49 CFR 214.513 - Retrofitting of existing on-track roadway maintenance machines; general.
2010-10-01
... maintenance machines; general. 214.513 Section 214.513 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.513 Retrofitting of existing on-track roadway maintenance machines; general. (a) Each existing on-track roadway maintenance machine...
49 CFR 214.515 - Overhead covers for existing on-track roadway maintenance machines.
2010-10-01
... maintenance machines. 214.515 Section 214.515 Transportation Other Regulations Relating to Transportation... Roadway Maintenance Machines and Hi-Rail Vehicles § 214.515 Overhead covers for existing on-track roadway maintenance machines. (a) For those existing on-track roadway maintenance machines either currently or...
Energy Technology Data Exchange (ETDEWEB)
Stassen, P
1980-01-01
Support systems in stone drifts and tunnels are discussed. Timber supports, steel arches, cold-bent sheet-metal arches, shotcrete and combined support arrangements are described. Brickwork and reinforced concrete are also covered. Supports in roadways leading to the face and in-seam roads are discussed including timber supports, steel arches, articulated arches on timber chocks, support accessories and the withdrawal and reshaping of arches. The subject of strata bolting, the aims of strata bolting, methods of strata bolting, systems of rock-bolting, end plates and wire mesh, and bolt and anchorage monitoring are also discussed. Injection techniques, injection parameters, injection methods, grouts, includes an example of the application of injection techniques are covered and combined injection/dowelling arrangements are examined. (55 refs.) (In French)
Sossinsky, A B
2012-01-01
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...
Indian Academy of Sciences (India)
. In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...
Prasolov, V V
2015-01-01
This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.
Pedoe, Dan
1988-01-01
""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he
Sustainable roadway lighting seminar.
2014-07-01
The objective of this project was to develop and conduct a half-day educational seminar on sustainable : roadway lighting at three locations within New York State: Rochester, New York City, and Albany. : Primary attendees were engineers from the New ...
Wang, Xu-Jia
2006-01-01
In this paper we prove the interior gradient and second derivative estimates for a class of fully nonlinear elliptic equations determined by symmetric functions of eigenvalues of the Ricci or Schouten tensors. As an application we prove the existence of solutions to the equations when the manifold is locally conformally flat or the Ricci curvature is positive.
Design Of Overhead Roadway At Road Intersection
Directory of Open Access Journals (Sweden)
Raji
2017-08-01
Full Text Available This project deals with the Design of overhead-roadway located at CHALLENGE junction which is a T-junction. Analysis of the existing conditions was carried out to proffers solution to the cause of the problems occurring due to the vehicle competing for space at this intersection. Before carrying out the analysis a traffic surveys at peak hours for morning 0730 to 0830 am and afternoon 0300 to 0400 pm were conducted using 15 minutes interval. From the analysis it was found out that the peak hour factor and flow rate was 0.88 and 1656pcphpl respectively corresponding to LOS E. This implies that the capacity of the existing road is no longer able to accommodate the traffic flow hence overhead roadway was introduced to improve the efficiency of the intersection. The overhead-roadway is of 140 m length with 7 spans 20 m per span. It consists of a deck slab longitudinal girders cross girders deck beam pier foundation and retailing wall. All structural parts for this Flyover were designed using Staad professional software package and Manual method.
32 CFR 636.24 - Driving on right side of roadway; use of roadway.
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Driving on right side of roadway; use of roadway... (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.24 Driving on right side of roadway; use of roadway. (a) All drivers...
Probabilistic assessment of roadway departure risk in a curve
Rey, G.; Clair, D.; Fogli, M.; Bernardin, F.
2011-10-01
Roadway departure while cornering constitutes a major part of car accidents and casualties in France. Even though drastic policy about overspeeding contributes to reduce accidents, there obviously exist other factors. This article presents the construction of a probabilistic strategy for the roadway departure risk assessment. A specific vehicle dynamic model is developed in which some parameters are modelled by random variables. These parameters are deduced from a sensitivity analysis to ensure an efficient representation of the inherent uncertainties of the system. Then, structural reliability methods are employed to assess the roadway departure risk in function of the initial conditions measured at the entrance of the curve. This study is conducted within the French national road safety project SARI that aims to implement a warning systems alerting the driver in case of dangerous situation.
Apparatus, System, And Method For Roadway Monitoring
Claudel, Christian G.
2015-06-02
An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.
Apparatus, System, And Method For Roadway Monitoring
Claudel, Christian G.
2015-01-01
An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.
49 CFR 236.929 - Training specific to roadway workers.
2010-10-01
... themselves or roadway work groups. (b) What subject areas must roadway worker training include? (1... control equipment in establishing protection for roadway workers and their equipment. (2) Instruction for roadway workers must ensure recognition of processor-based signal and train control equipment on the...
49 CFR 214.341 - Roadway maintenance machines.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway maintenance machines. 214.341 Section 214... Roadway maintenance machines. (a) Each employer shall include in its on-track safety program specific provisions for the safety of roadway workers who operate or work near roadway maintenance machines. Those...
49 CFR 214.345 - Training for all roadway workers.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Training for all roadway workers. 214.345 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.345 Training for all roadway workers. The training of all roadway workers shall include, as a minimum, the...
Autodesk Roadway Design for Infraworks 360 essentials
Chappell, Eric
2015-01-01
Quickly master InfraWorks Roadway Design with hands-on tutorials Autodesk Roadway Design for InfraWorks 360 Essentials, 2nd Edition allows you to begin designing immediately as you learn the ins and outs of the roadway-specific InfraWorks module. Detailed explanations coupled with hands-on exercises help you get up to speed and quickly and become productive with the module's core features and functions. Compelling screenshots illustrate step-by-step tutorials, and the companion website provides downloadable starting and ending files so you can jump in at any point and compare your work to the
30 CFR 57.9313 - Roadway maintenance.
2010-07-01
... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites...
Sustainable development of roadways in Africa
Akindeji-Oladeji, O.; Awomeso, J. A.; Taiwo, A. M.; Abu, S.
2012-01-01
Dallas Roadway Products (DRP) soil stabilization technology can effectively improve road foundation construction and with it the strength of roadway sub-grades and sub-bases. Soil samples were collected from roads in Nigeria’s six geo-political regions. DRP LS-40 (lignate sulfonate) and DRP SA-44 (sulfuric acid) were added to the soil materials. The mixture precipitated a non-reversible chemical reaction that involved a permanent change in the soil structure. The chemicals reacted with th...
Sustainable development of roadways in Africa
Akindeji-Oladeji, O.; Awomeso, J. A.; Taiwo, A. M.; Abu, S.
2012-01-01
Dallas Roadway Products (DRP) soil stabilization technology can effectively improve road foundation construction and with it the strength of roadway sub-grades and sub-bases. Soil samples were collected from roads in Nigeria’s six geo-political regions. DRP LS-40 (lignate sulfonate) and DRP SA-44 (sulfuric acid) were added to the soil materials. The mixture precipitated a non-reversible chemical reaction that involved a permanent change in the soil structure. The chemicals reacted with the cl...
Spinning geometry = Twisted geometry
International Nuclear Information System (INIS)
Freidel, Laurent; Ziprick, Jonathan
2014-01-01
It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)
Polyurethane foam for roadway stabilization NH route 129, Loudon, NH.
2016-12-12
This report summarizes the evaluation of the performance of polyurethane foam as a method of roadway : stabilization for a rural roadway experiencing substantial frost heaving. : NHDOT is responsible for many roads which have evolved from gravel road...
Influence of cantilevered sheet pile deflection on adjacent roadways.
2009-06-01
Cantilevered sheet pile walls are often used adjacent roadways as temporary support during construction. Excess movement of these walls has led to excessive roadway distress causing additional repairs to be necessary. This study assessed the effects ...
High-Fidelity Roadway Modeling and Simulation
Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit
2010-01-01
Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.
Analysis of soft rock mineral components and roadway failure mechanism
Institute of Scientific and Technical Information of China (English)
陈杰
2001-01-01
The mineral components and microstructure of soft rock sampled from roadway floor inXiagou pit are determined by X-ray diffraction and scanning electron microscope. Ccmbined withthe test of expansion and water softening property of the soft rock, the roadway failure mechanism is analyzed, and the reasonable repair supporting principle of roadway is put forward.
2010-10-01
... RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.353 Training and qualification of roadway workers who provide on-track safety for roadway work groups. (a) The training and qualification of roadway... 49 Transportation 4 2010-10-01 2010-10-01 false Training and qualification of roadway workers who...
Use of reflective surfaces on roadway embankment
DEFF Research Database (Denmark)
Jørgensen, Anders Stuhr; Doré, Guy
2007-01-01
adherence characteristics for roadway use. In Kangerlussuaq Airport, western Greenland, ground-penetrating radar (GPR) has been used to compare the variation of the frost table underneath a normal black asphalt surface and a more reflective surface (white paint). The GPR results have shown a clear...
International Nuclear Information System (INIS)
Strominger, A.
1990-01-01
A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)
Gabauer, Douglas J; Li, Xiaolong
2015-04-01
The purpose of this study was to investigate motorcycle-to-barrier crash frequency on horizontally curved roadway sections in Washington State using police-reported crash data linked with roadway data and augmented with barrier presence information. Data included 4915 horizontal curved roadway sections with 252 of these sections experiencing 329 motorcycle-to-barrier crashes between 2002 and 2011. Negative binomial regression was used to predict motorcycle-to-barrier crash frequency using horizontal curvature and other roadway characteristics. Based on the model results, the strongest predictor of crash frequency was found to be curve radius. This supports a motorcycle-to-barrier crash countermeasure placement criterion based, at the very least, on horizontal curve radius. With respect to the existing horizontal curve criterion of 820 feet or less, curves meeting this criterion were found to increase motorcycle-to-barrier crash frequency rate by a factor of 10 compared to curves not meeting this criterion. Other statistically significant predictors were curve length, traffic volume and the location of adjacent curves. Assuming curves of identical radius, the model results suggest that longer curves, those with higher traffic volume, and those that have no adjacent curved sections within 300 feet of either curve end would likely be better candidates for a motorcycle-to-barrier crash countermeasure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Risk analysis for roadways subjected to multiple landslide-related hazards
Corominas, Jordi; Mavrouli, Olga
2014-05-01
Roadways through mountainous terrain often involve cuts and landslide areas whose stability is precarious and require protection and stabilization works. To optimize the allocation of resources, government and technical offices are increasingly interested in both the risk analysis and assessment. Risk analysis has to consider the hazard occurrence and the consequences. The consequences can be both direct and indirect. The former include the costs regarding the repair of the roadway, the damage of vehicles and the potential fatalities, while the latter refer to the costs related to the diversion of vehicles, the excess of distance travelled, the time differences, and tolls. The type of slope instabilities that may affect a roadway may vary and its effects as well. Most current approaches either consider a single hazardous phenomenon each time, or if applied at small (for example national) scale, they do not take into account local conditions at each section of the roadway. The objective of this work is the development of a simple and comprehensive methodology for the assessment of the risk due to multiple hazards along roadways, integrating different landslide types that include rockfalls, debris flows and considering as well the potential failure of retaining walls. To quantify risk, all hazards are expressed with a common term: their probability of occurrence. The methodology takes into consideration the specific local conditions along the roadway. For rockfalls and debris flow a variety of methods for assessing the probability of occurrence exists. To assess the annual probability of failure of retaining walls we use an indicator-based model that provides a hazard index. The model parameters consist in the design safety factor, and further anchorage design and construction parameters. The probability of failure is evaluated in function of the hazard index and next corrected (in terms of order of magnitude) according to in situ observations for increase of two
Sustainable development of roadways in Africa
Directory of Open Access Journals (Sweden)
Akindeji-Oladeji, O.
2012-12-01
Full Text Available Dallas Roadway Products (DRP soil stabilization technology can effectively improve road foundation construction and with it the strength of roadway sub-grades and sub-bases. Soil samples were collected from roads in Nigeria’s six geo-political regions. DRP LS-40 (lignate sulfonate and DRP SA-44 (sulfuric acid were added to the soil materials. The mixture precipitated a non-reversible chemical reaction that involved a permanent change in the soil structure. The chemicals reacted with the clay content, increasing the soil material plasticity. In non-plastic soils, clay materials were added to the soil, which was then pulverised. The study showed that DRP soil stabilisation chemicals can render poor, unsuitable or marginally deficient soils apt for use as a sub-base or base in roadway construction.
La tecnología de Dallas Roadway Products (DRP constituye una metodología eficaz para mejorar la construcción de las capas inferiores del firme de calzadas y con ella la resistencia de las bases y sub-bases de las carreteras. En esta investigación se recogen muestras del terreno que constituye las carreteras existentes en las seis regiones geopolíticas nigerianas. Al incorporar a las muestras el DRP LS-40 (lignosulfonato y el DRP SA-44 (ácido sulfúrico, la mezcla acelera una reacción química no reversible que produce una modificación permanente del entramado del suelo. La reacción de las sustancias químicas con la arcilla del suelo aumenta su plasticidad. A los suelos sin plasticidad se agregan materiales arcillosos, procediéndose a continuación a la pulverización del material resultante. Según los resultados obtenidos, las sustancias químicas de estabilización de suelos de DRP pueden transformar los suelos pobres, inapropiados o deficientes en materiales adecuados para servir como bases o sub-bases de las carreteras.
49 CFR 236.1049 - Training specific to roadway workers.
2010-10-01
... who provide protection for themselves or roadway work groups. (b) Training subject areas. (1... control equipment in establishing protection for roadway workers and their equipment. (2) Instruction for... recognition of processor-based signal and train control equipment on the wayside and an understanding of how...
49 CFR 236.527 - Roadway element insulation resistance.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...
Oak woodland conservation as mitigation for roadway improvement
Park Steiner; Jackson Ford
2015-01-01
East Side Potter Valley (ESPV) Road is a heavily used rural collector road running north/south through the unincorporated area of Mendocino County known as Potter Valley. The roadway is significantly deteriorated and in need of repair and upgrade. The Mendocino County Department of Transportation (MCDOT) road project encompasses approximately 6.4 km of roadway that...
The effects of roadway characteristics on farm equipment crashes: A GIS approach
Greenan, Mitchell Joseph
Tractors and other self-propelled farm equipment, such as combines, sprayers, and towed grain carts, are often used on public roadways as the primary means for traveling from homestead to homestead or from homestead to a distributer. Increased roadway exposure has led to a growing concern for crashes involving farm equipment on the public roadway. A handful of studies exist examining public roadway crashes involving farm equipment using crash data, but none thus far have evaluated road segment data to identify road-specific risk factors. The objective of this study is to identify if roadway characteristics (traffic density, speed limit, road type, surface type, road width, and shoulder width) affect the risk of a crash involving farm equipment on Iowa public roadways. A retrospective cohort study of Iowa roads was conducted to identify the types of roads that are at an increased risk of having a farm-equipment crash on them. Crash data from the Iowa Department of Transportation (to identify crashes) were spatial linked to Iowa roadway data using Geographic Information Systems (GIS). Logistic regression was used to calculate ORs and 95% CL. Out of 319,705 road segments in Iowa, 0.4% segments (n=1,337) had a farm equipment crash from 2005-2011. The odds of having a farm equipment crash were significantly higher for road segments with increased traffic density and speed limit. Roads with an average daily traffic volume of at least 1,251 vehicles were at a 5.53 times greater odds of having a crash than roads with a daily traffic volume between 0-30 vehicles. (CI: 3.90-7.83). Roads with a posted speed limit between 50mph and 60mph were at a 4.88 times greater odds of having a crash than roads with a posted speed limit of 30mph or less. (CI: 3.85-6.20). Specific roadway characteristics such as roadway and shoulder width were also associated with the risk of a crash. For every 5 foot increase in road width, the odds for a crash decreased by 6 percent (CI: 0.89-0.99) and
Proximity of US schools to major roadways: a nationwide assessment.
Kingsley, Samantha L; Eliot, Melissa N; Carlson, Lynn; Finn, Jennifer; MacIntosh, David L; Suh, Helen H; Wellenius, Gregory A
2014-01-01
Long-term exposure to traffic pollution has been associated with adverse health outcomes in children and adolescents. A significant number of schools may be located near major roadways, potentially exposing millions of children to high levels of traffic pollution, but this hypothesis has not been evaluated nationally. We obtained data on the location and characteristics of 114,644 US public and private schools, grades prekindergarten through 12, and calculated their distance to the nearest major roadway. In 2005-2006, 3.2 million students (6.2%) attended 8,424 schools (7.3%) located within 100 m of a major roadway, and an additional 3.2 million (6.3%) students attended 8,555 (7.5%) schools located 100-250 m from a major roadway. Schools serving predominantly Black students were 18% (95% CI, 13-23%) more likely to be located within 250 m of a major roadway. Public schools eligible for Title I programs and those with a majority of students eligible for free/reduced price meals were also more likely to be near major roadways. In conclusion, 6.4 million US children attended schools within 250 m of a major roadway and were likely exposed to high levels of traffic pollution. Minority and underprivileged children were disproportionately affected, although some results varied regionally.
Iversen, Birger
1992-01-01
Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics
van den Broek, P.M.
1984-01-01
The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.
AHMCT Intelligent Roadway Information System (IRIS) technical support and testing
2011-12-31
This report documents the research project AHMCT IRIS Technical Support and Testing, : performed under contract 65A0275, Task ID 1777. It presents an overview of the Intelligent : Roadway Information System (IRIS), and its design and function. ...
Asset Management of Roadway Signs Through Advanced Technology
2003-06-01
This research project aims to ease the process of Roadway Sign asset management. The project utilized handheld computer and global positioning system (GPS) technology to capture sign location data along with a timestamp. This data collection effort w...
Use of roadway attributes in hot spot identification and analysis.
2015-10-01
This research focuses on the addition of roadway attributes in the selection and analysis of hot spots. This : is in conjunction with the framework for highway safety mitigation in Utah with its six primary steps: network : screening, diagnosis...
Greenroads : a sustainability performance metric for roadway design and construction.
2009-11-01
Greenroads is a performance metric for quantifying sustainable practices associated with roadway design and construction. Sustainability is defined as having seven key components: ecology, equity, economy, extent, expectations, experience and exposur...
Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge
Energy Technology Data Exchange (ETDEWEB)
Tuenge, Jason R.
2012-09-01
Subsequent to preliminary investigations by the Golden Gate Bridge Highway & Transportation District (GGB), in coordination with Pacific Gas & Electric (PG&E), the GATEWAY Demonstration program was asked to evaluate the technical feasibility of replacing existing roadway lighting on the bridge with products utilizing LED technology. GGB and PG&E also indicated interest in induction (i.e., electrodeless fluorescent) technology, since both light source types feature rated lifetimes significantly exceeding those of the existing high-pressure sodium (HPS) and low-pressure sodium (LPS) products. The goal of the study was to identify any solutions which would reduce energy use and maintenance without compromising the quantity or quality of existing illumination. Products used for roadway lighting on the historic bridge must be installed within the existing amber-lensed shoebox-style luminaire housings. It was determined that induction technology does not appear to represent a viable alternative for the roadway luminaires in this application; any energy savings would be attributable to a reduction in light levels. Although no suitable LED retrofit kits were identified for installation within existing luminaire housings, several complete LED luminaires were found to offer energy savings of 6-18%, suggesting custom LED retrofit kits could be developed to match or exceed the performance of the existing shoeboxes. Luminaires utilizing ceramic metal halide (CMH) were also evaluated, and some were found to offer 28% energy savings, but these products might actually increase maintenance due to the shorter rated lamp life. Plasma technology was evaluated, as well, but no suitable products were identified. Analysis provided in this report was completed in May 2012. Although LED technologies are expected to become increasingly viable over time, and product mock-ups may reveal near-term solutions, some options not currently considered by GGB may ultimately merit evaluation. For
Placement Design of Changeable Message Signs on Curved Roadways
Directory of Open Access Journals (Sweden)
Zhongren Wang, Ph.D. P.E. T.E.
2015-01-01
Full Text Available This paper presented a fundamental framework for Changeable Message Sign (CMS placement design along roadways with horizontal curves. This analytical framework determines the available distance for motorists to read and react to CMS messages based on CMS character height, driver's cone of vision, CMS pixel's cone of legibility, roadway horizontal curve radius, and CMS lateral and vertical placement. Sample design charts were developed to illustrate how the analytical framework may facilitate CMS placement design.
Rodger, Alison
1995-01-01
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans
Technological and mining analysis of mechanized systems used in roadways in Polish mines
Energy Technology Data Exchange (ETDEWEB)
Sikora, W; Giza, T; Siwiec, J [Politechnika Slaska, Gliwice (Poland). Instytut Mechanizacji Gornictwa
1987-01-01
Analyzes methods of mine drivage in Poland and materials handling systems. Of 1,620 km of roadways driven in 1982, 12% fell on roadways driven in coal and 88% on roadways driven in stone or stone and coal. Roadways driven in coal in most cases were situated at depths from 500 to 700 m. Roadway cross-section ranged from 12 to 18 m{sup 2}. Roadways in stone or stone and coal were driven by drilling and blasting. Loaders were used for stone handling. Roadways in coal were driven by heading machines. Advance rates of mine drivage by heading machines were 2 to 3 times higher than those by drilling and blasting with loaders for stone handling. Basic statistical data characterizing roadways and drivage methods are evaluated: roadway dimensions and depth advance rate depending on drivage methods and mining condition, types of heading machines and loaders.
International Nuclear Information System (INIS)
Robinson, I.; Trautman, A.
1988-01-01
The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem
Remote sensing-based detection and quantification of roadway debris following natural disasters
Axel, Colin; van Aardt, Jan A. N.; Aros-Vera, Felipe; Holguín-Veras, José
2016-05-01
Rapid knowledge of road network conditions is vital to formulate an efficient emergency response plan following any major disaster. Fallen buildings, immobile vehicles, and other forms of debris often render roads impassable to responders. The status of roadways is generally determined through time and resource heavy methods, such as field surveys and manual interpretation of remotely sensed imagery. Airborne lidar systems provide an alternative, cost-effective option for performing network assessments. The 3D data can be collected quickly over a wide area and provide valuable insight about the geometry and structure of the scene. This paper presents a method for automatically detecting and characterizing debris in roadways using airborne lidar data. Points falling within the road extent are extracted from the point cloud and clustered into individual objects using region growing. Objects are classified as debris or non-debris using surface properties and contextual cues. Debris piles are reconstructed as surfaces using alpha shapes, from which an estimate of debris volume can be computed. Results using real lidar data collected after a natural disaster are presented. Initial results indicate that accurate debris maps can be automatically generated using the proposed method. These debris maps would be an invaluable asset to disaster management and emergency response teams attempting to reach survivors despite a crippled transportation network.
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-31
The aim of this project, carried out between 1993 and 1996, is based on the research of the possibilities for roadways support optimisation in EL BIERZO coal field, which is the carboniferous coal field in Spain where it is the most widespread the use of rock bolting combined with yielding arches as gates support system. This project has been carried out in the GRUPO ESCANDAL of Antracitas de Gaiztarro, at present integrated in Coto Minero del SIL and it has been focused on BIENHALLADA and PERDIZ layers, with the following tasks: I.- Taking of geomechanical data. II.- Setting up of a support calculation system III.- Validation of the calculation system in real situations. IV.- development of a friendly computer programme that can be used by technicians, without any special knowledge on computers, for the design of roadways support in EL BIERZO. This programme, in a very friendly manner, permits to establish the geometrical characteristics of a gate to be excavated in a certain seam and, once defined the geometry of the gate, this programme is able to select the support to be used, by combining fully grouted bolts, wooden chocks and steel arches. (Author)
Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes
2014-01-01
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Maor, Eli
2014-01-01
If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur
Underground roadway drivage with heading machines in Indian coal industry
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, T.K.
1983-03-01
Heading machines have assumed a very important place in underground roadway drivage. They are not only a compromise between ''drill-and-blast'' technique and full-face machines, but are also an economic and versatile form of mechanised roadway drivage. Since the advantages gained by heading machines are considerable, the use of these machines is becoming popular in underground roadway drivage. Experience with continuous miner and heading machines in Indian coal mines is very limited compared to that of Western countries. In 1964-65, for the first time, two units of Lee Norse Miner were used at Kunostoria Colliery of Bengal Coal Company. In 1966, two units of Joy Continuous Miner were introduced at Chalkari Colliery of National Coal Development Corporation, but had to be adandoned because of heavy make of water at the installation site. A Russian PK-3 heading machine was used limitedly during the development of Banki Colliery, Madhya Pradesh. A Demag Unicorn VS-1 machine operated for the development of roadways at Jitpur and Chasnala Collieries of IISCO between 1967-70. With this machine, progress of 7 m per day was attained in level roadways and of about 2 m per day in steep raises.
Methods for protecting mine roadways used by two faces
Energy Technology Data Exchange (ETDEWEB)
Katkov, G A; Dimanshtein, A S
1983-09-01
Use of a mine roadway by two longwall faces reduces mine drivage by half and positively influences ventilation and mine haulage. Economic effects of repeated use of mine roadways depend on strata control cost and repair of support systems damaged or deformed by rock strata stress. Use of strips of pneumatic stowing along mine roadways is uneconomical due to low support strength and significant subsidence of the waste rock strip under rock strata stress. Use of timber cribbings as well as blocks of reinforced concrete for strata control is uneconomical due to their high damage rate and low support capacity. Investigations carried out by the IGD Im. A.A. Skochinski Institute and other research institutes show that use of hardening stowing is superior to other methods for strata control in mine roadways used by two longwall faces. Hardening stowing (on a cement basis) is prepared by the SB-67 or the PBM-2Eh machines and by other systems used for guniting in coal mines. The optimum dimensions of a strip of hardening stowing depend on coal seam thickness and mechanical properties of the surrounding rock strata. Use of hardening stowing successfully controls roof subsidence in mine roadways and reduces support deformation. Examples of hardening stowing use in some Donbass coal mines are discussed.
Kemnitz, Arnfried
Der Grundgedanke der Analytischen Geometrie besteht darin, dass geometrische Untersuchungen mit rechnerischen Mitteln geführt werden. Geometrische Objekte werden dabei durch Gleichungen beschrieben und mit algebraischen Methoden untersucht.
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz
2017-01-01
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...
2013-04-01
Sky glow light pollution is caused largely by reflected light off of roadway and other surfaces. The : authors investigated the feasibility of a system consisting of a specialized LED streetlight and a dyebased : roadway surface coating that would re...
Tabachnikov, Serge
2005-01-01
Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisit...
49 CFR 214.507 - Required safety equipment for new on-track roadway maintenance machines.
2010-10-01
... maintenance machines. 214.507 Section 214.507 Transportation Other Regulations Relating to Transportation... Roadway Maintenance Machines and Hi-Rail Vehicles § 214.507 Required safety equipment for new on-track roadway maintenance machines. (a) Each new on-track roadway maintenance machine shall be equipped with: (1...
77 FR 50323 - Railroad Workplace Safety; Roadway Worker Protection Miscellaneous Revisions (RRR)
2012-08-20
... Protections in Shop Areas B. Frequency of Training and Qualification for Additional Roadway Worker... job briefing requirement regarding the accessibility of the roadway worker in charge; the adoption of... roadway worker protection and blue signal protection requirements for work performed within shop areas...
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
Berger, Marcel
2010-01-01
Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,
Robinson, Gilbert de B
2011-01-01
This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom
Connes, Alain
1994-01-01
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat
Fabiano, Gregory A.; Hulme, Kevin; Linke, Stuart; Nelson-Tuttle, Chris; Pariseau, Meaghan; Gangloff, Brian; Lewis, Kemper; Pelham, William E.; Waschbusch, Daniel A.; Waxmonsky, James G.; Gormley, Matthew; Gera, Shradha; Buck, Melina
2011-01-01
Teenage drivers with attention-deficit/hyperactivity disorder (ADHD) are at considerable risk for negative driving outcomes, including traffic citations, accidents, and injuries. Presently, no efficacious psychosocial interventions exist for teenage drivers with ADHD. The Supporting a Teen's Effective Entry to the Roadway (STEER) program is a…
Techniques for inventorying manmade impacts in roadway environments.
Dale R. Potter; J. Alan. Wagar
1971-01-01
Four techniques for inventorying manmade impacts along roadway corridors were devised and compared. Ground surveillance and ground photography techniques recorded impacts within the corridor visible from the road. Techniques on large- and small-scale aerial photography recorded impacts within a more complete corridor that included areas screened from the road by...
49 CFR 220.11 - Requirements for roadway workers.
2010-10-01
... more annual employee work hours: (1) Maintenance-of-way equipment operating without locomotive... each other. (2) Each maintenance-of-way work group shall have intra-group communications capability... to provide on-track safety for a roadway work group or groups, and each lone worker, shall be...
Cognitive organization of roadway scenes : an empirical study.
Gundy, C.M.
1995-01-01
This report describes six studies investigating the cognitive organization of roadway scenes. These scenes were represented by still photographs taken on a number of roads outside of built-up areas. Seventy-eight drivers, stratified by age and sex to simulate the Dutch driving population,
PROVIDING SERVICEABILITY OF STRUCTURAL BEARING TYPES FOR ROADWAY BRIDGES
Directory of Open Access Journals (Sweden)
R. I. Polyuga
2010-03-01
Full Text Available In the article the description of structural bearing types for roadway bridges and their classification is given. Special attention is paid to effective bearings with elastomeric materials – rubber, pot, spherical ones. Characteristic defects of structural bearings and demands of serviceability are noticed.
Indian Academy of Sciences (India)
mathematicians are trained to use very precise language, and so find it hard to simplify and state .... thing. If you take a plane on which there are two such triangles which enjoy the above ... within this geometry to simplify things if needed.
Geometry -----------~--------------RESONANCE
Indian Academy of Sciences (India)
Parallel: A pair of lines in a plane is said to be parallel if they do not meet. Mathematicians were at war ... Subsequently, Poincare, Klein, Beltrami and others refined non-. Euclidean geometry. ... plane divides the plane into two half planes and.
Designing Yellow Intervals for Rainy and Wet Roadway Conditions
Directory of Open Access Journals (Sweden)
Huan Li
2012-06-01
Full Text Available The research presented in this paper quantifies and models the impact of wet pavement surface and rainy weather conditions on driver perception-reaction times (PRTs, deceleration levels, and traffic signal change interval durations. A total of 648 stop-run records were collected as part of the research effort for a 72 km/h (45 mi/h approach speed where participant drivers encountered a yellow indication initiation at different distances from the intersection. The participant drivers were randomly selected in different age groups (under 40 years old, 40 to 59 years old, and 60 years of age or older and genders (female and male. Using the gathered data, statistical models for driver PRT and deceleration levels were developed, considering roadway surface and environmental parameters, driver attributes (age and gender, roadway grade, approaching speed, and time and distance to the intersection at the onset of yellow. Inclement weather yellow timings were then developed and summarized in lookup tables as a function of different factors (driver age/gender, roadway grade, speed limit, precipitation level, and roadway surface condition to provide practical guidelines for the design of yellow signal timings in wet and rainy weather conditions. The results indicate that wet roadway surface conditions require a 5 percent increase in the change interval and that rainy conditions require a 10 percent or more increase in the duration of the change interval. These recommended change durations can also be integrated within the Vehicle Infrastructure Integration (VII initiative to provide customizable driver warnings prior to a transition to a red indication.
Louisiana Geographic Information Center — This GIS shapefile data illustrates the regional roadways included in the Louisiana Speaks community growth option of compact and dispersed development (Option B)....
Louisiana Geographic Information Center — This GIS shapefile data illustrates the regional roadways included in the Louisiana Speaks community growth option of compact development (Option C). This network...
Louisiana Geographic Information Center — This GIS shapefile data illustrates the regional roadways included in the Louisiana Speaks Regional Plan community growth option of dispersed development (Option A)....
2010-10-01
... operators of roadway maintenance machines. 214.355 Section 214.355 Transportation Other Regulations Relating... operators of roadway maintenance machines. (a) The training and qualification of roadway workers who operate roadway maintenance machines shall include, as a minimum: (1) Procedures to prevent a person from being...
49 CFR 214.519 - Floors, decks, stairs, and ladders of on-track roadway maintenance machines.
2010-10-01
... roadway maintenance machines. 214.519 Section 214.519 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.519 Floors, decks, stairs, and ladders of on-track roadway maintenance machines. Floors, decks, stairs, and ladders of on-track roadway...
49 CFR 214.511 - Required audible warning devices for new on-track roadway maintenance machines.
2010-10-01
... roadway maintenance machines. 214.511 Section 214.511 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.511 Required audible warning devices for new on-track roadway maintenance machines. Each new on-track roadway maintenance machine shall...
Petersen, Peter
2016-01-01
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...
General Geometry and Geometry of Electromagnetism
Shahverdiyev, Shervgi S.
2002-01-01
It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...
Computational synthetic geometry
Bokowski, Jürgen
1989-01-01
Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...
Ciarlet, Philippe G
2007-01-01
This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and
Pratt, G. C.; Herbrandson, C.; Krause, M. J.; Schmitt, C.; Lippert, C. J.; McMahon, C. R.; Ellickson, K. M.
2018-04-01
We measured polycyclic aromatic hydrocarbons (PAHs) in gas and particle phases over two years using high volume samplers equipped with quartz fiber filters and XAD-4 at a rural site, an urban site, and a site adjacent to a heavily trafficked roadway. Overall results were generally as expected, in that concentrations increased from rural to urban to near-roadway sites, and PAHs with high vapor pressures (liquid subcooled, PoL) and low octanol-air partition coefficients (Koa) were mainly in the gas phase, while those with low PoL and high Koa were predominantly in the particle phase. Intermediate PAHs existed in both phases with the phase distribution following a seasonal pattern of higher gas phase concentrations in summer due to temperature effects. The overall pattern of phase distribution was consistent with PAH properties and ambient conditions and was similar at all three sites. The particle-bound fraction (ϕ) was well-described empirically by nonlinear regressions with log Koa and log PoL as predictors. Adsorption and absorption models underestimated the particle-bound fraction for most PAHs. The dual aerosol-air/soot-air model generally represented the gas-particle partitioning better than the other models across all PAHs, but there was a tendency to underestimate the range in the particle-bound fraction seen in measurements. There was a statistically insignificant tendency for higher PAHs in the particle phase at the near roadway site, and one piece of evidence that PAHs may be enriched on ultrafine particles at the near roadway site. Understanding the phase and particle size distributions of PAHs in highly polluted, high exposure microenvironments near traffic sources will help shed light on potential health effects.
Filtration effectiveness of HVAC systems at near-roadway schools.
McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T
2013-06-01
Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Analytical tools for managing rock fall hazards in Australian coal mine roadways
Energy Technology Data Exchange (ETDEWEB)
Ross Seedsman; Nick Gordon; Naj Aziz [University of Wollongong (Australia)
2009-03-15
This report provides a reference source for the design of ground control measures in coal mine roadways using analytical methods. Collapse models are provided for roof and rib. The roof models recognise that different collapse modes can apply in different stress fields - high, intermediate, and zero compressive stresses. The rib models draw analogies to rock slope stability and also the impact of high vertical stresses. Methods for determining support or reinforcement requirements are provided. Suspension of collapsed masses is identified as the basis for roof support in both very high and zero compressive stress regimes. Reinforcement of bedding discontinuities is advocated for intermediate compressive stresses. For the ribs, restraint of coal blocks defined by pre-existing joints or by mining induced fractures is required.
Energy Technology Data Exchange (ETDEWEB)
Meintz, Andrew; Gonder, Jeffrey; Jorgenson, Jennie; Brooker, Aaron
2016-08-01
This work examines the grid impact of in-motion roadway wireless power transfer through the examination of the electrification of high-capacity roadways inside a metropolitan area. The work uses data from a regional travel study and the Federal Highway Administration's Highway Performance Monitoring System to estimate the electrified roadway's hourly power use throughout a week. The data are then combined with hourly grid load estimates for the same metropolitan area to determine the overlay of traditional grid load with additional load from a future electrified roadway.
Transformational plane geometry
Umble, Ronald N
2014-01-01
Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...
Reinforcing measures of steel roadway support in rockbursts prone areas
Czech Academy of Sciences Publication Activity Database
Horyl, P.; Šňupárek, Richard
2012-01-01
Roč. 57, č. 1 (2012), s. 193-208 ISSN 0860-7001 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) ED1.1.00/02.0070 Institutional research plan: CEZ:AV0Z30860518 Keywords : roadway support * rockburst * bolting Subject RIV: DH - Mining , incl. Coal Mining Impact factor: 0.319, year: 2012 http:// mining .archives.pl/index.php/content/blogcategory/54/35/lang,en/
The geometry description markup language
International Nuclear Information System (INIS)
Chytracek, R.
2001-01-01
Currently, a lot of effort is being put on designing complex detectors. A number of simulation and reconstruction frameworks and applications have been developed with the aim to make this job easier. A very important role in this activity is played by the geometry description of the detector apparatus layout and its working environment. However, no real common approach to represent geometry data is available and such data can be found in various forms starting from custom semi-structured text files, source code (C/C++/FORTRAN), to XML and database solutions. The XML (Extensible Markup Language) has proven to provide an interesting approach for describing detector geometries, with several different but incompatible XML-based solutions existing. Therefore, interoperability and geometry data exchange among different frameworks is not possible at present. The author introduces a markup language for geometry descriptions. Its aim is to define a common approach for sharing and exchanging of geometry description data. Its requirements and design have been driven by experience and user feedback from existing projects which have their geometry description in XML
2014-08-01
This report summarizes the Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange, held in Birmingham, Alabama, sponsored by the Federal Highway Administration (FHWA) Office of Safetys Roadway Safety Professi...
Louisiana Geographic Information Center — This GIS shapefile data illustrates new or improved roadways included in the Louisiana Speaks Regional Plan Vision. This network accommodates a land use pattern that...
Influence of a Large Pillar on the Optimum Roadway Position in an Extremely Close Coal Seam
Directory of Open Access Journals (Sweden)
Li Yang
2016-01-01
Full Text Available Based on the mining practice in an extremely close coal seam, theoretical analysis was conducted on the vertical stress distribution of the floor strata under a large coal pillar. The vertical stress distribution regulation of a No. 5 coal seam was revealed. To obtain the optimum position of the roadway that bears the supporting pressure of a large coal pillar, numerical modeling was applied to analyze the relation among the stress distribution of the roadway surrounding the rock that bears the supporting pressure of a large coal pillar, the plastic zone distribution of the roadway surrounding the rock, the surrounding rock deformation, and the roadway layout position. The theoretical calculation results of the stress value, stress variation rate, and influencing range of the stress influencing angle showed that the reasonable malposition of the No. 5 coal seam roadway was an inner malposition of 4 m. The mining practice showed the following: the layout of No. 25301 panel belt roadway at the position of the inner malposition of 4 m was reasonable, the roadway support performance was favourable without deformation, and ground pressure was not obvious. The research achievement of this study is the provision of a reference for roadway layouts under similar conditions.
Wind tunnel modeling of roadways: Comparison with mathematical models
International Nuclear Information System (INIS)
Heidorn, K.; Davies, A.E.; Murphy, M.C.
1991-01-01
The assessment of air quality impacts from roadways is a major concern to urban planners. In order to assess future road and building configurations, a number of techniques have been developed including mathematical models, which simulate traffic emissions and atmospheric dispersion through a series of mathematical relationships and physical models. The latter models simulate emissions and dispersion through scaling of these processes in a wind tunnel. Two roadway mathematical models, HIWAY-2 and CALINE-4, were applied to a proposed development in a large urban area. Physical modeling procedures developed by Rowan Williams Davies and Irwin Inc. (RWDI) in the form of line source simulators were also applied, and the resulting carbon monoxide concentrations were compared. The results indicated a factor of two agreement between the mathematical and physical models. The physical model, however, reacted to change in building massing and configuration. The mathematical models did not, since no provision for such changes was included in the mathematical models. In general, the RWDI model resulted in higher concentrations than either HIWAY-2 or CALINE-4. Where there was underprediction, it was often due to shielding of the receptor by surrounding buildings. Comparison of these three models with the CALTRANS Tracer Dispersion Experiment showed good results although concentrations were consistently underpredicted
Experimental Study on Shear Performance of Bolt in Roadway Supporting
Directory of Open Access Journals (Sweden)
D.J. Li
2014-09-01
Full Text Available The corner bolt is proved to be effective in the control of floor deformation of roadway, and the relevant studies on bolting mechanisms are of great significance in improving roadway stability. In this paper, two types of shear tests on six forms of bolts are performed by using self-designed shear test device, the electro-hydraulic servo triaxial testing system. The shear characteristics of different types of bolts are obtained. The results show that different bolt rods or different internal filling conditions result in large differences in shear resistance and different deformation adaptability. We find that the filling materials added can improve the shear performance of bolt significantly, and the bolt with steel not only can improve the strength of bolt body, but also has the bimodal characteristic that makes the bolt have the secondary bearing capacity and withstand larger deformation range during the process of shear, and shows a better support performance. Hoping to provide the experiment basis for support design and field application in the future.
Dooner, David B
2012-01-01
Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat
Torsional heterotic geometries
International Nuclear Information System (INIS)
Becker, Katrin; Sethi, Savdeep
2009-01-01
We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.
49 CFR 214.521 - Flagging equipment for on-track roadway maintenance machines and hi-rail vehicles.
2010-10-01
... maintenance machines and hi-rail vehicles. 214.521 Section 214.521 Transportation Other Regulations Relating... WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.521 Flagging equipment for on-track roadway maintenance machines and hi-rail vehicles. Each on-track roadway maintenance machine...
2010-10-01
... devices for new on-track roadway maintenance machines. 214.509 Section 214.509 Transportation Other... TRANSPORTATION RAILROAD WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.509 Required visual illumination and reflective devices for new on-track roadway maintenance machines. Each new...
International Nuclear Information System (INIS)
Hull, C.M.
1993-01-01
The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of W ∝ -gravity is analysed in detail. While the gauge group for gravity in d dimensions is the diffeomorphism group of the space-time, the gauge group for a certain W-gravity theory (which is W ∝ -gravity in the case d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for W-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising √detg μν ) only if d=1 or d=2, so that only for d=1,2 can actions be constructed. These two cases and the corresponding W-gravity actions are considered in detail. In d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphisms group. Some of the constraints that arise for d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of W-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform. (orig.)
Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream.
Wyckoff, Kristen N; Chen, Si; Steinman, Andrew J; He, Qiang
2017-09-01
Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
GEOMETRY – AN IMPORTANT MEANS OF EDUCATION IN THE CIVILISATION SCOPE
Liliana TOCARIU, PhD
2017-01-01
Geometry (from the Greek: γεωμετρία; geo = earth, metria = measure) is a genuine science, rooted in mathematics, which studies the plane and spatial forms of bodies from the objective or conceptual reality and the nature of the relationship that exists between them. Due to its complexity, geometry is divided into: Euclidian geometry, analytical geometry, descriptive geometry, projective geometry, kinematic geometry, surface and curve differential geometry, axiomatic geometry,...
Silva, Alessandro
1993-01-01
The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.
Eisenhart, Luther Pfahler
2005-01-01
This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.
Complex analysis and CR geometry
Zampieri, Giuseppe
2008-01-01
Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the \\bar\\partial-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometry requires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting to graduate students who wish to learn it. However, the present book does not aim at introducing all the topics of current interest in CR geometry. Instead, an attempt is made to be friendly to the novice by moving, in a fairly relaxed way, f...
International Nuclear Information System (INIS)
Gurevich, L.Eh.; Gliner, Eh.B.
1978-01-01
Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding
A Study of the Large Deformation Mechanism and Control Techniques for Deep Soft Rock Roadways
Directory of Open Access Journals (Sweden)
Xiaojie Yang
2018-04-01
Full Text Available Large deformation control of deep soft rock roadways has been a major problem in mining activities worldwide. This paper considers the supporting problem related to large deformation of a deep soft rock roadway in Chao’hua coal mine. The discrete element simulation method (UDEC software is adopted to simulate a tailgate of panel 31041 in Chao’hua coal mine. The failure patterns of unsupported and primary supported roadway are simulated, and these reveal the characteristics of deformation, stress and crack propagation. The excavation of roadway leads to high deviator stress, which exceeds the peak strength of shallow surrounding rock and causes it to enter the post-failure stage. Tensile failures then initiate and develop around the roadway, which causes the fragmentation, dilation and separation of shallow surrounding rock. The compressive capacity of the primary support system is low, which results in serious contraction in the full section of the roadway. An improved control scheme is put forward for the support of a tailgate. The underground test results confirm that the improved support system effectively controlled large deformation of the surrounding rocks, which can provide references for support in the design of roadways excavated in deep soft stratum.
Distribution characteristics of radon and its progeny in blind roadway with forced ventilation
International Nuclear Information System (INIS)
Ye Yongjun; Zhou Xinghuo; Li Xiangyang; Zhong Yongming; Liu Dong; Ding Dexin
2012-01-01
The blind roadway is not only the important workplaces, but also is important site of radon and its progeny generating and gathering, it is an important guiding significance for ventilation protection design to study distribution characteristics of radon and its progeny in blind roadway. Therefore, at first, the paper expounded the mathematical relationship between radon activity concentration with alpha potential concentration of radon progeny. Then, analyzed the sources of radon and its progeny, and established mathematical calculation model of Distribution characteristics of radon and its progeny in blind roadway with forced ventilation, respectively. Finally, using mathematical calculation models to analyze the influence law of multiple factors. (authors)
General Relativity: Geometry Meets Physics
Thomsen, Dietrick E.
1975-01-01
Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…
2010-07-01
The Transportation Statistics Office (TranStat) of the Florida Department of Transportation (FDOT) provides training for district data collection technicians in both office- and field-based Roadway Characteristics Inventory (RCI) methods. The current...
Guidelines to Facilitate the Evaluation of Brines for Winter Roadway Maintenance Operations.
2017-09-19
This document presents guidelines to facilitate the evaluation of brines for winter weather roadway maintenance applications in Texas. Brines are used in anti-icing applications which typically consist of placing liquid snow and ice control chemicals...
Soil-Geosynthetic Interaction Test to Develop Specifications for Geosynthetic-Stabilized Roadways
2018-05-01
soil-geosynthetic composite (KSGC) for a wide range of geosynthetics. The tests were conducted after establishment of test configurations that were found suitable for specification of geosynthetic-stabilized base roadways. Field performance of experi...
Mapping subsurface in proximity to newly-developed sinkhole along roadway.
2013-02-01
MS&T acquired electrical resistivity tomography profiles in immediate proximity to a newly-developed sinkhole in Nixa Missouri : The sinkhole has closed a well-traveled municipal roadway and threatens proximal infrastructure. The intent of this inves...
2014-06-01
Collecting information about the roadway infrastructure is a task that DOTs at all governmental levels need : to accomplish. One way to increase the operational efficiency of these efforts is to use a relatively : inexpensive mobile data collection p...
Calculation of the Chilling Requirement for Air Conditioning in the Excavation Roadway
Directory of Open Access Journals (Sweden)
Yueping Qin
2015-10-01
Full Text Available To effectively improve the climate conditions of the excavation roadway in coal mine, the calculation of the chilling requirement taking air conditioning measures is extremely necessary. The temperature field of the surrounding rock with moving boundary in the excavation roadway was numerically simulated by using finite volume method. The unstable heat transfer coefficient between the surrounding rock and air flow was obtained via the previous calculation. According to the coupling effects of the air flow inside and outside air duct, the differential calculation mathematical model of air flow temperature in the excavation roadway was established. The chilling requirement was calculated with the selfdeveloped computer program for forecasting the required cooling capacity of the excavation roadway. A good air conditioning effect had been observed after applying the calculated results to field trial, which indicated that the prediction method and calculation procedure were reliable.
Clements, Andrea L.; Jia, Yuling; Denbleyker, Allison; McDonald-Buller, Elena; Fraser, Matthew P.; Allen, David T.; Collins, Donald R.; Michel, Edward; Pudota, Jayanth; Sullivan, David; Zhu, Yifang
Spatial gradients of vehicular emitted air pollutants were measured in the vicinity of three roadways in the Austin, Texas area: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway with significant truck traffic. A mobile monitoring platform was used to characterize the gradients of CO and NO x concentrations with increased distance from each roadway, while concentrations of carbonyls in the gas-phase and fine particulate matter mass and composition were measured at stationary sites upwind and at one (I-35 and FM-973) or two (SH-71) downwind sites. Regardless of roadway type or wind direction, concentrations of carbon monoxide (CO), nitric oxide (NO), and oxides of nitrogen (NO x) returned to background levels within a few hundred meters of the roadway. Under perpendicular wind conditions, CO, NO and NO x concentrations decreased exponentially with increasing distance perpendicular to the roadways. The decay rate for NO was more than a factor of two greater than for CO, and it comprised a larger fraction of NO x closer to the roadways than further downwind suggesting the potential significance of near roadway chemical processing as well as atmospheric dilution. Concentrations of most carbonyl species decreased with distance downwind of SH-71. However, concentrations of acetaldehyde and acrolein increased farther downwind of SH-71, suggesting chemical generation from the oxidation of primary vehicular emissions. The behavior of particle-bound organic species was complex and further investigation of the size-segregated chemical composition of particulate matter (PM) at increasing downwind distances from roadways is warranted. Fine particulate matter (PM 2.5) mass concentrations, polycyclic aromatic hydrocarbons (PAHs), hopanes, and elemental carbon (EC
Spatial geometry and special relativity
DEFF Research Database (Denmark)
Kneubil, Fabiana Botelho
2016-01-01
In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame......-dependent and frame-independent entities. We depart from a subject well known by students, which is the three-dimensional geometric space in order to compare, afterwards, with the treatment of four-dimensional space in the special relativity. The differences and similarities between these two subjects are also...
RESEARCH ON REPAIR SUPPORT FOR FLOOR HEAVE IN SOFT ROCK ROADWAY
Institute of Scientific and Technical Information of China (English)
黄庆享; 杨忠民
1997-01-01
The run-around of Xiagou subincline bottom is a soft rock roadway, its floor has heaved over 1 m. In this paper, by electronic microscope scanning and X-ray diffraction analysis, the components of the soft rock are determined and the breaking mechanism of roadway is analyzed as well. Through finite element calculation and simulation model test, the reasonable repair support method is put forward.
Energy Technology Data Exchange (ETDEWEB)
Buszynski, M.E.
1996-12-31
Many proponents of gas pipeline studies using the public roadway for their facilities have trouble encouraging public participation. Problems resulting from a lack of public involvement are documented. A public participation process designed to gather meaningful public input is presented through a case study of a public roadway pipeline study in southern Ontario. Techniques are outlined to effectively stimulate public interest and document the public involvement process. Recommendations are made as to the transferability of this process to other jurisdictions.
Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles
Zhu, Yifang; Pudota, Jayanth; Collins, Donald; Allen, David; Clements, Andrea; DenBleyker, Allison; Fraser, Matt; Jia, Yuling; McDonald-Buller, Elena; Michel, Edward
Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NO x), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100-150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No consistent pattern was observed for UFPs under parallel wind conditions. However, regardless of wind conditions, particle concentrations returned to background levels within a few hundred meters of the roadway. Within measured UFP size ranges, smaller particles (6-25 nm) decayed faster than larger ones (100-300 nm). Similar decay rates were observed among UFP number, surface, and volume.
Isocyanurate: safe substitute for urethane in polymer foams for mine roadways
Energy Technology Data Exchange (ETDEWEB)
Eisner, H.S.; Leger, J.P.
1989-02-01
Rigid polyurethane foam (PU) used for lining roadways or insulating cooling pipes has been involved in several large fires in South African mines. Polyisocyanurate foam when applied to continuous surfaces in a ventilated mine roadway and subjected to a sizeable flame, will ignite and rapidly propagate flame over its surface, with considerable evolution of carbon monoxide, in a manner substantially similar to polyurethane foam. 12 refs.
Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang
2018-02-01
Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.
Directory of Open Access Journals (Sweden)
Qiangling Yao
2016-01-01
Full Text Available The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD. We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.
Deformation mechanisms in a coal mine roadway in extremely swelling soft rock.
Li, Qinghai; Shi, Weiping; Yang, Renshu
2016-01-01
The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.
Numerical simulation of roadway support in a sandstone-type uranium mine
International Nuclear Information System (INIS)
Liu Huipeng; Li Yu; Song Lixia
2009-01-01
At present, the most surrounding rocks of sandstone-type uranium mines in China are mudstone, sandstone, pelitic siltstone, and so on. They show the characteristics of soft rock. Such uranium deposit is not fit for in-situ leaching. If the uranium ores are mined by conventional mining method, one of the problems to be solved is the support technique in the soft rock roadway. So, taking a uranium mine in Inner Mongolia as the research object, the support technique in the soft rock roadway of the sandstone-type uranium deposits is studied. Through on-site engineering geological investigation and laboratory test, the main reasons for roadway damage are analyzed. A technique of support in the soft rock roadway of sandstone-type uranium deposits is put forward by drawing on the expericnce of soft rock roadway support in coal mines. The roadway shape and support parameters are optimized by using a numerical simulation method. The results verified the feasibility of the supporting technique. (authors)
Meyer, Walter J
2006-01-01
Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...
Indian Academy of Sciences (India)
algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.
International Nuclear Information System (INIS)
Sloane, Peter
2007-01-01
We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)
Energy Technology Data Exchange (ETDEWEB)
Sloane, Peter [Department of Mathematics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)
2007-09-15
We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)
Fiber optic corrosion sensing for bridges and roadway surfaces
Fuhr, Peter L.; Ambrose, Timothy P.; Huston, Dryver R.; McPadden, Adam P.
1995-04-01
In this paper we report the development of a fiber optic corrosion sensing system that complements and/or surpasses the capabilities of conventional corrosion sensing techniques. The sensing system is based on evanescent wave phenomena and in the configured sensor allows for the detection of general corrosion on and within materials. Based on the authors' experience installing may kilometers of fiberoptic sensors into large civil structures such as multistory buildings, hydroelectric dams, and railway/roadway bridges, we are (currently) embedding these sensors into bridge test members -- limited structures that are being subjected to accelerated corrosion testing conditions. Three Vermont Agency of Transportation bridges, one in a low salt use region, one in a medium salt use region, and the third in a high salt use region, are being selected and will be instrumented with these embedded fiber optic corrosion sensors. Monitoring of chloride penetration and rebar corrosion status will be measured during the course of a longitudinal study. The specific sensing mechanism and design for robustness (to allow survival of the embedding process during repaving of the bridges) are discussed and laboratory and initial field results are presented.
Geometry essentials for dummies
Ryan, Mark
2011-01-01
Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque
Energy Technology Data Exchange (ETDEWEB)
Zhai, X.; Qian, M.; Jing, G.; Li, Y. [China University of Mining and Technology, Beijing (China). College of Resource and Safety Engineering
2004-06-01
The trapezoidal cross-section roadway, driven along with its medium and fine grain sandstone roof in special thick stratum, was situated in shale strata of the Wu{sub 2} coal seam of the Shihhotze Perno-carboniferous group. Rock-lining wall was employed in roadway, which its roof is in the free situation. Under the action of virgin stress, the surrounding rock of roadway was stable. While under the action of fixed abutment pressure arisen from protection pillar of roadway, which if two sides seams were extracted the free strong roof of roadway was stable. But its two sides rock-lining walls was fractured, partially broken into pieces, and its floor heave was obvious. The velocity of floor heave is 0.4 - 0.8 mm/d. The size of the broken zone of surrounding rock of roadway doubled. An effective load coefficient of surrounding rock was quoted to illustrate these phenomena. The main reasons of roadway convergence are that rock property of surrounding rock is inferior, protection pillars affects its stability, and the supporting pattern employed is improper. Effective measures to control roadway convergence should be bolting and grouting lining, which mainly consolidate surrounding rock of roadway. 4 refs., 1 fig.
Kingery, Kathleen M; Narad, Megan; Garner, Annie A; Antonini, Tanya N; Tamm, Leanne; Epstein, Jeffery N
2015-08-01
The purpose of the research study was to determine whether ADHD- and texting-related driving impairments are mediated by extended visual glances away from the roadway. Sixty-one adolescents (ADHD =28, non-ADHD =33; 62% male; 11% minority) aged 16-17 with a valid driver's license were videotaped while engaging in a driving simulation that included a No Distraction, Hands-Free Phone Conversation, and Texting condition. Two indicators of visual inattention were coded: 1) percentage of time with eyes diverted from the roadway; and 2) number of extended (greater than 2 s) visual glances away from the roadway. Adolescents with ADHD displayed significantly more visual inattention to the roadway on both visual inattention measures. Increased lane position variability among adolescents with ADHD compared to those without ADHD during the Hands-Free Phone Conversation and Texting conditions was mediated by an increased number of extended glances away from the roadway. Similarly, texting resulted in decreased visual attention to the roadway. Finally, increased lane position variability during texting was also mediated by the number of extended glances away from the roadway. Both ADHD and texting impair visual attention to the roadway and the consequence of this visual inattention is increased lane position variability. Visual inattention is implicated as a possible mechanism for ADHD- and texting-related deficits and suggests that driving interventions designed to address ADHD- or texting-related deficits in adolescents need to focus on decreasing extended glances away from the roadway.
Arithmetic noncommutative geometry
Marcolli, Matilde
2005-01-01
Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...
Superbanana orbits in stellarator geometries
International Nuclear Information System (INIS)
Derr, J.A.; Shohet, J.L.
1979-04-01
The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron
Geometric Transformations in Engineering Geometry
Directory of Open Access Journals (Sweden)
I. F. Borovikov
2015-01-01
Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry
Directory of Open Access Journals (Sweden)
Zhang Yuan
2016-01-01
Full Text Available A self-designed experimental installation for transient heat transfer in the modelling surrounding rock mass of high geothermal roadways was elaborated in this paper. By utilizing the new installation, the temperature variation rules in surrounding rock mass of the high geothermal roadway during mechanical ventilation were studied. The results show that the roadway wall temperature decreases dramatically at the early stage of ventilation, and the temperature at every position of the surrounding rock mass is decreasing constantly with time passing by. From roadway wall to deep area, the temperature gradually increases until reaching original rock temperature. The relationship between dimensionless temperature and dimensionless radius demonstrates approximately exponential function. Meanwhile, the temperature disturbance range in the simulated surrounding rock mass extends gradually from the roadway wall to deep area in the surrounding rock mass. Besides, as the air velocity increases, heat loss in the surrounding rock mass rises and the ratio of temperature reduction becomes larger, the speed of disturbance range expansion also gets faster.
Support technology of deep roadway under high stress and its application
Institute of Scientific and Technical Information of China (English)
Cao Rihong; Cao Ping; Lin Hang
2016-01-01
Roadway instability has been a major concern in the fields of mining engineering. This paper aims to pro-vide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stability of deep roadways was carried out in an underground mine in Gansu province, China. Currently, the surrounding rock strata is extremely fractured, which results in a series of engineering disasters, such as side wall collapse and severe floor heave in the past decades. Aiming to solve these problems, an improved support method was proposed, which includes optimal bolt parameters and arrangement, floor beam layout by grooving, and full length grouting. Based on the modeling results by FLAC3D, the new support method is much better than the current one in terms of preventing the large deformation of sur-rounding rock and restricting the development of plastic zones. For implementation and verification, field experiments, along with deformation monitoring, were conducted in the 958 level roadway of Mining II areas. The results show that the improved support can significantly reduce surrounding rock deforma-tion, avoid frequent repair, and maintain the long-term stability of the roadway. Compared to the original support, the new support method can greatly save investment of mines, and has good application value and popularization value.
Support technology of deep roadway under high stress and its application
Institute of Scientific and Technical Information of China (English)
Cao Rihong; Cao Ping; Lin Hang
2016-01-01
Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stability of deep roadways was carried out in an underground mine in Gansu province, China. Currently,the surrounding rock strata is extremely fractured, which results in a series of engineering disasters, such as side wall collapse and severe floor heave in the past decades. Aiming to solve these problems, an improved support method was proposed, which includes optimal bolt parameters and arrangement, floor beam layout by grooving, and full length grouting. Based on the modeling results by FLAC3D, the new support method is much better than the current one in terms of preventing the large deformation of surrounding rock and restricting the development of plastic zones. For implementation and verification, field experiments, along with deformation monitoring, were conducted in the 958 level roadway of Mining II areas. The results show that the improved support can significantly reduce surrounding rock deformation, avoid frequent repair, and maintain the long-term stability of the roadway. Compared to the original support, the new support method can greatly save investment of mines, and has good application value and popularization value.
New method for protecting mine roadways in thin coal seams by means of prefabricated yielding blocks
Energy Technology Data Exchange (ETDEWEB)
Peknik, J
1983-05-01
The use of concrete blocks for strata control in mine roadways driven in thin coal seams is evaluated. Two types of prefabricated blocks are used: BZT blocks made of reinforced concrete and yielding elements or popilbet blocks made of a mixture of fly ash (from coal power plants) and concrete. When the popilbet blocks were used no yielding elements were necessary. Mechanical properties of blocks made of reinforced concrete were controlled by yielding elements. Mechanical properties (compression strength) of the popilbet blocks were controlled by proportion of water, cement and fly ash. The BZT and the popilbet blocks were used for strata control in mine roadways in coal seams from 60 to 80 cm thick and dip angle from 5 to 18 degrees. Use of the BZT and the popilbet blocks reduced roadway deformation by about 50% in comparison to traditional strata control methods (timber cribbings, use of waste rock, etc.). Use of the blocks is explained. The BZT and the popilbet blocks were placed in a roadway wall. Height of the block wall equaled coal seam thickness. Yielding arched steel supports and timber liners were used for strata control in the roadway. The popilbet blocks were 50% less expensive than the BZT blocks. 9 references
Maternal Residential Proximity to Major Roadways and Pediatric Embryonal Tumors in Offspring
Directory of Open Access Journals (Sweden)
Shwetha V. Kumar
2018-03-01
Full Text Available The environmental determinants of pediatric embryonal tumors remain unclear. Because of the growing concern over the impact of exposures to traffic-related air pollution on pediatric cancer, we conducted a population-based study evaluating the impact of maternal residential proximity to major roadways on the risk of pediatric embryonal tumors in offspring. We identified children diagnosed with neuroblastoma, Wilms tumor, retinoblastoma, or hepatoblastoma at <5 years of age from the Texas Cancer Registry and selected unaffected controls from birth certificates. Two residential proximity measures were used: (1 distance to the nearest major roadway, and (2 within 500 m of a major roadway. Logistic regression was used to estimate the adjusted odds ratio (aOR and 95% confidence interval (CI for each proximity measure on pediatric embryonal tumors. The odds of an embryonal tumor were increased in children born to mothers living within 500 m of a major roadway (aOR = 1.24, 95% CI: 1.00, 1.54. This was consistent for most tumor subtypes, with the strongest associations observed for unilateral retinoblastoma (aOR = 2.57, 95% CI: 1.28, 5.15, for every kilometer closer the mother lived to the nearest major roadway. These findings contribute to the growing evidence that traffic-related air pollution may increase risk for certain pediatric tumors.
Bárány, Imre; Vilcu, Costin
2016-01-01
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
O'Leary, Michael
2010-01-01
Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull
Fundamental concepts of geometry
Meserve, Bruce E
1983-01-01
Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.
Developments in special geometry
International Nuclear Information System (INIS)
Mohaupt, Thomas; Vaughan, Owen
2012-01-01
We review the special geometry of N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we discuss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.
Residential Proximity to Major Roadways and Risk of Type 2 Diabetes Mellitus: A Meta-Analysis
Directory of Open Access Journals (Sweden)
Zhiqing Zhao
2016-12-01
Full Text Available Research indicates that higher levels of traffic-related pollution exposure increase the risk of diabetes, but the association between road proximity and diabetes risk remains unclear. To assess and quantify the association between residential proximity to major roadways and type 2 diabetes, a systematic review and meta-analysis was performed. Embase, Medline, and Web of Science were searched for eligible studies. Using a random-effects meta-analysis, the summary relative risks (RRs were calculated. Bayesian meta-analysis was also performed. Eight studies (6 cohort and 2 cross-sectional with 158,576 participants were finally included. The summary unadjusted RR for type 2 diabetes associated with residential proximity to major roadways was 1.24 (95% confidence interval [CI]: 1.07–1.44, p = 0.001, I2 = 48.1%. The summary adjusted RR of type 2 diabetes associated with residential proximity to major roadways was 1.12 (95% CI: 1.03–1.22, p = 0.01, I2 = 17.9%. After excluding two cross-sectional studies, the summary results suggested that residential proximity to major roadways could increase type 2 diabetes risk (Adjusted RR = 1.13; 95% CI: 1.02–1.27, p = 0.025, I2 = 36.6%. Bayesian meta-analysis showed that the unadjusted RR and adjusted RR of type 2 diabetes associated with residential proximity to major roadways were 1.22 (95% credibility interval: 1.06–1.55 and 1.13 (95% credibility interval: 1.01–1.31, respectively. The meta-analysis suggested that residential proximity to major roadways could significantly increase risk of type 2 diabetes, and it is an independent risk factor of type 2 diabetes. More well-designed studies are needed to further strengthen the evidence.
49 CFR 214.525 - Towing with on-track roadway maintenance machines or hi-rail vehicles.
2010-10-01
... or hi-rail vehicles. 214.525 Section 214.525 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.525 Towing with on-track roadway maintenance machines or hi-rail vehicles. (a) When used to tow pushcars or other maintenance-of-way equipment...
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Roadway, tunnels and subways, bridges and culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged... RAILROADS 1 Operating Expenses-Way and Structures § 1242.15 Roadway, tunnels and subways, bridges and...
23 CFR 661.51 - Can IRRBP funds be used for the approach roadway to a bridge?
2010-04-01
... bridge? 661.51 Section 661.51 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.51 Can IRRBP funds be used for the approach roadway to a bridge? (a) Yes, costs associated with approach roadway work, as defined in...
A Bandwidth-Efficient Service for Local Information Dissemination in Sparse to Dense Roadways
Directory of Open Access Journals (Sweden)
Patricia Noriega-Vivas
2013-07-01
Full Text Available Thanks to the research on Vehicular Ad Hoc Networks (VANETs, we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.
A bandwidth-efficient service for local information dissemination in sparse to dense roadways.
Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia
2013-07-05
Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.
Geometry of multihadron production
Energy Technology Data Exchange (ETDEWEB)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Geometry of multihadron production
International Nuclear Information System (INIS)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions
Morris, Barbara H.
2004-01-01
This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…
Energy Technology Data Exchange (ETDEWEB)
Grotz, Andreas
2011-10-07
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
Methods of information geometry
Amari, Shun-Ichi
2000-01-01
Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the \\alpha-connections. The duality between the \\alpha-connection and the (-\\alpha)-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability d...
International Nuclear Information System (INIS)
Grotz, Andreas
2011-01-01
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
Ubertini, Pietro; Sidoli, L.; Sguera, V.; Bazzano, A.
2009-12-01
Supergiant Fast X-ray Transients (SFXTs) are one of the most interesting (and unexpected) results of the INTEGRAL mission. They are a new class of HMXBs displaying short hard X-ray outbursts (duration less tha a day) characterized by fast flares (few hours timescale) and large dinamic range (10E3-10E4). The physical mechanism driving their peculiar behaviour is still unclear and highly debated: some models involve the structure of the supergiant companion donor wind (likely clumpy, in a spherical or non spherical geometry) and the orbital properties (wide separation with eccentric or circular orbit), while others involve the properties of the neutron star compact object and invoke very low magnetic field values (B 1E14 G, magnetars). The picture is still highly unclear from the observational point of view as well: no cyclotron lines have been detected in the spectra, thus the strength of the neutron star magnetic field is unknown. Orbital periods have been measured in only 4 systems, spanning from 3.3 days to 165 days. Even the duty cycle seems to be quite different from source to source. The Energetic X-ray Imaging Survey Telescope (EXIST), with its hard X-ray all-sky survey and large improved limiting sensitivity, will allow us to get a clearer picture of SFXTs. A complete census of their number is essential to enlarge the sample. A long term and continuous as possible X-ray monitoring is crucial to -(1) obtain the duty cycle, -(2 )investigate their unknown orbital properties (separation, orbital period, eccentricity),- (3) to completely cover the whole outburst activity, (4)-to search for cyclotron lines in the high energy spectra. EXIST observations will provide crucial informations to test the different models and shed light on the peculiar behaviour of SFXTs.
Geometry on the space of geometries
International Nuclear Information System (INIS)
Christodoulakis, T.; Zanelli, J.
1988-06-01
We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs
Complex and symplectic geometry
Medori, Costantino; Tomassini, Adriano
2017-01-01
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Kulczycki, Stefan
2008-01-01
This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff
Driving the 14 m/sup 2/ roadway at Samuno colliery using manpower from Polio mine
Energy Technology Data Exchange (ETDEWEB)
1981-03-01
At Samuno colliery, which forms part of the Hunosa national mining enterprises, it took 5 hours 30 minutes in total to drive the 14 m/sup 2/ by 3 m (or 42 m/sup 3/) roadway. This time included loading out operations, drilling of shotholes and support setting operations.
[Characterization and source apportionment of pollutants in urban roadway runoff in Chongqing].
Zhang, Qian-Qian; Wang, Xiao-Ke; Hao, Li-Ling; Hou, Pei-Qiang; Ouyang, Zhi-Yun
2012-01-01
By investigating surface runoff from urban roadway in Chongqing, we assessed the characteristics of surface runoff pollution and the effect of rainfall intensity and antecedent dry weather period on water quality. Using multivariate statistical analysis of data of runoff quality, potential pollutants discharged from urban roadway runoff were identified. The results show that the roadway runoff has high levels of COD, TP and TN, the EMC were 60.83-208.03 mg x L(-1), 0.47-1.01 mg x L(-1) and 2.07-5.00 mg x L(-1) respectively, being the main pollutants; The peaks of pollutant concentration are ahead of or synchronous with the peak of runoff volume; the peaks of pollutant concentrations are mostly occurred within 10 minutes of rainfall. The heavy metal concentrations fluctuate dentately during runoff proceeding. Two potential pollution sources to urban roadway runoff apportioned by using principal component analysis are: vehicle's traffic loss and atmospheric dry and wet deposition, and municipal wastes.
Dust captures effectiveness of scrubber systems on mechanical miners operating in larger roadways.
CSIR Research Space (South Africa)
Hole, BJ
1998-03-01
Full Text Available The project was directed towards bord and pillar working by mechanised miners operating in larger section roadways, where the problem of scrubber capture tends to be greatest owing to the limited size of the zone of influence around exhaust...
Study on the new technology of removing gangue and retaining roadway in complicated roof condition
Chen, Yanhao; Jiang, Cong
2018-04-01
This article in view of the complex roof conditions was carried on study about the new technology of removing gangue and retaining roadway, and tells a method of progressive reinforced concrete wall segment with gangue to keep the roadway, the roadway beside the support system is mainly composed of the lining, waste rock wall and the outer wall, the wall and the outer wall of concrete material width to build the strength of the progressive type filling body, waste rock wall with woven bag with waste rock assembled, paragraphs geological survey on the actual distance should be based on working face. This method relies on the interior of the gangue wall to make the pressure control and allow the roof to sink. In this paper, the finite deformation control of the roof is realized by the gangue wall and the high strength filling body. This method has the characteristics of low entry cost, good forming of roadway, high security and good stability, and can be applied to complex geological conditions such as hard roof.
Directory of Open Access Journals (Sweden)
Yao Qiangling
2015-01-01
Full Text Available The borehole stress-meter was employed in this study to investigate the distribution of the side abutment stress in roadway subjected to dynamic pressure. The results demonstrate that the side abutment stress of the mining roadway reaches a peak value when the distance to the gob is 8 m and the distribution curve of the side abutment stress can be divided into three zones: stress rising zone, stress stabilizing zone, and stress decreasing zone. Further numerical investigation was carried out to study the effect of the coal mass strength, coal seam depth, immediate roof strength, and thickness on the distribution of the side abutment stress. Based on the research results, we determined the reasonable position of the mining roadway and the optimal width of the barrier pillar. The engineering application demonstrates that the retention of the barrier pillar with a width of 5 m along the gob as the haulage roadway for the next panel is feasible, which delivers favorable technological and economic benefits.
Energy Technology Data Exchange (ETDEWEB)
Arnold, H; Zubiller, H
1977-12-15
This paper discusses ways of increasing the efficiency of monorail transport systems by changes in the design of trains and tracks. It is important that the slope of roadways should be as even as possible, thus avoiding steep sections. The tracks should be kept clean, and critical parts should be covered to protect them from dirt. (In German)
77 FR 53164 - Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway Workers
2012-08-31
...-0059, Notice No. 6] RIN 2130-AC37 Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway... complex issues raised in both the petitions for reconsideration of the final rule published November 30... issues. One of the Petitions included a request for a delay in the effective date of the final rule until...
78 FR 33754 - Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway Workers
2013-06-05
...-0059, Notice No. 7] RIN 2130-AC37 Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway... and comments raised a number of substantive issues requiring a detailed response. As FRA's response to... INFORMATION: On November 30, 2011, FRA published a final rule amending its regulations on railroad workplace...
77 FR 13978 - Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway Workers
2012-03-08
...-0059, Notice No. 5] RIN 2130-AB96 Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway... that raise a number of substantive issues requiring a detailed response. Accordingly, in order to...: On November 30, 2011, FRA published a final rule amending its regulations on railroad workplace...
Programming system for analytic geometry
International Nuclear Information System (INIS)
Raymond, Jacques
1970-01-01
After having outlined the characteristics of computing centres which do not comply with engineering tasks, notably the time required by all different tasks to be performed when developing a software (assembly, compilation, link edition, loading, run), and identified constraints specific to engineering, the author identifies the characteristics a programming system should have to suit engineering tasks. He discussed existing conversational systems and their programming language, and their main drawbacks. Then, he presents a system which aims at facilitating programming and addressing problems of analytic geometry and trigonometry
Worldsheet geometries of ambitwistor string
Energy Technology Data Exchange (ETDEWEB)
Ohmori, Kantaro [Department of Physics, the University of Tokyo,Hongo, Bunkyo-ku, Tokyo 133-0022 (Japan)
2015-06-12
Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.
An invitation to noncommutative geometry
Marcolli, Matilde
2008-01-01
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke
Roe, John
2003-01-01
Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...
Lectures on Symplectic Geometry
Silva, Ana Cannas
2001-01-01
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2002-01-01
The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...
Busemann, Herbert
2005-01-01
A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
Introduction to tropical geometry
Maclagan, Diane
2015-01-01
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Implosions and hypertoric geometry
DEFF Research Database (Denmark)
Dancer, A.; Kirwan, F.; Swann, A.
2013-01-01
The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio
2013-01-01
We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.
International Nuclear Information System (INIS)
Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J
2014-01-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Software Geometry in Simulations
Alion, Tyler; Viren, Brett; Junk, Tom
2015-04-01
The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).
Introduction to combinatorial geometry
International Nuclear Information System (INIS)
Gabriel, T.A.; Emmett, M.B.
1985-01-01
The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity
Global aspects of complex geometry
Catanese, Fabrizio; Huckleberry, Alan T
2006-01-01
Present an overview of developments in Complex Geometry. This book covers topics that range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kahler geometry, and group actions to Hodge theory and characteristic p-geometry.
Sources of hyperbolic geometry
Stillwell, John
1996-01-01
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...
International Nuclear Information System (INIS)
Jonsson, Rickard; Westman, Hans
2006-01-01
We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz M A and Lasota J-P 1997 Class. Quantum Grav. A 14 23-30). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson R 2006 Class. Quantum Grav. 23 1)) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity
Discrete and computational geometry
Devadoss, Satyan L
2011-01-01
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Zheng, Fangyang
2002-01-01
The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
Lighting and vegetation for energy-efficient and safe roadway travel : final report (1,015.15 KB)
2009-05-01
The objective of the present study was to identify and evaluate promising approaches to incorporating : lighting and vegetation along roadways with the purpose of identifying the most promising application that : could be incorporated into a demonstr...
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Multiplicity in difference geometry
Tomasic, Ivan
2011-01-01
We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \\sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.
Spacetime and Euclidean geometry
Brill, Dieter; Jacobson, Ted
2006-04-01
Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.
International Nuclear Information System (INIS)
Konopleva, N.P.
2009-01-01
The basic ideas of description methods of physical fields and elementary particle interactions are discussed. One of such ideas is the conception of space-time geometry. In this connection experimental measurement methods are analyzed. It is shown that measure procedures are the origin of geometrical axioms. The connection between space symmetry properties and the conservation laws is considered
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elabo...
Diophantine geometry an introduction
Hindry, Marc
2000-01-01
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
Boyer, Carl B
2012-01-01
Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.
Coxeter, HSM
1965-01-01
This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.
International Nuclear Information System (INIS)
Ezin, J.P.
1988-08-01
The lectures given at the ''5th Symposium of Mathematics in Abidjan: Differential Geometry and Mechanics'' are presented. They are divided into four chapters: Riemannian metric on a differential manifold, curvature tensor fields on a Riemannian manifold, some classical functionals on Riemannian manifolds and questions. 11 refs
Hartshorne, Robin
2000-01-01
In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...
Directory of Open Access Journals (Sweden)
Gregor Porebski
2014-11-01
Full Text Available [b]introduction and objective[/b]. Numerous epidemiologic studies have reported increased risk of allergic rhinitis and asthma in relation to ‘western life-style’, which represents diversity of factors. We hypothesized that residential proximity to major roadways, reflecting an exposure to traffic-related air pollution, is associated with prevalence of allergic respiratory symptoms in children. [b]materials and methods[/b]. A total of 8290 individuals of two age groups: 16 year olds and 7 year olds from Krakow, Poland were included. We used the Polish version of the International Study of Asthma and Allergy in Childhood supplemented with a question concerning the distance between a responder’s house and a high traffic density road: below 200 m, from 200–500 m, or more than 500 m. [b]results[/b]. Children and adolescents with a residential proximity closer to a major roadway had more frequent asthma-related symptoms in the last 12 months and at any time in the past. Consistent with the increased frequency of asthmatic symptoms, responders residing within 200 meters complained more often of sneezing, runny or blocked nose accompanied by itchy-watery eyes and hay fever in comparison to responders who resided 200–500 meters from a major roadway. The lowest rate of nasal symptoms was observed in residents living in the distance to major roads (> 500 meters. The rate of positive answers decreased in a distant-dependent manner. [b]conclusions[/b]. Our findings suggest an important spatial relationship between the distance from a major roadway and the evaluated respiratory symptoms. The results emphasize the need for more comprehensive air quality policies within urban areas with increased motor vehicle density.
Study on Load-displacement Test of Rubber Pads of Coal Mine Roadway Constructed by Shield
Yang, Yue; Chen, Xiaoguo; Yang, Liyun
2017-12-01
Shield method construction of coal mine roadway is the future trend of the development of deep coal mining. The main shaft supporting is the segment. There is rubber pads between segment and segment. The performance of compression deformation of rubber pad is essential for the overall stability of lining. Through load test, displacement of the rubber pad under load, the thrust force law of the rubber pad deformation, and provide a theoretical basis for the stability analysis of coal mine tunnel shield construction.
Directory of Open Access Journals (Sweden)
G. Gill
2017-09-01
Full Text Available Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.
Minimising the fire hazard from the use of belt conveyors in intake roadways
Energy Technology Data Exchange (ETDEWEB)
Leeming, J.R. [Health and Safety Executive, Sheffield, S. Yorkshire (United Kingdom)
2010-07-01
The fire that occurred a the Creswell underground coal mine in Derbyshire in 1950 in which 90 miners lost their lives was caused by a damaged rubber conveyor belt that ignited after being friction heated. The fire propagated along the intake trunk roadway by the burning belt itself, which ignited the timber roadway supports and hampered fire-fighting efforts. This paper demonstrated that operating conveyors in intake trunk roadways presents a risk that products of combustion can be carried to the working areas of a mine via ventilation pathways, thus creating a hazard to the underground miners. In North America, the use of belt air is not commonly used to ventilate working areas. However, these arrangements are common in the United Kingdom. As such, installation, inspection and maintenance standards have been created to minimize the risk of fire in underground, remotely operated belt conveyors in underground mines. Monitoring systems are also in place for early detection of any fire. A review of recent underground fires in the United Kingdom has shown that the measures adopted have been successful in avoiding uncontrollable fires. 13 refs., 5 figs.
On 3D Geo-visualization of a Mine Surface Plant and Mine Roadway
Institute of Scientific and Technical Information of China (English)
WANG Yunjia; FU Yongming; FU Erjiang
2007-01-01
Constructing the 3D virtual scene of a coal mine is the objective requirement for modernizing and processing information on coal mining production. It is also the key technology to establish a "digital mine". By exploring current worldwide research, software and hardware tools and application demands, combined with the case study site (the Dazhuang mine of Pingdingshan coal group), an approach for 3D geo-visualization of a mine surface plant and mine roadway is deeply discussed. In this study, the rapid modeling method for a large range virtual scene based on Arc/Info and SiteBuilder3D is studied, and automatic generation of a 3D scene from a 2D scene is realized. Such an automatic method which can convert mine roadway systems from 2D to 3D is realized for the Dazhuang mine. Some relevant application questions are studied, including attribute query, coordinate query, distance measure, collision detection and the dynamic interaction between 2D and 3D virtual scenes in the virtual scene of a mine surface plant and mine roadway. A prototype system is designed and developed.
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.
Characterizations of the first flush in storm water runoff from an urban roadway.
Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T
2005-07-01
Storm water runoff from urban roadways contains anthropogenic pollutants, which are mainly generated from traffic-related activities. The purpose of this study was to evaluate the characteristics of pollutants from the roadway runoff as well as first flush effects. Storm water runoff was sampled during five storm events from the experimental site in Otsu, Shiga, Japan. From the hydrographs and pollutographs for the roadway runoff, the concentration of pollutants increased with increasing runoff flow in the low flow rate event, but did not significantly increase in the high flow rate event. Moreover, according to the analysis of cumulative pollutant mass versus runoff volume curves from five storm events, the first 50% of the runoff volume transported 62% of TOC and Mo, 60% of SS, 59% of Fe, Mn and Cu, 58% of Ni, 57% of Cd and Pb, 56% of Al, 55% of Zn, and 54% of Cr, as the mean values. The first 30% and 80% of the runoff volume also transported 34-43% mass of the pollutants and 82-88% mass of the pollutants, respectively. This study for storm water runoff may also provide useful information to correctly design treatment facilities, such as detention tanks and ponds, filtration and adsorption systems.
[Performance of Grass Swales for Controlling Pollution of Roadway Runoff in Field Experiments].
Huang, Jun-jie; Shen, Qing-ran; Li, Tian
2015-06-01
Two different styles of grass swales were built in new Binhu region of Hefei city to monitor the flux and quality of the influent and effluent water under actual precipitation conditions, in order to evaluate the performance of water quality purification and pollution load control for roadway runoff. The results showed that both of the grass swales could effectively remove the pollutants such as TSS, COD, Pb, Cu, Cd, Zn in roadway runoff; the median EMC removal efficiencies of TSS and COD were 67.1%, 46.7% respectively,for facility I, and the median EMC removal efficiencies of TSS and COD were 78.6%, 58.6% respectively, for facility II; the concentrations of Pb, Cu, Zn in the effluent of facility II could meet the requirements of the surface water quality class V; release of nitrogen and phosphorus occurred in both facilities I and I[ in several rainfall events, mainly in heavy storms; the removal efficiencies of TP in the two grass swales were improved with the increase of influent concentration; the mean removal efficiencies of TP in facilities I and II were 14.7% and 45.4%, respectively; the load control performance of facility II for pollutants such as TSS, COD, TP, TN, NH4+ -N and NO3- -N was better than that of facility I; in the district with poor soil permeability and low ground slope, application of dry swale could achieve better performance in water quality control and pollution load reduction of roadway runoff.
Evidence of Road Salt in New Hampshire’s Snowpack Hundreds of Meters from Roadways
Directory of Open Access Journals (Sweden)
James Lazarcik
2017-07-01
Full Text Available Salinization of surface and groundwater has been directly linked to the area of road surfaces in a watershed and the subsequent wintertime maintenance used to keep roads free of snow and ice. Most studies that explore road salt in snow along roadways limit the study to within 100 m from a roadway and conclude that there is negligible deposition of de-icing salt at distances greater than 100 m. In this study, we analyze the ion content of the southern New Hampshire snowpack and use Mg2+ as a conservative sea-salt tracer to calculate sea salt and non-sea salt fractions of Cl−. There is a minimum of 60% non-sea salt Cl−, which we attribute to road salt, in the snowpack at our study sites 115 to 350 m from the nearest maintained roadways. This suggests that larger areas need to be considered when investigating the negative impact of Cl− loading due to winter-time maintenance.
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Multilevel geometry optimization
Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.
2000-02-01
Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.
Multilevel geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Rodgers, Jocelyn M. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Fast, Patton L. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Truhlar, Donald G. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)
2000-02-15
Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol. (c) 2000 American Institute of Physics.
Quantization of the Schwarzschild geometry
International Nuclear Information System (INIS)
Melas, Evangelos
2013-01-01
The conditional symmetries of the reduced Einstein-Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''.
Krauss, Lawrence M.; Turner, Michael S.
1999-01-01
The recognition that the cosmological constant may be non-zero forces us to re-evaluate standard notions about the connection between geometry and the fate of our Universe. An open Universe can recollapse, and a closed Universe can expand forever. As a corollary, we point out that there is no set of cosmological observations we can perform that will unambiguously allow us to determine what the ultimate destiny of the Universe will be.
DEFF Research Database (Denmark)
Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob
2009-01-01
The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....
International Nuclear Information System (INIS)
Lepora, N.; Kibble, T.
1999-01-01
We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)
Integral geometry and valuations
Solanes, Gil
2014-01-01
Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...
CBM RICH geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration
2016-07-01
The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.
Introducing geometry concept based on history of Islamic geometry
Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.
2018-01-01
Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.
Directory of Open Access Journals (Sweden)
Małkowski Piotr
2017-12-01
Full Text Available The small throw fault zones cause serious problems for mining engineers. The knowledge about the range of fractured zone around the roadway and about roadway’s contour deformations helps a lot with the right support design or its reinforcement. The paper presents the results of numerical analysis of the effect of a small throw fault zone on the convergence of the mining roadway and the extent of the fracturing induced around the roadway. The computations were performed on a dozen physical models featuring various parameters of rock mass and support for the purpose to select the settings that reflects most suitably the behavior of tectonically disturbed and undisturbed rocks around the roadway. Finally, the results of the calculations were verified by comparing them with in situ convergence measurements carried out in the maingate D-2 in the “Borynia-Zofiówka-Jastrzębie” coal mine. Based on the results of measurements it may be concluded that the rock mass displacements around a roadway section within a fault zone during a year were four times in average greater than in the section tectonically unaffected. The results of numerical calculations show that extent of the yielding zone in the roof reaches two times the throw of the fault, in the floor 3 times the throw, and horizontally approx. 1.5 to 1.8 times the width of modelled fault zone. Only a few elasto-plastic models or models with joints between the rock beds can be recommended for predicting the performance of a roadway which is within a fault zone. It is possible, using these models, to design the roadway support of sufficient load bearing capacity at the tectonically disturbed section.
Two lectures on D-geometry and noncommutative geometry
International Nuclear Information System (INIS)
Douglas, M.R.
1999-01-01
This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)
Remarks on Hamiltonian structures in G2-geometry
International Nuclear Information System (INIS)
Cho, Hyunjoo; Salur, Sema; Todd, A. J.
2013-01-01
In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry
International Nuclear Information System (INIS)
Hook, D W
2008-01-01
A geometric framework for quantum mechanics arose during the mid 1970s when authors such as Cantoni explored the notion of generalized transition probabilities, and Kibble promoted the idea that the space of pure quantum states provides a natural quantum mechanical analogue for classical phase space. This central idea can be seen easily since the projection of Schroedinger's equation from a Hilbert space into the space of pure spaces is a set of Hamilton's equations. Over the intervening years considerable work has been carried out by a variety of authors and a mature description of quantum mechanics in geometric terms has emerged with many applications. This current offering would seem ideally placed to review the last thirty years of progress and relate this to the most recent work in quantum entanglement. Bengtsson and Zyczkowski's beautifully illustrated volume, Geometry of Quantum States (referred to as GQS from now on) attempts to cover considerable ground in its 466 pages. Its topics range from colour theory in Chapter 1 to quantum entanglement in Chapter 15-to say that this is a whirlwind tour is, perhaps, no understatement. The use of the work 'introduction' in the subtitle of GQS, might suggest to the reader that this work be viewed as a textbook and I think that this interpretation would be incorrect. The authors have chosen to present a survey of different topics with the specific aim to introduce entanglement in geometric terms-the book is not intended as a pedagogical introduction to the geometric approach to quantum mechanics. Each of the fifteen chapters is a short, and mostly self-contained, essay on a particular aspect or application of geometry in the context of quantum mechanics with entanglement being addressed specifically in the final chapter. The chapters fall into three classifications: those concerned with the mathematical background, those which discuss quantum theory and the foundational aspects of the geometric framework, and
Requirements for existing buildings
DEFF Research Database (Denmark)
Thomsen, Kirsten Engelund; Wittchen, Kim Bjarne
This report collects energy performance requirements for existing buildings in European member states by June 2012.......This report collects energy performance requirements for existing buildings in European member states by June 2012....
Greening Existing Tribal Buildings
Guidance about improving sustainability in existing tribal casinos and manufactured homes. Many steps can be taken to make existing buildings greener and healthier. They may also reduce utility and medical costs.
Functional integration over geometries
International Nuclear Information System (INIS)
Mottola, E.
1995-01-01
The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted
Flegg, H Graham
2001-01-01
This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.
Geometrie verstehen: statisch - kinematisch
Kroll, Ekkehard
Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Abhyankar, Shreeram Shankar
1964-01-01
This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from
Akopyan, A V
2007-01-01
The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca
2015-01-01
This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric
Graded geometry and Poisson reduction
Cattaneo, A S; Zambon, M
2009-01-01
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics
Development and application of CATIA-GDML geometry builder
International Nuclear Information System (INIS)
Belogurov, S; Chernogorov, A; Ovcharenko, E; Schetinin, V; Berchun, Yu; Malzacher, P
2014-01-01
Due to conceptual difference between geometry descriptions in Computer-Aided Design (CAD) systems and particle transport Monte Carlo (MC) codes direct conversion of detector geometry in either direction is not feasible. The paper presents an update on functionality and application practice of the CATIA-GDML geometry builder first introduced at CHEP2010. This set of CATIAv5 tools has been developed for building a MC optimized GEANT4/ROOT compatible geometry based on the existing CAD model. The model can be exported via Geometry Description Markup Language (GDML). The builder allows also import and visualization of GEANT4/ROOT geometries in CATIA. The structure of a GDML file, including replicated volumes, volume assemblies and variables, is mapped into a part specification tree. A dedicated file template, a wide range of primitives, tools for measurement and implicit calculation of parameters, different types of multiple volume instantiation, mirroring, positioning and quality check have been implemented. Several use cases are discussed.
Stonewall, Adam; Granato, Gregory E.; Haluska, Tana L.
2018-01-01
The Oregon Department of Transportation (ODOT) and other state departments of transportation need quantitative information about the percentages of different land cover categories above any given stream crossing in the state to assess and address roadway contributions to water-quality impairments and resulting total maximum daily loads. The U.S. Geological Survey, in cooperation with ODOT and the FHWA, added roadway and land cover information to the online StreamStats application to facilitate analysis of stormwater runoff contributions from different land covers. Analysis of 25 delineated basins with drainage areas of about 100 mi2 indicates the diversity of land covers in the Willamette Valley, Oregon. On average, agricultural, developed, and undeveloped land covers comprise 15%, 2.3%, and 82% of these basin areas. On average, these basins contained about 10 mi of state highways and 222 mi of non-state roads. The Stochastic Empirical Loading and Dilution Model was used with available water-quality data to simulate long-term yields of total phosphorus from highways, non-highway roadways, and agricultural, developed, and undeveloped areas. These yields were applied to land cover areas obtained from StreamStats for the Willamette River above Wilsonville, Oregon. This analysis indicated that highway yields were larger than yields from other land covers because highway runoff concentrations were higher than other land covers and the highway is fully impervious. However, the total highway area was a fraction of the other land covers. Accordingly, highway runoff mitigation measures can be effective for managing water quality locally, they may have limited effect on achieving basin-wide stormwater reduction goals.
Directory of Open Access Journals (Sweden)
Yuan Zhang
2016-01-01
Full Text Available Based on finite difference method, a mathematical model and a numerical model written by Fortran language were established in the paper. Then a series of experiments were conducted to figure out the evolution law of temperature field in high geothermal roadway. Research results indicate that temperature disturbance range increases gradually as the unsteady heat conduction goes on and it presents power function relationship with dimensionless time. Based on the case analysis, there is no distinct expansion of temperature disturbance range after four years of ventilation, when the temperature disturbance range R=13.6.
Escape and transmission probabilities in cylindrical geometry
International Nuclear Information System (INIS)
Bjerke, M.A.
1980-01-01
An improved technique for the generation of escape and transmission probabilities in cylindrical geometry was applied to the existing resonance cross section processing code ROLAIDS. The algorithm of Hwang and Toppel, [ANL-FRA-TM-118] (with modifications) was employed. The probabilities generated were found to be as accurate as those given by the method previously applied in ROLAIDS, while requiring much less computer core storage and CPU time
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Critique of information geometry
International Nuclear Information System (INIS)
Skilling, John
2014-01-01
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples
International Nuclear Information System (INIS)
Correa, Diego H.; Silva, Guillermo A.
2008-01-01
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents
Emergent geometry of membranes
Energy Technology Data Exchange (ETDEWEB)
Badyn, Mathias Hudoba de; Karczmarek, Joanna L.; Sabella-Garnier, Philippe; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)
2015-11-13
In work http://dx.doi.org/10.1103/PhysRevD.86.086001, a surface embedded in flat ℝ{sup 3} is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in ℝ{sup 3}. Finally, we make remarks about area and find matrix equations for minimal area surfaces.
Geometry through history Euclidean, hyperbolic, and projective geometries
Dillon, Meighan I
2018-01-01
Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...
On organizing principles of discrete differential geometry. Geometry of spheres
International Nuclear Information System (INIS)
Bobenko, Alexander I; Suris, Yury B
2007-01-01
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
Higher geometry an introduction to advanced methods in analytic geometry
Woods, Frederick S
2005-01-01
For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study
Quantifying the environmental impact of particulate deposition from dry unpaved roadways
Energy Technology Data Exchange (ETDEWEB)
Becker, D.L.
1979-01-01
Airborne dust is the air pollutant most frequently observed to exceed National Ambient Air Quality Standards in rural areas. This pollutant (also referred to as suspended particulates) may originate from point sources (e.g., large areas of bare soil or pollen-producing vegetation.) Most sources of atmospheric particulates, whether natural or anthropogenic, are difficult to quantify by means of a source strength (i.e., mass of particulates emitted per unit time). A numerical model was developed for calculating the source strength and quantifying the atmospheric transport and eposition of dust generated on unpaved roadways. This model satisfies the second-order differential equation for the diffusion process and also the equation of mass conservation. Input to the model includes meterological variables, surface roughness characteristics, and the size distribution and suspended particulate concentration of dust as sampled downwind of an unpaved roadway. By using predetermined tolerance levels of airborne concentrations or tolerance levels of deposition, maximum allowable vehicular traffic volume can be established. The model also may be used to estimate reduction in photosynthesis resulting from fugitive dust from point or line sources. The contribug ion to sedimentation in aquatic bodies, resulting from airborne particulates also may be assessed with this model.
An introduction to incidence geometry
De Bruyn, Bart
2016-01-01
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...
International Nuclear Information System (INIS)
Buescher, R.
2005-01-01
Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the
Planetary Image Geometry Library
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
Initiation to global Finslerian geometry
Akbar-Zadeh, Hassan
2006-01-01
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p
Energy Technology Data Exchange (ETDEWEB)
Islam, Md. Rafiqul; Shinjo, Ryuichi [Department of Physics and Earth Sciences, University of the Ryukyus, Okinawa, 903-0213 (Japan)
2009-09-01
Fault reactivation during underground mining is a critical problem in coal mines worldwide. This paper investigates the mining-induced reactivation of faults associated with the main conveyor belt roadway (CBR) of the Barapukuria Coal Mine in Bangladesh. The stress characteristics and deformation around the faults were investigated by boundary element method (BEM) numerical modeling. The model consists of a simple geometry with two faults (Fb and Fb1) near the CBR and the surrounding rock strata. A Mohr-Coulomb failure criterion with bulk rock properties is applied to analyze the stability and safety around the fault zones, as well as for the entire mining operation. The simulation results illustrate that the mining-induced redistribution of stresses causes significant deformation within and around the two faults. The horizontal and vertical stresses influence the faults, and higher stresses are concentrated near the ends of the two faults. Higher vertical tensional stress is prominent at the upper end of fault Fb. High deviatoric stress values that concentrated at the ends of faults Fb and Fb1 indicate the tendency towards block failure around the fault zones. The deviatoric stress patterns imply that the reinforcement strength to support the roof of the roadway should be greater than 55 MPa along the fault core zone, and should be more than 20 MPa adjacent to the damage zone of the fault. Failure trajectories that extend towards the roof and left side of fault Fb indicate that mining-induced reactivation of faults is not sufficient to generate water inflow into the mine. However, if movement of strata occurs along the fault planes due to regional earthquakes, and if the faults intersect the overlying Lower Dupi Tila aquiclude, then liquefaction could occur along the fault zones and enhance water inflow into the mine. The study also reveals that the hydraulic gradient and the general direction of groundwater flow are almost at right angles with the trends of
Directory of Open Access Journals (Sweden)
Šárka Nedomová
2013-01-01
Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.
Nonperturbative quantum geometries
International Nuclear Information System (INIS)
Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; California Univ., Santa Barbara
1988-01-01
Using the self-dual representation of quantum general relativity, based on Ashtekar's new phase space variables, we present an infinite dimensional family of quantum states of the gravitational field which are exactly annihilated by the hamiltonian constraint. These states are constructed from Wilson loops for Ashtekar's connection (which is the spatial part of the left handed spin connection). We propose a new regularization procedure which allows us to evaluate the action of the hamiltonian constraint on these states. Infinite linear combinations of these states which are formally annihilated by the diffeomorphism constraints as well are also described. These are explicit examples of physical states of the gravitational field - and for the compact case are exact zero eigenstates of the hamiltonian of quantum general relativity. Several different approaches to constructing diffeomorphism invariant states in the self dual representation are also described. The physical interpretation of the states described here is discussed. However, as we do not yet know the physical inner product, any interpretation is at this stage speculative. Nevertheless, this work suggests that quantum geometry at Planck scales might be much simpler when explored in terms of the parallel transport of left-handed spinors than when explored in terms of the three metric. (orig.)
Bhatia, Rajendra
2013-01-01
This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR). During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.
Vectorising the detector geometry to optimize particle transport
Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro
2014-01-01
Among the components contributing to particle transport, geometry navigation is an important consumer of CPU cycles. The tasks performed to get answers to "basic" queries such as locating a point within a geometry hierarchy or computing accurately the distance to the next boundary can become very computing intensive for complex detector setups. So far, the existing geometry algorithms employ mainly scalar optimisation strategies (voxelization, caching) to reduce their CPU consumption. In this paper, we would like to take a different approach and investigate how geometry navigation can benefit from the vector instruction set extensions that are one of the primary source of performance enhancements on current and future hardware. While on paper, this form of microparallelism promises increasing performance opportunities, applying this technology to the highly hierarchical and multiply branched geometry code is a difficult challenge. We refer to the current work done to vectorise an important part of the critica...
Energy Technology Data Exchange (ETDEWEB)
Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Myer, M. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2009-08-01
On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.
2010-10-01
... operative positive pressurized ventilation systems: (1) Ballast regulators; (2) Tampers; (3) Mechanical... or sold. (e) If the ventilation system on a new on-track roadway maintenance machine or a designated... respiratory protective equipment shall be provided for each such employee until the machine is repaired in...
International Nuclear Information System (INIS)
Vliet, E D S van; Kinney, P L
2007-01-01
Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA). However, the lack of ambient monitoring data, and particularly urban roadside concentrations for particulate matter in SSA cities severely hinders our ability to describe temporal and spatial patterns of concentrations, characterize exposure-response relationships for key health outcomes, estimate disease burdens, and promote policy initiatives to address air quality. As part of a collaborative transportation planning exercise between Columbia University and University of Nairobi, air monitoring was carried out in February 2006 in Nairobi, Kenya. The objective of the monitoring was to collect pilot data on air concentrations (PM 2.5 and black carbon) encountered while driving in the Nairobi metropolitan area, and to compare those data to simultaneous 'urban background' concentrations measured in Nairobi but away from roadways. For both the background and roadway monitoring, we used portable air sampling systems that collect integrated filter samples. Results from this pilot study found that roadway concentrations of PM 2.5 were approximately 20-fold higher than those from the urban background site, whereas black carbon concentrations differed by 10-fold. If confirmed by more extensive sampling, these data would underscore the need for air quality and transportation planning and management directed at mitigating roadway pollution
2013-09-01
Icy roads lead to treacherous driving conditions in regions of the U.S. resulting in over 450 fatalities per year. Deicing chemicals, such as rock salt help to reduce ice formation on roadways to an extent, however also result in detrimental effects ...
Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinneym, Patrick L.
2015-01-01
Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi’s low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern. PMID:26034383
van Vliet, E. D. S.; Kinney, P. L.
2007-10-01
Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA). However, the lack of ambient monitoring data, and particularly urban roadside concentrations for particulate matter in SSA cities severely hinders our ability to describe temporal and spatial patterns of concentrations, characterize exposure response relationships for key health outcomes, estimate disease burdens, and promote policy initiatives to address air quality. As part of a collaborative transportation planning exercise between Columbia University and the University of Nairobi, air monitoring was carried out in February 2006 in Nairobi, Kenya. The objective of the monitoring was to collect pilot data on air concentrations (PM2.5 and black carbon) encountered while driving in the Nairobi metropolitan area, and to compare those data to simultaneous 'urban background' concentrations measured in Nairobi but away from roadways. For both the background and roadway monitoring, we used portable air sampling systems that collect integrated filter samples. Results from this pilot study found that roadway concentrations of PM2.5 were approximately 20-fold higher than those from the urban background site, whereas black carbon concentrations differed by 10-fold. If confirmed by more extensive sampling, these data would underscore the need for air quality and transportation planning and management directed at mitigating roadway pollution.
Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinney, Patrick L.
2015-06-01
Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi's low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern.
GPS: Geometry, Probability, and Statistics
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Surrogate Modeling for Geometry Optimization
DEFF Research Database (Denmark)
Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie
2009-01-01
A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....
Kaehler geometry and SUSY mechanics
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen
2001-01-01
We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed
A prediction for bubbling geometries
Okuda, Takuya
2007-01-01
We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.
Molecular motion in restricted geometries
Indian Academy of Sciences (India)
Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...
Wen, Dongqi; Zhai, Wenjuan; Xiang, Sheng; Hu, Zhice; Wei, Tongchuan; Noll, Kenneth E
2017-11-01
Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO 2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models-CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)-are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations. The paper provides emission factors (EFs) that are a function of traffic volume and mode of
Instabilities of microstate geometries with antibranes
International Nuclear Information System (INIS)
Bena, Iosif; Pasini, Giulio
2016-01-01
One can obtain very large classes of horizonless microstate geometries corresponding to near-extremal black holes by placing probe supertubes whose action has metastable minima inside certain supersymmetric bubbling solutions http://dx.doi.org/10.1007/JHEP12(2012)014. We show that these minima can lower their energy when the bubbles move in certain directions in the moduli space, which implies that these near-extremal microstates are in fact unstable once one considers the dynamics of all their degrees of freedom. The decay of these solutions corresponds to Hawking radiation, and we compare the emission rate and frequency to those of the corresponding black hole. Our analysis supports the expectation that generic non-extremal black holes microstate geometries should be unstable. It also establishes the existence of a new type of instabilities for antibranes in highly-warped regions with charge dissolved in fluxes.
Simplified discrete ordinates method in spherical geometry
International Nuclear Information System (INIS)
Elsawi, M.A.; Abdurrahman, N.M.; Yavuz, M.
1999-01-01
The authors extend the method of simplified discrete ordinates (SS N ) to spherical geometry. The motivation for such an extension is that the appearance of the angular derivative (redistribution) term in the spherical geometry transport equation makes it difficult to decide which differencing scheme best approximates this term. In the present method, the angular derivative term is treated implicitly and thus avoids the need for the approximation of such term. This method can be considered to be analytic in nature with the advantage of being free from spatial truncation errors from which most of the existing transport codes suffer. In addition, it treats the angular redistribution term implicitly with the advantage of avoiding approximations to that term. The method also can handle scattering in a very general manner with the advantage of spending almost the same computational effort for all scattering modes. Moreover, the methods can easily be applied to higher-order S N calculations
Instabilities of microstate geometries with antibranes
Energy Technology Data Exchange (ETDEWEB)
Bena, Iosif; Pasini, Giulio [Institut de physique théorique, Université Paris Saclay, CEA, CNRS,F-91191 Gif-sur-Yvette (France)
2016-04-29
One can obtain very large classes of horizonless microstate geometries corresponding to near-extremal black holes by placing probe supertubes whose action has metastable minima inside certain supersymmetric bubbling solutions http://dx.doi.org/10.1007/JHEP12(2012)014. We show that these minima can lower their energy when the bubbles move in certain directions in the moduli space, which implies that these near-extremal microstates are in fact unstable once one considers the dynamics of all their degrees of freedom. The decay of these solutions corresponds to Hawking radiation, and we compare the emission rate and frequency to those of the corresponding black hole. Our analysis supports the expectation that generic non-extremal black holes microstate geometries should be unstable. It also establishes the existence of a new type of instabilities for antibranes in highly-warped regions with charge dissolved in fluxes.
Sub-Riemannian geometry and optimal transport
Rifford, Ludovic
2014-01-01
The book provides an introduction to sub-Riemannian geometry and optimal transport and presents some of the recent progress in these two fields. The text is completely self-contained: the linear discussion, containing all the proofs of the stated results, leads the reader step by step from the notion of distribution at the very beginning to the existence of optimal transport maps for Lipschitz sub-Riemannian structure. The combination of geometry presented from an analytic point of view and of optimal transport, makes the book interesting for a very large community. This set of notes grew from a series of lectures given by the author during a CIMPA school in Beirut, Lebanon.
Real solutions to equations from geometry
Sottile, Frank
2011-01-01
Understanding, finding, or even deciding on the existence of real solutions to a system of equations is a difficult problem with many applications outside of mathematics. While it is hopeless to expect much in general, we know a surprising amount about these questions for systems which possess additional structure often coming from geometry. This book focuses on equations from toric varieties and Grassmannians. Not only is much known about these, but such equations are common in applications. There are three main themes: upper bounds on the number of real solutions, lower bounds on the number of real solutions, and geometric problems that can have all solutions be real. The book begins with an overview, giving background on real solutions to univariate polynomials and the geometry of sparse polynomial systems. The first half of the book concludes with fewnomial upper bounds and with lower bounds to sparse polynomial systems. The second half of the book begins by sampling some geometric problems for which all ...
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Optical geometry across the horizon
International Nuclear Information System (INIS)
Jonsson, Rickard
2006-01-01
In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework
International Nuclear Information System (INIS)
Ye Yongjun; Wang Liheng; Zhou Xinghuo; Li Xiangyang; Zhong Yongming; Wang Shuyun; Ding Dexin
2014-01-01
The forced-exhaust ventilation is an important way to control the concentration of radon and its progenies in long-distance blind driving roadway. It is of great significance for guiding the design of ventilation and radiation protection to study distribution characteristics of the concentration of radon and its progenies in the wind of roadway adopting the forced-exhaust ventilation. Therefore, according to the decay relationship of radon and its progenies, a simplified mathematical calculation model was built, which relates to the radon activity concentration and the potential alpha concentration of radon progenies. The paper also analyzed the sources of radon and its progenies in the limited space of the blind roadway. Then, based on the turbulence mass transfer theory of ventilation air flow, the paper established mathematical calculation models of distribution characteristics of the radon activity concentration and the potential alpha concentration of radon progenies in blind roadway with forced-exhaust ventilation, respectively. Finally, the paper applied the calculation models to a special blind roadway, and discussed the influence of the ventilation air inflow and the radon exhalation rate of rock wall on the distribution of radon concentration and the potential alpha concentration of radon progenies in the roadway. Meanwhile, some protective measurements were put forward to reduce the radiation dose of worker caused by radon and its progenies in the blind roadway. (authors)
Stress analysis of three-dimensional roadway layout of stagger arrangement with field observation
Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe
2018-01-01
Longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method for extracting thick (> 5 m) to ultra-thick coal seams in recent years. However, low-level recovery ratio of coal resources and top-coal loss above the supports at both ends of working face are long-term problems. Geological factors, such as large dip angle, soft rock, mining depth further complicate the problems. This paper proposes addressing this issue by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress environment surrounding head entry in the replacing working face based on the stress distribution characteristics at the triangular coal-pillar side in gob and the stress slip line field theory. In the second step, filed observation was conducted. Finally, an economic evaluation of the 3-D RLSA for extracting thick to ultra-thick seams was conducted.
Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway
Directory of Open Access Journals (Sweden)
Cai-Ping Lu
2015-01-01
Full Text Available Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1 working face at Zhuji coal mine. Simultaneously, by changing the thickness and strength of immediate roof overlying the mining coal seam, the whole process of rockburst failure of roadway and the attenuation properties of shock wave were understood clearly. The presented conclusions can provide some important references to prevent and control rockburst hazards triggered by shock wave interferences in deep coal mines.
Analysis of Roadway Traffic Accidents Based on Rough Sets and Bayesian Networks
Directory of Open Access Journals (Sweden)
Xiaoxia Xiong
2018-02-01
Full Text Available The paper integrates Rough Sets (RS and Bayesian Networks (BN for roadway traffic accident analysis. RS reduction of attributes is first employed to generate the key set of attributes affecting accident outcomes, which are then fed into a BN structure as nodes for BN construction and accident outcome classification. Such RS-based BN framework combines the advantages of RS in knowledge reduction capability and BN in describing interrelationships among different attributes. The framework is demonstrated using the 100-car naturalistic driving data from Virginia Tech Transportation Institute to predict accident type. Comparative evaluation with the baseline BNs shows the RS-based BNs generally have a higher prediction accuracy and lower network complexity while with comparable prediction coverage and receiver operating characteristic curve area, proving that the proposed RS-based BN overall outperforms the BNs with/without traditional feature selection approaches. The proposed RS-based BN indicates the most significant attributes that affect accident types include pre-crash manoeuvre, driver’s attention from forward roadway to centre mirror, number of secondary tasks undertaken, traffic density, and relation to junction, most of which feature pre-crash driver states and driver behaviours that have not been extensively researched in literature, and could give further insight into the nature of traffic accidents.
Framework and implementation of a continuous network-wide health monitoring system for roadways
Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar
2014-03-01
According to the 2013 ASCE report card America's infrastructure scores only a D+. There are more than four million miles of roads (grade D) in the U.S. requiring a broad range of maintenance activities. The nation faces a monumental problem of infrastructure management in the scheduling and implementation of maintenance and repair operations, and in the prioritization of expenditures within budgetary constraints. The efficient and effective performance of these operations however is crucial to ensuring roadway safety, preventing catastrophic failures, and promoting economic growth. There is a critical need for technology that can cost-effectively monitor the condition of a network-wide road system and provide accurate, up-to-date information for maintenance activity prioritization. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project provides a framework and the sensing capability to complement periodical localized inspections to continuous network-wide health monitoring. Research focused on the development of a cost-effective, lightweight package of multi-modal sensor systems compatible with this framework. An innovative software infrastructure is created that collects, processes, and evaluates these large time-lapse multi-modal data streams. A GIS-based control center manages multiple inspection vehicles and the data for further analysis, visualization, and decision making. VOTERS' technology can monitor road conditions at both the surface and sub-surface levels while the vehicle is navigating through daily traffic going about its normal business, thereby allowing for network-wide frequent assessment of roadways. This deterioration process monitoring at unprecedented time and spatial scales provides unique experimental data that can be used to improve life-cycle cost analysis models.
Why preeclampsia still exists?
Chelbi, Sonia T; Veitia, Reiner A; Vaiman, Daniel
2013-08-01
Preeclampsia (PE) is a deadly gestational disease affecting up to 10% of women and specific of the human species. Preeclampsia is clearly multifactorial, but the existence of a genetic basis for this disease is now clearly established by the existence of familial cases, epidemiological studies and known predisposing gene polymorphisms. PE is very common despite the fact that Darwinian pressure should have rapidly eliminated or strongly minimized the frequency of predisposing alleles. Consecutive pregnancies with the same partner decrease the risk and severity of PE. Here, we show that, due to this peculiar feature, preeclampsia predisposing-alleles can be differentially maintained according to the familial structure. Thus, we suggest that an optimal frequency of PE-predisposing alleles in human populations can be achieved as a result of a trade-off between benefits of exogamy, importance for maintaining genetic diversity and increase of the fitness owing to a stable paternal investment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quantum groups: Geometry and applications
International Nuclear Information System (INIS)
Chu, C.S.
1996-01-01
The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge
Existence of Projective Planes
Perrott, Xander
2016-01-01
This report gives an overview of the history of finite projective planes and their properties before going on to outline the proof that no projective plane of order 10 exists. The report also investigates the search carried out by MacWilliams, Sloane and Thompson in 1970 [12] and confirms their result by providing independent verification that there is no vector of weight 15 in the code generated by the projective plane of order 10.
Turner, L
2009-12-01
Bioethicists disagree over methods, theories, decision-making guides, case analyses and public policies. Thirty years ago, the thinking of many scholars coalesced around a principlist approach to bioethics. That mid-level mode of moral reasoning is now one of many approaches to moral deliberation. Significant variation in contemporary approaches to the study of ethical issues related to medicine, biotechnology and health care raises the question of whether bioethics exists as widely shared method, theory, normative framework or mode of moral reasoning.
The Finsler spacetime framework. Backgrounds for physics beyond metric geometry
Energy Technology Data Exchange (ETDEWEB)
Pfeifer, Christian
2013-11-15
The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the
The Finsler spacetime framework. Backgrounds for physics beyond metric geometry
International Nuclear Information System (INIS)
Pfeifer, Christian
2013-11-01
The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
Walsh, Edward T
2014-01-01
This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl
Differential geometry curves, surfaces, manifolds
Kohnel, Wolfgang
2002-01-01
This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.
Information theory, spectral geometry, and quantum gravity.
Kempf, Achim; Martin, Robert
2008-01-18
We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.
Hyperbolic geometry of Kuramoto oscillator networks
Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato
2017-09-01
Kuramoto oscillator networks have the special property that their trajectories are constrained to lie on the (at most) 3D orbits of the Möbius group acting on the state space T N (the N-fold torus). This result has been used to explain the existence of the N-3 constants of motion discovered by Watanabe and Strogatz for Kuramoto oscillator networks. In this work we investigate geometric consequences of this Möbius group action. The dynamics of Kuramoto phase models can be further reduced to 2D reduced group orbits, which have a natural geometry equivalent to the unit disk \
Unstable drift eigenmode in slab geometry
International Nuclear Information System (INIS)
Tsotsonis, S.; Hirose, A.
1986-01-01
The unstable Pearlstein-Berk mode of drift waves in plane, sheared slab geometry has later been shown to be stable when electron Landau resonance is rigorously treated. Based on the variational method previously developed the authors have found that in addition to the absolutely stable Pearlstein-Berk mode, there exists an absolutely unstable eigenfunction characterized by ω ≤ ω/sub chemical bonde/, and weak ''radial'' dependence. Also, the growth rate, only weakly depends on the magnetic shear and ion/electron temperature ratio
Waves in inhomogeneous plasma of cylindrical geometry
International Nuclear Information System (INIS)
Rebut, P.H.
1966-01-01
The conductivity tensor of a hot and inhomogeneous plasma has been calculated for a cylindrical geometry using Vlasov equations. The method used consists in a perturbation method involving the first integrals of the unperturbed movement. The conductivity tensor will be particularly useful for dealing with stability problems. In the case of a cold plasma the wave equation giving the electric fields as a function of the radius is obtained. This equation shows the existence of resonant layers which lead to an absorption analogous to the Landau absorption in a hot plasma. (author) [fr
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Hyperbolic Metamaterials with Complex Geometry
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei
2016-01-01
We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...
An introduction to differential geometry
Willmore, T J
2012-01-01
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Symplectic geometry and Fourier analysis
Wallach, Nolan R
2018-01-01
Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.
Topology and geometry for physicists
Nash, Charles
1983-01-01
Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. ""Thoroughly recommended"" by The Physics Bulletin, this volume's physics applications range fr
Spectral dimension of quantum geometries
International Nuclear Information System (INIS)
Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes
2014-01-01
The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)
NSGIC State | GIS Inventory — FUNCTIONAL_CLASS_INDOTMODEL_IN is a line shapefile that shows the Federal Highway Administration functional classification of roadways from the Road Inventory of the...
Methodology for wind turbine blade geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Perfiliev, D.
2013-11-01
Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)
Definition of treatment geometry in radiation therapy
International Nuclear Information System (INIS)
Aaltonen, P.
1996-01-01
When accurate systems for quality assurance and treatment optimization are employed, a precise system for fixation and dosimetric and portal verification are as important as a continued and standardized code of practice for dosimetry and patient follow-up, including registration of tumour responses and acute and late normal tissue reactions. To improve the accuracy of existing dose response relations in order to improve future therapy the treatment geometry and dose delivery concepts have to be accurately defined and uniformly employed. A Nordic working group was set up in 1991 (by Nordic Association of Clinica Physics) to standardize the concepts and quantities used during the whole radiotherapy process in the Nordic countries. Now the group is finalizing its report ''Specification of Dose Delivery in Radiation Therapy''. The report emphasizes that the treatment geometry shall be consistent with the geometry used during the diagnostic work up. The patient fixation is of importance early in the diagnostic phase to ensure that the same reference points and patients position will be used both during the diagnostic work up, simulation and treatment execution. Reference Coordinate System of the patient is a concept based on defined anatomic reference points. This Patient Reference System is a local system which has validity for the tissues, organs and volumes defined during radiotherapy. The reference points of the Patient Reference System should in turn be used for beam set-up. The treatment geometry is then defined by using different concepts describing tissues which are mobile in the Patient Reference System, and finally, volumes which are fixed in this coordinate system. A Set-up Margin has to be considered for movements of the volumes defined in the Reference Coordinate System of the Patient in relation to the radiation beam. The Set-up Margin is dependent on the treatment technique and it is needed in the treatment planning procedure to ensure that the prescribed
Definition of treatment geometry in radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Aaltonen, P [Finnish Centre for Radiation and Nuclear Safety (STUK), Helsinki (Finland)
1996-08-01
When accurate systems for quality assurance and treatment optimization are employed, a precise system for fixation and dosimetric and portal verification are as important as a continued and standardized code of practice for dosimetry and patient follow-up, including registration of tumour responses and acute and late normal tissue reactions. To improve the accuracy of existing dose response relations in order to improve future therapy the treatment geometry and dose delivery concepts have to be accurately defined and uniformly employed. A Nordic working group was set up in 1991 to standardize the concepts and quantities used during the whole radiotherapy process in the Nordic countries. Now the group is finalizing its report ``Specification of Dose Delivery in Radiation Therapy``. The report emphasizes that the treatment geometry shall be consistent with the geometry used during the diagnostic work up. The patient fixation is of importance early in the diagnostic phase to ensure that the same reference points and patients position will be used both during the diagnostic work up, simulation and treatment execution. Reference Coordinate System of the patient is a concept based on defined anatomic reference points. This Patient Reference System is a local system which has validity for the tissues, organs and volumes defined during radiotherapy. The reference points of the Patient Reference System should in turn be used for beam set-up. The treatment geometry is then defined by using different concepts describing tissues which are mobile in the Patient Reference System, and finally, volumes which are fixed in this coordinate system. A Set-up Margin has to be considered for movements of the volumes defined in the Reference Coordinate System of the Patient in relation to the radiation beam. The Set-up Margin is dependent on the treatment technique and it is needed in the treatment planning procedure to ensure that the prescribed dose to the Target Volume is delivered.
Denning, Gerene M; Jennissen, Charles A
2016-05-18
All-terrain vehicles (ATVs) are designed for off-highway use only, and many of their features create increased risk with roadway travel. Over half of all ATV-related fatalities occur on roadways, and nonfatal roadway crashes result in more serious injuries than those off the road. A number of jurisdictions have passed or have considered legislation allowing ATVs on public roadways, sometimes limiting them to those unpaved, arguing that they are safe for ATVs. However, no studies have determined the epidemiology of ATV-related fatalities on different road surface types. The objective of the study was to compare ATV-related deaths on paved versus unpaved roads and to contrast them with off-road fatalities. Retrospective descriptive and multivariable analyses were performed using U.S. Consumer Product Safety Commission fatality data from 1982 through 2012. After 1998, ATV-related deaths increased at twice the rate on paved versus unpaved roads. Still, 42% of all roadway deaths during the study period occurred on unpaved surfaces. States varied considerably, ranging from 18% to 79% of their ATV-related roadway deaths occurring on unpaved roads. Paved road crashes were more likely than those on unpaved surfaces to involve males, adolescents and younger adults, passengers, and collisions with other vehicles. Both the pattern of other vehicles involved in collisions and which vehicle hit the other were different for the 2 road types. Alcohol use was higher, helmet use was lower, and head injuries were more likely in paved versus unpaved roadway crashes. However, head injuries still occurred in 76% of fatalities on unpaved roads. Helmets were associated with lower proportions of head injuries among riders, regardless of road surface type. Relative to off-road crashes, both paved and unpaved roads were more likely to involve collisions with another vehicle. The vast majority of roadway crashes, however, did not involve a traffic collision on either paved or unpaved roads
Directory of Open Access Journals (Sweden)
Carlos Alexandre Molina Noccioli
2016-07-01
Full Text Available Este trabalho busca analisar o tratamento linguístico-discursivo das informações acerca de um tópicotemático tradicionalmente visto como tabu, relacionado a questões sexuais, na notícia O ponto G existe?, publicada em 2008, na revista brasileira Superinteressante, destacando-se como o conhecimento em questão é representado socialmente ao se considerar a linha editorial da revista. A notícia caracteriza-se como um campo fértil para a análise das estratégias divulgativas, já que atrai, inclusive pelas escolhas temáticas, a curiosidade dos leitores. Imbuído de um tema excêntrico, o texto consegue angariar um público jovem interessado em discussões polêmicas relacionadas ao seu universo.
Lebesgue Sets Immeasurable Existence
Directory of Open Access Journals (Sweden)
Diana Marginean Petrovai
2012-12-01
Full Text Available It is well known that the notion of measure and integral were released early enough in close connection with practical problems of measuring of geometric ﬁgures. Notion of measure was outlined in the early 20th century through H. Lebesgue’s research, founder of the modern theory of measure and integral. It was developed concurrently a technique of integration of functions. Gradually it was formed a speciﬁc area todaycalled the measure and integral theory. Essential contributions to building this theory was made by a large number of mathematicians: C. Carathodory, J. Radon, O. Nikodym, S. Bochner, J. Pettis, P. Halmos and many others. In the following we present several abstract sets, classes of sets. There exists the sets which are not Lebesgue measurable and the sets which are Lebesgue measurable but are not Borel measurable. Hence B ⊂ L ⊂ P(X.
Directory of Open Access Journals (Sweden)
Rui Peng
Full Text Available We study the structural instability mechanism and effect of a multi-echelon support in very-deep roadways. We conduct a scale model test for analysing the structural failure mechanism and the effect of multi-echelon support of roadways under high horizontal stress. Mechanical bearing structures are classified according to their secondary stress distribution and the strength degradation of the surrounding rock after roadway excavation. A new method is proposed by partitioning the mechanical bearing structure of the surrounding rock into weak, key and main coupling bearing stratums. In the surrounding rock, the main bearing stratum is the plastic reshaping and flowing area. The weak bearing stratum is the peeling layer or the caving part. And the key bearing stratum is the shearing and yielding area. The structural fracture mechanism of roadways is considered in analysing the bearing structure instability of the surrounding rock, and multi-echelon support that considers the structural characteristics of roadway bearings is proposed. Results of the experimental study indicate that horizontal pressure seriously influences the stability of the surrounding rock, as indicated by extension of the weak bearing area and the transfer of the main and key bearing zones. The falling roof, rib spalling, and floor heave indicate the decline of the bearing capacity of surrounding rock, thereby causing roadway structural instability. Multi-echelon support is proposed according to the mechanical bearing structure of the surrounding rock without support. The redesigned support can reduce the scope of the weak bearing area and limit the transfer of the main and key bearing areas. Consequently, kilometre-deep roadway disasters, such as wedge roof caving, floor heave, and rib spalling, can be avoided to a certain degree, and plastic flow in the surrounding rock is relieved. The adverse effect of horizontal stress on the vault, spandrel and arch foot decreases. The
Flexible intuitions of Euclidean geometry in an Amazonian indigene group
Izard, Véronique; Pica, Pierre; Spelke, Elizabeth S.; Dehaene, Stanislas
2011-01-01
Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ∼180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics. PMID:21606377
International Nuclear Information System (INIS)
Ailwood, C.R.; Bunch, K.; Fookes, R.A.; Gravitis, V.L.; Watt, J.S.
1977-01-01
The combustible volatile matter in coal mine roadway dusts (CVM) has been determined using x-ray backscatter techniques. The correlation between x-ray and chemical techniques is reasonably good for the 92 samples from collieries on the Bulli seam, and the maximum error expected at the maximum level of 11.5 weight per cent CVM permitted in the N.S.W. Coal Mines Regulation Act, 1912, as amended, is about +- 2.5 weight per cent. This x-ray technique can be used only when the combustible volatile content of the coal matter (CVM) varies within a limited range, and a separate calibration is required for each coal seam. Portable equipment based on a radioisotope x-ray source and digital ratemeter makes possible simple and rapid analysis, and with adaptation to use in coal mines should lead to much more comprehensive testing of roadways and hence improved overall prevention of coal dust explosions. (author)
Directory of Open Access Journals (Sweden)
Yunhai Cheng
2015-01-01
Full Text Available This paper deals with the theoretical aspects combined with stress analysis over the floor strata of coal seam and the calculation model for the stress on the coal floor. Basically, this research presents the relevant results obtained for the rock burst prevention in the floor of roadway driven along next goaf in the exploitation of thick coal seam with large obliquity in deep well and rock burst tendency. The control mechanism of rock burst in the roadway driven along next goaf is revealed in the present work. That is, the danger of rock burst can be removed by changing the stress environment for the energy accumulation of the floor and by reducing the impact on the roadway floor from the strong dynamic pressure. This result can be profitable being used at the design stage of appropriate position of roadway undergoing rock burst tendency in similar conditions. Based on the analysis regarding the control mechanism, this paper presents a novel approach to the prevention of rock burst in roadway floor under the above conditions. That is, the return airway is placed within the goaf of the upper working face that can prevent the rock burst effectively. And in this way, mining without coal pillar in the thick coal seam with large obliquity and large burial depth (over a thousand meters is realized. Practice also proves that the rock burst in the floor of roadway driven along next goaf is controlled and solved.
International Nuclear Information System (INIS)
Lev, S.; Landa, E.; Szlavecz, K.; Casey, R.; Snodgrass, J.
2008-01-01
The impact of human activities on biogeochemical cycles in terrestrial environments is nowhere more apparent than in urban landscapes. Trace metals, collected on roadways and transported by storm water, may contaminate soils and sediments associated with storm water management systems. These systems will accumulate metals and associated sediments may reach toxic levels for terrestrial and aquatic organisms using the retention basins as habitat. The fate and bioavailability of these metals once deposited is poorly understood. Here we present results from a dose-response experiment that examines the application of synchrotron X-ray fluorescence methods (μ-SXRF) to test the hypothesis that earthworms will bio-accumulate Zn in a roadway-dust contaminated soil system providing a potential pathway for roadway contaminants into the terrestrial food web, and that the storage and distribution of Zn will change with the level of exposure reflecting the micronutrient status of Zn. Lumbricus friendi was exposed to Zn-bearing roadway dust amended to a field soil at six target concentrations ranging from background levels (45 mg/kg Zn) to highly contaminated levels (460 mg/kg Zn) designed to replicate the observed concentration range in storm-water retention basin soils. After a 30 day exposure, Zn storage in the intestine is positively correlated with dose and there is a change in the pattern of Zn storage within the intestine. This relationship is only clear when μ-SXRF Zn map data is coupled with a traditional toxicological approach, and suggests that the gut concentration in L. friendi is a better indicator of Zn bioaccumulation and storage than the total body burden.
Hess, George; Peterson, M Nils
2015-01-01
Many global challenges, including obesity, health care costs, and climate change, could be addressed in part by increasing the use of bicycles for transportation. Concern about the safety of bicycling on roadways is frequently cited as a deterrent to increasing bicycle use in the USA. The use of effective signage along roadways might help alleviate these concerns by increasing knowledge about the rights and duties of bicyclists and motorists, ideally reducing crashes. We administered a web-based survey, using Twitter for recruitment, to examine how well three US traffic control devices communicated the message that bicyclists are permitted in the center of the travel lane and do not have to "get out of the way" to allow motorists to pass without changing lanes: "Bicycles May Use Full Lane" and "Share the Road" signage, and Shared Lane Markings on the pavement. Each was compared to an unsigned roadway. We also asked respondents whether it was safe for a bicyclist to occupy the center of the travel lane. "Bicycles May Use Full Lane" signage was the most consistently comprehended device for communicating the message that bicyclists may occupy the travel lane and also increased perceptions of safety. "Share the Road" signage did not increase comprehension or perceptions of safety. Shared Lane Markings fell somewhere between. "Bicycles May Use Full Lane" signage showed notable increases in comprehension among novice bicyclists and private motor vehicle commuters, critical target audiences for efforts to promote bicycling in the USA. Although limited in scope, our survey results are indicative and suggest that Departments of Transportation consider replacing "Share the Road" with "Bicycles May Use Full Lane" signage, possibly combined with Shared Lane Markings, if the intent is to increase awareness of roadway rights and responsibilities. Further evaluation through virtual reality simulations and on-road experiments is merited.
2015-01-01
Many global challenges, including obesity, health care costs, and climate change, could be addressed in part by increasing the use of bicycles for transportation. Concern about the safety of bicycling on roadways is frequently cited as a deterrent to increasing bicycle use in the USA. The use of effective signage along roadways might help alleviate these concerns by increasing knowledge about the rights and duties of bicyclists and motorists, ideally reducing crashes. We administered a web-based survey, using Twitter for recruitment, to examine how well three US traffic control devices communicated the message that bicyclists are permitted in the center of the travel lane and do not have to “get out of the way” to allow motorists to pass without changing lanes: “Bicycles May Use Full Lane” and “Share the Road” signage, and Shared Lane Markings on the pavement. Each was compared to an unsigned roadway. We also asked respondents whether it was safe for a bicyclist to occupy the center of the travel lane. “Bicycles May Use Full Lane” signage was the most consistently comprehended device for communicating the message that bicyclists may occupy the travel lane and also increased perceptions of safety. “Share the Road” signage did not increase comprehension or perceptions of safety. Shared Lane Markings fell somewhere between. “Bicycles May Use Full Lane” signage showed notable increases in comprehension among novice bicyclists and private motor vehicle commuters, critical target audiences for efforts to promote bicycling in the USA. Although limited in scope, our survey results are indicative and suggest that Departments of Transportation consider replacing “Share the Road” with “Bicycles May Use Full Lane” signage, possibly combined with Shared Lane Markings, if the intent is to increase awareness of roadway rights and responsibilities. Further evaluation through virtual reality simulations and on-road experiments is merited. PMID
Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang
2017-01-01
Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic ar...
Directory of Open Access Journals (Sweden)
George Hess
Full Text Available Many global challenges, including obesity, health care costs, and climate change, could be addressed in part by increasing the use of bicycles for transportation. Concern about the safety of bicycling on roadways is frequently cited as a deterrent to increasing bicycle use in the USA. The use of effective signage along roadways might help alleviate these concerns by increasing knowledge about the rights and duties of bicyclists and motorists, ideally reducing crashes. We administered a web-based survey, using Twitter for recruitment, to examine how well three US traffic control devices communicated the message that bicyclists are permitted in the center of the travel lane and do not have to "get out of the way" to allow motorists to pass without changing lanes: "Bicycles May Use Full Lane" and "Share the Road" signage, and Shared Lane Markings on the pavement. Each was compared to an unsigned roadway. We also asked respondents whether it was safe for a bicyclist to occupy the center of the travel lane. "Bicycles May Use Full Lane" signage was the most consistently comprehended device for communicating the message that bicyclists may occupy the travel lane and also increased perceptions of safety. "Share the Road" signage did not increase comprehension or perceptions of safety. Shared Lane Markings fell somewhere between. "Bicycles May Use Full Lane" signage showed notable increases in comprehension among novice bicyclists and private motor vehicle commuters, critical target audiences for efforts to promote bicycling in the USA. Although limited in scope, our survey results are indicative and suggest that Departments of Transportation consider replacing "Share the Road" with "Bicycles May Use Full Lane" signage, possibly combined with Shared Lane Markings, if the intent is to increase awareness of roadway rights and responsibilities. Further evaluation through virtual reality simulations and on-road experiments is merited.
Kornhauser, Alain L.
2012-01-01
Presented is a characterization of travel speed on any roadway segment based on probe vehicle position data. Most of the characterization is based position data obtained from GPS receivers because of their high precision and their increasing availability. Comparison is also made to Qualcomm’s Automatic Satellite Position Reporting (QASPR) system because of its long history (10+ years) of extensive use by the long-haul trucking industry. Described is the use of these data in conjunction with d...
Energy Technology Data Exchange (ETDEWEB)
1977-01-01
The development of a combined heading and ripping system to enable the heading to be advanced while the coal and dirt were taken and discharged separately is discussed. A rotary head ripping machine fitted with cutting picks, dirt stowing machinery and ancillary equipment were developed. Work on the design and testing of powered roadway supports around roadheading machines showed that the problems arising may outweigh any of the possible advantages.
Directory of Open Access Journals (Sweden)
Kohji Kamejima
2007-08-01
Full Text Available A new framework is presented for integrating satellite/avionics sensors with onboard vision to support information intensive maneuvering. Real time bindings of the bird's eye observation and the driver's view via GPS provides \\textit{as-is} basis for perception and decision. Randomness-based roadway pattern model is implemented by fractal coding scheme associating bird's eye and frontal views. The feasibility of the framework with resquirements for vison system is discussed through concept modeling and experimental studies.
Directory of Open Access Journals (Sweden)
Kohji Kamejima
2007-08-01
Full Text Available A new framework is presented for integrating satellite/avionics sensors with onboard vision to support information intensive maneuvering. Real time bindings of the bird's eye observation and the driver's view via GPS provides extit{as-is} basis for perception and decision. Randomness-based roadway pattern model is implemented by fractal coding scheme associating bird's eye and frontal views. The feasibility of the framework with resquirements for vison system is discussed through concept modeling and experimental studies.
Energy Technology Data Exchange (ETDEWEB)
Lev,S.; Landa, E.; Szlavecz, K.; Casey, R.; Snodgrass, J.
2008-01-01
The impact of human activities on biogeochemical cycles in terrestrial environments is nowhere more apparent than in urban landscapes. Trace metals, collected on roadways and transported by storm water, may contaminate soils and sediments associated with storm water management systems. These systems will accumulate metals and associated sediments may reach toxic levels for terrestrial and aquatic organisms using the retention basins as habitat. The fate and bioavailability of these metals once deposited is poorly understood. Here we present results from a dose-response experiment that examines the application of synchrotron X-ray fluorescence methods ({mu}-SXRF) to test the hypothesis that earthworms will bio-accumulate Zn in a roadway-dust contaminated soil system providing a potential pathway for roadway contaminants into the terrestrial food web, and that the storage and distribution of Zn will change with the level of exposure reflecting the micronutrient status of Zn. Lumbricus friendi was exposed to Zn-bearing roadway dust amended to a field soil at six target concentrations ranging from background levels (45 mg/kg Zn) to highly contaminated levels (460 mg/kg Zn) designed to replicate the observed concentration range in storm-water retention basin soils. After a 30 day exposure, Zn storage in the intestine is positively correlated with dose and there is a change in the pattern of Zn storage within the intestine. This relationship is only clear when {mu}-SXRF Zn map data is coupled with a traditional toxicological approach, and suggests that the gut concentration in L. friendi is a better indicator of Zn bioaccumulation and storage than the total body burden.
Generalized geometry and partial supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Triendl, Hagen Mathias
2010-08-15
This thesis consists of two parts. In the first part we use the formalism of (exceptional) generalized geometry to derive the scalar field space of SU(2) x SU(2)-structure compactifications. We show that in contrast to SU(3) x SU(3) structures, there is no dynamical SU(2) x SU(2) structure interpolating between an SU(2) structure and an identity structure. Furthermore, we derive the scalar manifold of the low-energy effective action for consistent Kaluza-Klein truncations as expected from N = 4 supergravity. In the second part we then determine the general conditions for the existence of stable Minkowski and AdS N = 1 vacua in spontaneously broken gauged N = 2 supergravities and construct the general solution under the assumption that two appropriate commuting isometries exist in the hypermultiplet sector. Furthermore, we derive the low-energy effective action below the scale of partial supersymmetry breaking and show that it satisfies the constraints of N = 1 supergravity. We then apply the discussion to special quaternionic-Kaehler geometries which appear in the low-energy limit of SU(3) x SU(3)-structure compactifications and construct Killing vectors with the right properties. Finally we discuss the string theory realizations for these solutions. (orig.)
Generalized geometry and partial supersymmetry breaking
International Nuclear Information System (INIS)
Triendl, Hagen Mathias
2010-08-01
This thesis consists of two parts. In the first part we use the formalism of (exceptional) generalized geometry to derive the scalar field space of SU(2) x SU(2)-structure compactifications. We show that in contrast to SU(3) x SU(3) structures, there is no dynamical SU(2) x SU(2) structure interpolating between an SU(2) structure and an identity structure. Furthermore, we derive the scalar manifold of the low-energy effective action for consistent Kaluza-Klein truncations as expected from N = 4 supergravity. In the second part we then determine the general conditions for the existence of stable Minkowski and AdS N = 1 vacua in spontaneously broken gauged N = 2 supergravities and construct the general solution under the assumption that two appropriate commuting isometries exist in the hypermultiplet sector. Furthermore, we derive the low-energy effective action below the scale of partial supersymmetry breaking and show that it satisfies the constraints of N = 1 supergravity. We then apply the discussion to special quaternionic-Kaehler geometries which appear in the low-energy limit of SU(3) x SU(3)-structure compactifications and construct Killing vectors with the right properties. Finally we discuss the string theory realizations for these solutions. (orig.)
Directory of Open Access Journals (Sweden)
Sugiarto Sugiarto
2015-08-01
Full Text Available The term of capacity is very useful to quantify the ability of transport facilities in terms of carrying traffic. The capacity of the road is an essential ingredient in the planning, design, and operation of roadways. It is desirable for traffic analyst to be able to predict the time and places where congestion will occur and the volumes to be expected. Most of urbanized areas have been experiencing of traffic congestion problems particularly at urban arterial systems. High traffic demand and limited supply of roadways are always the main factors produced traffic congestion. However, there are other sources of local and temporal congestion, such as uncontrolled access point, median opening and on-street parking activities, which are caused a reduction of roadway capacity during peak operations. Those locations could result in reduction of travel speed and road, as known as hidden bottlenecks. This is bottleneck which is without any changes in geometric of the segments. The Indonesian Highway Capacity Manual (IHCM, 1997 is used to assess urban arterial systems till current days. IHCM provides a static method for examining the capacityand does not systematically take into account of bottleneck activities. However, bottleneck activities create interruption smooth traffic flow along arterial streets, which in turns stimulate related problems, such as, excessive air pollution, additional energy consumption and driver’s frustration due to traffic jammed. This condition could happen simultaneously; mostly repetitive and predictable in same peak hour demands. Therefore, this paper carefully summarize on the existing methodologies considering required data, handled data processing and expected output of each proposed of analysis. We further notice that dynamic approach could be more appropriated for analyzing temporal congestion segments (median opening, on street parking, etc.. Method of oblique cumulative plot seems to be more applicable in terms of
A Study on the Fracture Control of Rock Bolts in High Ground Pressure Roadways of Deep Mines
Directory of Open Access Journals (Sweden)
Wen Jinglin
2015-01-01
Full Text Available According to the frequent fractures of rock bolts in high ground pressure roadways of deep mines, this paper analyzes the mechanism of fractures and concludes that high ground pressure and material de-fects are main reasons for the fracture of rock bolts. The basic idea of fracture control of rock bolts in high ground pressure roadways of deep mines is to increase the yield load and the limit load of rock bolt materials and reduce the actual load of rock bolts. There are four ways of controlling rock bolt fracture: increasing the rock bolt diameter, strengthening bolt materials, weakening support rigidity and the implementation of double supporting. With the roadway support of the 2302 working face of a coal mine as the project background, this paper carries out a study on the effect of two schemes, increasing the rock bolt diameter and the double supporting technique through methods of theoretical analysis, numerical simulation and so on. It determines the most reasonable diam-eter of rock bolts and the best delay distance of secondary support. Practices indicate that rock bolt fracture can be effectively controlled through the double supporting technique, which strengthens the roof and two sides through the first supporting technique and strengthens side angles through the secondary supporting technique.
Directory of Open Access Journals (Sweden)
Jianguo Ning
2016-01-01
Full Text Available Artificial explosions are commonly used to prevent rockburst in deep roadways. However, the dissipation of the impact stress wave within the artificial blasting damage zone (ABDZ of the rocks surrounding a deep roadway has not yet been clarified. The surrounding rocks were divided into the elastic zone, blasting damage zone, plastic zone, and anchorage zone in this research. Meanwhile, the ABDZ was divided into the pulverizing area, fractured area, and cracked area from the inside out. Besides, the model of the normal incidence of the impact stress waves in the ABDZ was established; the attenuation coefficient of the amplitude of the impact stress waves was obtained after it passed through the intact rock mass, and ABDZ, to the anchorage zone. In addition, a numerical simulation was used to study the dynamic response of the vertical stress and impact-induced vibration energy in the surrounding rocks. By doing so, the dissipation of the impact stress waves within the ABDZ of the surrounding rocks was revealed. As demonstrated in the field application, the establishment of the ABDZ in the surrounding rocks reduced the effect of the impact-induced vibration energy on the anchorage support system of the roadway.
Emergent Geometry from Entropy and Causality
Engelhardt, Netta
In this thesis, we investigate the connections between the geometry of spacetime and aspects of quantum field theory such as entanglement entropy and causality. This work is motivated by the idea that spacetime geometry is an emergent phenomenon in quantum gravity, and that the physics responsible for this emergence is fundamental to quantum field theory. Part I of this thesis is focused on the interplay between spacetime and entropy, with a special emphasis on entropy due to entanglement. In general spacetimes, there exist locally-defined surfaces sensitive to the geometry that may act as local black hole boundaries or cosmological horizons; these surfaces, known as holographic screens, are argued to have a connection with the second law of thermodynamics. Holographic screens obey an area law, suggestive of an association with entropy; they are also distinguished surfaces from the perspective of the covariant entropy bound, a bound on the total entropy of a slice of the spacetime. This construction is shown to be quite general, and is formulated in both classical and perturbatively quantum theories of gravity. The remainder of Part I uses the Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence to both expand and constrain the connection between entanglement entropy and geometry. The AdS/CFT correspondence posits an equivalence between string theory in the "bulk" with AdS boundary conditions and certain quantum field theories. In the limit where the string theory is simply classical General Relativity, the Ryu-Takayanagi and more generally, the Hubeny-Rangamani-Takayanagi (HRT) formulae provide a way of relating the geometry of surfaces to entanglement entropy. A first-order bulk quantum correction to HRT was derived by Faulkner, Lewkowycz and Maldacena. This formula is generalized to include perturbative quantum corrections in the bulk at any (finite) order. Hurdles to spacetime emergence from entanglement entropy as described by HRT and its quantum
Variable geometry Darrieus wind machine
Pytlinski, J. T.; Serrano, D.
1983-08-01
A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.
Flux compactifications and generalized geometries
International Nuclear Information System (INIS)
Grana, Mariana
2006-01-01
Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry
Flux compactifications and generalized geometries
Energy Technology Data Exchange (ETDEWEB)
Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)
2006-11-07
Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.
Euclidean geometry and its subgeometries
Specht, Edward John; Calkins, Keith G; Rhoads, Donald H
2015-01-01
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...
Guide to Computational Geometry Processing
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François
be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...
Electrodynamics and Spacetime Geometry: Foundations
Cabral, Francisco; Lobo, Francisco S. N.
2017-02-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
Dayside merging and cusp geometry
International Nuclear Information System (INIS)
Crooker, N.U.
1979-01-01
Geometrical considerations are presented to show that dayside magnetic merging when constrained to act only where the fields are antiparallel results in lines of merging that converge at the polar cusps. An important consequence of this geometry is that no accelerated flows are predicted across the dayside magnetopause. Acceleration owing to merging acts in opposition to the magnetosheath flow at the merging point and produces the variably directed, slower-than-magnetosheath flows observed in the entry layer. Another consequence of the merging geometry is that much of the time closed field lines constitute the subsolar region of the magnetopause. The manner in which the polar cap convection patterns predicted by the proposed geometry change as the interplanetary field is rotated through 360 0 provides a unifying description of how the observed single circular vortex and the crescent-shaped double vortex patterns mutually evolve under the influence of a single operating principle
DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS
International Nuclear Information System (INIS)
BERG, J.S.; JOHNSTONE, C.; SUMMERS, D.
2001-01-01
Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective
KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI
Directory of Open Access Journals (Sweden)
Irkham Ulil Albab
2014-10-01
Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews
Graphical debugging of combinational geometry
International Nuclear Information System (INIS)
Burns, T.J.; Smith, M.S.
1992-01-01
A graphical debugger for combinatorial geometry being developed at Oak Ridge National Laboratory is described. The prototype debugger consists of two parts: a FORTRAN-based ''view'' generator and a Microsoft Windows application for displaying the geometry. Options and features of both modules are discussed. Examples illustrating the various options available are presented. The potential for utilizing the images produced using the debugger as a visualization tool for the output of the radiation transport codes is discussed as is the future direction of the development
Lectures on Algebraic Geometry I
Harder, Gunter
2012-01-01
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho
Combinatorial geometry in the plane
Hadwiger, Hugo; Klee, Victor
2014-01-01
Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa
Modern differential geometry for physicists
Isham, C J
1989-01-01
These notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by the first-year theoretical physics PhD students, or by students attending the one-year MSc course "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen with an eye to the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields
Comparison theorems in Riemannian geometry
Cheeger, Jeff
2008-01-01
The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry. The first five chapters are preparatory in nature. They begin with a very concise introduction to Riemannian geometry, followed by an exposition of Toponogov's theorem-the first such treatment in a book in English. Next comes a detailed presentation of homogeneous spaces in which the main goal is to find formulas for their curvature. A quick chapter of Morse theory is followed by one on the injectivity radius. Chapters 6-9 deal with many of the most re
Geometry, topology, and string theory
Energy Technology Data Exchange (ETDEWEB)
Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Stochastic geometry and its applications
Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph
2013-01-01
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a
Introduction to topology and geometry
Stahl, Saul
2014-01-01
An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition ". . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained." -CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparallele
Algebraic geometry and theta functions
Coble, Arthur B
1929-01-01
This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and
Geometry, topology, and string theory
International Nuclear Information System (INIS)
Varadarajan, Uday
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated
An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material
Energy Technology Data Exchange (ETDEWEB)
Gürü, Metin, E-mail: mguru@gazi.edu.tr [Gazi University, Eng. Fac., Chem. Eng. Depart., 06570 Maltepe-Ankara (Turkey); Çubuk, M. Kürşat; Arslan, Deniz; Farzanian, S. Ali [Gazi University, Eng. Fac., Civil Eng. Depart., 06570 Maltepe-Ankara (Turkey); Bilici, İbrahim [Hitit University, Eng. Fac., Chem. Eng. Depart., 19100 Çorum (Turkey)
2014-08-30
Graphical abstract: - Highlights: • We derived two novel additive materials from PET bottle waste: TLPP and VPP. • We used them to modify the base asphalt separately. • The additives improved both the asphalt and the asphalt mixture performance. • TLPP, VPP offer a beneficial way about disposal of ecologically hazardous PET waste. - Abstract: This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material.
An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material.
Gürü, Metin; Çubuk, M Kürşat; Arslan, Deniz; Farzanian, S Ali; Bilici, İbrahim
2014-08-30
This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material. Copyright © 2014 Elsevier B.V. All rights reserved.
A Mobile Acoustic Subsurface Sensing (MASS) system for rapid roadway assessment.
Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J Gregory; Wang, Ming L
2013-05-08
Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/ processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test.
An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material
International Nuclear Information System (INIS)
Gürü, Metin; Çubuk, M. Kürşat; Arslan, Deniz; Farzanian, S. Ali; Bilici, İbrahim
2014-01-01
Graphical abstract: - Highlights: • We derived two novel additive materials from PET bottle waste: TLPP and VPP. • We used them to modify the base asphalt separately. • The additives improved both the asphalt and the asphalt mixture performance. • TLPP, VPP offer a beneficial way about disposal of ecologically hazardous PET waste. - Abstract: This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material
A Mobile Acoustic Subsurface Sensing (MASS System for Rapid Roadway Assessment
Directory of Open Access Journals (Sweden)
Ming L. Wang
2013-05-01
Full Text Available Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/ processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test.
Sizing Dynamic Wireless Charging for Light-Duty Electric Vehicles in Roadway Applications
Energy Technology Data Exchange (ETDEWEB)
Foote, Andrew P [ORNL; Ozpineci, Burak [ORNL; Chinthavali, Madhu Sudhan [ORNL; Li, Jan-Mou [ORNL
2016-01-01
Dynamic wireless charging is a possible cure for the range limitations seen in electric vehicles (EVs) once implemented in highways or city streets. The contribution of this paper is the use of experimental data to show that the expected energy gain from a dynamic wireless power transfer (WPT) system is largely a function of average speed, which allows the power level and number of coils per mile of a dynamic WPT system to be sized for the sustained operation of an EV. First, data from dynamometer testing is used to determine the instantaneous energy requirements of a light-duty EV. Then, experimental data is applied to determine the theoretical energy gained by passing over a coil as a function of velocity and power level. Related simulations are performed to explore possible methods of placing WPT coils within roadways with comparisons to the constant velocity case. Analyses with these cases demonstrate what system ratings are needed to meet the energy requirements of the EV. The simulations are also used to determine onboard energy storage requirements for each driving cycle.
Energy Technology Data Exchange (ETDEWEB)
Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.
2015-06-05
Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.
Flow of viscoplastic fluids in eccentric annular geometries
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1992-01-01
A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...
The Idea of Order at Geometry Class.
Rishel, Thomas
The idea of order in geometry is explored using the experience of assignments given to undergraduates in a college geometry course "From Space to Geometry." Discussed are the definition of geometry, and earth measurement using architecture, art, and common experience. This discussion concludes with a consideration of the question of whether…
Teaching Spatial Geometry in a Virtual World
DEFF Research Database (Denmark)
Förster, Klaus-Tycho
2017-01-01
Spatial geometry is one of the fundamental mathematical building blocks of any engineering education. However, it is overshadowed by planar geometry in the curriculum between playful early primary education and later analytical geometry, leaving a multi-year gap where spatial geometry is absent...
Analogical Reasoning in Geometry Education
Magdas, Ioana
2015-01-01
The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…
Normal forms in Poisson geometry
Marcut, I.T.
2013-01-01
The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric
Exploring Bundling Theory with Geometry
Eckalbar, John C.
2006-01-01
The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…
Stochastic Modelling of River Geometry
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Schaarup-Jensen, K.
1996-01-01
Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....
Matter in toy dynamical geometries
Konopka, T.J.
2009-01-01
One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect
Ca??adas, Mar??a C.; Molina, Marta; Gallardo, Sandra; Mart??nez-Santaolalla, Manuel J.; Pe??as, Mar??a
2010-01-01
In this work we present an activity for High School students in which various mathematical concepts of plane and spatial geometry are involved. The final objective of the proposed tasks is constructing a particular polyhedron, the cube, by using a modality of origami called modular origami.
Granular flows in constrained geometries
Murthy, Tejas; Viswanathan, Koushik
Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.
Learners engaging with transformation geometry
African Journals Online (AJOL)
participants engaged in investigative semi-structured interviews with the resear- chers. ... Keywords: analysis; conversions; transformation geometry; transformations; treatments .... semiotic systems of representation is not only to designate mathematical objects or to com- municate but also to ... Research design. We believe ...
Multivariable calculus and differential geometry
Walschap, Gerard
2015-01-01
This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
College geometry a unified development
Kay, David C
2011-01-01
""The book is a comprehensive textbook on basic geometry. … Key features of the book include numerous figures and many problems, more than half of which come with hints or even complete solutions. Frequent historical comments add to making the reading a pleasant one.""-Michael Joswig, Zentralblatt MATH 1273
Mahaffey, Michael L.
One of a series of experimental units for children at the preschool level, this booklet deals with geometric concepts. A unit on volume and a unit on linear measurement are covered; for each unit a discussion of mathematical objectives, a list of materials needed, and a sequence of learning activities are provided. Directions are specified for the…
DEFF Research Database (Denmark)
Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...
Perez, Laura; Lurmann, Fred; Wilson, John; Pastor, Manuel; Brandt, Sylvia J.; Künzli, Nino
2012-01-01
Background: The emerging consensus that exposure to near-roadway traffic-related pollution causes asthma has implications for compact urban development policies designed to reduce driving and greenhouse gases. Objectives: We estimated the current burden of childhood asthma-related disease attributable to near-roadway and regional air pollution in Los Angeles County (LAC) and the potential health impact of regional pollution reduction associated with changes in population along major traffic corridors. Methods: The burden of asthma attributable to the dual effects of near-roadway and regional air pollution was estimated, using nitrogen dioxide and ozone as markers of urban combustion-related and secondary oxidant pollution, respectively. We also estimated the impact of alternative scenarios that assumed a 20% reduction in regional pollution in combination with a 3.6% reduction or 3.6% increase in the proportion of the total population living near major roads, a proxy for near-roadway exposure. Results: We estimated that 27,100 cases of childhood asthma (8% of total) in LAC were at least partly attributable to pollution associated with residential location within 75 m of a major road. As a result, a substantial proportion of asthma-related morbidity is a consequence of near-roadway pollution, even if symptoms are triggered by other factors. Benefits resulting from a 20% regional pollution reduction varied markedly depending on the associated change in near-roadway proximity. Conclusions: Our findings suggest that there are large and previously unappreciated public health consequences of air pollution in LAC and probably in other metropolitan areas with dense traffic corridors. To maximize health benefits, compact urban development strategies should be coupled with policies to reduce near-roadway pollution exposure. PMID:23008270
Discrete differential geometry. Consistency as integrability
Bobenko, Alexander I.; Suris, Yuri B.
2005-01-01
A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...
Numerically robust geometry engine for compound solid geometries
International Nuclear Information System (INIS)
Vlachoudis, V.; Sinuela-Pastor, D.
2013-01-01
Monte Carlo programs heavily rely on a fast and numerically robust solid geometry engines. However the success of solid modeling, depends on facilities for specifying and editing parameterized models through a user-friendly graphical front-end. Such a user interface has to be fast enough in order to be interactive for 2D and/or 3D displays, but at the same time numerically robust in order to display possible modeling errors at real time that could be critical for the simulation. The graphical user interface Flair for FLUKA currently employs such an engine where special emphasis has been given on being fast and numerically robust. The numerically robustness is achieved by a novel method of estimating the floating precision of the operations, which dynamically adapts all the decision operations accordingly. Moreover a predictive caching mechanism is ensuring that logical errors in the geometry description are found online, without compromising the processing time by checking all regions. (authors)
Utilizing 3D building and 3D cadastre geometries for better valuation of existing real estate
Isikdag, U.; Horhammer, M.; Zlatanova, S.; Kathmann, R.; Van Oosterom, P.J.M.
2015-01-01
Valuation of the properties is known as real estate appraisal, property valuation or land valuation and is a process which focuses on determining the value of a building or a land lot. The valuation of each real estate is required prior to any transaction as every property is unique in terms of
Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks
Energy Technology Data Exchange (ETDEWEB)
Franzese, Oscar [ORNL; Davidson, Diane [ORNL
2011-11-01
In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel
Using GPS telemetry to determine roadways most susceptible to deer-vehicle collisions
Kramer, David W.; Prebyl, Thomas J.; Stickles, James H.; Osborn, David A.; Irwin, Brian J.; Nibbelink, Nathan P.; Warren, Robert J.; Miller, Karl V.
2016-01-01
More than 1 million wildlife-vehicle collisions occur annually in the United States. The majority of these accidents involve white-tailed deer (Odocoileus virginianus) and result in >US $4.6 billion in damage and >200 human fatalities. Prior research has used collision locations to assess sitespecific as well as landscape features that contribute to risk of deer-vehicle collisions. As an alternative approach, we calculated road-crossing locations from 25 GPS-instrumented white-tailed deer near Madison, Georgia (n=154,131 hourly locations). We identified crossing locations by creating movement paths between subsequent GPS points and then intersecting the paths with road locations. Using AIC model selection, we determined whether 10 local and landscape variables were successful at identifying areas where higher frequencies of deer crossings were likely to occur. Our findings indicate that traffic volume, distance to riparian areas, and the amount of forested area influenced the frequency of road crossings. Roadways that were predominately located in wooded landscapes and 200–300 m from riparian areas were crossed frequently. Additionally, we found that areas of low traffic volume (e.g., county roads) had the highest frequencies of deer crossings. Analyses utilizing only records of deer-vehicle collision locations cannot separate the relative contribution of deer crossing rates and traffic volume. Increased frequency of road crossings by deer in low-traffic, forested areas may lead to a greater risk of deer-vehicle collision than suggested by evaluations of deer-vehicle collision frequency alone.
Energy Technology Data Exchange (ETDEWEB)
A. Rodriguez; M. Schmid; T. Winkler (and others) [Asociacion para la Investigacion y el Desarrollo Industrial de los Recursos Naturales, Leganes (Spain)
2009-07-01
The main goal of the IAMTECH project was increasing the efficiency of road-heading by applying advanced information, automation and maintenance technologies. Some of its results will allow for increasing the availability of the machinery through the decrease of both programmed maintenance time and medium time to repair. Other results are related to the adoption of new types (in coal mining) of support considered promising from a productivity increase perspective, such as concrete spraying. Research topics addressed in the project could be classified roughly in two groups: horizontal (underlying common technologies) and vertical (related to the actual implementation of devices, software and systems). Among the results for horizontal activities, those that deserve special mention are the development of an Atex 3D laser scanner, Atex WLAN (WiFi) access points, cameras and PDA, as well as methods for storing and representing in 3D machinery components, subassemblies and complete machines. Amid results of vertical activities is the implementation of a central maintenance control mining machinery is concentrated. Engineers in charge of CMCR have online access to all machinery-related information, including direct access to manufacturers' databases. Images, voice and data flowing from the underground, and diagrams and advice flowing from the surface are transmitted and displayed using the technologies developed during horizontal activities. Other important results are the development of methods for assessing the quality of execution of roadway support when using sprayed concrete for this purpose, also using technologies (such as laser scanning) developed within the horizontal activities. 10 refs., 162 figs., 7 tabs.
Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar
2015-03-01
There are more than 4 million miles of roads and 600,000 bridges in the United States alone. On-going investments are required to maintain the physical and operational quality of these assets to ensure public's safety and prosperity of the economy. Planning efficient maintenance and repair (M&R) operations must be armed with a meticulous pavement inspection method that is non-disruptive, is affordable and requires minimum manual effort. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project developed a technology able to cost- effectively monitor the condition of roadway systems to plan for the right repairs, in the right place, at the right time. VOTERS technology consists of an affordable, lightweight package of multi-modal sensor systems including acoustic, optical, electromagnetic, and GPS sensors. Vehicles outfitted with this technology would be capable of collecting information on a variety of pavement-related characteristics at both surface and subsurface levels as they are driven. By correlating the sensors' outputs with the positioning data collected in tight time synchronization, a GIS-based control center attaches a spatial component to all the sensors' measurements and delivers multiple ratings of the pavement every meter. These spatially indexed ratings are then leveraged by VOTERS decision making modules to plan the optimum M&R operations and predict the future budget needs. In 2014, VOTERS inspection results were validated by comparing them to the outputs of recent professionally done condition surveys of a local engineering firm for 300 miles of Massachusetts roads. Success of the VOTERS project portrays rapid, intelligent, and comprehensive evaluation of tomorrow's transportation infrastructure to increase public's safety, vitalize the economy, and deter catastrophic failures.
Rural roadway safety perceptions among rural teen drivers living in and outside of towns.
Ramirez, Marizen; Roth, Lisa; Young, Tracy; Peek-Asa, Corinne
2013-01-01
To compare perceptions about rural road and general driving behaviors between teens who live in- and out-of-town from rural communities in Iowa. A cross-sectional survey was conducted with 160 teens anticipating their Intermediate License within 3 months upon enrollment into this study. Self-administered surveys were used to collect demographics and driving exposures (eg, frequency of driving, age when first drove unsupervised). Two Likert scales were included to measure agreement with safe driving behaviors on rural roads and general safe driving behaviors (eg, speeding, seat belt use). T-tests were calculated comparing mean composite scores between in- and out-of-town teens, and between mean rural road and general driving safety attitude scores. A linear regression multivariable model was constructed to identify predictors of the rural road score. While the majority of teens endorsed rural road and general safe driving behaviors, up to 40% did not. Thirty-two percent did not believe the dangers of animals on rural roads, and 40% disagreed that exceeding the speed limit is dangerous. In-town teens were less safety conscious about rural road hazards with a significantly lower mean composite score (4.4) than out-of-town teens (4.6); mean scores for general driving behaviors were similar. Living out-of-town and owning one's own car were significant predictors of increased rural road safety scores. Rural, in-town teens have poorer safety attitudes about rural roadway hazards compared with out-of-town teens. Interventions that involve education, parental supervision, and practice on rural roads are critical for preventing teen crashes on rural roads. No claim to original US government works.
Effect of Stresses and Strains of Roadway Surrounding Rocks on Borehole Airtightness
Directory of Open Access Journals (Sweden)
WU Wei
2016-02-01
Full Text Available At present, many high gas and outburst mines have poor gas drainage effects. An important reason influencing the gas drainage effect is a poor hole-sealing effect. Most studies on gas drainage borehole sealing focus on local and foreign borehole sealing methods, borehole sealing equipment, and borehole sealing materials. Numerical simulations of initial drilling sealing depth are insufficient because studies on this subject are few. However, when the initial sealing depth of the borehole is not chosen reasonably, air can enter the gas drainage drill hole through the circumferential crack of roadway surrounding rocks under the influence of suction pressure of the drainage system. This phenomenon ultimately affects the hole-sealing effect. To improve the drilling hole sealing of gas drainage boring, we deduced the expression formulas of the crushing zone, plastic zone, and elastic zone around the coal-seam floor stone drift and conducted a stress–strain analysis of the coal-seam floor stone drift of the 2145 working surfaces of the Sixth Coal Mine of Hebi Coal Mine Group Company by using theoretical analysis, numerical simulation, and on-scene verification. Finally, we obtain the initial drilling sealing depth, which is a main contribution of this study. The results prove the following. The performed hole-sealing process with an initial drilling sealing depth of 8 m has a gas drainage efficiency of 55%. Compared with the previous 6.8 m initial drilling sealing depth with a gas drainage efficiency of less than 30%, which was adopted by the mine, the initial sealing depth of 8 m chosen in the numerical simulation is reasonable and conforms to the actual situation on the spot. Therefore, the initial drilling sealing depth chosen in the numerical simulation will produce practical and effective guidance to study the field hole-sealing depth.
Code subspaces for LLM geometries
Berenstein, David; Miller, Alexandra
2018-03-01
We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.
Euclidean distance geometry an introduction
Liberti, Leo
2017-01-01
This textbook, the first of its kind, presents the fundamentals of distance geometry: theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several. Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.
Fractal geometry and computer graphics
Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele
1992-01-01
Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...
The geometry of celestial mechanics
Geiges, Hansjörg
2016-01-01
Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.
Differential geometry and mathematical physics
Rudolph, Gerd
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
Groups and Geometries : Siena Conference
Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria
1998-01-01
On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...
Classical geometry from the quantum Liouville theory
Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin
2005-09-01
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.
Classical geometry from the quantum Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl
2005-09-26
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.
Classical geometry from the quantum Liouville theory
International Nuclear Information System (INIS)
Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin
2005-01-01
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere
Algorithmic algebraic geometry and flux vacua
International Nuclear Information System (INIS)
Gray, James; He Yanghui; Lukas, Andre
2006-01-01
We develop a new and efficient method to systematically analyse four dimensional effective supergravities which descend from flux compactifications. The issue of finding vacua of such systems, both supersymmetric and non-supersymmetric, is mapped into a problem in computational algebraic geometry. Using recent developments in computer algebra, the problem can then be rapidly dealt with in a completely algorithmic fashion. Two main results are (1) a procedure for calculating constraints which the flux parameters must satisfy in these models if any given type of vacuum is to exist; (2) a stepwise process for finding all of the isolated vacua of such systems and their physical properties. We illustrate our discussion with several concrete examples, some of which have eluded conventional methods so far
Canonical quantization of static spherically symmetric geometries
International Nuclear Information System (INIS)
Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A
2013-01-01
The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''
Needle decompositions in Riemannian geometry
Klartag, Bo'az
2017-01-01
The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.
Systematics of IIB spinorial geometry
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2005-01-01
We reduce the classification of all supersymmetric backgrounds of IIB supergravity to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This extends the work of [hep-th/0503046] to IIB supergravity. We give the expressions of the Killing spinor equations on all five types of spinors. In this way, the Killing spinor equations become a linear system for the fluxes, geometry and spacetime derivatives of...
Geometry Dependence of Stellarator Turbulence
International Nuclear Information System (INIS)
Mynick, H.E.; Xanthopoulos, P.; Boozer, A.H.
2009-01-01
Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes
Turtle geometry the Python way
Battle, S.
2014-01-01
An introduction to coding using Python’s on-screen ‘turtle’ that can be commanded with a few simple instructions including forward, backward, left and right. The turtle leaves a trace that can be used to draw geometric figures. This workshop is aimed at beginners of all ages. The aim is to learn a smattering of programming and a little bit of geometry in a fun way.
Topics in modern differential geometry
Verstraelen, Leopold
2017-01-01
A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.
Computational geometry for reactor applications
International Nuclear Information System (INIS)
Brown, F.B.; Bischoff, F.G.
1988-01-01
Monte Carlo codes for simulating particle transport involve three basic computational sections: a geometry package for locating particles and computing distances to regional boundaries, a physics package for analyzing interactions between particles and problem materials, and an editing package for determining event statistics and overall results. This paper describes the computational geometry methods in RACER, a vectorized Monte Carlo code used for reactor physics analysis, so that comparisons may be made with techniques used in other codes. The principal applications for RACER are eigenvalue calculations and power distributions associated with reactor core physics analysis. Successive batches of neutrons are run until convergence and acceptable confidence intervals are obtained, with typical problems involving >10 6 histories. As such, the development of computational geometry methods has emphasized two basic needs: a flexible but compact geometric representation that permits accurate modeling of reactor core details and efficient geometric computation to permit very large numbers of histories to be run. The current geometric capabilities meet these needs effectively, supporting a variety of very large and demanding applications
Number theory III Diophantine geometry
1991-01-01
From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
Donaldson invariants in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)
Aspects of differential geometry II
Gilkey, Peter
2015-01-01
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
International Nuclear Information System (INIS)
Chi, Y; Tian, Z; Jiang, S; Jia, X
2015-01-01
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
Energy Technology Data Exchange (ETDEWEB)
Chi, Y; Tian, Z; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)
2015-06-15
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged
Algebraic Geometry and Number Theory Summer School
Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk
2017-01-01
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Geometry success in 20 minutes a day
LLC, LearningExpress
2014-01-01
Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr
Kuhns, H.; Etyemezian, V.; Landwehr, D.; MacDougall, C.; Pitchford, M.; Green, M.
PM 10 and PM 2.5 emissions from roadways are currently estimated using the silt loading on the road surface as a surrogate for the emissions potential of road dust. While the United States Environmental Protection Agency prescribes this method in AP-42, there is considerable cost associated with silt loading measurements; it is feasible to sample only a small portion of a roadway network. A new approach for measuring the concentration of suspendable PM 10 above road surfaces has been developed to obtain a more spatially representative estimate of a road's potential to emit dust. The Testing Re-entrained Aerosols Kinetic Emissions from Roads (TRAKER) system uses real-time aerosol sensors mounted on a vehicle to measure the concentration of dust suspended from the road while the vehicle is in motion. When coupled with a Global Positioning System (GPS) instrument, TRAKER can be used to efficiently survey the changes in suspendable particles due to varying road conditions over a large spatial domain. In a recent study on paved roads in Las Vegas, the TRAKER system was compared with collocated silt loading measurements. The TRAKER system was also used to survey the relative amounts of suspendable road dust on approximately 300 miles of paved roads. The system provides a unique perspective on road dust sources and their spatial distribution. Results of this study indicated that the difference of the PM 10 concentrations measured behind the tire and on the hood is exponentially related to vehicle speed. This was an interesting finding because current AP-42 road dust emissions estimation methods do not include vehicle speed as a factor in the emissions calculations. The experiment also demonstrated that the distribution of suspendable material on roadways is highly variable and that a large number of samples are needed to represent road dust emissions potential on an urban scale for a variety of road and activity conditions.
Islam, Samantha; Brown, Joshua
2017-11-01
The research described in this paper explored the factors contributing to the injury severity resulting from the motorcycle at-fault accidents in rural and urban areas in Alabama. Given the occurrence of a motorcycle at-fault crash, random parameter logit models of injury severity (with possible outcomes of fatal, major, minor, and possible or no injury) were estimated. The estimated models identified a variety of statistically significant factors influencing the injury severities resulting from motorcycle at-fault crashes. According to these models, some variables were found to be significant only in one model (rural or urban) but not in the other one. For example, variables such as clear weather, young motorcyclists, and roadway without light were found significant only in the rural model. On the other hand, variables such as older female motorcyclists, horizontal curve and at intersection were found significant only in the urban model. In addition, some variables (such as, motorcyclists under influence of alcohol, non-usage of helmet, high speed roadways, etc.) were found significant in both models. Also, estimation findings showed that two parameters (clear weather and roadway without light) in the rural model and one parameter (on weekend) in the urban model could be modeled as random parameters indicating their varying influences on the injury severity due to unobserved effects. Based on the results obtained, this paper discusses the effects of different variables on injury severities resulting from rural and urban motorcycle at-fault crashes and their possible explanations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Serpa, C M; Gomez, N D [Instituto Tecnologico Metropolitano Institucion Universitaria (ITM), Medellin A. A. 54954 (Colombia); Velez, F J, E-mail: claudiaserpa@itm.edu.co [Universidad EAFIT, Medellin (Colombia)
2011-01-01
This work shows a non-invasive method for micro-deformation measurements on concrete structures using Bragg grating sensors in optical fibers adhered to the surface. We present the measurements on roadway slabs under a load of 10 kN, and we find an approximated ratio of 2:1 between the deformation registered by the sensors and the values from a computational simulation with the finite element method. We propose the use of these sensors for structural monitoring of the slabs and this installation shape for avoiding bends that can damage the edges in the optical fiber in embebed sensors in vertical shape.
International Nuclear Information System (INIS)
Brogan, J.D.; Cashwell, J.W.
1992-01-01
This paper presents an overview of techniques for merging highway accident record and roadway inventory files and employing the combined data set to identify spots or sections on highway facilities in urban and suburban areas with unusually high large truck accident rates. A statistical technique, the rate/quality control method, is used to calculate a critical rate for each location of interest. This critical rate may then be compared to the location's actual accident rate to identify locations for further study. Model enhancements and modifications are described to enable the technique to be employed in the evaluation of routing alternatives for the transport of radioactive material
Network geometry with flavor: From complexity to quantum geometry
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
Effectiveness of Discovery Learning-Based Transformation Geometry Module
Febriana, R.; Haryono, Y.; Yusri, R.
2017-09-01
Development of transformation geometry module is conducted because the students got difficulties to understand the existing book. The purpose of the research was to find out the effectiveness of discovery learning-based transformation geometry module toward student’s activity. Model of the development was Plomp model consisting preliminary research, prototyping phase and assessment phase. The research was focused on assessment phase where it was to observe the designed product effectiveness. The instrument was observation sheet. The observed activities were visual activities, oral activities, listening activities, mental activities, emotional activities and motor activities. Based on the result of the research, it is found that visual activities, learning activities, writing activities, the student’s activity is in the criteria very effective. It can be concluded that the use of discovery learning-based transformation geometry module use can increase the positive student’s activity and decrease the negative activity.
Formalization and Implementation of Algebraic Methods in Geometry
Directory of Open Access Journals (Sweden)
Filip Marić
2012-02-01
Full Text Available We describe our ongoing project of formalization of algebraic methods for geometry theorem proving (Wu's method and the Groebner bases method, their implementation and integration in educational tools. The project includes formal verification of the algebraic methods within Isabelle/HOL proof assistant and development of a new, open-source Java implementation of the algebraic methods. The project should fill-in some gaps still existing in this area (e.g., the lack of formal links between algebraic methods and synthetic geometry and the lack of self-contained implementations of algebraic methods suitable for integration with dynamic geometry tools and should enable new applications of theorem proving in education.
A Whirlwind Tour of Computational Geometry.
Graham, Ron; Yao, Frances
1990-01-01
Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)
Optimizing solar-cell grid geometry
Crossley, A. P.
1969-01-01
Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.
International Nuclear Information System (INIS)
Gervais, J.L.
1993-01-01
By analyzing the extrinsic geometry of two dimensional surfaces chirally embedded in C P n (the C P n W-surface), we give exact treatments in various aspects of the classical W-geometry in the conformal gauge: First, the basis of tangent and normal vectors are defined at regular points of the surface, such that their infinitesimal displacements are given by connections which coincide with the vector potentials of the (conformal) A n -Toda Lax pair. Since the latter is known to be intrinsically related with the W symmetries, this gives the geometrical meaning of the A n W-Algebra. Second, W-surfaces are put in one-to-one correspondence with solutions of the conformally-reduced WZNW model, which is such that the Toda fields give the Cartan part in the Gauss decomposition of its solutions. Third, the additional variables of the Toda hierarchy are used as coordinates of C P n . This allows us to show that W-transformations may be extended as particular diffeomorphisms of this target-space. Higher-dimensional generalizations of the WZNW equations are derived and related with the Zakharov-Shabat equations of the Toda hierarchy. Fourth, singular points are studied from a global viewpoint, using our earlier observation that W-surfaces may be regarded as instantons. The global indices of the W-geometry, which are written in terms of the Toda fields, are shown to be the instanton numbers for associated mappings of W-surfaces into the Grassmannians. The relation with the singularities of W-surface is derived by combining the Toda equations with the Gauss-Bonnet theorem. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Trabelsi, A.
2005-07-01
validity strategy a flexible fuzzy structure has been developed with the option of switching off several sensors while still using the same fuzzy block. The environmental observation leads to detection probabilities of ice, snow and water on the road. From the gathered information of the environmental observation, the slippery road detection and the ABS and ESP control operating, it is possible to output information about the actual friction value. Information about roadways with a high vertical excitation as well as road slope have to be detected and considered. The environmental block is able to detect most typical road state situations due to partly redundant, partly complementary sensor information. (orig.) (orig.)
Variations in the OM/OC ratio of urban organic aerosol next to a major roadway.
Brown, Steven G; Lee, Taehyoung; Roberts, Paul T; Collett, Jeffrey L
2013-12-01
Understanding the organic matter/organic carbon (OM/OC) ratio in ambient particulate matter (PM) is critical to achieve mass closure in routine PM measurements, to assess the sources of and the degree of chemical processing organic aerosol particles have undergone, and to relate ambient pollutant concentrations to health effects. Of particular interest is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal gradients in source emissions are common. We provide results of near-roadway high-time-resolution PM1 OM concentration and OM/OC ratio observations during January 2008 at Fyfe Elementary School in Las Vegas, NV, 18 m from the U.S. 95 freeway soundwall, measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The average OM/OC ratio was 1.54 (+/- 0.20 standard deviation), typical of environments with a low amount of secondary aerosol formation. The 2-min average OM/OC ratios varied between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73. The ratios were highest during periods of low OM concentrations and generally low during periods of high OM concentrations. OM/OC ratios were low (1.52 +/- 0.14, on average) during the morning rush hour (average OM = 2.4 microg/m3), when vehicular emissions dominate this near-road measurement site. The ratios were slightly lower (1.46 +/- 0.10) in the evening (average OM = 6.3 microg/m3), when a combination of vehicular and fresh residential biomass burning emissions was typically present during times with temperature inversions. The hourly averaged OM/OC ratio peaked at 1.66 at midday. OM concentrations were similar regardless of whether the monitoring site was downwind or upwind of the adjacent freeway throughout the day, though they were higher during stagnant conditions (wind speed < 0.5 m/sec). The OM/OC ratio generally varied more with time of day than with wind direction and speed.
Stochastic geometry for image analysis
Descombes, Xavier
2013-01-01
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Magnetoelectrostatic thruster physical geometry tests
Ramsey, W. D.
1981-01-01
Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.
The geometry of special relativity
International Nuclear Information System (INIS)
Parizet, Jean
2008-01-01
This book for students in mathematics or physics shows the interest of geometry to understand special relativity as a consequence of invariance of Maxwell equations and of constancy of the speed of light. Space-time is actually provided with a geometrical structure and a physical interpretation: at each observer are associated his own time and his own physical space in which occur events he is concerned with. This leads to a natural approach to special relativity. The Lorentz group and its algebra are then studied by using matrices and the Pauli algebra. Quaternions are also addressed
Moduli spaces in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
This volume of the new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics contains the lecture notes of the School on Algebraic Geometry which took place at the Abdus Salam International Centre for Theoretical Physics from 26 July to 13 August 1999. The school consisted of 2 weeks of lecture courses and one week of conference. The topic of the school was moduli spaces. More specifically the lectures were divided into three subtopics: principal bundles on Riemann surfaces, moduli spaces of vector bundles and sheaves on projective varieties, and moduli spaces of curves
Porous media geometry and transports
Adler, Pierre
1992-01-01
The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr
Geometry of physical dispersion relations
International Nuclear Information System (INIS)
Raetzel, Dennis; Rivera, Sergio; Schuller, Frederic P.
2011-01-01
To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.
Projective geometry and projective metrics
Busemann, Herbert
2005-01-01
The basic results and methods of projective and non-Euclidean geometry are indispensable for the geometer, and this book--different in content, methods, and point of view from traditional texts--attempts to emphasize that fact. Results of special theorems are discussed in detail only when they are needed to develop a feeling for the subject or when they illustrate a general method. On the other hand, an unusual amount of space is devoted to the discussion of the fundamental concepts of distance, motion, area, and perpendicularity.Topics include the projective plane, polarities and conic sectio
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
Geometry of supersymmetric gauge theories
International Nuclear Information System (INIS)
Gieres, F.
1988-01-01
This monograph gives a detailed and pedagogical account of the geometry of rigid superspace and supersymmetric Yang-Mills theories. While the core of the text is concerned with the classical theory, the quantization and anomaly problem are briefly discussed following a comprehensive introduction to BRS differential algebras and their field theoretical applications. Among the treated topics are invariant forms and vector fields on superspace, the matrix-representation of the super-Poincare group, invariant connections on reductive homogeneous spaces and the supermetric approach. Various aspects of the subject are discussed for the first time in textbook and are consistently presented in a unified geometric formalism
Clustering in Hilbert simplex geometry
Nielsen, Frank
2017-04-03
Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.
Trends and developments in computational geometry
Berg, de M.
1997-01-01
This paper discusses some trends and achievements in computational geometry during the past five years, with emphasis on problems related to computer graphics. Furthermore, a direction of research in computational geometry is discussed that could help in bringing the fields of computational geometry
Global affine differential geometry of hypersurfaces
Li, An-Min; Zhao, Guosong; Hu, Zejun
2015-01-01
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.
"WGL," a Web Laboratory for Geometry
Quaresma, Pedro; Santos, Vanda; Maric, Milena
2018-01-01
The role of information and communication technologies (ICT) in education is nowadays well recognised. The "Web Geometry Laboratory," is an e-learning, collaborative and adaptive, Web environment for geometry, integrating a well known dynamic geometry system. In a collaborative session, teachers and students, engaged in solving…
Empirical intrinsic geometry for nonlinear modeling and time series filtering.
Talmon, Ronen; Coifman, Ronald R
2013-07-30
In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.
Directory of Open Access Journals (Sweden)
Renshu Yang
2017-10-01
Full Text Available There is high demand for roadway support in coal mines for the swelling soft rocks. As high strength steel sets can be taken as an effective alternative to control large deformation in this type of rocks, based on an original set, three new sets, including a floor beam set, a roof and floor beams set, and a roof and floor beams and braces set, are proposed in this research. In order to examine the strengths of new sets, four scaled sets of one original set, and three new sets, have been manufactured and tested in loading experiments. Results indicated that three new sets all exhibited higher strength than the original set. In experiments, the roof beam in set plays a significant effect on top arch strengthening, while the floor beam plays significant effect on bottom arch strengthening. The maximum bearing capacity and stiffness of the top arch with roof beam are increased to 1.63 times and 3.06 times of those in the original set, and the maximum bearing capacity and stiffness of the bottom arch with floor beam are increased to 1.44 times and 3.55 times of those in original set. Based on the roof and floor beams, two more braces in the bottom arch also play a significant effect in bottom corners strengthening, but extra braces play little role in top arch strengthening. These new sets provide more choices for roadway support in swelling soft rocks.
International Nuclear Information System (INIS)
Benner, B.A. Jr.; Gordon, G.E.; Wise, S.A.
1987-01-01
A recent review article emphasized the need for further characterizations of the carbonaceous fraction of mobile source emissions, particularly with the impending removal of lead alkyl octane boosters and bromine-containing lead scavengers from regular leaded gasolines. The lead and bromine emitted from the combustion of these fuels have been used as tracers of mobile source emissions for a number of years. Single vehicle emission studies have shed light on the relationship between engine operating parameters and the chemical characteristics of the emissions but they are not suitable for use in source apportionment studies which require emission data from a large number of different vehicles. Air particulate samples collected near a busy highway or in a roadway tunnel would be more appropriate for use in estimating the mobile source contribution of organic compounds to a region. Suspended particle samples collected in a heavily-travelled roadway tunnel (Baltimore Harbor Tunnel, Baltimore, Maryland) were characterized for polycyclic aromatic hydrocarbons (PAH) and some nitro-PAH by gas and liquid chromatographic techniques. These samples included those collected on Teflon filters and on glass fiber filters for investigating any differences in samples collected on an inert (Teflon) and more reactive (glass-fiber) medium. All samples collected on Teflon were backed-up with polyurethane foam plugs (PUF) which trapped any inherent vapor-phase PAH as well as any compounds ''blown-off'' the particles during collection
Directory of Open Access Journals (Sweden)
Anne M. Weaver
2016-06-01
Full Text Available Cardiovascular disease (CVD, including heart failure, is a major cause of morbidity and mortality, particularly among African Americans. Exposure to ambient air pollution, such as that produced by vehicular traffic, is believed to be associated with heart failure, possibly by impairing cardiac function. We evaluated the cross-sectional association between residential proximity to major roads, a marker of long-term exposure to traffic-related pollution, and echocardiographic indicators of left and pulmonary vascular function in African Americans enrolled in the Jackson Heart Study (JHS: left ventricular ejection fraction, E-wave velocity, isovolumic relaxation time, left atrial diameter index, and pulmonary artery systolic pressure. We examined these associations using multivariable linear or logistic regression, adjusting for potential confounders. Of 4866 participants at study enrollment, 106 lived <150 m, 159 lived 150–299 m, 1161 lived 300–999 m, and 3440 lived ≥1000 m from a major roadway. We did not observe any associations between residential distance to major roads and these markers of cardiac function. Results were similar with additional adjustment for diabetes and hypertension, when considering varying definitions of major roadways, or when limiting analyses to those free from cardiovascular disease at baseline. Overall, we observed little evidence that residential proximity to major roads was associated with cardiac function among African Americans.
Microscopic wormholes and the geometry of entanglement
Energy Technology Data Exchange (ETDEWEB)
Lobo, Francisco S.N. [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Lisbon (Portugal); Olmo, Gonzalo J. [Centro Mixto Universidad de Valencia-CSIC, Universidad de Valencia, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)
2014-06-15
It has recently been suggested that Einstein-Rosen (ER) bridges can be interpreted as maximally entangled states of two black holes that form a complex Einstein-Podolsky-Rosen (EPR) pair. This relationship has been dubbed as the ER = EPR correlation. In this work, we consider the latter conjecture in the context of quadratic Palatini theory. An important result, which stems from the underlying assumptions as regards the geometry on which the theory is constructed, is the fact that all the charged solutions of the quadratic Palatini theory possess a wormhole structure. Our results show that spacetime may have a foam like microstructure with wormholes generated by fluctuations of the quantum vacuum. This involves the spontaneous creation/annihilation of entangled particle-antiparticle pairs, existing in a maximally entangled state connected by a nontraversable wormhole. Since the particles are produced from the vacuum and therefore exist in a singlet state, they are necessarily entangled with one another. This gives further support to the ER = EPR claim. (orig.)
Computational geometry algorithms and applications
de Berg, Mark; Overmars, Mark; Schwarzkopf, Otfried
1997-01-01
Computational geometry emerged from the field of algorithms design and anal ysis in the late 1970s. It has grown into a recognized discipline with its own journals, conferences, and a large community of active researchers. The suc cess of the field as a research discipline can on the one hand be explained from the beauty of the problems studied and the solutions obtained, and, on the other hand, by the many application domains--computer graphics, geographic in formation systems (GIS), robotics, and others-in which geometric algorithms play a fundamental role. For many geometric problems the early algorithmic solutions were either slow or difficult to understand and implement. In recent years a number of new algorithmic techniques have been developed that improved and simplified many of the previous approaches. In this textbook we have tried to make these modem algorithmic solutions accessible to a large audience. The book has been written as a textbook for a course in computational geometry, but it can ...
Tearing modes in toroidal geometry
International Nuclear Information System (INIS)
Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.
1988-01-01
The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed
Foundations of arithmetic differential geometry
Buium, Alexandru
2017-01-01
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Geometry of isotropic convex bodies
Brazitikos, Silouanos; Valettas, Petros; Vritsiou, Beatrice-Helen
2014-01-01
The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lov�sz-Simonovits conjecture. This book prov...
Differential geometry of group lattices
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2003-01-01
In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained
Geometry of anisotropic CO outflows
International Nuclear Information System (INIS)
Liseau, R.; Sandell, G.; Helsinki Univ., Observatory, Finland)
1986-01-01
A simple geometrical model for the space motions of the bipolar high-velocity CO outflows in regions of recent, active star formation is proposed. It is assumed that the velocity field of the neutral gas component can be represented by large-scale uniform motions. From observations of the spatial distribution and from the characteristics of the line shape of the high-velocity molecular gas emission the geometry of the line-emitting regions can be inferred, i.e., the direction in space and the collimating angle of the flow. The model has been applied to regions where a check on presently obtained results is provided by independent optical determinations of the motions of Herbig-Haro objects associated with the CO flows. These two methods are in good agreement and, furthermore, the results obtained provide convincingly strong evidence for the physical association of CO outflows and Herbig-Haro objects. This also supports the common view that a young stellar central source is responsible for the active phenomena observed in its environmental neighborhood. It is noteworthy that within the framework of the model the determination of the flow geometry of the high-velocity gas from CO measurements is independent of the distance to the source and, furthermore, can be done at relatively low spatial resolution. 32 references
Canonical differential geometry of string backgrounds
International Nuclear Information System (INIS)
Schuller, Frederic P.; Wohlfarth, Mattias N.R.
2006-01-01
String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes
UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS
Energy Technology Data Exchange (ETDEWEB)
Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada); Blandford, Roger D., E-mail: aeb@cita.utoronto.c [Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Rd., Menlo Park, CA 94309 (United States)
2010-08-01
Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.
UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS
International Nuclear Information System (INIS)
Broderick, Avery E.; Blandford, Roger D.
2010-01-01
Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m -2 ) 1/4 (B/1 G) 1/2 MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, ν SA , depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of ν SA range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, ν SA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.
Ontological Proofs of Existence and Non-Existence
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2008-01-01
Roč. 90, č. 2 (2008), s. 257-262 ISSN 0039-3215 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : ontological proofs * existence * non-existence * Gödel * Caramuel Subject RIV: BA - General Mathematics
Separation of attractors in 1-modulus quantum corrected special geometry
Bellucci, S; Marrani, A; Shcherbakov, A
2008-01-01
We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...
Existence theory in optimal control
International Nuclear Information System (INIS)
Olech, C.
1976-01-01
This paper treats the existence problem in two main cases. One case is that of linear systems when existence is based on closedness or compactness of the reachable set and the other, non-linear case refers to a situation where for the existence of optimal solutions closedness of the set of admissible solutions is needed. Some results from convex analysis are included in the paper. (author)
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
Converting Geometry from Creo Parametric to BRL-CAD
2017-06-28
SUPPLEMENTARY NOTES 14. ABSTRACT There exists in vulnerability /lethality analysis an ongoing need to convert target geometries from commercial systems...Contents List of Figures iv 1. Using Commercially Produced Models in Vulnerability /Lethality Analysis 1 2. Installing the Creo to BRL-CAD Converter...distribution is unlimited. 1 1. Using Commercially Produced Models in Vulnerability / Lethality Analysis Vulnerability /lethality (V/L) analysis
Hopf algebras in noncommutative geometry
International Nuclear Information System (INIS)
Varilly, Joseph C.
2001-10-01
We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)
Integrable systems, geometry, and topology
Terng, Chuu-Lian
2006-01-01
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...
Tarski Geometry Axioms. Part III
Directory of Open Access Journals (Sweden)
Coghetto Roland
2017-12-01
Full Text Available In the article, we continue the formalization of the work devoted to Tarski’s geometry - the book “Metamathematische Methoden in der Geometrie” by W. Schwabhäuser, W. Szmielew, and A. Tarski. After we prepared some introductory formal framework in our two previous Mizar articles, we focus on the regular translation of underlying items faithfully following the abovementioned book (our encoding covers first seven chapters. Our development utilizes also other formalization efforts of the same topic, e.g. Isabelle/HOL by Makarios, Metamath or even proof objects obtained directly from Prover9. In addition, using the native Mizar constructions (cluster registrations the propositions (“Satz” are reformulated under weaker conditions, i.e. by using fewer axioms or by proposing an alternative version that uses just another axioms (ex. Satz 2.1 or Satz 2.2.
Applied geometry and discrete mathematics
Sturm; Gritzmann, Peter; Sturmfels, Bernd
1991-01-01
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...
Introduction to global variational geometry
Krupka, Demeter
2015-01-01
The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational se...
Some Progress in Conformal Geometry
Directory of Open Access Journals (Sweden)
Sun-Yung A. Chang
2007-12-01
Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
Seesaw mechanism in warped geometry
International Nuclear Information System (INIS)
Huber, S.J.; Shafi, Q.
2003-09-01
We show how the seesaw mechanism for neutrino masses can be realized within a five dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M P1 .exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed. (orig.)
Seesaw mechanism in warped geometry
International Nuclear Information System (INIS)
Huber, Stephan J.; Shafi, Qaisar
2004-01-01
We show how the seesaw mechanism for neutrino masses can be realized within a five-dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M Pl exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed
Conformal geometry and quasiregular mappings
Vuorinen, Matti
1988-01-01
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...
Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram
2018-03-12
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.
Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry
2014-01-01
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...
A Novel Geometry for Shear Test Using Axial Tensile Setup
Directory of Open Access Journals (Sweden)
Sibo Yuan
2018-05-01
Full Text Available This paper studies a novel geometry for the in-plane shear test performed with an axial electromechanical testing machine. In order to investigate the influence of the triaxiality rate on the mechanical behavior, different tests will be performed on the studied material: simple tensile tests, large tensile tests and shear tests. For the whole campaign, a common equipment should be employed to minimize the impact of the testing device. As a consequence, for the shear tests, the geometry of the specimen must be carefully designed in order to adapt the force value and make it comparable to the one obtained for the tensile tests. Like most of the existing shear-included tensile test specimens, the axial loading is converted to shear loading at a particular region through the effect of geometry. A symmetric shape is generally preferred, since it can restrict the in-plane rotation of the shear section, keep shear increasing in a more monotonic path and double the force level thanks to the two shear zones. Due to the specific experimental conditions, such as dimensions of the furnace and the clamping system, the position of the extensometer or the restriction of sheet thickness (related to the further studies of size effect at mesoscale and hot temperature, several geometries were brought up and evaluated in an iterative procedure via finite element simulations. Both the numerical and experimental results reveal that the final geometry ensures some advantages. For instance, a relatively low triaxiality in the shear zone, limited in-plane rotation and no necking are observed. Moreover, it also prevents any out-of-plane displacement of the specimen which seems to be highly sensitive to the geometry, and presents a very limited influence of the material and the thickness.
Convection in Slab and Spheroidal Geometries
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
A.G. Cook (Angus); A.J.B.M. Devos (Annemarie); G. Pereira; L. Jardine (Laura); P. Weinstein (Philip)
2011-01-01
textabstractBackground: This study had two principal objectives: (i) to investigate the relationship between asthma severity and proximity to major roadways in Perth, Western Australia; (ii) to demonstrate a more accurate method of exposure assessment for traffic pollutants using an innovative
Background: The relationship between traffic-related air pollution (TRAP) and risk factors for cardiovascular disease needs to be better understood in order to address the adverse impact o.f air pollution on human health.Objective: We examined associations between roadway proximi...
Connections between algebra, combinatorics, and geometry
Sather-Wagstaff, Sean
2014-01-01
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...
Second International workshop Geometry and Symbolic Computation
Walczak, Paweł; Geometry and its Applications
2014-01-01
This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...
Institute of Scientific and Technical Information of China (English)
王中华
2016-01-01
针对难抽采煤层,提出了预掘底板岩巷卸压增透方法,理论分析了底板岩巷卸压影响范围一般为巷道半径r 的2~6倍.现场考察了曲江煤矿702底板岩巷围岩位移量最大为38 mm,钻孔瓦斯流量、煤层透气性系数分别为原始煤层的11.1倍、43.2倍,实践表明曲江煤矿702底板岩巷布置在待掘煤巷正下方8~10 m处增透效果显著.%Proposing methods of destressing and increasing penetration at pre-excavated rock road-way under floor for coal seams which are difficult to be drained;theoretically analyzing that the influen-tial incidence of destressing at rock roadway under floor is generally as 2 to 6 times of roadway radius r. In-situ measurements show that the maximum surrounding rock displacement of rock roadway under 702 floor of Qujiang Mine is 38 mm;gas flow rate in borehole and permeability coefficient of coal seam is 1 1.1 and 43.2 times of those of the original coal seam,respectively. The practice shows that rock road-way under 702 floor of Qujiang Mine could make significantly increasing penetration effect when it is placed 8-1 0 meters directly below coal lanes to be excavated.
A vector space approach to geometry
Hausner, Melvin
2010-01-01
The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.
Classical geometry Euclidean, transformational, inversive, and projective
Leonard, I E; Liu, A C F; Tokarsky, G W
2014-01-01
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p
Stationary bubbles and their tunneling channels toward trivial geometry
Energy Technology Data Exchange (ETDEWEB)
Chen, Pisin; Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Domènech, Guillem; Sasaki, Misao, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: innocent.yeom@gmail.com [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2016-04-01
In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition of geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. This may provide a resolution to the information loss dilemma.
Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang
2017-01-01
Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p health.
Introduction to non-Euclidean geometry
Wolfe, Harold E
2012-01-01
One of the first college-level texts for elementary courses in non-Euclidean geometry, this concise, readable volume is geared toward students familiar with calculus. A full treatment of the historical background explores the centuries-long efforts to prove Euclid's parallel postulate and their triumphant conclusion. Numerous original exercises form an integral part of the book.Topics include hyperbolic plane geometry and hyperbolic plane trigonometry, applications of calculus to the solutions of some problems in hyperbolic geometry, elliptic plane geometry and trigonometry, and the consistenc
Disformal transformation in Newton-Cartan geometry
Energy Technology Data Exchange (ETDEWEB)
Huang, Peng [Zhejiang Chinese Medical University, Department of Information, Hangzhou (China); Sun Yat-Sen University, School of Physics and Astronomy, Guangzhou (China); Yuan, Fang-Fang [Nankai University, School of Physics, Tianjin (China)
2016-08-15
Newton-Cartan geometry has played a central role in recent discussions of the non-relativistic holography and condensed matter systems. Although the conformal transformation in non-relativistic holography can easily be rephrased in terms of Newton-Cartan geometry, we show that it requires a nontrivial procedure to arrive at the consistent form of anisotropic disformal transformation in this geometry. Furthermore, as an application of the newly obtained transformation, we use it to induce a geometric structure which may be seen as a particular non-relativistic version of the Weyl integrable geometry. (orig.)
Applications of Affine and Weyl geometry
García-Río, Eduardo; Nikcevic, Stana
2013-01-01
Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia
Integrability and black-hole microstate geometries
Bena, Iosif; Turton, David; Walker, Robert; Warner, Nicholas P.
2017-11-01
We examine some recently-constructed families of asymptotically-AdS3 × S^3 supergravity solutions that have the same charges and mass as supersymmetric D1-D5- P black holes, but that cap off smoothly with no horizon. These solutions, known as superstrata, are quite complicated, however we show that, for an infinite family of solutions, the null geodesic problem is completely integrable, due to the existence of a non-trivial conformal Killing tensor that provides a quadratic conservation law for null geodesics. This implies that the massless scalar wave equation is separable. For another infinite family of solutions, we find that there is a non-trivial conformal Killing tensor only when the left-moving angular momentum of the massless scalar is zero. We also show that, for both these families, the metric degrees of freedom have the form they would take if they arose from a consistent truncation on S^3 down to a (2 + 1)-dimensional space-time. We discuss some of the broader consequences of these special properties for the physics of these black-hole microstate geometries.
Association of Roadway Proximity with Indoor Air Pollution in a Peri-Urban Community in Lima, Peru
Directory of Open Access Journals (Sweden)
Lindsay J. Underhill
2015-10-01
Full Text Available The influence of traffic-related air pollution on indoor residential exposure is not well characterized in homes with high natural ventilation in low-income countries. Additionally, domestic allergen exposure is unknown in such populations. We conducted a pilot study of 25 homes in peri-urban Lima, Peru to estimate the effects of roadway proximity and season on residential concentrations. Indoor and outdoor concentrations of particulate matter (PM2.5, nitrogen dioxide (NO2, and black carbon (BC were measured OPEN ACCESS Int. J. Environ. Res. Public Health 2015, 12 13467 during two seasons, and allergens were measured in bedroom dust. Allergen levels were highest for dust mite and mouse allergens, with concentrations above clinically relevant thresholds in over a quarter and half of all homes, respectively. Mean indoor and outdoor pollutant concentrations were similar (PM2.5: 20.0 vs. 16.9 μg/m3, BC: 7.6 vs. 8.1 μg/m3, NO2: 7.3 vs. 7.5 ppb, and tended to be higher in the summer compared to the winter. Road proximity was significantly correlated with overall concentrations of outdoor PM2.5 (rs = −0.42, p = 0.01 and NO2 (rs = −0.36, p = 0.03, and outdoor BC concentrations in the winter (rs = −0.51, p = 0.03. Our results suggest that outdoor-sourced pollutants significantly influence indoor air quality in peri-urban Peruvian communities, and homes closer to roadways are particularly vulnerable.
Chan, L. Y.; Liu, Y. M.; Lee, S. C.; Chan, C. Y.
Vehicle exhaust is the major source of pollutant in modern cities. About half of Hong Kong residents are living in suburban or rural areas. They need to traverse through tunnels, highways, urban street canyons and other road conditions in different landuse areas when they traverse to work in urban centres or new towns. Also, there is increasing traffic, especially trucks across the border between Hong Kong and mainland China via several border highways. This study helps us in assessing the exposure level of suburban and cross border commuters. Carbon monoxide (CO) is used as a tracer for traffic emission. An experimental vehicle traversing major commuting corridors were used to measure CO levels in different landuse and roadway microenvironments including tunnels and highways. The air samples were taken simultaneously at the outside and inside of a travelling vehicle. Result indicates that the pattern of fluctuation of the out-vehicle and in-vehicle CO level vary with different landuse areas. The variation pattern of in-vehicle CO level is closely related to that of out-vehicle level. The effects of the out-vehicle CO concentration on the in-vehicle CO concentration under different roadway conditions in various landuse categories are examined. There is an indication that external air pollutants penetrated into the in-vehicle compartment through car body cracks, ventilation system. From our observation, the exhaust of a nearby petrol vehicle contributed significantly to the in-vehicle CO level. The use of low standard of diesel fuel from Shenzhen in mainland China leads to higher CO level near border area.
Cost of near-roadway and regional air pollution-attributable childhood asthma in Los Angeles County
Brandt, Sylvia; Perez, Laura; Künzli, Nino; Lurmann, Fred; Wilson, John; Pastor, Manuel; McConnell, Rob
2014-01-01
Background Emerging evidence suggests that near-roadway air pollution (NRP) exposure causes childhood asthma. Associated costs are not well documented. Objective We estimated the cost of childhood asthma attributable to residential NRP exposure and regional ozone (O3) and nitrogen dioxide (NO2) in Los Angeles County. We developed a novel approach to apportion the costs between these exposures under different pollution scenarios. Methods We integrated results from a study of willingness to pay to reduce the burden of asthma with studies of health care utilization and charges to estimate the costs of an asthma case and exacerbation. We applied those costs to the number of asthma cases and exacerbations due to regional pollution in 2007 and to hypothetical scenarios of a 20% reduction in regional pollution in combination with a 20% reduction or increase in the proportion of the total population living within 75m of a major roadway. Results Cost of air pollution-related asthma in Los Angeles County in 2007 was $441 million for O3 and $202 million for NO2 in 2010 dollars. Cost of routine care (care in absence of exacerbation) accounted for 18% of the combined NRP and O3 cost and 39% of the combined NRP and NO2 cost—costs not recognized in previous analyses. NRP-attributable asthma accounted for 43% (O3) to 51% (NO2) of the total annual cost of exacerbations and routine care associated with pollution. Hypothetical scenarios showed that costs from increased NRP exposure may offset savings from reduced regional pollution. Conclusions Our model disaggregates the costs of regional pollution and NRP exposure and illustrates how they might vary under alternative exposure scenarios. The cost of air pollution is a substantial burden on families and an economic loss for society. PMID:25439228
Elangasinghe, M. A.; Dirks, K. N.; Singhal, N.; Costello, S. B.; Longley, I.; Salmond, J. A.
2014-02-01
Air pollution from the transport sector has a marked effect on human health, so isolating the pollutant contribution from a roadway is important in understanding its impact on the local neighbourhood. This paper proposes a novel technique based on a semi-empirical air pollution model to quantify the impact from a roadway on the air quality of a local neighbourhood using ambient records of a single air pollution monitor. We demonstrate the proposed technique using a case study, in which we quantify the contribution from a major highway with respect to the local background concentration in Auckland, New Zealand. Comparing the diurnal variation of the model-separated background contribution with real measurements from a site upwind of the highway shows that the model estimates are reliable. Amongst all of the pollutants considered, the best estimations of the background were achieved for nitrogen oxides. Although the multi-pronged approach worked well for predominantly vehicle-related pollutants, it could not be used effectively to isolate emissions of PM10 due to the complex and less predictable influence of natural sources (such as marine aerosols). The proposed approach is useful in situations where ambient records from an upwind background station are not available (as required by other techniques) and is potentially transferable to situations such as intersections and arterial roads. Applying this technique to longer time series could help to understand the changes in pollutant concentrations from the road and background sources for different emission scenarios, for different years or seasons. Modelling results also show the potential of such a hybrid semi-empirical models to contribute to our understanding of the physical parameters determining air quality and to validate emissions inventory data.
Special Geometry and Automorphic Forms
Berglund, P; Wyllard, N; Berglund, Per; Henningson, Mans; Wyllard, Niclas
1997-01-01
We consider special geometry of the vector multiplet moduli space in compactifications of the heterotic string on $K3 \\times T^2$ or the type IIA string on $K3$-fibered Calabi-Yau threefolds. In particular, we construct a modified dilaton that is invariant under $SO(2, n; Z)$ T-duality transformations at the non-perturbative level and regular everywhere on the moduli space. The invariant dilaton, together with a set of other coordinates that transform covariantly under $SO(2, n; Z)$, parameterize the moduli space. The construction involves a meromorphic automorphic function of $SO(2, n; Z)$, that also depends on the invariant dilaton. In the weak coupling limit, the divisor of this automorphic form is an integer linear combination of the rational quadratic divisors where the gauge symmetry is enhanced classically. We also show how the non-perturbative prepotential can be expressed in terms of meromorphic automorphic forms, by expanding a T-duality invariant quantity both in terms of the standard special coord...
Differential geometry in string models
International Nuclear Information System (INIS)
Alvarez, O.
1986-01-01
In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Latent geometry of bipartite networks
Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri
2017-03-01
Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.
Fractal Geometry and Stochastics V
Falconer, Kenneth; Zähle, Martina
2015-01-01
This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott, Michał Rams, Pablo Shmerkin, and András Te...
Stochastic geometry in PRIZMA code
International Nuclear Information System (INIS)
Malyshkin, G. N.; Kashaeva, E. A.; Mukhamadiev, R. F.
2007-01-01
The paper describes a method used to simulate radiation transport through random media - randomly placed grains in a matrix material. The method models the medium consequently from one grain crossed by particle trajectory to another. Like in the Limited Chord Length Sampling (LCLS) method, particles in grains are tracked in the actual grain geometry, but unlike LCLS, the medium is modeled using only Matrix Chord Length Sampling (MCLS) from the exponential distribution and it is not necessary to know the grain chord length distribution. This helped us extend the method to media with randomly oriented arbitrarily shaped convex grains. Other extensions include multicomponent media - grains of several sorts, and polydisperse media - grains of different sizes. Sort and size distributions of crossed grains were obtained and an algorithm was developed for sampling grain orientations and positions. Special consideration was given to medium modeling at the boundary of the stochastic region. The method was implemented in the universal 3D Monte Carlo code PRIZMA. The paper provides calculated results for a model problem where we determine volume fractions of modeled components crossed by particle trajectories. It also demonstrates the use of biased sampling techniques implemented in PRIZMA for solving a problem of deep penetration in model random media. Described are calculations for the spectral response of a capacitor dose detector whose anode was modeled with account for its stochastic structure. (authors)
The geometry of population genetics
Akin, Ethan
1979-01-01
The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono graph I hope to show that his ideas illuminate many aspects of pop ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele...
Topics in Cubic Special Geometry
Bellucci, Stefano; Roychowdhury, Raju
2011-01-01
We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...
2011-01-01
A funding crisis exists for financing much needed transportation infrastructure projects across the nation and : Texas is no exception. Texas has responded to the crisis by passing several bills allowing innovative : financing and alternative options...
The geometry of elementary particles
International Nuclear Information System (INIS)
Lov, T.R.
1987-01-01
A new model of elementary particles based on the geometry of Quantum deSitter space QdS = SU (3,2)/(SU(3,1) x U(1)) is introduced and studied. QdS is a complexification of quantization of anti-de Sitter space, AdS = SO(3,2)/SO(3,1), which in recent years had played a pivotal role in supergravity. The nontrival principle fiber bundle has total space SU(3,2), fiber SU(3,1) x U(1) and base QdS. In this setting, the standard recipes for Yang-Mills fields don't work. These require connections and the associated covariant derivatives. Here it is shown that the Lie derivatives, not the covariant derivatives are important in quantization. In this setting, the no-go theorems are not valid. This new quantum mechanics leads to a model of elementary particles as vertical vector fields in the bundle with interaction via the Lie bracket. There are five physical interactions modelled by the bracket interaction. The quantum numbers are identified as the roots of su(3,2) and are preserved under the bracket interaction. The model explains conservation of charge, baryon number, lepton number, parity and the heirarchy problem. Since the bracket is the curvature of a homogeneous space, particles are then the curvature of QdS. This model for particles is consistent with the requirements of General Relativity. Furthermore, since the curvature tensor is built from the quantized wave functions, the curvature tensor is quantized and this is quantum theory of gravity