WorldWideScience

Sample records for existing roadway geometry

  1. Fluids, Elasticity, Geometry, and the Existence of Wrinkled Solutions

    Science.gov (United States)

    Acharya, Amit; Chen, Gui-Qiang G.; Li, Siran; Slemrod, Marshall; Wang, Dehua

    2017-12-01

    We are concerned with underlying connections between fluids, elasticity, isometric embedding of Riemannian manifolds, and the existence of wrinkled solutions of the associated nonlinear partial differential equations. In this paper, we develop such connections for the case of two spatial dimensions, and demonstrate that the continuum mechanical equations can be mapped into a corresponding geometric framework and the inherent direct application of the theory of isometric embeddings and the Gauss-Codazzi equations through examples for the Euler equations for fluids and the Euler-Lagrange equations for elastic solids. These results show that the geometric theory provides an avenue for addressing the admissibility criteria for nonlinear conservation laws in continuum mechanics.

  2. Pillarless protection of main haulage roadways

    Energy Technology Data Exchange (ETDEWEB)

    Martyushev, V.S.; Shmigol' , A.V.; Losev, G.F. (Obedinenie Pavlogradugol' (USSR))

    1990-05-01

    Presents a case study of a main conveyor roadway and main haulage roadways protected by a pillar-pillar system, the state of repair of which worsened significantly over 1983-1988 as the roadways were situated in a zone of elevated abutment pressure and the decision was made to provide relaxation by overworking. Geological and mining conditions are described. Twelve benchmarks were stabilized to monitor the effect of the longwall on the overworked roadways. Maximum convergence rate between roof and floor of the roadways was 77.8 mm/d as the longwall was 34 m away. Then the convergence decreased quickly to about 5 mm/month. Maintenance methods of main haulage roadways are discussed and the conclusion is reached that the experiment confirmed the possibility of extracting reserves at existing main roadways.

  3. LED roadway luminaires evaluation.

    Science.gov (United States)

    2012-02-01

    This research explores whether LED roadway luminaire technologies are a viable future solution to providing roadway lighting. Roadway lighting : enhances highway safety and traffic flow during limited lighting conditions. The purpose of this evaluati...

  4. Effects of Active Subsidence Vs. Existing Basin Geometry on Fluviodeltaic Channels and Stratal Architecture

    Science.gov (United States)

    Liang, M.; Kim, W.; Passalacqua, P.

    2015-12-01

    Tectonic subsidence and basin topography, both determining the accommodation, are fundamental controls on the basin filling processes. Their effects on the fluvial organization and the resultant subsurface patterns remain difficult to predict due to the lack of understanding about interaction between internal dynamics and external controls. Despite the intensive studies on tectonic steering effects on alluvial architecture, how the self-organization of deltaic channels, especially the distributary channel network, respond to tectonics and basin geometry is mostly unknown. Recently physical experiments and field studies have hinted dramatic differences in fluviodeltaic evolution between ones associated with active differential subsidence and existing basin depth. In this work we designed a series of numerical experiments using a reduced-complexity channel-resolving model for delta formation, and tested over a range of localized subsidence rates and topographic depression in basin geometry. We also used a set of robust delta metrics to analyze: i) shoreline planform asymmetry, ii) channel and lobe geometry, iii) channel network pattern, iv) autogenic timescales, and v) subsurface structure. The modeling results show that given a similar final thickness, active subsidence enhances channel branching with smaller channel sand bodies that are both laterally and vertically connected, whereas existing topographic depression causes more large-scale channel avulsions with larger channel sand bodies. In general, both subsidence and existing basin geometry could steer channels and/or lock channels in place but develop distinct channel patterns and thus stratal architecture.

  5. Impact of blade geometry differences for the CFD performance analysis of existing turbines

    Energy Technology Data Exchange (ETDEWEB)

    Nicolle, J; Labbe, P; Gauthier, G; Lussier, M, E-mail: nicolle.jonathan@ireq.c [IREQ-Hydro-Quebec Research Institute 1800 Lionel-Boulet, Varennes, J3X 1S1 (Canada)

    2010-08-15

    Hydro-Quebec has been using CFD to analyze the performance of its existing turbines for many years. Most of those analyses are based on the measurement of a single runner blade. However, due to manufacturing techniques, in-situ modifications or repairs, there are often small differences between individual blades of the same runner. The impact of this non uniformity was not known thus far and was often assumed to be negligible given the size of the runner. This paper highlights the impact of such differences by presenting the CFD analysis of various blades measured on the same runner. Two different geometries are used for demonstration: the AxialT model propeller and a 50-MW Francis turbine. In both cases, about 50% of the blades could not be considered as representative of the whole turbine and using them could lead to wrong conclusions regarding the turbine performance.

  6. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  7. Geometry

    Indian Academy of Sciences (India)

    of geometry he completely changed our way of thinking. Later geometers were to spend entire lifetimes trying ... dimensions up to and including three it is difficult to think of dimensions beyond except abstractly -in one's .... form I. gij ai aj is positive for any collection of numbers. (aI, ... , an). Moreover, the given form can easily ...

  8. Geometri

    DEFF Research Database (Denmark)

    Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....

  9. Sustainable roadway lighting seminar.

    Science.gov (United States)

    2014-07-01

    The objective of this project was to develop and conduct a half-day educational seminar on sustainable : roadway lighting at three locations within New York State: Rochester, New York City, and Albany. : Primary attendees were engineers from the New ...

  10. Ion-acoustic solitons do not exist in cylindrical and spherical geometries

    Science.gov (United States)

    Sheridan, T. E.

    2017-09-01

    We investigate the time evolution of one-dimensional, compressive, ion acoustic solitary waves for planar, cylindrical, and spherical geometries in a plasma of cold fluid ions and Boltzmann electrons. For cylindrical and spherical geometries, we show that inward (outward) going solitary waves cannot be localized (i.e., always have a tail) since the effect of a unipolar velocity perturbation is to shift ions inward (outward) to smaller (larger) radii, thereby increasing (decreasing) the local ion density. That is, there are no quasi-particle soliton states in the cylindrical and spherical cases. These results are confirmed and expanded using a plasma simulation for the cylindrical case. We initialize the system with an inward propagating planar soliton. We find supersonic solitary waves which increase in speed as they near the origin, while the wave amplitude increases as r-1/2. All solitary waves develop the predicted tail, but for larger amplitudes, the tail is unstable and evolves into an acoustic wave train.

  11. Pre-existing normal faults have limited control on the rift geometry of the northern North Sea

    Science.gov (United States)

    Claringbould, Johan S.; Bell, Rebecca E.; Jackson, Christopher A.-L.; Gawthorpe, Robert L.; Odinsen, Tore

    2017-10-01

    Many rifts develop in response to multiphase extension with numerical and physical models suggesting that reactivation of first-phase normal faults and rift-related variations in bulk crustal rheology control the evolution and final geometry of subsequent rifts. However, many natural multiphase rifts are deeply buried and thus poorly exposed in the field and poorly imaged in seismic reflection data, making it difficult to test these models. Here we integrate recent 3D seismic reflection and borehole data across the entire East Shetland Basin, northern North Sea, to constrain the long-term, regional development of this multiphase rift. We document the following key stages of basin development: (i) pre-Triassic to earliest Triassic development of multiple sub-basins controlled by widely distributed, NNW- to NE-trending, east- and west-dipping faults; (ii) Triassic activity on a single major, NE-trending, west-dipping fault located near the basins western margin, and formation of a large half-graben; and (iii) Jurassic development of a large, E-dipping, N- to NE-trending half-graben near the eastern margin of the basin, which was associated with rift narrowing and strain focusing in the Viking Graben. In contrast to previous studies, which argue for two discrete periods of rifting during the Permian-Triassic and Late Jurassic-Early Cretaceous, we find that rifting in the East Shetland Basin was protracted from pre-Triassic to Cretaceous. We find that, during the Jurassic, most pre-Jurassic normal faults were buried and in some cases cross-cut by newly formed faults, with only a few being reactivated. Previously developed faults thus had only a limited control on the evolution and geometry of the later rift. We instead argue that strain migration and rift narrowing was linked to the evolving thermal state of the lithosphere, an interpretation supporting the predictions of lithosphere-scale numerical models. Our study indicates that additional regional studies of

  12. 32 CFR 636.24 - Driving on right side of roadway; use of roadway.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Driving on right side of roadway; use of roadway... (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.24 Driving on right side of roadway; use of roadway. (a) All drivers...

  13. 30 CFR 57.9313 - Roadway maintenance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roadway maintenance. 57.9313 Section 57.9313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... § 57.9313 Roadway maintenance. Water, debris, or spilled material on roadways which creates hazards to...

  14. 30 CFR 56.9313 - Roadway maintenance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roadway maintenance. 56.9313 Section 56.9313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... § 56.9313 Roadway maintenance. Water, debris, or spilled material on roadways which creates hazards to...

  15. Apparatus, System, And Method For Roadway Monitoring

    KAUST Repository

    Claudel, Christian G.

    2015-06-02

    An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.

  16. 49 CFR 214.313 - Responsibility of individual roadway workers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Responsibility of individual roadway workers. 214... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.313 Responsibility of individual roadway workers. (a) Each roadway worker is responsible for...

  17. 49 CFR 214.345 - Training for all roadway workers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Training for all roadway workers. 214.345 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.345 Training for all roadway workers. The training of all roadway workers shall include, as a minimum, the...

  18. 49 CFR 236.1049 - Training specific to roadway workers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Training specific to roadway workers. 236.1049... Train Control Systems § 236.1049 Training specific to roadway workers. (a) Roadway worker training. Training required under this subpart for a roadway worker shall be integrated into the program of...

  19. Autodesk Roadway Design for Infraworks 360 essentials

    CERN Document Server

    Chappell, Eric

    2015-01-01

    Quickly master InfraWorks Roadway Design with hands-on tutorials Autodesk Roadway Design for InfraWorks 360 Essentials, 2nd Edition allows you to begin designing immediately as you learn the ins and outs of the roadway-specific InfraWorks module. Detailed explanations coupled with hands-on exercises help you get up to speed and quickly and become productive with the module's core features and functions. Compelling screenshots illustrate step-by-step tutorials, and the companion website provides downloadable starting and ending files so you can jump in at any point and compare your work to the

  20. Numerical simulation of roadway support clamping

    Energy Technology Data Exchange (ETDEWEB)

    Dobrocinski, S. (Akademia Marynarki Wojennej, Gdynia (Poland))

    1988-01-01

    Evaluates interaction of arched steel roadway supports and surrounding strata in stratified coal-bearing strata. A combination of the finite element method and boundary element method is used. A numerical model that describes interaction of supports and surrounding strata is discussed. Advantages of the calculation method developed by the authors compared to the finite element method are analyzed. The method is especially useful for description of support interaction at the junction of mine roadways or at junctions of mine roadways and mine shafts. 2 refs.

  1. Creating a highway information system for safety roadway features.

    Science.gov (United States)

    2015-12-01

    Roadway departures are the leading cause of roadside fatalities. The Kentucky Transportation Cabinet (KYTC) has : undertaken a number of roadside safety measures to reduce roadway departures. Specifically, KYTC has installed : several low-cost, syste...

  2. Roadway weather information system and automatic vehicle location (AVL) coordination.

    Science.gov (United States)

    2011-02-28

    Roadway Weather Information System and Automatic Vehicle Location Coordination involves the : development of an Inclement Weather Console that provides a new capability for the state of Oklahoma : to monitor weather-related roadway conditions. The go...

  3. Influence of cantilevered sheet pile deflection on adjacent roadways.

    Science.gov (United States)

    2009-06-01

    Cantilevered sheet pile walls are often used adjacent roadways as temporary support during construction. Excess movement of these walls has led to excessive roadway distress causing additional repairs to be necessary. This study assessed the effects ...

  4. Use of reflective surfaces on roadway embankment

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Doré, Guy

    2007-01-01

    Temperature measurements have been used to study the effect of two reflective surfaces on a roadway embankment in Forêt Montmorency, Québec, Canada. Both tested materials, Mapelastic (from MAPEI) and Colored Slurry (from Tech-Mix), have lead to a reduction in n-factor and proved to have very good...... adherence characteristics for roadway use. In Kangerlussuaq Airport, western Greenland, ground-penetrating radar (GPR) has been used to compare the variation of the frost table underneath a normal black asphalt surface and a more reflective surface (white paint). The GPR results have shown a clear...

  5. High-Fidelity Roadway Modeling and Simulation

    Science.gov (United States)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit

    2010-01-01

    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  6. Sustainability assessment of roadway projects under uncertainty using Green Proforma: An index-based approach

    Directory of Open Access Journals (Sweden)

    Adil Umer

    2016-12-01

    Full Text Available Growing environmental and socioeconomic concerns due to rapid urbanization, population growth and climate change impacts have motivated decision-makers to incorporate sustainable best practices for transportation infrastructure development and management. A “sustainable” transportation infrastructure implies that all the sustainability objectives (i.e., mobility, safety, resource efficiency, economy, ecological protection, environmental quality are adequately met during the infrastructure life cycle. State-of-the-art sustainability rating tools contain the best practices for the sustainability assessment of infrastructure projects. Generally, the existing rating tools are not well equipped to handle uncertainties associated with data limitations and expert opinion and cannot effectively adapt to site specific constraints for reliable sustainability assessment. This paper presents the development of a customizable tool, called “Green Proforma” for the sustainability assessment of roadway projects under uncertainties. For evaluating how well the project meets sustainability objectives, a hierarchical framework is used to develop the sustainability objective indices by aggregating the selected indicators with the help of fuzzy synthetic evaluation technique. These indices are further aggregated to attain an overall sustainability index for a roadway project. To facilitate the decision makers, a “Roadway Project Sustainometer” has been developed to illustrate how well the roadway project is meeting its sustainability objectives. By linking the sustainability objectives to measurable indicators, the “Green Proforma” paves the way for a practical approach in sustainable planning and management of roadway projects.

  7. Innovative, energy-efficient lighting for New York state roadways : opportunities for incorporating mesopic visibility considerations into roadway lighting practice

    Science.gov (United States)

    2008-04-01

    The present report outlines activities undertaken to assess the potential for implementing research on visibility at mesopic light levels into lighting practices for roadways in New York State. Through measurements of light levels at several roadway ...

  8. 49 CFR 236.526 - Roadway element not functioning properly.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.526 Roadway... roadway element shall be caused manually to display its most restrictive aspect until such element has...

  9. 49 CFR 236.929 - Training specific to roadway workers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Training specific to roadway workers. 236.929... for Processor-Based Signal and Train Control Systems § 236.929 Training specific to roadway workers. (a) How is training for roadway workers to be coordinated with part 214? Training required under this...

  10. Numerical simulation of seismic survey in coal mine roadway

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, G.; Li, G.; Cheng, J. [Chang' an University, Xi' an (China). College of Geological Engineering and Geomatics

    2008-11-15

    With the staggered-grid high order finite difference wave field simulation method, the elastic wave field caused by explosives with a point source in a coal mine roadway was simulated and different type of waves in the wave field were distinguished. Comparing all three spatial components of the propagation of the waves caused by explosives on or under the roadway at different depths, this indicates that: on the roadway base, the reverberation caused by the top and bottom of the roadway (multiple reflection on the top and bottom of the roadway) is the main disturbing wave in the roadway seismic survey which will seriously disturb the reflection of the deep place coal bed underneath the roadway; at a depth of several metres under the roadway basal bottom boundary, the reverberation disturbing wave is greatly reduced and the reflection caused by deeper coal bed can be clearly detected; high signal-to-noise ratio data can be found with the Y component detector because of the propagation of SH waves; high resolution of seismic data is possible in a roadway. In the model, a cavity 3 metres high and 4 metres wide can be detected underneath the roadway. 5 refs., 7 figs.

  11. Introduction to projective geometry

    CERN Document Server

    Wylie, C R

    2008-01-01

    This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include w

  12. Water drainage in mine roadways with swelling floors

    Energy Technology Data Exchange (ETDEWEB)

    Martyushev, V.S.; Losev, G.F.; Danilov, B.G. (Shakhta imeni Leninskogo Komsomola Ukrainy (USSR))

    1989-09-01

    Describes the situation at a Pavlograd mine (W. Donbass) where the water influx into mine roadways is 70 m{sup 3}/h. Over a period of years, zones of large and small cracks have appeared around the main roadways (480 m level) through support replacement and dinting work. Some of the water entering the roadway flows away along these cracks parallel to the roadway. The flow rate by this means can reach 5 m{sup 3}/h. Water flowing in this way damages shaft linings and causes additional floor swelling. It may also escape into water conducting strata (coal, sandstone) and flood lower lying roadways. The problem is difficult to control, but sometimes the crack systems in roadway floors may be used to advantage to drain water out of influx hazard zones.

  13. Influence of horizontally curved roadway section characteristics on motorcycle-to-barrier crash frequency.

    Science.gov (United States)

    Gabauer, Douglas J; Li, Xiaolong

    2015-04-01

    The purpose of this study was to investigate motorcycle-to-barrier crash frequency on horizontally curved roadway sections in Washington State using police-reported crash data linked with roadway data and augmented with barrier presence information. Data included 4915 horizontal curved roadway sections with 252 of these sections experiencing 329 motorcycle-to-barrier crashes between 2002 and 2011. Negative binomial regression was used to predict motorcycle-to-barrier crash frequency using horizontal curvature and other roadway characteristics. Based on the model results, the strongest predictor of crash frequency was found to be curve radius. This supports a motorcycle-to-barrier crash countermeasure placement criterion based, at the very least, on horizontal curve radius. With respect to the existing horizontal curve criterion of 820 feet or less, curves meeting this criterion were found to increase motorcycle-to-barrier crash frequency rate by a factor of 10 compared to curves not meeting this criterion. Other statistically significant predictors were curve length, traffic volume and the location of adjacent curves. Assuming curves of identical radius, the model results suggest that longer curves, those with higher traffic volume, and those that have no adjacent curved sections within 300 feet of either curve end would likely be better candidates for a motorcycle-to-barrier crash countermeasure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 49 CFR 214.353 - Training and qualification of roadway workers who provide on-track safety for roadway work groups.

    Science.gov (United States)

    2010-10-01

    ... territory of the railroad upon which the roadway worker is qualified. (b) Initial and periodic qualification... 49 Transportation 4 2010-10-01 2010-10-01 false Training and qualification of roadway workers who... RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.353 Training and qualification of roadway workers...

  15. Proyeksi Geometri Fuzzy pada Ruang

    Directory of Open Access Journals (Sweden)

    Muhammad Izzat Ubaidillah

    2012-11-01

    Full Text Available Fuzzy geometry is an outgrowth of crisp geometry, which in crisp geometry elements are exist and not exist, but also while on fuzzy geometry elements are developed by thickness which is owned by each of these elements. Crisp projective geometries is the formation of a shadow of geometries element projected on the projectors element, with perpendicular properties which are represented by their respective elemental, the discussion focused on the results of the projection coordinates. While the fuzzy projective geometries have richer discussion, which includes about coordinates of projection results, the mutual relation of each element and the thickness of each element. This research was conducted to describe and analyzing procedure fuzzy projective geometries on the plane and explain the differences between crisp projective geometries and fuzzy projective geometries on plane.

  16. Behavioural adaption and roadway ITS: the forgotten chapter

    NARCIS (Netherlands)

    Martens, Marieke Hendrikje

    2012-01-01

    Although quite some attention is paid to behavioural adaptation issues for driver support systems, BA to roadway ITS is less well documented. Roadway ITS is introduced for its beneficial effects on throughput, safety and emissions. However, negative effects are often neglected. This paper

  17. 49 CFR 220.11 - Requirements for roadway workers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Requirements for roadway workers. 220.11 Section... workers. (a) On and after July 1, 1999, the following requirements apply to a railroad that has 400,000 or... to provide on-track safety for a roadway work group or groups, and each lone worker, shall be...

  18. LED roadway lighting, volume 2 : field evaluations and software comparisons.

    Science.gov (United States)

    2012-10-01

    The use of light-emitting diodes (LEDs) for roadway lighting can potentially save energy costs and reduce the frequency of maintenance. The objective of this study is to explore the current state of the art in LED roadway lighting technology. Three s...

  19. 49 CFR 236.527 - Roadway element insulation resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  20. The effects of roadway characteristics on farm equipment crashes: A GIS approach

    Science.gov (United States)

    Greenan, Mitchell Joseph

    Tractors and other self-propelled farm equipment, such as combines, sprayers, and towed grain carts, are often used on public roadways as the primary means for traveling from homestead to homestead or from homestead to a distributer. Increased roadway exposure has led to a growing concern for crashes involving farm equipment on the public roadway. A handful of studies exist examining public roadway crashes involving farm equipment using crash data, but none thus far have evaluated road segment data to identify road-specific risk factors. The objective of this study is to identify if roadway characteristics (traffic density, speed limit, road type, surface type, road width, and shoulder width) affect the risk of a crash involving farm equipment on Iowa public roadways. A retrospective cohort study of Iowa roads was conducted to identify the types of roads that are at an increased risk of having a farm-equipment crash on them. Crash data from the Iowa Department of Transportation (to identify crashes) were spatial linked to Iowa roadway data using Geographic Information Systems (GIS). Logistic regression was used to calculate ORs and 95% CL. Out of 319,705 road segments in Iowa, 0.4% segments (n=1,337) had a farm equipment crash from 2005-2011. The odds of having a farm equipment crash were significantly higher for road segments with increased traffic density and speed limit. Roads with an average daily traffic volume of at least 1,251 vehicles were at a 5.53 times greater odds of having a crash than roads with a daily traffic volume between 0-30 vehicles. (CI: 3.90-7.83). Roads with a posted speed limit between 50mph and 60mph were at a 4.88 times greater odds of having a crash than roads with a posted speed limit of 30mph or less. (CI: 3.85-6.20). Specific roadway characteristics such as roadway and shoulder width were also associated with the risk of a crash. For every 5 foot increase in road width, the odds for a crash decreased by 6 percent (CI: 0.89-0.99) and

  1. Algebraic Geometry

    CERN Document Server

    Holme, Audun

    1988-01-01

    This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.

  2. Proximity of US Schools to Major Roadways: a Nationwide Assessment

    Science.gov (United States)

    Kingsley, Samantha L.; Eliot, Melissa; Carlson, Lynn; Finn, Jennifer; MacIntosh, David L.; Suh, Helen H.; Wellenius, Gregory A.

    2014-01-01

    Long-term exposure to traffic pollution has been associated with adverse health outcomes in children and adolescents. A significant number of schools may be located near major roadways, potentially exposing millions of children to high levels of traffic pollution, but this hypothesis has not been evaluated nationally. We obtained data on the location and characteristics of 114,644 US public and private schools, grades pre-kindergarten through 12, and calculated their distance to nearest major roadway. In 2005–2006, 3.2 million students (6.2%) attended 8,424 schools (7.3%) located within 100 meters of a major roadway, and an additional 3.2 million (6.3%) students attended 8,555 (7.5%) schools located 100 to 250 m from a major roadway. Schools serving predominantly black students were 18% (95% CI, 13% – 23%) more likely to be located within 250 m of a major roadway. Public schools eligible for Title I programs and those with a majority of students eligible for free/reduced price meals were also more likely to be near major roadways. In conclusion, 6.4 million US children attended schools within 250 m of a major roadway and were likely exposed to high levels of traffic pollution. Minority and underprivileged children were disproportionately affected, although some results varied regionally. PMID:24496217

  3. 49 CFR 214.335 - On-track safety procedures for roadway work groups.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false On-track safety procedures for roadway work groups... Protection § 214.335 On-track safety procedures for roadway work groups. (a) No employer subject to the...-track safety of the roadway work group that on-track safety is provided. (c) Roadway work groups engaged...

  4. 76 FR 74585 - Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway Workers

    Science.gov (United States)

    2011-11-30

    ... performing work on the field side of the occupied track. ``Catenary maintenance tower cars with roadway... to further reduce the risk of serious injury or death to roadway workers performing work with... required for each adjacent controlled track when a roadway work group with at least one of the roadway...

  5. Differential geometry

    CERN Document Server

    Guggenheimer, Heinrich W

    1977-01-01

    This is a text of local differential geometry considered as an application of advanced calculus and linear algebra. The discussion is designed for advanced undergraduate or beginning graduate study, and presumes of readers only a fair knowledge of matrix algebra and of advanced calculus of functions of several real variables. The author, who is a Professor of Mathematics at the Polytechnic Institute of New York, begins with a discussion of plane geometry and then treats the local theory of Lie groups and transformation groups, solid differential geometry, and Riemannian geometry, leading to a

  6. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  7. Greenroads : a sustainability performance metric for roadway design and construction.

    Science.gov (United States)

    2009-11-01

    Greenroads is a performance metric for quantifying sustainable practices associated with roadway design and construction. Sustainability is defined as having seven key components: ecology, equity, economy, extent, expectations, experience and exposur...

  8. Finite Element Evaluation of Pervious Concrete Pavement for Roadway Shoulders

    Science.gov (United States)

    2011-10-01

    Stormwater quantity control is an important issue that needs to be addressed in roadway and ancillary transportation facility design. : Pervious concrete has provided an effective solution for storm runoff for parking lots, sidewalks, bike trails, an...

  9. Roadway departure warning indicators : synthesis of noise and bicycle research

    Science.gov (United States)

    2013-06-01

    The United States National Park Service has voiced concern about roadway departure : warning indicators (rumble strips) being installed in locations that affect the natural : sound environment inside the park. Rumble strips can effectively alert erra...

  10. 40 CFR 61.143 - Standard for roadways.

    Science.gov (United States)

    2010-07-01

    ... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...

  11. AHMCT Intelligent Roadway Information System (IRIS) technical support and testing

    Science.gov (United States)

    2011-12-31

    This report documents the research project AHMCT IRIS Technical Support and Testing, : performed under contract 65A0275, Task ID 1777. It presents an overview of the Intelligent : Roadway Information System (IRIS), and its design and function. ...

  12. Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.

    2012-09-01

    Subsequent to preliminary investigations by the Golden Gate Bridge Highway & Transportation District (GGB), in coordination with Pacific Gas & Electric (PG&E), the GATEWAY Demonstration program was asked to evaluate the technical feasibility of replacing existing roadway lighting on the bridge with products utilizing LED technology. GGB and PG&E also indicated interest in induction (i.e., electrodeless fluorescent) technology, since both light source types feature rated lifetimes significantly exceeding those of the existing high-pressure sodium (HPS) and low-pressure sodium (LPS) products. The goal of the study was to identify any solutions which would reduce energy use and maintenance without compromising the quantity or quality of existing illumination. Products used for roadway lighting on the historic bridge must be installed within the existing amber-lensed shoebox-style luminaire housings. It was determined that induction technology does not appear to represent a viable alternative for the roadway luminaires in this application; any energy savings would be attributable to a reduction in light levels. Although no suitable LED retrofit kits were identified for installation within existing luminaire housings, several complete LED luminaires were found to offer energy savings of 6-18%, suggesting custom LED retrofit kits could be developed to match or exceed the performance of the existing shoeboxes. Luminaires utilizing ceramic metal halide (CMH) were also evaluated, and some were found to offer 28% energy savings, but these products might actually increase maintenance due to the shorter rated lamp life. Plasma technology was evaluated, as well, but no suitable products were identified. Analysis provided in this report was completed in May 2012. Although LED technologies are expected to become increasingly viable over time, and product mock-ups may reveal near-term solutions, some options not currently considered by GGB may ultimately merit evaluation. For

  13. Placement Design of Changeable Message Signs on Curved Roadways

    Directory of Open Access Journals (Sweden)

    Zhongren Wang, Ph.D. P.E. T.E.

    2015-01-01

    Full Text Available This paper presented a fundamental framework for Changeable Message Sign (CMS placement design along roadways with horizontal curves. This analytical framework determines the available distance for motorists to read and react to CMS messages based on CMS character height, driver's cone of vision, CMS pixel's cone of legibility, roadway horizontal curve radius, and CMS lateral and vertical placement. Sample design charts were developed to illustrate how the analytical framework may facilitate CMS placement design.

  14. Tolerance Geometry.

    Science.gov (United States)

    Roberts, Fred S.

    The author cites work on visual perception which indicates that in order to study perception it is necessary to replace such classical geometrical notions as betweeness, straightness, perpendicularity, and parallelism with more general concepts. The term tolerance geometry is used for any geometry when primitive notions are obtained from the…

  15. Seismic activity during approach of working faces to roadways

    Energy Technology Data Exchange (ETDEWEB)

    Syrek, B.; Graca, L.

    1985-02-01

    Hazards of rock bursts during longwall mining with hydraulic stowing are discussed. Two coal seams from 5.5 to 9.0 m at 600 to 750 m depth in the Wujek mine were mined by slicing. Rock burst hazards at 10 working faces approaching mine roadways (used for mine haulage) were analyzed. Rock burst energy was evaluated. Analyses showed that there was no correlation between increase in rock burst hazards and length of a working face, angle formed by the face and a mine roadway to which the face was approaching, or surface of the coal block between the face and the roadway. Formulae used for forecasting increase in rock burst hazards are derived. The average distance from the face to a mine roadway to which the face was approaching was the main factor influencing rock burst hazards. Under conditions of the Wujek mine, rock burst hazards were greatest at 31 m from a working face to a mine roadway. Increase in rock burst hazards started at 44 m and declined to the initial level at 15 m from the face to the roadway. 3 references.

  16. Supporting railroad roadway work communications with a wireless handheld computer. Volume 1 : usability for the roadway worker

    Science.gov (United States)

    2004-10-01

    Communications in current railroad operations rely heavily on voice communications. Radio congestion impairs roadway workers ability to communicate effectively with dispatchers at the Central Traffic Control Center and has adverse consequences for...

  17. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  18. Projective geometry

    CERN Document Server

    Faulkner, T Ewan

    2006-01-01

    This text explores the methods of the projective geometry of the plane. Some knowledge of the elements of metrical and analytical geometry is assumed; a rigorous first chapter serves to prepare readers. Following an introduction to the methods of the symbolic notation, the text advances to a consideration of the theory of one-to-one correspondence. It derives the projective properties of the conic and discusses the representation of these properties by the general equation of the second degree. A study of the relationship between Euclidean and projective geometry concludes the presentation. Nu

  19. Differential geometry

    CERN Document Server

    Graustein, William C

    2006-01-01

    This first course in differential geometry presents the fundamentals of the metric differential geometry of curves and surfaces in a Euclidean space of three dimensions. Written by an outstanding teacher and mathematician, it explains the material in the most effective way, using vector notation and technique. It also provides an introduction to the study of Riemannian geometry.Suitable for advanced undergraduates and graduate students, the text presupposes a knowledge of calculus. The first nine chapters focus on the theory, treating the basic properties of curves and surfaces, the mapping of

  20. Beautiful geometry

    CERN Document Server

    Maor, Eli

    2014-01-01

    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  1. Information geometry

    CERN Document Server

    Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz

    2017-01-01

    The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

  2. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  3. Subtracted geometry

    Science.gov (United States)

    Saleem, Zain Hamid

    In this thesis we study a special class of black hole geometries called subtracted geometries. Subtracted geometry black holes are obtained when one omits certain terms from the warp factor of the metric of general charged rotating black holes. The omission of these terms allows one to write the wave equation of the black hole in a completely separable way and one can explicitly see that the wave equation of a massless scalar field in this slightly altered background of a general multi-charged rotating black hole acquires an SL(2, R) x SL(2, R) x SO(3) symmetry. The "subtracted limit" is considered an appropriate limit for studying the internal structure of the non-subtracted black holes because new 'subtracted' black holes have the same horizon area and periodicity of the angular and time coordinates in the near horizon regions as the original black hole geometry it was constructed from. The new geometry is asymptotically conical and is physically similar to that of a black hole in an asymptotically confining box. We use the different nice properties of these geometries to understand various classically and quantum mechanically important features of general charged rotating black holes.

  4. Optimization of roadways support on El Bierzo (Spain); Optimizacion del Sostenimiento de Galerias en el Bierzo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The aim of this project, carried out between 1993 and 1996, is based on the research of the possibilities for roadways support optimisation in EL BIERZO coal field, which is the carboniferous coal field in Spain where it is the most widespread the use of rock bolting combined with yielding arches as gates support system. This project has been carried out in the GRUPO ESCANDAL of Antracitas de Gaiztarro, at present integrated in Coto Minero del SIL and it has been focused on BIENHALLADA and PERDIZ layers, with the following tasks: I.- Taking of geomechanical data. II.- Setting up of a support calculation system III.- Validation of the calculation system in real situations. IV.- development of a friendly computer programme that can be used by technicians, without any special knowledge on computers, for the design of roadways support in EL BIERZO. This programme, in a very friendly manner, permits to establish the geometrical characteristics of a gate to be excavated in a certain seam and, once defined the geometry of the gate, this programme is able to select the support to be used, by combining fully grouted bolts, wooden chocks and steel arches. (Author)

  5. The Complex Function Method Roadway Section Design of the Soft Coal Seam

    Directory of Open Access Journals (Sweden)

    Shihao Tu

    2016-01-01

    Full Text Available As for the sophisticated advanced support technique of vertical wall semicircle arch roadway in the three-soft coal seam, a design of flat top U-shape roadway section was put forward. Based on the complex function method, the surrounding rock displacement and stress distribution laws both of vertical wall semicircle arch roadway and of flat top U-shape roadway were obtained. The results showed that the displacement distribution laws in the edge of roadway surrounding rock were similar between the two different roadways and the area of plasticity proportion of flat top U-shape roadway approximately equals that of vertical wall semicircle arch roadway. Based on finite element method, the bearing behaviors of the U-type steel support under the interaction of surrounding rock in vertical wall semicircle arch roadway and flat top U-shape roadway were analyzed. The results showed that, from a mechanics perspective, U-type steel support can fulfill the requirement of surrounding rock supporting in flat top U-shape roadway and vertical wall semicircle arch roadway. The field measurement of mining roadway surrounding rock displacement in Zouzhuang coal mine working face 3204 verified the accuracy of theoretical analysis and numerical simulation.

  6. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  7. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B

    2011-01-01

    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  8. Innovative roadway light source and dye combinations to improve visibility and reduce environmental impacts.

    Science.gov (United States)

    2013-04-01

    Sky glow light pollution is caused largely by reflected light off of roadway and other surfaces. The : authors investigated the feasibility of a system consisting of a specialized LED streetlight and a dyebased : roadway surface coating that would re...

  9. Architectural geometry

    NARCIS (Netherlands)

    Pottmann, Helmut; Eigensatz, Michael; Vaxman, A.; Wallner, Johannes

    2015-01-01

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural

  10. Geometry VI

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Geometry VI - Space-the Final Frontier. Kapil H Paranjape. Series Article Volume 1 Issue 8 August 1996 pp 28-33. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/08/0028-0033 ...

  11. Geometry -----------~--------------RESONANCE

    Indian Academy of Sciences (India)

    From a different perspective artists had all along pointed out that parallel lines do meet at the horizon (Figure 1). In fact all pairs of coplanar lines meet and parallel lines .... A more advanced treatment can be found in this book. D Hilbert and S Cohn-Vossen. Geometry and the Imagination. Chelsea, NY,. USA. 1952. A difficult ...

  12. 49 CFR 236.529 - Roadway element inductor; height and distance from rail.

    Science.gov (United States)

    2010-10-01

    ... rail. 236.529 Section 236.529 Transportation Other Regulations Relating to Transportation (Continued...; Roadway § 236.529 Roadway element inductor; height and distance from rail. Inductor of the inert roadway... the rails, and with its inner edge at a hmrizontal distance from the gage side of the nearest running...

  13. The Supporting a Teen's Effective Entry to the Roadway (STEER) Program: Feasibility and Preliminary Support for a Psychosocial Intervention for Teenage Drivers with ADHD

    Science.gov (United States)

    Fabiano, Gregory A.; Hulme, Kevin; Linke, Stuart; Nelson-Tuttle, Chris; Pariseau, Meaghan; Gangloff, Brian; Lewis, Kemper; Pelham, William E.; Waschbusch, Daniel A.; Waxmonsky, James G.; Gormley, Matthew; Gera, Shradha; Buck, Melina

    2011-01-01

    Teenage drivers with attention-deficit/hyperactivity disorder (ADHD) are at considerable risk for negative driving outcomes, including traffic citations, accidents, and injuries. Presently, no efficacious psychosocial interventions exist for teenage drivers with ADHD. The Supporting a Teen's Effective Entry to the Roadway (STEER) program is a…

  14. Riemannian geometry

    CERN Document Server

    Petersen, Peter

    2016-01-01

    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  15. Geometrie coniugate

    Directory of Open Access Journals (Sweden)

    Leonardo Paris

    2012-06-01

    Full Text Available Lo studio degli ingranaggi si basa sulle geometrie coniugate in cui due curve o due superfici si mantengono costantemente in contatto pur se in movimento reciproco. La teoria geometrica degli ingranaggi fino alla fine del XIX secolo era uno dei molteplici rami nelle applicazioni della Geometria Descrittiva. Lo studio si basa sulla conoscenza delle principali proprietà delle curve piane e gobbe e delle loro derivate. La specificità del tema è che queste geometrie nel momento in cui si devono relazionare con le loro coniugate, devono rispettare dei vincoli che altrimenti non avrebbero. Si vuole evidenziare attraverso casi concreti il ruolo della geometria descrittiva nel passaggio dal teorico al pratico riproponendo in chiave informatica, temi e procedure di indagine spesso passati in secondo piano se non addirittura dimenticati.

  16. Spatial geometry and special relativity

    DEFF Research Database (Denmark)

    Kneubil, Fabiana Botelho

    2016-01-01

    In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame-dependent and fr...

  17. PROVIDING SERVICEABILITY OF STRUCTURAL BEARING TYPES FOR ROADWAY BRIDGES

    Directory of Open Access Journals (Sweden)

    R. I. Polyuga

    2010-03-01

    Full Text Available In the article the description of structural bearing types for roadway bridges and their classification is given. Special attention is paid to effective bearings with elastomeric materials – rubber, pot, spherical ones. Characteristic defects of structural bearings and demands of serviceability are noticed.

  18. Louisiana Speaks Transportation Option C Roadway Improvements, UTM Zone 15N NAD 83, Louisiana Recovery Authority (2007), [louisiana_speaks_transportation_option_c_roadway_improvements

    Data.gov (United States)

    Louisiana Geographic Information Center — This GIS shapefile data illustrates the regional roadways included in the Louisiana Speaks community growth option of compact development (Option C). This network...

  19. Louisiana Speaks Transportation Option B Roadway Improvements, UTM Zone 15N NAD 83, Louisiana Recovery Authority (2007), [louisiana_speaks_transportation_option_b_roadway_improvements

    Data.gov (United States)

    Louisiana Geographic Information Center — This GIS shapefile data illustrates the regional roadways included in the Louisiana Speaks community growth option of compact and dispersed development (Option B)....

  20. Louisiana Speaks Transportation Option A Roadway Improvements, UTM Zone 15N NAD 83, Louisiana Recovery Authority (2007), [louisiana_speaks_transportation_option_a_roadway_improvements

    Data.gov (United States)

    Louisiana Geographic Information Center — This GIS shapefile data illustrates the regional roadways included in the Louisiana Speaks Regional Plan community growth option of dispersed development (Option A)....

  1. Support design and practice for floor heave of deeply buried roadway

    Science.gov (United States)

    Liu, Chaoke; Ren, Jianxi; Gao, Bingli; Song, Yongjun

    2017-05-01

    Aiming at the severe floor heave of auxiliary haulage roadway in Jianzhuang Coal Mine, the paper analysed mechanical environment and failure characteristics of auxiliary haulage roadway surrounding rock with the combination of mechanical test, theoretical analysis, industrial test, etc. The mechanical mechanism for deformation and failure of weak rock roadway in Jianzhuang Coal Mine was disclosed by establishing a roadway mechanical model under the effect of even-distributed load, which provided a basis for the design of inverted concrete arch. Based on complex failure mechanism of the roadway, a support method with combined inverted concrete arch and anchor in floor was proposed. The result shows that the ground stress environment has extremely adverse influence on the roadway, and the practice indicates that the floor heave countermeasures can effectively control the floor heave. The obtained conclusion provides a reference for the research and design on control technology of roadway floor heave in the future.

  2. Coal mining with Triple-section extraction process in stagger arrangement roadway layout method

    Science.gov (United States)

    Cui, Zimo; Liu, Baozhu; Zhao, Jingli; Chanda, Emmanuel

    2017-03-01

    This paper introduces the Triple-section extraction process in the three-dimensional roadway layout of stagger arrangement method for longwall top-coal caving mining. This 3-D roadway layout of stagger arrangement method without coal pillars, which arranged the air intake roadway and air return roadway in different horizons, realizing the design theory transformation of roadway layout from 2D system to 3D system. And the paper makes systematic analysis to the geological, technical and economic factors, applies this new mining roadway layout technology for raising coal recovery ratio and solving the problems about full-seam mining in thick coal seam synthetically according to theoretical study and mining practice. Furthermore, the paper presents a physical simulation about inner staggered roadway layout of this particular longwall top-coal caving method.

  3. Differential geometry

    CERN Document Server

    Ciarlet, Philippe G

    2007-01-01

    This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

  4. Spinor Geometry

    Science.gov (United States)

    Nicolaidis, A.; Kiosses, V.

    2012-09-01

    It has been proposed that quantum mechanics and string theory share a common inner syntax, the relational logic of C. S. Peirce. Along this line of thought we consider the relations represented by spinors. Spinor composition leads to the emergence of Minkowski space-time. Inversely, the Minkowski space-time is istantiated by the Weyl spinors, while the merger of two Weyl spinors gives rise to a Dirac spinor. Our analysis is applied also to the string geometry. The string constraints are represented by real spinors, which create a parametrization of the string worldsheet identical to the Enneper-Weierstass representation of minimal surfaces. Further, a spinorial study of the AdS3 space-time reveals a Hopf fibration AdS3 → AdS2. The conformal symmetry inherent in AdS3 is pointed out. Our work indicates the hidden ties between logic-quantum mechanics-string theory-geometry and vindicates the Wheeler's proposal of pregeometry as a large network of logical propositions.

  5. An assessment of roadway capacity estimation methods

    NARCIS (Netherlands)

    Minderhoud, M.M.; Botma, H.; Bovy, P.H.L.

    1996-01-01

    This report is an attempt to describe existing capacity estimation methods with their characteristic data demands and assumptions. After studying the methods, one should have a better idea about the capacity estimation problem which can be encountered in traffic engineering. Moreover, decisions to

  6. Automatic Control System Switching Roadway Lighting

    OpenAIRE

    Agus Trimuji Susilo; Lingga Hermanto Drs. MM

    2002-01-01

    Lack of attention to the information officer street lights, cause is not exactly the timewhen the blame lights street lighting street - the street in this city protocol. And whenit was already dark, the lights had not lit, so it can harm the users of the road. Werecommend that when it got bright lights - the lights switched off late, so muchelectricity is wasted with nothing - nothing.Given the problems above, the automatic switching is required that can control all thelights - the existing l...

  7. Filtration effectiveness of HVAC systems at near-roadway schools.

    Science.gov (United States)

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T

    2013-06-01

    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  8. Evaluation of Life Cycle Assessment (LCA) for Roadway Drainage Systems.

    Science.gov (United States)

    Byrne, Diana M; Grabowski, Marta K; Benitez, Amy C B; Schmidt, Arthur R; Guest, Jeremy S

    2017-08-15

    Roadway drainage design has traditionally focused on cost-effectively managing water quantity; however, runoff carries pollutants, posing risks to the local environment and public health. Additionally, construction and maintenance incur costs and contribute to global environmental impacts. While life cycle assessment (LCA) can potentially capture local and global environmental impacts of roadway drainage and other stormwater systems, LCA methodology must be evaluated because stormwater systems differ from wastewater and drinking water systems to which LCA is more frequently applied. To this end, this research developed a comprehensive model linking roadway drainage design parameters to LCA and life cycle costing (LCC) under uncertainty. This framework was applied to 10 highway drainage projects to evaluate LCA methodological choices by characterizing environmental and economic impacts of drainage projects and individual components (basin, bioswale, culvert, grass swale, storm sewer, and pipe underdrain). The relative impacts of drainage components varied based on functional unit choice. LCA inventory cutoff criteria evaluation showed the potential for cost-based criteria, which performed better than mass-based criteria. Finally, the local aquatic benefits of grass swales and bioswales offset global environmental impacts for four impact categories, highlighting the need to explicitly consider local impacts (i.e., direct emissions) when evaluating drainage technologies.

  9. Numerical studies on surrounding rock deformation controlled by pressure relief groove in deep roadway

    Science.gov (United States)

    Liu, Chaoke; Ren, Jianxi; Zhang, Kun; Chen, Shaojie

    2017-05-01

    After entering deep mining, the roadway is in a high stress state, the deformation of surrounding rock becomes larger, and the roadway floor is particularly significant under unsupported state, which brings great difficulty to the safe production and support of the coal mine. Pressure relief method can change the stress field of surrounding rocks so that the surrounding rock can be in stress-reducing area. The present paper studied the deformation law of the roadway and the changes in the stress state and plastic zone of the surrounding rocks around the roadway before and after the excavation of pressure relief groove on the bottom floor of the high-stress roadway by using FLAC under the engineering background of one mine in Binchang, analyzed the influence of different groove depths and widths on the floor heave, convergence on both sides and roof subsidence. The simulation results show that: after the roadway floor was grooved in the high stress roadway, a larger stress-relaxed area will be formed near the roadway floor, the stress will be transferred to the deep roadway floor, and the pressure relief groove plays a better control effect on the deformation of the high-stress roadway. With the increase of the width and depth of the pressure relief groove, the convergence of the top and bottom of the roadway will be decreased accordingly, but the effect is not significant, while its influence on the convergence on both sides is relatively significant. After applying the simulation results to the engineering practice, the practice shows that: the combined support of anchor rod, anchor rope plus pressure relief groove can control the deformation of the roadway well and the conclusion obtained can provide some reference values for the study and design of the grooving pressure relief control technology.

  10. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N

    2014-01-01

    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  11. Analyzing Potential Grid Impacts from Future In-Motion Roadway Wireless Power Transfer Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Gonder, Jeffrey; Jorgenson, Jennie; Brooker, Aaron

    2017-01-01

    This work examines the grid impact of in-motion roadway wireless power transfer through the examination of the electrification of high-capacity roadways inside a metropolitan area. The work uses data from a regional travel study and the Federal Highway Administration's Highway Performance Monitoring System to estimate the electrified roadway's hourly power use throughout a week. The data are then combined with hourly grid load estimates for the same metropolitan area to determine the overlay of traditional grid load with additional load from a future electrified roadway.

  12. Analyzing Potential Grid Impacts from Future In-Motion Roadway Wireless Power Transfer Scenarios: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Gonder, Jeffrey; Jorgenson, Jennie; Brooker, Aaron

    2016-08-01

    This work examines the grid impact of in-motion roadway wireless power transfer through the examination of the electrification of high-capacity roadways inside a metropolitan area. The work uses data from a regional travel study and the Federal Highway Administration's Highway Performance Monitoring System to estimate the electrified roadway's hourly power use throughout a week. The data are then combined with hourly grid load estimates for the same metropolitan area to determine the overlay of traditional grid load with additional load from a future electrified roadway.

  13. Geometry of numbers

    CERN Document Server

    Gruber, Peter M

    1987-01-01

    This volume contains a fairly complete picture of the geometry of numbers, including relations to other branches of mathematics such as analytic number theory, diophantine approximation, coding and numerical analysis. It deals with convex or non-convex bodies and lattices in euclidean space, etc.This second edition was prepared jointly by P.M. Gruber and the author of the first edition. The authors have retained the existing text (with minor corrections) while adding to each chapter supplementary sections on the more recent developments. While this method may have drawbacks, it has the definit

  14. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B

    2012-01-01

    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  15. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  16. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, Luther Pfahler

    2005-01-01

    This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

  17. Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange : an RPSCB Peer Exchange

    Science.gov (United States)

    2014-08-01

    This report summarizes the Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange, held in Birmingham, Alabama, sponsored by the Federal Highway Administration (FHWA) Office of Safetys Roadway Safety Professi...

  18. Louisiana Speaks Regional Plan Vision New or Improved Roadways, UTM Zone 15N NAD 83, Louisiana Recovery Authority (2007), [louisiana_speaks_vision_roadway_improvements

    Data.gov (United States)

    Louisiana Geographic Information Center — This GIS shapefile data illustrates new or improved roadways included in the Louisiana Speaks Regional Plan Vision. This network accommodates a land use pattern that...

  19. 49 CFR 236.505 - Proper operative relation between parts along roadway and parts on locomotive.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Proper operative relation between parts along... § 236.505 Proper operative relation between parts along roadway and parts on locomotive. Proper operative relation between the parts along the roadway and the parts on the locomotive shall obtain under...

  20. Influence of a Large Pillar on the Optimum Roadway Position in an Extremely Close Coal Seam

    Directory of Open Access Journals (Sweden)

    Li Yang

    2016-01-01

    Full Text Available Based on the mining practice in an extremely close coal seam, theoretical analysis was conducted on the vertical stress distribution of the floor strata under a large coal pillar. The vertical stress distribution regulation of a No. 5 coal seam was revealed. To obtain the optimum position of the roadway that bears the supporting pressure of a large coal pillar, numerical modeling was applied to analyze the relation among the stress distribution of the roadway surrounding the rock that bears the supporting pressure of a large coal pillar, the plastic zone distribution of the roadway surrounding the rock, the surrounding rock deformation, and the roadway layout position. The theoretical calculation results of the stress value, stress variation rate, and influencing range of the stress influencing angle showed that the reasonable malposition of the No. 5 coal seam roadway was an inner malposition of 4 m. The mining practice showed the following: the layout of No. 25301 panel belt roadway at the position of the inner malposition of 4 m was reasonable, the roadway support performance was favourable without deformation, and ground pressure was not obvious. The research achievement of this study is the provision of a reference for roadway layouts under similar conditions.

  1. Federal Highway Administration (FHWA) Roadway Construction Noise Model (RCNM)

    Science.gov (United States)

    Rochat, Judith L.; Reherman, Clay N.

    2005-09-01

    Roadway construction is often conducted in close proximity to residences and businesses and should be controlled and monitored in order to avoid excessive noise impacts. To aid in this process, the Volpe Center Acoustics Facility, in support of the Federal Highway Administration (FHWA), has developed a construction noise screening tool. The FHWA Roadway Construction Noise Model (RCNM) is a newly developed national model for the prediction of construction noise. The model is based on the construction noise prediction spreadsheet developed for the Central Artery/Tunnel Project in Boston, MA (CA/T Project or ``Big Dig'') by Erich Thalheimer of Parsons Brinckerhoff Quade & Douglas, Inc. The CA/T Project is the largest urban construction project ever conducted in the United States and has the most comprehensive noise control specification ever developed in the United States. RCNM incorporates the CA/T Project's noise limit criteria and extensive construction equipment noise database, where these parameters can be modified according to each user's needs. Users can also activate and analyze multiple pieces of equipment simultaneously and define multiple receptor locations, including land-use type and baseline noise levels, where RCNM will calculate sound level results for multiple metrics.

  2. 49 CFR 214.519 - Floors, decks, stairs, and ladders of on-track roadway maintenance machines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Floors, decks, stairs, and ladders of on-track... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.519 Floors, decks, stairs, and ladders of on-track roadway maintenance machines. Floors, decks, stairs, and ladders of on-track roadway...

  3. 49 CFR 214.521 - Flagging equipment for on-track roadway maintenance machines and hi-rail vehicles.

    Science.gov (United States)

    2010-10-01

    ... maintenance machines and hi-rail vehicles. 214.521 Section 214.521 Transportation Other Regulations Relating... WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.521 Flagging equipment for on-track roadway maintenance machines and hi-rail vehicles. Each on-track roadway maintenance machine...

  4. Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream.

    Science.gov (United States)

    Wyckoff, Kristen N; Chen, Si; Steinman, Andrew J; He, Qiang

    2017-09-01

    Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Notes on noncommutative geometry

    OpenAIRE

    Nikolaev, Igor

    2015-01-01

    The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. A brief survey of main parts of noncommutative geometry with historical remarks, bibliography and a list of exercises is attached. Our notes are intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts in the field.

  6. Simulation of Pedestrian Crossing Behaviors at Unmarked Roadways Based on Social Force Model

    Directory of Open Access Journals (Sweden)

    Cao Ningbo

    2017-01-01

    Full Text Available Limited pedestrian microcosmic simulation models focus on the interactions between pedestrians and vehicles at unmarked roadways. Pedestrians tend to head to the destinations directly through the shortest path. So, pedestrians have inclined trajectories pointing destinations. Few simulation models have been established to describe the mechanisms underlying the inclined trajectories when pedestrians cross unmarked roadways. To overcome these shortcomings, achieve solutions for optimal design features before implementation, and help to make the design more rational, the paper establishes a modified social force model for interactions between pedestrians and vehicles at unmarked roadways. To achieve this goal, stop/go decision-making model based on gap acceptance theory and conflict avoidance models were developed to make social force model more appropriate in simulating pedestrian crossing behaviors at unmarked roadways. The extended model enables the understanding and judgment ability of pedestrians about the traffic environment and guides pedestrians to take the best behavior to avoid conflict and keep themselves safe. The comparison results of observed pedestrians’ trajectories and simulated pedestrians’ trajectories at one unmarked roadway indicate that the proposed model can be used to simulate pedestrian crossing behaviors at unmarked roadways effectively. The proposed model can be used to explore pedestrians’ trajectories variation at unmarked roadways and improve pedestrian safety facilities.

  7. Landscaping of highway medians and roadway safety at unsignalized intersections.

    Science.gov (United States)

    Chen, Hongyun; Fabregas, Aldo; Lin, Pei-Sung

    2016-05-01

    Well-planted and maintained landscaping can help reduce driving stress, provide better visual quality, and decrease over speeding, thus improving roadway safety. Florida Department of Transportation (FDOT) Standard Index (SI-546) is one of the more demanding standards in the U.S. for landscaping design criteria at highway medians near intersections. The purposes of this study were to (1) empirically evaluate the safety results of SI-546 at unsignalized intersections and (2) quantify the impacts of geometrics, traffic, and landscaping design features on total crashes and injury plus fatal crashes. The studied unsignalized intersections were divided into (1) those without median trees near intersections, (2) those with median trees near intersections that were compliant with SI-546, and (3) those with median trees near intersections that were non-compliant with SI-546. A total of 72 intersections were selected, for which five-year crash data from 2006-2010 were collected. The sites that were compliant with SI-546 showed the best safety performance in terms of the lowest crash counts and crash rates. Four crash predictive models-two for total crashes and two for injury crashes-were developed. The results indicated that improperly planted and maintained median trees near highway intersections can increase the total number of crashes and injury plus fatal crashes at a 90% confidence level; no significant difference could be found in crash rates between sites that were compliant with SI-546 and sites without trees. All other conditions remaining the same, an intersection with trees that was not compliant with SI-546 had 63% more crashes and almost doubled injury plus fatal crashes than those at intersections without trees. The study indicates that appropriate landscaping in highway medians near intersections can be an engineering technology that not only improves roadway environmental quality but also maintains intersection safety. Copyright © 2016. Published by

  8. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  9. Geometry and its applications

    CERN Document Server

    Meyer, Walter J

    2006-01-01

    Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

  10. Roadway Toll Areas for New York City [NYCBASEMAP.Billboard_Toll

    Data.gov (United States)

    U.S. Environmental Protection Agency — The "Billboard_Toll" dataset is a polygon representation of New York City's roadway Toll Areas, Signs Gantried, Large Billboards and Signs. The data is comprised of...

  11. Development of test scenarios for off-roadway crash countermeasures based on crash statistics

    Science.gov (United States)

    2002-09-01

    This report presents the results from an analysis of off-roadway crashes and proposes a set of crash-imminent scenarios to objectively test countermeasure systems for light vehicles (passenger cars, sport utility vehicles, vans, and pickup trucks) ba...

  12. US Fish and Wildlife Service Roadway Design Guidelines; dated July 2017

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The updated FWS Roadway Design Guidelines present state-of-the- art ecological, planning, design and engineering concepts for project teams to consider for...

  13. Numerical Simulation of Squeezing Failure in a Coal Mine Roadway due to Mining-Induced Stresses

    Science.gov (United States)

    Gao, Fuqiang; Stead, Doug; Kang, Hongpu

    2015-07-01

    Squeezing failure is a common failure mechanism experienced in underground coal mine roadways due mainly to mining-induced stresses, which are much higher than the strength of rock mass surrounding an entry. In this study, numerical simulation was carried out to investigate the mechanisms of roadway squeezing using a novel UDEC Trigon approach. A numerical roadway model was created based on a case study at the Zhangcun coal mine in China. Coal extraction using the longwall mining method was simulated in the model with calculation of the mining-induced stresses. The process of roadway squeezing under severe mining-induced stresses was realistically captured in the model. Deformation phenomena observed in field, including roof sag, wall convexity and failed rock bolts are realistically produced in the UDEC Trigon model.

  14. Pilot study : rolling wheel deflectometer, falling weight deflectometer, and ground penetrating radar on New Hampshire roadways.

    Science.gov (United States)

    2011-02-01

    The New Hampshire Department of Transportation Pavement Management Sections scope of work includes monitoring, evaluating, and : sometimes forecasting the condition of New Hampshires 4,560 miles of roadway network in order to provide guidance o...

  15. A probability-based approach for assessment of roadway safety hardware.

    Science.gov (United States)

    2017-03-14

    This report presents a general probability-based approach for assessment of roadway safety hardware (RSH). It was achieved using a reliability : analysis method and computational techniques. With the development of high-fidelity finite element (FE) m...

  16. Applying instructional design practices to evaluate and improve the roadway characteristics inventory (RCI) training curriculum.

    Science.gov (United States)

    2010-07-01

    The Transportation Statistics Office (TranStat) of the Florida Department of Transportation (FDOT) provides training for district data collection technicians in both office- and field-based Roadway Characteristics Inventory (RCI) methods. The current...

  17. Applying instructional design practices to evaluate and improve the roadway characteristics inventory (RCI) training curriculum : [summary].

    Science.gov (United States)

    2010-01-01

    The Roadway Characteristics Inventory (RCI) is one of FDOTs largest databases, including over 2 million records. The RCI contains data for several hundred features and characteristics representing geometric, operational, and administrative data re...

  18. Calculation of the Chilling Requirement for Air Conditioning in the Excavation Roadway

    Directory of Open Access Journals (Sweden)

    Yueping Qin

    2015-10-01

    Full Text Available To effectively improve the climate conditions of the excavation roadway in coal mine, the calculation of the chilling requirement taking air conditioning measures is extremely necessary. The temperature field of the surrounding rock with moving boundary in the excavation roadway was numerically simulated by using finite volume method. The unstable heat transfer coefficient between the surrounding rock and air flow was obtained via the previous calculation. According to the coupling effects of the air flow inside and outside air duct, the differential calculation mathematical model of air flow temperature in the excavation roadway was established. The chilling requirement was calculated with the selfdeveloped computer program for forecasting the required cooling capacity of the excavation roadway. A good air conditioning effect had been observed after applying the calculated results to field trial, which indicated that the prediction method and calculation procedure were reliable.

  19. The effects of roadway characteristics on farm equipment crashes: a geographic information systems approach

    OpenAIRE

    Greenan, Mitchell; Toussaint, Maisha; Peek-Asa, Corinne; Rohlman, Diane; Ramirez, Marizen R.

    2016-01-01

    Background Tractors and other slow-moving self-propelled farm equipment are often used on public roadway to transfer goods from the farm to a market or distributer. Increased roadway exposure has led to a growing concern on the occurrence of farm equipment crashes. This study aims to compare characteristics of road segments with farm equipment crashes to road segments without farm equipment crashes in the state of Iowa. Methods Data were obtained from the Iowa Department of Transportation fro...

  20. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock.

    Science.gov (United States)

    Li, Qinghai; Shi, Weiping; Yang, Renshu

    2016-01-01

    The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.

  1. Deformation and Failure Mechanism of Roadway Sensitive to Stress Disturbance and Its Zonal Support Technology

    Directory of Open Access Journals (Sweden)

    Qiangling Yao

    2016-01-01

    Full Text Available The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD. We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.

  2. Influence of roadway geometric elements on driver behavior when overtaking bicycles on rural roads

    Directory of Open Access Journals (Sweden)

    Jeremy R. Chapman

    2014-02-01

    Full Text Available The objective of this research was to determine what influence geometric design elements of roadway may have on driver behavior during the overtaking maneuver. This was part of a larger research effort to eliminate crashes (and the resulting fatalities and injuries between bicycles and motorized vehicles. The data collection process produced 1151 observations with approximately 40 different independent variables for each data point through direct observation, sensor logging, or derivation from other independent variables. Prior research by the authors developed a means to collect real-time field data through the use of a bicycle-mounted data collection system. The collected data was then used to model lateral clearance distance between vehicles and bicycles. The developed model confirmed field observations that the lateral clearance distance provided by drivers changes with vehicle speed and oncoming vehicle presence. These observations were presented by the authors previously. The model shows that driver behavior can be adjusted by the inclusion, or exclusion, of geometric elements. Evaluating roadways (or roadway designs based on this model will enable stakeholders to identify those roadway segments where a paved shoulder would prove an effective safety countermeasure. This research will also enable roadway designers to better identify during the design phase those roadway segments that should be constructed with a paved shoulder.

  3. Affine and Projective Geometry

    CERN Document Server

    Bennett, M K

    1995-01-01

    An important new perspective on AFFINE AND PROJECTIVE GEOMETRY. This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory

  4. Geometry essentials for dummies

    CERN Document Server

    Ryan, Mark

    2011-01-01

    Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque

  5. The Geometry Conference

    CERN Document Server

    Bárány, Imre; Vilcu, Costin

    2016-01-01

    This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.

  6. Methods of Geometry

    CERN Document Server

    Smith, James T

    2000-01-01

    A practical, accessible introduction to advanced geometry Exceptionally well-written and filled with historical and bibliographic notes, Methods of Geometry presents a practical and proof-oriented approach. The author develops a wide range of subject areas at an intermediate level and explains how theories that underlie many fields of advanced mathematics ultimately lead to applications in science and engineering. Foundations, basic Euclidean geometry, and transformations are discussed in detail and applied to study advanced plane geometry, polyhedra, isometries, similarities, and symmetry. An

  7. Revolutions of Geometry

    CERN Document Server

    O'Leary, Michael

    2010-01-01

    Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull

  8. Euclidean geometry and transformations

    CERN Document Server

    Dodge, Clayton W

    1972-01-01

    This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.

  9. Fundamental concepts of geometry

    CERN Document Server

    Meserve, Bruce E

    1983-01-01

    Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.

  10. Geometry Professionalized for Teachers.

    Science.gov (United States)

    Christofferson, Halbert Carl

    Written in 1933, this book grew out of the author's concern that college matehmatics sequences of the day, although appropriate in algebra preparation, did not adequately prepare teachers of geometry. This book describes a course intended to remedy this by providing for both a comprehensive study of geometry as an axiomatically defined structure…

  11. Foundations of algebraic geometry

    CERN Document Server

    Weil, A

    1946-01-01

    This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.

  12. Geometry + Technology = Proof

    Science.gov (United States)

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  13. Designs and finite geometries

    CERN Document Server

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  14. Supersymmetric Sigma Model Geometry

    Directory of Open Access Journals (Sweden)

    Ulf Lindström

    2012-08-01

    Full Text Available This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyperkähler reduction; projective superspace; the generalized Legendre construction; generalized Kähler geometry and constructions of hyperkähler metrics on Hermitian symmetric spaces.

  15. A Lorentzian quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Grotz, Andreas

    2011-10-07

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  16. Wormhole inspired by non-commutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Karmakar, Sreya, E-mail: sreya.karmakar@gmail.com [Department of Physics, Calcutta Institute of Engineering and Management, Kolkata 700040, West Bengal (India); Karar, Indrani, E-mail: indrani.karar08@gmail.com [Department of Mathematics, Saroj Mohan Institute of Technology, Guptipara, West Bengal (India); Ray, Saibal, E-mail: saibal@iucaa.ernet.in [Department of Physics, Government College of Engineering & Ceramic Technology, Kolkata 700010, West Bengal (India)

    2015-06-30

    In the present Letter we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV). A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this letter is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitational object without smearing effect. It is found through this investigation that wormhole solutions exist in this Lorentzian distribution with viable physical properties.

  17. Wormhole inspired by non-commutative geometry

    Directory of Open Access Journals (Sweden)

    Farook Rahaman

    2015-06-01

    Full Text Available In the present Letter we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV. A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this letter is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitational object without smearing effect. It is found through this investigation that wormhole solutions exist in this Lorentzian distribution with viable physical properties.

  18. 2009 Human Factors and Roadway Safety Workshop : Opening Session [SD .WMV (720x480/29fps/546.0 MB)

    Science.gov (United States)

    2009-11-05

    Iowa Department of Transportation Research and Technology Bureau video presentation from the 2009 human factors and roadway safety workshop session titled: 2009 Human Factors and Roadway Safety Workshop Opening Session : Sandra Larson, director, Iowa...

  19. Residential Proximity to Major Roadways and Risk of Type 2 Diabetes Mellitus: A Meta-Analysis.

    Science.gov (United States)

    Zhao, Zhiqing; Lin, Faying; Wang, Bennett; Cao, Yihai; Hou, Xu; Wang, Yangang

    2016-12-22

    Research indicates that higher levels of traffic-related pollution exposure increase the risk of diabetes, but the association between road proximity and diabetes risk remains unclear. To assess and quantify the association between residential proximity to major roadways and type 2 diabetes, a systematic review and meta-analysis was performed. Embase, Medline, and Web of Science were searched for eligible studies. Using a random-effects meta-analysis, the summary relative risks (RRs) were calculated. Bayesian meta-analysis was also performed. Eight studies (6 cohort and 2 cross-sectional) with 158,576 participants were finally included. The summary unadjusted RR for type 2 diabetes associated with residential proximity to major roadways was 1.24 (95% confidence interval [CI]: 1.07-1.44, p = 0.001, I² = 48.1%). The summary adjusted RR of type 2 diabetes associated with residential proximity to major roadways was 1.12 (95% CI: 1.03-1.22, p = 0.01, I² = 17.9%). After excluding two cross-sectional studies, the summary results suggested that residential proximity to major roadways could increase type 2 diabetes risk (Adjusted RR = 1.13; 95% CI: 1.02-1.27, p = 0.025, I² = 36.6%). Bayesian meta-analysis showed that the unadjusted RR and adjusted RR of type 2 diabetes associated with residential proximity to major roadways were 1.22 (95% credibility interval: 1.06-1.55) and 1.13 (95% credibility interval: 1.01-1.31), respectively. The meta-analysis suggested that residential proximity to major roadways could significantly increase risk of type 2 diabetes, and it is an independent risk factor of type 2 diabetes. More well-designed studies are needed to further strengthen the evidence.

  20. 49 CFR 1242.15 - Roadway, tunnels and subways, bridges and culverts, ties, rails, other track material, ballast...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Roadway, tunnels and subways, bridges and culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged... RAILROADS 1 Operating Expenses-Way and Structures § 1242.15 Roadway, tunnels and subways, bridges and...

  1. 49 CFR 214.525 - Towing with on-track roadway maintenance machines or hi-rail vehicles.

    Science.gov (United States)

    2010-10-01

    ... or hi-rail vehicles. 214.525 Section 214.525 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.525 Towing with on-track roadway maintenance machines or hi-rail vehicles. (a) When used to tow pushcars or other maintenance-of-way equipment...

  2. 23 CFR 661.51 - Can IRRBP funds be used for the approach roadway to a bridge?

    Science.gov (United States)

    2010-04-01

    ... bridge? 661.51 Section 661.51 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.51 Can IRRBP funds be used for the approach roadway to a bridge? (a) Yes, costs associated with approach roadway work, as defined in...

  3. Non-Euclidean geometry

    CERN Document Server

    Kulczycki, Stefan

    2008-01-01

    This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff

  4. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  5. The geometry of musical chords.

    Science.gov (United States)

    Tymoczko, Dmitri

    2006-07-07

    A musical chord can be represented as a point in a geometrical space called an orbifold. Line segments represent mappings from the notes of one chord to those of another. Composers in a wide range of styles have exploited the non-Euclidean geometry of these spaces, typically by using short line segments between structurally similar chords. Such line segments exist only when chords are nearly symmetrical under translation, reflection, or permutation. Paradigmatically consonant and dissonant chords possess different near-symmetries and suggest different musical uses.

  6. An invitation to noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2008-01-01

    This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke

  7. Geometry without topology as a new conception of geometry

    Directory of Open Access Journals (Sweden)

    Yuri A. Rylov

    2002-01-01

    geometry. In T-geometry, any space region is isometrically embeddable in the space, whereas in Riemannian geometry only convex region is isometrically embeddable. T-geometric conception appears to be more consistent logically, than the Riemannian one.

  8. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  9. Invitation to geometry

    CERN Document Server

    Melzak, Z A

    2008-01-01

    Intended for students of many different backgrounds with only a modest knowledge of mathematics, this text features self-contained chapters that can be adapted to several types of geometry courses. 1983 edition.

  10. Lectures on Symplectic Geometry

    CERN Document Server

    Silva, Ana Cannas

    2001-01-01

    The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...

  11. Introduction to tropical geometry

    CERN Document Server

    Maclagan, Diane

    2015-01-01

    Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...

  12. Geometry of differential equations

    CERN Document Server

    Khovanskiĭ, A; Vassiliev, V

    1998-01-01

    This volume contains articles written by V. I. Arnold's colleagues on the occasion of his 60th birthday. The articles are mostly devoted to various aspects of geometry of differential equations and relations to global analysis and Hamiltonian mechanics.

  13. Geometry-controlled kinetics.

    Science.gov (United States)

    Bénichou, O; Chevalier, C; Klafter, J; Meyer, B; Voituriez, R

    2010-06-01

    It has long been appreciated that the transport properties of molecules can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target-the first-passage time (FPT). Determining the FPT distribution in realistic confined geometries has until now, however, seemed intractable. Here, we calculate this FPT distribution analytically and show that transport processes as varied as regular diffusion, anomalous diffusion, and diffusion in disordered media and fractals, fall into the same universality classes. Beyond the theoretical aspect, this result changes our views on standard reaction kinetics and we introduce the concept of 'geometry-controlled kinetics'. More precisely, we argue that geometry-and in particular the initial distance between reactants in 'compact' systems-can become a key parameter. These findings could help explain the crucial role that the spatial organization of genes has in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.

  14. The geometry of geodesics

    CERN Document Server

    Busemann, Herbert

    2005-01-01

    A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.

  15. Geometry and Combinatorics

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2002-01-01

    The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...

  16. Elementary differential geometry

    CERN Document Server

    Pressley, Andrew

    2001-01-01

    Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques It is a subject that contains some of the most beautiful and profound results in mathematics yet many of these are accessible to higher-level undergraduates Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there The book will provide an invaluable resource to all those taking a first course in differential geometry, for their lecture...

  17. d-geometries revisited

    CERN Document Server

    Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio

    2013-01-01

    We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.

  18. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  19. SOC and Fractal Geometry

    Science.gov (United States)

    McAteer, R. T. J.

    2013-06-01

    When Mandelbrot, the father of modern fractal geometry, made this seemingly obvious statement he was trying to show that we should move out of our comfortable Euclidean space and adopt a fractal approach to geometry. The concepts and mathematical tools of fractal geometry provides insight into natural physical systems that Euclidean tools cannot do. The benet from applying fractal geometry to studies of Self-Organized Criticality (SOC) are even greater. SOC and fractal geometry share concepts of dynamic n-body interactions, apparent non-predictability, self-similarity, and an approach to global statistics in space and time that make these two areas into naturally paired research techniques. Further, the iterative generation techniques used in both SOC models and in fractals mean they share common features and common problems. This chapter explores the strong historical connections between fractal geometry and SOC from both a mathematical and conceptual understanding, explores modern day interactions between these two topics, and discusses how this is likely to evolve into an even stronger link in the near future.

  20. Moving KML geometry elements within Google Earth

    Science.gov (United States)

    Zhu, Liang-feng; Wang, Xi-feng; Pan, Xin

    2014-11-01

    During the process of modeling and visualizing geospatial information on the Google Earth virtual globe, there is an increasing demand to carry out such operations as moving geospatial objects defined by KML geometry elements horizontally or vertically. Due to the absence of the functionality and user interface for performing the moving transformation, it is either hard or impossible to interactively move multiple geospatial objects only using the existing Google Earth desktop application, especially when the data sets are in large volume. In this paper, we present a general framework and associated implementation methods for moving multiple KML geometry elements within Google Earth. In our proposed framework, we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from the imported KML objects. Subsequently, we interactively control the movement distance along a specified orientation by employing a custom user interface, calculate the transformed geographic location for each KML geometry element, and adjust geographic coordinates of the points in each KML objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D visualization and spatial analysis. A key advantage of the proposed framework is that it provides a simple, uniform and efficient user interface for moving multiple KML geometry elements within Google Earth. More importantly, the proposed framework and associated implementations can be conveniently integrated into other customizable Google Earth applications to support interactively visualizing and analyzing geospatial objects defined by KML geometry elements.

  1. Multi-pollutant mobile platform measurements of air pollutants adjacent to a major roadway

    Science.gov (United States)

    Riley, Erin A.; Banks, Lyndsey; Fintzi, Jonathan; Gould, Timothy R.; Hartin, Kris; Schaal, LaNae; Davey, Mark; Sheppard, Lianne; Larson, Timothy; Yost, Michael G.; Simpson, Christopher D.

    2014-12-01

    A mobile monitoring platform developed at the University of Washington Center for Clean Air Research (CCAR) measured 10 pollutant metrics (10 s measurements at an average speed of 22 km/h) in two neighborhoods bordering a major interstate in Albuquerque, NM, USA from April 18-24 2012. 5 days of data sharing a common downwind orientation with respect to the roadway were analyzed. The aggregate results show a three-fold increase in black carbon (BC) concentrations within 10 m of the edge of roadway, in addition to elevated nanoparticle concentration and particulate matter with aerodynamic diameter pollutants measured have been expanded to include polycyclic aromatic hydrocarbons (PAH), particle size distribution (0.25-32 μm), and ultra-violet absorbing particulate matter (UVPM). The raster sampling scheme combined with spatial and temporal measurement alignment provide a measure of variability in the near roadway concentrations, and allow us to use a principal component analysis to identify multi-pollutant features and analyze their roadway influences.

  2. Research and application on the horizontal tectonic stress influence on the stability of deep roadway

    Science.gov (United States)

    CAO, Jian-jun; YAO, Zhuang-zhuang

    2017-04-01

    According to the test result of ground stress of -817.0m Horizontal shaft station in Huainan mine area, the stress field distribution characteristic of mainly with horizontal tectonic stress was analyzed, the deep roadway surrounding rock deformation and failure regularity under the situation of the maximum horizontal stress and roadway axis in the different angle were studied by using the FLAC3D simulation software, and then specific way of supporting and its parameters were designed combined with the shaft station layout conditions. The result shows that: the roadway stability is relatively good when its tunnel axis the maximum horizontal stress direction within 30° angle, surrounding rock deformation and the plastic zone at the top and bottom are significantly increasing along with the angle increased from 30° to 90°, the major form of deep soft rock deformation and failure is the floor heave. According to the simulation results, the conditions under the layout condition of the shaft station roadway, support methods and support parameters have been designed and determined. The supporting method can be referenced by the similar mines.

  3. Community-LINE Source Model (C-LINE) to estimate roadway emissions

    Science.gov (United States)

    C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.

  4. Dust captures effectiveness of scrubber systems on mechanical miners operating in larger roadways.

    CSIR Research Space (South Africa)

    Hole, BJ

    1998-03-01

    Full Text Available The project was directed towards bord and pillar working by mechanised miners operating in larger section roadways, where the problem of scrubber capture tends to be greatest owing to the limited size of the zone of influence around exhaust...

  5. EXIST Perspective for SFXTs

    Science.gov (United States)

    Ubertini, Pietro; Sidoli, L.; Sguera, V.; Bazzano, A.

    2009-12-01

    Supergiant Fast X-ray Transients (SFXTs) are one of the most interesting (and unexpected) results of the INTEGRAL mission. They are a new class of HMXBs displaying short hard X-ray outbursts (duration less tha a day) characterized by fast flares (few hours timescale) and large dinamic range (10E3-10E4). The physical mechanism driving their peculiar behaviour is still unclear and highly debated: some models involve the structure of the supergiant companion donor wind (likely clumpy, in a spherical or non spherical geometry) and the orbital properties (wide separation with eccentric or circular orbit), while others involve the properties of the neutron star compact object and invoke very low magnetic field values (B 1E14 G, magnetars). The picture is still highly unclear from the observational point of view as well: no cyclotron lines have been detected in the spectra, thus the strength of the neutron star magnetic field is unknown. Orbital periods have been measured in only 4 systems, spanning from 3.3 days to 165 days. Even the duty cycle seems to be quite different from source to source. The Energetic X-ray Imaging Survey Telescope (EXIST), with its hard X-ray all-sky survey and large improved limiting sensitivity, will allow us to get a clearer picture of SFXTs. A complete census of their number is essential to enlarge the sample. A long term and continuous as possible X-ray monitoring is crucial to -(1) obtain the duty cycle, -(2 )investigate their unknown orbital properties (separation, orbital period, eccentricity),- (3) to completely cover the whole outburst activity, (4)-to search for cyclotron lines in the high energy spectra. EXIST observations will provide crucial informations to test the different models and shed light on the peculiar behaviour of SFXTs.

  6. Sources of hyperbolic geometry

    CERN Document Server

    Stillwell, John

    1996-01-01

    This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...

  7. Predicting admissions for childhood asthma based on proximity to major roadways.

    Science.gov (United States)

    Newcomb, Patricia; Li, Jianling

    2008-01-01

    This retrospective study is an investigation of the relationship between traffic exposure and childhood asthma exacerbations in a previously unstudied geographic area. We hypothesized that, controlling for selected demographic and social factors, exposure to traffic emissions would allow the prediction of hospital utilization for children with asthma. Using hospital and emergency department (ED) records, we investigated the relationship between proximity to major roadways and admissions for asthma exacerbations in the Fort Worth metropolitan area, designated as not attaining federal air health standards. The sample included 2,357 children from 1 to 12 years of age admitted for emergency or inpatient treatment in a 288-bed, nonprofit children's medical center in Fort Worth, Texas from January 1, 2004 to December 31, 2005. Data were analyzed using GIS mapping and logistic regression. Deidentification data were collected from hospital databases after IRB approval and waiver of parental permission or patient consent. Student's t test was used to compare groups with and without primary asthma diagnosis on admission in respect to distance from major roadways. Logistic regression was used to model relationships between asthma admission and patients' characteristics, exposure to traffic, and social environment. Controlling for several demographic factors, asthma occurrences were positively related to traffic exposures. On average, patients with asthma lived closer to major roadways than did patients who did not have asthma. Patients with asthma also tended to live in neighborhoods with more roads than did those who did not have asthma; 3/4 of the children admitted for asthma during the study period and less than 1/3 of the children admitted for nonasthma diagnoses lived within 1,500 meters of a major roadway (p=.0001). Controlling for other factors, every meter increase in proximity to major roadways produced 0.1% increase in likelihood of admission. Knowledge of risk

  8. Sensitivity Analysis of Mechanical Parameters of Different Rock Layers to the Stability of Coal Roadway in Soft Rock Strata

    Science.gov (United States)

    Zhao, Zeng-hui; Wang, Wei-ming; Gao, Xin; Yan, Ji-xing

    2013-01-01

    According to the geological characteristics of Xinjiang Ili mine in western area of China, a physical model of interstratified strata composed of soft rock and hard coal seam was established. Selecting the tunnel position, deformation modulus, and strength parameters of each layer as influencing factors, the sensitivity coefficient of roadway deformation to each parameter was firstly analyzed based on a Mohr-Columb strain softening model and nonlinear elastic-plastic finite element analysis. Then the effect laws of influencing factors which showed high sensitivity were further discussed. Finally, a regression model for the relationship between roadway displacements and multifactors was obtained by equivalent linear regression under multiple factors. The results show that the roadway deformation is highly sensitive to the depth of coal seam under the floor which should be considered in the layout of coal roadway; deformation modulus and strength of coal seam and floor have a great influence on the global stability of tunnel; on the contrary, roadway deformation is not sensitive to the mechanical parameters of soft roof; roadway deformation under random combinations of multi-factors can be deduced by the regression model. These conclusions provide theoretical significance to the arrangement and stability maintenance of coal roadway. PMID:24459447

  9. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    Science.gov (United States)

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  10. Geometry of hypersurfaces

    CERN Document Server

    Cecil, Thomas E

    2015-01-01

    This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...

  11. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  12. Lectures on discrete geometry

    CERN Document Server

    2002-01-01

    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  13. Geometry and Cloaking Devices

    Science.gov (United States)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  14. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  15. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, L P

    1927-01-01

    The use of the differential geometry of a Riemannian space in the mathematical formulation of physical theories led to important developments in the geometry of such spaces. The concept of parallelism of vectors, as introduced by Levi-Civita, gave rise to a theory of the affine properties of a Riemannian space. Covariant differentiation, as developed by Christoffel and Ricci, is a fundamental process in this theory. Various writers, notably Eddington, Einstein and Weyl, in their efforts to formulate a combined theory of gravitation and electromagnetism, proposed a simultaneous generalization o

  16. Geometry in everyday life

    OpenAIRE

    Graumann, Günter; Blum, Werner

    1989-01-01

    My conception of "practice-oriented-mathematical-education", which must be seen as one point of view side-by-side with others, has the aim to qualify pupils to master life and is based on a method of working on problems which are true to life. Therefore I plead for geometry teaching, where the formation of sound geometric concepts and the relevance of applications of geometry in everyday life is important. After discussing this conception a schedule of activities of everyday life where geomet...

  17. Geometry of manifolds

    CERN Document Server

    Bishop, Richard L

    2001-01-01

    First published in 1964, this book served as a text on differential geometry to several generations of graduate students all over the world. The first half of the book (Chapters 1-6) presents basics of the theory of manifolds, vector bundles, differential forms, and Lie groups, with a special emphasis on the theory of linear and affine connections. The second half of the book (Chapters 7-11) is devoted to Riemannian geometry. Following the definition and main properties of Riemannian manifolds, the authors discuss the theory of geodesics, complete Riemannian manifolds, and curvature. Next, the

  18. Implosions and hypertoric geometry

    DEFF Research Database (Denmark)

    Dancer, A.; Kirwan, F.; Swann, A.

    2013-01-01

    The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....

  19. Foundations of Basic Geometry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. Foundations of Basic Geometry. Jasbir S Chahal. General Article Volume 11 Issue 7 July 2006 pp 30-41. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/011/07/0030-0041. Keywords. Area ...

  20. Non-euclidean geometry

    CERN Document Server

    Coxeter, HSM

    1965-01-01

    This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.

  1. Diophantine geometry an introduction

    CERN Document Server

    Hindry, Marc

    2000-01-01

    This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

  2. Towards relativistic quantum geometry

    Directory of Open Access Journals (Sweden)

    Luis Santiago Ridao

    2015-12-01

    Full Text Available We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  3. Calculus and Geometry

    Indian Academy of Sciences (India)

    IAS Admin

    face area and perimeter of various shapes like sphere, cone, cylinder and circle. But an equally important geo- metric object `torus' { a shape like a scooter tube or a doughnut { is not discussed in school geometry. This is perhaps due to the non availability of this shape at the time when Archimedes (287 BC{212 BC) was ...

  4. Geometry Euclid and beyond

    CERN Document Server

    Hartshorne, Robin

    2000-01-01

    In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...

  5. History of analytic geometry

    CERN Document Server

    Boyer, Carl B

    2012-01-01

    Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.

  6. Geometry and physics

    Science.gov (United States)

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  7. Geometry and physics

    NARCIS (Netherlands)

    Atiyah, M.; Dijkgraaf, R.; Hitchin, N.

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology.

  8. Algebraic geometry in India

    Indian Academy of Sciences (India)

    revolutionised by the introduction of new con- cepts and techniques by Grothendieck and others; this progress has been instrumental in solving outstanding and famous problems not only in algebraic geometry but also in related fields like number theory. Mathematicians from India have made influ- ential and extensive ...

  9. Origami, Geometry and Art

    Science.gov (United States)

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  10. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  11. 49 CFR 214.509 - Required visual illumination and reflective devices for new on-track roadway maintenance machines.

    Science.gov (United States)

    2010-10-01

    ... TRANSPORTATION RAILROAD WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.509... lighting is otherwise provided; (c) An operative 360-degree intermittent warning light or beacon mounted on...

  12. An analysis of the direct and indirect costs of utility and right-of-way conflicts on construction roadway projects.

    Science.gov (United States)

    2006-08-01

    Utility conflicts are unfortunately a common occurrence on many roadway projects. This report examines the frequency and severity of utility conflicts both within and outside of Kentucky. Understanding which type of utility conflicts most likely occu...

  13. Pathfinder to EXIST: ProtoEXIST

    Science.gov (United States)

    Garson, A. B., III; Allen, B.; Baker, R. G.; Barthelmy, S. D.; Burke, M.; Burnham, J.; Chammas, N.; Collins, J.; Cook, W. R.; Copete, A.; Gehrels, N.; Gauron, T.; Grindlay, J.; Harrison, F. A.; Hong, J.; Howell, J.; Krawczynski, H.; Labov, S.; Said, B.; Sheikh Sheikh, S.

    2008-04-01

    We describe the ProtoEXIST instrument, our fist-generation wide-field hard X-ray imaging (20 - 600 keV) balloon-borne telescope. The ProtoEXIST program is a pathfinder for the Energetic X-ray Imaging Survey Telescope (EXIST), a candidate for the Black Hole Finder Probe. ProtoEXIST consists of two independent coded-aperture telescopes using pixellated (2.5mm pitch) CZT detectors. The two telescopes will provide performance comparison of two shielding configurations, for optimization of the EXIST design. We report on the science goals and designs of both ProtoEXIST and EXIST and their implications for hard X-ray astronomy and astrophysics.

  14. The Impact of the Low Throw Fault on the Stability of Roadways in a Hard Coal Mine

    Directory of Open Access Journals (Sweden)

    Małkowski Piotr

    2017-03-01

    Full Text Available Ensuring roadways stability in hard coal mines is one of the main challenges faced by engineers. A changeable geological structure have caused the roadway’s conditions to vary, thus influencing its stability. One of the causes of those changes is the presence of a previously undiscovered fault zone (small faults crossed the roadway within which a significant convergence or support deformation may occur.

  15. Failure Mechanism Analysis and Support Design for Deep Composite Soft Rock Roadway: A Case Study of the Yangcheng Coal Mine in China

    Directory of Open Access Journals (Sweden)

    Bangyou Jiang

    2015-01-01

    Full Text Available This paper presented a case study of the failure mechanisms and support design for deep composite soft rock roadway in the Yangcheng Coal Mine of China. Many experiments and field tests were performed to reveal the failure mechanisms of the roadway. It was found that the surrounding rock of the roadway was HJS complex soft rock that was characterized by poor rock quality, widespread development of joint fissures, and an unstable creep property. The major horizontal stress, which was almost perpendicular to the roadway, was 1.59 times larger than the vertical stress. The weak surrounding rock and high tectonic stress were the main internal causes of roadway instabilities, and the inadequate support was the external cause. Based on the failure mechanism, a new support design was proposed that consisted of bolting, cable, metal mesh, shotcrete, and grouting. A field experiment using the new design was performed in a roadway section approximately 100 m long. Detailed deformation monitoring was conducted in the experimental roadway sections and sections of the previous roadway. The monitoring results showed that deformations of the roadway with the new support design were reduced by 85–90% compared with those of the old design. This successful case provides an important reference for similar soft rock roadway projects.

  16. Study on the collision detection method between the 2-arm drill rig arms and the roadway

    Directory of Open Access Journals (Sweden)

    Fuxiang ZHANG

    2015-12-01

    Full Text Available In order to achieve the automation drilling of the improved CMJ2-27 drill, kinematic analysis of the drill rig is conducted aiming the collision between the arms and the roadway during the operation process. By suing the Denavit-Hartenberg (D-H method, the transformation matrix of coordinate system is obtained, then the coordinates of each joint and the ends are derived. The collision detection approach between the arm and the roadway is given. Theoretical calculation and the motion simulation experiment are conducted by using the detection method for a 88-hole drilling program for a mine. The research results show that the method is feasible and has the characteristics of simple procedures and high efficiency.

  17. Influence of ventilation on hearing of speech in an underground roadway

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, H.; Isei, T.; Kunimatsu, S.; Tanaka, A. [National Inst. for Resources and Environment, Tsukuba (Japan); Kinoshita, M.; Tanaka, M. [Coal Mine Research Center, Kyushu, Fukuoka (Japan)

    1994-11-25

    The influence of ventilation on hearing of speech was studied experimentally in an underground roadway. The noise generated by interaction between a human pinna and wind was measured at two different wind velocities using the dummy head equipped with an ear simulator, and articulation tests were also conducted on test subjects in both a roadway and connected adit. Speech transmitted was measured through the dummy head and a microphone, and its syllables were analyzed by wavelet transform. The influence of a wind velocity on the articulation test results was studied by arranging the analytical results based on the relative relation among a sound source, wind direction and ear. The articulation test results were finally rearranged from the viewpoint of the influence of the noise generated by interaction between a human pinna and wind on speech obtained, and the relation between formants with ending vowels composing each syllable and the frequency components of the noise. 9 refs., 11 figs.

  18. A positioning-tolerant wireless charging system for roadway-powered electric vehicles

    Science.gov (United States)

    Zhang, Zhen; Chau, K. T.; Liu, Chunhua; Qiu, Chun; Ching, T. W.

    2015-05-01

    This paper proposes a positioning-tolerant wireless power transfer technique to compensate the impact of misalignment on the power transmission performance, which is used to implement the wireless charging functionality in a free-positioning manner, thus significantly improving the practicality for roadway-powered electric vehicles (EVs). The key of the proposed wireless power transfer technique is to adopt the gapless alternate-winding topology for the power supply unit to produce an evenly distributed electromagnetic field and the vertical-and-horizontal coil design for the pickup unit to enhance the capability of acquiring energy. Hence, the power transmission can be effectively improved in spite of an offset between the centers of the primary and secondary coils. In this paper, both the computational simulation and experimentation are carried out to verify the feasibility of the proposed positioning-tolerant wireless charging system for roadway-powered EVs.

  19. Curved geometry and Graphs

    CERN Document Server

    Caravelli, Francesco

    2011-01-01

    Quantum Graphity is an approach to quantum gravity based on a background independent formulation of condensed matter systems on graphs. We summarize recent results obtained on the notion of emergent geometry from the point of view of a particle hopping on the graph. We discuss the role of connectivity in emergent Lorentzian perturbations in a curved background and the Bose--Hubbard (BH) model defined on graphs with particular symmetries.

  20. Algebra, Arithmetic, and Geometry

    CERN Document Server

    Tschinkel, Yuri

    2009-01-01

    The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont

  1. Emergent geometry, emergent forces

    Science.gov (United States)

    Selesnick, S. A.

    2017-10-01

    We give a brief account of some aspects of Finkelstein’s quantum relativity, namely an extension of it that derives elements of macroscopic geometry and the Lagrangians of the standard model including gravity from a presumed quantum version of spacetime. These emerge as collective effects in this quantal substrate. Our treatment, which is largely self-contained, differs mathematically from that originally given by Finkelstein. Dedicated to the memory of David Ritz Finkelstein

  2. Integral geometry and valuations

    CERN Document Server

    Solanes, Gil

    2014-01-01

    Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...

  3. Emergent complex network geometry.

    Science.gov (United States)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-05-18

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.

  4. Study on Load-displacement Test of Rubber Pads of Coal Mine Roadway Constructed by Shield

    Science.gov (United States)

    Yang, Yue; Chen, Xiaoguo; Yang, Liyun

    2017-12-01

    Shield method construction of coal mine roadway is the future trend of the development of deep coal mining. The main shaft supporting is the segment. There is rubber pads between segment and segment. The performance of compression deformation of rubber pad is essential for the overall stability of lining. Through load test, displacement of the rubber pad under load, the thrust force law of the rubber pad deformation, and provide a theoretical basis for the stability analysis of coal mine tunnel shield construction.

  5. Aerosol-CFD modelling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    OpenAIRE

    L. Huang; S. L. Gong; M. Gordon; J. Liggio; R. M. Staebler; C. A. Stroud; G. Lu; C. Mihele; J. R. Brook; C. Q. Jia

    2014-01-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFP; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion and dynamics of UFPs, an aerosol dynamics-CFD coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary condition...

  6. A novel technique to measure chronic levels of corticosterone in turtles living around a major roadway

    OpenAIRE

    Baxter-Gilbert, James H.; Riley, Julia L.; Mastromonaco, Gabriela F.; Jacqueline D Litzgus; Lesbarr?res, David

    2014-01-01

    Conservation biology integrates multiple disciplines to expand the ability to identify threats to populations and develop mitigation for these threats. Road ecology is a branch of conservation biology that examines interactions between wildlife and roadways. Although the direct threats of road mortality and habitat fragmentation posed by roads have received much attention, a clear understanding of the indirect physiological effects of roads on wildlife is lacking. Chronic physiological stress...

  7. Residential Proximity to Roadways and Ischemic Placental Disease in a Cape Cod Family Health Study.

    Science.gov (United States)

    Wesselink, Amelia K; Carwile, Jenny L; Fabian, María Patricia; Winter, Michael R; Butler, Lindsey J; Mahalingaiah, Shruthi; Aschengrau, Ann

    2017-06-24

    Exposure to air pollution may adversely impact placental function through a variety of mechanisms; however, epidemiologic studies have found mixed results. We examined the association between traffic exposure and placental-related obstetric conditions in a retrospective cohort study on Cape Cod, MA, USA. We assessed exposure to traffic using proximity metrics (distance of residence to major roadways and length of major roadways within a buffer around the residence). The outcomes included self-reported ischemic placental disease (the presence of at least one of the following conditions: preeclampsia, placental abruption, small-for-gestational-age), stillbirth, and vaginal bleeding. We used log-binomial regression models to estimate risk ratios (RR) and 95% confidence intervals (CI), adjusting for potential confounders. We found no substantial association between traffic exposure and ischemic placental disease, small-for-gestational-age, preeclampsia, or vaginal bleeding. We found some evidence of an increased risk of stillbirth and placental abruption among women living the closest to major roadways (RRs comparing living <100 m vs. ≥200 m = 1.75 (95% CI: 0.82-3.76) and 1.71 (95% CI: 0.56-5.23), respectively). This study provides some support for the hypothesis that air pollution exposure adversely affects the risk of placental abruption and stillbirth; however, the results were imprecise due to the small number of cases, and may be impacted by non-differential exposure misclassification and selection bias.

  8. Minimising the fire hazard from the use of belt conveyors in intake roadways

    Energy Technology Data Exchange (ETDEWEB)

    Leeming, J.R. [Health and Safety Executive, Sheffield, S. Yorkshire (United Kingdom)

    2010-07-01

    The fire that occurred a the Creswell underground coal mine in Derbyshire in 1950 in which 90 miners lost their lives was caused by a damaged rubber conveyor belt that ignited after being friction heated. The fire propagated along the intake trunk roadway by the burning belt itself, which ignited the timber roadway supports and hampered fire-fighting efforts. This paper demonstrated that operating conveyors in intake trunk roadways presents a risk that products of combustion can be carried to the working areas of a mine via ventilation pathways, thus creating a hazard to the underground miners. In North America, the use of belt air is not commonly used to ventilate working areas. However, these arrangements are common in the United Kingdom. As such, installation, inspection and maintenance standards have been created to minimize the risk of fire in underground, remotely operated belt conveyors in underground mines. Monitoring systems are also in place for early detection of any fire. A review of recent underground fires in the United Kingdom has shown that the measures adopted have been successful in avoiding uncontrollable fires. 13 refs., 5 figs.

  9. INVESTIGATION OF ROADWAY GEOMETRIC AND TRAFFIC FLOW FACTORS FOR VEHICLE CRASHES USING SPATIOTEMPORAL INTERACTION

    Directory of Open Access Journals (Sweden)

    G. Gill

    2017-09-01

    Full Text Available Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.

  10. Contamination assessment of mercury and arsenic in roadway dust from Baoji, China

    Science.gov (United States)

    Lu, Xinwei; Li, Loretta Y.; Wang, Lijun; Lei, Kai; Huang, Jing; Zhai, Yuxiang

    The physicochemical properties and the contamination levels of mercury and arsenic in roadway dust from Baoji, NW China were investigated using an Atomic Fluorescence Spectrophotometer. Contamination levels were assessed based on the geoaccumulation index and the enrichment factor. The results show that magnetic susceptibilities of roadway dust were higher than Holocene loess-soil of central Shaanxi Loess Plateau. The mean contents of organic matter, PM10 and PM100 were 8.8%, 21.8% and 98.6%, respectively. Mercury concentration ranged from 0.48 to 2.32 μg g -1, with a mean value of 1.11 μg g -1, 17.1 times the Chinese soil mercury background value and 37 times the Shaanxi soil mercury background value. Arsenic concentration ranged from 9.0 to 42.8 μg g -1, with a mean value of 19.8 μg g -1, 1.8 times the Chinese and Shaanxi soil arsenic background values. The geoaccumlation index and enrichment factor indicate that mercury in the dust mainly originated from anthropogenic sources with ratings of "strongly polluted" and "strongly to extremely polluted", whereas arsenic in dust originated from both natural and anthropogenic sources, with a ratings of "moderately to strongly polluted" and "strongly polluted". Industrial activities, such as a coal-fired power station, coke-oven plant, and cement manufacturing plant, augmented by vehicular traffic, are the anthropogenic sources of mercury and arsenic in the roadway dust.

  11. Investigation of Roadway Geometric and Traffic Flow Factors for Vehicle Crashes Using Spatiotemporal Interaction

    Science.gov (United States)

    Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.

    2017-09-01

    Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.

  12. Geometry success in 20 mins

    CERN Document Server

    Editors, LearningExpress

    2010-01-01

    Whether you're new to geometry or just looking for a refresher, this completely revised and updated third edition of Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day is an invaluable resource for both students and adults.

  13. Graded geometry and Poisson reduction

    OpenAIRE

    Cattaneo, A S; Zambon, M

    2009-01-01

    The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics

  14. Teaching of Geometry in Bulgaria

    Science.gov (United States)

    Bankov, Kiril

    2013-01-01

    Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…

  15. Geometry I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric

  16. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  17. Geometry of conics

    CERN Document Server

    Akopyan, A V

    2007-01-01

    The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca

  18. From geometry to topology

    CERN Document Server

    Flegg, H Graham

    2001-01-01

    This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.

  19. Local analytic geometry

    CERN Document Server

    Abhyankar, Shreeram Shankar

    1964-01-01

    This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from

  20. Geometry and trigonometry

    CERN Document Server

    2015-01-01

    This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent

  1. New foundations for geometry

    OpenAIRE

    Haran, Shai

    2015-01-01

    We shall describe a simple generalization of commutative rings. The category GR of such "rings", contains the ordinary commutative rings (fully faithfully), but also the "integers" and "residue field" at a real or complex place of a field ; the "field with one element" (the initial object of GR ); the "arithmetical surface" ( the sum in the category GR of the integers with them self: Z(x)Z ) . We shall show that this geometry "see" the real and complex places of a number field (there is an Os...

  2. Development and application of CATIA-GDML geometry builder

    Science.gov (United States)

    Belogurov, S.; Berchun, Yu; Chernogorov, A.; Malzacher, P.; Ovcharenko, E.; Schetinin, V.

    2014-06-01

    Due to conceptual difference between geometry descriptions in Computer-Aided Design (CAD) systems and particle transport Monte Carlo (MC) codes direct conversion of detector geometry in either direction is not feasible. The paper presents an update on functionality and application practice of the CATIA-GDML geometry builder first introduced at CHEP2010. This set of CATIAv5 tools has been developed for building a MC optimized GEANT4/ROOT compatible geometry based on the existing CAD model. The model can be exported via Geometry Description Markup Language (GDML). The builder allows also import and visualization of GEANT4/ROOT geometries in CATIA. The structure of a GDML file, including replicated volumes, volume assemblies and variables, is mapped into a part specification tree. A dedicated file template, a wide range of primitives, tools for measurement and implicit calculation of parameters, different types of multiple volume instantiation, mirroring, positioning and quality check have been implemented. Several use cases are discussed.

  3. Near-roadway pollution and childhood asthma: implications for developing "win-win" compact urban development and clean vehicle strategies.

    Science.gov (United States)

    Perez, Laura; Lurmann, Fred; Wilson, John; Pastor, Manuel; Brandt, Sylvia J; Künzli, Nino; McConnell, Rob

    2012-11-01

    The emerging consensus that exposure to near-roadway traffic-related pollution causes asthma has implications for compact urban development policies designed to reduce driving and greenhouse gases. We estimated the current burden of childhood asthma-related disease attributable to near-roadway and regional air pollution in Los Angeles County (LAC) and the potential health impact of regional pollution reduction associated with changes in population along major traffic corridors. The burden of asthma attributable to the dual effects of near-roadway and regional air pollution was estimated, using nitrogen dioxide and ozone as markers of urban combustion-related and secondary oxidant pollution, respectively. We also estimated the impact of alternative scenarios that assumed a 20% reduction in regional pollution in combination with a 3.6% reduction or 3.6% increase in the proportion of the total population living near major roads, a proxy for near-roadway exposure. We estimated that 27,100 cases of childhood asthma (8% of total) in LAC were at least partly attributable to pollution associated with residential location within 75 m of a major road. As a result, a substantial proportion of asthma-related morbidity is a consequence of near-roadway pollution, even if symptoms are triggered by other factors. Benefits resulting from a 20% regional pollution reduction varied markedly depending on the associated change in near-roadway proximity. Our findings suggest that there are large and previously unappreciated public health consequences of air pollution in LAC and probably in other metropolitan areas with dense traffic corridors. To maximize health benefits, compact urban development strategies should be coupled with policies to reduce near-roadway pollution exposure.

  4. Modelling the Small Throw Fault Effect on the Stability of a Mining Roadway and Its Verification by In Situ Investigation

    Directory of Open Access Journals (Sweden)

    Małkowski Piotr

    2017-12-01

    Full Text Available The small throw fault zones cause serious problems for mining engineers. The knowledge about the range of fractured zone around the roadway and about roadway’s contour deformations helps a lot with the right support design or its reinforcement. The paper presents the results of numerical analysis of the effect of a small throw fault zone on the convergence of the mining roadway and the extent of the fracturing induced around the roadway. The computations were performed on a dozen physical models featuring various parameters of rock mass and support for the purpose to select the settings that reflects most suitably the behavior of tectonically disturbed and undisturbed rocks around the roadway. Finally, the results of the calculations were verified by comparing them with in situ convergence measurements carried out in the maingate D-2 in the “Borynia-Zofiówka-Jastrzębie” coal mine. Based on the results of measurements it may be concluded that the rock mass displacements around a roadway section within a fault zone during a year were four times in average greater than in the section tectonically unaffected. The results of numerical calculations show that extent of the yielding zone in the roof reaches two times the throw of the fault, in the floor 3 times the throw, and horizontally approx. 1.5 to 1.8 times the width of modelled fault zone. Only a few elasto-plastic models or models with joints between the rock beds can be recommended for predicting the performance of a roadway which is within a fault zone. It is possible, using these models, to design the roadway support of sufficient load bearing capacity at the tectonically disturbed section.

  5. Predicting wave-induced ripple equilibrium geometry

    Science.gov (United States)

    Robert Nelson, Timothy; Voulgaris, George; Traykovski, Peter

    2013-06-01

    A comprehensive database of existing (since 1954) field and laboratory measurements of ripple geometry is compiled and combined with newly collected field data to examine the performance of ripple equilibrium predictors. Reanalysis of this enlarged ripple geometry data set reveals that ripples formed from monochromatic waves scale differently than ripples formed from random waves for many existing ripple predictors. Our analysis indicates that ripple wavelengths from the two data sets collapse into a single scaling when the semiorbital excursion and sediment grain diameter are used as normalizing factors. Ripple steepness remains relatively constant for both regular and irregular wave conditions, and it only slightly increases for shorter ripple wavelengths. These findings allowed for the development of a new equilibrium ripple predictor suitable for application in a wide range of wave and sediment conditions.

  6. Compaction of granular material inside confined geometries

    Directory of Open Access Journals (Sweden)

    Benjy eMarks

    2015-06-01

    Full Text Available In both nature and the laboratory, loosely packed granular materials are often compacted inside confined geometries. Here, we explore such behaviour in a quasi-two dimensional geometry, where parallel rigid walls provide the confinement. We use the discrete element method to investigate the stress distribution developed within the granular packing as a result of compaction due to the displacement of a rigid piston. We observe that the stress within the packing increases exponentially with the length of accumulated grains, and show an extension to current analytic models which fits the measured stress. The micromechanical behaviour is studied for a range of system parameters, and the limitations of existing analytic models are described. In particular, we show the smallest sized systems which can be treated using existing models. Additionally, the effects of increasing piston rate, and variations of the initial packing fraction, are described.

  7. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  8. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

    2009-01-01

    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust parame...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners.......The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...

  9. Effect of exposure to aggressive stimuli on aggressive driving behavior at pedestrian crossings at unmarked roadways.

    Science.gov (United States)

    Chai, Jing; Zhao, Guozhen

    2016-03-01

    Aggressive driving, influenced by the proneness of driving aggression, angry state and provoking situation, is adversely affecting traffic safety especially in developing countries where pedestrians frequently cross an unmarked crosswalk. Exposure to aggressive stimuli causes driving anger and aggressive driving behaviors, but the exposure effect on higher and lower aggression drivers and their cumulative changes under successive exposures need more investigation. An experiment was conducted to examine (1) driving behaviors of individuals with higher and lower aggressive driving traits when approaching pedestrian crossings at unmarked roadways with and without aggressive provocation; and (2) cumulative changes of driving performance under repeated provocations. We conducted a driving simulator study with 50 participants. Trait of aggressive driving served as a between-subjects variable: participants with an Aggressive Driving Scale (ADS) total score of 30 or more (for men) or 23 or more (for women) were regarded as higher aggressive drivers; lower aggressive drivers were those individuals whose ADS total scores were 21 or less (for men) or 13 or less (for women). Exposure to aggressive stimuli (provoked vs. non-provoked condition) served as a within-subjects variable. Several aspects of the participants' minimum driving speed, lateral distance from a simulated pedestrian, lateral deviation, and subjective measures were collected. We found that drivers with higher aggressive driving traits were more likely to feel irritated and fail to give way for pedestrians and drove closer to pedestrians when exposed to sustained honking and improper passing compared to the non-provoked condition. This trait×state interaction only occurred when pedestrians crossed the street from the right roadway edge line. In addition, we observed an accumulation effect of exposure to aggressive stimuli on driver's aggressive behaviors at pedestrian crossings. Environmental design, law

  10. Costs of coronary heart disease and mortality associated with near-roadway air pollution.

    Science.gov (United States)

    Brandt, Sylvia; Dickinson, Brenton; Ghosh, Rakesh; Lurmann, Frederick; Perez, Laura; Penfold, Bryan; Wilson, John; Künzli, Nino; McConnell, Rob

    2017-12-01

    Emerging evidence indicates that the near-roadway air pollution (NRAP) mixture contributes to CHD, yet few studies have evaluated the associated costs. We integrated an assessment of NRAP-attributable CHD in Southern California with new methods to value the associated mortality and hospitalizations. Based on population-weighted residential exposure to NRAP (traffic density, proximity to a major roadway and elemental carbon), we estimated the inflation-adjusted value of NRAP-attributable mortality and costs of hospitalizations that occurred in 2008. We also estimated anticipated costs in 2035 based on projected changes in population and in NRAP exposure associated with California's plans to reduce greenhouse gas emissions. For comparison, we estimated the value of CHD mortality attributable to PM less than 2.5μm in diameter (PM2.5) in both 2008 and 2035. The value of CHD mortality attributable to NRAP in 2008 was between $3.8 and $11.5 billion, 23% (major roadway proximity) to 68% (traffic density) of the $16.8 billion attributable to regulated regional PM2.5. NRAP-attributable costs were projected to increase to $10.6 to $22 billion in 2035, depending on the NRAP metric. Cost of NRAP-attributable hospitalizations for CHD in 2008 was $48.6 million and was projected to increase to $51.4 million in 2035. We developed an economic framework that can be used to estimate the benefits of regulations to improve air quality. CHD attributable to NRAP has a large economic impact that is expected to increase by 2035, largely due to an aging population. PM2.5-attributable costs may underestimate total value of air pollution-attributable CHD. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An introduction to incidence geometry

    CERN Document Server

    De Bruyn, Bart

    2016-01-01

    This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...

  12. Thermodynamics of Asymptotically Conical Geometries.

    Science.gov (United States)

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H

    2015-06-12

    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  13. Self-designing parametric geometries

    OpenAIRE

    Sobester, Andras

    2015-01-01

    The thesis of this paper is that script-based geometry modelling offers the possibility of building `self-designing' intelligence into parametric airframe geometries. We show how sophisticated heuristics (such as optimizers and complex decision structures) can be readily integrated into the parametric geometry model itself using a script-driven modelling architecture. The result is an opportunity for optimization with the scope of conceptual design and the fidelity of preliminary design. Addi...

  14. Geometry aware Stationary Subspace Analysis

    Science.gov (United States)

    2016-11-22

    JMLR: Workshop and Conference Proceedings 63:430–444, 2016 ACML 2016 Geometry -aware Stationary Subspace Analysis Inbal Horev inbal@ms.k.u-tokyo.ac.jp... geometry of the SPD matrix manifold and the invariance properties of its metrics. Most notably we show that these invariances alleviate the need to...Horev, F. Yger & M. Sugiyama. Geometry -aware SSA many theoretical and practical aspects have been addressed (see Sugiyama and Kawanabe (2012) for an in

  15. Size and geometry of hepatic radiofrequency lesions.

    Science.gov (United States)

    Mulier, S; Ni, Y; Miao, Y; Rosière, A; Khoury, A; Marchal, G; Michel, L

    2003-12-01

    To report and compare the size and geometry of hepatic radiofrequency (RF) lesions using the currently available commercial devices. A literature search was carried out for the period from January 1st 1990 to June 15th 2003. The commercial suppliers were asked to provide all available data. For each electrode and protocol, size and geometry of single-cycle thermal lesions were registered. No information at all on size and geometry of the inducible lesions was available for 17 of the 28 current commercial electrodes. Many descriptions of RF lesions are limited to the mean transverse diameter. With normal blood flow, diameter of lesions is often smaller than suggested by the length of the electrode tip or the diameter of the deployed prongs. Lesions are rarely perfect spheres but either ellipses or flattened spheres. Distortion of the RF lesion by nearby blood vessels is very common. Fusion of thermal zones between prongs of expandable electrodes can be incomplete. Blood flow interruption using a Pringle maneuver yields larger lesions that are less distorted and more complete. There is insufficient experimental data for many electrodes that are currently used in patients. RF companies should provide these data before releasing electrodes for use. For those electrodes for which data exist, coagulation lesions are often smaller, less spherical, less complete and less regular than generally presumed. Accurate knowledge of size and geometry of RF lesions is crucial to prevent local recurrence.

  16. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  17. Initiation to global Finslerian geometry

    CERN Document Server

    Akbar-Zadeh, Hassan

    2006-01-01

    After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p

  18. Requirements for existing buildings

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Wittchen, Kim Bjarne

    This report collects energy performance requirements for existing buildings in European member states by June 2012.......This report collects energy performance requirements for existing buildings in European member states by June 2012....

  19. Linguistic geometry for technologies procurement

    Science.gov (United States)

    Stilman, Boris; Yakhnis, Vladimir; Umanskiy, Oleg; Boyd, Ron

    2005-05-01

    In the modern world of rapidly rising prices of new military hardware, the importance of Simulation Based Acquisition (SBA) is hard to overestimate. With SAB, DOD would be able to test, develop CONOPS for, debug, and evaluate new conceptual military equipment before actually building the expensive hardware. However, only recently powerful tools for real SBA have been developed. Linguistic Geometry (LG) permits full-scale modeling and evaluation of new military technologies, combinations of hardware systems and concepts of their application. Using LG tools, the analysts can create a gaming environment populated with the Blue forces armed with the new conceptual hardware as well as with appropriate existing weapons and equipment. This environment will also contain the intelligent enemy with appropriate weaponry and, if desired, with a conceptual counters to the new Blue weapons. Within such LG gaming environment, the analyst can run various what-ifs with the LG tools providing the simulated combatants with strategies and tactics solving their goals with minimal resources spent.

  20. Color From Geometry

    CERN Document Server

    Guijosa, A

    1999-01-01

    This thesis explores some aspects of the recently uncovered connection between gauge theories and gravity, known as the AdS/CFT, or bulk-boundary, correspondence. This is a remarkable statement of equivalence between string or M-theory on certain backgrounds and field theories living on the boundaries of the corresponding spacetimes. Under the duality between four-dimensional N = 4 SU(N) superYang-Mills (SYM) and Type IIB string theory on AdS5 × S5, a baryon is mapped onto N fundamental strings terminating on a wrapped D5-brane. We examine the structure and energetics of this system from the vantage point of the fivebrane worldvolume action, making use of the Born-Infeld string approach. We construct supersymmetric fivebrane embeddings which correspond to gauge theory configurations with n external quarks, 0 ≤ n ≤ N. The extension of these solutions to the full asymptotically flat geometry of N D3-branes provides a detailed description of the creation of strings as the fivebrane is...

  1. Ostrich eggs geometry

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2013-01-01

    Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.

  2. Null twisted geometries

    CERN Document Server

    Speziale, Simone

    2013-01-01

    We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalims are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is na...

  3. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  4. Resistance of mine roadway supports to dynamic loads under conditions of rock burst hazards in the Katowice Mine Union

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, M.; Syrek, B.; Sarnek, R. (Katowickie Gwarectwo Weglowe, Katowice (Poland))

    1988-01-01

    Analyzes 77 seismic events (rock bursts) that occurred in mine roadways in areas not directly influenced by working faces. The roadways were supported by V or LP yielding arched supports spaced at 0.8 to 1.0 m. Rock burst energy is analyzed. Indices used in describing rock burst energy are comparatively evaluated. Support failures caused by rock bursts are described. Rock bursts in coal seams, in the floor and in the roof are analyzed. Formulae used to describe the forecast effects of a rock burst are derived. 7 refs.

  5. Fuel cells and the roadway-powered electric vehicles; Les piles a combustible visent l`auto electrique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-12-31

    Being yet not very well known in France, the fuel cell technique improves regularly. Its principle is given in this work. The current researches are centred on the study of the different possible electrolytes. Its main future uses will be the roadway-powered electric vehicles and the small fuel cell power plants. The fuel cell size is at the present time too big for a possible use in roadway-powered electric vehicles. The current cost of membranes and of a platinum catalyst use are too high too. A hydrogen production chain, inoffensive for the environment, will have to be developed too. (O.M.)

  6. Positive geometries and canonical forms

    Science.gov (United States)

    Arkani-Hamed, Nima; Bai, Yuntao; Lam, Thomas

    2017-11-01

    Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects — the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra — which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of "positive geometries" and their associated "canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones — via "triangulation" on the one hand, and "push-forward" maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest "simplex-like" geometries and the richer "polytope-like" ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex

  7. Impacts of Fog Characteristics, Forward Illumination, and Warning Beacon Intensity Distribution on Roadway Hazard Visibility

    Directory of Open Access Journals (Sweden)

    John D. Bullough

    2016-01-01

    Full Text Available Warning beacons are critical for the safety of transportation, construction, and utility workers. These devices need to produce sufficient luminous intensity to be visible without creating glare to drivers. Published standards for the photometric performance of warning beacons do not address their performance in conditions of reduced visibility such as fog. Under such conditions light emitted in directions other than toward approaching drivers can create scattered light that makes workers and other hazards less visible. Simulations of visibility of hazards under varying conditions of fog density, forward vehicle lighting, warning beacon luminous intensity, and intensity distribution were performed to assess their impacts on visual performance by drivers. Each of these factors can influence the ability of drivers to detect and identify workers and hazards along the roadway in work zones. Based on the results, it would be reasonable to specify maximum limits on the luminous intensity of warning beacons in directions that are unlikely to be seen by drivers along the roadway, limits which are not included in published performance specifications.

  8. Geometry of the quantum universe

    NARCIS (Netherlands)

    Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.

    2010-01-01

    A quantum universe with the global shape of a (Euclidean) de Sitter spacetime appears as dynamically generated background geometry in the causal dynamical triangulation (CDT) regularisation of quantum gravity. We investigate the micro- and macro-geometry of this universe, using geodesic shell

  9. GPS: Geometry, Probability, and Statistics

    Science.gov (United States)

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  10. Surrogate Modeling for Geometry Optimization

    DEFF Research Database (Denmark)

    Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie

    2009-01-01

    A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....

  11. Instabilities of microstate geometries with antibranes

    Energy Technology Data Exchange (ETDEWEB)

    Bena, Iosif; Pasini, Giulio [Institut de physique théorique, Université Paris Saclay, CEA, CNRS,F-91191 Gif-sur-Yvette (France)

    2016-04-29

    One can obtain very large classes of horizonless microstate geometries corresponding to near-extremal black holes by placing probe supertubes whose action has metastable minima inside certain supersymmetric bubbling solutions http://dx.doi.org/10.1007/JHEP12(2012)014. We show that these minima can lower their energy when the bubbles move in certain directions in the moduli space, which implies that these near-extremal microstates are in fact unstable once one considers the dynamics of all their degrees of freedom. The decay of these solutions corresponds to Hawking radiation, and we compare the emission rate and frequency to those of the corresponding black hole. Our analysis supports the expectation that generic non-extremal black holes microstate geometries should be unstable. It also establishes the existence of a new type of instabilities for antibranes in highly-warped regions with charge dissolved in fluxes.

  12. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  13. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Christian

    2013-11-15

    The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

  14. Spatially- and Temporally-Resolved Measurements of Roadway Air Pollution Using a Zero-Emission Electric Vehicle

    Science.gov (United States)

    Vehicle-related air pollution has an intrinsically dynamic nature. Recent field measurements and modeling work have demonstrated that near-road topography may modify levels of air pollutants reaching populations residing and working in close proximity to roadways. However, the ma...

  15. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Myer, M. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-08-01

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  16. Influence of fault slip on mining-induced pressure and optimization of roadway support design in fault-influenced zone

    Directory of Open Access Journals (Sweden)

    Hongwei Wang

    2016-10-01

    Full Text Available This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, due to the combined effect of mining activities and fault slip, the mining-induced pressure and the extent of damaged rock masses in the fault-influenced zone are greater than those in the uninfluenced zone. The sharp increase and the succeeding stabilization of stress or steady increase in displacement can be identified as the precursory information of fault slip. Considering the larger mining-induced pressure in the fault-influenced zone, the new support design utilizing cables is proposed. The optimization of roadway support design suggests that the cables can be anchored in the stable surrounding rocks and can effectively mobilize the load bearing capacity of the stable surrounding rocks. The field observation indicates that the roadway is in good condition with the optimized roadway support design.

  17. Quantum groups: Geometry and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chong -Sun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Theoretical Physics Group; Univ. of California, Berkeley, CA (United States)

    1996-05-13

    The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge.

  18. Quantum Geometry in the Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig

    2013-03-24

    Standard particle theory is based on quantized matter embedded in a classical geometry. Here, a complementary model is proposed, based on classical matter -- massive bodies, without quantum properties -- embedded in a quantum geometry. It does not describe elementary particles, but may be a better, fully consistent quantum description for position states in laboratory-scale systems. Gravitational theory suggests that the geometrical quantum system has an information density of about one qubit per Planck length squared. If so, the model here predicts that the quantum uncertainty of geometry creates a new form of noise in the position of massive bodies, detectable by interferometers.

  19. A first course in geometry

    CERN Document Server

    Walsh, Edward T

    2014-01-01

    This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl

  20. Differential geometry curves, surfaces, manifolds

    CERN Document Server

    Kühnel, Wolfgang

    2015-01-01

    This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and-as a new feature-a good number of so

  1. Differential geometry and symmetric spaces

    CERN Document Server

    Helgason, Sigurdur

    2001-01-01

    Sigurdur Helgason's Differential Geometry and Symmetric Spaces was quickly recognized as a remarkable and important book. For many years, it was the standard text both for Riemannian geometry and for the analysis and geometry of symmetric spaces. Several generations of mathematicians relied on it for its clarity and careful attention to detail. Although much has happened in the field since the publication of this book, as demonstrated by Helgason's own three-volume expansion of the original work, this single volume is still an excellent overview of the subjects. For instance, even though there

  2. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  3. An improved combinatorial geometry model for arbitrary geometry in DSMC

    Science.gov (United States)

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.

    2017-03-01

    This paper focuses on a new direct simulation Monte Carlo (DSMC) code based on combinatorial geometry (CG) for simulation of any rarefied gas flow. The developed code, called DgSMC-A, has been supplied with an improved CG modeling able to significantly optimize the particle-tracking process, resulting in a highly reduced runtime compared to the conventional codes. The improved algorithm inserts a grid over the geometry and saves those grid elements containing some part of the geometry border. Since only a small part of a grid is engaged with the geometry border, significant time can be saved using the proposed algorithm. Embedding the modified algorithm in the DgSMC-A resulted in a fast, robust and self-governing code needless to any mesh generator. The code completely handles complex geometries created with first-and second-order surfaces. In addition, we developed a new surface area calculator in the CG methodology for complex geometries based on the Monte Carlo method with acceptable accuracy. Several well-known test cases are examined to indicate the code ability to deal with a wide range of realistic problems. Results are also found to be in good agreement with references and experimental data.

  4. Near-roadway monitoring of vehicle emissions as a function of mode of operation for light-duty vehicles.

    Science.gov (United States)

    Wen, Dongqi; Zhai, Wenjuan; Xiang, Sheng; Hu, Zhice; Wei, Tongchuan; Noll, Kenneth E

    2017-11-01

    Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models-CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)-are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations. The paper provides emission factors (EFs) that are a function of traffic volume and mode of

  5. Hyperbolic geometry of Kuramoto oscillator networks

    Science.gov (United States)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-09-01

    Kuramoto oscillator networks have the special property that their trajectories are constrained to lie on the (at most) 3D orbits of the Möbius group acting on the state space T N (the N-fold torus). This result has been used to explain the existence of the N-3 constants of motion discovered by Watanabe and Strogatz for Kuramoto oscillator networks. In this work we investigate geometric consequences of this Möbius group action. The dynamics of Kuramoto phase models can be further reduced to 2D reduced group orbits, which have a natural geometry equivalent to the unit disk \

  6. Hyperbolic Metamaterials with Complex Geometry

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei

    2016-01-01

    We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...

  7. Advances in discrete differential geometry

    CERN Document Server

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  8. An introduction to differential geometry

    CERN Document Server

    Willmore, T J

    2012-01-01

    This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

  9. Stress analysis of three-dimensional roadway layout of stagger arrangement with field observation

    Science.gov (United States)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method for extracting thick (> 5 m) to ultra-thick coal seams in recent years. However, low-level recovery ratio of coal resources and top-coal loss above the supports at both ends of working face are long-term problems. Geological factors, such as large dip angle, soft rock, mining depth further complicate the problems. This paper proposes addressing this issue by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress environment surrounding head entry in the replacing working face based on the stress distribution characteristics at the triangular coal-pillar side in gob and the stress slip line field theory. In the second step, filed observation was conducted. Finally, an economic evaluation of the 3-D RLSA for extracting thick to ultra-thick seams was conducted.

  10. Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway

    Directory of Open Access Journals (Sweden)

    Cai-Ping Lu

    2015-01-01

    Full Text Available Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1 working face at Zhuji coal mine. Simultaneously, by changing the thickness and strength of immediate roof overlying the mining coal seam, the whole process of rockburst failure of roadway and the attenuation properties of shock wave were understood clearly. The presented conclusions can provide some important references to prevent and control rockburst hazards triggered by shock wave interferences in deep coal mines.

  11. Higgs mass in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Devastato, A.; Martinetti, P. [Dipartimento di Fisica, Universita di Napoli Federico II, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Via Cintia, 80126 Napoli (Italy); Lizzi, F. [Dipartimento di Fisica, Universita di Napoli Federico II, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Via Cintia, 80126 Napoli (Italy); Departament de Estructura i Constituents de la Materia, Universitat de Barcelona, Marti y Franques, Barcelona, Catalonia (Spain)

    2014-09-11

    In the noncommutative geometry approach to the standard model, an extra scalar field σ - initially suggested by particle physicist to stabilize the electroweak vacuum - makes the computation of the Higgs mass compatible with the 126 GeV experimental value. We give a brief account on how to generate this field from the Majorana mass of the neutrino, following the principles of noncommutative geometry. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Framework and implementation of a continuous network-wide health monitoring system for roadways

    Science.gov (United States)

    Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar

    2014-03-01

    According to the 2013 ASCE report card America's infrastructure scores only a D+. There are more than four million miles of roads (grade D) in the U.S. requiring a broad range of maintenance activities. The nation faces a monumental problem of infrastructure management in the scheduling and implementation of maintenance and repair operations, and in the prioritization of expenditures within budgetary constraints. The efficient and effective performance of these operations however is crucial to ensuring roadway safety, preventing catastrophic failures, and promoting economic growth. There is a critical need for technology that can cost-effectively monitor the condition of a network-wide road system and provide accurate, up-to-date information for maintenance activity prioritization. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project provides a framework and the sensing capability to complement periodical localized inspections to continuous network-wide health monitoring. Research focused on the development of a cost-effective, lightweight package of multi-modal sensor systems compatible with this framework. An innovative software infrastructure is created that collects, processes, and evaluates these large time-lapse multi-modal data streams. A GIS-based control center manages multiple inspection vehicles and the data for further analysis, visualization, and decision making. VOTERS' technology can monitor road conditions at both the surface and sub-surface levels while the vehicle is navigating through daily traffic going about its normal business, thereby allowing for network-wide frequent assessment of roadways. This deterioration process monitoring at unprecedented time and spatial scales provides unique experimental data that can be used to improve life-cycle cost analysis models.

  13. Temporal Variation of Carbon Monoxide Concentration at Congested Urban Roadways Intersection

    Directory of Open Access Journals (Sweden)

    Ghanshyam

    2014-01-01

    Full Text Available The carbon monoxide (CO is dominant among major traffic emitted pollutants such as respirable suspended particulate matter (RSPM, oxides of nitrogen (NOx, volatile organic carbons(VOCs and ozone (O3 etc. It is generated by automobiles due to incomplete combustion of the fuel. The vehicles that queue up at an intersection spend more time in idle driving mode generating more pollutant leading to higher pollutant concentrations. Therefore, the trends of average hourly CO concentrations at various locations of congested roadways intersection have been investigated. The four approach roads making intersection have been selected for the present study. CO monitoring has been carried out at 2 selected locations of each approach road. The CO concentration has been monitored from 8:00 AM to 8:00 PM at each location using portable online CO monitor. The average hourly CO concentrations data have been analyzed using MS excel spread sheet for each approach road. The average hourly concentration of monitored CO concentration at all receptors locations shows two peak CO concentration values (i.e., the morning peak and evening peak throughout the monitoring programme (March to May, 2011. The comparison of monitored values of average 1 hourly CO concentration levels as well as 8 hourly average concentration levels of CO showed non compliance with the prescribed standards (4000 µg/m3 average hourly and 2000 µg/m3 average 8 hourly CO concentration. The temporal CO concentration at various approach roads making roadway intersection shows non-uniform. The highest CO concentration has been observed to be towards high rise building and vice-versa. The least CO concentration has been observed towards either low rise building or open area.

  14. The Common Geometry Module (CGM).

    Energy Technology Data Exchange (ETDEWEB)

    Tautges, Timothy James

    2004-12-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also includes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.

  15. Pulsar lensing geometry

    Science.gov (United States)

    Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam

    2016-05-01

    We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

  16. Finite Geometries: a tool for better understanding of Euclidean Geometry

    Directory of Open Access Journals (Sweden)

    Antonio Maturo

    2014-06-01

    Full Text Available An effective tool to really understand Euclidean geometry is the study of alternative models and their applications. In fact, they allow you to understand the real extent of various axioms that, when viewed from the Euclidean geometry, seem obvious or even unnecessary. The work begins with a review of Hilbert's axiomatic, starting from more general point of view adopted by Albrecht Beutelspacher and Ute Rosenbaum in their book on the fundamentals of general projective geometry (1998, defined by a system of incidence axioms.   Le Geometrie Finite: uno strumento per una migliore comprensione della Geometria Euclidea Uno strumento efficace per comprendere realmente la geometria euclidea è lo studio di modelli alternativi e delle loro applicazioni. Infatti essi permettono di capire la reale portata di vari assiomi che visti dall’interno della geometria euclidea sembrerebbero scontati o addirittura inutili. Il lavoro parte da una rivisitazione dell’assiomatica di Hilbert a partire dal punto di vista più generale adottato da Albrecht Beutelspacher e Ute Rosenbaum nel loro libro del 1998 sui fondamenti della geometria proiettiva generale, definita attraverso un sistema di assiomi di incidenza.  Parole Chiave: Critica dei fondamenti; Geometrie finite; Assiomi di Hilbert; Applicazioni.

  17. The EXIST OIRT

    Science.gov (United States)

    Allen, Branden; Golisano, C.; Kutyrev, A.; Moseley, H.; Grindlay, J.; Hong, J.; EXIST Team

    2009-01-01

    The EXIST Optical / Infrared Telescope (OIRT) has been integrated into the EXIST concept design for the determination GRB redshifts on orbit and to preform follow up source identification and studies following the generation of a trigger from the EXIST high energy telescope (HET). The base OIRT main design has been inherited from the NextView OIRT has been operating in low earth orbit since September of 2007 and is currently being used for the acquisition of geospatial data. After reconfiguration of the instrumentation for astrophysical observations the OIRT will have an angular resolution of 0.15" and a 5'×5' field of view and be sensitive to emission in the range of 0.4 $\\mu$m - 2.2 $\\mu$m. Passive cooling of the tertiary, secondary, and primary mirrors will enable observation into the Ks$ band.

  18. Generalized geometry and partial supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Triendl, Hagen Mathias

    2010-08-15

    This thesis consists of two parts. In the first part we use the formalism of (exceptional) generalized geometry to derive the scalar field space of SU(2) x SU(2)-structure compactifications. We show that in contrast to SU(3) x SU(3) structures, there is no dynamical SU(2) x SU(2) structure interpolating between an SU(2) structure and an identity structure. Furthermore, we derive the scalar manifold of the low-energy effective action for consistent Kaluza-Klein truncations as expected from N = 4 supergravity. In the second part we then determine the general conditions for the existence of stable Minkowski and AdS N = 1 vacua in spontaneously broken gauged N = 2 supergravities and construct the general solution under the assumption that two appropriate commuting isometries exist in the hypermultiplet sector. Furthermore, we derive the low-energy effective action below the scale of partial supersymmetry breaking and show that it satisfies the constraints of N = 1 supergravity. We then apply the discussion to special quaternionic-Kaehler geometries which appear in the low-energy limit of SU(3) x SU(3)-structure compactifications and construct Killing vectors with the right properties. Finally we discuss the string theory realizations for these solutions. (orig.)

  19. Does Unconscious Racism Exist?

    Science.gov (United States)

    Quillian, Lincoln

    2008-01-01

    This essay argues for the existence of a form of unconscious racism. Research on implicit prejudice provides good evidence that most persons have deeply held negative associations with minority groups that can lead to subtle discrimination without conscious awareness. The evidence for implicit attitudes is briefly reviewed. Criticisms of the…

  20. The Geometry of Almost Einstein (2, 3, 5) Distributions

    Science.gov (United States)

    Sagerschnig, Katja; Willse, Travis

    2017-01-01

    We analyze the classic problem of existence of Einstein metrics in a given conformal structure for the class of conformal structures inducedf Nurowski's construction by (oriented) (2, 3, 5) distributions. We characterize in two ways such conformal structures that admit an almost Einstein scale: First, they are precisely the oriented conformal structures c that are induced by at least two distinct oriented (2, 3, 5) distributions; in this case there is a 1-parameter family of such distributions that induce c. Second, they are characterized by the existence of a holonomy reduction to SU(1, 2), SL(3, R), or a particular semidirect product SL(2, R) ltimes Q_+, according to the sign of the Einstein constant of the corresponding metric. Via the curved orbit decomposition formalism such a reduction partitions the underlying manifold into several submanifolds and endows each ith a geometric structure. This establishes novel links between (2, 3, 5) distributions and many other geometries - several classical geometries among them - including: Sasaki-Einstein geometry and its paracomplex and null-complex analogues in dimension 5; Kähler-Einstein geometry and its paracomplex and null-complex analogues, Fefferman Lorentzian conformal structures, and para-Fefferman neutral conformal structures in dimension 4; CR geometry and the point geometry of second-order ordinary differential equations in dimension 3; and projective geometry in dimension 2. We describe a generalized Fefferman construction that builds from a 4-dimensional Kähler-Einstein or para-Kähler-Einstein structure a family of (2, 3, 5) distributions that induce the same (Einstein) conformal structure. We exploit some of these links to construct new examples, establishing the existence of nonflat almost Einstein (2, 3, 5) conformal structures for which the Einstein constant is positive and negative.

  1. Quantum geometry and gravitational entropy

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan

    2007-05-29

    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.

  2. Euclidean geometry and its subgeometries

    CERN Document Server

    Specht, Edward John; Calkins, Keith G; Rhoads, Donald H

    2015-01-01

    In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...

  3. Guide to Computational Geometry Processing

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François

    be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...

  4. Variable geometry Darrieus wind machine

    Science.gov (United States)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  5. 2009 Human Factors and Roadway Safety Workshop : Context and Objectives [SD .WMV (720x480/29fps/37.3 MB)

    Science.gov (United States)

    2009-11-05

    Iowa Department of Transportation Research and Technology Bureau video presentation from the 2009 human factors and roadway safety workshop session titled: Context and Objectives : Mark Lowe, director, Iowa DOT Motor Vehicle Division, speaks on the d...

  6. 2009 Human Factors and Roadway Safety Workshop : National Perspectives on Safety [SD .WMV (720x480/29fps/227.0 MB)

    Science.gov (United States)

    2009-11-05

    Iowa Department of Transportation Research and Technology Bureau video presentation from the 2009 human factors and roadway safety workshop session titled: National Perspectives on Safety : Essie Wagner, program analyst, National Highway Traffic Safe...

  7. Road and Street Centerlines - FUNCTIONAL_CLASS_INDOTMODEL_IN: Functional Classification of Roadways in Indiana, 2015 (Indiana Department of Transportation, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — FUNCTIONAL_CLASS_INDOTMODEL_IN is a line shapefile that shows the Federal Highway Administration functional classification of roadways from the Road Inventory of the...

  8. KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI

    Directory of Open Access Journals (Sweden)

    Irkham Ulil Albab

    2014-10-01

    Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews

  9. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  10. Stochastic geometry and its applications

    CERN Document Server

    Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph

    2013-01-01

    An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a

  11. Algebraic geometry and theta functions

    CERN Document Server

    Coble, Arthur B

    1929-01-01

    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  12. Introduction to topology and geometry

    CERN Document Server

    Stahl, Saul

    2014-01-01

    An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition ". . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained." -CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparallele

  13. Combinatorial geometry in the plane

    CERN Document Server

    Hadwiger, Hugo; Klee, Victor

    2014-01-01

    Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa

  14. Lectures on Algebraic Geometry I

    CERN Document Server

    Harder, Gunter

    2012-01-01

    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

  15. Background Studies for EXIST

    Science.gov (United States)

    Wilson, Colleen A.; Pendleton, G. N.; Fishman, G. J.

    2004-01-01

    We present results from a study of the trapped proton and electron background for several orbital inclinations and altitudes. This study includes time dependent effects. In addition we describe a 3 component cosmic background model developed at the University of Southampton, UK. The three components are cosmic diffuse gamma rays, atmospheric albedo gamma rays, and cosmic ray protons. We present examples of how this model was applied to BATSE and discuss its application to EXIST.

  16. Teaching Activity-Based Taxicab Geometry

    Science.gov (United States)

    Ada, Tuba

    2013-01-01

    This study aimed on the process of teaching taxicab geometry, a non-Euclidean geometry that is easy to understand and similar to Euclidean geometry with its axiomatic structure. In this regard, several teaching activities were designed such as measuring taxicab distance, defining a taxicab circle, finding a geometric locus in taxicab geometry, and…

  17. Control Mechanism of Rock Burst in the Floor of Roadway Driven along Next Goaf in Thick Coal Seam with Large Obliquity Angle in Deep Well

    Directory of Open Access Journals (Sweden)

    Yunhai Cheng

    2015-01-01

    Full Text Available This paper deals with the theoretical aspects combined with stress analysis over the floor strata of coal seam and the calculation model for the stress on the coal floor. Basically, this research presents the relevant results obtained for the rock burst prevention in the floor of roadway driven along next goaf in the exploitation of thick coal seam with large obliquity in deep well and rock burst tendency. The control mechanism of rock burst in the roadway driven along next goaf is revealed in the present work. That is, the danger of rock burst can be removed by changing the stress environment for the energy accumulation of the floor and by reducing the impact on the roadway floor from the strong dynamic pressure. This result can be profitable being used at the design stage of appropriate position of roadway undergoing rock burst tendency in similar conditions. Based on the analysis regarding the control mechanism, this paper presents a novel approach to the prevention of rock burst in roadway floor under the above conditions. That is, the return airway is placed within the goaf of the upper working face that can prevent the rock burst effectively. And in this way, mining without coal pillar in the thick coal seam with large obliquity and large burial depth (over a thousand meters is realized. Practice also proves that the rock burst in the floor of roadway driven along next goaf is controlled and solved.

  18. Aerosol–computational fluid dynamics modeling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    OpenAIRE

    Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.

    2014-01-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFPs; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion, and dynamics of UFPs, an aerosol dynamics–computational fluid dynamics (CFD) coupled model is developed and validated against field measurements. A unique approach of applying periodic bo...

  19. Influence of fault slip on mining-induced pressure and optimization of roadway support design in fault-influenced zone

    OpenAIRE

    Wang, Hongwei; Jiang, Yaodong; Xue, Sheng; Mao, Lingtao; Lin, Zhinan; Deng, Daixin; Zhang, Dengqiang

    2016-01-01

    This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, du...

  20. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, R. G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  1. Application of synchrotron methods to assess the uptake of roadway-derived Zn by earthworms in an urban soil

    Science.gov (United States)

    Lev, S.M.; Landa, E.R.; Szlavecz, K.; Casey, R.; Snodgrass, J.

    2008-01-01

    The impact of human activities on biogeochemical cycles in terrestrial environments is nowhere more apparent than in urban landscapes. Trace metals, collected on roadways and transported by storm water, may contaminate soils and sediments associated with storm water management systems. These systems will accumulate metals and associated sediments may reach toxic levels for terrestrial and aquatic organisms using the retention basins as habitat. The fate and bioavailability of these metals once deposited is poorly understood. Here we present results from a dose-response experiment that examines the application of synchrotron X-ray fluorescence methods (??-SXRF) to test the hypothesis that earthworms will bio-accumulate Zn in a roadway-dust contaminated soil system providing a potential pathway for roadway contaminants into the terrestrial food web, and that the storage and distribution of Zn will change with the level of exposure reflecting the micronutrient status of Zn. Lumbricus friendi was exposed to Zn-bearing roadway dust amended to a field soil at six target concentrations ranging from background levels (45 mg/kg Zn) to highly contaminated levels (460 mg/kg Zn) designed to replicate the observed concentration range in storm-water retention basin soils. After a 30 day exposure, Zn storage in the intestine is positively correlated with dose and there is a change in the pattern of Zn storage within the intestine. This relationship is only clear when ??-SXRF Zn map data is coupled with a traditional toxicological approach, and suggests that the gut concentration in L. friendi is a better indicator of Zn bioaccumulation and storage than the total body burden. ?? 2008 The Mineralogical Society.

  2. "Bicycles May Use Full Lane" Signage Communicates U.S. Roadway Rules and Increases Perception of Safety.

    Directory of Open Access Journals (Sweden)

    George Hess

    Full Text Available Many global challenges, including obesity, health care costs, and climate change, could be addressed in part by increasing the use of bicycles for transportation. Concern about the safety of bicycling on roadways is frequently cited as a deterrent to increasing bicycle use in the USA. The use of effective signage along roadways might help alleviate these concerns by increasing knowledge about the rights and duties of bicyclists and motorists, ideally reducing crashes. We administered a web-based survey, using Twitter for recruitment, to examine how well three US traffic control devices communicated the message that bicyclists are permitted in the center of the travel lane and do not have to "get out of the way" to allow motorists to pass without changing lanes: "Bicycles May Use Full Lane" and "Share the Road" signage, and Shared Lane Markings on the pavement. Each was compared to an unsigned roadway. We also asked respondents whether it was safe for a bicyclist to occupy the center of the travel lane. "Bicycles May Use Full Lane" signage was the most consistently comprehended device for communicating the message that bicyclists may occupy the travel lane and also increased perceptions of safety. "Share the Road" signage did not increase comprehension or perceptions of safety. Shared Lane Markings fell somewhere between. "Bicycles May Use Full Lane" signage showed notable increases in comprehension among novice bicyclists and private motor vehicle commuters, critical target audiences for efforts to promote bicycling in the USA. Although limited in scope, our survey results are indicative and suggest that Departments of Transportation consider replacing "Share the Road" with "Bicycles May Use Full Lane" signage, possibly combined with Shared Lane Markings, if the intent is to increase awareness of roadway rights and responsibilities. Further evaluation through virtual reality simulations and on-road experiments is merited.

  3. Association of Roadway Proximity with Indoor Air Pollution in a Peri-Urban Community in Lima, Peru

    OpenAIRE

    Underhill, Lindsay J.; Sonali Bose; Williams, D’Ann L.; Romero, Karina M.; Gary Malpartida; Breysse, Patrick N.; Klasen, Elizabeth M; Combe, Juan M.; William Checkley; Hansel, Nadia N.

    2015-01-01

    The influence of traffic-related air pollution on indoor residential exposure is not well characterized in homes with high natural ventilation in low-income countries. Additionally, domestic allergen exposure is unknown in such populations. We conducted a pilot study of 25 homes in peri-urban Lima, Peru to estimate the effects of roadway proximity and season on residential concentrations. Indoor and outdoor concentrations of particulate matter (PM2.5), nitrogen dioxide (NO2), and black carbon...

  4. Development and presentation of a roadway and roadside design course : final report, December 2009.

    Science.gov (United States)

    2009-12-01

    The overall goal of this course is to provide training in the elements of geometric highway : design. Specific course objectives are: : To review the geometry of horizontal and vertical alignment including simple circular : curves, compound curve...

  5. Existing chemicals: international activities.

    Science.gov (United States)

    Purchase, J F

    1989-01-01

    The standards of care used in the protection of the health and safety of people exposed to chemicals has increased dramatically in the last decade. Standards imposed by regulation and those adopted by industry have required a greater level of knowledge about the hazards of chemicals. In the E.E.C., the 6th amendment of the dangerous substances directive imposed the requirement that al new chemicals should be tested according to prescribed programme before introduction on to the market. The development of a European inventory of existing chemicals was an integral part of the 6th amendment. It has now become clear that increased standards of care referred to above must be applied to the chemicals on the inventory list. There is, however, a considerable amount of activity already under way in various international agencies. The OECD Chemicals Programme has been involved in considering the problem of existing chemicals for some time, and is producing a priority list and action programme. The International Programme on Chemical Safety produces international chemical safety cards, health and safety guides and environmental health criteria documents. The international register of potentially toxic compounds (part of UNEP) has prepared chemical data profiles on 990 compounds. The International Agency for Research on Cancer prepared monographs on the carcinogenic risk of chemicals to man. So far 42 volumes have been prepared covering about 900 substances. IARC and IPCS also prepare periodic reports on ongoing research on carcinogenicity or toxicity (respectively) of chemicals. The chemical industry through ECETOC (the European Chemical Industry Ecology and Toxicology Centre) has mounted a major initiative on existing chemicals. Comprehensive reviews of the toxicity of selected chemicals are published (Joint Assessment of Commodity Chemicals). In its technical report no. 30 ECETOC lists reviews and evaluations by major national and international organisations, which provides

  6. Normal forms in Poisson geometry

    NARCIS (Netherlands)

    Marcut, I.T.

    2013-01-01

    The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric

  7. Math Sense: Algebra and Geometry.

    Science.gov (United States)

    Howett, Jerry

    This book is designed to help students gain the range of math skills they need to succeed in life, work, and on standardized tests; overcome math anxiety; discover math as interesting and purposeful; and develop good number sense. Topics covered in this book include algebra and geometry. Lessons are organized around four strands: (1) skill lessons…

  8. College geometry a unified development

    CERN Document Server

    Kay, David C

    2011-01-01

    ""The book is a comprehensive textbook on basic geometry. … Key features of the book include numerous figures and many problems, more than half of which come with hints or even complete solutions. Frequent historical comments add to making the reading a pleasant one.""-Michael Joswig, Zentralblatt MATH 1273

  9. GEOMETRY AND COMPLEXITY IN ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    RUSU Maria Ana

    2015-06-01

    Full Text Available As Constantin Brancuși (1876-1956 said „Simplicity is complexity itself“, simplicity and regularity through the use of basic geometric forms has always played a central role in architectural design, during the 20th century. A diachronic perspective, shows as the use of geometry and mathematics to describe built form provided a common basis for communication between the processes of design, fabrication and stability. Classic ways of representing geometry, based on descriptive methods, favor precise language of bidimensionality easy to represent in a rectangular coordinate system. In recent years, the importance of geometry has been re-emphasized by significant advances in the digital age, where computers are increasingly used in design, fabrication and construction to explore the art of the possible. Contemporary architecture transcend the limitations of Euclidean geometry and create new forms that are emerging through the convergence of complex systems, computational design and robotic fabrication devices, but which can also achieve higher levels of performance. Freeform architectural shapes and structures play an increasingly important role in 21st century architectural design. Through a series of examples, the paper relates to contemporary architectural explorations of complex, curvilinear surfaces in the digital age and discusses how it has required rethinking the mode in which we traditionally operate as architects. The analysis creates the possibility of comparisons between original and current design.

  10. Analogical Reasoning in Geometry Education

    Science.gov (United States)

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  11. Algebraic Methods in Plane Geometry

    Indian Academy of Sciences (India)

    Srimath

    group, taxicab number, Carmi- chael number. Algebraic Methods in Plane Geometry. 2. Cubic Curves. Shailesh A Shirali. Shailesh Shirali heads a. Community Mathematics. Center at Rishi Valley. School (KFI). He has a ..... Ian Stewart and David Tall, Algebraic Number Theory and Fermat's Last. Theorem, A K Peters, 2002.

  12. Fractal geometry and stochastics IV

    CERN Document Server

    Bandt, Christoph

    2010-01-01

    Over the years fractal geometry has established itself as a substantial mathematical theory in its own right. This book collects survey articles covering many of the developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals.

  13. Learners engaging with transformation geometry

    African Journals Online (AJOL)

    able to move flexibly between the modes and who displayed a deep understanding of the concepts. ... However the strand remains in the curriculum for Grades R to 9, and will still provide rich learning opportunities ... There is limited available research on learners' understanding and learning of transformation geometry.

  14. Optimization Problems in Elementary Geometry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 6. Optimization Problems in Elementary Geometry. A K Mallik. General Article Volume 13 Issue 6 June 2008 pp 561-582 ... Author Affiliations. A K Mallik1. Department Of Mechanical Engineering, Indian Institute of Technology, Kanpur, India.

  15. Multivariable calculus and differential geometry

    CERN Document Server

    Walschap, Gerard

    2015-01-01

    This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.

  16. Geometry of Cuts and Metrics

    NARCIS (Netherlands)

    M. Deza; M. Laurent (Monique)

    1997-01-01

    htmlabstractCuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book offers a

  17. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  18. Axiomatic Differential Geometry Ⅱ-4

    OpenAIRE

    Nishimura, Hirokazu

    2012-01-01

    In our previous paper (Axiomatic Differential Geometry II-3) we havediscussed the general Jacobi identity, from which the Jacobi identity ofvector fields follows readily. In this paper we derive Jacobi-like identitiesof tangent-vector-valued forms from the general Jacobi identity.

  19. Axiomatic Differential Geometry II-3

    OpenAIRE

    Nishimura, Hirokazu

    2012-01-01

    As the fourth paper of our series of papers concerned with axiomatic differential geometry, this paper is devoted to the general Jacobi identity supporting the Jacobi identity of vector fields. The general Jacobi identity can be regarded as one of the few fundamental results belonging properly to smootheology.

  20. Axiomatic Differential Geometry II-4

    OpenAIRE

    Nishimura, Hirokazu

    2012-01-01

    In our previous paper (Axiomatic Differential Geometry II-3) we have discussed the general Jacobi identity, from which the Jacobi identity of vector fields follows readily. In this paper we derive Jacobi-like identities of tangent-vector-valued forms from the general Jacobi identity.

  1. Improving Student Reasoning in Geometry

    Science.gov (United States)

    Wong, Bobson; Bukalov, Larisa

    2013-01-01

    In their years of teaching geometry, Wong and Bukalov realized that the greatest challenge has been getting students to improve their reasoning. Many students have difficulty writing formal proofs--a task that requires a good deal of reasoning. Wong and Bukalov reasoned that the solution was to divide the lessons into parallel tasks, allowing…

  2. Fubini theorem in noncommutative geometry

    OpenAIRE

    Sukochev, Fedor; Zanin, Dmitriy

    2016-01-01

    We discuss the Fubini formula in Alain Connes' noncommutative geometry. We present a sufficient condition on spectral triples for which a Fubini formula holds true. The condition is natural and related to heat semigroup asymptotics. We provide examples of spectral triples for which the Fubini formula fails.

  3. Do multiquark hadrons exist

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.; Isgur, N.

    1982-03-08

    The qqq-barq-bar system has been examined by solving the four-particle Schroedinger equation variationally. The main findings are that: (1) qqq-barq-bar bound states normally do not exist, (2) the cryptoexotic 0/sup + +/ sector of this system with KK-bar quantum numbers is probably the only exception to (1) and its bound states can be identified with the S* and delta just below KK-bar threshold, (3) qqq-barq-bar bound states provide a model for the weak binding and color-singlet clustering observed in nuclei, and (4) there is no indication that this system has strong resonances.

  4. Geometry

    Indian Academy of Sciences (India)

    Limit: (of a sequence) A point such that the points of the sequence eventually approach it to within any previously specified distance. Some of the Greek mathematicians were quite confused! For example, let us take an empty cup and put it under a tap. Assume that it is half full in a minute. It is then 3/4-th full in another half.

  5. Geometry

    Indian Academy of Sciences (India)

    cartographer in the days before aerial travel) can determine the curvature. Hence the beauty of a surface is skin deep and yet is naturally associated with it! SERIES I ARTICLE cartographic surveys he was carrying out for the ruler of Germany) gave a new interpretation to Euler's theory. First consider the length of the vector t ...

  6. Geometry

    Indian Academy of Sciences (India)

    In order to utilise this Descartes devised the following scheme. By. fIXing a point, the origin, on a line it becomes possible to talk of a directed distance as a positive or negative number depending on whether the end point is to one or the other side of the origin. Similarly, he assigned a pair of numbers to every point of the.

  7. Repowering existing plants

    Energy Technology Data Exchange (ETDEWEB)

    Steazel, W.C.; Sopocy, D.M.; Pace, S.E.

    1998-07-01

    Increased competition among power generation companies, changes in generating system load requirements, lower allowable plant emissions, and changes in fuel availability and cost accentuate the need to closely assess the economics and performances of older electric generation units. Generally, decisions must be made as to whether these units should be retired and replaced with new generation capacity, whether capacity should be purchased from other generation companies, or if these existing units should be repowered. These decisions usually require the evaluation of many factors including; environmental discharge limits, permitting requirements, generating load demand increases, options for increasing the benefits of using existing facilities (e.g.; increasing efficiency and output), fuel cost increases, transmission requirements and access, optional plant designs. Many of these factors need to be used in the analysis based on a range rather than one specific value to test for changes in the selection of the best option because of future uncertainties. Usually complicated analysis results because of all the factors involved. Computer products that integrate performance and financial analysis can provide substantial value by enabling the user to evaluate the applicable plant options and range of input. The SOAPP (State-of-the-Art Power Plant) family of software products provides easy to use tools for rapid, thorough and economical evaluation of plant option. Repowering evaluation methodology typically used in the US, technology options, and available SOAPP repowering software are reviewed in this paper.

  8. Introducing GV : The Spacecraft Geometry Visualizer

    Science.gov (United States)

    Throop, Henry B.; Stern, S. A.; Parker, J. W.; Gladstone, G. R.; Weaver, H. A.

    2009-12-01

    GV (Geometry Visualizer) is a web-based program for planning spacecraft observations. GV is the primary planning tool used by the New Horizons science team to plan the encounter with Pluto. GV creates accurate 3D images and movies showing the position of planets, satellites, and stars as seen from an observer on a spacecraft or other body. NAIF SPICE routines are used throughout for accurate calculations of all geometry. GV includes 3D geometry rendering of all planetary bodies, lon/lat grids, ground tracks, albedo maps, stellar magnitudes, types and positions from HD and Tycho-2 catalogs, and spacecraft FOVs. It generates still images, animations, and geometric data tables. GV is accessed through an easy-to-use and flexible web interface. The web-based interface allows for uniform use from any computer and assures that all users are accessing up-to-date versions of the code and kernel libraries. Compared with existing planning tools, GV is often simpler, faster, lower-cost, and more flexible. GV was developed at SwRI to support the New Horizons mission to Pluto. It has been subsequently expanded to support multiple other missions in flight or under development, including Cassini, Messenger, Rosetta, LRO, and Juno. The system can be used to plan Earth-based observations such as occultations to high precision, and was used by the public to help plan 'Kodak Moment' observations of the Pluto system from New Horizons. Potential users of GV may contact the author for more information. Development of GV has been funded by the New Horizons, Rosetta, and LRO missions.

  9. Sizing Dynamic Wireless Charging for Light-Duty Electric Vehicles in Roadway Applications

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Andrew P [ORNL; Ozpineci, Burak [ORNL; Chinthavali, Madhu Sudhan [ORNL; Li, Jan-Mou [ORNL

    2016-01-01

    Dynamic wireless charging is a possible cure for the range limitations seen in electric vehicles (EVs) once implemented in highways or city streets. The contribution of this paper is the use of experimental data to show that the expected energy gain from a dynamic wireless power transfer (WPT) system is largely a function of average speed, which allows the power level and number of coils per mile of a dynamic WPT system to be sized for the sustained operation of an EV. First, data from dynamometer testing is used to determine the instantaneous energy requirements of a light-duty EV. Then, experimental data is applied to determine the theoretical energy gained by passing over a coil as a function of velocity and power level. Related simulations are performed to explore possible methods of placing WPT coils within roadways with comparisons to the constant velocity case. Analyses with these cases demonstrate what system ratings are needed to meet the energy requirements of the EV. The simulations are also used to determine onboard energy storage requirements for each driving cycle.

  10. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material.

    Science.gov (United States)

    Gürü, Metin; Çubuk, M Kürşat; Arslan, Deniz; Farzanian, S Ali; Bilici, İbrahim

    2014-08-30

    This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  12. Assessing tire forces due to roadway unevenness by the pothole dynamic amplification factor method

    Science.gov (United States)

    Pesterev, A. V.; Bergman, L. A.; Tan, C. A.; Yang, B.

    2005-01-01

    A technique is developed to assess the dynamic contact forces arising after passing road surface irregularities by a vehicle modelled as a general linear MDOF system. The equations governing vibration of a vehicle moving along an uneven profile are, first, transformed to the state-space form and, then, to a system of uncoupled first order complex differential equations. For a local roadway irregularity described functionally, solutions of all equations are found analytically and expressed in terms of a unique function of one complex variable, the so-called pothole dynamic amplification factor, which is specific to the irregularity shape. The solutions obtained are combined to give dependencies of the harmonic components of the contact forces arising after the passage of the irregularity on the vehicle speed and irregularity dimensions. The problem is shown to be decomposed into separate calculation of vehicle and pothole-specific data. The technique developed is not specific to a particular vehicle model or an irregularity shape: the vehicle model is represented by its mass, stiffness, and damping matrices, and the replacement of one irregularity by another simply requires replacement of one dynamic amplification factor function by another. The latter are derived in Appendix A for several pothole configurations. The discussion is amply illustrated by examples of the application of the technique to the calculation of the tire forces for two simple vehicle models and several potholes of different shape.

  13. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material

    Energy Technology Data Exchange (ETDEWEB)

    Gürü, Metin, E-mail: mguru@gazi.edu.tr [Gazi University, Eng. Fac., Chem. Eng. Depart., 06570 Maltepe-Ankara (Turkey); Çubuk, M. Kürşat; Arslan, Deniz; Farzanian, S. Ali [Gazi University, Eng. Fac., Civil Eng. Depart., 06570 Maltepe-Ankara (Turkey); Bilici, İbrahim [Hitit University, Eng. Fac., Chem. Eng. Depart., 19100 Çorum (Turkey)

    2014-08-30

    Graphical abstract: - Highlights: • We derived two novel additive materials from PET bottle waste: TLPP and VPP. • We used them to modify the base asphalt separately. • The additives improved both the asphalt and the asphalt mixture performance. • TLPP, VPP offer a beneficial way about disposal of ecologically hazardous PET waste. - Abstract: This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material.

  14. Low-power 24.1-GHz propagation effects on roadways

    Science.gov (United States)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Simas de Oliveria, Marcelo G.

    2001-08-01

    This paper discusses the experimental design and analysis of low power 24.1 GHz propagation effects on roadways around the Atlanta, Georgia metropolitan area. The transmitter used was a 24.1 GHz Safety Warning System (SWS) transmitter operating in the continuous wave (CW) mode. The Federal Communications Commission (FCC) has licensed the Safety Warning System for Part 90 operation. A Part 90-compliant transmitter was used during the tests. The receiver was a modified Bel 855Sti radar detector that was calibrated in an anechoic chamber. The receiver was placed in a Ford F-150 truck and driven toward the transmitter. Three distinct propagation environments are characterized including a rural road, state route, and interstate highway. Shadowing effects from terrain features such as hills are examined as well as the effects of other vehicles, including large tractor-trailers. Signal strength is analyzed as a function of distance to the transmitter and using probability distribution function (pdf) modeling. It was found that the Weibull distribution provided the best statistical description for both the line of sight and shadowing cases. In many instances, the statistics of the received signal would change rapidly depending on the terrain features and interaction with surrounding traffic. The results provide insight into how the unlicensed 24.1 GHz band in the United States might be used for low power, intelligent transportation system (ITS) applications.

  15. Maintaining mine roadway using rock bolts. Rock bolt ni yoru kodo iji

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, T. (Taiheiyo Coal Mining Co. Ltd., Tokyo (Japan))

    1992-11-01

    This paper describes the rock bolt method, devices and construction experiences in maintaining mine roadway drilling with Wombat-type rock bolt drilling and driving machines. Keeping the pace with coal mining zones reaching increasingly greater depths, timbering arch frames have grown larger and heavier, with frame intervals decreased. The described method was adopted to improve work efficiency and save manpowers. The Wombat, 1200-90 machine uses a driving air pressure at 7 kgf/cm[sup 2] a torque at 170 N/m to 180 N/m, and a free rotation at 800 rpm, consumes a r at 60 L/S, weighs 38 kg., and measures 1,370 mm to 3,420 mm in length. The machine is scheduled for use with three gates placed at a depth below sea level as deep as about 600 m, with gate diameters from about 5.0 m to 5.5 m and a length of about 8000 m. Effectiveness and safety of the rock bolts were verified using an extensometer made in the U.S.A. Roof subsidence after a working face has been drilled to 20 m to 30 m was about one third of that when no rock bolts were used, thus the adaptability of the method was verified. Although the drilling technique using the Wombat machine has taken roots at this particular coal mine, problems still remain such as in workability, for which further efficiency improvement and manpower saving are desired. 4 figs., 3 tabs.

  16. Movement timing and invariance arise from several geometries.

    Directory of Open Access Journals (Sweden)

    Daniel Bennequin

    2009-07-01

    Full Text Available Human movements show several prominent features; movement duration is nearly independent of movement size (the isochrony principle, instantaneous speed depends on movement curvature (captured by the 2/3 power law, and complex movements are composed of simpler elements (movement compositionality. No existing theory can successfully account for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion or compression in individual parameters. The theory was mathematically formulated using Cartan's moving frame method. Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small loops. Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the implications of this theory: the origin of the dominance of equi-affine geometry, the possibility

  17. Movement Timing and Invariance Arise from Several Geometries

    Science.gov (United States)

    Bennequin, Daniel; Fuchs, Ronit; Berthoz, Alain; Flash, Tamar

    2009-01-01

    Human movements show several prominent features; movement duration is nearly independent of movement size (the isochrony principle), instantaneous speed depends on movement curvature (captured by the 2/3 power law), and complex movements are composed of simpler elements (movement compositionality). No existing theory can successfully account for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion or compression in individual parameters. The theory was mathematically formulated using Cartan's moving frame method. Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small loops). Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the implications of this theory: the origin of the dominance of equi-affine geometry, the possibility that the brain

  18. Existence of Minkowski space

    CERN Document Server

    Wagner, Serge

    2016-01-01

    Physics textbooks present Minkowski space as an almost pure mathematical construct, without any explicit restriction on a domain where it is applicable in physics. Meanwhile, its physical meaning cannot but follow the same premises as those which underlies the special relativity theory: motion of free point particles and propagation of electromagnetic waves. However, the common formalism of coordinate transformations between any two inertial frames appears too ponderous to infer the existence of Minkowski space. For this reason, the time dilation and retardation, the contraction of the length along and the spatial invariance across the direction of relative motion of two frames are presented in a coordinate-free manner. This results in the transformation between two frames in the form of relationships between the time moments and the components of the position vector of a given event, along and across the directions of the frames' motion. The obtained transformation rules for the components of the position ve...

  19. Lebesgue Sets Immeasurable Existence

    Directory of Open Access Journals (Sweden)

    Diana Marginean Petrovai

    2012-12-01

    Full Text Available It is well known that the notion of measure and integral were released early enough in close connection with practical problems of measuring of geometric figures. Notion of measure was outlined in the early 20th century through H. Lebesgue’s research, founder of the modern theory of measure and integral. It was developed concurrently a technique of integration of functions. Gradually it was formed a specific area todaycalled the measure and integral theory. Essential contributions to building this theory was made by a large number of mathematicians: C. Carathodory, J. Radon, O. Nikodym, S. Bochner, J. Pettis, P. Halmos and many others. In the following we present several abstract sets, classes of sets. There exists the sets which are not Lebesgue measurable and the sets which are Lebesgue measurable but are not Borel measurable. Hence B ⊂ L ⊂ P(X.

  20. An assessment of The Capacity Drops at The Bottleneck Segments: A review on the existing methodologies

    Directory of Open Access Journals (Sweden)

    Sugiarto Sugiarto

    2015-08-01

    Full Text Available The term of capacity is very useful to quantify the ability of transport facilities in terms of carrying traffic. The capacity of the road is an essential ingredient in the planning, design, and operation of roadways. It is desirable for traffic analyst to be able to predict the time and places where congestion will occur and the volumes to be expected. Most of urbanized areas have been experiencing of traffic congestion problems particularly at urban arterial systems. High traffic demand and limited supply of roadways are always the main factors produced traffic congestion. However, there are other sources of local and temporal congestion, such as uncontrolled access point, median opening and on-street parking activities, which are caused a reduction of roadway capacity during peak operations. Those locations could result in reduction of travel speed and road, as known as hidden bottlenecks. This is bottleneck which is without any changes in geometric of the segments. The Indonesian Highway Capacity Manual (IHCM, 1997 is used to assess urban arterial systems till current days. IHCM provides a static method for examining the capacityand does not systematically take into account of bottleneck activities. However, bottleneck activities create interruption smooth traffic flow along arterial streets, which in turns stimulate related problems, such as, excessive air pollution, additional energy consumption and driver’s frustration due to traffic jammed. This condition could happen simultaneously; mostly repetitive and predictable in same peak hour demands. Therefore, this paper carefully summarize on the existing methodologies considering required data, handled data processing and expected output of each proposed of analysis. We further notice that dynamic approach could be more appropriated for analyzing temporal congestion segments (median opening, on street parking, etc.. Method of oblique cumulative plot seems to be more applicable in terms of

  1. POLA GEOMETRI PADA SENI DAN ARSITEKTUR ISLAM DI ANDALUSIA

    Directory of Open Access Journals (Sweden)

    Andi Pramono

    2012-04-01

    Full Text Available The most famous Islamic cultural heritages is the use of geometric patterns in Islamic art and architecture. This can be seen from the historical buildings that still exist in Alhambra which is located in Granada city, Andalucia, southern Spain. The way to make a layout plan, fasade, and ornaments that decorate the buildings were arranged in a simple mathematical art. The designing and building technique of Alhambra is based on geometry with the 1:5 ratio method.   Keywords:  Islamic art, geometry, Alhambra

  2. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  3. Euclidean distance geometry an introduction

    CERN Document Server

    Liberti, Leo

    2017-01-01

    This textbook, the first of its kind, presents the fundamentals of distance geometry:  theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several.  Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.

  4. Fractal geometry and computer graphics

    CERN Document Server

    Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele

    1992-01-01

    Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...

  5. Geometry of area without length

    Science.gov (United States)

    Ho, Pei-Ming; Inami, Takeo

    2016-01-01

    To define a free string by the Nambu-Goto action, all we need is the notion of area, and mathematically the area can be defined directly in the absence of a metric. Motivated by the possibility that string theory admits backgrounds where the notion of length is not well defined but a definition of area is given, we study space-time geometries based on the generalization of a metric to an area metric. In analogy with Riemannian geometry, we define the analogues of connections, curvatures, and Einstein tensor. We propose a formulation generalizing Einstein's theory that will be useful if at a certain stage or a certain scale the metric is ill defined and the space-time is better characterized by the notion of area. Static spherical solutions are found for the generalized Einstein equation in vacuum, including the Schwarzschild solution as a special case.

  6. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  7. The geometry of celestial mechanics

    CERN Document Server

    Geiges, Hansjörg

    2016-01-01

    Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.

  8. Differential geometry and mathematical physics

    CERN Document Server

    Rudolph, Gerd

    Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...

  9. Hyperbolic geometry for colour metrics.

    Science.gov (United States)

    Farup, Ivar

    2014-05-19

    It is well established from both colour difference and colour order perpectives that the colour space cannot be Euclidean. In spite of this, most colour spaces still in use today are Euclidean, and the best Euclidean colour metrics are performing comparably to state-of-the-art non-Euclidean metrics. In this paper, it is shown that a transformation from Euclidean to hyperbolic geometry (i.e., constant negative curvature) for the chromatic plane can significantly improve the performance of Euclidean colour metrics to the point where they are statistically significantly better than state-of-the-art non-Euclidean metrics on standard data sets. The resulting hyperbolic geometry nicely models both qualitatively and quantitatively the hue super-importance phenomenon observed in colour order systems.

  10. Groups and Geometries : Siena Conference

    CERN Document Server

    Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria

    1998-01-01

    On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi­ tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...

  11. General Relativity by Kawaguchi geometry

    Directory of Open Access Journals (Sweden)

    Tanaka Erico

    2013-09-01

    Full Text Available We construct a parameterisation invariant Lagrange theory of fields up to second order by using multivector bundles and Kawaguchi geometry. In this setup, the spacetime is an dynamical object which is a submanifold of the greater manifold, and the actual spacetime is the solution of Euler-Lagrange equations. Such theory is a reasonable mathematical foundation to describe an extended theory of Einstein’s general relativity, and is capable of being a stage for unification with other physical fields.

  12. Geometry Dependence of Stellarator Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    H.E. Mynick, P. Xanthopoulos and A.H. Boozer

    2009-08-10

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.

  13. Topics in modern differential geometry

    CERN Document Server

    Verstraelen, Leopold

    2017-01-01

    A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.

  14. Influence of geometry on pressure and velocity distribution in packed-bed methanol steam reforming reactor

    Science.gov (United States)

    Ivanović, Ivana; Sedmak, Aleksandar; Milošević, Miloš; Cvetković, Ivana; Pohar, Andrej; Likozar, Blaž

    2017-07-01

    The main tasks of this research is to propose several changes in the packed bed micro methanol steam reformer geometry in order to ensure its performance. The reformer is an integral part of the existing indirect internal reforming high temperature PEMFC and most of its geometry is already defined. The space for remodeling is very limited.

  15. Riemannian geometry and geometric analysis

    CERN Document Server

    Jost, Jürgen

    2017-01-01

    This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research.  The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...

  16. Number theory III Diophantine geometry

    CERN Document Server

    1991-01-01

    From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...

  17. Introduction to geometry and relativity

    CERN Document Server

    2013-01-01

    This book provides a lucid introduction to both modern differential geometry and relativity for advanced undergraduates and first-year graduate students of applied mathematics and physical sciences. This book meets an overwhelming need for a book on modern differential geometry and relativity that is student-friendly, and which is also suitable for self-study. The book presumes a minimal level of mathematical maturity so that any student who has completed the standard Calculus sequence should be able to read and understand the book. The key features of the book are: Detailed solutions are provided to the Exercises in each chapter; Many of the missing steps that are often omitted from standard mathematical derivations have been provided to make the book easier to read and understand; A detailed introduction to Electrodynamics is provided so that the book is accessible to students who have not had a formal course in this area; In its treatment of modern differential geometry, the book employs both a modern, c...

  18. Aspects of differential geometry II

    CERN Document Server

    Gilkey, Peter

    2015-01-01

    Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...

  19. Algebraic Geometry and Number Theory Summer School

    CERN Document Server

    Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk

    2017-01-01

    This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

  20. Geometry success in 20 minutes a day

    CERN Document Server

    LLC, LearningExpress

    2014-01-01

    Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr

  1. Mauriac syndrome still exists.

    Science.gov (United States)

    Dias, Joana; Martins, Sofia; Carvalho, Susana; Marques, Olinda; Antunes, Ana

    2013-05-01

    Mauriac syndrome (MS) is a rare complication of type 1 diabetes mellitus (DM1). It is related to low insulin concentrations and is less common since longer-acting insulins became available. It is characterized by hepatomegaly, growth and puberty delay, and the presence of elevated transaminases and serum lipids. The aim of this study was to describe the patients from a pediatric diabetic population that fulfill the criteria of MS. A retrospective analysis of the pediatric diabetic population with diagnostic criteria of MS currently followed at Hospital de Braga, was performed. From a population of 91 patients with DM1 18 years, 6 patients with the criteria for MS were identified: 5 girls, and 1 boy. The age at presentation was 13-17 years, with a minimum interval between DM1 diagnosis and MS criteria of 4 years. All the patients were prescribed intensive insulin therapy (median daily insulin dose: 0.88 U/kg). All had a previous history of poor glycemic control before the diagnosis of MS with glycated hemoglobin (HbA1c) between 8.8 and 12.9%. Increase of hepatic enzymes was present in all the patients; 4 of them had associated hepatomegaly. All the girls presented puberty delay and cushingoid features. None of the patients presented short stature and 5 of them presented mixed dyslipidemia. Although MS is an ancient entity described in DM1, it still exists, particularly in adolescent females. Being aware of MS is of extreme importance since most of the clinical features are reversible with better glycemic control. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  2. Formalization and Implementation of Algebraic Methods in Geometry

    Directory of Open Access Journals (Sweden)

    Filip Marić

    2012-02-01

    Full Text Available We describe our ongoing project of formalization of algebraic methods for geometry theorem proving (Wu's method and the Groebner bases method, their implementation and integration in educational tools. The project includes formal verification of the algebraic methods within Isabelle/HOL proof assistant and development of a new, open-source Java implementation of the algebraic methods. The project should fill-in some gaps still existing in this area (e.g., the lack of formal links between algebraic methods and synthetic geometry and the lack of self-contained implementations of algebraic methods suitable for integration with dynamic geometry tools and should enable new applications of theorem proving in education.

  3. Effectiveness of Discovery Learning-Based Transformation Geometry Module

    Science.gov (United States)

    Febriana, R.; Haryono, Y.; Yusri, R.

    2017-09-01

    Development of transformation geometry module is conducted because the students got difficulties to understand the existing book. The purpose of the research was to find out the effectiveness of discovery learning-based transformation geometry module toward student’s activity. Model of the development was Plomp model consisting preliminary research, prototyping phase and assessment phase. The research was focused on assessment phase where it was to observe the designed product effectiveness. The instrument was observation sheet. The observed activities were visual activities, oral activities, listening activities, mental activities, emotional activities and motor activities. Based on the result of the research, it is found that visual activities, learning activities, writing activities, the student’s activity is in the criteria very effective. It can be concluded that the use of discovery learning-based transformation geometry module use can increase the positive student’s activity and decrease the negative activity.

  4. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Oscar [ORNL; Davidson, Diane [ORNL

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel

  5. Utilizing 3D building and 3D cadastre geometries for better valuation of existing real estate

    NARCIS (Netherlands)

    Isikdag, U.; Horhammer, M.; Zlatanova, S.; Kathmann, R.; Van Oosterom, P.J.M.

    2015-01-01

    Valuation of the properties is known as real estate appraisal, property valuation or land valuation and is a process which focuses on determining the value of a building or a land lot. The valuation of each real estate is required prior to any transaction as every property is unique in terms of

  6. Increasing the efficiency of roadway drivages through the application of advanced information, automation and maintenance technologies

    Energy Technology Data Exchange (ETDEWEB)

    A. Rodriguez; M. Schmid; T. Winkler (and others) [Asociacion para la Investigacion y el Desarrollo Industrial de los Recursos Naturales, Leganes (Spain)

    2009-07-01

    The main goal of the IAMTECH project was increasing the efficiency of road-heading by applying advanced information, automation and maintenance technologies. Some of its results will allow for increasing the availability of the machinery through the decrease of both programmed maintenance time and medium time to repair. Other results are related to the adoption of new types (in coal mining) of support considered promising from a productivity increase perspective, such as concrete spraying. Research topics addressed in the project could be classified roughly in two groups: horizontal (underlying common technologies) and vertical (related to the actual implementation of devices, software and systems). Among the results for horizontal activities, those that deserve special mention are the development of an Atex 3D laser scanner, Atex WLAN (WiFi) access points, cameras and PDA, as well as methods for storing and representing in 3D machinery components, subassemblies and complete machines. Amid results of vertical activities is the implementation of a central maintenance control mining machinery is concentrated. Engineers in charge of CMCR have online access to all machinery-related information, including direct access to manufacturers' databases. Images, voice and data flowing from the underground, and diagrams and advice flowing from the surface are transmitted and displayed using the technologies developed during horizontal activities. Other important results are the development of methods for assessing the quality of execution of roadway support when using sprayed concrete for this purpose, also using technologies (such as laser scanning) developed within the horizontal activities. 10 refs., 162 figs., 7 tabs.

  7. A novel technique to measure chronic levels of corticosterone in turtles living around a major roadway.

    Science.gov (United States)

    Baxter-Gilbert, James H; Riley, Julia L; Mastromonaco, Gabriela F; Litzgus, Jacqueline D; Lesbarrères, David

    2014-01-01

    Conservation biology integrates multiple disciplines to expand the ability to identify threats to populations and develop mitigation for these threats. Road ecology is a branch of conservation biology that examines interactions between wildlife and roadways. Although the direct threats of road mortality and habitat fragmentation posed by roads have received much attention, a clear understanding of the indirect physiological effects of roads on wildlife is lacking. Chronic physiological stress can lower immune function, affect reproductive rates and reduce life expectancy; thus, it has the potential to induce long-lasting effects on populations. Reptiles are globally in decline, and roads are known to have negative effects on reptile populations; however, it is unknown whether individual responses to roads and traffic result in chronic stress that creates an additional threat to population viability. We successfully extracted reliable measures of corticosterone (CORT), a known, commonly used biomarker for physiological stress, from claw trimmings from painted turtles (Chrysemys picta) captured at three study sites (road-impacted site, control site and validation site). Corticosterone levels in claws were evaluated as a measure of chronic stress in turtles because CORT is deposited during growth of the claw and could provide an opportunity to examine past long-term stress levels. While male turtles had higher CORT levels on average than females, there was no difference in the level of CORT between the road-impacted and control site, nor was there a relationship between CORT and turtle body condition. In validating a novel approach for non-invasive measurement of long-term CORT levels in a keratinized tissue in wild reptiles, our study provides a new avenue for research in the field of stress physiology.

  8. Effect of Stresses and Strains of Roadway Surrounding Rocks on Borehole Airtightness

    Directory of Open Access Journals (Sweden)

    WU Wei

    2016-02-01

    Full Text Available At present, many high gas and outburst mines have poor gas drainage effects. An important reason influencing the gas drainage effect is a poor hole-sealing effect. Most studies on gas drainage borehole sealing focus on local and foreign borehole sealing methods, borehole sealing equipment, and borehole sealing materials. Numerical simulations of initial drilling sealing depth are insufficient because studies on this subject are few. However, when the initial sealing depth of the borehole is not chosen reasonably, air can enter the gas drainage drill hole through the circumferential crack of roadway surrounding rocks under the influence of suction pressure of the drainage system. This phenomenon ultimately affects the hole-sealing effect. To improve the drilling hole sealing of gas drainage boring, we deduced the expression formulas of the crushing zone, plastic zone, and elastic zone around the coal-seam floor stone drift and conducted a stress–strain analysis of the coal-seam floor stone drift of the 2145 working surfaces of the Sixth Coal Mine of Hebi Coal Mine Group Company by using theoretical analysis, numerical simulation, and on-scene verification. Finally, we obtain the initial drilling sealing depth, which is a main contribution of this study. The results prove the following. The performed hole-sealing process with an initial drilling sealing depth of 8 m has a gas drainage efficiency of 55%. Compared with the previous 6.8 m initial drilling sealing depth with a gas drainage efficiency of less than 30%, which was adopted by the mine, the initial sealing depth of 8 m chosen in the numerical simulation is reasonable and conforms to the actual situation on the spot. Therefore, the initial drilling sealing depth chosen in the numerical simulation will produce practical and effective guidance to study the field hole-sealing depth.

  9. Identifying traditional and nontraditional predictors of crash injury severity on major urban roadways.

    Science.gov (United States)

    Haleem, Kirolos; Gan, Albert

    2011-06-01

    This study identifies and compares the factors that contribute to injury severity on urban freeways and arterials and recommends potential countermeasures to enhance the safety of both facilities. The study makes use of an extensive data set from the State of Florida in the United States. To obtain a more complete picture, this study explores both traditional and nontraditional severity predictors. Some traditional predictors include traffic volume, speed limit, and road surface condition. The nontraditional predictors are comprised of those rarely explored in previous severity studies, including crash distance to the nearest ramp location, detailed vehicle types, and lighting and weather conditions. The analysis was conducted using the ordered and binary probit models, which are well suited for the inherently ordered property of injury severity. An important finding is the significance of the distance of crash to the nearest ramp junction/access point, for which the increase in the distance yielded a severity increase at both facilities. Other significant factors included traffic volume, speed limit, at-fault driver's age, road surface condition, alcohol and drug involvement, and left and right shoulder widths. In comparing both facilities, sport utility vehicles (SUVs) and pickup trucks showed a fatality/severity increase on freeways and a decrease on arterials. Furthermore, the detailed list of variables such as crash time provided pertinent severity trend information that showed that, compared to the other periods, the afternoon peak period had the highest reduction in fatality/severity. Both probit models succeeded in identifying significant severity predictors for each facility. The binary probit model outperformed the ordered probit model based on the higher elasticities (marginal effects) for the fatality/severity probability change, as well as the goodness of fit. As such, this study provides the guidelines for assessing the impact of important roadway and

  10. Residential Proximity to Major Roadways and Lung Cancer Mortality. Italy, 1990–2010: An Observational Study

    Directory of Open Access Journals (Sweden)

    Ettore Bidoli

    2016-02-01

    Full Text Available Background: Air pollution from road traffic has been associated to an increased risk of lung cancer. Herein, we investigated the association between lung cancer mortality and residence near Italian highways or national major roads. Methods: Information on deaths for lung cancer registered from 1990 to 2010 and stratified by age, gender, and urban or rural municipality of residence at death were obtained from the National Institute of Statistics. Distance between the centroid of the municipality of residence and closest major roadways was considered as a proxy of pollution exposure. Relative Risks (RR and 95% confidence intervals (CI were computed using Poisson log-linear models adjusted for age, calendar period, deprivation index, North/South gradient, and urban/rural status. Results: A gradient in risk for lung cancer mortality was seen for residents within 50 meters (m of national major roads. In particular, in rural municipalities a statistically significant increased risk for lung cancer death was observed in both sexes (RR = 1.27 for distance <25 m vs. 500–1999 m, 95% CI 1.17–1.42, in men; RR = 1.97, 95% CI 1.64–2.39, in women. In urban municipalities, weak risks of borderline significance were documented in both sexes (RR = 1.06, 95% CI 0.99–1.15 in men; and RR = 1.09, 95% CI 0.97–1.22 in women. No statistically significant association emerged between residence within 100 to 500 m from highways and RRs of death for lung cancer. Conclusions: In Italy, residing near national major roads, in particular in rural municipalities, was related to elevated risks of death for lung cancer.

  11. How Theory-Building Research on Instruction Can Support Instructional Improvement: Toward a Modelling Perspective in Secondary Geometry

    Science.gov (United States)

    Herbst, Patricio

    2016-01-01

    How can basic research on mathematics instruction contribute to instructional improvement? In our research on the practical rationality of geometry teaching we describe existing instruction and examine how existing instruction responds to perturbations. In this talk I consider the proposal that geometry instruction could be improved by infusing it…

  12. Blow-Ups in Generalized Complex Geometry

    NARCIS (Netherlands)

    van der Leer Duran, J.L.

    2016-01-01

    Generalized complex geometry is a theory that unifies complex geometry and symplectic geometry into one single framework. It was introduced by Hitchin and Gualtieri around 2002. In this thesis we address the following question: given a generalized complex manifold together with a submanifold, does

  13. Geometry in the Early Years: A Commentary

    Science.gov (United States)

    Dindyal, Jaguthsing

    2015-01-01

    The primary goal of this paper is to provide a commentary on the teaching and learning of geometry in the early years of schooling with the set of papers in this issue as a guiding factor. It is structured around issues about geometry education of young learners, such as: what should we teach in geometry and why; representation of geometrical…

  14. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  15. Geometry of Space-Time

    Directory of Open Access Journals (Sweden)

    Bruchholz U. E.

    2009-10-01

    Full Text Available The geometry of the space-time is deduced from gravitational and electromagnetic fields. We have to state that Rainich's "already unified field theory" is the ground work of the proposed theory. The latter is deduced independently on Rainich. Rainich's analogies are brilliantly validated. His formulae are verified this way. Further reaching results and insights demonstrate that Rainich's theory is viable. In final result, we can formulate an enhanced equivalence principle. It is the equivalence of Newton's force with the Lorentz force.

  16. The Geometry Of Preposition Meanings

    Directory of Open Access Journals (Sweden)

    Peter Gärdenfors

    2015-12-01

    Full Text Available This article presents a unified approach to the semantics of prepositions based on the theory of conceptual spaces. Following the themes of my recent book The Geometry of Meaning, I focus on the convexity of their meanings and on which semantic domains are expressed by prepositions. As regards convexity, using polar coordinates turns out to provide the most natural representation. In addition to the spatial domain, I argue that for many prepositions, the force domain is central. In contrast to many other analyses, I also defend the position that prepositions have a central meaning and that other meanings can be derived via a limited class of semantic transformations.

  17. Porous media geometry and transports

    CERN Document Server

    Adler, Pierre

    1992-01-01

    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  18. Integral geometry and representation theory

    CERN Document Server

    Gel'fand, I M; Vilenkin, N Ya

    1966-01-01

    Generalized Functions, Volume 5: Integral Geometry and Representation Theory is devoted to the theory of representations, focusing on the group of two-dimensional complex matrices of determinant one.This book emphasizes that the theory of representations is a good example of the use of algebraic and geometric methods in functional analysis, in which transformations are performed not on the points of a space, but on the functions defined on it. The topics discussed include Radon transform on a real affine space, integral transforms in the complex domain, and representations of the group of comp

  19. Projective differential geometry of submanifolds

    CERN Document Server

    Akivis, M A

    1993-01-01

    In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are s

  20. Projective geometry and projective metrics

    CERN Document Server

    Busemann, Herbert

    2005-01-01

    The basic results and methods of projective and non-Euclidean geometry are indispensable for the geometer, and this book--different in content, methods, and point of view from traditional texts--attempts to emphasize that fact. Results of special theorems are discussed in detail only when they are needed to develop a feeling for the subject or when they illustrate a general method. On the other hand, an unusual amount of space is devoted to the discussion of the fundamental concepts of distance, motion, area, and perpendicularity.Topics include the projective plane, polarities and conic sectio

  1. Number Theory, Analysis and Geometry

    CERN Document Server

    Goldfeld, Dorian; Jones, Peter

    2012-01-01

    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, th

  2. Clustering in Hilbert simplex geometry

    KAUST Repository

    Nielsen, Frank

    2017-04-03

    Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.

  3. Exceptional geometry and Borcherds superalgebras

    Energy Technology Data Exchange (ETDEWEB)

    Palmkvist, Jakob [Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843 (United States)

    2015-11-05

    We study generalized diffeomorphisms in exceptional geometry with U-duality group E{sub n(n)} from an algebraic point of view. By extending the Lie algebra e{sub n} to an infinite-dimensional Borcherds superalgebra, involving also the extension to e{sub n+1}, the generalized Lie derivatives can be expressed in a simple way, and the expressions take the same form for any n≤7. The closure of the transformations then follows from the Jacobi identity and the grading of e{sub n+1} with respect to e{sub n}.

  4. Exceptional geometry and Borcherds superalgebras

    Science.gov (United States)

    Palmkvist, Jakob

    2015-11-01

    We study generalized diffeomorphisms in exceptional geometry with U-duality group E n( n) from an algebraic point of view. By extending the Lie algebra {e}_n to an infinite-dimensional Borcherds superalgebra, involving also the extension to {e}_{n+1} , the generalized Lie derivatives can be expressed in a simple way, and the expressions take the same form for any n ≤ 7. The closure of the transformations then follows from the Jacobi identity and the grading of {e}_{n+1} with respect to {e}_n.

  5. Stochastic geometry for image analysis

    CERN Document Server

    Descombes, Xavier

    2013-01-01

    This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are  described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed.  Numerous applications, covering remote sensing images, biological and medical imaging, are detailed.  This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.

  6. Near-Roadway Emission of Reactive Nitrogen Compounds and Other Non-Criteria Pollutants at a Southern California Freeway Site

    Science.gov (United States)

    Moss, J. A.; Baum, M.; Castonguay, A. E.; Aguirre, V., Jr.; Pesta, A.; Fanter, R. K.; Anderson, M.

    2015-12-01

    Emission control systems in light-duty motor vehicles (LDMVs) have played an important role in improving regional air quality by dramatically reducing the concentration of criteria pollutants (carbon monoxide, hydrocarbons, and nitrogen oxides) in exhaust emissions. Unintended side-reactions occurring on the surface of three-way catalysts may lead to emission of a number of non-criteria pollutants whose identity and emission rates are poorly understood. A series of near-roadway field studies conducted between 2009-2015 has investigated LDMV emissions of these pollutants with unprecedented depth of coverage, including reactive nitrogen compounds (NH3, amines, HCN, HONO, and HNO3), organic peroxides, and carbonyl compounds (aldehydes, ketones, and carboxylic acids). Methods to collect these pollutants using mist chambers, annular denuders, impingers, and solid-phase cartridges and quantify their concentration using GC-MS, LC-MS/MS, IC, and colorimetry were developed and validated in the laboratory and field. These methods were subsequently used in near-roadway field studies where the concentrations of the target compounds integrated over 1-4 hour blocks were measured at the edge of a freeway and at a background site 140 m from the roadway. Concentrations followed a steep decreasing gradient from the freeway to the background site. Emission factors (pollutant mass emitted per mass fuel consumed) were calculated by carbon mass balance using the difference in concentration measured between the freeway and background sites for the emitted pollutant and CO2 as a measure of carbon mass in the vehicle exhaust. The significance of these results will be discussed in terms of emissions inventories in the South Coast Air Basin of California, emission trends at this site over the period of 2009-2015, and for NH3, emission measurements conducted by our group and others over the period 2000-2015.

  7. Microscopic wormholes and the geometry of entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Francisco S.N. [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Lisbon (Portugal); Olmo, Gonzalo J. [Centro Mixto Universidad de Valencia-CSIC, Universidad de Valencia, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)

    2014-06-15

    It has recently been suggested that Einstein-Rosen (ER) bridges can be interpreted as maximally entangled states of two black holes that form a complex Einstein-Podolsky-Rosen (EPR) pair. This relationship has been dubbed as the ER = EPR correlation. In this work, we consider the latter conjecture in the context of quadratic Palatini theory. An important result, which stems from the underlying assumptions as regards the geometry on which the theory is constructed, is the fact that all the charged solutions of the quadratic Palatini theory possess a wormhole structure. Our results show that spacetime may have a foam like microstructure with wormholes generated by fluctuations of the quantum vacuum. This involves the spontaneous creation/annihilation of entangled particle-antiparticle pairs, existing in a maximally entangled state connected by a nontraversable wormhole. Since the particles are produced from the vacuum and therefore exist in a singlet state, they are necessarily entangled with one another. This gives further support to the ER = EPR claim. (orig.)

  8. Increase of a Roadway Covering Durability by Using the Cement-Concrete Base Fragmented with the Geogrid

    Directory of Open Access Journals (Sweden)

    Sannikov Sergey

    2016-01-01

    Full Text Available Presents the results of studies of innovative materials in the field of in road construction. The paper presents an alternative method of increasing the cracking resistance of the roads asphalt-concrete pavement, constructed on the cement-concrete base, due to its fragmentation with the volumetric plastic geogrid while constructing. Theoretical, laboratory and field experimental studies of this design were conducted, as well as the effectiveness of the proposed solution was proved. The use of this design can improve the durability of the roadway coverings and reduce the costs for the roads repair and maintenance.

  9. A Community-Academic Partnership to Reduce Lead Exposure From an Elevated Roadway Demolition, Cincinnati, Ohio, 2012.

    Science.gov (United States)

    Newman, Nicholas C; Elam, Sarah; Igoe, Carol; Jones, Camille; Menrath, William; Porter, Denisha; Haynes, Erin N

    2017-01-01

    Disseminating public health recommendations to community members is an important step in protecting the public's health. We describe a community-academic partnership comprising health-based organizations, community groups, academia, and government organizations. This partnership undertook an iterative process to develop an outreach plan, educational materials, and activities to bring lead-poisoning prevention recommendations from a health impact assessment of a roadway demolition/construction project to the residents of an affected neighborhood in Cincinnati, Ohio, in 2012. Community partners played a key role in developing outreach and prevention activities. As a result of this project, activities among members of the partnership continue.

  10. Computational geometry algorithms and applications

    CERN Document Server

    de Berg, Mark; Overmars, Mark; Schwarzkopf, Otfried

    1997-01-01

    Computational geometry emerged from the field of algorithms design and anal­ ysis in the late 1970s. It has grown into a recognized discipline with its own journals, conferences, and a large community of active researchers. The suc­ cess of the field as a research discipline can on the one hand be explained from the beauty of the problems studied and the solutions obtained, and, on the other hand, by the many application domains--computer graphics, geographic in­ formation systems (GIS), robotics, and others-in which geometric algorithms play a fundamental role. For many geometric problems the early algorithmic solutions were either slow or difficult to understand and implement. In recent years a number of new algorithmic techniques have been developed that improved and simplified many of the previous approaches. In this textbook we have tried to make these modem algorithmic solutions accessible to a large audience. The book has been written as a textbook for a course in computational geometry, but it can ...

  11. Fuzzy Logic for Incidence Geometry

    Science.gov (United States)

    2016-01-01

    The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133

  12. Entanglement classification with algebraic geometry

    Science.gov (United States)

    Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.

    2017-05-01

    We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.

  13. Foundations of arithmetic differential geometry

    CERN Document Server

    Buium, Alexandru

    2017-01-01

    The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

  14. Realism, positivism, instrumentalism, and quantum geometry

    Science.gov (United States)

    Prugovečki, Eduard

    1992-02-01

    The roles of classical realism, logical positivism, and pragmatic instrumentalism in the shaping of fundamental ideas in quantum physics are examined in the light of some recent historical and sociological studies of the factors that influenced their development. It is shown that those studies indicate that the conventionalistic form of instrumentalism that has dominated all the major post-World War II developments in quantum physics is not an outgrowth of the Copenhagen school, and that despite the “schism” in twentieth century physics created by the Bohr-Einstein “disagreements” on foundational issues in quantum theory, both their philosophical stands were very much opposed to those of conventionalistic instrumentalism. Quotations from the writings of Dirac, Heisenberg, Popper, Russell, and other influential thinkers, are provided, illustrating the fact that, despite the various divergencies in their opinions, they all either opposed the instrumentalist concept of “truth” in general, or its conventionalistic version in post-World War II quantum physics in particular. The basic epistemic ideas of a quantum geometry approach to quantum physics are reviewed and discussed from the point of view of a quantum realism that seeks to reconcile Bohr's “positivism” with Einstein's “realism” by emphasizing the existence of an underlying quantum reality, in which they both believed. This quantum geometry framework seeks to introduce geometro-stochastic concepts that are specifically designed for the systematic description of that underlying quantum reality, by developing the conceptual and mathematical tools that are most appropriate for such a use.

  15. Separation of attractors in 1-modulus quantum corrected special geometry

    CERN Document Server

    Bellucci, S; Marrani, A; Shcherbakov, A

    2008-01-01

    We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...

  16. Flow of viscoplastic fluids in eccentric annular geometries

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1992-01-01

    A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...... to verify this property of the Bingham fluid. An analytical solution for the flowfield in case of small eccentricities is derived....

  17. Pola Geometri Pada Seni Dan Arsitektur Islam Di Andalusia

    OpenAIRE

    Pramono, Andi

    2011-01-01

    The most famous Islamic cultural heritages is the use of geometric patterns in Islamic art and architecture. This can be seen from the historical buildings that still exist in Alhambra which is located in Granada city, Andalucia, southern Spain. The way to make a layout plan, fasade, and ornaments that decorate the buildings were arranged in a simple mathematical art. The designing and building technique of Alhambra is based on geometry with the 1:5 ratio method.

  18. Generalized geometry, T-duality, and renormalization group flow

    Science.gov (United States)

    Streets, Jeffrey

    2017-04-01

    We interpret the physical B-field renormalization group flow in the language of Courant algebroids, clarifying the sense in which this flow is the natural ;Ricci flow; for generalized geometry. Next we show that the B-field renormalization group flow preserves T-duality in a natural sense. As corollaries we obtain new long time existence results for the B-field renormalization group flow.

  19. Characterizing and predicting coarse and fine particulates in classrooms located close to an urban roadway.

    Science.gov (United States)

    Chithra, V S; Nagendra, S M Shiva

    2014-08-01

    The PM10, PM2.5, and PM1 (particulate matter with aerodynamic diameters school building located at roadside in Chennai City. The 24-hr average PM10, PM2.5, and PM1 concentrations at indoor and outdoor environments were found to be 136 +/- 60, 36 +/- 15, and 20 +/- 12 and 76 +/- 42, 33 +/- 16, and 23 +/- 14 microg/m3, respectively. The size distribution of PM in the classroom indicated that coarse mode was dominant during working hours (08:00 a.m. to 04:00 p.m.), whereas fine mode was dominant during nonworking hours (04:00 p.m. to 08:00 a.m.). The increase in coarser particles coincided with occupant activities in the classrooms and finer particles were correlated with outdoor traffic. Analysis of indoor PM10, PM2.5, and PM1 concentrations monitored at another school, which is located at urban reserved forest area (background site) indicated 3-4 times lower PM10 concentration than the school located at roadside. Also, the indoor PM1 and PM2.5 concentrations were 1.3-1.5 times lower at background site. Further, a mass balance indoor air quality (IAQ) model was modified to predict the indoor PM concentration in the classroom. Results indicated good agreement between the predicted and measured indoor PM2.5 (R2 = 0.72-0.81) and PM1 (R2 = 0.81-0.87) concentrations. But, the measured and predicted PM10 concentrations showed poor correlation (R2 = 0.17-0.23), which may be because the IAQ model could not take into account the sudden increase in PM10 concentration (resuspension of large size particles) due to human activities. Implications: The present study discusses characteristics of the indoor coarse and fine PM concentrations of a naturally ventilated school building located close to an urban roadway and at a background site in Chennai City, India. The study results will be useful to engineers and policymakers to prepare strategies for improving the IAQ inside classrooms. Further, this study may help in the development of IAQ standards and guidelines in India.

  20. Demonstration Assessment of LED Roadway Lighting: NE Cully Boulevard Portland, OR

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.; Poplawski, Michael E.; Tuenge, Jason R.

    2012-06-29

    A new roadway lighting demonstration project was initiated in late 2010, which was planned in conjunction with other upgrades to NE Cully Boulevard, a residential collector road in the northeast area of Portland, OR. With the NE Cully Boulevard project, the Portland Bureau of Transportation hoped to demonstrate different light source technologies and different luminaires side-by-side. This report documents the initial performance of six different newly installed luminaires, including three LED products, one induction product, one ceramic metal halide product, and one high-pressure sodium (HPS) product that represented the baseline solution. It includes reported, calculated, and measured performance; evaluates the economic feasibility of each of the alternative luminaires; and documents user feedback collected from a group of local Illuminating Engineering Society (IES) members that toured the site. This report does not contain any long-term performance evaluations or laboratory measurements of luminaire performance. Although not all of the installed products performed equally, the alternative luminaires generally offered higher efficacy, more appropriate luminous intensity distributions, and favorable color quality when compared to the baseline HPS luminaire. However, some products did not provide sufficient illumination to all areas—vehicular drive lanes, bicycle lanes, and sidewalks—or would likely fail to meet design criteria over the life of the installation due to expected depreciation in lumen output. While the overall performance of the alternative luminaires was generally better than the baseline HPS luminaire, cost remains a significant barrier to widespread adoption. Based on the cost of the small quantity of luminaires purchased for this demonstration, the shortest calculated payback period for one of the alternative luminaire types was 17.3 years. The luminaire prices were notably higher than typical prices for currently available luminaires

  1. High beam headlamp use rates: Effects of rurality, proximity of other traffic, and roadway curvature.

    Science.gov (United States)

    Reagan, Ian J; Brumbelow, Matthew L; Flannagan, Michael J; Sullivan, John M

    2017-10-03

    The few observational studies of the prevalence of high beam use indicate the rate of high beam use is about 25% when vehicles are isolated from other vehicles on unlit roads. Recent studies were limited to 2-lane rural roads and used measurement methods that likely overestimated use. The current study examined factors associated with the rate of high beam use of isolated vehicles on a variety of roadways in the Ann Arbor, Michigan area. Twenty observation sites were categorized as urban, rural, or on a rural/urban boundary and selected to estimate the effects of street lighting, road curvature, and direction of travel relative to the city on high beam use. Sites were selected in pairs so that a majority of traffic passing one site also passed through the other. Measurement of high beams relied on video data recorded for 2 nights at each site, and the video data also were used to derive a precise measure of the proximity of other traffic. Nearly 3,200 isolated vehicles (10 s or longer from other vehicles) were observed, representing 1,500-plus vehicle pairs. Across the sample, 18% of the vehicles used high beams. Seventy-three percent of the 1,500-plus vehicle pairs used low beams at each paired site, whereas 9% used high beams at both sites. Vehicles at rural sites and sites at the boundaries of Ann Arbor were more likely to use high beams than vehicles at urban sites, but use in rural areas compared with rural/urban boundary areas did not vary significantly. Rates at all sites were much lower than expected, ranging from 0.9 to 52.9%. High beam use generally increased with greater time between subject vehicles and leading vehicles and vehicles in the opposing lane. There were mixed findings associated with street lighting, road curvature, and direction of travel relative to the city. Maximizing visibility available to drivers from headlights includes addressing the substantial underuse of high beam headlamps. Advanced technologies such as high beam assist, which

  2. Some Progress in Conformal Geometry

    Directory of Open Access Journals (Sweden)

    Sun-Yung A. Chang

    2007-12-01

    Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.

  3. Kinematic dynamos in spheroidal geometries

    Science.gov (United States)

    Ivers, D. J.

    2017-10-01

    The kinematic dynamo problem is solved numerically for a spheroidal conducting fluid of possibly large aspect ratio with an insulating exterior. The solution method uses solenoidal representations of the magnetic field and the velocity by spheroidal toroidal and poloidal fields in a non-orthogonal coordinate system. Scaling of coordinates and fields to a spherical geometry leads to a modified form of the kinematic dynamo problem with a geometric anisotropic diffusion and an anisotropic current-free condition in the exterior, which is solved explicitly. The scaling allows the use of well-developed spherical harmonic techniques in angle. Dynamo solutions are found for three axisymmetric flows in oblate spheroids with semi-axis ratios 1≤a/c≤25. For larger aspect ratios strong magnetic fields may occur in any region of the spheroid, depending on the flow, but the external fields for all three flows are weak and concentrated near the axis or periphery of the spheroid.

  4. Applied geometry and discrete mathematics

    CERN Document Server

    Sturm; Gritzmann, Peter; Sturmfels, Bernd

    1991-01-01

    This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...

  5. Hue geometry and horizontal connections.

    Science.gov (United States)

    Ben-Shahar, Ohad; Zucker, Steven W

    2004-01-01

    Primate visual systems support an elaborate specialization for processing color information. Concentrating on the hue component, we observe that, contrary to Mondrian-like assumptions, hue varies in a smooth manner for ecologically important natural imagery. To represent these smooth variations, and to support those information processing tasks that utilize hue, a piecewise smooth hue field is postulated. The geometry of hue-patch interactions is developed analogously to orientation-patch interactions in texture. The result is a model for long-range (horizontal) interactions in the color domain, the power of which is demonstrated on a number of examples. Implications for computer image processing, computer vision, visual neurophysiology and psychophysics are discussed.

  6. Spinors in Physics and Geometry

    Science.gov (United States)

    Trautman, A.; Furlan, G.

    1988-11-01

    The Table of Contents for the full book PDF is as follows: * Preface * Killing Spinors According to O. Hijazi and Applications * Self-Duality Conditions Satisfied by the Spin Connections on Spheres * Maslov Index and Half - Forms * Spin - 3/2 Fields on Black Hole Spacetimes * Indecomposable Conformal Spinors and Operator Product Expansions in a Massless QED Model * Nonlinear Spinor Representations * Nonlinear Wave Equations for Intrinsic Spinor Coordinates * Twistors - "Spinors" of SU(2,2), Their Generalizations and Achievements * Spinors, Reflections and Clifford Algebras: A Review * overline {SL}(n, R) Spinors for Particles, Gravity and Superstrings * Spinors on Compact Riemann Surfaces * Simple Spinors as Urfelder * Applications of Cartan Spinors to Differential Geometry in Higher Dimensions * Killing Spinors on Spheres and Projective Spaces * Spinor Structures on Homogeneous Riemannian Spaces * Classical Strings and Minimal Surfaces * Representing Spinors with Differential Forms * Inequalities for Spinors Norms in Clifford Algebras * The Importance of Spin * The Theory of World Spinors * Final List of Participants

  7. The geometry of dynamical triangulations

    CERN Document Server

    Ambjørn, Jan; Marzuoli, Annalisa

    1997-01-01

    We discuss the geometry of dynamical triangulations associated with 3-dimensional and 4-dimensional simplicial quantum gravity. We provide analytical expressions for the canonical partition function in both cases, and study its large volume behavior. In the space of the coupling constants of the theory, we characterize the infinite volume line and the associated critical points. The results of this analysis are found to be in excellent agreement with the MonteCarlo simulations of simplicial quantum gravity. In particular, we provide an analytical proof that simply-connected dynamically triangulated 4-manifolds undergo a higher order phase transition at a value of the inverse gravitational coupling given by 1.387, and that the nature of this transition can be concealed by a bystable behavior. A similar analysis in the 3-dimensional case characterizes a value of the critical coupling (3.845) at which hysteresis effects are present.

  8. Conformal geometry and quasiregular mappings

    CERN Document Server

    Vuorinen, Matti

    1988-01-01

    This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...

  9. Dialogues about geometry and light

    CERN Document Server

    Bermudez, David; Leonhardt, Ulf

    2015-01-01

    Throughout human history, people have used sight to learn about the world, but only in relatively recent times the science of light has been developed. Egyptians and Mesopotamians made the first known lenses out of quartz, giving birth to what was later known as optics. On the other hand, geometry is a branch of mathematics that was born from practical studies concerning lengths, areas and volumes in the early cultures, although it was not put into axiomatic form until the 3rd century BC. In this work, we will discuss the connection between these two timeless topics and show some new things in old things". There has been several works in this direction, but taking into account the didactic approach of the Enrico Fermi Summer School, we would like to address the subject and our audience in a new light.

  10. Integrable systems, geometry, and topology

    CERN Document Server

    Terng, Chuu-Lian

    2006-01-01

    The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...

  11. Noncommutative geometry of multicore bions

    Science.gov (United States)

    Karczmarek, Joanna L.; Sibilia, Ariel

    2013-01-01

    We find new BPS solutions to the nonabelian theory on a world-volume of parallel D1-branes. Our solutions describe two parallel, separated bundles of N D1-branes expanding out to form a single orthogonal D3-brane. This configuration corresponds to two charge N magnetic monopoles in the world-volume of a single D3-brane, deforming the D3-brane into two parallel spikes. We obtain the emergent surface corresponding to our nonabelian D1-brane configuration and demonstrate, at finite N , a surprisingly accurate agreement with the shape of the D3-brane world-volume as obtained from the abelian Born-Infeld action. Our solution provides an explicit realization of topology change in noncommutative geometry at finite N.

  12. Digital breast tomosynthesis geometry calibration

    Science.gov (United States)

    Wang, Xinying; Mainprize, James G.; Kempston, Michael P.; Mawdsley, Gordon E.; Yaffe, Martin J.

    2007-03-01

    Digital Breast Tomosynthesis (DBT) is a 3D x-ray technique for imaging the breast. The x-ray tube, mounted on a gantry, moves in an arc over a limited angular range around the breast while 7-15 images are acquired over a period of a few seconds. A reconstruction algorithm is used to create a 3D volume dataset from the projection images. This procedure reduces the effects of tissue superposition, often responsible for degrading the quality of projection mammograms. This may help improve sensitivity of cancer detection, while reducing the number of false positive results. For DBT, images are acquired at a set of gantry rotation angles. The image reconstruction process requires several geometrical factors associated with image acquisition to be known accurately, however, vibration, encoder inaccuracy, the effects of gravity on the gantry arm and manufacturing tolerances can produce deviations from the desired acquisition geometry. Unlike cone-beam CT, in which a complete dataset is acquired (500+ projections over 180°), tomosynthesis reconstruction is challenging in that the angular range is narrow (typically from 20°-45°) and there are fewer projection images (~7-15). With such a limited dataset, reconstruction is very sensitive to geometric alignment. Uncertainties in factors such as detector tilt, gantry angle, focal spot location, source-detector distance and source-pivot distance can produce several artifacts in the reconstructed volume. To accurately and efficiently calculate the location and angles of orientation of critical components of the system in DBT geometry, a suitable phantom is required. We have designed a calibration phantom for tomosynthesis and developed software for accurate measurement of the geometric parameters of a DBT system. These have been tested both by simulation and experiment. We will present estimates of the precision available with this technique for a prototype DBT system.

  13. Exploring background risk factors for fatigue crashes involving truck drivers on regional roadway networks: a case control study in Jiangxi and Shaanxi, China.

    Science.gov (United States)

    Chen, Changkun; Zhang, Jun

    2016-01-01

    Fatigue driving is a leading cause of traffic fatalities and injuries in China, especially among heavy truck drivers. The present study tried to examine which and how factors within the human-vehicle-roadway-environment system contribute to the occurrence of crashes involving fatigued truck drivers. To reduce such risk on the road, a total of 9168 crashes which occurred in Jiangxi and Shaanxi between 2003 and 2014 were selected to measure the effects of potential factors on fatigue related truck crashes using a case control study. Pearson Chi-square test was used to determine the relationship between crash risk and independent factors, and a stepwise logistic regression model was developed to determine the significant risk factors. According to the data analysis results, driver's gender, age, driving experience, and overspeeding behavior, vehicle's commercial status, overloading conditions and brake performance, road's type, slippery pavement and existence of sharp curve and long steep grade, and time of day, season, weather and visibility conditions, etc. were identified to be significantly associated with fatigue related truck crashes on Jiangxi and Shaanxi highways. Moreover, it is found that (a) in Jiangxi, an employed truck driver has a higher risk of crash involving multi-vehicles or a passenger car at bridge locations, and (b) in Shaanxi, the adult, tunnel location, summer and winter days prohibit statistically significant association with the occurrence of multi-vehicle and single-vehicle run-off-road/rollover crashes. Young employed male truck drivers with less experience are at high risk, especially while driving across sharp curves, down long steep grades, over bridge or through tunnels, during the midnight period, on rainy, snowy or foggy days in rural areas. All these help recommend potential policy initiatives as well as effective safety promotion strategies at the public health scale for professional truck drivers.

  14. Impact assessment and remediation strategies for roadway construction in acid-bearing media: case study from Mid-Appalachia

    Energy Technology Data Exchange (ETDEWEB)

    Viadero, R.C.; Fortney, R.H.; Creel, A.T. [Western Illinois University, Macomb, IL (United States)

    2008-09-15

    The likelihood of encountering land impacted by current and/or historic coal mining activities is high when constructing roadways in the Mid-Appalachian region. Through additional disturbance of these lands, environmental impacts such as acid and dissolved metals loading and subsequent impacts to aquatic flora and fauna will ensue. Consequently, it is necessary to affect a paradigm shift in roadway design and construction to account for the presence of factors that compound the already difficult task of working in a region characterized by steep topography and aggressive geochemistry. In this study, assessments of the water chemistry and biological impacts of a waste pile containing spoils from previous mining and the presence of an exposed coal mine bench were made as representative microcosmic examples of typical conditions found in the region. Based on quantitative measurements of water quality and biological conditions, recommendations are presented for the assessment and avoidance of impacts prior to construction through acid-bearing materials and suggestions are offered for postconstruction remediation at previously impacted sites.

  15. Development of operating mode distributions for different types of roadways under different congestion levels for vehicle emission assessment using MOVES.

    Science.gov (United States)

    Qi, Yi; Padiath, Ameena; Zhao, Qun; Yu, Lei

    2016-10-01

    The Motor Vehicle Emission Simulator (MOVES) quantifies emissions as a function of vehicle modal activities. Hence, the vehicle operating mode distribution is the most vital input for running MOVES at the project level. The preparation of operating mode distributions requires significant efforts with respect to data collection and processing. This study is to develop operating mode distributions for both freeway and arterial facilities under different traffic conditions. For this purpose, in this study, we (1) collected/processed geographic information system (GIS) data, (2) developed a model of CO2 emissions and congestion from observations, (3) implemented the model to evaluate potential emission changes from a hypothetical roadway accident scenario. This study presents a framework by which practitioners can assess emission levels in the development of different strategies for traffic management and congestion mitigation. This paper prepared the primary input, that is, the operating mode ID distribution, required for running MOVES and developed models for estimating emissions for different types of roadways under different congestion levels. The results of this study will provide transportation planners or environmental analysts with the methods for qualitatively assessing the air quality impacts of different transportation operation and demand management strategies.

  16. Assessment of Bearing Capacity and Stiffness in New Steel Sets Used for Roadway Support in Coal Mines

    Directory of Open Access Journals (Sweden)

    Renshu Yang

    2017-10-01

    Full Text Available There is high demand for roadway support in coal mines for the swelling soft rocks. As high strength steel sets can be taken as an effective alternative to control large deformation in this type of rocks, based on an original set, three new sets, including a floor beam set, a roof and floor beams set, and a roof and floor beams and braces set, are proposed in this research. In order to examine the strengths of new sets, four scaled sets of one original set, and three new sets, have been manufactured and tested in loading experiments. Results indicated that three new sets all exhibited higher strength than the original set. In experiments, the roof beam in set plays a significant effect on top arch strengthening, while the floor beam plays significant effect on bottom arch strengthening. The maximum bearing capacity and stiffness of the top arch with roof beam are increased to 1.63 times and 3.06 times of those in the original set, and the maximum bearing capacity and stiffness of the bottom arch with floor beam are increased to 1.44 times and 3.55 times of those in original set. Based on the roof and floor beams, two more braces in the bottom arch also play a significant effect in bottom corners strengthening, but extra braces play little role in top arch strengthening. These new sets provide more choices for roadway support in swelling soft rocks.

  17. Association of Roadway Proximity with Indoor Air Pollution in a Peri-Urban Community in Lima, Peru.

    Science.gov (United States)

    Underhill, Lindsay J; Bose, Sonali; Williams, D'Ann L; Romero, Karina M; Malpartida, Gary; Breysse, Patrick N; Klasen, Elizabeth M; Combe, Juan M; Checkley, William; Hansel, Nadia N

    2015-10-26

    The influence of traffic-related air pollution on indoor residential exposure is not well characterized in homes with high natural ventilation in low-income countries. Additionally, domestic allergen exposure is unknown in such populations. We conducted a pilot study of 25 homes in peri-urban Lima, Peru to estimate the effects of roadway proximity and season on residential concentrations. Indoor and outdoor concentrations of particulate matter (PM₂.₅), nitrogen dioxide (NO₂), and black carbon (BC) were measured during two seasons, and allergens were measured in bedroom dust. Allergen levels were highest for dust mite and mouse allergens, with concentrations above clinically relevant thresholds in over a quarter and half of all homes, respectively. Mean indoor and outdoor pollutant concentrations were similar (PM₂.₅: 20.0 vs. 16.9 μg/m³, BC: 7.6 vs. 8.1 μg/m³, NO₂: 7.3 vs. 7.5 ppb), and tended to be higher in the summer compared to the winter. Road proximity was significantly correlated with overall concentrations of outdoor PM₂.₅ (rs = -0.42, p = 0.01) and NO₂ (rs = -0.36, p = 0.03), and outdoor BC concentrations in the winter (rs = -0.51, p = 0.03). Our results suggest that outdoor-sourced pollutants significantly influence indoor air quality in peri-urban Peruvian communities, and homes closer to roadways are particularly vulnerable.

  18. Detecting subsurface features and distresses of roadways and bridge decks with ground penetrating radar at traffic speed

    Science.gov (United States)

    Liu, Hao; Birken, Ralf; Wang, Ming L.

    2017-04-01

    This paper presents the detections of the subsurface features and distresses in roadways and bridge decks from ground penetrating radar (GPR) data collected at traffic speed. This GPR system is operated at 2 GHz with a penetration depth of 60 cm in common road materials. The system can collect 1000 traces a second, has a large dynamic range and compact packaging. Using a four channel GPR array, dense spatial coverage can be achieved in both longitudinal and transversal directions. The GPR data contains significant information about subsurface features and distresses resulting from dielectric difference, such as distinguishing new and old asphalt, identification of the asphalt-reinforced concrete (RC) interface, and detection of rebar in bridge decks. For roadways, the new and old asphalt layers are distinguished from the dielectric and thickness discontinuities. The results are complemented by surface images of the roads taken by a video camera. For bridge decks, the asphalt-RC interface is automatically detected by a cross correlation and Hilbert transform algorithms, and the layer properties (e.g., dielectric constant and thickness) can be identified. Moreover, the rebar hyperbolas can be visualized from the GPR B-scan images. In addition, the reflection amplitude from steel rebar can be extracted. It is possible to estimate the rebar corrosion level in concrete from the distribution of the rebar reflection amplitudes.

  19. N=1 Special Geometry, Mixed Hodge Variations and Toric Geometry

    CERN Document Server

    Lerche, Wolfgang; Warner, Nicholas P

    2002-01-01

    We study the superpotential of a certain class of N=1 supersymmetric type II compactifications with fluxes and D-branes. We show that it has an important two-dimensional meaning in terms of a chiral ring of the topologically twisted theory on the world-sheet. In the open-closed string B-model, this chiral ring is isomorphic to a certain relative cohomology group V, which is the appropriate mathematical concept to deal with both the open and closed string sectors. The family of mixed Hodge structures on V then implies for the superpotential to have a certain geometric structure. This structure represents a holomorphic, N=1 supersymmetric generalization of the well-known N=2 special geometry. It defines an integrable connection on the topological family of open-closed B-models, and a set of special coordinates on the space \\cal M of vev's in N=1 chiral multiplets. We show that it can be given a very concrete and simple realization for linear sigma models, which leads to a powerful and systematic method for comp...

  20. Existence and Detection of Fireballs,

    Science.gov (United States)

    An attempt is made to analyze critically the experimental proofs indicating the existence of fireballs. Some ideas are presented on methods of the...properties of fireballs if their existence will be checked by other methods. (Author)

  1. Automorphisms in Birational and Affine Geometry

    CERN Document Server

    Ciliberto, Ciro; Flenner, Hubert; McKernan, James; Prokhorov, Yuri; Zaidenberg, Mikhail

    2014-01-01

    The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference high...

  2. Subsectors, Dynkin diagrams and new generalised geometries

    Science.gov (United States)

    Strickland-Constable, Charles

    2017-08-01

    We examine how generalised geometries can be associated with a labelled Dynkin diagram built around a gravity line. We present a series of new generalised geometries based on the groups Spin( d, d) × ℝ + for which the generalised tangent space transforms in a spinor representation of the group. In low dimensions these all appear in subsectors of maximal supergravity theories. The case d = 8 provides a geometry for eight-dimensional backgrounds of M theory with only seven-form flux, which have not been included in any previous geometric construction. This geometry is also one of a series of "half-exceptional" geometries, which "geometrise" a six-form gauge field. In the appendix, we consider exam-ples of other algebras appearing in gravitational theories and give a method to derive the Dynkin labels for the "section condition" in general. We argue that generalised geometry can describe restrictions and subsectors of many gravitational theories.

  3. Connections between algebra, combinatorics, and geometry

    CERN Document Server

    Sather-Wagstaff, Sean

    2014-01-01

    Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

  4. Classical geometry Euclidean, transformational, inversive, and projective

    CERN Document Server

    Leonard, I E; Liu, A C F; Tokarsky, G W

    2014-01-01

    Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p

  5. A vector space approach to geometry

    CERN Document Server

    Hausner, Melvin

    2010-01-01

    The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.

  6. Numeric Wake Equalizing Duct Geometry Optimization for a Given Ship

    Directory of Open Access Journals (Sweden)

    George Martinas

    2015-06-01

    Hence the pressure on designers to achieve both reduced fuel costs and reduced emissions by optimising the hull and propeller has never been higher. In parallel to the performance improvement of new built vessels, there has been great interest in the potential to enhance the performance of existing vessels through retrofit of devices to the hull. In any case for instance the WED device must be customized to fit to the afterbody of the ship in terms of performing its supposed function. The Designer is therefore placed in the front of multiple geometric solutions from between he has to make a choice. This paper is intended to help the Designers to have a rational choosing approach by involving the numeric optimization of the geometry of the WED in order to select the best fitted WED to perform the best in order to achieve some predefined parameters. In this paperwork a given geometry of a WED device is taken and via Design Optimization the geometry of the duct was refined so that better results are achieved with a smaller and more compact WED. In doing so, the Designer is assisted by numeric optimization methods to choose from only three final candidates instead of several thousands in order to provide the best fitted WED geometry for a given ship afterbody.

  7. Applications of Affine and Weyl geometry

    CERN Document Server

    García-Río, Eduardo; Nikcevic, Stana

    2013-01-01

    Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia

  8. Introduction to non-Euclidean geometry

    CERN Document Server

    Wolfe, Harold E

    2012-01-01

    One of the first college-level texts for elementary courses in non-Euclidean geometry, this concise, readable volume is geared toward students familiar with calculus. A full treatment of the historical background explores the centuries-long efforts to prove Euclid's parallel postulate and their triumphant conclusion. Numerous original exercises form an integral part of the book.Topics include hyperbolic plane geometry and hyperbolic plane trigonometry, applications of calculus to the solutions of some problems in hyperbolic geometry, elliptic plane geometry and trigonometry, and the consistenc

  9. Uncertainty relations as Hilbert space geometry

    Science.gov (United States)

    Braunstein, Samuel L.

    1994-01-01

    Precision measurements involve the accurate determination of parameters through repeated measurements of identically prepared experimental setups. For many parameters there is a 'natural' choice for the quantum observable which is expected to give optimal information; and from this observable one can construct an Heinsenberg uncertainty principle (HUP) bound on the precision attainable for the parameter. However, the classical statistics of multiple sampling directly gives us tools to construct bounds for the precision available for the parameters of interest (even when no obvious natural quantum observable exists, such as for phase, or time); it is found that these direct bounds are more restrictive than those of the HUP. The implication is that the natural quantum observables typically do not encode the optimal information (even for observables such as position, and momentum); we show how this can be understood simply in terms of the Hilbert space geometry. Another striking feature of these bounds to parameter uncertainty is that for a large enough number of repetitions of the measurements all V quantum states are 'minimum uncertainty' states - not just Gaussian wave-packets. Thus, these bounds tell us what precision is achievable as well as merely what is allowed.

  10. Integrability and black-hole microstate geometries

    Science.gov (United States)

    Bena, Iosif; Turton, David; Walker, Robert; Warner, Nicholas P.

    2017-11-01

    We examine some recently-constructed families of asymptotically-AdS3 × S^3 supergravity solutions that have the same charges and mass as supersymmetric D1-D5- P black holes, but that cap off smoothly with no horizon. These solutions, known as superstrata, are quite complicated, however we show that, for an infinite family of solutions, the null geodesic problem is completely integrable, due to the existence of a non-trivial conformal Killing tensor that provides a quadratic conservation law for null geodesics. This implies that the massless scalar wave equation is separable. For another infinite family of solutions, we find that there is a non-trivial conformal Killing tensor only when the left-moving angular momentum of the massless scalar is zero. We also show that, for both these families, the metric degrees of freedom have the form they would take if they arose from a consistent truncation on S^3 down to a (2 + 1)-dimensional space-time. We discuss some of the broader consequences of these special properties for the physics of these black-hole microstate geometries.

  11. Topics in Cubic Special Geometry

    CERN Document Server

    Bellucci, Stefano; Roychowdhury, Raju

    2011-01-01

    We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...

  12. Latent geometry of bipartite networks

    Science.gov (United States)

    Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2017-03-01

    Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

  13. The geometry of population genetics

    CERN Document Server

    Akin, Ethan

    1979-01-01

    The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono­ graph I hope to show that his ideas illuminate many aspects of pop­ ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele...

  14. Fractal Geometry and Stochastics V

    CERN Document Server

    Falconer, Kenneth; Zähle, Martina

    2015-01-01

    This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott,  Michał Rams, Pablo Shmerkin, and András Te...

  15. Projective geometries in dense matroids

    DEFF Research Database (Denmark)

    Geelen, Jim; Kristensen, Kasper Kabell

    2009-01-01

    We prove that, given integers l,q 2 and n there exists an integer α such that, if M is a simple matroid with no l+2 point line minor and at least αqr(M) elements, then M contains a PG(n−1,q′) -minor, for some prime-power q′>q ....

  16. Influence of geometry on legibility: An explanatory design study of visitors at the Kuala Lumpur City Center

    Directory of Open Access Journals (Sweden)

    Hossein Safari

    2016-12-01

    Full Text Available Legibility is based on landmarks and geometry. Visitors in a space learn to “read” an area by using three- and two-dimensional cues. This research aimed to determine the responses of visitors to the influence of geometry on the legibility at Kuala Lumpur City Center (KLCC. The relationship between geometry and space legibility can affect visitors׳ wayfinding. In this study, visitors, including 86 respondents and 8 individuals who participated in a focus group, were surveyed through questionnaires and interviews during daytime. Results show that legibility was moderately and positively correlated with regular geometry, but legibility was negligibly affected by existing geometry. Regression analysis, t-test, ANOVA, and scheme coding of qualitative data suggested that regular geometry used in urban spaces might strongly improve legibility. For urban designers, regular geometry associated with landmarks enhances legibility.

  17. Association of Roadway Proximity with Fasting Plasma Glucose and Metabolic Risk Factors for Cardiovascular Disease in a Cross-Sectional Study of Cardiac Catheterization Patients

    Science.gov (United States)

    Background: The relationship between traffic-related air pollution (TRAP) and risk factors for cardiovascular disease needs to be better understood in order to address the adverse impact o.f air pollution on human health.Objective: We examined associations between roadway proximi...

  18. Developing crash modification functions to assess safety effects of adding bike lanes for urban arterials with different roadway and socio-economic characteristics.

    Science.gov (United States)

    Park, Juneyoung; Abdel-Aty, Mohamed; Lee, Jaeyoung; Lee, Chris

    2015-01-01

    Although many researchers have estimated crash modification factors (CMFs) for specific treatments (or countermeasures), there is a lack of studies that explored the heterogeneous effects of roadway characteristics on crash frequency among treated sites. Generally, the CMF estimated by before-after studies represents overall safety effects of the treatment in a fixed value. However, as each treated site has different roadway characteristics, there is a need to assess the variation of CMFs among the treated sites with different roadway characteristics through crash modification functions (CMFunctions). The main objective of this research is to determine relationships between the safety effects of adding a bike lane and the roadway characteristics through (1) evaluation of CMFs for adding a bike lane using observational before-after with empirical Bayes (EB) and cross-sectional methods, and (2) development of simple and full CMFunctions which are describe the CMF in a function of roadway characteristics of the sites. Data was collected for urban arterials in Florida, and the Florida-specific full SPFs were developed. Moreover, socio-economic parameters were collected and included in CMFunctions and SPFs (1) to capture the effects of the variables that represent volume of bicyclists and (2) to identify general relationship between the CMFs and these characteristics. In order to achieve better performance of CMFunctions, data mining techniques were used. The results of both before-after and cross-sectional methods show that adding a bike lane on urban arterials has positive safety effects (i.e., CMFbike crashes. It was found that adding a bike lane is more effective in reducing bike crashes than all crashes. It was also found that the CMFs vary across the sites with different roadway characteristics. In particular, annual average daily traffic (AADT), number of lanes, AADT per lane, median width, bike lane width, and lane width are significant characteristics that

  19. Building Pre-Service Teacher's Mathematical Knowledge for Teaching of High School Geometry

    Science.gov (United States)

    Somayajulu, Ravi Bhamidipati

    2012-01-01

    There were two primary goals of the research conducted for this dissertation study. Firstly, to fill a gap in the research literature and begin a discussion around secondary pre-service teachers Mathematical Knowledge for Teaching (MKT) as it pertains to geometry. Although a multitude of studies exist for elementary teachers' MKT, few exist at the…

  20. PREFACE: Water in confined geometries

    Science.gov (United States)

    Rovere, Mauro

    2004-11-01

    The study of water confined in complex systems in solid or gel phases and/or in contact with macromolecules is relevant to many important processes ranging from industrial applications such as catalysis and soil chemistry, to biological processes such as protein folding or ionic transport in membranes. Thermodynamics, phase behaviour and the molecular mobility of water have been observed to change upon confinement depending on the properties of the substrate. In particular, polar substrates perturb the hydrogen bond network of water, inducing large changes in the properties upon freezing. Understanding how the connected random hydrogen bond network of bulk water is modified when water is confined in small cavities inside a substrate material is very important for studies of stability and the enzymatic activity of proteins, oil recovery or heterogeneous catalysis, where water-substrate interactions play a fundamental role. The modifications of the short-range order in the liquid depend on the nature of the water-substrate interaction, hydrophilic or hydrophobic, as well as on its spatial range and on the geometry of the substrate. Despite extensive study, both experimentally and by computer simulation, there remain a number of open problems. In the many experimental studies of confined water, those performed on water in Vycor are of particular interest for computer simulation and theoretical studies since Vycor is a porous silica glass characterized by a quite sharp distribution of pore sizes and a strong capability to absorb water. It can be considered as a good candidate for studying the general behaviour of water in hydrophilic nanopores. But there there have been a number of studies of water confined in more complex substrates, where the interpretation of experiments and computer simulation is more difficult, such as in zeolites or in aerogels or in contact with membranes. Of the many problems to consider we can mention the study of supercooled water. It is

  1. Kierkegaardovo pojetí existence

    OpenAIRE

    Janatová, Kristýna

    2016-01-01

    The topic of the bachelor thesis is "Kierkegaard's conception of existence". There are both the life of the Danish philosopher Søren Kierkegaard and his philosophy discussed. The issue of human existence is analysed with its main three stages which are focused on aesthetics, ethics and religion. These stages of existence are at first described and afterwards compared with each other. The aesthetic represents the first stage of life and the religious stage is considered to be the highest aim o...

  2. Algebra and Geometry of Hamilton's Quaternions

    Indian Academy of Sciences (India)

    IAS Admin

    Inspired by the relation between the algebra of complex numbers and plane geometry, William. Rowan Hamilton sought an algebra of triples for application to three-dimensional geometry. Un- able to multiply and divide triples, he invented a non-commutative division algebra of quadru- ples, in what he considered his most ...

  3. Cognitive Styles, Dynamic Geometry and Measurement Performance

    Science.gov (United States)

    Pitta-Pantazi, Demetra; Christou, Constantinos

    2009-01-01

    This paper reports the outcomes of an empirical study undertaken to investigate the effect of students' cognitive styles on achievement in measurement tasks in a dynamic geometry learning environment, and to explore the ability of dynamic geometry learning in accommodating different cognitive styles and enhancing students' learning. A total of 49…

  4. Reasoning by Contradiction in Dynamic Geometry

    Science.gov (United States)

    Baccaglini-Frank, Anna; Antonini, Samuele; Leung, Allen; Mariotti, Maria Alessandra

    2013-01-01

    This paper addresses contributions that dynamic geometry systems (DGSs) may give in reasoning by contradiction in geometry. We present analyses of three excerpts of students' work and use the notion of pseudo object, elaborated from previous research, to show some specificities of DGS in constructing proof by contradiction. In particular, we…

  5. Visual and Analytic Strategies in Geometry

    Science.gov (United States)

    Kospentaris, George; Vosniadou, Stella; Kazic, Smaragda; Thanou, Emilian

    2016-01-01

    We argue that there is an increasing reliance on analytic strategies compared to visuospatial strategies, which is related to geometry expertise and not on individual differences in cognitive style. A Visual/Analytic Strategy Test (VAST) was developed to investigate the use of visuo-spatial and analytic strategies in geometry in 30 mathematics…

  6. Symposium on Differential Geometry and Differential Equations

    CERN Document Server

    Berger, Marcel; Bryant, Robert

    1987-01-01

    The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.

  7. A Multivariate Model of Achievement in Geometry

    Science.gov (United States)

    Bailey, MarLynn; Taasoobshirazi, Gita; Carr, Martha

    2014-01-01

    Previous studies have shown that several key variables influence student achievement in geometry, but no research has been conducted to determine how these variables interact. A model of achievement in geometry was tested on a sample of 102 high school students. Structural equation modeling was used to test hypothesized relationships among…

  8. Making Euclidean Geometry Compulsory: Are We Prepared?

    Science.gov (United States)

    Van Putten, Sonja; Howie, Sarah; Stols, Gerrit

    2010-01-01

    This study investigated the attitude towards, as well as the level of understanding of Euclidean geometry in pre-service mathematics education (PME) students. In order to do so, a case study was undertaken within which a one group pre-post-test procedure was conducted around a geometry module, and a representative group of students was interviewed…

  9. Accelerating navigation in the VecGeom geometry modeller

    Science.gov (United States)

    Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers,

    2017-10-01

    The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.

  10. Smooth Horizonless Geometries Deep Inside the Black-Hole Regime.

    Science.gov (United States)

    Bena, Iosif; Giusto, Stefano; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P

    2016-11-11

    We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.

  11. Dark energy, antimatter gravity and geometry of the Universe

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2010-01-01

    This article is based on two hypotheses. The first one is the existence of the gravitational repulsion between particles and antiparticles. Consequently, virtual particle-antiparticle pairs in the quantum vacuum might be considered as gravitational dipoles. The second hypothesis is that the Universe has geometry of a four-dimensional hyper-spherical shell with thickness equal to the Compton wavelength of a pion, which is a simple generalization of the usual geometry of a 3-hypersphere. It is striking that these two hypotheses lead to a simple relation for the gravitational mass density of the vacuum, which is in very good agreement with the observed dark energy density. It might be a sign that QCD fields provide the largest contribution to the gravitational mass of the physical vacuum; contrary to the prediction of the Standard Model that QCD contribution is much smaller than some other contributions.

  12. Observations of the Geometry of Horizon-Based Optical Navigation

    Science.gov (United States)

    Christian, John; Robinson, Shane

    2016-01-01

    NASA's Orion Project has sparked a renewed interest in horizon-based optical navigation(OPNAV) techniques for spacecraft in the Earth-Moon system. Some approaches have begun to explore the geometry of horizon-based OPNAV and exploit the fact that it is a conic section problem. Therefore, the present paper focuses more deeply on understanding and leveraging the various geometric interpretations of horizon-based OPNAV. These results provide valuable insight into the fundamental workings of OPNAV solution methods, their convergence properties, and associated estimate covariance. Most importantly, the geometry and transformations uncovered in this paper lead to a simple and non-iterative solution to the generic horizon-based OPNAV problem. This represents a significant theoretical advancement over existing methods. Thus, we find that a clear understanding of geometric relationships is central to the prudent design, use, and operation of horizon-based OPNAV techniques.

  13. Applications Of Nonclassical Geometry To String Theory

    CERN Document Server

    Zunger, Y

    2003-01-01

    String theory is built on a foundation of geometry. This thesis examines several applications of geometry beyond the classical Riemannian geometry of curved surfaces. The first part considers the use of extended spaces with internal dimensions to each point (“twistors”) to probe systems with a great deal of symmetry but complicated dynamics. These systems are of critical interest in understanding holographic phenomena in string theory and the origins of entropy. We develop a twistor formulation of coset spaces and use this to write simplified actions for particles and strings on anti-de Sitter space, which are easier to quantize than the ordinary (highly nonlinear) actions. In the second part, we consider two aspects of noncommutative geometry, a generalization of ordinary geometry where points are “fuzzed out” and functions of space become noncommuting operators. We first examine strings with one endpoint on a D-brane in a background magnetic field. (Strings with both ...

  14. Special metrics and group actions in geometry

    CERN Document Server

    Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi

    2017-01-01

    The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.

  15. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  16. Geometry-Related Children's Literature Improves the Geometry Achievement and Attitudes of Second-Grade Students

    Science.gov (United States)

    McAndrew, Erica M.; Morris, Wendy L.; Fennell, Francis

    2017-01-01

    Use of mathematics-related literature can engage students' interest and increase their understanding of mathematical concepts. A quasi-experimental study of two second-grade classrooms assessed whether daily inclusion of geometry-related literature in the classroom improved attitudes toward geometry and achievement in geometry. Consistent with the…

  17. Visuospatial Working Memory in Intuitive Geometry, and in Academic Achievement in Geometry

    Science.gov (United States)

    Giofre, David; Mammarella, Irene C.; Ronconi, Lucia; Cornoldi, Cesare

    2013-01-01

    A study was conducted on the involvement of visuospatial working memory (VSWM) in intuitive geometry and in school performance in geometry at secondary school. A total of 166 pupils were administered: (1) six VSWM tasks, comprising simple storage and complex span tasks; and (2) the intuitive geometry task devised by Dehaene, Izard, Pica, and…

  18. Analogy and Dynamic Geometry System Used to Introduce Three-Dimensional Geometry

    Science.gov (United States)

    Mammana, M. F.; Micale, B.; Pennisi, M.

    2012-01-01

    We present a sequence of classroom activities on Euclidean geometry, both plane and space geometry, used to make three dimensional geometry more catchy and simple. The activity consists of a guided research activity that leads the students to discover unexpected properties of two apparently distant geometrical entities, quadrilaterals and…

  19. Association of Roadway Proximity with Indoor Air Pollution in a Peri-Urban Community in Lima, Peru

    Directory of Open Access Journals (Sweden)

    Lindsay J. Underhill

    2015-10-01

    Full Text Available The influence of traffic-related air pollution on indoor residential exposure is not well characterized in homes with high natural ventilation in low-income countries. Additionally, domestic allergen exposure is unknown in such populations. We conducted a pilot study of 25 homes in peri-urban Lima, Peru to estimate the effects of roadway proximity and season on residential concentrations. Indoor and outdoor concentrations of particulate matter (PM2.5, nitrogen dioxide (NO2, and black carbon (BC were measured OPEN ACCESS Int. J. Environ. Res. Public Health 2015, 12 13467 during two seasons, and allergens were measured in bedroom dust. Allergen levels were highest for dust mite and mouse allergens, with concentrations above clinically relevant thresholds in over a quarter and half of all homes, respectively. Mean indoor and outdoor pollutant concentrations were similar (PM2.5: 20.0 vs. 16.9 μg/m3, BC: 7.6 vs. 8.1 μg/m3, NO2: 7.3 vs. 7.5 ppb, and tended to be higher in the summer compared to the winter. Road proximity was significantly correlated with overall concentrations of outdoor PM2.5 (rs = −0.42, p = 0.01 and NO2 (rs = −0.36, p = 0.03, and outdoor BC concentrations in the winter (rs = −0.51, p = 0.03. Our results suggest that outdoor-sourced pollutants significantly influence indoor air quality in peri-urban Peruvian communities, and homes closer to roadways are particularly vulnerable.

  20. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of

  1. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that

  2. basement reservoir geometry and properties

    Science.gov (United States)

    Walter, bastien; Geraud, yves; Diraison, marc

    2017-04-01

    Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre

  3. Buoyancy-driven mixing of fluids in a confined geometry; Melange gravitationnel de fluides en geometrie confinee

    Energy Technology Data Exchange (ETDEWEB)

    Hallez, Y

    2007-12-15

    The present work based on Direct Numerical Simulations is devoted to the study of mixing between two miscible fluids of different densities. The movement of these fluids is induced by buoyancy. Three geometries are considered: a cylindrical tube, a square channel and a plane two-dimensional flow. For cylindrical tubes, the results of numerical simulations fully confirm previous experimental findings by Seon et al., especially regarding the existence of three different flow regimes, depending on the tilt angle. The comparison of the various geometries shows that tridimensional flows in tubes or channels are similar, whereas the two-dimensional model fails to give reliable information about real 3D flows, either from a quantitative point of view or for a phenomenological understanding. A peculiar attention is put on a joint analysis of the concentration and vorticity fields and allows us to explain several subtle aspects of the mixing dynamics. (author)

  4. Planning tools to assess the real estate leveraging potential for roadways and transit : technical report.

    Science.gov (United States)

    2011-01-01

    A funding crisis exists for financing much needed transportation infrastructure projects across the nation and : Texas is no exception. Texas has responded to the crisis by passing several bills allowing innovative : financing and alternative options...

  5. Damage to ITS, traffic control and roadway lighting equipment from transient surge and lightning strikes.

    Science.gov (United States)

    2016-11-01

    The goal of this project was to collect the knowledge needed for the FDOT to either confirm or : improve the adequacy of the FDOTs existing minimum standards for lightning/surge protection, : including devices used and installation procedures. The...

  6. Singularities and the geometry of spacetime

    Science.gov (United States)

    Hawking, Stephen

    2014-11-01

    The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove

  7. Discrete quantum geometries and their effective dimension

    Energy Technology Data Exchange (ETDEWEB)

    Thuerigen, Johannes

    2015-07-02

    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.

  8. Digital and discrete geometry theory and algorithms

    CERN Document Server

    Chen, Li

    2014-01-01

    This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a

  9. Information geometry near randomness and near independence

    CERN Document Server

    Arwini, Khadiga A

    2008-01-01

    This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.

  10. Fractal geometry mathematical foundations and applications

    CERN Document Server

    Falconer, Kenneth

    2013-01-01

    The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals.  The book introduces and develops the general theory and applica

  11. Differential geometry and topology of curves

    CERN Document Server

    Animov, Yu

    2001-01-01

    Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.

  12. Introduction into integral geometry and stereology

    DEFF Research Database (Denmark)

    Kiderlen, Markus

    This text is the extended version of two talks held at the Summer Academy Stochastic Geometry, Spatial Statistics and Random Fields in the Soellerhaus, Germany, in September 2009. It forms (with slight modifications) a chapter of the Springer lecture notes Lectures on Stochastic Geometry, Spatial...... Statistics and Random Fields and is a self-containing introduction into integral geometry and its applications in stereology. The most important integral geometric tools for stereological applications are kinematic formulas and results of Blaschke-Petkantschin type. Therefore, Crofton's formula...

  13. Effect of injection screen slot geometry on hydraulic conductivity tests

    Science.gov (United States)

    Klammler, Harald; Nemer, Bassel; Hatfield, Kirk

    2014-04-01

    Hydraulic conductivity and its spatial variability are important hydrogeological parameters and are typically determined through injection tests at different scales. For injection test interpretation, shape factors are required to account for injection screen geometry. Shape factors act as proportionality constants between hydraulic conductivity and observed ratios of injection flow rate and injection head at steady-state. Existing results for such shape factors assume either an ideal screen (i.e., ignoring effects of screen slot geometry) or infinite screen length (i.e., ignoring effects of screen extremes). In the present work, we investigate the combined effects of circumferential screen slot geometry and finite screen length on injection shape factors. This is done in terms of a screen entrance resistance by solving a steady-state potential flow mixed type boundary value problem in a homogeneous axi-symmetric flow domain using a semi-analytical solution approach. Results are compared to existing analytical solutions for circumferential and longitudinal slots on infinite screens, which are found to be identical. Based on an existing approximation, an expression is developed for a dimensionless screen entrance resistance of infinite screens, which is a function of the relative slot area only. For anisotropic conditions, e.g., when conductivity is smaller in the vertical direction than in the horizontal, screen entrance losses for circumferential slots increase, while they remain unaffected for longitudinal slots. This work is not concerned with investigating the effects of (possibly turbulent) head losses inside the injection device including the passage through the injection slots prior to entering the porous aquifer.

  14. Geometry of fast magnetosonic rays, wavefronts and shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-11-25

    Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes. - Highlights: • Magnetosonic waves are studied in a genuinely multidimensional setting. • Curvature and the angle between rays and wavefronts are the main parameters. • Shock waves may exist or not, depending on initial conditions. • Both velocity and shape of those waves present a large variety of possible outcomes.

  15. Automated Geometry assisted PEC for electron beam direct write nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Ocola, Leonidas E.; Gosztola, David J.; Rosenmann, Daniel; Lopez, Gerald Gabriel

    2015-12-01

    Nanoscale geometry assisted proximity effect correction (NanoPEC) is demonstrated to improve PEC for nanoscale structures over standard PEC, in terms of feature sharpness for sub-100 nm structures. The method was implemented onto an existing commercially available PEC software. Plasmonic arrays of crosses were fabricated using regular PEC and NanoPEC, and optical absorbance was measured. Results confirm that the improved sharpness of the structures leads to increased sharpness in the optical absorbance spectrum features. We also demonstrated that this method of PEC is applicable to arbitrary shaped structures beyond crosses.

  16. Structure analysis for plane geometry figures

    Science.gov (United States)

    Feng, Tianxiao; Lu, Xiaoqing; Liu, Lu; Li, Keqiang; Tang, Zhi

    2013-12-01

    As there are increasing numbers of digital documents for education purpose, we realize that there is not a retrieval application for mathematic plane geometry images. In this paper, we propose a method for retrieving plane geometry figures (PGFs), which often appear in geometry books and digital documents. First, detecting algorithms are applied to detect common basic geometry shapes from a PGF image. Based on all basic shapes, we analyze the structural relationships between two basic shapes and combine some of them to a compound shape to build the PGF descriptor. Afterwards, we apply matching function to retrieve candidate PGF images with ranking. The great contribution of the paper is that we propose a structure analysis method to better describe the spatial relationships in such image composed of many overlapped shapes. Experimental results demonstrate that our analysis method and shape descriptor can obtain good retrieval results with relatively high effectiveness and efficiency.

  17. Gravity, Cartan geometry, and idealized waywisers

    CERN Document Server

    Westman, H F

    2012-01-01

    The primary aim of this paper is to provide a simple and concrete interpretation of Cartan geometry by pointing out that it is nothing but the mathematics of idealized waywisers. Waywisers, also called hodometers, are instruments traditionally used to measure distances. The mathematical representation of an idealized waywiser consists of a choice of symmetric space called a {\\em model space} and represents the `wheel' of the idealized waywiser. The geometry of a manifold is then completely characterized by a pair of variables $\\{V^A(x),A^{AB}(x)\\}$, each of which admit simple interpretations: $V^A$ is the point of contact between the waywiser's idealized wheel and the manifold whose geometry one wishes to characterize, and $A^{AB}=A_\\mu^{\\ AB}dx^\\mu$ is a connection one-form dictating how much the idealized wheel of the waywiser has rotated when rolled along the manifold. The familiar objects from differential geometry (e.g. metric $g_{\\mu\

  18. Geometry, structure and randomness in combinatorics

    CERN Document Server

    Nešetřil, Jaroslav; Pellegrini, Marco

    2014-01-01

    This book collects some surveys on current trends in discrete mathematics and discrete geometry. The areas covered include:  graph representations, structural graphs theory, extremal graph theory, Ramsey theory and constrained satisfaction problems.

  19. Homological mirror symmetry and tropical geometry

    CERN Document Server

    Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia

    2014-01-01

    The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...

  20. Track Geometry Measurement System Software Manual

    Science.gov (United States)

    1978-04-01

    The Track Geometry Measurement System (TGMS) was developed through the United States Department of Transportation's, Urban Mass Transportation Administration by the Transportation Systems Center in Cambridge, Massachusetts under its Test and Evaluati...

  1. 10th China-Japan Geometry Conference

    CERN Document Server

    Miyaoka, Reiko; Tang, Zizhou; Zhang, Weiping

    2016-01-01

    Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger–Yau–Zaslow conjecture on mirror symmetry, the relative Yau–Tian–Donaldson conjecture in Kähler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists. The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, sympl...

  2. The Soap-Bubble-Geometry Contest.

    Science.gov (United States)

    Morgan, Frank; Melnick, Edward R.; Nicholson, Ramona

    1997-01-01

    Presents an activity on soap-bubble geometry using a guessing contest, explanations, and demonstrations that allow students to mesh observation and mathematical reasoning to discover that mathematics is much more than just number crunching. (ASK)

  3. ARC Code TI: Geometry Manipulation Protocol (GMP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Geometry Manipulation Protocol (GMP) is a library which serializes datatypes between XML and ANSI C data structures to support CFD applications. This library...

  4. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Weizierl, Barbara; Wester, Ture

    2001-01-01

    . The purpose of the paper is to investigate some possibilities for the application of Quasi-Crystal geometry for structures in architecture. The basis for the investigations is A: to use the Golden Cubes (the two different hexahedra consisting of rhombic facets where the length of the diagonals has the Golden......Artikel på CD-Rom 8 sider. The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells...... ratio) as basic elements for aperiodic 3D geometries and B: to raise aperiodic Penrose tilings and its binary substitutions from their 2D basis into 3D QC geometries and describe the structural behaviour for these spatial configurations....

  5. Extracting Entanglement Geometry from Quantum States

    Science.gov (United States)

    Hyatt, Katharine; Garrison, James R.; Bauer, Bela

    2017-10-01

    Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network—and hence the geometry—is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.

  6. Algebra, Geometry and Mathematical Physics Conference

    CERN Document Server

    Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander

    2014-01-01

    This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...

  7. Robot Geometry and the High School Curriculum.

    Science.gov (United States)

    Meyer, Walter

    1988-01-01

    Description of the field of robotics and its possible use in high school computational geometry classes emphasizes motion planning exercises and computer graphics displays. Eleven geometrical problems based on robotics are presented along with the correct solutions and explanations. (LRW)

  8. Kerr geometry in f(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Cecilia; Guzman, Maria Jose [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-02-01

    Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity. (orig.)

  9. The geometry of René Descartes

    CERN Document Server

    Descartes, René

    1954-01-01

    The great work that founded analytical geometry. Includes the original French text, Descartes' own diagrams, and the definitive Smith-Latham translation. "The greatest single step ever made in the progress of the exact sciences." - John Stuart Mill.

  10. The elements of non-Euclidean geometry

    CERN Document Server

    Sommerville, D MY

    2012-01-01

    Renowned for its lucid yet meticulous exposition, this classic allows students to follow the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to more advanced topics. 1914 edition. Includes 133 figures.

  11. Tame geometry with application in smooth analysis

    CERN Document Server

    Yomdin, Yosef

    2004-01-01

    The Morse-Sard theorem is a rather subtle result and the interplay between the high-order analytic structure of the mappings involved and their geometry rarely becomes apparent. The main reason is that the classical Morse-Sard theorem is basically qualitative. This volume gives a proof and also an "explanation" of the quantitative Morse-Sard theorem and related results, beginning with the study of polynomial (or tame) mappings. The quantitative questions, answered by a combination of the methods of real semialgebraic and tame geometry and integral geometry, turn out to be nontrivial and highly productive. The important advantage of this approach is that it allows the separation of the role of high differentiability and that of algebraic geometry in a smooth setting: all the geometrically relevant phenomena appear already for polynomial mappings. The geometric properties obtained are "stable with respect to approximation", and can be imposed on smooth functions via polynomial approximation.

  12. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rousculp, Christopher L. [Los Alamos National Laboratory; Oro, David Michael [Los Alamos National Laboratory; Griego, Jeffrey Randall [Los Alamos National Laboratory; Turchi, Peter John [Los Alamos National Laboratory; Reinovsky, Robert Emil [Los Alamos National Laboratory; Bradley, Joseph Thomas [Los Alamos National Laboratory; Cheng, Baolian [Los Alamos National Laboratory; Freeman, Matthew Stouten [Los Alamos National Laboratory; Patten, Austin Randall [Los Alamos National Laboratory

    2016-03-21

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.

  13. Single domain PEMFC model based on agglomerate catalyst geometry

    Science.gov (United States)

    Siegel, N. P.; Ellis, M. W.; Nelson, D. J.; von Spakovsky, M. R.

    A steady two-dimensional computational model for a proton exchange membrane (PEM) fuel cell is presented. The model accounts for species transport, electrochemical kinetics, energy transport, current distribution, and water uptake and release in the catalyst layer. The governing differential equations are solved over a single computational domain, which consists of a gas channel, gas diffusion layer, and catalyst layer for both the anode and cathode sides of the cell as well as the solid polymer membrane. The model for the catalyst regions is based on an agglomerate geometry, which requires water species to exist in both dissolved and gaseous forms simultaneously. Data related to catalyst morphology, which was required by the model, was obtained via a microscopic analysis of a commercially available membrane electrode assembly (MEA). The coupled set of differential equations is solved with the commercial computational fluid dynamics (CFD) solver, CFDesign™, and is readily adaptable with respect to geometry and material property definitions. The results show that fuel cell performance is highly dependent on catalyst structure, specifically the relative volume fractions of gas pores and polymer membrane contained within the active region as well as the geometry of the individual agglomerates.

  14. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rousculp, Christopher L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oro, David Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Margolin, Len G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griego, Jeffrey Randall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reinovsky, Robert Emil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turchi, Peter John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-06

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.

  15. Fragmented QRS and Left Ventricular Geometry in Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Lütfü Bekar

    2013-08-01

    Full Text Available Introduction: Fragmented QRS is a depolarization abnormality detected with routin ECG recording. It is related with conduction defect which occurs after myocardial fibrosis. In the left ventricular hypertrophy, an excessive amount of collagen accumulates in the interstitium when the myocytes became hypertrophied, resulting in myocardial fibrosis. In this study, we aimed to investigate the relationship of fragmented QRS which was detected on ECG recordings of the hypertensive patients with the left ventricular geometry.Patients and Methods: Essential hypertension patients referred to our hospital on outpatient bases were included in the study. 12-lead resting ECG was taken in all the patients. Left ventricular geometry defined using left ventricular mass index and relative wall thickness with transthorasic echocardiography.Results: Sixy seven patients with fragmented QRS and 63 patients without fragmented QRS included the study. We found that patients in the group with fragmented QRS detected have a wider mean left atrium diameter, greater left ventricular mass and left ventricular mass index compared with the group without fragmented QRS. Concentric and eccentric hypertrophy were more common in fragmented QRS group, while normal geometry and concentric remodelling have greater rates in the normal group.Conclusion: Left ventricular hypertrophy is observed more frequently in the patients with fragmented QRS than without fragmented QRS. This may be associated with the increased myocardial fibrosis in the left ventricular hypertrophy. Existence of fragmented QRS can be used for risk stratification in the hypertensive patients.

  16. Geometry and quantization of moduli spaces

    CERN Document Server

    Andersen, Jørgen; Riera, Ignasi

    2016-01-01

    This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.

  17. Non-relativistic geometry of holographic screens

    Science.gov (United States)

    Moosa, Mudassir

    2017-06-01

    We propose that the intrinsic geometry of holographic screens should be described by the Newton-Cartan geometry. As a test of this proposal, we show that the evolution equations of the screen can be written in a covariant form in terms of a stress tensor, an energy current, and a momentum one-form. We derive the expressions for the stress tensor, energy density, and momentum one-form using Brown-York action formalism.

  18. Perspectives in Analysis, Geometry, and Topology

    CERN Document Server

    Itenberg, I V; Passare, Mikael

    2012-01-01

    The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.

  19. Geometry of quantum computation with qutrits.

    Science.gov (United States)

    Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming

    2013-01-01

    Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.

  20. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.

    Science.gov (United States)

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-07

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0