uptake occurred only into the SOA portion, and imposed immiscibility of SOA with primary organic aerosol (POA). (POA is often viewed as rather non-polar, while SOA is commonly viewed as moderately-to-rather polar. Some runs with UCD/CIT-RH-2p were used to investigate the effects of POA/SOA miscibility.) CMAQ-RH-MCM used MCM to

  2. Structural effects of Zn(2+) on cell membranes and molecular models.

    Science.gov (United States)

    Suwalsky, M; Novoa, V; Villena, F; Sotomayor, C P; Aguilar, L F; Ronowska, A; Szutowicz, A

    2009-05-01

    Zinc is an essential element for nutrition as well as for the proper development and function of brain cells, and its traces are present in a wide range of foods. It is a constituent of many enzyme systems and is an integral part of insulin and of the active site of intracellular enzymes. However, excessive accumulation of zinc or its release from the binding sites may become detrimental for neurons. With the aim to better understand the molecular mechanisms of the interaction of zinc ions with cell membranes, it was incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), cholinergic murine neuroblastoma cells, and molecular models of cell membranes. These consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, particularly that of human erythrocytes, respectively. The capacity of zinc ions to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, intact human erythrocytes were observed with scanning electron microscopy (SEM), and neuroblastoma cell morphology was observed under inverted microscope. This study presents evidence that 0.1mM Zn and higher concentrations affect cell membrane and molecular models.

  3. Effect of molecular structure on the thermal stability of amorphous and semicrystalline poly(lactic acid)

    Science.gov (United States)

    Aou, Kaoru

    Emphasizing on the effect of molecular structure, the issues surrounding the thermal stability amorphous and crystalline states of poly(lactic acid), or PLA, are explored. Enthalpic relaxation, which correlates with physical aging, is investigated for PLA of different tacticities, and we find that a decreased number of configurational defects in the polymer backbone leads to a smaller Kohlrausch-Williams-Watts exponent. On the other hand, specific volume, or equivalently density, does not relate simply to enthalpic stability when comparing the alpha and stereocomplex forms of PLA crystals. Although the a crystal has the higher density, molecular interactions, as inferred from vibrational spectroscopy and molecular modeling, are stronger in the stereocomplex, a trend consistent with a higher enthalpy of fusion. The methyl-methyl and carbonyl-carbonyl interactions are the main contributors to the alpha crystal thermal stability, whereas the methyl-methyl and carbonyl-to-alpha-hydrogen interactions are the important interactions for the thermal stability of the stereocomplex. In addition, good correlation between the post-Tg exotherm and fiber shrinkage can be explained using spectroscopic and calorimetric means. We find that fiber thermal stability is not achieved when crystallizable chains remain largely uncrystallized. During processing, if crystallization is not completed before vitrification sets in, fiber shrinkage will take place, followed by crystallization enhanced due to pre-existing crystallites from processing.

  4. Combined Ligand/Structure-Based Virtual Screening and Molecular Dynamics Simulations of Steroidal Androgen Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    2017-01-01

    Full Text Available The antiandrogens, such as bicalutamide, targeting the androgen receptor (AR, are the main endocrine therapies for prostate cancer (PCa. But as drug resistance to antiandrogens emerges in advanced PCa, there presents a high medical need for exploitation of novel AR antagonists. In this work, the relationships between the molecular structures and antiandrogenic activities of a series of 7α-substituted dihydrotestosterone derivatives were investigated. The proposed MLR model obtained high predictive ability. The thoroughly validated QSAR model was used to virtually screen new dihydrotestosterones derivatives taken from PubChem, resulting in the finding of novel compounds CID_70128824, CID_70127147, and CID_70126881, whose in silico bioactivities are much higher than the published best one, even higher than bicalutamide. In addition, molecular docking, molecular dynamics (MD simulations, and MM/GBSA have been employed to analyze and compare the binding modes between the novel compounds and AR. Through the analysis of the binding free energy and residue energy decomposition, we concluded that the newly discovered chemicals can in silico bind to AR with similar position and mechanism to the reported active compound and the van der Waals interaction is the main driving force during the binding process.

  5. Combined Ligand/Structure-Based Virtual Screening and Molecular Dynamics Simulations of Steroidal Androgen Receptor Antagonists.

    Science.gov (United States)

    Wang, Yuwei; Han, Rui; Zhang, Huimin; Liu, Hongli; Li, Jiazhong; Liu, Huanxiang; Gramatica, Paola

    2017-01-01

    The antiandrogens, such as bicalutamide, targeting the androgen receptor (AR), are the main endocrine therapies for prostate cancer (PCa). But as drug resistance to antiandrogens emerges in advanced PCa, there presents a high medical need for exploitation of novel AR antagonists. In this work, the relationships between the molecular structures and antiandrogenic activities of a series of 7α-substituted dihydrotestosterone derivatives were investigated. The proposed MLR model obtained high predictive ability. The thoroughly validated QSAR model was used to virtually screen new dihydrotestosterones derivatives taken from PubChem, resulting in the finding of novel compounds CID_70128824, CID_70127147, and CID_70126881, whose in silico bioactivities are much higher than the published best one, even higher than bicalutamide. In addition, molecular docking, molecular dynamics (MD) simulations, and MM/GBSA have been employed to analyze and compare the binding modes between the novel compounds and AR. Through the analysis of the binding free energy and residue energy decomposition, we concluded that the newly discovered chemicals can in silico bind to AR with similar position and mechanism to the reported active compound and the van der Waals interaction is the main driving force during the binding process.

  6. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.

    Science.gov (United States)

    Bonthuis, Douwe Jan; Netz, Roland R

    2013-10-03

    Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.

  7. Comparative studies on molecular structure, vibrational spectra and hyperpolarizabilies of NLO chromophore Ethyl 4-Dimethylaminobenzoate

    Science.gov (United States)

    Amalanathan, M.; Jasmine, G. Femina; Roy, S. Dawn Dharma

    2017-08-01

    The molecular structure, vibrational spectra and polarizabilities of Ethyl 4-Dimethylaminobenzoate (EDAB) was investigated by density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311++G(d,p) basis set and compared with some other levels. A detailed interpretation of the IR and Raman spectra of EDBA have been reported and analyzed. Complete vibrational assignments of the vibrational modes have been done on the basis of the potential energy distribution (TED) using VEDA software. The molecular electrostatic potential mapped onto total density surface has been obtained. A study on the electronic properties, such as absorption wavelength, and frontier molecular orbitals energy, was performed using DFT approach. The stability of the molecule arising from hyper conjugative interactions and accompanying charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The natural and Mulliken charge also calculated and compared with different level of calculation. The dipole moment, polarizability and first, second order hyperpolarizabilities of the title molecule were calculated and compared with the experimental values. The energy gap between frontier orbitals has been used along with electric moments and first order hyperpolarizability, to understand the non linear optical (NLO) activity of the molecule. The NLO activity of molecule was confirmed by SHG analysis.

  8. KcsA crystal structure as framework for a molecular model of the Na(+) channel pore.

    Science.gov (United States)

    Lipkind, G M; Fozzard, H A

    2000-07-18

    The crystal structure of the pore-forming part of the KcsA bacterial K(+)-selective channel suggests a possible motif for related voltage-gated channels. We examined the hypothesis that the spacial orientation of the KcsA M1 and M2 alpha-helices also predicts the backbone location of S5 and S6 helices of the voltage-gated Na(+) channel. That channel's P region structure is expected to be different because selectivity is determined by side-chain interactions rather than by main-chain carbonyls, and its outer vestibule accommodates relatively large toxin molecules, tetrodotoxin (TTX) and saxitoxin (STX), which interact with selectivity ring residues. The Na(+) channel P loop was well-modeled by the alpha-helix-turn-beta-strand motif, which preserves the relationships for toxin interaction with the Na(+) channel found experimentally. This outer vestibule was docked into the extracellular part of the inverted teepee structure formed by the S5 and S6 helices that were spacially located by coordinates of the KcsA M1 and M2 helix main chains [Doyle et al. (1998) Science 280, 69-74], but populated with side chains of the respective S5 and S6 structures. van der Waals contacts were optimized with minimal adjustment of the S5, S6, and P loop structures, forming a densely packed pore structure. Nonregular external S5-P and P-S6 segments were not modeled here, except the P-S6 segment of domain II. The resulting selectivity region structure is consistent with Na(+) channel permeation properties, offering suggestions for the molecular processes involved in selectivity. The ability to construct a Na(+) channel pore model consistent with most of the available biophysical and mutational information suggests that the KcsA structural framework may be conserved in voltage-gated channels.

  9. Medicinal Chemistry and Molecular Modeling: An Integration to Teach Drug Structure-Activity Relationship and the Molecular Basis of Drug Action

    Science.gov (United States)

    Carvalho, Ivone; Borges, Aurea D. L.; Bernardes, Lilian S. C.

    2005-01-01

    The use of computational chemistry and the protein data bank (PDB) to understand and predict the chemical and molecular basis involved in the drug-receptor interactions is discussed. A geometrical and chemical overview of the great structural similarity in the substrate and inhibitor is provided.

  10. Determining the influence of molecular structure on the physical properties of complex solvent : Experiment, equation of state modeling and molecular simulations

    NARCIS (Netherlands)

    Schacht, C.S.

    2011-01-01

    This work is concerned with the molecular influence of structure on the phase behavior of mixtures. Systems of hyperbranched (dendric) polymers in solution are studied experimentally. The results are compared to systems where the polymeric substance has a linear architecture in order to assess the

  11. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.

    2013-03-21

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  12. Cupin: A candidate molecular structure for the Nep1-like protein family

    Directory of Open Access Journals (Sweden)

    Pereira Gonçalo AG

    2008-04-01

    Full Text Available Abstract Background NEP1-like proteins (NLPs are a novel family of microbial elicitors of plant necrosis. Some NLPs induce a hypersensitive-like response in dicot plants though the basis for this response remains unclear. In addition, the spatial structure and the role of these highly conserved proteins are not known. Results We predict a 3d-structure for the β-rich section of the NLPs based on alignments, prediction tools and molecular dynamics. We calculated a consensus sequence from 42 NLPs proteins, predicted its secondary structure and obtained a high quality alignment of this structure and conserved residues with the two Cupin superfamily motifs. The conserved sequence GHRHDWE and several common residues, especially some conserved histidines, in NLPs match closely the two cupin motifs. Besides other common residues shared by dicot Auxin-Binding Proteins (ABPs and NLPs, an additional conserved histidine found in all dicot ABPs was also found in all NLPs at the same position. Conclusion We propose that the necrosis inducing protein class belongs to the Cupin superfamily. Based on the 3d-structure, we are proposing some possible functions for the NLPs.

  13. Cupin: a candidate molecular structure for the Nep1-like protein family.

    Science.gov (United States)

    Cechin, Adelmo L; Sinigaglia, Marialva; Lemke, Ney; Echeverrigaray, Sérgio; Cabrera, Odalys G; Pereira, Gonçalo A G; Mombach, José C M

    2008-04-30

    NEP1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis. Some NLPs induce a hypersensitive-like response in dicot plants though the basis for this response remains unclear. In addition, the spatial structure and the role of these highly conserved proteins are not known. We predict a 3d-structure for the beta-rich section of the NLPs based on alignments, prediction tools and molecular dynamics. We calculated a consensus sequence from 42 NLPs proteins, predicted its secondary structure and obtained a high quality alignment of this structure and conserved residues with the two Cupin superfamily motifs. The conserved sequence GHRHDWE and several common residues, especially some conserved histidines, in NLPs match closely the two cupin motifs. Besides other common residues shared by dicot Auxin-Binding Proteins (ABPs) and NLPs, an additional conserved histidine found in all dicot ABPs was also found in all NLPs at the same position. We propose that the necrosis inducing protein class belongs to the Cupin superfamily. Based on the 3d-structure, we are proposing some possible functions for the NLPs.

  14. Predicting physical-chemical properties of compounds from molecular structures by recursive neural networks.

    Science.gov (United States)

    Bernazzani, Luca; Duce, Celia; Micheli, Alessio; Mollica, Vincenzo; Sperduti, Alessandro; Starita, Antonina; Tiné, Maria Rosaria

    2006-01-01

    In this paper, we report on the potential of a recently developed neural network for structures applied to the prediction of physical chemical properties of compounds. The proposed recursive neural network (RecNN) model is able to directly take as input a structured representation of the molecule and to model a direct and adaptive relationship between the molecular structure and target property. Therefore, it combines in a learning system the flexibility and general advantages of a neural network model with the representational power of a structured domain. As a result, a completely new approach to quantitative structure-activity relationship/quantitative structure-property relationship (QSPR/QSAR) analysis is obtained. An original representation of the molecular structures has been developed accounting for both the occurrence of specific atoms/groups and the topological relationships among them. Gibbs free energy of solvation in water, Delta(solv)G degrees , has been chosen as a benchmark for the model. The different approaches proposed in the literature for the prediction of this property have been reconsidered from a general perspective. The advantages of RecNN as a suitable tool for the automatization of fundamental parts of the QSPR/QSAR analysis have been highlighted. The RecNN model has been applied to the analysis of the Delta(solv)G degrees in water of 138 monofunctional acyclic organic compounds and tested on an external data set of 33 compounds. As a result of the statistical analysis, we obtained, for the predictive accuracy estimated on the test set, correlation coefficient R = 0.9985, standard deviation S = 0.68 kJ mol(-1), and mean absolute error MAE = 0.46 kJ mol(-1). The inherent ability of RecNN to abstract chemical knowledge through the adaptive learning process has been investigated by principal components analysis of the internal representations computed by the network. It has been found that the model recognizes the chemical compounds on the

  15. Molecular Recognition and Structural Influences on Function in Bio-nanosystems of Nucleic Acids and Proteins

    Science.gov (United States)

    Sethaphong, Latsavongsakda

    This work examines smart material properties of rational self-assembly and molecular recognition found in nano-biosystems. Exploiting the sequence and structural information encoded within nucleic acids and proteins will permit programmed synthesis of nanomaterials and help create molecular machines that may carry out new roles involving chemical catalysis and bioenergy. Responsive to different ionic environments thru self-reorgnization, nucleic acids (NA) are nature's signature smart material; organisms such as viruses and bacteria use features of NAs to react to their environment and orchestrate their lifecycle. Furthermore, nucleic acid systems (both RNA and DNA) are currently exploited as scaffolds; recent applications have been showcased to build bioelectronics and biotemplated nanostructures via directed assembly of multidimensional nanoelectronic devices 1. Since the most stable and rudimentary structure of nucleic acids is the helical duplex, these were modeled in order to examine the influence of the microenvironment, sequence, and cation-dependent perturbations of their canonical forms. Due to their negatively charged phosphate backbone, NA's rely on counterions to overcome the inherent repulsive forces that arise from the assembly of two complementary strands. As a realistic model system, we chose the HIV-TAR helix (PDB ID: 397D) to study specific sequence motifs on cation sequestration. At physiologically relevant concentrations of sodium and potassium ions, we observed sequence based effects where purine stretches were adept in retaining high residency cations. The transitional space between adenine and guanosine nucleotides (ApG step) in a sequence proved the most favorable. This work was the first to directly show these subtle interactions of sequence based cationic sequestration and may be useful for controlling metallization of nucleic acids in conductive nanowires. Extending the study further, we explored the degree to which the structure of NA

  16. Response and sensitivity of lipid related molecular structure to wet and dry heating in Canola tissue

    Science.gov (United States)

    Abeysekara, Saman; Samadi; Yu, Peiqiang

    2012-05-01

    Heat treatments are used to manipulate nutrient utilization, availability and functional properties. The objective of this study was to characterize any molecular level changes of the functional groups associated with lipid structure in canola (Brassica) seed, as affected during the wet and dry heat treatment processes using molecular spectroscopy. The parameters included lipid CH3 asymmetric (ca. 2970-2946 cm-1), CH2 asymmetric (ca. 2945-2880 cm-1), CH3 symmetric (ca. 2881-2864 cm-1) and CH2 symmetric (ca. 2864-2770 cm-1) functional groups, lipid carbonyl Cdbnd O ester group (ca. 1774-1711 cm-1), lipid unsaturation group (CH attached to C-C) (ca. 3007 cm-1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Raw canola seeds were used for the control or autoclaved at 120 °C for 1 h (HT-1: wet heating) or dry roasted at 120 °C for 1 h (HT-2: dry heating). Molecular spectral analysis of lipid functional group ratios were not significantly changed (P > 0.05) in the CH2 asymmetric to CH3 asymmetric stretching band peak intensity ratios for canola seed. Both wet (HT-1) and dry heating method (HT-2) had no significant effect (P > 0.05) on lipid carbonyl Cdbnd O ester group and lipid unsaturation group (CH attached to Cdbnd C). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH3 and CH2 asymmetric and symmetric region (ca. 2992-2770 cm-1), unsaturated lipids band region (ca. 3025-2993 cm-1) and lipid carbonyl Cdbnd O ester band region (ca. 1774-1711 cm-1). The results indicated that both dry and wet heating of given intense had no impact to the molecular spectrum in lipid related functional groups of canola seed, and was not strong enough to elicit heat-induced changes in lipid conformation.

  17. Molecular Dynamics Studies of Structure and Functions of Water-Membrane Interfaces

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A large number of essential cellular processes occur at the interfaces between water and membranes. The selectivity and dynamics of these processes are largely determined by the structural and electrical properties of the water-membrane interface. We investigate these properties by the molecular dynamics method. Over the time scales of the simulations, the membrane undergoes fluctuations described by the capillary wave model. These fluctuations produce occasional thinning defects in the membrane which provide effective pathways for passive transport of ions and small molecules across the membrane. Ions moving through the membrane markedly disrupt its structure and allow for significant water penetration into the membrane interior. Selectivity of transport, with respect to ionic charge, is determined by the interfacial electrostatic potential. Many small molecules. of potential significance in catalysis, bioenergetics and pharmacology, are shown to bind to the interface. The energetics and dynamics of this process will be discussed.

  18. The Microwave Spectrum and Molecular Structure of the Hydrogen-Bonded Aniline-Methanol Complex.

    Science.gov (United States)

    Haeckel; Stahl

    1999-12-01

    The rotational spectrum of aniline-methanol was investigated in the frequency region 3-19 GHz using a pulsed molecular beam Fourier transform microwave spectrometer. Sixty-three measured a- and b-type transitions show a fine structure due to internal rotation of the methyl group. The resulting A and E lines are additionally split into hyperfine components arising from quadrupole coupling of the (14)N nucleus. The torsional motion of the methyl group is hindered by an effective barrier V(3) of nearly 215 cm(-1), which is almost one-half of the methanol barrier height. The structure of the complex was calculated assuming a common symmetry plane for the monomers. These form a linear N vertical ellipsis H-O hydrogen bond. Its distance was found to be 3.03 Å, which is identical with that of aniline-water. Copyright 1999 Academic Press.

  19. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.

  20. Structural analysis of graphene and h-BN: A molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Siby; Ajith, K. M., E-mail: ajith@nitk.ac.in [Computational Physics Lab, Department of Physics, National Institute of technology Karnataka, Surathkal PO: Srinivasnagar, Mangalore, India - 575025 (India); Valsakumar, M. C. [Department of physics, Indian Institute of Technology Palakkad, Ahalia Campus, Kozhipara, Palakkad, Kerala, India - 678557 (India)

    2016-05-06

    Classical molecular dynamics simulation is employed to analyze pair correlations in graphene and h-BN at various temperatures to explore the integrity of their respective structures. As the temperature increases, the height fluctuations in the out-of-plane direction of both graphene and h-BN are found to increase. The positional spread of atoms also increases with temperature. Thus the amplitude of the peak positions in the radial distribution function (RDF) decreases with temperature. It is found that FWHM of peaks in the RDF of h-BN is smaller as compared to those of graphene which implies that the structure of h-BN is more robust as compared to that of graphene with respect to their respective empirical potential.

  1. Collagenolytic Matrix Metalloproteinase Structure-Function Relationships: Insights From Molecular Dynamics Studies.

    Science.gov (United States)

    Karabencheva-Christova, Tatyana G; Christov, Christo Z; Fields, Gregg B

    2017-01-01

    Several members of the zinc-dependent matrix metalloproteinase (MMP) family catalyze collagen degradation. Experimental data reveal a collaboration between different MMP domains in order to achieve efficient collagenolysis. Molecular dynamics (MD) simulations have been utilized to provide atomistic details of the collagenolytic process. The triple-helical structure of collagen exhibits local regions of flexibility, with modulation of interchain salt bridges and water bridges contributing to accessibility of individual chains by the enzyme. In turn, the hemopexin-like (HPX) domain of the MMP initially binds the triple helix and facilitates the presentation of individual strands to active site in the catalytic (CAT) domain. Extensive positive and negative correlated motions are observed between the CAT and HPX domains when collagen is bound. Ultimately, the MD simulation studies have complemented structural (NMR spectroscopy, X-ray crystallography) and kinetic analyses to provide a more detailed mechanistic view of MMP-catalyzed collagenolysis. © 2017 Elsevier Inc. All rights reserved.

  2. The effect of hot multistage drawing on molecular structure and optical properties of polyethylene terephthalate fibers

    Directory of Open Access Journals (Sweden)

    Aminoddin Haji

    2012-08-01

    Full Text Available In this work, mechanical and structural parameters related to the optical properties of polyethylene terephthalate (PET fibers drawn at hot multistage have been investigated. The changes in optical parameters upon changing draw ratio are used to obtain the mechanical orientation factors and , various orientation functions f2(θ, f4(θ and f6(θ, and amorphous and crystalline orientation functions (f a and f c. Also, the numbers of random links between the network junction points (N1, the average optical orientation (Fav, and the distribution function of segment ω(cos θ were calculated. In addition, an empirical formula was suggested to correlate changes in the birefringence with the draw ratio and its constants were determined. The study demonstrated change on the molecular orientation functions and structural parameters upon hot multistage drawing. Significant variations in the characteristic properties of the drawn PET fibers were due to reorientation of the molecules caused by applied heat and external tension.

  3. Direct Structural Observation of a Molecular Junction by High-Energy X-ray Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Lefenfeld,M.; Baumert, J.; Sloutskin, E.; Kuzmenko, I.; Pershan, P.; Deutsch, M.; Nuckolls, C.; Ocko, B.

    2006-01-01

    We report a direct angstrom resolution measurement of the structure of a molecular-size electronic junction comprising a single (or a double) layer of alkyl-thiol and alkyl-silane molecules at the buried interface between solid silicon and liquid mercury. The high-energy synchrotron x-ray measurements reveal densely packed layers comprising roughly interface-normal molecule . The monolayer's thickness is found to be 3-4 Angstroms larger than that of similar layers at the free surfaces of both mercury and silicon. The origins of this and the other unusual features detected are discussed in this article. Measurements of the bilayer junction with an applied potential did not show visible changes in the surface normal structure.

  4. Crystal Structures of Human and Staphylococcus aureus Pyruvate Carboxylase and Molecular Insights into the Carboxyltransfer Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xiang,S.; Tong, L.

    2008-01-01

    Pyruvate carboxylase (PC) catalyzes the biotin-dependent production of oxaloacetate and has important roles in gluconeogenesis, lipogenesis, insulin secretion and other cellular processes. PC contains the biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) domains. We report here the crystal structures at 2.8-Angstroms resolution of full-length PC from Staphylococcus aureus and the C-terminal region (missing only the BC domain) of human PC. A conserved tetrameric association is observed for both enzymes, and our structural and mutagenesis studies reveal a previously uncharacterized domain, the PC tetramerization (PT) domain, which is important for oligomerization. A BCCP domain is located in the active site of the CT domain, providing the first molecular insights into how biotin participates in the carboxyltransfer reaction. There are dramatic differences in domain positions in the monomer and the organization of the tetramer between these enzymes and the PC from Rhizobium etli.

  5. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    Science.gov (United States)

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-05

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas; Bang, Maria Blanner; Rykær, Martin

    2017-01-01

    The NADPH-dependent homodimeric flavoenzyme thioredoxin reductase (TrxR) provides reducing equivalents to thioredoxin, a key regulator of various cellular redox processes. Crystal structures of photo-inactivated thioredoxin reductase (TrxR) from the Gram-positive bacterium Lactococcus lactis have...... been determined. These structures reveal novel molecular features that provide further insight into the mechanisms behind the sensitivity of this enzyme toward visible light. We propose that a pocket on the si-face of the isoalloxazine ring accommodates oxygen that reacts with photo-excited FAD...... thus be a widespread feature among bacterial TrxR with the described characteristics, which affords applications in clinical photo-therapy of drug-resistant bacteria....

  7. Effect of Molecular Chain Structure on Fracture Mechanical Properties of Aeronautical Polymethyl Methacrylate Using Extended Digital Image Correlation Method

    Directory of Open Access Journals (Sweden)

    Wei Shang

    2016-01-01

    Full Text Available The main purpose of this work is to investigate the fracture mechanical properties of aeronautical polymethyl methacrylate, which has been treated with directional tensile technology. Because of the special processing of directional polymethyl methacrylate, the molecular chain structures are different in different directions. The mechanical properties depend on the specific molecular chain structures. We use extended digital image correlation to measure the displacement field near the tip of the crack when the cracks grow in different directions in directional polymethyl methacrylate. We then tested the critical load for different specimens and analyzed the fracture morphology of the different specimens. Thanks to the experimental results, a molecular chain model of directional polymethyl methacrylate could be established. The analysis results using the molecular chain model are consistent with the experiments, which confirms the reliability of the molecular chain model.

  8. Probing the molecular structures of plasma-damaged and surface-repaired low-k dielectrics.

    Science.gov (United States)

    Zhang, Xiaoxian; Myers, John N; Lin, Qinghuang; Bielefeld, Jeffery D; Chen, Zhan

    2015-10-21

    Fully understanding the effect and the molecular mechanisms of plasma damage and silylation repair on low dielectric constant (low-k) materials is essential to the design of low-k dielectrics with defined properties and the integration of low-k dielectrics into advanced interconnects of modern electronics. Here, analytical techniques including sum frequency generation vibrational spectroscopy (SFG), Fourier transform infrared spectroscopy (FTIR), contact angle goniometry (CA) and X-ray photoelectron spectroscopy (XPS) have been employed to provide a comprehensive characterization of the surface and bulk structure changes of poly(methyl)silsesquioxane (PMSQ) low-k thin films before and after O2 plasma treatment and silylation repair. O2 plasma treatment altered drastically both the molecular structures and water structures at the surfaces of the PMSQ film while no bulk structural change was detected. For example, ∼34% Si-CH3 groups were removed from the PMSQ surface, and the Si-CH3 groups at the film surface tilted toward the surface after the O2 plasma treatment. The oxidation by the O2 plasma made the PMSQ film surface more hydrophilic and thus enhanced the water adsorption at the film surface. Both strongly and weakly hydrogen bonded water were detected at the plasma-damaged film surface during exposure to water with the former being the dominate component. It is postulated that this enhancement of both chemisorbed and physisorbed water after the O2 plasma treatment leads to the degradation of low-k properties and reliability. The degradation of the PMSQ low-k film can be recovered by repairing the plasma-damaged surface using a silylation reaction. The silylation method, however, cannot fully recover the plasma induced damage at the PMSQ film surface as evidenced by the existence of hydrophilic groups, including C-O/C[double bond, length as m-dash]O and residual Si-OH groups. This work provides a molecular level picture on the surface structural changes of low

  9. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.

    Science.gov (United States)

    Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael

    2017-04-15

    Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain

  10. Effect of alcohol on the structure of cytochrome C: FCS and molecular dynamics simulations

    Science.gov (United States)

    Amin, Md. Asif; Halder, Ritaban; Ghosh, Catherine; Jana, Biman; Bhattacharyya, Kankan

    2016-12-01

    Effect of ethanol on the size and structure of a protein cytochrome C (Cyt C) is investigated using fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulations. For FCS studies, Cyt C is covalently labeled with a fluorescent probe, alexa 488. FCS studies indicate that on addition of ethanol, the size of the protein varies non-monotonically. The size of Cyt C increases (i.e., the protein unfolds) on addition of alcohol (ethanol) up to a mole fraction of 0.2 (44.75% v/v) and decreases at higher alcohol concentration. In order to provide a molecular origin of this structural transition, we explore the conformational free energy landscape of Cyt C as a function of radius of gyration (Rg) at different compositions of water-ethanol binary mixture using MD simulations. Cyt C exhibits a minimum at Rg ˜ 13 Å in bulk water (0% alcohol). Upon increasing ethanol concentration, a second minimum appears in the free energy surface with gradually larger Rg up to χEtOH ˜ 0.2 (44.75% v/v). This suggests gradual unfolding of the protein. At a higher concentration of alcohol (χEtOH > 0.2), the minimum at large Rg vanishes, indicating compaction. Analysis of the contact map and the solvent organization around protein indicates a preferential solvation of the hydrophobic residues by ethanol up to χEtOH = 0.2 (44.75% v/v) and this causes the gradual unfolding of the protein. At high concentration (χEtOH = 0.3 (58% v/v)), due to structural organization in bulk water-ethanol binary mixture, the extent of preferential solvation by ethanol decreases. This causes a structural transition of Cyt C towards a more compact state.

  11. Structural Biology and Molecular Modeling in the Design of Novel DPP-4 Inhibitors

    Science.gov (United States)

    Scapin, Giovanna

    Inhibition of dipeptidyl peptidase IV (DPP-4) is a promising new approach for the treatment of type 2 diabetes. DPP-4 is the enzyme responsible for inactivating the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP), two hormones that play important roles in glucose homeostasis. The potent, orally bioavailable and highly selective small molecule DPP-4 inhibitor sitagliptin has been approved by the FDA as novel drug for the treatment of type 2 diabetes. The comparison between the binding mode of sitagliptin (a β-amino acid) and that of a second class of inhibitors (α-amino acid-based) initially led to the successful identification and design of structurally diverse and highly potent DPP-4 inhibitors. Further analysis of the crystal structure of sitagliptin bound to DPP-4 suggested that the central β-amino butanoyl moiety could be replaced by a rigid group. This was confirmed by molecular modeling, and the resulting cyclohexylamine analogs were synthesized and found to be potent DPP-4 inhibitors. However, the triazolopyrazine was predicted to be distorted in order to fit in the binding pocket, and the crystal structure showed that multiple conformations exist for this moiety. Additional molecular modeling studies were then used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Novel compounds were thus synthesized and found to be potent DPP-4 inhibitors. Two compounds in particular were designed to be highly selective against off-target "DPP-4 Activity- and/or Structure Homologues" (DASH) enzymes while maintaining potency against DPP-4.

  12. Molecular variability and genetic structure of Chrysodeixis includens (Lepidoptera: Noctuidae), an important soybean defoliator in Brazil.

    Science.gov (United States)

    Palma, Janine; Maebe, Kevin; Guedes, Jerson Vanderlei Carús; Smagghe, Guy

    2015-01-01

    This study provides the first genetic characterization of the soybean looper, Chrysodeixis includens (Walker, 1857), an important defoliating pest species of soybean crops in Brazil. Population genetic variability and the genetic structure of C. includens populations were evaluated by using ISSR markers with samples from the major soybean producing regions in Brazil in the growing seasons 2011/2012. Seven different primers were applied for population characterization of the molecular variability and genetic structure of 8 soybean looper populations from 8 states of Brazil. The seven ISSR loci generated 247 bands in 246 individuals of C. includens sampled. The expected heterozygosity (HE) in the populations varied between 0.093 and 0.106, while the overall HE was 0.099, indicating low genetic diversity. The analysis of molecular variance indicated that 98% of the variability was expressed among individuals within populations (FST = 0.021, p = 0.001). The low level of polymorphism over all populations, the high levels of gene flow, and the low genetic structure are indicatives of the exchange of genetic information between the different sampled regions. Population structuring suggests the presence of two major groups which do not correlate with their geographic sampling location in Brazil. These results may indicate recent recolonization of C. includens in Brazil or migration patterns following source-sink dynamics. Furthermore, the presence of two groups within C. includens suggests that a study on development of resistance or any other genetic-based trait needs to be evaluated on both groups, and pest management in soybean fields should be aware that differences may come to the control strategies they use.

  13. Molecular variability and genetic structure of Chrysodeixis includens (Lepidoptera: Noctuidae, an important soybean defoliator in Brazil.

    Directory of Open Access Journals (Sweden)

    Janine Palma

    Full Text Available This study provides the first genetic characterization of the soybean looper, Chrysodeixis includens (Walker, 1857, an important defoliating pest species of soybean crops in Brazil. Population genetic variability and the genetic structure of C. includens populations were evaluated by using ISSR markers with samples from the major soybean producing regions in Brazil in the growing seasons 2011/2012. Seven different primers were applied for population characterization of the molecular variability and genetic structure of 8 soybean looper populations from 8 states of Brazil. The seven ISSR loci generated 247 bands in 246 individuals of C. includens sampled. The expected heterozygosity (HE in the populations varied between 0.093 and 0.106, while the overall HE was 0.099, indicating low genetic diversity. The analysis of molecular variance indicated that 98% of the variability was expressed among individuals within populations (FST = 0.021, p = 0.001. The low level of polymorphism over all populations, the high levels of gene flow, and the low genetic structure are indicatives of the exchange of genetic information between the different sampled regions. Population structuring suggests the presence of two major groups which do not correlate with their geographic sampling location in Brazil. These results may indicate recent recolonization of C. includens in Brazil or migration patterns following source-sink dynamics. Furthermore, the presence of two groups within C. includens suggests that a study on development of resistance or any other genetic-based trait needs to be evaluated on both groups, and pest management in soybean fields should be aware that differences may come to the control strategies they use.

  14. Detecting molecular features of spectra mainly associated with structural and non-structural carbohydrates in co-products from bioEthanol production using DRIFT with uni- and multivariate molecular spectral analyses.

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485-1188 cm(-1)), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm(-1) with region and baseline: ca. 1292-1198 cm(-1)), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187-950 cm(-1)), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm(-1) with region and baseline: ca. 952-910 cm(-1)), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm(-1) with region and baseline: ca. 880-827 cm(-1)), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm(-1) with baseline: ca. 1485-1188 cm(-1)), H_1370 (structural carbohydrate, peak height at ca. 1370 cm(-1) with a baseline: ca. 1485-1188 cm(-1)). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292-1198 cm(-1) and A_CHO (total CHO) at 1187-950 cm(-1) with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that

  15. Structure-activity relationships and molecular docking of thirteen synthesized flavonoids as horseradish peroxidase inhibitors.

    Science.gov (United States)

    Mahfoudi, Reguia; Djeridane, Amar; Benarous, Khedidja; Gaydou, Emile M; Yousfi, Mohamed

    2017-10-01

    For the first time, the structure-activity relationships of thirteen synthesized flavonoids have been investigated by evaluating their ability to modulate horseradish peroxidase (HRP) catalytic activity. Indeed, a modified spectrophotometrically method was carried out and optimized using 4-methylcatechol (4-MC) as peroxidase co-substrate. The results show that these flavonoids exhibit a great capacity to inhibit peroxidase with Ki values ranged from 0.14±0.01 to 65±0.04mM. Molecular docking has been achieved using Auto Dock Vina program to discuss the nature of interactions and the mechanism of inhibition. According to the docking results, all the flavonoids have shown great binding affinity to peroxidase. These molecular modeling studies suggested that pyran-4-one cycle acts as an inhibition key for peroxidase. Therefore, potent peroxidase inhibitors are flavonoids with these structural requirements: the presence of the hydroxyl (OH) group in 7, 5 and 4' positions and the absence of the methoxy (O-CH3) group. Apigenin contributed better in HRP inhibitory activity. The present study has shown that the studied flavonoids could be promising HRP inhibitors, which can help in developing new molecules to control thyroid diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Major Ampullate Spider Silk with Indistinguishable Spidroin Dope Conformations Leads to Different Fiber Molecular Structures

    Directory of Open Access Journals (Sweden)

    Justine Dionne

    2016-08-01

    Full Text Available To plentifully benefit from its properties (mechanical, optical, biological and its potential to manufacture green materials, the structure of spider silk has to be known accurately. To this aim, the major ampullate (MA silk of Araneus diadematus (AD and Nephila clavipes (NC has been compared quantitatively in the liquid and fiber states using Raman spectromicroscopy. The data show that the spidroin conformations of the two dopes are indistinguishable despite their specific amino acid composition. This result suggests that GlyGlyX and GlyProGlyXX amino acid motifs (X = Leu, Glu, Tyr, Ser, etc. are conformationally equivalent due to the chain flexibility in the aqueous environment. Species-related sequence specificity is expressed more extensively in the fiber: the β-sheet content is lower and width of the orientation distribution of the carbonyl groups is broader for AD (29% and 58°, respectively as compared to NC (37% and 51°, respectively. β-Sheet content values are close to the proportion of polyalanine segments, suggesting that β-sheet formation is mainly dictated by the spidroin sequence. The extent of molecular alignment seems to be related to the presence of proline (Pro that may decrease conformational flexibility and inhibit chain extension and alignment upon drawing. It appears that besides the presence of Pro, secondary structure and molecular orientation contribute to the different mechanical properties of MA threads.

  17. Major Ampullate Spider Silk with Indistinguishable Spidroin Dope Conformations Leads to Different Fiber Molecular Structures

    Science.gov (United States)

    Dionne, Justine; Lefèvre, Thierry; Auger, Michèle

    2016-01-01

    To plentifully benefit from its properties (mechanical, optical, biological) and its potential to manufacture green materials, the structure of spider silk has to be known accurately. To this aim, the major ampullate (MA) silk of Araneus diadematus (AD) and Nephila clavipes (NC) has been compared quantitatively in the liquid and fiber states using Raman spectromicroscopy. The data show that the spidroin conformations of the two dopes are indistinguishable despite their specific amino acid composition. This result suggests that GlyGlyX and GlyProGlyXX amino acid motifs (X = Leu, Glu, Tyr, Ser, etc.) are conformationally equivalent due to the chain flexibility in the aqueous environment. Species-related sequence specificity is expressed more extensively in the fiber: the β-sheet content is lower and width of the orientation distribution of the carbonyl groups is broader for AD (29% and 58°, respectively) as compared to NC (37% and 51°, respectively). β-Sheet content values are close to the proportion of polyalanine segments, suggesting that β-sheet formation is mainly dictated by the spidroin sequence. The extent of molecular alignment seems to be related to the presence of proline (Pro) that may decrease conformational flexibility and inhibit chain extension and alignment upon drawing. It appears that besides the presence of Pro, secondary structure and molecular orientation contribute to the different mechanical properties of MA threads. PMID:27548146

  18. Molecular-orbital and structural descriptors in theoretical investigation of electroreduction of nitrodiazoles

    Directory of Open Access Journals (Sweden)

    BRANKO KOLARIC

    2005-07-01

    Full Text Available It is shown how a simple theoretical approach can be used for the investigation of electro-organic reactions.Mononitroimidazoles and mononitropyrazoles were studied by the semiempirical MNDO-PM3 molecular orbital method. The electrochemical reduction potentials of diazoles have been correlated with the energy of the lowest unoccupied molecular orbital (LUMO. It was found that an admirable correlation could be obtained by the introduction of simple structural descriptors as a correction to the energy of the LUMO. The interaction of a molecule with its surrounding depends on electrostatic potential and on steric hindrance. Most of these steric effects are taken into account using two parameters having a very limited set of integer values. The first (b is the position of a ring substituent regarding ring nitrogens, which accounts for the different orientations of dipole moments and for the different shape of the electrostatic potential. The second (structural parameter (t is the type of the ring, which accounts mostly for different modes of electrode approach, and for different charge polarization patterns in two diazole rings. The extended correlation with ELUMO, b and t, is very good, having a regression coefficient r = 0.991. The intrinsic importance of b and t is exemplified by their high statistical weight.

  19. Organic and inorganic–organic thin film structures by molecular layer deposition: A review

    Directory of Open Access Journals (Sweden)

    Pia Sundberg

    2014-07-01

    Full Text Available The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD, is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications.

  20. Molecular structure of photosynthetic microbial biofuels for improved engine combustion and emissions characteristics

    Directory of Open Access Journals (Sweden)

    Paul eHellier

    2015-04-01

    Full Text Available The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced biofuels that are significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance the suitability of these for specific combustion regimes.

  1. Molecular structure of photosynthetic microbial biofuels for improved engine combustion and emissions characteristics.

    Science.gov (United States)

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.

  2. Epigenetics and Shared Molecular Processes in the Regeneration of Complex Structures

    Directory of Open Access Journals (Sweden)

    Labib Rouhana

    2016-01-01

    Full Text Available The ability to regenerate complex structures is broadly represented in both plant and animal kingdoms. Although regenerative abilities vary significantly amongst metazoans, cumulative studies have identified cellular events that are broadly observed during regenerative events. For example, structural damage is recognized and wound healing initiated upon injury, which is followed by programmed cell death in the vicinity of damaged tissue and a burst in proliferation of progenitor cells. Sustained proliferation and localization of progenitor cells to site of injury give rise to an assembly of differentiating cells known as the regeneration blastema, which fosters the development of new tissue. Finally, preexisting tissue rearranges and integrates with newly differentiated cells to restore proportionality and function. While heterogeneity exists in the basic processes displayed during regenerative events in different species—most notably the cellular source contributing to formation of new tissue—activation of conserved molecular pathways is imperative for proper regulation of cells during regeneration. Perhaps the most fundamental of such molecular processes entails chromatin rearrangements, which prime large changes in gene expression required for differentiation and/or dedifferentiation of progenitor cells. This review provides an overview of known contributions to regenerative processes by noncoding RNAs and chromatin-modifying enzymes involved in epigenetic regulation.

  3. Molecular mechanisms of experience-dependent structural and functional plasticity in the brain.

    Science.gov (United States)

    Kondo, Makoto

    2017-01-01

    Experiences and environments have a variety of effects on brain plasticity at levels ranging from the molecular and cellular to the behavioral. Brain plasticity is one of the most important characteristics of animal survival. In particular, environmental enrichment and exercise induce many structural and functional changes in the brain, and it is noteworthy that these changes result in further beneficial effects at behavioral levels, such as improved learning behavior and antidepressant effects. The effects of enrichment and exercise, and the mechanisms involved in both, provide crucial evidence for the prevention and treatment of brain disorders. However, the enriched environment- and exercise-induced mechanisms underlying the structural and behavioral effects in the brain remain poorly understood. In this review I discuss the molecular mechanisms of environment- and experience-dependent brain plasticity based on the results of studies carried out by our research group at the Department of Neuroscience and Cell Biology, Osaka University. This review consists of three parts: first, a description of a role for the motor protein KIF1A in enhanced synaptogenesis and memory function induced by environmental enrichment; second, a discussion of the function of the 5-HT3 receptor in hippocampal neurogenesis and behavioral changes induced by exercise; third, a discussion of the role of the 5-HT3 receptor in fear extinction.

  4. Molecular and structural studies of Japanese patients with sialidosis type 1.

    Science.gov (United States)

    Naganawa, Y; Itoh, K; Shimmoto, M; Takiguchi, K; Doi, H; Nishizawa, Y; Kobayashi, T; Kamei, S; Lukong, K E; Pshezhetsky, A V; Sakuraba, H

    2000-01-01

    To gain insight into the pathogenesis of sialidosis type 1, we performed molecular investigations of two unrelated Japanese patients. Both of them are compound heterozygotes for base substitutions of 649G-to-A and 727G-to-A, which result in amino acid alterations V217M and G243R, respectively. Using homology modeling, the structure of human lysosomal neuraminidase was constructed and the structural changes caused by these missense mutations were deduced. The predicted change due to V217M was smaller than that caused by G243R, the latter resulting in a drastic, widespread alteration. The overexpressed gene products containing these mutations had the same molecular weight as that of the wild type, although the amounts of the products were moderately decreased. A biochemical study demonstrated that the expressed neuraminidase containing a V217M mutation was partly transported to lysosomes and showed residual enzyme activity, although a G243R mutant was retained in the endoplasmic reticulum/Golgi area and had completely lost the enzyme activity. Considering the data, we surmise that the V217M substitution may be closely associated with the phenotype of sialidosis type 1 with a late onset and moderate clinical course.

  5. Structural Probing and Molecular Modeling of the A₃ Adenosine Receptor: A Focus on Agonist Binding.

    Science.gov (United States)

    Ciancetta, Antonella; Jacobson, Kenneth A

    2017-03-11

    Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR) subtypes, termed A₁, A2A, A2B and A₃, which belong to the G protein-coupled receptor (GPCR) superfamily. The human A₃AR (hA₃AR) subtype is implicated in several cytoprotective functions. Therefore, hA₃AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anticancer, and cardioprotective agents. Structure-based molecular modeling techniques have been applied over the years to rationalize the structure-activity relationships (SARs) of newly emerged A₃AR ligands, guide the subsequent lead optimization, and interpret site-directed mutagenesis (SDM) data from a molecular perspective. In this review, we showcase selected modeling-based and guided strategies that were applied to elucidate the binding of agonists to the A₃AR and discuss the challenges associated with an accurate prediction of the receptor extracellular vestibule through homology modeling from the available X-ray templates.

  6. Structural and thermotropic peculiarities of hydrogen-bonded liquid crystals confined in mesoporous molecular sieves

    Science.gov (United States)

    Gnatyuk, I.; Gavrilko, T.; Yaroshchuk, O.; Holovina, N.; Shcherban, N.; Baran, J.; Drozd, M.

    2016-12-01

    The phase behaviour and structural organization of hydrogen-bonded liquid crystals were investigated under confinement to mesoporous molecular sieves. As such liquid crystalline compounds, 4-hexylbenzoic and 4-butylcyclohexanecarboxylic acids with different head group structure and alkyl chain length where selected and filled in the AlMCM-41 sieves. With FTIR spectroscopy it was found that some part of incorporated acid molecules, presumably located in the inner space of the AlMCM-41 pores, is in undissociated form of open dimers or chain associates and thus shows spectroscopic features characteristic to the bulk-like species. The other FTIR spectra components indicate strong interaction of the incorporated monomeric molecules with the pore surface. Two specific mechanisms are shown to be involved in molecular interactions at the interface: (1) deprotonation of monomeric acid molecules on the pore surface with formation of COO- carboxylate ions and (2) bonding of these ions to the pore surface by a coordinated bond R-COO-…Al+ with Lewis acid sites. Differential scanning calorimetry revealed that these near-surface processes lead to complete suppression of mesomorphic properties of the studied acids under confinement to nanopores.

  7. Molecular structure, vibrational, HOMO-LUMO, MEP and NBO analysis of hafnium selenite

    Science.gov (United States)

    Yankova, Rumyana; Genieva, Svetlana; Dimitrova, Ginka

    2017-08-01

    In hydrothermal condition hafnium selenite with estimated chemical composition Hf(SeO3)2·n(H2O) was obtained and characterized by powder X-Ray diffraction, IR spectroscopy and thermogravimetrical analysis. The composition of the obtained crystalline phase was established as dihydrate of tetraaqua complex of the hafnium selenite [Hf(SeO3)2(H2O)4]·2H2O. The results of the thermogravimetrical analysis are shown that the two hydrated water molecules are released in the temperature interval 80-110°C, while the four coordinated water molecules - at 210-300°C. By DFT method, with Becke's three parameter exchange-functional combined with gradient-corrected correlation functional of Lee, Yang and Parr and 6-31G(d), 6-311 + G(d,p) basis sets and LANL2DZ for Hf atom were calculated the molecular structure, vibrational frequencies and thermodynamic properties of the structure. The UV-Vis spectra and electronic properties are presented. The energy and oscillator strength calculated by time-dependent density functional theory corresponds well with the experimental ones. Molecular electrostatic potential (MEP) was performed. Mulliken population analysis on atomic charges was also calculated. The stability and intramolecular interactions are interpreted by NBO analysis.

  8. Molecular Level Structure and Dynamics of Electrolytes Using 17O Nuclear Magnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi; Mueller, Karl T.

    2017-03-19

    Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directly involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.

  9. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration.

    Science.gov (United States)

    Fu, Li; Zhang, Fuming; Li, Guoyun; Onishi, Akihiro; Bhaskar, Ujjwal; Sun, Peilong; Linhardt, Robert J

    2014-05-01

    The standard process for preparing the low-molecular-weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield because of the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin's core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Impact of molecular and crystalline structures on in vitro digestibility of waxy rice starches.

    Science.gov (United States)

    You, Su-Yeon; Lim, Seung-Taik; Lee, Ju Hun; Chung, Hyun-Jung

    2014-11-04

    The in vitro digestibility, molecular structure and crystalline structure of waxy rice starches isolated from six Korean cultivars (Shinsun, Dongjin, Baekok, Whasun, Chungbaek, and Bosuk) were investigated. The molecular weight (M(w)) of waxy rice starches ranged from 1.1 × 10(8)g/mol to 2.2 × 10(8)g/mol. Chungbaek waxy rice starch had the highest average chain length (24.3) and proportion (20.7%) of long branch chains (DP ≥ 37), and the lowest proportion (19.0%) of short branch chains (DP 6-12) among the tested six waxy rice starches. The relative crystallinity and intensity ratio of 1047/1022 ranged from 38.9% to 41.1% and from 0.691 to 0.707, respectively. Chungbaek had the highest gelatinization temperature and enthalpy. Chungbaek had the highest pasting temperature (70.7 °C), setback (324 cP) and final viscosity (943 cP), whereas Baekok showed the highest peak viscosity (1576 cP) and breakdown (1031 cP). Chungbaek had lower rapidly digestible starch (RDS) content and expected glycemic index (eGI), and higher resistant starch (RS) content, whereas Whasun exhibited higher RDS content and eGI. The slowly digestible starch (SDS) content of Shinsun (38.3%) and Bokok (32.0%) was significantly higher than that of other cultivars (11.3-22.0%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Carlo Travaglini-Allocatelli

    2013-01-01

    Full Text Available Cytochromes c (Cyt c are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i heme translocation and delivery, (ii apoCyt thioreductive pathway, and (iii apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

  12. Dynamic molecular structure retrieval from low-energy laser-induced electron diffraction spectra

    Science.gov (United States)

    Vu, Dinh-Duy T.; Phan, Ngoc-Loan T.; Hoang, Van-Hung; Le, Van-Hoang

    2017-12-01

    A recently developed quantitative rescattering theory showed that a laser-free elastic cross section can be separated from laser-induced electron diffraction (LIED) spectra. Based upon this idea, Blaga et al investigated the possibility of reconstructing molecular structure from LIED spectra (2012 Nature 483 7388). In the above study, an independent atoms model (IAM) was used to interpret high-energy electron–molecule collisions induced by a mid-infrared laser. Our research aims to extend the application range of this structural retrieval method to low-energy spectra induced by more common near-infrared laser sources. The IAM is insufficient in this case, so we switch to a more comprehensive model—the multiple scattering (MS) theory. From the original version concerning only neutral targets, we upgrade the model so that it is compatible with electron–ion collisions at low energy. With available LIED experiment data of CO2 and O2, the upgraded MS is shown to be greatly effective as a tool for molecular imaging from spectra induced by a near-infrared laser. The captured image is at about 2 fs after the ionization, shorter than the period 4–6 fs by using the mid-infrared laser in Blaga’s experiment.

  13. Black Carbon (Biochar) In Water/Soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk.

    Science.gov (United States)

    Lian, Fei; Xing, Baoshan

    2017-12-05

    Black carbon (BC) is ubiquitous in the environments and participates in various biogeochemical processes. Both positive and negative effects of BC (especially biochar) on the ecosystem have been identified, which are mainly derived from its diverse physicochemical properties. Nevertheless, few studies systematically examined the linkage between the evolution of BC molecular structure with the resulted BC properties, environmental functions as well as potential risk, which is critical for understanding the BC environmental behavior and utilization as a multifunctional product. Thus, this review highlights the molecular structure evolution of BC during pyrolysis and the impact of BC physicochemical properties on its sorption behavior, stability, and potential risk in terrestrial and aqueous ecosystems. Given the wide application of BC and its important role in biogeochemical processes, future research should focus on the following: (1) establishing methodology to more precisely predict and design BC properties on the basis of pyrolysis and phase transformation of biomass; (2) developing an assessment system to evaluate the long-term effect of BC on stabilization and bioavailability of contaminants, agrochemicals, and nutrient elements in soils; and (3) elucidating the interaction mechanisms of BC with plant roots, microorganisms, and soil components.

  14. The effect of protein structural conformation on nanoparticle molecular imprinting of ribonuclease A using miniemulsion polymerization.

    Science.gov (United States)

    Tan, Chau Jin; Tong, Yen Wah

    2007-02-27

    One of the major difficulties faced in the molecular imprinting of proteins is the inherently fragile and flexible nature of the protein template which makes it incompatible with most polymerization systems. Miniemulsion polymerization is a possible approach for preparing molecularly imprinted nanoparticles, and in this study, the method of initiation, the high-shear homogenization, and the surfactant used for the polymerization reaction had been considered as possible factors that can denature the template protein, ribonuclease A (RNase A). The conformation of the protein in a miniemulsion was studied using circular dichroism (CD). It was found that redox initiation was more suitable for protein imprinting and that the addition of poly(vinyl alcohol) (PVA) as a co-surfactant had proved to be effective in preserving the template protein structural integrity. On the basis of the results of the study, polymeric nanoparticles imprinted with RNase A were prepared via miniemulsion polymerization using methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as the functional and cross-linker monomers, respectively, with the conditions of the polymerization system optimized to best preserve the integrity of the protein template. In the subsequent investigation for the recognition properties of the prepared nanoparticles through batch and competitive rebinding tests, the imprinted nanoparticles prepared through the conventional (nonoptimized) miniemulsion polymerization lacked the target specificity as displayed by those prepared under the optimized conditions. This illustrated the importance of protein structural integrity in protein imprinting.

  15. Structural Variations of Human Glucokinase Glu256Lys in MODY2 Condition Using Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Nanda Kumar Yellapu

    2013-01-01

    Full Text Available Glucokinase (GK is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2 condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol structure with respect to intact GK (5000 Kcal/mol, and it showed increased γ-turns, decreased β-turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å2 to 1246.353 Å2. Molecular docking study revealed variation in docking scores (intact = −12.199 and mutated = −8.383 and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition.

  16. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

    Energy Technology Data Exchange (ETDEWEB)

    Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

    2009-11-15

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

  17. Molecular Structure of a Helical ribbon in a Peptide Self-Assembly

    Science.gov (United States)

    Hwang, Wonmuk; Marini, Davide; Kamm, Roger D.; Zhang, Shuguang

    2002-03-01

    We have studied the molecular structure of nanometer scale helical ribbons observed during self-assembly of the peptide KFE8 (amino acid sequence: FKFEFKFE) (NanoLetters (2002, in press)). By analyzing the hydrogen bonding patterns between neighboring peptide backbones, we constructed a number of possible β-sheets. Using all possible combinations of these, we built helical ribbons with dimensions close to those found experimentally and performed molecular dynamics simulations to identify the most stable structure. Solvation effects were implemented by the analytic continuum electrostatics (ACE) model developed by Schaefer and Karplus (J. Phys. Chem. 100, 1578 (1996)). By applying electrostatic double layer theory, we incorporated the effect of pH by scaling the amount of charge on the sidechains. Our results suggest that the helical ribbon is comprised of a double β-sheet where the inner and the outer helices have distinct hydrogen bonding patterns. Our approach has general applicability to the study of helices formed by the self-assembly of β-sheet forming peptides with various amino acid sequences.

  18. Molecular simulations of lipid systems: Edge stability and structure in pure and mixed bilayers

    Science.gov (United States)

    Jiang, Yong

    2007-12-01

    Understanding the structural, mechanical and dynamical properties of lipid self-assembled systems is fundamental to understand the behavior of the cell membrane. This thesis has investigated the equilibrium properties of lipid systems with edge defects through various molecular simulation techniques. The overall goal of this study is to understand the free energy terms of the edges and to develop efficient methods to sample equilibrium distributions of mixed-lipid systems. In the first main part of my thesis, an atomistic molecular model is used to study lipid ribbon which has two edges on both sides. Details of the edge structures, such as area per lipid and tail torsional statistics are presented. Line tension, calculated from pressure tensor in MD simulation has good agreement with result from other sources. To further investigate edge properties on a longer timescale and larger length scale, we have applied a coarse-grained forcefield on mixed lipid systems and try to interpret the edge fluctuations in terms of free energy parameters such as line tension and bending modulus. We have identified two regimes with quite different edge behavior: a high line tension regime and a low line tension regime. The last part of this thesis focuses on a hybrid Molecular dynamics and Configurational-bias Monte Carlo (MCMD) simulation method in which molecules can change their type by growing and shrinking the terminal acyl united carbon atoms. A two-step extension of the MCMD method has been developed to allow for a larger difference in the components' tail lengths. Results agreed well with previous one-step mutation results for a mixture with a length difference of four carbons. The current method can efficiently sample mixtures with a length difference of eight carbons, with a small portion of lipids of intermediate tail length. Preliminary results are obtained for "bicelle"-type (DMPC/DHPC) ribbons.

  19. Molecular manipulation of solid state structure: influences of organic components on vanadium oxide architectures

    Science.gov (United States)

    Hagrman, Pamela J.; Finn, Robert C.; Zubieta, Jon

    2001-11-01

    Among the inorganic materials enjoying widespread contemporary interest, the metal oxide based solid phases occupy a prominent position by virtue of their applications to catalysis, sorption, molecular electronics, energy storage, optical materials and ceramics. The diversity of properties associated with these materials reflects the chemical composition, which allows variations in covalency, geometry and oxidation states, and the crystalline architecture, which may provide different pore structures, coordination sites, or juxtapositions of functional groups. Despite such fundamental and practical significance, the design of the structure of such materials remains a challenge in solid state chemistry. While organic materials have been synthesized which self-assemble into ordered arrays at low temperature and which exhibit molecular recognition and biomimetic activity, the ability to synthesize inorganic materials by rational design remains elusive. Small, soluble molecular building blocks with well-defined reaction chemistries which allow their low-temperature assembly into crystalline solid state inorganic materials are not well known. However, the existence of naturally occurring, structurally complex minerals establishes that hydrothermal synthesis can provide a low temperature pathway to produce open-framework and layered metastable structures utilizing inorganic starting materials. Thus, hydrothermal conditions have been used to prepare microporous tetrahedral framework solids that are capable of shape-selective absorption, like zeolites and aluminophosphates, and more recently in the preparation of complex solid arrays of the M/O/PO 3-4 and M/O/RPO 2-3 systems (M=V and Mo). The hydrothermal technique may be combined with the introduction of organic components which may act as charge compensating groups, space-filling units, structure directing agents, templates, tethers between functional groups, or conventional ligands in the preparation of inorganic

  20. How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols.

    Science.gov (United States)

    Wikarek, M; Pawlus, S; Tripathy, Satya N; Szulc, A; Paluch, M

    2016-06-30

    Primary alcohols have been an active area of research since the beginning of the 20th century. The main problem in studying monohydroxy alcohols is the molecular origin of the slower Debye relaxation, whereas the faster process, recognized as structural relaxation, remains much less investigated. This is because in many primary alcohols the structural process is strongly overlapped by the dominating Debye relaxation. Additionally, there is still no answer for many fundamental questions concerning the origin of the molecular characteristic properties of these materials. One of them is the role of molecular architecture in the formation of hydrogen-bonded structures and its potential connection to the relaxation dynamics of Debye and structural relaxation processes. In this article, we present the results of ambient and high-pressure dielectric studies of monohydroxy alcohols with similar chemical structures but different carbon chain lengths (2-ethyl-1-butanol and 2-ethyl-1-hexanol) and positions of the OH- group (2-methyl-2-hexanol and 2-methyl-3-hexanol). New data are compared with previously collected results for 5-methyl-2-hexanol. We note that differences in molecular architecture have a significant influence on the formation of hydrogen-bonded structures, which is reflected in the behavior of the Debye and structural relaxation processes. Intriguingly, studying the relaxation dynamics in monohydroxy alcohols at high pressures of up to p = 1700 MPa delivers a fundamental bridge to understand the potential connection between molecular conformation and its response to the characteristic properties of these materials.

  1. Molecular- and nm-scale Investigation of the Structure and Compositional Heterogeneity of Naturally Occurring Ferrihydrite

    Science.gov (United States)

    Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.

    2008-12-01

    Ferrihydrite is a hydrated Fe(III) nano-oxide that forms in vast quantities in contaminated acid mine drainage environments. As a result of its high surface area, ferrihydrite is an important environmental sorbent, and plays an essential role in the geochemical cycling of pollutant metal(loid)s in these settings. Despite its environmental relevance, this nanomineral remains one of the least understood environmental solids in terms of its structure (bulk and surface), compositional variations, and the factors affecting its reactivity. Under natural aqueous conditions, ferrihydrite often precipitates in the presence of several inorganic compounds such as aluminum, silica, arsenic, etc., or in the presence of organic matter. These impurities can affect the molecular-level structure of naturally occurring ferrihydrite, thus modifying fundamental properties that are directly correlated with solid-phase stability and surface reactivity. Currently there exists a significant gap in our understanding of the structure of synthetic vs. natural ferrihydrites, due to the inherent difficulties associated to the investigation of these poorly crystalline nanophases. In this study, we combined synchrotron- and laboratory-based techniques to characterize naturally occurring ferrihydrite from an acid mine drainage system situated at the New Idria mercury mine in California. We used high-energy X-ray total scattering and pair distribution function analysis to elucidate quantitative structural details of these samples. We have additionally used scanning transmission X-ray microscopy high resolution imaging (30 nm) to evaluate the spatial relationship of major elements Si, Al, and C within ferrihydrite. Al, Si and C K-edge near- edge X-ray absorption fine structure spectroscopy and 27Al nuclear magnetic resonance spectroscopy were used to obtain short-range structural information. By combining these techniques we attain the highest level of resolution permitted by current analytical

  2. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.

    Science.gov (United States)

    Wagai, Rota; Kishimoto-Mo, Ayaka W; Yonemura, Seiichiro; Shirato, Yasuhito; Hiradate, Syuntaro; Yagasaki, Yasumi

    2013-04-01

    Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for short-term decomposition. Factors

  3. The molecular structure of benzene derivatives part 1. 4-Fluorobenzaldehyde by joint analysis of gas electron diffraction, microwave spectroscopy and ab initio molecular orbital calculations

    Science.gov (United States)

    Samdal, Svein; Strand, Tor G.; Tafipolsky, Maxim A.; Vilkov, Lev V.; Popik, M. V.; Volden, Hans Vidar

    1997-11-01

    The molecular structure of gaseous 4-fluorobenzaldehyde has been determined by a joint analysis of gas electron diffraction data, rotational constants from microwave spectroscopy, and constrained by results from ab initio calculations. The ab initio calculations have been performed at the {HF}/{6-311 G∗∗ } and {MP2 }/{6-31 G∗ } levels of theory. The planar C s symmetry structure was found to be the only stable conformation. The torsion of the formyl group has been treated as a large-amplitude motion. The most important structure parameters ( rg) from the joint analysis with estimates of 2σ (in parentheses) were: ( CC) mean = 1.397(1) Å, CF = 1.331(7) Å, CC(= O) = 1.488(7) Å, CO = 1.195(5) Å, molecular force field has been determined.

  4. Molecular and structural organization of lipids in foods: their fate during digestion and impact in nutrition

    Directory of Open Access Journals (Sweden)

    Meynier Anne

    2017-03-01

    Full Text Available Lipids are basic constituents of our diet. They play an active part in the acceptability, flavour and perception of our foods. At the same time, they are also regarded as beneficial for health or as sources to various pathologies. Until now, the nutritional impact of the various dietary lipid structures beyond the amounts of ingested lipids and selected fatty acids has been marginally taken into account in nutritional studies and thus in food application. This review gathers first our current knowledge on the diversity of molecular and supramolecular structures of dietary lipids, and then based on the scientific studies carried out on the human model, tempts to sum up the current knowledge and the latest hypotheses concerning the metabolic and nutritional effects of these multiscale structures. It is shown that the perception of lipids in the mouth during oral processing modulates the production of digestive fluids and food intake. Then, during the stomach and intestine phases of lipid digestion, the kinetics of release of the fatty acids are modulated by the multiscale structures of lipids influencing the fatty acid bioaccessibility and rate of absorption. In turn this may impair the post-absorption metabolism and nutritional effects. Future trends of research are evoked as concluding remarks.

  5. Results from the Use of Molecular Descriptors Family on Structure Property/Activity Relationships

    Directory of Open Access Journals (Sweden)

    Sorana-Daniela Bolboacă

    2007-03-01

    Full Text Available The aim of the paper is to present the results obtained by utilization of an originalapproach called Molecular Descriptors Family on Structure-Property (MDF-SPR andStructure-Activity Relationships (MDF-SAR applied on classes of chemical compoundsand its usefulness as precursors of models elaboration of new compounds with betterproperties and/or activities and low production costs. The MDF-SPR/MDF-SARmethodology integrates the complex information obtained from compound’s structure inunitary efficient models in order to explain properties/activities. The methodology has beenapplied on a number of thirty sets of chemical compounds. The best subsets of moleculardescriptors family members able to estimate and predict property/activity of interest wereidentified and were statistically and visually analyzed. The MDF-SPR/MDF-SAR modelswere validated through internal and/or external validation methods. The estimation andprediction abilities of the MDF-SPR/MDF-SAR models were compared with previousreported models by applying of correlated correlation analysis, which revealed that theMDF-SPR/MDF-SAR methodology is reliable. The MDF-SPR/MDF-SAR methodologyopens a new pathway in understanding the relationships between compound’s structure andproperty/activity, in property/activity prediction, and in discovery, investigation andcharacterization of new chemical compounds, more competitive as costs andproperty/activity, being a method less expensive comparative with experimental methods.

  6. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid.

    Directory of Open Access Journals (Sweden)

    Cristina Cattò

    Full Text Available The natural compound zosteric acid, or p-(sulfoxycinnamic acid (ZA, is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and screened against Escherichia coli to understand the structural requirements necessary for biofilm inhibition at sub-lethal concentrations. Considerations concerning the relationship between structure and anti-biofilm activity revealed that i the para-sulfoxy ester group is not needed to exploit the anti-biofilm activity of the molecule, it is the cinnamic acid scaffold that is responsible for anti-biofilm performance; ii the anti-biofilm activity of ZA derivatives depends on the presence of a carboxylate anion and, consequently, on its hydrogen-donating ability; iii the conjugated aromatic system is instrumental to the anti-biofilm activities of ZA and its analogues. Using a protein pull-down approach, combined with mass spectrometry, the herein-defined active structure of ZA was matrix-immobilized, and was proved to interact with the E. coli NADH:quinone reductase, WrbA, suggesting a possible role of this protein in the biofilm formation process.

  7. Enhancing adverse drug event detection in electronic health records using molecular structure similarity: application to pancreatitis.

    Directory of Open Access Journals (Sweden)

    Santiago Vilar

    Full Text Available Adverse drug events (ADEs detection and assessment is at the center of pharmacovigilance. Data mining of systems, such as FDA's Adverse Event Reporting System (AERS and more recently, Electronic Health Records (EHRs, can aid in the automatic detection and analysis of ADEs. Although different data mining approaches have been shown to be valuable, it is still crucial to improve the quality of the generated signals.To leverage structural similarity by developing molecular fingerprint-based models (MFBMs to strengthen ADE signals generated from EHR data.A reference standard of drugs known to be causally associated with the adverse event pancreatitis was used to create a MFBM. Electronic Health Records (EHRs from the New York Presbyterian Hospital were mined to generate structured data. Disproportionality Analysis (DPA was applied to the data, and 278 possible signals related to the ADE pancreatitis were detected. Candidate drugs associated with these signals were then assessed using the MFBM to find the most promising candidates based on structural similarity.The use of MFBM as a means to strengthen or prioritize signals generated from the EHR significantly improved the detection accuracy of ADEs related to pancreatitis. MFBM also highlights the etiology of the ADE by identifying structurally similar drugs, which could follow a similar mechanism of action.The method proposed in this paper provides evidence of being a promising adjunct to existing automated ADE detection and analysis approaches.

  8. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  9. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein In vitro Digestibility and Solubility.

    Science.gov (United States)

    Bai, Mingmei; Qin, Guixin; Sun, Zewei; Long, Guohui

    2016-08-01

    The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller's dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (pproteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins.

  10. Molecular basis of structural make-up of feeds in relation to nutrient absorption in ruminants, revealed with advanced molecular spectroscopy: A review on techniques and models

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Mostafizar [Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Yu, Peiqiang [Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    2017-01-31

    Progress in ruminant feed research is no more feasible only based on wet chemical analysis, which is merely able to provide information on chemical composition of feeds regardless of their digestive features and nutritive value in ruminants. Studying internal structural make-up of functional groups/feed nutrients is often vital for understanding the digestive behaviors and nutritive values of feeds in ruminant because the intrinsic structure of feed nutrients is more related to its overall absorption. In this article, the detail information on the recent developments in molecular spectroscopic techniques to reveal microstructural information of feed nutrients and the use of nutrition models in regards to ruminant feed research was reviewed. The emphasis of this review was on (1) the technological progress in the use of molecular spectroscopic techniques in ruminant feed research; (2) revealing spectral analysis of functional groups of biomolecules/feed nutrients; (3) the use of advanced nutrition models for better prediction of nutrient availability in ruminant systems; and (4) the application of these molecular techniques and combination of nutrient models in cereals, co-products and pulse crop research. The information described in this article will promote better insight in the progress of research on molecular structural make-up of feed nutrients in ruminants.

  11. Definition of molecular structure: by choice or by appeal to observation?

    Science.gov (United States)

    Bader, Richard F W

    2010-07-22

    There are two schools of thought in chemistry: one derived from the valence bond and molecular orbital models of bonding, the other appealing directly to the measurable electron density and the quantum mechanical theorems that determine its behavior, an approach embodied in the quantum theory of atoms in molecules, QTAIM. No one questions the validity of the former approach, and indeed molecular orbital models and QTAIM play complementary roles, the models finding expression in the principles of physics. However, some orbital proponents step beyond the models to impose their personal stamp on their use in interpretive chemistry, by denying the possible existence of a physical basis for the concepts of chemistry. This places them at odds with QTAIM, whose very existence stems from the discovery in the observable topology of the electron density, the definitions of atoms, of the bonding between atoms and hence of molecular structure. Relating these concepts to the electron density provides the necessary link for their ultimate quantum definition. This paper explores in depth the possible causes of the difficulties some have in accepting the quantum basis of structure beginning with the arguments associated with the acceptance of a "bond path" as a criterion for bonding. This identification is based on the finding that all classical structures may be mapped onto molecular graphs consisting of bond paths linking neighboring atoms, a mapping that has no known exceptions and one that is further bolstered by the finding that there are no examples of "missing bond paths". Difficulties arise when the quantum concept is applied to systems that are not amenable to the classical models of bonding. Thus one is faced with the recurring dilemma of science, of having to escape the constraints of a model that requires a change in the existing paradigm, a process that has been in operation since the discovery of new and novel structures necessitated the extension of the Lewis model

  12. Using polarized Raman spectroscopy and the pseudospectral method to characterize molecular structure and function

    Science.gov (United States)

    Weisman, Andrew L.

    Electronic structure calculation is an essential approach for determining the structure and function of molecules and is therefore of critical interest to physics, chemistry, and materials science. Of the various algorithms for calculating electronic structure, the pseudospectral method is among the fastest. However, the trade-off for its speed is more up-front programming and testing, and as a result, applications using the pseudospectral method currently lag behind those using other methods. In Part I of this dissertation, we first advance the pseudospectral method by optimizing it for an important application, polarized Raman spectroscopy, which is a well-established tool used to characterize molecular properties. This is an application of particular importance because often the easiest and most economical way to obtain the polarized Raman spectrum of a material is to simulate it; thus, utilization of the pseudospectral method for this purpose will accelerate progress in the determination of molecular properties. We demonstrate that our implementation of Raman spectroscopy using the pseudospectral method results in spectra that are just as accurate as those calculated using the traditional analytic method, and in the process, we derive the most comprehensive formulation to date of polarized Raman intensity formulas, applicable to both crystalline and isotropic systems. Next, we apply our implementation to determine the orientations of crystalline oligothiophenes -- a class of materials important in the field of organic electronics -- achieving excellent agreement with experiment and demonstrating the general utility of polarized Raman spectroscopy for the determination of crystal orientation. In addition, we derive from first-principles a method for using polarized Raman spectra to establish unambiguously whether a uniform region of a material is crystalline or isotropic. Finally, we introduce free, open-source software that allows a user to determine any of a

  13. Treatment of PCR products with exonuclease I and heat-labile alkaline phosphatase improves the visibility of combined bisulfite restriction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kousuke; Emoto, Noriko; Sunohara, Mitsuhiro; Kawakami, Masanori; Kage, Hidenori; Nagase, Takahide; Ohishi, Nobuya [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Takai, Daiya, E-mail: dtakai-ind@umin.ac.jp [Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2010-08-27

    Research highlights: {yields} Incubating PCR products at a high temperature causes smears in gel electrophoresis. {yields} Smears interfere with the interpretation of methylation analysis using COBRA. {yields} Treatment with exonuclease I and heat-labile alkaline phosphatase eliminates smears. {yields} The elimination of smears improves the visibility of COBRA. -- Abstract: DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonuclease I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 {sup o}C or 65 {sup o}C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.

  14. Stimulation of 3′→5′ Exonuclease and 3′-Phosphodiesterase Activities of Yeast Apn2 by Proliferating Cell Nuclear Antigen

    Science.gov (United States)

    Unk, Ildiko; Haracska, Lajos; Gomes, Xavier V.; Burgers, Peter M. J.; Prakash, Louise; Prakash, Satya

    2002-01-01

    The Apn2 protein of Saccharomyces cerevisiae contains 3′→5′ exonuclease and 3′-phosphodiesterase activities, and these activities function in the repair of DNA strand breaks that have 3′-damaged termini and which are formed in DNA by the action of oxygen-free radicals. Apn2 also has an AP endonuclease activity and functions in the removal of abasic sites from DNA. Here, we provide evidence for the physical and functional interaction of Apn2 with proliferating cell nuclear antigen (PCNA). As indicated by gel filtration and two-hybrid studies, Apn2 interacts with PCNA both in vitro and in vivo and mutations in the consensus PCNA-binding motif of Apn2 abolish this interaction. Importantly, PCNA stimulates the 3′→5′ exonuclease and 3′-phosphodiesterase activities of Apn2. We have examined the involvement of the interdomain connector loop (IDCL) and of the carboxy-terminal domain of PCNA in Apn2 binding and found that Apn2 binds PCNA via distinct domains dependent upon whether the binding is in the absence or presence of DNA. In the absence of DNA, Apn2 binds PCNA through its IDCL domain, whereas in the presence of DNA, when PCNA has been loaded onto the template-primer junction by replication factor C, the C-terminal domain of PCNA mediates the binding. PMID:12192046

  15. Chemozart: a web-based 3D molecular structure editor and visualizer platform.

    Science.gov (United States)

    Mohebifar, Mohamad; Sajadi, Fatemehsadat

    2015-01-01

    Chemozart is a 3D Molecule editor and visualizer built on top of native web components. It offers an easy to access service, user-friendly graphical interface and modular design. It is a client centric web application which communicates with the server via a representational state transfer style web service. Both client-side and server-side application are written in JavaScript. A combination of JavaScript and HTML is used to draw three-dimensional structures of molecules. With the help of WebGL, three-dimensional visualization tool is provided. Using CSS3 and HTML5, a user-friendly interface is composed. More than 30 packages are used to compose this application which adds enough flexibility to it to be extended. Molecule structures can be drawn on all types of platforms and is compatible with mobile devices. No installation is required in order to use this application and it can be accessed through the internet. This application can be extended on both server-side and client-side by implementing modules in JavaScript. Molecular compounds are drawn on the HTML5 Canvas element using WebGL context. Chemozart is a chemical platform which is powerful, flexible, and easy to access. It provides an online web-based tool used for chemical visualization along with result oriented optimization for cloud based API (application programming interface). JavaScript libraries which allow creation of web pages containing interactive three-dimensional molecular structures has also been made available. The application has been released under Apache 2 License and is available from the project website https://chemozart.com.

  16. Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2015-03-03

    Laser ablation of organic compounds has been investigated for almost 30 years now, either in the framework of pulse laser deposition for the assembling of new materials or in the context of chemical sensing. Various monitoring techniques such as atomic and molecular fluorescence, time-of-flight mass spectrometry, and optical emission spectroscopy have been used for plasma diagnostics in an attempt to understand the spectral signature and potential origin of gas-phase ions and fragments from organic plasmas. Photochemical and photophysical processes occurring within these systems are generally much more complex than those suggested by observation of optical emission features. Together with laser ablation parameters, the structural and chemical-physical properties of molecules seem to be closely tied to the observed phenomena. The present manuscript, for the first time, discusses the role of molecular structure in the optical emission of organic plasmas. Factors altering the electronic distribution within the organic molecule have been found to have a direct impact on its ensuing optical emissions. The electron structure of an organic molecule, resulting from the presence, nature, and position of its atoms, governs the breakage of the molecule and, as a result, determines the extent of atomization and fragmentation that has proved to directly impact the emissions of CN radicals and C2 dimers. Particular properties of the molecule respond more positively depending on the laser irradiation wavelength, thereby redirecting the ablation process through photochemical or photothermal decomposition pathways. It is of paramount significance for chemical identification purposes how, despite the large energy stored and dissipated by the plasma and the considerable number of transient species formed, the emissions observed never lose sight of the original molecule.

  17. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart.

    Science.gov (United States)

    Matrone, Gianfranco; Wilson, Kathryn S; Mullins, John J; Tucker, Carl S; Denvir, Martin A

    2015-06-01

    Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  18. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules.

    Science.gov (United States)

    Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J

    2012-09-01

    Cereal starch granules with high (>50%) amylose content are a promising source of nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine, but the structural features responsible are not fully understood. We report the effects of partial enzyme digestion of maize starch granules on amylopectin branch length profiles, double and single helix contents, gelatinisation properties, crystallinity and lamellar periodicity. Comparing results for three maize starches (27, 57, and 84% amylose) that differ in both structural features and amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. All starches are found to be digested by a side-by-side mechanism in which there is no major preference during enzyme attack for amylopectin branch lengths, helix form, crystallinity or lamellar organisation. We conclude that the major factor controlling enzyme susceptibility is granule architecture, with shorter length scales not playing a major role as inferred from the largely invariant nature of numerous structural measures during the digestion process (XRD, NMR, SAXS, DSC, FACE). Results are consistent with digestion rates being controlled by restricted diffusion of enzymes within densely packed granular structures, with an effective surface area for enzyme attack determined by external dimensions (57 or 84% amylose - relatively slow) or internal channels and pores (27% amylose - relatively fast). Although the process of granule digestion is to a first approximation non-discriminatory with respect to structure at molecular and mesoscopic length scales, secondary effects noted include (i) partial crystallisation of V-type helices during digestion of 27% amylose starch, (ii) preferential hydrolysis of long amylopectin branches during the early stage hydrolysis of 27% and 57% but not 84% amylose starches, linked with disruption of lamellar repeating structure

  19. Molecular Orientation and Structural Transformations in Phthalic Anhydride Thin Films on MgO(100)/Ag(100).

    Science.gov (United States)

    Mohr, Susanne; Xu, Tao; Döpper, Tibor; Laurin, Mathias; Görling, Andreas; Libuda, Jörg

    2015-07-21

    Structural control of organic thin films on dielectric substrates is the key to tailoring the physical properties of hybrid materials, for example, for application in solar energy conversion, molecular electronics, or catalysis. In this work, we investigate the molecular orientation of phthalic anhydride (PAA) films on atomically well-defined MgO(100) on Ag(100) using temperature-programmed infrared reflection absorption spectroscopy (TP-IRAS) in combination with density-functional theory (DFT). A robust procedure is presented to determine the orientation of the PAA molecules, which relies on the intensity ratios of vibrational bands only. We show that even at deposition temperatures of 110 K, the PAA multilayer grows with a specific molecular orientation; that is, the PAA molecular plane is preferentially aligned parallel with the MgO surface. No change of molecular orientation occurs up to a temperature of 145 K. Between 145 and 160 K, the film restructures adopting a nearly flat-lying molecular orientation. Between 170 and 205 K, the film undergoes a second structural transition to a crystalline phase. This transition is associated with a pronounced molecular reorientation. The molecules adopt a tilted orientation and, simultaneously, rotate around their C2 axes. The reorientation behavior suggests that the molecular orientation in the crystalline phase is controlled by the interaction with the MgO(100) substrate. At higher temperature, no further restructuring is observed until the PAA multilayer desorbs at temperatures above 230 K.

  20. Relative stability of protein structures determined by X-ray crystallography or NMR spectroscopy : A molecular dynamics simulation study

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    2003-01-01

    The relative stability of protein structures determined by either X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy has been investigated by using molecular dynamics simulation techniques. Published structures of 34 proteins containing between 50 and 100 residues have been