WorldWideScience

Sample records for exhibiting percolation ferromagnetism

  1. Percolation

    International Nuclear Information System (INIS)

    Fontes, L.R.G.; Sidoravicius, V.

    2004-01-01

    Percolation is the phenomenon of transport of a fluid through a porous medium. For example, oil or gas through rock, or water through coffee powder. The medium consists of microscopic pores and channels through which the fluid might pass. In a simple situation, each channel will be open or closed to the passage of the fluid, depending on several characteristics of the medium which could be summed up in a few parameters. The distribution of open and closed channels could be described probabilistically. In the simplest case, each channel, independently of the others, is open with probability p, the single parameter of the model, and closed with probability 1 - p. We will model the medium microscopically by the d-dimensional hipercubic lattice, Z d , whose sites and (nearest neighbor) bonds represent the pores and channels, respectively. This constitutes what we will call the independent (Bernoulli) bond percolation model (in Z d ). It will be focused on in Part I of these notes. A basic question is the occurrence or not of percolation, that is, the existence of an infinite path, through open bonds only, cutting through the medium. In the next sections of this introduction, we will define the model in detail and show its first non-trivial result, establishing the existence of a phase transition in 2 and higher dimensions, that is, establishing the existence of a critical value for the parameter p, p c is an element of (0, 1), such that the model does not exhibit percolation almost surely for values of p below p c , and does exhibit percolation almost surely for values of p above p c . In Part II, we consider an oriented percolation model in a random environment which is related to several interesting questions in discrete probability. In Part III, we depart further from the initial model, and consider stochastic Ising models at zero temperature, which are not immediately related to the models in the previous parts, but rather to a dynamical percolation model called

  2. Frontiers and critical expoents in percolation and Ising and Potts ferromagnets: renormalization group and others techniques

    International Nuclear Information System (INIS)

    Magalhaes, A.C.N. de.

    1982-01-01

    By using real space renormalization group methods, bond percolation on d-dimensional hypercubic (d = 2, 3, 4), first - and second - neighbour isotropic square, anisotropic square and 'inhomogeneous' 4-8 lattices is studied. Through some extrapolation methods, critical points and/or frontiers are obtained (as well as the critical exponent ν sub(p) in the isotropic cases) for these lattices that, or agree well with other available results, or are new as far as it is know (first - and second - neighbour isotropic square and 'inhomogeneous' 4-8 lattices). A conjecture concerning approximate (eventually exact) critical points and, in certain situations, critical frontiers of q-state Potts ferromagnets on d-dimensional lattices (d > 1) is formulated. This conjecture is verified within good accuracy for all the lattices whose critical points are known, and it allows the prediction of a great number of new results, some of them it is believed to be exact. Within a real space renomalization group framework, accurate approximations for the critical frontiers associated with the quenched bond-diluted first-neighbour spin-1/2 Ising ferromagnet on triangular and honeycomb lattices are calculated. The best numerical proposals lead, in both pure bond percolation (p = p sub(c)) and pure Ising (p = 1) limits, to the exact critical points and (dt 0 /dp) sub(p = p sub(c)) (where t 0 identical to tanh J/K sub(B) T), and to a 0.15% (0.96%) error in (dt 0 /dp) sub(p = 1) for the triangular (honeycomb) lattice; for p sub(c) 0 (for fixed p) of 0.27% (0.14%) is estimated for the triangular (honeycomb) lattice. It is exhibited, for many star-triangle graph pairs with any number of terminals and different sizes, that the exact q = 1, 2, 3, 4 critical points of Potts ferromagnets can aZZ of them, be obtained from any one of such graph pairs. (Author) [pt

  3. Critical percolation in the slow cooling of the bi-dimensional ferromagnetic Ising model

    Science.gov (United States)

    Ricateau, Hugo; Cugliandolo, Leticia F.; Picco, Marco

    2018-01-01

    We study, with numerical methods, the fractal properties of the domain walls found in slow quenches of the kinetic Ising model to its critical temperature. We show that the equilibrium interfaces in the disordered phase have critical percolation fractal dimension over a wide range of length scales. We confirm that the system falls out of equilibrium at a temperature that depends on the cooling rate as predicted by the Kibble-Zurek argument and we prove that the dynamic growing length once the cooling reaches the critical point satisfies the same scaling. We determine the dynamic scaling properties of the interface winding angle variance and we show that the crossover between critical Ising and critical percolation properties is determined by the growing length reached when the system fell out of equilibrium.

  4. Percolation Magnetism in Ferroelectric Nanoparticles

    Science.gov (United States)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  5. Percolation Magnetism in Ferroelectric Nanoparticles.

    Science.gov (United States)

    Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N

    2017-12-01

    Nanoparticles of potassium tantalate (KTaO 3 ) and potassium niobate (KNbO 3 ) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe 3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  6. COERCIVE FORCE IN THE SYSTEM OF FERROMAGNETIC GRANULES FOR HALF METAL CrO2 WITH PERCOLATION CONDUCTIVITY

    Directory of Open Access Journals (Sweden)

    N. V. Dalakova

    2017-10-01

    Full Text Available Magnetic and magnetoresistive properties of several samples of compacted powders of ferromagnetic half-metal CrO2, consisting of needle-shaped or spherical nanoparticles coated with thin dielectric shells, were investigated in wide temperature range. The temperature dependence of the coercive force Hc(T is compared with the temperature dependence of the field of maximum of positive tunneling magnetoresistance Hp(T. The dependence of Hp(T was nonmonotonic one. It is found that in the low-temperature range (4.2 ÷ 70 K the ratio Hp ≈ Hc, expected for compacted ferromagnetic powders with particles of submicron sizes, does not fulfilled. It is assumed that the possible reason of the difference between Hp and Hc is the mismatch between the orientation of the global magnetization of the entire sample and the orientations of the magnetic moments in some part of granules that form the optimal conducting channels at low temperatures. Such a mismatch may be due to the multidomain granules are more prone to the formation of optimal conducting chains in the transport channels. That leads to a change in the mechanism of magnetization reversal in these channels and to violation of the ratio Hp ≈ Hc.

  7. Marketing percolation

    Science.gov (United States)

    Goldenberg, J.; Libai, B.; Solomon, S.; Jan, N.; Stauffer, D.

    2000-09-01

    A percolation model is presented, with computer simulations for illustrations, to show how the sales of a new product may penetrate the consumer market. We review the traditional approach in the marketing literature, which is based on differential or difference equations similar to the logistic equation (Bass, Manage. Sci. 15 (1969) 215). This mean-field approach is contrasted with the discrete percolation on a lattice, with simulations of "social percolation" (Solomon et al., Physica A 277 (2000) 239) in two to five dimensions giving power laws instead of exponential growth, and strong fluctuations right at the percolation threshold.

  8. Social percolation models

    Science.gov (United States)

    Solomon, Sorin; Weisbuch, Gerard; de Arcangelis, Lucilla; Jan, Naeem; Stauffer, Dietrich

    2000-03-01

    We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.

  9. Exhibition

    CERN Document Server

    Staff Association

    2017-01-01

    A Look of Hope Islam Mahmoud Sweity From 19 to 30 June 2017 CERN Meyrin, Main Building Islam Mahmoud Sweity Islam Mahmoud Sweity was born in 1997 at Beit Awwa, Palestine. She is currently following a course to get an Art diploma of Painting at the college of Fine Arts at An-Najah National University under the supervision of Esmat Al As'aad. Her portraits, landscapes and still life paintings are full of life and shining colours. Charged of emotional empathy they catch the attention of the viewer and are reminding us that life is beautiful and worth living in spite of all difficulties we have to go through. She participated in many exhibitions and has exposed her drawings in 2015 at CERN and in France in the framework of the exhibition "The Origin“, and in 2017 in the Former Yugoslav Republic of Macedonia, Palestina and Jordan. In this exhibition the oil paintings made in the past year will be presented. For more information : staff.association@cern.ch | T&eacu...

  10. Multifragmentation and percolation

    International Nuclear Information System (INIS)

    Campi, X.; Desbois, J.

    1985-01-01

    Percolation theory is applied to the problem of nucleus break-up. A model of nuclear percolation is proposed in which the rules for linkage of nucleons to form a cluster are defined in real and momentum spaces. This model exhibits a rather well defined threshold at rho ≅ 0.6. Analytical expressions for cluster size distributions at fixed concentration rho are given. Decay of excited clusters (by evaporation and fission) to give stable nuclear fragments is incorporated. The distribution law for rho in inclusive reactions is studied and the calculated mass yields are compared to experimental results

  11. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    Encounters Hanne Blitz From February 1st to 12th 2016 CERN Meyrin, Main Building What is our reaction to a first encounter with a tourist attraction? Contemporary Dutch painter Hanne Blitz captures visitors' responses to art and architecture, sweeping vistas and symbolic memorials. Encounters, a series of oil paintings curated specially for this CERN exhibition, depicts tourists visiting cultural highlights around the world. A thought-provoking journey not to be missed, and a tip of the hat to CERN's large Hadron Collider.

  12. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Sintropie Flavio Pellegrini From 13 to 24 March 2017 CERN Meyrin, Main Building Energia imprigionata - Flavio Pellegrini. The exhibition is composed by eleven wood artworks with the expression of movement as theme. The artworks are the result of harmonics math applied to sculpture. The powerful black colour is dominated by the light source, generating reflexes and modulations. The result is a continuous variation of perspective visions. The works generate, at a first approach, an emotion of mystery and incomprehension, only a deeper contemplation lets one discover entangling and mutative details, evidencing the elegance of the lines and letting the meaning emerge. For more information : staff.association@cern.ch | Tél: 022 766 37 38

  13. Percolation Systems away from the Critical Point

    OpenAIRE

    Dhar, Deepak

    2001-01-01

    This article reviews some effects of disorder in percolation systems even away from the critical density p_c. For densities below p_c, the statistics of large clusters defines the animals problem. Its relation to the directed animals problem and the Lee-Yang edge singularity problem is described. Rare compact clusters give rise to Griffiths singuraties in the free energy of diluted ferromagnets, and lead to a very slow relaxation of magnetization. In biassed diffusion on percolation clusters,...

  14. Isolation of a new two-dimensional honeycomb carbonato-bridged copper(II) complex exhibiting long-range ferromagnetic ordering.

    Science.gov (United States)

    Majumder, Arpi; Choudhury, Chirantan Roy; Mitra, Samiran; Rosair, Georgina M; El Fallah, M Salah; Ribas, Joan

    2005-04-28

    Atmospheric CO2 fixation by an aqueous solution containing Cu(ClO4)2.6H2O and 4-aminopyridine (4-apy) yields a novel example of a two-dimensional mu3-CO3 bridged copper(II) complex {[Cu(4-apy)2]3(mu3-CO3)2(ClO4)2.(1/2)CH3OH}n that has been characterized by IR, UV and X-ray crystallography; preliminary magnetic measurements show that complex exhibits long-range ordered ferromagnetic coupling.

  15. Percolation processes

    International Nuclear Information System (INIS)

    Kunz, H.

    1980-01-01

    Percolation is a unifying which appeared to be rather useful in trying to understand some properties of disordered physical systems, or some phase transitions in polymers, like gelation or vulcanisation. Although implicitely used in the pioneering work of Flory in 1941 on the sol-gel transition of polymers, it was first introduced in a well-defined way by the mathematicians Hammersley and Broadbent in 1957, who obtained the first rigorous result. Since then, the subject has seen a variety of new applications and its recent study has largely benefited from the vigorous development of critical phenomena after the introduction of the RG ideas and techniques. (author)

  16. Percolation in real multiplex networks

    Science.gov (United States)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  17. Fractal effects on excitations in diluted ferromagnets

    International Nuclear Information System (INIS)

    Kumar, D.

    1981-08-01

    The low energy spin-wave like excitations in diluted ferromagnets near percolation threshold are studied. For this purpose an explicit use of the fractal model for the backbone of the infinite percolating cluster due to Kirkpatrick is made. Three physical effects are identified, which cause the softening of spin-waves as the percolation point is approached. The importance of fractal effects in the calculation of density of states and the low temperature thermodynamics is pointed out. (author)

  18. The Beasts' model of percolative transport

    International Nuclear Information System (INIS)

    Dubois, M.A.; Beaufume, P.; Fromont, B.

    1991-12-01

    A class of nonlinear dynamical systems is introduced: it is aimed to be a tool in order to study anomalous transport and percolation phenomena. We study a simple example of this system, and explore different regimes of transport exhibited

  19. Anomalous critical and supercritical phenomena in explosive percolation

    Science.gov (United States)

    D'Souza, Raissa M.; Nagler, Jan

    2015-07-01

    The emergence of large-scale connectivity on an underlying network or lattice, the so-called percolation transition, has a profound impact on the system’s macroscopic behaviours. There is thus great interest in controlling the location of the percolation transition to either enhance or delay its onset and, more generally, in understanding the consequences of such control interventions. Here we review explosive percolation, the sudden emergence of large-scale connectivity that results from repeated, small interventions designed to delay the percolation transition. These transitions exhibit drastic, unanticipated and exciting consequences that make explosive percolation an emerging paradigm for modelling real-world systems ranging from social networks to nanotubes.

  20. PERCOLATION TRANSITION AND TOPOLOGY

    Directory of Open Access Journals (Sweden)

    Patricia Jouannot-Chesney

    2017-06-01

    Full Text Available A number of bidimensional random structures with increasing densities are simulated to explore possible links between Euler-Poincaré characteristic (EPC, or connectivity, and percolation threshold. For each structure model, the percolation threshold is compared with a number of typical points (extrema, zero crossings... of the EPC curve. From these exercises, it can be concluded that the percolation threshold cannot be generally predicted using the evolution of the EPC.

  1. Integral hierarchies and percolation

    International Nuclear Information System (INIS)

    Klein, W.; Stell, G.

    1985-01-01

    For a variation of the Potts model which has been shown to describe continuum percolation, we derive a hierarchy of integral equations of Kirkwood-Salsburg type. The distribution functions which are the solutions of this hierarchy can be simply related to the connectedness functions in continuum percolation. From this hierarchy a second set of equations is derived from which the connectedness functions can be obtained directly. This approach is extremely useful when investigating properties of systems far from the percolation transition. These hierarchies are solved exactly in the mean-field (Kac-Baker) limit and possible implications for cluster growth are discussed. The relation between the Potts model for continuum percolation and the Widom-Rowlinson model is also noted

  2. The internal percolation problem

    International Nuclear Information System (INIS)

    Bezsudnov, I.V.; Snarskii, A.A.

    2010-01-01

    The internal percolation problem (IP) as a new type of the percolation problem is introduced and investigated. In spite of the usual (or external) percolation problem (EP) when the percolation current flows from the top to the bottom of the system, in IP case the voltage is applied through bars which are present in the hole located within the system. The EP problem has two major parameters: M-size of the system and a 0 -size of inclusions, bond size, etc. The IP problem holds one parameter more: size of the hole L. Numerical simulation shows that the critical indexes of conductance for the IP problem are very close to those in the EP problem. On the contrary, the indexes of the relative spectral noise density of 1/f noise and higher moments differ from those in the EP problem. The basics of these facts is discussed.

  3. Introduction to percolation theory

    CERN Document Server

    Stauffer, Dietrich

    1991-01-01

    Percolation theory deals with clustering, criticallity, diffusion, fractals, phase transitions and disordered systems. This book covers the basic theory for the graduate, and also professionals dealing with it for the first time

  4. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Science.gov (United States)

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed.

  5. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Pasanai, K., E-mail: krisakronmsu@gmail.com

    2017-01-15

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  6. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    International Nuclear Information System (INIS)

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  7. Molecular ferromagnetism

    International Nuclear Information System (INIS)

    Epstein, A.J.

    1990-01-01

    This past year has been one of substantial advancement in both the physics and chemistry of molecular and polymeric ferromagnets. The specific heat studies of (DMeFc)(TCNE) have revealed a cusp at the three-dimensional ferromagnetic transition temperature with a crossover to primarily 1-D behavior at higher temperatures. This paper discusses these studies

  8. Ferromagnetic nanorings

    International Nuclear Information System (INIS)

    Vaz, C A F; Hayward, T J; Llandro, J; Schackert, F; Morecroft, D; Bland, J A C; Klaeui, M; Laufenberg, M; Backes, D; Ruediger, U; Castano, F J; Ross, C A; Heyderman, L J; Nolting, F; Locatelli, A; Faini, G; Cherifi, S; Wernsdorfer, W

    2007-01-01

    Ferromagnetic metal rings of nanometre range widths and thicknesses exhibit fundamentally new spin states, switching behaviour and spin dynamics, which can be precisely controlled via geometry, material composition and applied field. Following the discovery of the 'onion state', which mediates the switching to and between vortex states, a range of fascinating phenomena has been found in these structures. In this overview of our work on ring elements, we first show how the geometric parameters of ring elements determine the exact equilibrium spin configuration of the domain walls of rings in the onion state, and we show how such behaviour can be understood as the result of the competition between the exchange and magnetostatic energy terms. Electron transport provides an extremely sensitive probe of the presence, spatial location and motion of domain walls, which determine the magnetic state in individual rings, while magneto-optical measurements with high spatial resolution can be used to probe the switching behaviour of ring structures with very high sensitivity. We illustrate how the ring geometry has been used for the study of a wide variety of magnetic phenomena, including the displacement of domain walls by electric currents, magnetoresistance, the strength of the pinning potential introduced by nanometre size constrictions, the effect of thermal excitations on the equilibrium state and the stochastic nature of switching events

  9. Theoretical formulation of optical conductivity of La0.7Ca0.3MnO3 exhibiting paramagnetic insulator - ferromagnetic metal transition

    Science.gov (United States)

    Satiawati, L.; Majidi, M. A.

    2017-07-01

    A theory of high-energy optical conductivity of La0.7Ca0.3MnO3 has been proposed previously. The proposed theory works to explain the temperature-dependence of the optical conductivity for the photon energy region above ˜0.5 eV for up to ˜22 eV, but fails to capture the correct physics close to the dc limit in which metal-insulator transition occurs. The missing physics at the low energy has been acknowledged as mainly due to not incorporating phonon degree of freedom and electron-phonon interactions. In this study, we aim to complete the above theory by proposing a more complete Hamiltonian incorporating additional terms such as crystal field, two modes of Jahn-Teller vibrations, and coupling between electrons and the two Jahn-Teller vibrational modes. We solve the model by means of dynamical mean-field theory. At this stage, we aim to derive the analytical formulae involved in the calculation, and formulate the algorithmic implementation for the self-consistent calculation process. Our final goal is to compute the density of states and the optical conductivity for the complete photon energy range from 0 to 22 eV at various temperatures, and compare them with the experimental data. We expect that the improved model preserves the correct temperature-dependent physics at high photon energies, as already captured by the previous model, while it would also reveal ferromagnetic metal - paramagnetic insulator transition at the dc limit.

  10. Percolation of Monte Carlo clusters

    International Nuclear Information System (INIS)

    Wanzeller, W.G.; Krein, G.; Cucchieri, A.; Mendes, T.

    2004-01-01

    Percolation theory is of interest in problems of phase transitions in condensed matter physics, and in biology and chemistry. More recently, concepts of percolation theory have been invoked in studies of color deconfinement at high temperatures in Quantum Chromodynamics. In the present paper we briefly review the basic concept of percolation theory, exemplify its application to the Ising model, and present the arguments for a possible relevance of percolation theory to the problem of color deconfinement. (author)

  11. Dynamics of bootstrap percolation

    Indian Academy of Sciences (India)

    precise criterion for the occurrence of a mixed transition is not very clear, and has been the subject ... ology, electronic communication, and social networks. It has also acquired a ... percolation theory is to start with a lattice with a fraction p of its sites occupied randomly, and ..... samples of a 104-node network. Probability is ...

  12. Recent advances in percolation theory and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Abbas Ali, E-mail: ab.saberi@ut.ac.ir

    2015-05-24

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin–Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  13. Recent advances in percolation theory and its applications

    International Nuclear Information System (INIS)

    Saberi, Abbas Ali

    2015-01-01

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin–Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  14. Recent advances in percolation theory and its applications

    Science.gov (United States)

    Saberi, Abbas Ali

    2015-05-01

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin-Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  15. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun

    2012-08-28

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  16. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun; Wang, Feng; Li, Kun; Woo, Katchoi; Wang, Jianfang; Li, Quan; Sun, Ling Dong; Zhang, Xixiang; Lin, Haiqing; YAN, Chunhua

    2012-01-01

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  17. Dimensional crossover in directed percolation

    International Nuclear Information System (INIS)

    Chame, A.M.N.; Queiroz, S.L.A. de; Santos, Raimundo R. dos.

    1984-04-01

    We study the dimensional crossover in directed percolation in three dimensions. Bonds are allowed to have different concentrations along the three cartesian axes of the lattice. Through a Position Space Renormalization Group we obtain the phase-diagrama where non-percolating, 1-D, 2-D and 3-D percolating phases are present. We find that the isotropic fixed points are unstable with respect to anisotropy, thus driving the system into a different universality class. (author) [pt

  18. Percolation in Heterogeneous Media

    International Nuclear Information System (INIS)

    Vocka, Radim

    1999-01-01

    This work is a theoretical reflection on the problematic of the modeling of heterogeneous media, that is on the way of their simple representation conserving their characteristic features. Two particular problems are addressed in this thesis. Firstly, we study the transport in porous media, that is in a heterogeneous media which structure is quenched. A pore space is represented in a simple way - a pore is symbolized as a tube of a given length and a given diameter. The fact that the correlations in the distribution of pore sizes are taken into account by a construction of a hierarchical network makes possible the modeling of porous media with a porosity distributed over several length scales. The transport in the hierarchical network shows qualitatively different phenomena from those observed in simpler models. A comparison of numerical results with experimental data shows that the hierarchical network gives a good qualitative representation of the structure of real porous media. Secondly, we study a problem of the transport in a heterogeneous media which structure is evolving during the time. The models where the evolution of the structure is not influenced by the transport are studied in detail. These models present a phase transition of the same nature as that observed on the percolation networks. We propose a new theoretical description of this transition, and we express critical exponents describing the evolution of the conductivity as a function of fundamental exponents of percolation theory. (author) [fr

  19. Percolative transport in the vicinity of charge-order ferromagnetic ...

    Indian Academy of Sciences (India)

    field driven charge transport in the system is modelled on the basis of an inhomogeneous medium consisting of ... The charge-ordered phase for incommensurate distribution of man- ganese ions (i.e. ... position x = 0.35 measured in a constant voltage mode. The electric ... a drop in resistance on decreasing the temperature.

  20. Percolation via Combined Electrostatic and Chemical Doping in Complex Oxide Films

    Science.gov (United States)

    Orth, Peter P.; Fernandes, Rafael M.; Walter, Jeff; Leighton, C.; Shklovskii, B. I.

    2017-03-01

    Stimulated by experimental advances in electrolyte gating methods, we investigate theoretically percolation in thin films of inhomogeneous complex oxides, such as La1 -xSrxCoO3 (LSCO), induced by a combination of bulk chemical and surface electrostatic doping. Using numerical and analytical methods, we identify two mechanisms that describe how bulk dopants reduce the amount of electrostatic surface charge required to reach percolation: (i) bulk-assisted surface percolation and (ii) surface-assisted bulk percolation. We show that the critical surface charge strongly depends on the film thickness when the film is close to the chemical percolation threshold. In particular, thin films can be driven across the percolation transition by modest surface charge densities. If percolation is associated with the onset of ferromagnetism, as in LSCO, we further demonstrate that the presence of critical magnetic clusters extending from the film surface into the bulk results in considerable enhancement of the saturation magnetization, with pronounced experimental consequences. These results should significantly guide experimental work seeking to verify gate-induced percolation transitions in such materials.

  1. Percolation technique for galaxy clustering

    Science.gov (United States)

    Klypin, Anatoly; Shandarin, Sergei F.

    1993-01-01

    We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.

  2. Group percolation in interdependent networks

    Science.gov (United States)

    Wang, Zexun; Zhou, Dong; Hu, Yanqing

    2018-03-01

    In many real network systems, nodes usually cooperate with each other and form groups to enhance their robustness to risks. This motivates us to study an alternative type of percolation, group percolation, in interdependent networks under attack. In this model, nodes belonging to the same group survive or fail together. We develop a theoretical framework for this group percolation and find that the formation of groups can improve the resilience of interdependent networks significantly. However, the percolation transition is always of first order, regardless of the distribution of group sizes. As an application, we map the interdependent networks with intersimilarity structures, which have attracted much attention recently, onto the group percolation and confirm the nonexistence of continuous phase transitions.

  3. Self Healing Percolation

    Science.gov (United States)

    Scala, Antonio

    2015-03-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.

  4. Dielectric and diamagnetic susceptibilities near percolative superconductor-insulator transitions.

    Science.gov (United States)

    Loh, Yen Lee; Karki, Pragalv

    2017-10-25

    Coarse-grained superconductor-insulator composites exhibit a superconductor-insulator transition governed by classical percolation, which should be describable by networks of inductors and capacitors. We study several classes of random inductor-capacitor networks on square lattices. We present a unifying framework for defining electric and magnetic response functions, and we extend the Frank-Lobb bond-propagation algorithm to compute these quantities by network reduction. We confirm that the superfluid stiffness scales approximately as [Formula: see text] as the superconducting bond fraction p approaches the percolation threshold p c . We find that the diamagnetic susceptibility scales as [Formula: see text] below percolation, and as [Formula: see text] above percolation. For models lacking self-capacitances, the electric susceptibility scales as [Formula: see text]. Including a self-capacitance on each node changes the critical behavior to approximately [Formula: see text].

  5. Percolation with multiple giant clusters

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    We study mean-field percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ('gels') formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F k , of frozen clusters of size k, has a universal tail, F k ∼ k -3 . We propose freezing as a practical mechanism for controlling the gel size. (letter to the editor)

  6. Target-Searching on Percolation

    International Nuclear Information System (INIS)

    Yang Shijie

    2005-01-01

    We study target-searching processes on a percolation, on which a hunter tracks a target by smelling odors it emits. The odor intensity is supposed to be inversely proportional to the distance it propagates. The Monte Carlo simulation is performed on a 2-dimensional bond-percolation above the threshold. Having no idea of the location of the target, the hunter determines its moves only by random attempts in each direction. For lager percolation connectivity p ∼> 0.90, it reveals a scaling law for the searching time versus the distance to the position of the target. The scaling exponent is dependent on the sensitivity of the hunter. For smaller p, the scaling law is broken and the probability of finding out the target significantly reduces. The hunter seems trapped in the cluster of the percolation and can hardly reach the goal.

  7. Signature of Thermal Rigidity Percolation

    International Nuclear Information System (INIS)

    Huerta, Adrián

    2013-01-01

    To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of p hysical cluster . For certain parameters of this model we observe two well defined peaks of C V , that suggest the existence of two kinds of p hysical percolation , namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter

  8. STM observations of ferromagnetic clusters

    International Nuclear Information System (INIS)

    Wawro, A.; Kasuya, A.

    1998-01-01

    Co, Fe and Ni clusters of nanometer size, deposited on silicon and graphite (highly oriented pyrolytic graphite), were observed by a scanning tunneling microscope. Deposition as well as the scanning tunneling microscope measurements were carried out in an ultrahigh vacuum system at room temperature. Detailed analysis of Co cluster height was done with the scanning tunneling microscope equipped with a ferromagnetic tip in a magnetic field up to 70 Oe. It is found that bigger clusters (few nanometers in height) exhibit a dependence of their apparent height on applied magnetic field. We propose that such behaviour originates from the ferromagnetic ordering of cluster and associate this effect to spin polarized tunneling. (author)

  9. Anisotropic Percolation Analysis of Discharge

    Science.gov (United States)

    Matsumoto, Shogo; Odagaki, Takashi

    2014-03-01

    Exploiting a nonlinear resistor network on a square lattice in two dimensions, we investigate discharge when two opposite sides of the lattice are subjected to a constant voltage difference. Each site is ionized randomly with a probability in proportion to the square of the strength of the electric field, and the resistivity between two ionized sites is assumed to be 10-6 times smaller than the original resistivity. Using Monte Carlo simulation, we obtain the current and distribution of clusters of ionized sites as functions of the fraction of ionized sites. It is found that a wall of potential drop is formed as the fraction approaches a critical value, which is followed by discharge. The critical value is much smaller than the critical percolation probability of the standard site percolation on the square lattice. We also find that a singular behavior of the cluster distribution is expected at a critical fraction differently from that for the current, and that the critical exponents characterizing the cluster distribution satisfy the scaling relation known for two-dimensional percolation, while the critical exponent of the percolation probability is close to the value reported for a directed percolation.

  10. Effect of fractons and magnons in dilute ferromagnets on resistivity

    International Nuclear Information System (INIS)

    Li Jianxin; Jiang Qing; Tian Decheng

    1993-01-01

    Based on the s - d exchange model, we investigate the temperature-dependent resistivity arising from the scattering of electrons off fractons and magnons in dilute Heisenberg ferromagnets on three-dimensional bond percolation network. The results indicate that the contribution of fracton scatterings to the resistivity varies from T 3 / 2 to T 2 dependence as the concentration of bonds approaches the percolation threshold, while the magnon scattering contributes a resistivity varying as T 3 / 2 regardless of the changes in concentration of bonds. (author). 21 refs, 4 figs

  11. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  12. Fractal properties of percolation clusters in Euclidian neural networks

    International Nuclear Information System (INIS)

    Franovic, Igor; Miljkovic, Vladimir

    2009-01-01

    The process of spike packet propagation is observed in two-dimensional recurrent networks, consisting of locally coupled neuron pools. Local population dynamics is characterized by three key parameters - probability for pool connectedness, synaptic strength and neuron refractoriness. The formation of dynamic attractors in our model, synfire chains, exhibits critical behavior, corresponding to percolation phase transition, with probability for non-zero synaptic strength values representing the critical parameter. Applying the finite-size scaling method, we infer a family of critical lines for various synaptic strengths and refractoriness values, and determine the Hausdorff-Besicovitch fractal dimension of the percolation clusters.

  13. Percolation and spin glass transition

    International Nuclear Information System (INIS)

    Sadiq, A.; Tahir-Kheli, R.A.; Wortis, M.; Bhatti, N.A.

    1980-10-01

    The behaviour of clusters of curved and normal plaquette particles in a bond random, +-J, Ising model is studied in finite square and triangular lattices. Computer results for the concentration of antiferromagnetic bonds when percolating clusters first appears are found to be close to those reported for the occurrence and disappearance of spin glass phases in these systems. (author)

  14. Percolation transitions in two dimensions

    NARCIS (Netherlands)

    Feng, X.; Deng, Y.; Blöte, H.W.J.

    2008-01-01

    We investigate bond- and site-percolation models on several two-dimensional lattices numerically, by means of transfer-matrix calculations and Monte Carlo simulations. The lattices include the square, triangular, honeycomb kagome, and diced lattices with nearest-neighbor bonds, and the square

  15. Percolation and multifragmentation of nuclei

    International Nuclear Information System (INIS)

    Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs

  16. Percolation Threshold Parameters of Fluids

    Czech Academy of Sciences Publication Activity Database

    Škvor, J.; Nezbeda, Ivo

    2009-01-01

    Roč. 79, č. 4 (2009), 041141-041147 ISSN 1539-3755 Institutional research plan: CEZ:AV0Z40720504 Keywords : percolation threshold * universality * infinite cluster Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.400, year: 2009

  17. Geometric structure of percolation clusters.

    Science.gov (United States)

    Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin

    2014-01-01

    We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).

  18. Long-range correlated percolation

    International Nuclear Information System (INIS)

    Weinrib, A.

    1984-01-01

    This paper is a study of the percolation problem with long-range correlations in the site or bond occupations. An extension of the Harris criterion for the relevance of the correlations is derived for the case that the correlations decay as x/sup -a/ for large distances x. For a d the correlations are relevant if dν-2<0. Applying this criterion to the behavior that results when the correlations are relevant, we argue that the new behavior will have ν/sub long/ = 2/a. It is shown that the correlated bond percolation problem is equivalent to a q-state Potts model with quenched disorder in the limit q→1. With the use of this result, a renormalization-group study of the problem is presented, expanding in epsilon = 6-d and in delta = 4-a. In addition to the normal percolation fixed point, we find a new long-range fixed point. The crossover to this new fixed point follows the extended Harris criterion, and the fixed point has exponents ν/sub long/ = 2/a (as predicted) and eta/sub long/ = (1/11)(delta-epsilon). Finally, several results on the percolation properties of the Ising model at its critical point are shown to be in agreement with the predictions of this paper

  19. Spin-glass-like dynamics of ferromagnetic clusters in La0.75Ba0.25CoO3

    International Nuclear Information System (INIS)

    Kumar, Devendra

    2014-01-01

    We report a magnetization study of the compound La 0.75 Ba 0.25 CoO 3 where the Ba 2+ doping is just above the critical limit for percolation of ferromagnetic clusters. The field cooled and zero-field cooled (ZFC) magnetization exhibit thermomagnetic irreversibility and the ac susceptibility shows a frequency dependent peak at the ferromagnetic ordering temperature (T C  ≈ 203 K) of the clusters. These features indicate the presence of a non-equilibrium state below T C . For the non-equilibrium state, the dynamic scaling of the imaginary part of the ac susceptibility and the static scaling of the nonlinear susceptibility clearly establish a spin-glass-like cooperative freezing of ferromagnetic clusters at 200.9(2) K. The assertion of the occurrence of spin-glass-like freezing of ferromagnetic clusters is further substantiated by ZFC ageing and memory experiments. We also observe certain dynamical features which are not present in a typical spin glass, such as: the initial magnetization after ZFC ageing first increases and then decreases with the waiting time; and there is an imperfect recovery of relaxation in negative temperature cycling experiments. This imperfect recovery transforms to perfect recovery for concurrent field cycling. Our analysis suggests that these additional dynamical features have their origin in the inter-cluster exchange interaction and cluster size distribution. The inter-cluster exchange interaction above the magnetic percolation level gives a superferromagnetic state in some granular thin films, but our results show the absence of a typical superferromagnetic-like state in La 0.75 Ba 0.25 CoO 3 . (paper)

  20. Criticality of the bond-diluted Ising ferromagnet in a semi-infinite simple cubic lattice

    International Nuclear Information System (INIS)

    Silva, L.R. da; Tsallis, C.; Sarmento, E.F.

    1987-01-01

    We study the phase diagram and universality classes of the quenched bond-diluted spin 1/2 Ising ferromagnetic in a semi-infinite simple cubic lattice with a (0,0,1) free surface. We observe that surface ferromagnetism persists below the d=2 percolation threshold p c 2D = 1/2, in fact down to pc∼0,42. (M.W.O.) [pt

  1. Controlling percolation with limited resources

    Science.gov (United States)

    Schröder, Malte; Araújo, Nuno A. M.; Sornette, Didier; Nagler, Jan

    2017-12-01

    Connectivity, or the lack thereof, is crucial for the function of many man-made systems, from financial and economic networks over epidemic spreading in social networks to technical infrastructure. Often, connections are deliberately established or removed to induce, maintain, or destroy global connectivity. Thus, there has been a great interest in understanding how to control percolation, the transition to large-scale connectivity. Previous work, however, studied control strategies assuming unlimited resources. Here, we depart from this unrealistic assumption and consider the effect of limited resources on the effectiveness of control. We show that, even for scarce resources, percolation can be controlled with an efficient intervention strategy. We derive such an efficient strategy and study its implications, revealing a discontinuous transition as an unintended side effect of optimal control.

  2. Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system

    International Nuclear Information System (INIS)

    Bu, K.M.; Kwon, H.Y.; Oh, S.W.; Won, C.

    2012-01-01

    Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes. - Highlights: ► Exchange bias phenomena are found in perpendicularly coupled F/F systems. ► Exchange bias exhibits nonlinear behaviors, including sign reversal and singularities. ► These complicated behaviors were caused by two distinct magnetization processes. ► Exchange bias reached a maximum at the transition between the two magnetization processes. ► We established an equation to maximize the exchange bias in perpendicularly coupled F/F system.

  3. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    Science.gov (United States)

    Stamopoulos, D; Aristomenopoulou, E

    2015-08-26

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  4. Simple method to calculate percolation, Ising and Potts clusters

    International Nuclear Information System (INIS)

    Tsallis, C.

    1981-01-01

    A procedure ('break-collapse method') is introduced which considerably simplifies the calculation of two - or multirooted clusters like those commonly appearing in real space renormalization group (RG) treatments of bond-percolation, and pure and random Ising and Potts problems. The method is illustrated through two applications for the q-state Potts ferromagnet. The first of them concerns a RG calculation of the critical exponent ν for the isotropic square lattice: numerical consistence is obtained (particularly for q→0) with den Nijs conjecture. The second application is a compact reformulation of the standard star-triangle and duality transformations which provide the exact critical temperature for the anisotropic triangular and honeycomb lattices. (Author) [pt

  5. Ferromagnetic shape memory materials

    Science.gov (United States)

    Tickle, Robert Jay

    Ferromagnetic shape memory materials are a new class of active materials which combine the properties of ferromagnetism with those of a diffusionless, reversible martensitic transformation. These materials have been the subject of recent study due to the unusually large magnetostriction exhibited in the martensitic phase. In this thesis we report the results of experiments which characterize the magnetic and magnetomechanical properties of both austenitic and martensitic phases of ferromagnetic shape memory material Ni2MnGa. In the high temperature cubic phase, anisotropy and magnetostriction constants are determined for a range of temperatures from 50°C down to the transformation temperature, with room temperature values of K1 = 2.7 +/- 104 ergs/cm3 and lambda100 = -145 muepsilon. In the low temperature tetragonal phase, the phenomenon of field-induced variant rearrangement is shown to produce anomalous results when traditional techniques for determining anisotropy and magnetostriction properties are employed. The requirement of single variant specimen microstructure is explained, and experiments performed on such a specimen confirm a uniaxial anisotropy within each martensitic variant with anisotropy constant Ku = 2.45 x 106 ergs/cm3 and a magnetostriction constant of lambdasv = -288 +/- 73 muepsilon. A series of magnetomechanical experiments investigate the effects of microstructure bias, repeated field cycling, varying field ramp rate, applied load, and specimen geometry on the variant rearrangement phenomenon in the martensitic phase. In general, the field-induced strain is found to be a function of the variant microstructure. Experiments in which the initial microstructure is biased towards a single variant state with an applied load generate one-time strains of 4.3%, while those performed with a constant bias stress of 5 MPa generate reversible strains of 0.5% over a period of 50 cycles. An increase in the applied field ramp rate is shown to reduce the

  6. A special percolation problem in ceramic composites

    International Nuclear Information System (INIS)

    Ang Chen; Xi Dai; Yu Zhi; Yahua Bao

    1993-11-01

    The interface effect is taken into consideration, and a special percolation model is proposed for a two-phases metal/ceramic composite in the present paper. The computer simulation shows that the percolation threshold of this interface-controlled percolation behaviour is 4.5% in the three dimensional f.c.c. lattices, which is in good agreement with the experimental data. (author). 9 refs, 3 figs

  7. Percolation and epidemics in random clustered networks

    Science.gov (United States)

    Miller, Joel C.

    2009-08-01

    The social networks that infectious diseases spread along are typically clustered. Because of the close relation between percolation and epidemic spread, the behavior of percolation in such networks gives insight into infectious disease dynamics. A number of authors have studied percolation or epidemics in clustered networks, but the networks often contain preferential contacts in high degree nodes. We introduce a class of random clustered networks and a class of random unclustered networks with the same preferential mixing. Percolation in the clustered networks reduces the component sizes and increases the epidemic threshold compared to the unclustered networks.

  8. Attacks and infections in percolation processes

    International Nuclear Information System (INIS)

    Janssen, Hans-Karl; Stenull, Olaf

    2017-01-01

    We discuss attacks and infections at propagating fronts of percolation processes based on the extended general epidemic process. The scaling behavior of the number of the attacked and infected sites in the long time limit at the ordinary and tricritical percolation transitions is governed by specific composite operators of the field-theoretic representation of this process. We calculate corresponding critical exponents for tricritical percolation in mean-field theory and for ordinary percolation to 1-loop order. Our results agree well with the available numerical data. (paper)

  9. Directed polymers versus directed percolation

    Science.gov (United States)

    Halpin-Healy, Timothy

    1998-10-01

    Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.

  10. Spin dynamics on percolating networks

    International Nuclear Information System (INIS)

    Aeppli, G.; Guggenheim, H.; Uemura, Y.J.

    1985-01-01

    We have used inelastic neutron scattering to measure the order parameter relaxation rate GAMMA in the dilute, two-dimensional Ising antiferromagnet Rb 2 CoMg/sub 1-c/F 4 with c very close to the magnetic percolation threshold. Where kappa is the inverse magnetic correlation length, GAMMA approx. kappa/sup z/ with z = 2.4/sub -0.1//sup +0.2/. Our results are discussed in terms of current ideas about spin relaxation on fractals. 13 refs., 1 fig

  11. Magnetic pinning in superconductor-ferromagnet multilayers

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.

    2000-01-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10 6 -10 7 A/cm 2 at high temperatures (but not very close to T c ) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics

  12. Magnetic pinning in superconductor-ferromagnet multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskii, L. N. [Department of Physics and Astronomy, CUNY Lehman College 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chudnovsky, E. M. [Department of Physics and Astronomy, CUNY Lehman College, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Maley, M. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2000-05-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.

  13. Ferromagnetic pairing states on two-coupled chains

    International Nuclear Information System (INIS)

    Tanaka, Akinori

    2008-01-01

    We propose a concrete model which exhibits ferromagnetism and electron-pair condensation simultaneously. The model is defined on two chains and consists of the electron hopping term, the on-site Coulomb repulsion and a ferromagnetic interaction which describes ferromagnetic coupling between two electrons, one on a bond in a chain and the other on a site in the other chain. It is rigorously shown that the model has fully-polarized ferromagnetic pairing ground states. The higher dimensional version of the model is also presented

  14. The Physics of Ferromagnetism

    CERN Document Server

    Miyazaki, Terunobu

    2012-01-01

    This book covers both basic physics of ferromagnetism such as magnetic moment, exchange coupling, magnetic anisotropy and recent progress in advanced ferromagnetic materials. Special interests are focused on NdFeB permanent magnets and the materials studied in the field of spintronics. In the latter, development of tunnel magnetoresistance effect through so called giant magnetoresistance effect is explained.

  15. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Zdenek [Institute of Physics ASCR v.v.i., Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Varga, Marian [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan (China); Kromka, Alexander [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Horak, Pavel [Nuclear Physics Institute, 250 68 Rez (Czech Republic)

    2015-11-15

    The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure. - Highlights: • Nitrogen implanted nanocrystalline diamond films exhibit ferromagnetism at room temperature. • Nitrogen implants made a Raman deviation from the typical nanocrystalline diamond films. • The ferromagnetism induced from the structure distortion is dominant at low temperature.

  16. Fragmentation of percolation cluster perimeters

    Science.gov (United States)

    Debierre, Jean-Marc; Bradley, R. Mark

    1996-05-01

    We introduce a model for the fragmentation of porous random solids under the action of an external agent. In our model, the solid is represented by a bond percolation cluster on the square lattice and bonds are removed only at the external perimeter (or `hull') of the cluster. This model is shown to be related to the self-avoiding walk on the Manhattan lattice and to the disconnection events at a diffusion front. These correspondences are used to predict the leading and the first correction-to-scaling exponents for several quantities defined for hull fragmentation. Our numerical results support these predictions. In addition, the algorithm used to construct the perimeters reveals itself to be a very efficient tool for detecting subtle correlations in the pseudo-random number generator used. We present a quantitative test of two generators which supports recent results reported in more systematic studies.

  17. Flocking ferromagnetic colloids.

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  18. Nonmonotonic critical temperature in superconductor ferromagnet bilayers

    NARCIS (Netherlands)

    Fominov, Ya. V.; Fominov, I.V.; Chtchelkatchev, N.M.; Golubov, Alexandre Avraamovitch

    2002-01-01

    The critical temperature Tc of a superconductor/ferromagnet (SF) bilayer can exhibit nonmonotonic dependence on the thickness df of the F layer. SF systems have been studied for a long time; according to the experimental situation, a ¿dirty¿ limit is often considered which implies that the mean free

  19. Percolator: Scalable Pattern Discovery in Dynamic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sutanay; Purohit, Sumit; Lin, Peng; Wu, Yinghui; Holder, Lawrence B.; Agarwal, Khushbu

    2018-02-06

    We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walking through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.

  20. Percolating cluster of center vortices and confinement

    International Nuclear Information System (INIS)

    Gliozzi, Ferdinando; Panero, Marco; Provero, Paolo

    2003-01-01

    We study the role of percolating clusters of center vortices in configurations of an Ising gauge theory in 3D. It is known that low energy features of gauge theories can be described in terms of an 'effective string picture', and that confinement properties are associated with topologically non-trivial configurations. We focus our attention upon percolating clusters of center vortices, and present numerical evidence for the fact that these objects play a preminent role in confinement phenomenon, since their removal sweeps off confinement altogether. Moreover, numerical simulations show that the string fluctuations, and in particular the Mischer term, are completely encoded in the percolating cluster

  1. Bootstrap percolation: a renormalisation group approach

    International Nuclear Information System (INIS)

    Branco, N.S.; Santos, Raimundo R. dos; Queiroz, S.L.A. de.

    1984-02-01

    In bootstrap percolation, sites are occupied at random with probability p, but each site is considered active only if at least m of its neighbours are also active. Within an approximate position-space renormalization group framework on a square lattice we obtain the behaviour of the critical concentration p (sub)c and of the critical exponents ν and β for m = 0 (ordinary percolation), 1,2 and 3. We find that the bootstrap percolation problem can be cast into different universality classes, characterized by the values of m. (author) [pt

  2. Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films

    Energy Technology Data Exchange (ETDEWEB)

    Nehm, Frederik, E-mail: frederik.nehm@iapp.de; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl

    2014-04-01

    The growth behavior of thin silver films on organic layers is investigated during deposition by means of simultaneous in-situ monitoring of sheet resistance and transmittance. Thermally evaporated films up to 11 nm show a distinct percolation behavior with strong resistance drop at the percolation thickness. Additionally, evaporations are divided into a sequence of one nanometer steps. In the deposition breaks, the films exhibit a ripening effect with an inversion at the percolation thickness, by changing from an increasing to decreasing sheet resistance over time. Scanning electron micrographs suggest same ripening mechanisms for islands below the percolation thickness as for holes above. - Highlights: • Fundamental understanding of metal thin film growth is presented. • Optical and electrical in-situ measurements used for optimizing transparent electrodes • Stepwise Ag deposition reveals extraordinary ripening effects. • Feature ripening inversion is discovered at the percolation threshold.

  3. Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films

    International Nuclear Information System (INIS)

    Nehm, Frederik; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl

    2014-01-01

    The growth behavior of thin silver films on organic layers is investigated during deposition by means of simultaneous in-situ monitoring of sheet resistance and transmittance. Thermally evaporated films up to 11 nm show a distinct percolation behavior with strong resistance drop at the percolation thickness. Additionally, evaporations are divided into a sequence of one nanometer steps. In the deposition breaks, the films exhibit a ripening effect with an inversion at the percolation thickness, by changing from an increasing to decreasing sheet resistance over time. Scanning electron micrographs suggest same ripening mechanisms for islands below the percolation thickness as for holes above. - Highlights: • Fundamental understanding of metal thin film growth is presented. • Optical and electrical in-situ measurements used for optimizing transparent electrodes • Stepwise Ag deposition reveals extraordinary ripening effects. • Feature ripening inversion is discovered at the percolation threshold

  4. Ferromagnetism and spin glass ordering in transition metal alloys (invited)

    Science.gov (United States)

    Crane, S.; Carnegie, D. W., Jr.; Claus, H.

    1982-03-01

    Magnetic properties of transition metal alloys near the percolation threshold are often complicated by metallurgical effects. Alloys like AuFe, VFe, CuNi, RhNi, and PdNi are in general not random solid solutions but have various degrees of atomic clustering or short-range order (SRO), depending on the heat treatment. First, it is shown how the magnetic ordering temperature of these alloys varies with the degree of clustering or SRO. Second, by systematically changing this degree of clustering or SRO, important information can be obtained about the magnetic phase diagram. In all these alloys below the percolation limit, the onset of ferromagnetic order is probably preceded by a spin glass-type ordering. However, details of the magnetic phase diagram near the critical point can be quite different alloy systems.

  5. PREFACE: Half Metallic Ferromagnets

    Science.gov (United States)

    Dowben, Peter

    2007-08-01

    Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as

  6. Disorder-induced quantum bond percolation

    International Nuclear Information System (INIS)

    Nishino, Shinya; Katsuno, Shuji; Goda, Masaki

    2009-01-01

    We investigate the effects of off-diagonal disorder on localization properties in quantum bond percolation networks on cubic lattices, motivated by the finding that the off-diagonal disorder does not always enhance the quantum localization of wavefunctions. We numerically construct a diagram of the 'percolation threshold', distinguishing extended states from localized states as a function of two degrees of disorder, by using the level statistics and finite-size scaling. The percolation threshold increases in a characteristic way on increasing the disorder in the connected bonds, while it gradually decreases on increasing the disorder in the disconnected bonds. Furthermore, the exchange of connected and disconnected bonds induced by the disorder causes a dramatic change of the percolation threshold.

  7. Percolation systems away from the critical point

    Indian Academy of Sciences (India)

    DEEPAK DHAR. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ... There is more to percolation theory than the critical exponents. Of course, an experi- .... simple qualitative arguments. In the summation ...

  8. Percolation of secret correlations in a network

    OpenAIRE

    Leverrier, Anthony; García-Patrón, Raúl

    2011-01-01

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks, more precisely the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a...

  9. Percolation of secret correlations in a network

    Energy Technology Data Exchange (ETDEWEB)

    Leverrier, Anthony; Garcia-Patron, Raul [ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels (Barcelona) (Spain); Research Laboratory of Electronics, MIT, Cambridge, MA 02139 (United States) and Max-Planck Institut fur Quantenoptik, Hans-Kopfermann Str. 1, D-85748 Garching (Germany)

    2011-09-15

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.

  10. Percolation of secret correlations in a network

    International Nuclear Information System (INIS)

    Leverrier, Anthony; Garcia-Patron, Raul

    2011-01-01

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.

  11. Integral equation hierarchy for continuum percolation

    International Nuclear Information System (INIS)

    Given, J.A.

    1988-01-01

    In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed

  12. Technology Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1979-09-15

    Linked to the 25th Anniversary celebrations, an exhibition of some of CERN's technological achievements was opened on 22 June. Set up in a new 600 m{sup 2} Exhibition Hall on the CERN site, the exhibition is divided into eight technology areas — magnets, vacuum, computers and data handling, survey and alignment, radiation protection, beam monitoring and handling, detectors, and workshop techniques.

  13. Immersive Exhibitions

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2015-01-01

    The immersive exhibition is a specialized exhibition genre in museums, which creates the illusion of time and place by representing key characteristics of a reference world and by integrating the visitor in this three-dimensionally reconstructed world (Mortensen 2010). A successful representation...... of the reference world depends on three criteria: whether the exhibition is staged as a coherent whole with all the displayed objects supporting the representation, whether the visitor is integrated as a component of the exhibition, and whether the content and message of the exhibition become dramatized...

  14. Room-temperature ferromagnetism in cerium dioxide powders

    Energy Technology Data Exchange (ETDEWEB)

    Rakhmatullin, R. M., E-mail: rrakhmat@kpfu.ru; Pavlov, V. V.; Semashko, V. V.; Korableva, S. L. [Kazan Federal University, Institute of Physics (Russian Federation)

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  15. Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents

    Science.gov (United States)

    Cho, Y. S.; Lee, J. S.; Herrmann, H. J.; Kahng, B.

    2016-01-01

    Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2 power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks.

  16. Voltage control of ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Ziyao Zhou

    2016-06-01

    Full Text Available Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME coupling mechanism: strain/stress, interfacial charge, spin–electromagnetic (EM coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin–EM coupling and exchange coupling.

  17. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    Science museums define the objectives of their exhibitions in terms of visitor learning outcomes. Yet, exhibit designers lack theoretical and empirical research findings on which to base the creation of such educational environments. Here, this shortcoming is addressed through the development...... of tools and processes to guide the design of educational science exhibits. The guiding paradigm for this development is design-based research, which is characterised by an iterative cycle of design, enactment, and analysis. In the design phase, an educational intervention is planned and carried out based...... on the generation of theoretical ideas for exhibit design is offered in a fourth and parallel research undertaking, namely the application of the notion of cultural border-crossing to a hypothetical case of exhibit design....

  18. Growth dominates choice in network percolation

    Science.gov (United States)

    Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.

    2013-09-01

    The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.

  19. Standard and inverse bond percolation of straight rigid rods on square lattices

    Science.gov (United States)

    Ramirez, L. S.; Centres, P. M.; Ramirez-Pastor, A. J.

    2018-04-01

    Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse bond percolation of straight rigid rods on square lattices. In the case of standard percolation, the lattice is initially empty. Then, linear bond k -mers (sets of k linear nearest-neighbor bonds) are randomly and sequentially deposited on the lattice. Jamming coverage pj ,k and percolation threshold pc ,k are determined for a wide range of k (1 ≤k ≤120 ). pj ,k and pc ,k exhibit a decreasing behavior with increasing k , pj ,k →∞=0.7476 (1 ) and pc ,k →∞=0.0033 (9 ) being the limit values for large k -mer sizes. pj ,k is always greater than pc ,k, and consequently, the percolation phase transition occurs for all values of k . In the case of inverse percolation, the process starts with an initial configuration where all lattice bonds are occupied and, given that periodic boundary conditions are used, the opposite sides of the lattice are connected by nearest-neighbor occupied bonds. Then, the system is diluted by randomly removing linear bond k -mers from the lattice. The central idea here is based on finding the maximum concentration of occupied bonds (minimum concentration of empty bonds) for which connectivity disappears. This particular value of concentration is called the inverse percolation threshold pc,k i, and determines a geometrical phase transition in the system. On the other hand, the inverse jamming coverage pj,k i is the coverage of the limit state, in which no more objects can be removed from the lattice due to the absence of linear clusters of nearest-neighbor bonds of appropriate size. It is easy to understand that pj,k i=1 -pj ,k . The obtained results for pc,k i show that the inverse percolation threshold is a decreasing function of k in the range 1 ≤k ≤18 . For k >18 , all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when

  20. Single-magnon tunneling through a ferromagnetic nanochain

    International Nuclear Information System (INIS)

    Petrov, E.G.; Ostrovsky, V.

    2010-01-01

    Magnon transmission between ferromagnetic contacts coupled by a linear ferromagnetic chain is studied at the condition when the chain exhibits itself as a tunnel magnon transmitter. It is shown that dependently on magnon energy at the chain, a distant intercontact magnon transmission occurs either in resonant or off-resonant tunneling regime. In the first case, a transmission function depends weakly on the number of chain sites whereas at off-resonant regime the same function manifests an exponential drop with the chain length. Change of direction of external magnetic field in one of ferromagnetic contacts blocks a tunnel transmission of magnon.

  1. Fluid leakage near the percolation threshold

    Science.gov (United States)

    Dapp, Wolf B.; Müser, Martin H.

    2016-02-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.

  2. Weak link behaviour in YBa2Cu3O7-δ system studied by a site percolation model

    International Nuclear Information System (INIS)

    Arulgnanam, A.; Balasubramanian, A.

    1992-01-01

    The superconductivity in the YBaCuO system can be explained in terms of the superconducting percolation of 90 K orthorhombic microdomain. Kubo et al. have studied the percolation behaviour of the 123 system and estimated the total critical oxygen occupancy P c to be 0.75 for the orthorhombic I structure using at 150x180 lattice model. In this paper, we report our work on the percolative behaviour of the 123 system, using a Monte Carlo method. We have studied the effect on P c of increasing the lattice dimension up to 500x500. For P c ≤0.60 no percolative behaviour was observed, suggesting the tetragonal phase. Few times percolation was observed for 0.60≤P≤0.65 indicating the phase transformation from tetragonal to orthorhombic. For 0.65≤P≤0.77 (or 0.230≤δ≤0.35) weak percolative behaviour was observed suggesting the formation of orthorhombic II structure, which is in good agreement with the value observed by Cava et al. For 0.77≤P≤1.0 strong percolation was exhibited indicating the formation of orthorhombic I phase. We have explained the weak link region observed for 0.60≤P≤0.77. We estimated the total critical oxygen occupancy P c =0.766 for an orthorhombic I structure for the lattice. (orig.)

  3. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  4. Percolation under noise: Detecting explosive percolation using the second-largest component

    Science.gov (United States)

    Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.

    2016-05-01

    We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.

  5. Real-space renormalization group; application to site percolation in square lattice

    International Nuclear Information System (INIS)

    Tsallis, C.; Schwachheim, G.

    1978-05-01

    The real-space renormalization group proposed by Reynolds, Klein and Stanley 1977 to treat the site percolation is analysed and extended . The best among 3 possible definitions of 'percolating' configurations and among 5 possible methods to weight these configurations, are established for percolation in square lattices. The use of n xn square clusters leads, for n = 2 (RKS), n = 3 and n = 4, to √ sub (p) approximately equal to 1.635, √ sub(p) approximately equal to 1.533 and √ sub(p) approximately equal to 1.498, and also to P sub(c) approximately equal to 0.382, P sub(c) approximately equal to 0.388 and P sub(c) approximately equal to 0.398, exhibiting in this way the correct (but slow) tendency towards the best up to date values [pt

  6. Topological interlocking provides stiffness to stochastically micro-cracked materials beyond the transport percolation limit

    Science.gov (United States)

    Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.

  7. Quasiuniversal Connectedness Percolation of Polydisperse Rod Systems

    NARCIS (Netherlands)

    Nigro, B.; Grimaldi, C.; Chatterjee, A.P.; van der Schoot, P. P. A. M.

    2013-01-01

    The connectedness percolation threshold (ηc) and critical coordination number (Zc) of systems of penetrable spherocylinders characterized by a length polydispersity are studied by way of Monte Carlo simulations for several aspect ratio distributions. We find that (i) ηc is a nearly universal

  8. Conformal Field Theory of Percolation (1)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    This series of 5 lectures will describe what is known about the Logarithmic CFT describing the critical point of percolation. The subsequent lectures will take place in TH Conference room on: (2) Wednesday Sep 16 at 10am (3) Thursday Sep 17 at 10am (4) Thursday Sep 17 at 2pm (5) Friday Sep 18 at 10am

  9. Percolation of interdependent network of networks

    International Nuclear Information System (INIS)

    Havlin, Shlomo; Stanley, H. Eugene; Bashan, Amir; Gao, Jianxi; Kenett, Dror Y.

    2015-01-01

    Complex networks appear in almost every aspect of science and technology. Previous work in network theory has focused primarily on analyzing single networks that do not interact with other networks, despite the fact that many real-world networks interact with and depend on each other. Very recently an analytical framework for studying the percolation properties of interacting networks has been introduced. Here we review the analytical framework and the results for percolation laws for a Network Of Networks (NONs) formed by n interdependent random networks. The percolation properties of a network of networks differ greatly from those of single isolated networks. In particular, because the constituent networks of a NON are connected by node dependencies, a NON is subject to cascading failure. When there is strong interdependent coupling between networks, the percolation transition is discontinuous (first-order) phase transition, unlike the well-known continuous second-order transition in single isolated networks. Moreover, although networks with broader degree distributions, e.g., scale-free networks, are more robust when analyzed as single networks, they become more vulnerable in a NON. We also review the effect of space embedding on network vulnerability. It is shown that for spatially embedded networks any finite fraction of dependency nodes will lead to abrupt transition

  10. Superconducting Ferromagnetic Nanodiamond

    Czech Academy of Sciences Publication Activity Database

    Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J. K.; Volodin, A.; Zhou, S. Q.; May, P. W.; Onufriienko, O.; Kacmarik, J.; Steele, J. A.; Li, J.; Vanacken, J.; Vacík, Jiří; Szabo, P.; Yuan, H. F.; Roeffaers, M. B. J.; Cerbu, D.; Samuely, P.; Hofkens, J.; Moshchalkov, V.V.

    2017-01-01

    Roč. 11, č. 6 (2017), s. 5358-5366 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanodiamond * superconductivity and ferromagnetism * spin fluctuations * giant positive magnetoresistance * anamalous Hall effect Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties ) Impact factor: 13.942, year: 2016

  11. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    light on the staging of exhibitions, the daily life of the exhibitees, the wider connections between shows across Europe and the thinking of the time on matters of race, science, gender and sexuality. A window onto contemporary racial understandings, the book presents interviews with the descendants...... of displayed people, connecting the attitudes and science of the past with both our (continued) modern fascination with ‘the exotic’, and contemporary language and popular culture. As such, it will be of interest to scholars of sociology, anthropology and history working in the areas of gender and sexuality...

  12. Ferromagnetism of Magnesium Oxide

    Directory of Open Access Journals (Sweden)

    Jitendra Pal Singh

    2017-11-01

    Full Text Available Magnetism without d-orbital electrons seems to be unrealistic; however, recent observations of magnetism in non-magnetic oxides, such as ZnO, HfO2, and MgO, have opened new avenues in the field of magnetism. Magnetism exhibited by these oxides is known as d° ferromagnetism, as these oxides either have completely filled or unfilled d-/f-orbitals. This magnetism is believed to occur due to polarization induced by p-orbitals. Magnetic polarization in these oxides arises due to vacancies, the excitation of trapped spin in the triplet state. The presence of vacancies at the surface and subsurface also affects the magnetic behavior of these oxides. In the present review, origins of magnetism in magnesium oxide are discussed to obtain understanding of d° ferromagnetism.

  13. Reversible first-order transition in Pauli percolation

    Science.gov (United States)

    Maksymenko, Mykola; Moessner, Roderich; Shtengel, Kirill

    2015-06-01

    Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric properties in statistical physics. We analyze a new percolation problem in which the first-order nature of an equilibrium percolation transition can be established analytically and verified numerically. The rules for this site percolation model are physical and very simple, requiring only the introduction of a weight W (n )=n +1 for a cluster of size n . This establishes that a discontinuous percolation transition can occur with qualitatively more local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it can be reversible. This greatly extends both the applicability of such percolation models in principle and their reach in practice.

  14. Percolation on the institute-enterprise R

    Directory of Open Access Journals (Sweden)

    Li Chenguang

    2015-01-01

    Full Text Available Realistic network-like systems are usually composed of multiple networks with interacting relations such as school-enterprise research and development (R&D collaboration networks. Here, we study the percolation properties of a special class of R&D collaboration network, namely institute-enterprise R&D collaboration networks (IERDCNs. We introduce two actual IERDCNs to show their structural properties, and we present a mathematical framework based on generating functions for analyzing an interacting network with any connection probability. Then,we illustrate the percolation threshold and structural parameter arithmetic in the sub-critical and supercritical regimes.We compare the predictions of our mathematical framework and arithmetic to data for two real R&D collaboration networks and a number of simulations. We find that our predictions are in remarkable agreement with the data. We show applications of the framework to electronics R&D collaboration networks

  15. Phenomenology of quarkyonic percolation at FAIR

    International Nuclear Information System (INIS)

    Torrieri, Giorgio; Lottini, Stefano

    2013-01-01

    We will give an introduction to the concept of quarkyonic matter, presenting an overview of what is meant by this term in the literature. We will then argue that the quarkyonic phase, as defined in the original paper, is a percolation-type phase transition whose phase transition line is strongly curved in ρ B − N c space, where N C is the number of colors and ρ B the baryon density. With a toy model estimate, we show that it might be possible to obtain a percolating but confined phase at N c = 3, N f = 2 at densities larger than one baryon per one baryon size. We conclude by discussing how this phase can be observed at FAIR.

  16. Generalized bond percolation and statistical mechanics

    International Nuclear Information System (INIS)

    Tsallis, C.

    1978-05-01

    A generalization of traditional bond percolation is performed, in the sens that bonds have now the possibility of partially transmitting the information (a fact which leads to the concept of 'fidelity' of the bond), and also in the sens that, besides the normal tendency to equiprobability, the bonds are allowed to substantially change the information. Furthermore the fidelity is allowed, to become an aleatory variable, and the operational rules concerning the associated distribution laws are determined. Thermally quenched random bonds and the whole body of Statistical Mechanics become particular cases of this formalism, which is in general adapted to the treatment of all problems whose main characteristic is to preserve a part of the information through a long path or array (critical phenomena, regime changements, thermal random models, etc). Operationally it provides a quick method for the calculation of the equivalent probability of complex clusters within the traditional bond percolation problem [pt

  17. Modified Invasion Percolation Models for Multiphase Processes

    Energy Technology Data Exchange (ETDEWEB)

    Karpyn, Zuleima [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  18. Experimental percolation studies of random networks

    Science.gov (United States)

    Feinerman, A.; Weddell, J.

    2017-06-01

    This report establishes an experimental method of studying electrically percolating networks at a higher resolution than previously implemented. This method measures the current across a conductive sheet as a function of time as elliptical pores are cut into the sheet. This is done utilizing a Universal Laser System X2-600 100 W CO2 laser system with a 76 × 46 cm2 field and 394 dpc (dots/cm) resolution. This laser can cut a random system of elliptical pores into a conductive sheet with a potential voltage applied across it and measures the current versus time. This allows for experimental verification of a percolation threshold as a function of the ellipse's aspect ratio (minor/major diameter). We show that as an ellipse's aspect ratio approaches zero, the percolation threshold approaches one. The benefit of this method is that it can experimentally measure the effect of removing small pores, as well as pores with complex geometries, such as an asterisk from a conductive sheet.

  19. Percolation Model of Adhesion at Polymer Interfaces

    Science.gov (United States)

    Wool, Richard P.

    1998-03-01

    Adhesion at polymer interfaces is treated as a percolation problem, where an areal density of chains Σ, of length L, contribute a number of entanglements to the interface of thickness X. The fracture energy G, is determined by the fraction of entanglements P, fractured or disentangled in the deformation zone preceding the crack tip, via G ~ P-P_c, where Pc is the percolation threshold, given by Pc = 1- M_e/Mc . For incompatible A/B interfaces reinforced with Σ diblocks or random A-B copolymers of effective length L'(L' ~ 0 for brushes and strongly adsorbed chains), we obtain P ~ ΣL/X, Pc ~ Σ _cL/X, such that G = K(Σ - Σ _c)+ G_o, where K and Go ~ 1 J/m^2 are constants. Note that Log G vs Log Σ will have an apparent slope of about 2, incorrectly suggesting that G ~ Σ ^2. For cohesive fracture, disentanglement dominates at M M*, G = G*[1-M_c/M]. For fatigue crack propagation da/dN, at welding interfaces, we obtain da/dN ~ M-5/2(t/Tr)-5/4, where t is the welding time and Tr is the reptation time. For polymer-solid interfaces, G ~ (X/R)^2. where X is the conformational width of the first layer of chains of random coil size R. The fractal nature of the percolation process is relevant to the fracture mechanism and fractography.

  20. Hysteresis in conducting ferromagnets

    International Nuclear Information System (INIS)

    Schneider, Carl S.; Winchell, Stephen D.

    2006-01-01

    Maxwell's magnetic diffusion equation is solved for conducting ferromagnetic cylinders to predict a magnetic wave velocity, a time delay for flux penetration and an eddy current field, one of five fields in the linear unified field model of hysteresis. Measured Faraday voltages for a thin steel toroid are shown to be proportional to magnetic field step amplitude and decrease exponentially in time due to maximum rather than average permeability. Dynamic permeabilities are a field convolution of quasistatic permeability and the delay function from which we derive and observe square root dependence of coercivity on rate of field change

  1. Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Kota, Arun K; Cipriano, Bani H; Powell, Dan; Raghavan, Srinivasa R; Bruck, Hugh A

    2007-01-01

    For the first time, an interpenetrating phase polymer nanocomposite formed by the percolation of multiwalled carbon nanotubes (MWCNTs) in polystyrene (PS) has been quantitatively characterized through electrical conductivity measurements and melt rheology. Both sets of measurements, in conjunction with scanning electron microscopy (SEM) images, indicate the presence of a continuous phase of percolated MWCNTs appearing at particle concentrations exceeding 2 vol% MWCNTs in PS. To quantify the amount of this continuous phase present in the PS/MWCNT composite, electrical conductivity data at various MWCNT concentrations, β, are correlated with a proposed degree of percolation, C-bar(β), developed using a conventional power-law formula with and without a percolation threshold. To quantify the properties of the interpenetrating phase polymer nanocomposite, the PS/MWCNT composite is treated as a combination of two phases: a continuous phase consisting of a pseudo-solid-like network of percolated MWCNTs, and a continuous PS phase reinforced by non-interacting MWCNTs. The proposed degree of percolation is used to quantify the distribution of MWCNTs among the phases, and is then used in a rule-of-mixtures formulation for the storage modulus, G'(β, C-bar(β), ω), and the loss modulus, G''(β, C-bar(β), ω), to quantify the properties of the continuous phase consisting of percolated MWCNTs and the continuous PS phase reinforced by non-interacting MWCNTs from the experimental melt rheology data. The properties of the continuous phase of percolated MWCNTs are indicative of a scaffold-like microstructure exhibiting an elastic behavior with a complex modulus of 360 kPa at lower frequencies and viscoplastic behavior with a complex viscosity of 6 kPa s rad -1 at higher frequencies, most likely due to a stick-slip friction mechanism at the interface of the percolated MWCNTs. Additional evidence of this microstructure was obtained via scanning electron microscopy. This research

  2. Nanostructured silicon ferromagnet collected by a permanent neodymium magnet.

    Science.gov (United States)

    Okuno, Takahisa; Thürmer, Stephan; Kanoh, Hirofumi

    2017-11-30

    Nanostructured silicon (N-Si) was prepared by anodic electroetching of p-type silicon wafers. The obtained magnetic particles were separated by a permanent neodymium magnet as a magnetic nanostructured silicon (mN-Si). The N-Si and mN-Si exhibited different magnetic properties: the N-Si exhibited ferromagnetic-like behaviour, whereas the mN-Si exhibited superparamagnetic-like behaviour.

  3. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  4. Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites

    KAUST Repository

    Elshurafa, Amro M.

    2013-06-14

    We show that graphene-percolated polymer composites exhibit fractional capacitance response in the frequency range of 50 kHz–2 MHz. In addition, it is shown that by varying the loading of graphene within the matrix from 2.5% to 12%, the phase can be controllably tuned from −67° to −31°, respectively. The electrostatic fractional capacitors proposed herein are easy to fabricate and offer integration capability on electronic printed circuit boards.

  5. Quantum walks of two interacting particles on percolation graphs

    Science.gov (United States)

    Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo

    2017-10-01

    We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.

  6. Multifractal properties of resistor diode percolation.

    Science.gov (United States)

    Stenull, Olaf; Janssen, Hans-Karl

    2002-03-01

    Focusing on multifractal properties we investigate electric transport on random resistor diode networks at the phase transition between the nonpercolating and the directed percolating phase. Building on first principles such as symmetries and relevance we derive a field theoretic Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of the current distribution that are governed by a family of critical exponents [psi(l)]. We calculate the family [psi(l)] to two-loop order in a diagrammatic perturbation calculation augmented by renormalization group methods.

  7. Percolation Theory and Modern Hydraulic Fracturing

    Science.gov (United States)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  8. New scaling results in quantum percolation

    International Nuclear Information System (INIS)

    Srivastava, V.; Chaturvedi, M.

    1983-06-01

    Scaling arguments for distribution of cluster size and size of localized states have been developed to calculate average number of lattice sites falling under a localized wave function as a function of concentration for a model binary system with ''infinite disorder''. We find distinct features near classical and quantum percolation thresholds. Analytical results are compared with computer-experiment results and the predicted features are found to be confirmed. Possibility of appearance of extended states in two-dimensional binary systems even at infinite disorder is pointed out. (author)

  9. Study of coexistence of ferromagnetism and superconductivity in single-crystal ErRh4B4

    International Nuclear Information System (INIS)

    Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.

    1981-01-01

    Neutron diffraction and resistivity measurements on single crystals of ErRh 4 B 4 have revealed that both superconductivity and ferromagnetic order coexist in this material between 0.71 and 1.2 0 K. In this intermediate phase, a linear polarized modulated structure with a wavelength of approximately 100 A is observed. The modulated moment increases faster than the ferromagnetic moment down to 0.71 K and then disappears suddenly, with loss of superconductivity and a transition to a normal ferromagnetic state. This transition is accompanied by temperature hysteresis of about 60 mK. The same hysteresis, in the inverse sense, is exhibited by the ferromagnetic component. We interpret the intermediate phase as being one of coexisting normal ferromagnetic domains and superconducting sinusoidally ordered domains. Evidence of a small percentage of small ferromagnetic regions of size approx. 100 A is also seen in both the intermediate and ferromagnetic phases. 3 figures

  10. Phase transition approach to bursting in neuronal cultures: quorum percolation models

    Science.gov (United States)

    Monceau, P.; Renault, R.; Métens, S.; Bottani, S.; Fardet, T.

    2017-10-01

    The Quorum Percolation model has been designed in the context of neurobiology to describe bursts of activity occurring in neuronal cultures from the point of view of statistical physics rather than from a dynamical synchronization approach. It is based upon information propagation on a directed graph with a threshold activation rule; this leads to a phase diagram which exhibits a giant percolation cluster below some critical value mC of the excitability. We describe the main characteristics of the original model and derive extensions according to additional relevant biological features. Firstly, we investigate the effects of an excitability variability on the phase diagram and show that the percolation transition can be destroyed by a sufficient amount of such a disorder; we stress the weakly averaging character of the order parameter and show that connectivity and excitability can be seen as two overlapping aspects of the same reality. Secondly, we elaborate a discrete time stochastic model taking into account the decay originating from ionic leakage through the membrane of neurons and synaptic depression; we give evidence that the decay softens and shifts the transition, and conjecture than decay destroys the transition in the thermodynamical limit. We were able to develop mean-field theories associated with each of the two effects; we discuss the framework of their agreement with Monte Carlo simulations. It turns out that the the critical point mC from which information on the connectivity of the network can be inferred is affected by each of these additional effects. Lastly, we show how dynamical simulations of bursts with an adaptive exponential integrateand- fire model can be interpreted in terms of Quorum Percolation. Moreover, the usefulness of the percolation model including the set of sophistication we investigated can be extended to many scientific fields involving information propagation, such as the spread of rumors in sociology, ethology, ecology.

  11. Percolation effect in thick film superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  12. The field theory approach to percolation processes

    International Nuclear Information System (INIS)

    Janssen, Hans-Karl; Taeuber, Uwe C.

    2005-01-01

    We review the field theory approach to percolation processes. Specifically, we focus on the so-called simple and general epidemic processes that display continuous non-equilibrium active to absorbing state phase transitions whose asymptotic features are governed, respectively, by the directed (DP) and dynamic isotropic percolation (dIP) universality classes. We discuss the construction of a field theory representation for these Markovian stochastic processes based on fundamental phenomenological considerations, as well as from a specific microscopic reaction-diffusion model realization. Subsequently we explain how dynamic renormalization group (RG) methods can be applied to obtain the universal properties near the critical point in an expansion about the upper critical dimensions d c = 4 (DP) and 6 (dIP). We provide a detailed overview of results for critical exponents, scaling functions, crossover phenomena, finite-size scaling, and also briefly comment on the influence of long-range spreading, the presence of a boundary, multispecies generalizations, coupling of the order parameter to other conserved modes, and quenched disorder

  13. Percolation effect in thick film superconductors

    International Nuclear Information System (INIS)

    Sali, R.; Harsanyi, G.

    1994-01-01

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T c and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm 2 . The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed

  14. Optical orientation in ferromagnet/semiconductor hybrids

    International Nuclear Information System (INIS)

    Korenev, V L

    2008-01-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin–spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism

  15. Optical orientation in ferromagnet/semiconductor hybrids

    Science.gov (United States)

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  16. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    OpenAIRE

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  17. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  18. Triangular and honeycomb lattices bond-diluted Ising ferromagnet: critical frontier

    International Nuclear Information System (INIS)

    Magalhaes, A.C.N. de; Schwaccheim, G.; Tsallis, C.

    1982-01-01

    Within a real space renormalization group framework (12 different procedures, all of them using star-triangle and duality-type transformations) accurate approximations for the critical frontiers associated with the quenched bond-diluted first-neighbour spin- 1 / 2 Ising ferromagnet on triangular and honeycomb lattices are calculated. All of them provide, in both pure bond percolation and pure Ising limits, the exact critical points and exact or almost exact derivatives in the p-t space (p is the bond independent occupancy probability and t tanh J/k(sub B)T). The best numerical proposals lead to the exact derivative in the pure percolation limit (p = p(sub c)) and, in what concerns the pure Ising limit (p = 1) derivative, to a 0.15% error for the triangular lattice and to a 0.96% error for the honeycomb one; in the intermediate region (p(sub c) [pt

  19. Ferromagnetic Objects Magnetovision Detection System.

    Science.gov (United States)

    Nowicki, Michał; Szewczyk, Roman

    2013-12-02

    This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth's field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  20. Ferromagnetic Objects Magnetovision Detection System

    Directory of Open Access Journals (Sweden)

    Michał Nowicki

    2013-12-01

    Full Text Available This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth’s field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  1. Non-ferromagnetic overburden casing

    Science.gov (United States)

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  2. Innovation diffusion in networks : the microeconomics of percolation

    NARCIS (Netherlands)

    Zeppini, P.; Frenken, K.; Izquierdo, L.R.

    2013-01-01

    We implement a diffusion model for an innovative product in a market with a structure of social relationships. Diffusion is described with a percolation approach in the price space. Percolation shows a phase transition from a diffusion to a no-diffusion regime. This has strong implications for

  3. Innovation diffusion in networks: the microeconomics of percolation

    NARCIS (Netherlands)

    Zeppini, P.; Frenken, K.; Izquierdo, L.R.

    2013-01-01

    We implement a diffusion model for an innovative product in a market with a structure of social relationships. Diffusion is described with a percolation approach in the price space. Percolation shows a phase transition from a diffusion to a no-diffusion regime. This has strong implications for

  4. Percolation of overlapping squares or cubes on a lattice

    International Nuclear Information System (INIS)

    Koza, Zbigniew; Kondrat, Grzegorz; Suszczyński, Karol

    2014-01-01

    Porous media are often modeled as systems of overlapping obstacles, which leads to the problem of two percolation thresholds in such systems, one for the porous matrix and the other for the void space. Here we investigate these percolation thresholds in the model of overlapping squares or cubes of linear size k > 1 randomly distributed on a regular lattice. We find that the percolation threshold of obstacles is a nonmonotonic function of k, whereas the percolation threshold of the void space is well approximated by a function linear in 1/k. We propose a generalization of the excluded volume approximation to discrete systems and use it to investigate the transition between continuous and discrete percolation, finding a remarkable agreement between the theory and numerical results. We argue that the continuous percolation threshold of aligned squares on a plane is the same for the solid and void phases and estimate the continuous percolation threshold of the void space around aligned cubes in a 3D space as 0.036(1). We also discuss the connection of the model to the standard site percolation with complex neighborhood. (paper)

  5. Anaerobic Treatment Of Percolate From Faecal Sludge Drying Beds ...

    African Journals Online (AJOL)

    Composite percolate samples, from sludge drying beds of a pilot co-composting plant in Kumasi, Ghana, were characterised and subjected to laboratory scale anaerobic treatment. Two categories of percolate samples were investigated; samples seeded with anaerobic sludge and samples without seeding. The average ...

  6. Definition of percolation thresholds on self-affine surfaces

    NARCIS (Netherlands)

    Marrink, S.J.; Paterson, Lincoln; Knackstedt, Mark A.

    2000-01-01

    We study the percolation transition on a two-dimensional substrate with long-range self-affine correlations. We find that the position of the percolation threshold on a correlated lattice is no longer unique and depends on the spanning rule employed. Numerical results are provided for spanning

  7. Inactivation of VHSV by Percolation and Salt Under Experimental Conditions

    DEFF Research Database (Denmark)

    Skall, Helle Frank; Olesen, Niels Jørgen; Jørgensen, Claus

    2012-01-01

    At the moment the only legal method in Denmark to sanitize wastewater from fish cutting plants is by percolation. To evaluate the inactivation effect of percolation on VHSV an experimental examination was initiated. A column packed with gravel as top- and bottom layer (total of 22 cm) and a mid l...

  8. Free energy distribution function of a random Ising ferromagnet

    International Nuclear Information System (INIS)

    Dotsenko, Victor; Klumov, Boris

    2012-01-01

    We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging

  9. Larmor diffraction in the ferromagnetic superconductor UGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Robert; Pfleiderer, Christian [Physik Department E21, TU Muenchen, D-85748 Garching (Germany); Sokolov, Dmitry; Huxley, Andrew [School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Keller, Thomas [MPI fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany)

    2010-07-01

    Larmor Diffaction (LD) is a neutron resonance spin-echo technique which allows the study of the lattice constant as well the distribution of lattice constants. It was traditionally thought that neutron spin-echo measurements cannot be used in materials such as superconductors or ferromagnets, because they strongly depolarize a polarized neutron beam. In UGe{sub 2} we are able to demonstrate that this technique may be applied in ferromagnetic superconductors with a magnetic Ising anisotropy. UGe{sub 2} exhibits two ferromagnetic phases which are separated by a transition at temperature T{sub x}. With increasing hydrostatic pressure superconductivity emerges at the pressure for which T{sub x} is suppressed. Using LD we studied the temperature dependence of the lattice constant as well as the distribution of lattice constants for all three axis of UGe{sub 2} down to 0.5 K and at pressures up to 12 kbar.

  10. Phase diagrams of site diluted ferromagnetic thin film

    International Nuclear Information System (INIS)

    Hamedoun, M.; Bouslykhane, K.; Bakrim, H.; Hourmatallah, A.; Benzakour, N.; Masrour, R.

    2006-01-01

    The phase transition properties of Ising, classical XY and Heisenberg of diluted ferromagnetic thin film are studied by the method of exact high-temperature series expansions extrapolated with the Pade approximants method. The reduced critical temperature τ c of the diluted ferromagnetic thin films is studied as a function of film thickness L and the exchange interactions in the bulk J b , in the surface J s and between surface and nearest-neighbour layer J - bar . It is found that τ c increases with the exchange interactions of surface and L. The magnetic phase diagram (τ c versus dilution x) is obtained. A critical value of the surface exchange interaction above which the surface magnetism appears is obtained. The dependence of the critical parameter of surface reduced coupling R 2 c as a function of the dilution x and the ratio of the exchange interaction between the surface and nearest-neighbour layer to the bulk one R 1 for the three studied models has been investigated. The percolation threshold is defined as the concentration x p at which τ c =0. The obtained values are x p ∼0.2 in the bulk and x p ∼0.4 at the surface

  11. The relationship between synchronization and percolation for regular networks

    Science.gov (United States)

    Li, Zhe; Ren, Tao; Xu, Yanjie; Jin, Jianyu

    2018-02-01

    Synchronization and percolation are two essential phenomena in complex dynamical networks. They have been studied widely, but previously treated as unrelated. In this paper, the relationship between synchronization and percolation are revealed for regular networks. Firstly, we discovered a bridge between synchronization and percolation by using the eigenvalues of the Laplacian matrix to describe the synchronizability and using the eigenvalues of the adjacency matrix to describe the percolation threshold. Then, we proposed a method to find the relationship for regular networks based on the topology of networks. Particularly, if the degree distribution of the network is subject to delta function, we show that only the eigenvalues of the adjacency matrix need to be calculated. Finally, several examples are provided to demonstrate how to apply our proposed method to discover the relationship between synchronization and percolation for regular networks.

  12. Percolation Model for the Existence of a Mitochondrial Eve

    CERN Document Server

    Neves, A G M

    2005-01-01

    We look at the process of inheritance of mitochondrial DNA as a percolation model on trees equivalent to the Galton-Watson process. The model is exactly solvable for its percolation threshold $p_c$ and percolation probability critical exponent. In the approximation of small percolation probability, and assuming limited progeny number, we are also able to find the maximum and minimum percolation probabilities over all probability distributions for the progeny number constrained to a given $p_c$. As a consequence, we can relate existence of a mitochondrial Eve to quantitative knowledge about demographic evolution of early mankind. In particular, we show that a mitochondrial Eve may exist even in an exponentially growing population, provided that the average number of children per individual is constrained to a small range depending on the probability $p$ that a newborn child is a female.

  13. Volatility Behaviors of Financial Time Series by Percolation System on Sierpinski Carpet Lattice

    Science.gov (United States)

    Pei, Anqi; Wang, Jun

    2015-01-01

    The financial time series is simulated and investigated by the percolation system on the Sierpinski carpet lattice, where percolation is usually employed to describe the behavior of connected clusters in a random graph, and the Sierpinski carpet lattice is a graph which corresponds the fractal — Sierpinski carpet. To study the fluctuation behavior of returns for the financial model and the Shanghai Composite Index, we establish a daily volatility measure — multifractal volatility (MFV) measure to obtain MFV series, which have long-range cross-correlations with squared daily return series. The autoregressive fractionally integrated moving average (ARFIMA) model is used to analyze the MFV series, which performs better when compared to other volatility series. By a comparative study of the multifractality and volatility analysis of the data, the simulation data of the proposed model exhibits very similar behaviors to those of the real stock index, which indicates somewhat rationality of the model to the market application.

  14. Porous media: Analysis, reconstruction and percolation

    DEFF Research Database (Denmark)

    Rogon, Thomas Alexander

    1995-01-01

    functions of Gaussian fields and spatial autocorrelation functions of binary fields. An enhanced approach which embodies semi-analytical solutions for the conversions has been made. The scope and limitations of the method have been analysed in terms of realizability of different model correlation functions...... stereological methods. The measured sample autocorrelations are modeled by analytical correlation functions. A method for simulating porous networks from their porosity and spatial correlation originally developed by Joshi (14) is presented. This method is based on a conversion between spatial autocorrelation...... in binary fields. Percolation threshold of reconstructed porous media has been determined for different discretizations of a selected model correlation function. Also critical exponents such as the correlation length exponent v, the strength of the infinite network and the mean size of finite clusters have...

  15. Percolation theory for flow in porous media

    CERN Document Server

    Hunt, Allen; Ghanbarian, Behzad

    2014-01-01

    This monograph presents, for the first time, a unified and comprehensive introduction to some of the basic transport properties of porous media, such as electrical and hydraulic conductivity, air permeability and diffusion. The approach is based on critical path analysis and the scaling of transport properties, which are individually described as functions of saturation. At the same time, the book supplies a tutorial on percolation theory for hydrologists, providing them with the tools for solving actual problems. In turn, a separate chapter serves to introduce physicists to some of the language and complications of groundwater hydrology necessary for successful modeling. The end-of-chapter problems often indicate open questions, which young researchers entering the field can readily start working on. This significantly revised and expanded third edition includes in particular two new chapters: one on advanced fractal-based models, and one devoted to the discussion of various open issues such as the role of d...

  16. Effects of surfaces on resistor percolation.

    Science.gov (United States)

    Stenull, O; Janssen, H K; Oerding, K

    2001-05-01

    We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization-group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents phiS and phiS(infinity) for the special and the ordinary transition, respectively, to one-loop order.

  17. Peculiar ferromagnetic insulator state in the low-hole-doped manganites

    International Nuclear Information System (INIS)

    Algarabel, P.A.; Teresa, J.M. de; Blasco, J.; Ibarra, M.R.; Kapusta, Cz.; Sikora, M.; Zajac, D.; Riedi, P.C.; Ritter, C.

    2003-01-01

    In this work we show the very different nature of the ferromagnetic state of the low-hole-doped manganites with respect to other manganites showing colossal magnetoresistance. High-field measurements definitively prove the coexistence of ferromagnetic-metallic and ferromagnetic-insulating regions even when the sample is magnetically saturated, with the ground state being inhomogeneous. We have investigated La 0.9 Ca 0.1 MnO 3 as a prototype compound. A wide characterization by means of magnetic and magnetotransport measurements, neutron diffraction, small-angle neutron scattering, and nuclear magnetic resonance has allowed us to establish that the ground state is based on the existence of disordered nanometric double-exchange metallic clusters that coexist with long-range superexchange-based ferromagnetic insulating regions. Under high magnetic field the system reaches magnetization saturation by aligning the magnetic clusters and the insulating matrix, but even if they grow in size, they do not reach the percolation limit

  18. Unexpected large room-temperature ferromagnetism in porous Cu{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Sun, Huiyuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Liu, Lihu; Jia, Xiaoxuan; Liu, Huiyuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China)

    2015-05-15

    Porous Cu{sub 2}O films have been fabricated on porous anodic alumina substrates using DC-reactive magnetron sputtering with pure Cu targets, and unexpectedly large room temperature ferromagnetism has been observed in the films. The maximum saturation magnetic moment along the out-of-plane direction was as high as 94 emu/cm{sup 3}. Photoluminescence spectra show that the ferromagnetism originates with oxygen vacancies. The ferromagnetism could be adjusted by changing the concentration of oxygen vacancies through annealing in an oxygen atmosphere. These observations suggest that the origin of the ferromagnetism is due to coupling between oxygen vacancies with local magnetic moments in the porous Cu{sub 2}O films, which can occur either directly through exchange interactions between oxygen vacancies, or through the mediation of conduction electrons. Such a ferromagnet without the presence of any ferromagnetic dopant may find applications in spintronic devices. - Highlights: • Porous Cu{sub 2}O films were deposited on porous anodic alumina (PAA) substrates. • Significant room-temperature ferromagnetism has been observed in porous Cu{sub 2}O films. • Ferromagnetism of Cu{sub 2}O films exhibited different magnetic signals with the field. • The saturation magnetization is 94 emu/cm{sup 3} with an out-of-plane.

  19. A generalized model for site percolation with two independent concentrations

    International Nuclear Information System (INIS)

    Lin Jiancheng.

    1987-05-01

    In this paper the usual site percolation problem with single concentration is generalized to the one that contains two independent concentrations. Using the real space renormalization technique we derive an exact transformation for the one dimensional lattice and a cluster transformation for triangle lattice in two dimensions. The critical exponents and the percolation threshold concentrations obtained are the same as those of the usual single concentration percolation problem. Critical line and flow diagram in the two concentration parameters space are also given. (author). 10 refs, 6 figs

  20. Influence maximization in complex networks through optimal percolation

    Science.gov (United States)

    Morone, Flaviano; Makse, Hernán A.

    2015-08-01

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.

  1. Hybrid phase transition into an absorbing state: Percolation and avalanches

    Science.gov (United States)

    Lee, Deokjae; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B.

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1 /2 under general conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and γa. These two critical behaviors are coupled by a scaling law: 1 -βm=γa .

  2. Anisotropy in Fracking: A Percolation Model for Observed Microseismicity

    Science.gov (United States)

    Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.

    2015-01-01

    Hydraulic fracturing (fracking), using high pressures and a low viscosity fluid, allow the extraction of large quantiles of oil and gas from very low permeability shale formations. The initial production of oil and gas at depth leads to high pressures and an extensive distribution of natural fractures which reduce the pressures. With time these fractures heal, sealing the remaining oil and gas in place. High volume fracking opens the healed fractures allowing the oil and gas to flow to horizontal production wells. We model the injection process using invasion percolation. We use a 2D square lattice of bonds to model the sealed natural fractures. The bonds are assigned random strengths and the fluid, injected at a point, opens the weakest bond adjacent to the growing cluster of opened bonds. Our model exhibits burst dynamics in which the clusters extend rapidly into regions with weak bonds. We associate these bursts with the microseismic activity generated by fracking injections. A principal object of this paper is to study the role of anisotropic stress distributions. Bonds in the y-direction are assigned higher random strengths than bonds in the x-direction. We illustrate the spatial distribution of clusters and the spatial distribution of bursts (small earthquakes) for several degrees of anisotropy. The results are compared with observed distributions of microseismicity in a fracking injection. Both our bursts and the observed microseismicity satisfy Gutenberg-Richter frequency-size statistics.

  3. Ferromagnetic properties of manganese doped iron silicide

    Science.gov (United States)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  4. Magnetic excitations in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Furdyna, J.K.; Liu, X.; Zhou, Y.Y.

    2009-01-01

    Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors

  5. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  6. Practical Guidelines for Water Percolation Capacity Determination of the Ground

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2011-06-01

    Full Text Available Determination of water infiltration capacity of ground soils and rocks represents important part of design and construction procedures of the facilities for the infiltration of clean precipitation water. With their help percolation capacity of ground as well as response of the infiltration facilities to the inflowing precipitation water is estimated.Comparing to other in situ hydrogeological tests they can be understood as simple. However, in every day’s practiceseveral problems during their on site application and desk interpretation can arise. Paper represents review of existingpractical engineering procedures during the performance of percolation tests. Procedures are described for the borehole and shaft percolation tests execution and calculation theory for stationary and non‑stationary percolation tests are given. Theory is illustrated with practical exercises. Interpretations of typical departures from theoretical presumptions according to Hvorslev test of non-stationary test are illustrated.

  7. Percolation of polyatomic species on site diluted lattices

    International Nuclear Information System (INIS)

    Cornette, V.; Ramirez-Pastor, A.J.; Nieto, F.

    2006-01-01

    In this Letter, the percolation of (a) linear segments of size k and (b) k-mers (particles occupying k adjacent sites) of different structures and forms deposited on a diluted square lattice have been studied. The diluted lattice is built by randomly selecting a fraction of sites which are considered forbidden for deposition. The analysis of the obtained results is made in the framework of the finite size scaling theory. The characteristic parameters of the percolation problem are dependent not only on the form and structure of the k-mers but also on the properties of the lattice where they are deposited. A phase diagram separating a percolating from a non-percolating region is determined and discussed

  8. Aerodynamics and Percolation: Unfolding Laminar Separation Bubble on Airfoils

    Science.gov (United States)

    Traphan, Dominik; Wester, Tom T. B.; Gülker, Gerd; Peinke, Joachim; Lind, Pedro G.

    2018-04-01

    As a fundamental phenomenon of fluid mechanics, recent studies suggested laminar-turbulent transition belonging to the universality class of directed percolation. Here, the onset of a laminar separation bubble on an airfoil is analyzed in terms of the directed percolation model using particle image velocimetry data. Our findings indicate a clear significance of percolation models in a general flow situation beyond fundamental ones. We show that our results are robust against fluctuations of the parameter, namely, the threshold of turbulence intensity, that maps velocimetry data into binary cells (turbulent or laminar). In particular, this percolation approach enables the precise determination of the transition point of the laminar separation bubble, an important problem in aerodynamics.

  9. Transition from diamagnetic to ferromagnetic state in laser ablated nitrogen doped ZnO thin films

    Directory of Open Access Journals (Sweden)

    Kajal Jindal

    2015-02-01

    Full Text Available Transition from room temperature diamagnetic to ferromagnetic state in N doped ZnO (ZnO:N films grown by pulsed laser deposition with tunable energy density has been identified. ZnO:N films deposited with moderate laser energy density of 2.5 J/cm2 are single phase and nearly defect free having N dopant substitution at O sites in ZnO lattice, exhibiting intrinsic ferromagnetism. When energy density reduces (<2.5 J/cm2, defects in ZnO:N film degrades ferromagnetism and exhibit diamagnetic phase when grown at energy density of 1.0 J/cm2. Growth kinetics, which in turn depends on laser energy density is playing important role in making transition from ferromagnetic to diamagnetic in ZnO:N films.

  10. 50 years of first-passage percolation

    CERN Document Server

    Auffinger, Antonio; Hanson, Jack

    2017-01-01

    First-passage percolation (FPP) is a fundamental model in probability theory that has a wide range of applications to other scientific areas (growth and infection in biology, optimization in computer science, disordered media in physics), as well as other areas of mathematics, including analysis and geometry. FPP was introduced in the 1960s as a random metric space. Although it is simple to define, and despite years of work by leading researchers, many of its central problems remain unsolved. In this book, the authors describe the main results of FPP, with two purposes in mind. First, they give self-contained proofs of seminal results obtained until the 1990s on limit shapes and geodesics. Second, they discuss recent perspectives and directions including (1) tools from metric geometry, (2) applications of concentration of measure, and (3) related growth and competition models. The authors also provide a collection of old and new open questions. This book is intended as a textbook for a graduate course or as a...

  11. Long range correlations, event simulation and parton percolation

    International Nuclear Information System (INIS)

    Pajares, C.

    2011-01-01

    We study the RHIC data on long range rapidity correlations, comparing their main trends with different string model simulations. Particular attention is paid to color percolation model and its similarities with color glass condensate. As both approaches corresponds, at high density, to a similar physical picture, both of them give rise to a similar behavior on the energy and the centrality of the main observables. Color percolation explains the transition from low density to high density.

  12. Application of percolation leaching in Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Jiang Lang; Wang Haita; He Jiangming

    2006-01-01

    In order to solve these problems such as high cost by conventional agitation leaching, low permeability and low leaching rate by heap leach, a percolation leaching method was developed. Two-year's production results show that leaching rate of uranium is up to 90% by this method. Compared with conventional agitation leaching, the power, sulfuric acid and lime consumption by the percolation leaching decreased by 60%, 27% and 77% respectively. (authors)

  13. Estimation of water percolation by different methods using TDR

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    2014-02-01

    Full Text Available Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR in a drainage lysimeter. We used Darcy's law with K(θ functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ predicted by the method of Hillel et al. (1972 provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980, Sisson et al. (1980 and van Genuchten (1980 underestimated water percolation.

  14. Social percolation and the influence of mass media

    Science.gov (United States)

    Proykova, Ana; Stauffer, Dietrich

    2002-09-01

    In the marketing model of Solomon and Weisbuch, people buy a product only if their neighbours tell them of its quality, and if this quality is higher than their own quality expectations. Now we introduce additional information from the mass media, which is analogous to the ghost field in percolation theory. The mass media shift the percolative phase transition observed in the model, and decrease the time after which the stationary state is reached.

  15. A new approach for multicriticality in directed and diode percolation

    International Nuclear Information System (INIS)

    Tsallis, C.; Boston Univ., MA; Redner, S.

    1983-01-01

    A new and very simple model for treating directed and more general diode percolation problems is presented, by allowing neighboring sites to be joined by up to two independent bonds of opposite orientations. A generalized 'break-collapse' method is developed to calculate renormalization group recursion relations. On the square lattice, a very symmetric phase diagram is obtained which displays multicritical percolation phenomena, and a variety of interesting conductivity transitions are predicted. (Author) [pt

  16. Percolation-enhanced nonlinear scattering from semicontinuous metal films

    Science.gov (United States)

    Breit, M.; von Plessen, G.; Feldmann, J.; Podolskiy, V. A.; Sarychev, A. K.; Shalaev, V. M.; Gresillon, S.; Rivoal, J. C.; Gadenne, P.

    2001-03-01

    Strongly enhanced second-harmonic generation (SHG), which is characterized by nearly isotropic distribution, is observed for gold-glass films near the percolation threshold. The diffuse-like SHG scattering, which can be thought of as nonlinear critical opalescence, is in sharp contrast with highly collimated linear reflection and transmission from these nanostructured semicontinuous metal films. Our observations, which can be explained by giant fluctuations of local nonlinear sources for SHG, verify recent predictions of percolation-enhanced nonlinear scattering.

  17. Ferromagnetic Swimmers - Devices and Applications

    Science.gov (United States)

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  18. Analysis of radionuclide transport through fracture networks by percolation theory

    International Nuclear Information System (INIS)

    Ahn, Joonhong; Furuhama, Yutaka; Li, Yadong; Suzuki, Atsuyuki

    1991-01-01

    Presented are results of numerical simulations for radionuclide diffusion through fracture networks in geologic layers. Actual fracture networks are expressed as two-dimensional honeycomb percolation lattices. Random-walk simulations of diffusion on percolation lattices are made by the exact-enumeration method, and compared with those from Fickian diffusion with constant and decreasing diffusion coefficients. Mean-square displacement of a random-walker on percolation lattices increases more slowly with time than that for Fickian diffusion with the constant diffusion coefficient. Though the same relation of mean-square displacement vs. time as for the percolation lattices can be obtained for a continuum with decreasing diffusion coefficients, spatial distribution of probability densities of finding the random-walker on the percolation lattice differs from that on a continuum with the decreasing diffusion coefficient. The percolation model results in slow spreading near the origin and fast spreading in the outer region, whereas the decreasing-diffusion coefficient model shows the reverse because of smaller diffusion coefficient in the outer region. We could derive a general formula that can include both Fickian and anomalous diffusion in terms of fractal and fracton dimensionalities and the anomalous diffusion exponent. (author)

  19. Magnetic excitations in transition-metal ferromagnets

    International Nuclear Information System (INIS)

    Uemura, Y.J.

    1984-01-01

    A review is given on current neutron scattering experiments at Brookhaven National Laboratory on transition-metal ferromagnets Ni, Fe, Pd 2 MnSn and MnSi. The scattering intensity in constant-energy scans, observed above T/sub c/ in all of these materials, exhibited a clear peak at finite momentum transfers. Using a simple scattering function with double-Lorentzian shape, we demonstrate that this peak is a manifestation of simple diffusive spin fluctuations. Experimental results of several parameters are compared in the context of localized-moment and itinerant-electron pictures. The ratio of spin wave stiffness constant D and transition temperature kT/sub c/ is shown to be a good yardstick for the degree of itinerancy of d-electrons

  20. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  1. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  2. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  3. Energy gap of ferromagnet-superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Halterman, Klaus; Valls, Oriol T

    2003-10-15

    The excitation spectrum of clean ferromagnet-superconductor bilayers is calculated within the framework of the self-consistent Bogoliubov-de Gennes theory. Because of the proximity effect, the superconductor induces a gap in the ferromagnet spectrum, for thin ferromagnetic layers. The effect depends strongly on the exchange field in the ferromagnet. We find that as the thickness of the ferromagnetic layer increases, the gap disappears, and that its destruction arises from those quasiparticle excitations with wave vectors mainly along the interface. We discuss the influence that the interface quality and Fermi energy mismatch between the ferromagnet and superconductor have on the calculated energy gap. We also evaluate the density of states in the ferromagnet, and we find it in all cases consistent with the gap results.

  4. Defects induced ferromagnetism in Mn doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Neogi, S.K. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, Kolkata 700009 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India)

    2011-02-15

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 {sup o}C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other ({approx}32{+-}4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 {mu}{sub B}/Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: 2 at% Mn doped ZnO samples are single phase. All the samples exhibit ferromagnetism at room temperature. Correlation between saturation magnetization and positron annihilation lifetime established.

  5. Defects induced ferromagnetism in Mn doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Neogi, S.K.; Sarkar, A.; Mukadam, M.D.; Yusuf, S.M.; Banerjee, A.; Bandyopadhyay, S.

    2011-01-01

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 o C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other (∼32±4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 μ B /Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: → 2 at% Mn doped ZnO samples are single phase. → All the samples exhibit ferromagnetism at room temperature. → Correlation between saturation magnetization and positron annihilation lifetime established.

  6. Tunneling Evidence of Half-Metallic Ferromagnetism in La(0.7)Ca(0.3)MnO(3)

    Science.gov (United States)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1997-01-01

    Direct experimental evidence of half-metallic density of states (DOS) is observed by scanning tunneling spectroscopy on ferromagnetic La(0.7)Ca(0.3)MnO(3) which exhibits colossal magnetoresistance (SMR).

  7. Dirac Magnons in Honeycomb Ferromagnets

    Directory of Open Access Journals (Sweden)

    Sergey S. Pershoguba

    2018-01-01

    Full Text Available The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009RMPHAT0034-686110.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014ADPHAH0001-873210.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX_{3} (X=F, Cl, Br and I, that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956PHRVAO0031-899X10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956PHRVAO0031-899X10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr_{3} [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in

  8. Dirac Magnons in Honeycomb Ferromagnets

    Science.gov (United States)

    Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.

    2018-01-01

    The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation

  9. Magnetic excitations in amorphous ferromagnets

    International Nuclear Information System (INIS)

    Continentino, M.A.

    The propagation of magnetic excitations in amorphous ferromagnets is studied from the point of view of the theory of random frequency modulation. It is shown that the spin waves in the hydrodynamic limit are well described by perturbation theory while the roton-like magnetic excitations with wavevector about the peak in the structure factor are not. A criterion of validity of perturbation theory is found which is identical to a narrowing condition in magnetic resonance. (author) [pt

  10. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  11. Critical current simulation in granular superconductors above the percolation threshold

    Science.gov (United States)

    Riedinger, Roland

    1992-02-01

    In the phase-coherent regime without applied external magnetic field, the critical superconducting current is limited by intragranular junctions which behave like Josephson junctions. We study the percolation aspects specific to lattices of such junctions and/or the mixing of superconductor with normal grains by averaging over configurations. We illustrate on 2 and 3 dimensional examples. The power laws valid near the percolation threshold are valid well above it, in two and three dimensions. We discuss the other models limiting the superconducting current, the vortex creep and superconducting order parameter fluctuations. Dans la limite de champ magnétique nul et de cohérence de phase du paramètre d'ordre supraconducteur, le courant supraconducteur maximal dans un réseau est limité par les jonctions intergranulaires qui se comportent comme des jonctions Josephson. Nous analysons les problèmes de percolation spécifiques aux réseaux de jonctions et du mélange de grains normaux et supraconducteurs. Nous donnons des exemples bidimensionnels et tridimensionnels ; après moyenne sur les configurations et analyse en taille finie, nous montrons que les lois de puissance valables au voisinage du seuil de percolation s'étendent sur un grand domaine au-delà du seuil de percolation, à deux et trois dimensions. Nous discutons les autres modèles limitant le courant supraconducteur, ancrage de vortex et fluctuations du paramètre d'ordre.

  12. Statistical mechanics of high-density bond percolation

    Science.gov (United States)

    Timonin, P. N.

    2018-05-01

    High-density (HD) percolation describes the percolation of specific κ -clusters, which are the compact sets of sites each connected to κ nearest filled sites at least. It takes place in the classical patterns of independently distributed sites or bonds in which the ordinary percolation transition also exists. Hence, the study of series of κ -type HD percolations amounts to the description of classical clusters' structure for which κ -clusters constitute κ -cores nested one into another. Such data are needed for description of a number of physical, biological, and information properties of complex systems on random lattices, graphs, and networks. They range from magnetic properties of semiconductor alloys to anomalies in supercooled water and clustering in biological and social networks. Here we present the statistical mechanics approach to study HD bond percolation on an arbitrary graph. It is shown that the generating function for κ -clusters' size distribution can be obtained from the partition function of the specific q -state Potts-Ising model in the q →1 limit. Using this approach we find exact κ -clusters' size distributions for the Bethe lattice and Erdos-Renyi graph. The application of the method to Euclidean lattices is also discussed.

  13. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes.

    Science.gov (United States)

    King, Paul J; Higgins, Thomas M; De, Sukanta; Nicoloso, Norbert; Coleman, Jonathan N

    2012-02-28

    We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.

  14. Bounds for percolation thresholds on directed and undirected graphs

    Science.gov (United States)

    Hamilton, Kathleen; Pryadko, Leonid

    2015-03-01

    Percolation theory is an efficient approach to problems with strong disorder, e.g., in quantum or classical transport, composite materials, and diluted magnets. Recently, the growing role of big data in scientific and industrial applications has led to a renewed interest in graph theory as a tool for describing complex connections in various kinds of networks: social, biological, technological, etc. In particular, percolation on graphs has been used to describe internet stability, spread of contagious diseases and computer viruses; related models describe market crashes and viral spread in social networks. We consider site-dependent percolation on directed and undirected graphs, and present several exact bounds for location of the percolation transition in terms of the eigenvalues of matrices associated with graphs, including the adjacency matrix and the Hashimoto matrix used to enumerate non-backtracking walks. These bounds correspond t0 a mean field approximation and become asymptotically exact for graphs with no short cycles. We illustrate this convergence numerically by simulating percolation on several families of graphs with different cycle lengths. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.

  15. Percolation of binary disk systems: Modeling and theory

    International Nuclear Information System (INIS)

    Meeks, Kelsey; Pantoya, Michelle L.

    2017-01-01

    The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and compared to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.

  16. Connectivity percolation in suspensions of attractive square-well spherocylinders.

    Science.gov (United States)

    Dixit, Mohit; Meyer, Hugues; Schilling, Tanja

    2016-01-01

    We have studied the connectivity percolation transition in suspensions of attractive square-well spherocylinders by means of Monte Carlo simulation and connectedness percolation theory. In the 1980s the percolation threshold of slender fibers has been predicted to scale as the fibers' inverse aspect ratio [Phys. Rev. B 30, 3933 (1984)PRBMDO1098-012110.1103/PhysRevB.30.3933]. The main finding of our study is that the attractive spherocylinder system reaches this inverse scaling regime at much lower aspect ratios than found in suspensions of hard spherocylinders. We explain this difference by showing that third virial corrections of the pair connectedness functions, which are responsible for the deviation from the scaling regime, are less important for attractive potentials than for hard particles.

  17. Renormalization group theory for percolation in time-varying networks.

    Science.gov (United States)

    Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M

    2018-05-22

    Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.

  18. Controlling electrical percolation in multicomponent carbon nanotube dispersions.

    Science.gov (United States)

    Kyrylyuk, Andriy V; Hermant, Marie Claire; Schilling, Tanja; Klumperman, Bert; Koning, Cor E; van der Schoot, Paul

    2011-04-10

    Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components.

  19. Polymer Percolation Threshold in Multi-Component HPMC Matrices Tablets

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2011-06-01

    Full Text Available Introduction: The percolation theory studies the critical points or percolation thresholds of the system, where onecomponent of the system undergoes a geometrical phase transition, starting to connect the whole system. The application of this theory to study the release rate of hydrophilic matrices allows toexplain the changes in release kinetics of swellable matrix type system and results in a clear improvement of the design of controlled release dosage forms. Methods: In this study, the percolation theory has been applied to multi-component hydroxypropylmethylcellulose (HPMC hydrophilic matrices. Matrix tablets have been prepared using phenobarbital as drug,magnesium stearate as a lubricant employing different amount of lactose and HPMC K4M as a fillerandmatrix forming material, respectively. Ethylcelullose (EC as a polymeric excipient was also examined. Dissolution studies were carried out using the paddle method. In order to estimate the percolation threshold, the behaviour of the kinetic parameters with respect to the volumetric fraction of HPMC at time zero, was studied. Results: In both HPMC/lactose and HPMC/EC/lactose matrices, from the point of view of the percolation theory, the optimum concentration for HPMC, to obtain a hydrophilic matrix system for the controlled release of phenobarbital is higher than 18.1% (v/v HPMC. Above 18.1% (v/v HPMC, an infinite cluster of HPMC would be formed maintaining integrity of the system and controlling the drug release from the matrices. According to results, EC had no significant influence on the HPMC percolation threshold. Conclusion: This may be related to broad functionality of the swelling hydrophilic matrices.

  20. Room temperature ferromagnetism in a phthalocyanine based carbon material

    International Nuclear Information System (INIS)

    Honda, Z.; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-01-01

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T c  = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material

  1. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  2. Efficiency of homopolar generators without ferromagnetic circuit

    International Nuclear Information System (INIS)

    Kharitonov, V.V.

    1982-01-01

    E.m.f. and weights of homopolar generators (HG) without a ferromagnetic circuit and of similar generator with a ferromagnetic circuit are compared at equal armature diameters and armature rotative speed. HG without ferromagnetic cuircuit of disk and cylinder types with hot and superconducting excitation winding are considered. Areas of the most reasonable removal of a ferromagnetic circuit in the HG layout are found. The plots of relationships between the e.m.f. and HG weight that permit to estimate the efficiency of ''nonferrite'' HG constructions are presented

  3. The abundance threshold for plague as a critical percolation phenomenon

    DEFF Research Database (Denmark)

    Davis, S; Trapman, P; Leirs, H

    2008-01-01

    . However, no natural examples have been reported. The central question of interest in percolation theory 4 , the possibility of an infinite connected cluster, corresponds in infectious disease to a positive probability of an epidemic. Archived records of plague (infection with Yersinia pestis....... Abundance thresholds are the theoretical basis for attempts to manage infectious disease by reducing the abundance of susceptibles, including vaccination and the culling of wildlife 6, 7, 8 . This first natural example of a percolation threshold in a disease system invites a re-appraisal of other invasion...

  4. Percolation approach for atomic and molecular cluster formation

    International Nuclear Information System (INIS)

    Knospe, O.; Seifert, G.

    1987-12-01

    We apply a percolation approach for the theoretical analysis of mass spectra of molecular microclusters obtained by adiabatic expansion technique. The evolution of the shape of the experimental size distributions as function of stagnation pressure and stagnation temperature are theoretically reproduced by varying the percolation parameter. Remaining discrepancies between theory and experiment are discussed. In addition, the even-odd alternation as well as the 'magic' shell structure within metallic, secondary ion mass spectra are investigated by introducing statistical weights for the cluster formation probabilities. Shell correction energies of atomic clusters as function of cluster-size are deduced from the experimental data. (orig.)

  5. Percolation temperature and the 'instability' of the effective potential

    International Nuclear Information System (INIS)

    Carvalho, C.A. de; Bazeia Filho, D.; Eboli, O.J.P.; Marques, G.C.; Silva, A.J. da; Ventura, I.

    1984-01-01

    It is shown that in spontaneously broken lambda phi 4 theory the percolation temperature coincides with the temperature at which the semiclassical (loop) expansion of the effective potential (free energy) of the system around a uniform field configuration fails. This allows us to extract the percolation temperature directly from the effective potential. The addition of fermions or gauge fields does not alter the result as long as they are weakly coupled to the scalars. The coincidence holds in the high temperature limit at every order in the loop expansion. (Author) [pt

  6. Mirrorless lasing from light emitters in percolating clusters

    Science.gov (United States)

    Burlak, Gennadiy; Rubo, Y. G.

    2015-07-01

    We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.

  7. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  8. Connectedness percolation of hard deformed rods

    NARCIS (Netherlands)

    Drwenski, Tara; Dussi, Simone; Dijkstra, Marjolein; van Roij, Rene; van der Schoot, Paul

    2017-01-01

    Nanofiller particles, such as carbon nanotubes or metal wires, are used in functional polymer composites to make them conduct electricity. They are often not perfectly straight cylinders but may be tortuous or exhibit kinks. Therefore we investigate the effect of shape deformations of the rod-like

  9. Micro-foundation using percolation theory of the finite time singular behavior of the crash hazard rate in a class of rational expectation bubbles

    Science.gov (United States)

    Seyrich, Maximilian; Sornette, Didier

    2016-04-01

    We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power sa (with a>1) of the cluster sizes s, similarly to a generalized percolation susceptibility. The power sa of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold pc. Realistic dynamics are generated by modeling the density of traders on the percolation network by an Ornstein-Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.

  10. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    Science.gov (United States)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2018-03-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  11. Radioactive Probes on Ferromagnetic Surfaces

    CERN Multimedia

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  12. Influence of polyethylene glycol on percolation dynamics of reverse microemulsions

    Science.gov (United States)

    Geethu, P. M.; Yadav, Indresh; Aswal, V. K.; Satapathy, D. K.

    2018-04-01

    We explore the influence of a hydrophilic polymer, polyethylene glycol (PEG), on the structure and the percolation dynamics of reverse microemulsions (ME) stabilized by an anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). The percolation transition of MEs is probed using dielectric relaxation spectroscopy (DRS). Notably, an increase in percolation temperature is observed by the incorporation of PEG-polymer into larger ME droplets which is explained by considering the model of polymer adsorption at surfactant-water interface. The stability of the droplet phase of microemulsion after the incorporation of PEG is confirmed by small-angle neutron scattering (SANS) experiment. Further, a net decrease in percolation transition temperature is observed with the addition of PEG polymer for smaller ME droplets and is discussed in relation with the destabilization of droplets owing to the polymer induced bridging and the associated clustering of droplets. We conjecture that the adsorption of PEG polymer chains at the surfactant-water interface as well as the PEG-induced bridging of droplets are due to the strong ion-dipole interaction between anionic head group of AOT surfactant and dipoles present in PEG polymer chains.

  13. Rigidity percolation in dispersions with a structured viscoelastic matrix

    NARCIS (Netherlands)

    Wilbrink, M.W.L.; Michels, M.A.J.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle

  14. Universality for first passage percolation on sparse random graphs

    NARCIS (Netherlands)

    Bhamidi, S.; Hofstad, van der R.W.; Hooghiemstra, G.

    2014-01-01

    We consider first passage percolation on the conguration model with n vertices, and general independent and identically distributed edge weights assumed to have a density. Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the

  15. Progress in high-dimensional percolation and random graphs

    CERN Document Server

    Heydenreich, Markus

    2017-01-01

    This text presents an engaging exposition of the active field of high-dimensional percolation that will likely provide an impetus for future work. With over 90 exercises designed to enhance the reader’s understanding of the material, as well as many open problems, the book is aimed at graduate students and researchers who wish to enter the world of this rich topic.  The text may also be useful in advanced courses and seminars, as well as for reference and individual study. Part I, consisting of 3 chapters, presents a general introduction to percolation, stating the main results, defining the central objects, and proving its main properties. No prior knowledge of percolation is assumed. Part II, consisting of Chapters 4–9, discusses mean-field critical behavior by describing the two main techniques used, namely, differential inequalities and the lace expansion. In Parts I and II, all results are proved, making this the first self-contained text discussing high-dimensiona l percolation.  Part III, consist...

  16. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites

    KAUST Repository

    Tu, Shao Bo; Jiang, Qiu; Zhang, Xixiang; Alshareef, Husam N.

    2018-01-01

    near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene

  17. Remarks on the percolation problem in anisotropic systems

    International Nuclear Information System (INIS)

    Chaves, C.M.G.F.; Oliveira, P.M.C. de; Queiroz, S.L.A. de; Riera, R.

    1979-07-01

    The bond percolation problem is discused in an anisotropic square lattice using the position space renormalization group. It is shown that, due to symmetry, this treatment reproduces known exact results for this problem. The phase diagram and the flow lines in parameter space are also shown. Results are in agreement with universality.(Author) [pt

  18. Ising percolation in a three-state majority vote model

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Martínez-Cruz, M.A.; Gayosso Martínez, Felipe [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)

    2017-02-05

    Highlights: • Three-state non-consensus majority voter model is introduced. • Phase transition in the absorbing state non-consensus is revealed. • The percolation transition belongs to the universality class of Ising percolation. • The effect of an updating rule for a tie between voter neighbors is highlighted. - Abstract: In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the “magnetization” of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.

  19. One-dimensional long-range percolation: A numerical study

    Science.gov (United States)

    Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.

    2017-07-01

    In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .

  20. Universality for first passage percolation on sparse random graphs

    NARCIS (Netherlands)

    Bhamidi, S.; Van Der Hofstad, R.W.; Hooghiemstra, G.

    2017-01-01

    We consider first passage percolation on the configuration model with n vertices, and general independent and identically distributed edge weights assumed to have a density. Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the

  1. Ising percolation in a three-state majority vote model

    International Nuclear Information System (INIS)

    Balankin, Alexander S.; Martínez-Cruz, M.A.; Gayosso Martínez, Felipe; Mena, Baltasar; Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier

    2017-01-01

    Highlights: • Three-state non-consensus majority voter model is introduced. • Phase transition in the absorbing state non-consensus is revealed. • The percolation transition belongs to the universality class of Ising percolation. • The effect of an updating rule for a tie between voter neighbors is highlighted. - Abstract: In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the “magnetization” of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.

  2. First-passage percolation on the random graph

    NARCIS (Netherlands)

    Hofstad, van der R.W.; Hooghiemstra, G.; Van Mieghem, P.

    2001-01-01

    We study first-passage percolation on the random graph Gp(N) with exponentially distributed weights on the links. For the special case of the complete graph, this problem can be described in terms of a continuous-time Markov chain and recursive trees. The Markov chain X(t) describes the number of

  3. Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections

    NARCIS (Netherlands)

    van Enter, Aernout C. D.; Hulshof, Tim

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  4. Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Fey, Anne

    In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability thresholds for a fairly general class of models. In our proofs, we use an adaptation of the technique of dimensional reduction. We find that the

  5. Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections

    NARCIS (Netherlands)

    Enter, van A.C.D.; Hulshof, T.

    2007-01-01

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  6. Finite-Size Effects for Some Bootstrap Percolation Models

    NARCIS (Netherlands)

    Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.

    The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling

  7. Onset of itinerant ferromagnetism associated with semiconductor ...

    Indian Academy of Sciences (India)

    In this paper, the magnetic and transport properties of the TiNb1−CoSn solid solution compounds with half Heusler cubic MgAgAs-type structure have been studied. This work shows the onset of ferromagnetism associated with a semiconductor to metal transition. The transition occurs directly from ferromagnetic metal to ...

  8. Skyrmion burst and multiple quantum walk in thin ferromagnetic films

    International Nuclear Information System (INIS)

    Ezawa, Motohiko

    2011-01-01

    We propose a new type of quantum walk in thin ferromagnetic films. A giant Skyrmion collapses to a singular point in a thin ferromagnetic film, emitting spin waves, when external magnetic field is increased beyond the critical one. After the collapse the remnant is a quantum walker carrying spin S. We determine its time evolution and show the diffusion process is a continuous-time quantum walk. We also analyze an interference of two quantum walkers after two Skyrmion bursts. The system presents a new type of quantum walk for S>1/2, where a quantum walker breaks into 2S quantum walkers. -- Highlights: → A giant Skyrmion collapses to a singular point by applying strong magnetic field. → Quantum walk is realized in thin ferromagnetic films by Skyrmion collapsing. → Quantum walks for S=1/2 and 1 are exact solvable, where S represents the spin. → Quantum walks for >1/2 presents a new type of quantum walks, i.e., 'multiple quantum walks'. → Skyrmion bursts which occur simultaneously exhibit an interference as a manifestation of quantum walk.

  9. Ferromagnetic resonance features of degenerate GdN semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Vidyasagar, Reddithota, E-mail: dr.vidyasagar1979@gmail.com [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan); Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan); Sakurai, Takahiro; Shimokawa, Tokuro [Centre for Support to Research and Education Activities, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan); Ohta, Hitoshi [Molecular Photoscience Research Center and Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan)

    2017-06-15

    Using X-band Ferromagnetic Resonance (FMR) Spectroscopy, we demonstrate the microscopic ferromagnetic resonance features of degenerated GdN semiconductor. The FMR spectrum suggests a single resonance mode below 10 K; interestingly, this particular structure is found to exhibit a peculiar magnetic resonance (PMR) on the top of the uniform FMR while temperature increases from 12–36 K. The low-field PMR mode attributed to the differently magnetized part of the film with an easy in-plane axis. The narrow-field gap between PMR and uniform FMR suggests the strong coupling owning to the differently magnetized part with easy in-plane axis and the magnetized part with an out-of-plane axis. The saturation magnetization, cubic magnetocrystalline anisotropy, and uniaxial anisotropy of GdN epitaxial film have been evaluated by the angular-dependence FMR. - Highlights: • Observation of peculiar magnetic resonance (PMR) on the top of ferromagnetic resonance (FMR). • Newly evolving PMR manifests differently magnetized part of the film with an easy in-plane axis. • Narrow gap between PMR and FMR owing to the strong interaction between two spin–wave resonances. • Uniaxial anisotropy increases with GdN thickness decreases.

  10. Ferromagnetic resonance in a topographically modulated permalloy film

    Science.gov (United States)

    Sklenar, J.; Tucciarone, P.; Lee, R. J.; Tice, D.; Chang, R. P. H.; Lee, S. J.; Nevirkovets, I. P.; Heinonen, O.; Ketterson, J. B.

    2015-04-01

    A major focus within the field of magnonics involves the manipulation and control of spin-wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the ferromagnetic resonance spectrum. To demonstrate this technique we have performed in-plane, broadband, ferromagnetic resonance studies on a 100-nm-thick permalloy film sputtered onto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, sixfold-symmetric underlying colloidal crystal were studied as a function of the in-plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary modes; the ratio of the intensities of these two modes exhibits a sixfold dependence. Detailed micromagnetic modeling shows that both modes are quasiuniform and nodeless in the unit cell but that they reside in different demagnetized regions of the unit cell. Our results demonstrate that topographic modification of magnetic thin films opens additional directions for manipulating ferromagnetic resonant excitations.

  11. Gibbs Measures Over Locally Tree-Like Graphs and Percolative Entropy Over Infinite Regular Trees

    Science.gov (United States)

    Austin, Tim; Podder, Moumanti

    2018-03-01

    Consider a statistical physical model on the d-regular infinite tree Td described by a set of interactions Φ . Let Gn be a sequence of finite graphs with vertex sets V_n that locally converge to Td. From Φ one can construct a sequence of corresponding models on the graphs G_n. Let μ_n be the resulting Gibbs measures. Here we assume that μ n converges to some limiting Gibbs measure μ on Td in the local weak^* sense, and study the consequences of this convergence for the specific entropies |V_n|^{-1}H(μ _n). We show that the limit supremum of |V_n|^{-1}H(μ _n) is bounded above by the percolative entropy H_{it{perc}}(μ ), a function of μ itself, and that |V_n|^{-1}H(μ _n) actually converges to H_{it{perc}}(μ ) in case Φ exhibits strong spatial mixing on T_d. When it is known to exist, the limit of |V_n|^{-1}H(μ _n) is most commonly shown to be given by the Bethe ansatz. Percolative entropy gives a different formula, and we do not know how to connect it to the Bethe ansatz directly. We discuss a few examples of well-known models for which the latter result holds in the high temperature regime.

  12. Digital collections and exhibits

    CERN Document Server

    Denzer, Juan

    2015-01-01

    Today's libraries are taking advantage of cutting-edge technologies such as flat panel displays using touch, sound, and hands-free motions to design amazing exhibits using everything from simple computer hardware to advanced technologies such as the Microsoft Kinect. Libraries of all types are striving to add new interactive experiences for their patrons through exciting digital exhibits, both online and off. Digital Collections and Exhibits takes away the mystery of designing stunning digital exhibits to spotlight library trea

  13. Exhibiting Epistemic Objects

    DEFF Research Database (Denmark)

    Tybjerg, Karin

    2017-01-01

    of exhibiting epistemic objects that utilize their knowledge-generating potential and allow them to continue to stimulate curiosity and generate knowledge in the exhibition. The epistemic potential of the objects can then be made to work together with the function of the exhibition as a knowledge-generating set...

  14. Discrimination? - Exhibition of posters

    OpenAIRE

    Jakimovska, Jana

    2017-01-01

    Participation in the exhibition with the students form the Art Academy. The exhibition consisted of 15 posters tackling the subjects of hate speech and discrimination. The exhibition happened thanks to the invitation of the Faculty of Law at UGD, and it was a part of a larger event of launching books on the aforementioned subjects.

  15. Non-magnetic compensation in ferromagnetic Ga1-xMnxAs and Ga1-xMnxP synthesized by ion implantation and pulsed-laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Scarpulla, M.A.; Stone, P.R.; Sharp, I.D.; Haller, E.E.; Dubon, O.D.; Beeman, J.W.; Yu, K.M.

    2008-02-05

    The electronic and magnetic effects of intentional compensation with non-magnetic donors are investigated in the ferromagnetic semiconductors Ga1-xMnxAs and Ga1-xMnxP synthesized using ion implantation and pulsed-laser melting (II-PLM). It is demonstrated that compensation with non-magnetic donors and MnI have similarqualitative effects on materials properties. With compensation TC decreases, resistivity increases, and stronger magnetoresistance and anomalous Hall effect attributed to skew scattering are observed. Ga1-xMnxAs can be controllably compensated with Te through a metal-insulator transition through which the magnetic and electrical properties vary continuously. The resistivity of insulating Ga1-xMnxAs:Te can be described by thermal activation to the mobility edge and simply-activated hopping transport. Ga1-xMnxP doped with S is insulating at all compositions but shows decreasing TC with compensation. The existence of a ferromagnetic insulating state in Ga1-xMnxAs:Te and Ga1-xMnxP:S having TCs of the same order as the uncompensated materials demonstrates that localized holes are effective at mediating ferromagnetism in ferromagnetic semiconductors through the percolation of ferromagnetic 'puddles' which at low temperatures.

  16. Inhomogeneous superconductivity in a ferromagnet

    International Nuclear Information System (INIS)

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  17. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  18. Finite-size scaling of clique percolation on two-dimensional Moore lattices

    Science.gov (United States)

    Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong

    2018-05-01

    Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.

  19. Dipolar ferromagnets and glasses (invited)

    International Nuclear Information System (INIS)

    Rosenbaum, T.F.; Wu, W.; Ellman, B.; Yang, J.; Aeppli, G.; Reich, D.H.

    1991-01-01

    What is the ground state and what are the dynamics of 10 23 randomly distributed Ising spins? We have attempted to answer these questions through magnetic susceptibility, calorimetric, and neutron scattering studies of the randomly diluted dipolar-coupled Ising magnet LiHo x Y 1-x F 4 . The material is ferromagnetic for dipole concentrations at least as low as x=0.46, with a Curie temperature obeying mean-field scaling relative to that of pure LiHoF 4 . In the dilute spin limit, an x=0.045 crystal shows very unusual glassy properties characterized by decreasing barriers to relaxation as T→0. Its properties are consistent with a single low degeneracy ground state with a large gap for excitations. A slightly more concentrated x=0.167 sample, however, supports a complex ground state with no appreciable gap, in accordance with prevailing theories of spin glasses. The underlying causes of such disparate behavior are discussed in terms of random clusters as probed by neutron studies of the x=0.167 sample. In addition to tracing the evolution of the glassy and ferromagnetic states with dipole concentration, we investigate the effects of a transverse magnetic field on the Ising spin glass, LiHo 0.167 Y 0.833 F 4 . The transverse field mixes the eigenfunctions of the ground-state Ising doublet with the otherwise inaccessible excited-state levels. We observe a rapid decrease in the characteristic relaxation times, large changes in the spectral form of the relaxation, and a depression of the spin-glass transition temperature with the addition of quantum fluctuations

  20. A contribution from dielectric analysis to the study of the formation of multi-wall carbon nanotubes percolated networks in epoxy resin under an electric field

    International Nuclear Information System (INIS)

    Risi, Celso L.S.; Hattenhauer, Irineu; Ramos, Airton; Coelho, Luiz A.F.; Pezzin, Sérgio H.

    2015-01-01

    The formation of percolation networks in epoxy matrix nanocomposites reinforced with multi-wall carbon nanotubes (MWNT) during the curing process, at different MWNT contents, was studied by using a parallel plate cell subjected to a 300 V/cm AC electric field at 1 kHz. The percolation was verified by the electrical current output measured during and after the resin curing. The behavior of electric dipoles was characterized by impedance spectroscopy and followed the Debye first order dispersion model, by which an average relaxation time of 6.0 × 10 −4 s and a cut-off frequency of 1.7 kHz were experimentally found. By applying the theory of percolation, a critical probability, p c , equal to 0.038 vol% and an exponent of conductivity of 2.0 were found. Both aligned and random samples showed dipole relaxation times typical of interfacial and/or charge-hopping polarization, while the permittivity exhibited an exponential decrease with frequency. This behavior can be related to the increased ability to trap electrical charges due to the formation of the carbon nanotubes network. Optical and electron microscopies confirm the theoretical prediction that the application of an electric field during cure helps the process of MWNT debundling in epoxy resin. - Highlights: • We report the formation of percolating networks of MWNTs under AC electric field. • MWNT/epoxy dielectric properties were measured by impedance spectroscopy. • Lower percolation thresholds were obtained for composites with aligned CNTs. • Application of AC electric field helps the debundling of CNTs. • CNT/Epoxy with percolated networks presents interfacial and hopping polarizations

  1. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces

    NARCIS (Netherlands)

    Huijben, Mark; Yu, P.; Martin, L.W.; Molegraaf, Hajo; Chu, Y.H.; Holcomb, M.B.; Balke, N.; Rijnders, Augustinus J.H.M.; Ramesh, R.

    2013-01-01

    Exchange bias coupling at the multiferroic- ferromagnetic interface in BiFeO3/La0.7Sr0.3MnO3 heterostructures exhibits a critical thickness for ultrathin BiFeO3 layers of 5 unit cells (2 nm). Linear dichroism measurements demonstrate the dependence on the BiFeO3 layer thickness with a strong

  2. Unusual percolation in simple small-world networks.

    Science.gov (United States)

    Cohen, Reuven; Dawid, Daryush Jonathan; Kardar, Mehran; Bar-Yam, Yaneer

    2009-06-01

    We present an exact solution of percolation in a generalized class of Watts-Strogatz graphs defined on a one-dimensional underlying lattice. We find a nonclassical critical point in the limit of the number of long-range bonds in the system going to zero, with a discontinuity in the percolation probability and a divergence in the mean finite-cluster size. We show that the critical behavior falls into one of three regimes depending on the proportion of occupied long-range to unoccupied nearest-neighbor bonds, with each regime being characterized by different critical exponents. The three regimes can be united by a single scaling function around the critical point. These results can be used to identify the number of long-range links necessary to secure connectivity in a communication or transportation chain. As an example, we can resolve the communication problem in a game of "telephone."

  3. Pilot test of bacterial percolation leaching at Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Fan Baotuan; Liu Jian; Jiang Yngqiong; Cai Chunhui; Jiang Lang; Zhou Renhua; Tong Changning; Zhang Hongli

    2006-01-01

    Total 18 t uranium ores of Fuzhou Uranium Mine packed in three or four columns in series were leached by bacterial percolation. The results show that without adding any other chemical oxidant such as sodium chlorate, the leaching rate measured by residue is 91.45%-94.48%, leaching time is 50-60 d, acid consumption is 6.17%-7.75%, and residue grade is 0.0149%-0.0208%. Compared with conventional percolation leaching process, the leaching rate is improved by 3%, leaching time is shorted by 26%, and acid consumption is saved by 34%. Accumulation pattern of ΣFe and F - in the process of leaching is discussed. Influence of F - on bacterial growth, regeneration of barren solution as well as correlative techniques are reviewed. (authors)

  4. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring

    Directory of Open Access Journals (Sweden)

    Matias Soto

    2015-09-01

    Full Text Available A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature.

  5. Damage percolation during stretch flange forming of aluminum alloy sheet

    Science.gov (United States)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  6. Temporal percolation of the susceptible network in an epidemic spreading.

    Science.gov (United States)

    Valdez, Lucas Daniel; Macri, Pablo Alejandro; Braunstein, Lidia Adriana

    2012-01-01

    In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and percolation tools, we find that a time-dependent quantity ΦS(t), namely, the probability that a given neighbor of a node is susceptible at time t, is the control parameter of a node void percolation process involving those nodes on the network not-reached by the disease. We show that there exists a critical time t(c) above which the giant susceptible component is destroyed. As a consequence, in order to preserve a macroscopic connected fraction of the network composed by healthy individuals which guarantee its functionality, any mitigation strategy should be implemented before this critical time t(c). Our theoretical results are confirmed by extensive simulations of the SIR process.

  7. Levitation and percolation in quantum Hall systems with correlated disorder

    OpenAIRE

    Song, Hui; Maruyama, Isao; Hatsugai, Yasuhiro

    2007-01-01

    We investigate the integer quantum Hall system in a two dimensional lattice model with spatially correlated disorder by using the efficient method to calculate the Chern number proposed by Fukui et al. [J. Phys. Soc. Jpn. 74, 1674 (2005)]. Distribution of charge density indicates that the extended states at the center of each Landau band have percolating current paths, which are topologically equivalent to the edge states that exist in a system with boundaries. As increasing the strength of d...

  8. Double site-bond percolation model for biomaterial implants

    OpenAIRE

    Mely, H.; Mathiot, J. -F.

    2011-01-01

    9 figures - 10 pages; We present a double site-bond percolation model to account, on the one hand, for the vascularization and/or resorption of biomaterial implant in bones, and on the other hand, for its mechanical continuity. The transformation of the implant into osseous material, and the dynamical formation/destruction of this osseous material is accounted for by creation and destruction of links and sites in two, entangled, networks. We identify the relevant parameters to describe the im...

  9. Electrical Properties of Zinc-Kaolin Composites below its Percolation ...

    African Journals Online (AJOL)

    In this paper, we present some electrical properties of the zinc-kaolin cermet resistors with zinc metal fillers below the percolation threshold. Rectangular cermet rods of dimensions 65 mm by 6.5 mm by 3.2 mm were produced in a mould with semi-dry the zinc/kaolin powder mixture which is compressed with a force of about ...

  10. Percolation transition in Yang-Mills matter at a finite number of colors.

    Science.gov (United States)

    Lottini, Stefano; Torrieri, Giorgio

    2011-10-07

    We examine baryonic matter at a quark chemical potential of the order of the confinement scale μ(q)∼Λ(QCD). In this regime, quarks are supposed to be confined but baryons are close to the "tightly packed limit" where they nearly overlap in configuration space. We show that this system will exhibit a percolation phase transition when varied in the number of colors N(c): at high N(c), large distance correlations at the quark level are possible even if the quarks are essentially confined. At low N(c), this does not happen. We discuss the relevance of this for dense nuclear matter, and argue that our results suggest a new "phase transition," varying N(c) at constant μ(q).

  11. Renormalization group treatment of bond percolation in anisotropic and 'inhomogeneous' planar lattices

    International Nuclear Information System (INIS)

    Magalhaes, A.C.N. de; Tsallis, C.; Schwaccheim, G.

    1980-04-01

    The uncorrelated bond percolation problem is studied in three planar systems where there are two distinct occupancy probabilities. Two different real space renormalization group approaches (referred as the 'canonical' (CRG) and the 'parametric' (PRG) ones) are applied to the anisotropic first-neighbour square lattice, and both of them exhibit the expected tendency towards the exactly known phase boundary (p+q=1). Then, within the context of PRG calculations for increasingly large cells, an extrapolation method is introduced, which leads to analytic proposals for the other two lattices, namely p+q = 1/2 for the first-and second-neighbour square lattice (p and q are, respectively, the first and second neighbour occupancy probabilities), and 3 (p-1/2) = 4 [(1-q) 2 + (1-q) 3 ] (p and q are, respectively, the occupancy probabilities of the topologically different bonds which are in a 1:2 ratio) for the 4- 8 lattice. (Author) [pt

  12. Percolation, statistical topography, and transport in random media

    International Nuclear Information System (INIS)

    Isichenko, M.B.

    1992-01-01

    A review of classical percolation theory is presented, with an emphasis on novel applications to statistical topography, turbulent diffusion, and heterogeneous media. Statistical topography involves the geometrical properties of the isosets (contour lines or surfaces) of a random potential ψ(x). For rapidly decaying correlations of ψ, the isopotentials fall into the same universality class as the perimeters of percolation clusters. The topography of long-range correlated potentials involves many length scales and is associated either with the correlated percolation problem or with Mandelbrot's fractional Brownian reliefs. In all cases, the concept of fractal dimension is particularly fruitful in characterizing the geometry of random fields. The physical applications of statistical topography include diffusion in random velocity fields, heat and particle transport in turbulent plasmas, quantum Hall effect, magnetoresistance in inhomogeneous conductors with the classical Hall effect, and many others where random isopotentials are relevant. A geometrical approach to studying transport in random media, which captures essential qualitative features of the described phenomena, is advocated

  13. Cooperation percolation in spatial prisoner's dilemma game

    International Nuclear Information System (INIS)

    Yang, Han-Xin; Rong, Zhihai; Wang, Wen-Xu

    2014-01-01

    The paradox of cooperation among selfish individuals still puzzles scientific communities. Although a large amount of evidence has demonstrated that the cooperator clusters in spatial games are effective in protecting the cooperators against the invasion of defectors, we continue to lack the condition for the formation of a giant cooperator cluster that ensures the prevalence of cooperation in a system. Here, we study the dynamical organization of the cooperator clusters in spatial prisoner's dilemma game to offer the condition for the dominance of cooperation, finding that a phase transition characterized by the emergence of a large spanning cooperator cluster occurs when the initial fraction of the cooperators exceeds a certain threshold. Interestingly, the phase transition belongs to different universality classes of percolation determined by the temptation to defect b. Specifically, on square lattices, 1 < b < 4/3 leads to a phase transition pertaining to the class of regular site percolation, whereas 3/2 < b < 2 gives rise to a phase transition subject to invasion percolation with trapping. Our findings offer a deeper understanding of cooperative behavior in nature and society. (paper)

  14. Cities and regions in Britain through hierarchical percolation

    Science.gov (United States)

    Arcaute, Elsa; Molinero, Carlos; Hatna, Erez; Murcio, Roberto; Vargas-Ruiz, Camilo; Masucci, A. Paolo; Batty, Michael

    2016-04-01

    Urban systems present hierarchical structures at many different scales. These are observed as administrative regional delimitations which are the outcome of complex geographical, political and historical processes which leave almost indelible footprints on infrastructure such as the street network. In this work, we uncover a set of hierarchies in Britain at different scales using percolation theory on the street network and on its intersections which are the primary points of interaction and urban agglomeration. At the larger scales, the observed hierarchical structures can be interpreted as regional fractures of Britain, observed in various forms, from natural boundaries, such as National Parks, to regional divisions based on social class and wealth such as the well-known North-South divide. At smaller scales, cities are generated through recursive percolations on each of the emerging regional clusters. We examine the evolution of the morphology of the system as a whole, by measuring the fractal dimension of the clusters at each distance threshold in the percolation. We observe that this reaches a maximum plateau at a specific distance. The clusters defined at this distance threshold are in excellent correspondence with the boundaries of cities recovered from satellite images, and from previous methods using population density.

  15. Fractional scaling of quantum walks on percolation lattices

    International Nuclear Information System (INIS)

    Kendon, Viv; Knott, Paul; Leung, Godfrey; Bailey, Joe

    2011-01-01

    Quantum walks can be used to model processes such as transport in spin chains and bio-molecules. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections. Using numerical simulation, we study the spreading properties of quantum walks on percolation lattices for both bond and site percolation. The randomly missing edges or sites provide a controlled amount of disorder in the regular Cartesian lattice. In one dimension (the line) we introduce a simple model of quantum tunneling to allow the walk to proceed past the missing edges or sites. This allows the quantum walk to spread faster than a classical random walk for short times, but at longer times the disorder localises the quantum walk. In two dimensions, we observe fractional scaling of the spreading with the number of steps of the walk. For percolation above the 85% level, we obtain faster spreading than classical random walks on the full lattice.

  16. Emergent Percolation Length and Localization in Random Elastic Networks

    Directory of Open Access Journals (Sweden)

    Ariel Amir

    2013-06-01

    Full Text Available We study, theoretically and numerically, a minimal model for phonons in a disordered system. For sufficient disorder, the vibrational modes of this classical system can become Anderson localized, yet this problem has received significantly less attention than its electronic counterpart. We find rich behavior in the localization properties of the phonons as a function of the density, frequency, and spatial dimension. We use a percolation analysis to argue for a Debye spectrum at low frequencies for dimensions higher than one, and for a localization-delocalization transition (at a critical frequency above two dimensions. We show that in contrast to the behavior in electronic systems, the transition exists for arbitrarily large disorder, albeit with an exponentially small critical frequency. The structure of the modes reflects a divergent percolation length that arises from the disorder in the springs without being explicitly present in the definition of our model. Within the percolation approach, we calculate the speed of sound of the delocalized modes (phonons, which we corroborate with numerics. We find the critical frequency of the localization transition at a given density and find good agreement of these predictions with numerical results using a recursive Green-function method that was adapted for this problem. The connection of our results to recent experiments on amorphous solids is discussed.

  17. Generalized model for k -core percolation and interdependent networks

    Science.gov (United States)

    Panduranga, Nagendra K.; Gao, Jianxi; Yuan, Xin; Stanley, H. Eugene; Havlin, Shlomo

    2017-09-01

    Cascading failures in complex systems have been studied extensively using two different models: k -core percolation and interdependent networks. We combine the two models into a general model, solve it analytically, and validate our theoretical results through extensive simulations. We also study the complete phase diagram of the percolation transition as we tune the average local k -core threshold and the coupling between networks. We find that the phase diagram of the combined processes is very rich and includes novel features that do not appear in the models studying each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a lower occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition changes from first-order → second-order → two-stage → first-order as the k -core threshold is increased. The analytic equations describing the phase boundaries of the two-stage transition region are set up, and the critical exponents for each type of transition are derived analytically.

  18. Percolation for a model of statistically inhomogeneous random media

    International Nuclear Information System (INIS)

    Quintanilla, J.; Torquato, S.

    1999-01-01

    We study clustering and percolation phenomena for a model of statistically inhomogeneous two-phase random media, including functionally graded materials. This model consists of inhomogeneous fully penetrable (Poisson distributed) disks and can be constructed for any specified variation of volume fraction. We quantify the transition zone in the model, defined by the frontier of the cluster of disks which are connected to the disk-covered portion of the model, by defining the coastline function and correlation functions for the coastline. We find that the behavior of these functions becomes largely independent of the specific choice of grade in volume fraction as the separation of length scales becomes large. We also show that the correlation function behaves in a manner similar to that of fractal Brownian motion. Finally, we study fractal characteristics of the frontier itself and compare to similar properties for two-dimensional percolation on a lattice. In particular, we show that the average location of the frontier appears to be related to the percolation threshold for homogeneous fully penetrable disks. copyright 1999 American Institute of Physics

  19. Percolation and cooperation with mobile agents: geometric and strategy clusters.

    Science.gov (United States)

    Vainstein, Mendeli H; Brito, Carolina; Arenzon, Jeferson J

    2014-08-01

    We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner's Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius r(P), which accounts for the population viscosity, and an interaction radius r(int), which defines the instantaneous contact network for the game dynamics. We show that, differently from the r(P)=0 case, the model with finite-sized agents presents a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will eventually become extinct if not percolating, independently of their size.

  20. Loopless nontrapping invasion-percolation model for fracking.

    Science.gov (United States)

    Norris, J Quinn; Turcotte, Donald L; Rundle, John B

    2014-02-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.

  1. On the upper critical dimension of Bernoulli percolation

    International Nuclear Information System (INIS)

    Chayes, J.T.; Chayes, L.

    1987-01-01

    Derived is a set of inequalities for the d-dimensional independent percolation problem. Assuming the existence of critical exponents, these inequalities imply: f + nu ≥ 1 + β/sub Q/, μ + nu ≥ 1 + β/sub Q/, zeta ≥ min (1, nu'/nu), where the above exponents are f: the flow constant exponent, nu (nu'): the correlation length exponent below (above) threshold, μ: the surface tension exponent, β/sub Q/: the backbone density exponent and zeta: the chemical distance exponent. Note that all of these inequalities are mean-field bounds, and that they relate the exponent nu defined from below the percolation threshold to exponents defined from above threshold. Furthermore, we combine the strategy of the proofs these inequalities with notions of finite-size scaling to derive: max (d nu, d nu') ≥ 1 + β/sub Q/, where d is the lattice dimension. Since β/sub Q/ ≥ 2β, where β is the percolation density exponent, the final bound implies that, below six dimensions, the standard order parameter and correlation length exponents cannot simultaneously assume their mean-field values; hence an implicit bound on the upper critical dimension: d/sub c/ ≥ 6

  2. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    International Nuclear Information System (INIS)

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-01-01

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated

  3. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    International Nuclear Information System (INIS)

    Tu, Nguyen Thanh; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2016-01-01

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga_1_−_x,Fe_x)Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  4. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics, Ho Chi Minh City University of Pedagogy, 280, An Duong Vuong Street, District 5, Ho Chi Minh City 748242 (Viet Nam); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Anh, Le Duc [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-05-09

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  5. Dielectric response and percolation behavior of Ni–P(VDF–TrFE nanocomposites

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2017-06-01

    Full Text Available Conductor–dielectric 0–3 nanocomposites using spherical nickel nanoparticles as filler and poly(vinylidene fluoride–trifluoroethylene 70/30mol.% as matrix are prepared using a newly developed process that combines a solution cast and a hot-pressing method with a unique configuration and creates a uniform microstructure in the composites. The uniform microstructure results in a high percolation threshold φc (>55 vol.%. The dielectric properties of the nanocomposites at different frequencies over a temperature range from −70∘C to 135∘C are studied. The results indicate that the composites exhibit a lower electrical conductivity than the polymer matrix. It is found that the nanocomposites can exhibit an ultra-high dielectric constant, more than 1500 with a loss of about 1.0 at 1kHz, when the Ni content (53 vol.% is close to percolation threshold. For the nanocomposites with 50 vol.% Ni particles, a dielectric constant more than 600 with a loss less than 0.2 is achieved. It is concluded that the loss including high loss is dominated by polarization process rather than the electrical conductivity. It is also found that the appearance of Ni particles has a strong influence on the crystallization process in the polymer matrix so that the polymer is converted from a typical ferroelectric to a relaxor ferroelectric. It is also demonstrated that the widely used relationship between the dielectric constant and the composition of the composites may not be valid.

  6. Reentrant Superspin Glass Phase in a La_{0.82}Ca_{0.18}MnO_{3} Ferromagnetic Insulator

    Directory of Open Access Journals (Sweden)

    P. Anil Kumar

    2014-03-01

    Full Text Available We report results of the magnetization and ac susceptibility measurements down to very low fields on a single crystal of the perovskite manganite, La_{0.82}Ca_{0.18}MnO_{3}. This composition falls in the intriguing ferromagnetic insulator region of the manganite phase diagram. In contrast to earlier beliefs, our investigations reveal that magnetically (and in every other sense, this is a single-phase system with a ferromagnetic ordering temperature of around 170 K. However, this ferromagnetic state is magnetically frustrated, and the system exhibits pronounced glassy dynamics below 90 K. Based on measured dynamical properties, we propose that this quasi-long-ranged ferromagnetic phase, and the associated superspin glass behavior, is the true magnetic state of the system, rather than being a macroscopic mixture of ferromagnetic and antiferromagnetic phases, as often suggested. Our results provide an understanding of the quantum phase transition from an antiferromagnetic insulator to a ferromagnetic metal via this ferromagnetic insulating state as a function of x in La_{1−x}Ca_{x}MnO_{3}, in terms of the possible formation of magnetic polarons.

  7. Coexistence of Superconductivity and Ferromagnetism in ...

    African Journals Online (AJOL)

    KBHEEMA

    Ferromagnetic alignment can be expected to be strongly opposed by superconductivity. .... To obtain temperature dependent of energy gap of equation (23), we used the same techniques to solve the integral .... band metal ZrZn2. Nature, 412: ...

  8. Ferromagnetic and twin domains in LCMO manganites

    International Nuclear Information System (INIS)

    Jung, G.; Markovich, V.; Mogilyanski, D.; Beek, C. van der; Mukovskii, Y.M.

    2005-01-01

    Ferromagnetic and twin domains in lightly Ca-doped La 1-x Ca x MnO 3 single crystals have been visualized and investigated by means of the magneto-optical technique. Both types of domains became visible below the Curie temperature. The dominant structures seen in applied magnetic field are associated with magneto-crystalline anisotropy and twin domains. In a marked difference to the twin domains which appear only in applied magnetic field, ferromagnetic domains show up in zero applied field and are characterized by oppositely oriented spontaneous magnetization in adjacent domains. Ferromagnetic domains take form of almost periodic, corrugated strip-like structures. The corrugation of the ferromagnetic domain pattern is enforced by the underlying twin domains

  9. Critical behaviors of half-metallic ferromagnet Co3Sn2S2

    OpenAIRE

    Yan, Weinian; Zhang, Xiao; Shi, Qi; Yu, Xiaoyun; Zhang, Zhiqing; Wang, Qi; Li, Si; Lei, Hechang

    2018-01-01

    We have investigated the critical behavior of a shandite-type half-metal ferromagnet Co3Sn2S2. It exhibits a second-order paramagnetic-ferromagnetic phase transition with TC = 174 K. To investigate the nature of the magnetic phase transition, a detailed critical exponent study has been performed. The critical components beta, gamma, and delta determined using the modified Arrott plot, the Kouvel-Fisher method as well as the critical isotherm analysis are match reasonably well and follow the s...

  10. The ferromagnetic Kondo-lattice compound SmFe sub 4 P sub 1 sub 2

    CERN Document Server

    Takeda, N

    2003-01-01

    We report on the magnetic properties of a filled skutterudite compound, SmFe sub 4 P sub 1 sub 2. Magnetic susceptibility and specific heat measurements revealed a ferromagnetic transition at 1.6 K. The temperature dependence of the electrical resistivity exhibits a Kondo-lattice behaviour and the electronic specific heat coefficient attains values as large as 370 mJ mol sup - sup 1 K sup - sup 2. This compound is thereby the first Sm-based heavy-fermion system found with a ferromagnetic ground state. The Kondo temperature is estimated to be about 30 K. (letter to the editor)

  11. Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates.

    Science.gov (United States)

    Pertsev, N A; Kohlstedt, H

    2010-11-26

    A voltage-controlled resistive switching is predicted for ferromagnetic multilayers and spin valves mechanically coupled to a ferroelectric substrate. The switching between low- and high-resistance states results from the strain-driven magnetization reorientations by about 90°, which are shown to occur in ferromagnetic layers with a high magnetostriction and weak cubic magnetocrystalline anisotropy. Such reorientations, not requiring external magnetic fields, can be realized experimentally by applying moderate electric field to a thick substrate (bulk or membrane type) made of a relaxor ferroelectric having ultrahigh piezoelectric coefficients. The proposed multiferroic hybrids exhibiting giant magnetoresistance may be employed as electric-write nonvolatile magnetic memory cells with nondestructive readout.

  12. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  13. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  14. Exhibition; Image display agency

    International Nuclear Information System (INIS)

    Normazlin Ismail

    2008-01-01

    This article touches on the role of Malaysian Nuclear Agency as nuclear research institutions to promote, develop and encourage the peaceful uses of nuclear technology in its agricultural, medical, manufacturing, industrial, health and environment for the development of the country running successfully. Maturity of Malaysian Nuclear Agency in dealing with nuclear technology that are very competitive and globalization cannot be denied. On this basis Malaysian Nuclear Agency was given the responsibility to strengthen the nuclear technology in Malaysia. One way is through an exhibition featuring the research, discoveries and new technology products of the nuclear technology. Through this exhibition is to promote the nuclear technology and introduce the image of the agency in the public eye. This article also states a number of exhibits entered by the Malaysian Nuclear Agency and achievements during the last exhibition. Authors hope that the exhibition can be intensified further in the future.

  15. Topological magnon bands in ferromagnetic star lattice

    International Nuclear Information System (INIS)

    Owerre, S A

    2017-01-01

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1–3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii–Moriya (DM) spin–orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases. (paper)

  16. Topological magnon bands in ferromagnetic star lattice.

    Science.gov (United States)

    Owerre, S A

    2017-05-10

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.

  17. Vacancy complexes induce long-range ferromagnetism in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhenkui; Schwingenschlögl, Udo, E-mail: Udo.Schwingenschlogl@kaust.edu.sa, E-mail: Iman.Roqan@kaust.edu.sa; Roqan, Iman S., E-mail: Udo.Schwingenschlogl@kaust.edu.sa, E-mail: Iman.Roqan@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2014-11-14

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μ{sub B}, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  18. Vacancy complexes induce long-range ferromagnetism in GaN

    KAUST Repository

    Zhang, Zhenkui; Schwingenschlö gl, Udo; Roqan, Iman S.

    2014-01-01

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μB, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  19. Vacancy complexes induce long-range ferromagnetism in GaN

    KAUST Repository

    Zhang, Zhenkui

    2014-11-14

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μB, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  20. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    KAUST Repository

    Assa Aravindh, S

    2015-12-14

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  1. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    KAUST Repository

    Assa Aravindh, S; Roqan, Iman S.

    2015-01-01

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  2. Zinc Vacancy-Induced Room-Temperature Ferromagnetism in Undoped ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Hongtao Ren

    2012-01-01

    Full Text Available Undoped ZnO thin films are prepared by polymer-assisted deposition (PAD and treated by postannealing at different temperatures in oxygen or forming gases (95%  Ar+5% H2. All the samples exhibit ferromagnetism at room temperature (RT. SQUID and positron annihilation measurements show that post-annealing treatments greatly enhance the magnetizations in undoped ZnO samples, and there is a positive correlation between the magnetization and zinc vacancies in the ZnO thin films. XPS measurements indicate that annealing also induces oxygen vacancies that have no direct relationship with ferromagnetism. Further analysis of the results suggests that the ferromagnetism in undoped ZnO is induced by Zn vacancies.

  3. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    International Nuclear Information System (INIS)

    Li, Xiu-Hua; Zhang, Qi; Hu, Ping

    2014-01-01

    A multifunctional homochiral coordination polymer, [Co(H 2 O)(BDC)(4,4′-BPY)]∙3H 2 O (1) (H 2 BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions

  4. Inductive measurements of ferromagnetic resonance

    International Nuclear Information System (INIS)

    Woodward, R.C.; Kennewell, K.; Crew, D.C.; Stamps, R.L.

    2004-01-01

    Full text: The rapid advance in magnetic data storage has driven groundbreaking work in the science that underpins the properties of ferromagnetic materials at high frequencies. Recent work in this area has included the use of precession in order to produce ultra-high speed switching of magnetic elements, the generation of excited dynamical structures by application of inhomogeneous field pulses, and examination of the propagation of localized spin waves. This paper describes explorations of ultra-fast magnetization dynamics being undertaken at The University of Western Australia. We have studied the differences in magnetization dynamics in simple permalloy films when a sample is excited with sharp pulse compared to the to the dynamics generated by the application of a small amplitude continuous wave signal. We have observed a difference in the resonant frequency determined from these two excitations and will propose reasons for the different resonance responses of the system. Using the ultra-fast techniques described above we have measured dynamical properties that are significantly different to the static properties. These results are explained by the dynamical measurements being made on time scales smaller than the characteristic relaxation time. Future applications of these devices will be to examine broadening of line widths and frequency shifts associated with the excitation of magnetostatic modes, factors limiting quasiballistic reversal and differences between the dynamic and static properties of magnetic materials

  5. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    International Nuclear Information System (INIS)

    Wang, Y.; Liu, Y.; Wang, B.

    2014-01-01

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter

  6. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Y., E-mail: stslyl@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang, B., E-mail: wangbiao@mail.sysu.edu.cn [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-03-15

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter.

  7. Carrier concentration induced ferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  8. Statistical analysis and Monte Carlo simulation of growing self-avoiding walks on percolation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuxia [Department of Physics, Wuhan University, Wuhan 430072 (China); Sang Jianping [Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, Jianghan University, Wuhan 430056 (China); Zou Xianwu [Department of Physics, Wuhan University, Wuhan 430072 (China)]. E-mail: xwzou@whu.edu.cn; Jin Zhunzhi [Department of Physics, Wuhan University, Wuhan 430072 (China)

    2005-09-26

    The two-dimensional growing self-avoiding walk on percolation was investigated by statistical analysis and Monte Carlo simulation. We obtained the expression of the mean square displacement and effective exponent as functions of time and percolation probability by statistical analysis and made a comparison with simulations. We got a reduced time to scale the motion of walkers in growing self-avoiding walks on regular and percolation lattices.

  9. Percolation and nucleation approaches to nuclear fragmentation: criticality in very small systems

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, A.J. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Chung, K.C.

    1994-12-01

    Different criteria for criticality in very small systems are discussed in the context of percolation and nucleation approaches to nuclear fragmentation. It is shown that the probability threshold in percolation and interaction radius threshold in nucleation are very strongly dependent upon the adopted criterion. By using Monte Carlo method, similarities and dissimilarities between nucleation and percolation pictures are also pointed out. (author). 17 refs, 5 figs, 2 tabs.

  10. Percolation and nucleation approaches to nuclear fragmentation: criticality in very small systems

    International Nuclear Information System (INIS)

    Santiago, A.J.; Chung, K.C.

    1994-12-01

    Different criteria for criticality in very small systems are discussed in the context of percolation and nucleation approaches to nuclear fragmentation. It is shown that the probability threshold in percolation and interaction radius threshold in nucleation are very strongly dependent upon the adopted criterion. By using Monte Carlo method, similarities and dissimilarities between nucleation and percolation pictures are also pointed out. (author). 17 refs, 5 figs, 2 tabs

  11. Predicting deep percolation with eddy covariance under mulch drip irrigation

    Science.gov (United States)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  12. Percolative Theory of Organic Magnetoresistance and Fringe-Field Magnetoresistance

    Science.gov (United States)

    Flatté, Michael E.

    2013-03-01

    A recently-introduced percolation theory for spin transport and magnetoresistance in organic semiconductors describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Increases in the spin-flip rate open up ``spin-blocked'' pathways to become viable conduction channels and hence, as the spin-flip rate changes with magnetic field, produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with measurements of the shape and saturation of measured magnetoresistance curves. We find that the threshold hopping distance is analogous to the branching parameter of a phenomenological two-site model, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance. Regimes of slow and fast hopping magnetoresistance are uniquely characterized by their line shapes. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory. Extensions to this theory also describe fringe-field magnetoresistance, which is the influence of fringe magnetic fields from a nearby unsaturated magnetic electrode on the conductance of an organic film. This theory agrees with several key features of the experimental fringe-field magnetoresistance, including the applied fields where the magnetoresistance reaches extrema, the applied field range of large magnetoresistance effects from the fringe fields, and the sign of the effect. All work done in collaboration with N. J. Harmon, and fringe-field magnetoresistance work in collaboration also with F. Macià, F. Wang, M. Wohlgenannt and A. D. Kent. This work was supported by an ARO MURI.

  13. Percolation analysis for cosmic web with discrete points

    Science.gov (United States)

    Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung

    2018-01-01

    Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.

  14. Percolation modelling for highly aligned polycrystalline superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, N A; Glowacki, B A; Evetts, J E [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); IRC in Superconductivity, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2000-11-01

    Surface and bulk texture measurements have been carried out on highly aligned NiFe tapes, suitable for use as coated conductor substrates. Data from small-area electron backscatter diffraction measurements are compared with those from bulk x-ray analysis in the development of a two-dimensional percolation model, and the two are shown to give very similar results. No evidence of grain-to-grain correlation is found. The model is then developed to assess how the properties of a superconducting layer grown epitaxially on buffered tapes will depend on parameters such as sample size, grain size and the extent of grain alignment. (author)

  15. Inequality for the infinite-cluster density in Bernoulli percolation

    International Nuclear Information System (INIS)

    Chayes, J.T.; Chayes, L.

    1986-01-01

    Under a certain assumption (which is satisfied whenever there is a dense infinite cluster in the half-space), we prove a differential inequality for the infinite-cluster density, P/sub infinity/(p), in Bernoulli percolation. The principal implication of this result is that if P/sub infinity/(p) vanishes with critical exponent β, then β obeys the mean-field bound β< or =1. As a corollary, we also derive an inequality relating the backbone density, the truncated susceptibility, and the infinite-cluster density

  16. Inward Cationic Diffusion and Percolation Transition in Glass-Ceramics

    DEFF Research Database (Denmark)

    Smedsklaer, Morten Mattrup; Yue, Yuanzheng; Mørup, Steen

    2010-01-01

    We show the quantitative correlation between the degree of crystallization and the cationic diffusion extent in iron-containing diopside glass–ceramics at the glass transition temperature. We find a critical degree of crystallization, above which the diffusion extent sharply drops with the degree...... of crystallization. Below the critical value, the diffusion extent decreases only slightly with the degree of crystallization. No cationic diffusion is observed in the fully crystalline materials. The critical value might be associated with a percolation transition from an interconnected to a disconnected glass...

  17. Percolation simulation of laser-guided electrical discharges.

    Science.gov (United States)

    Sasaki, Akira; Kishimoto, Yasuaki; Takahashi, Eiichi; Kato, Susumu; Fujii, Takashi; Kanazawa, Seiji

    2010-08-13

    A three-dimensional simulation of laser-guided discharges based on percolation is presented. The model includes both local growth of a streamer due to the enhanced electric field at the streamer's tip and propagation of a leader by remote ionization such as that caused by runaway electrons. The stochastic behavior of the discharge through a preformed plasma channel is reproduced by the calculation, which shows complex path with detouring and bifurcation. The probability of guiding is investigated with respect to the ionized, conductive fraction along the channel.

  18. On the genre-fication of music: a percolation approach

    Science.gov (United States)

    Lambiotte, R.; Ausloos, M.

    2006-03-01

    We analyze web-downloaded data on people sharing their music library. By attributing to each music group usual music genres (Rock, Pop ...), and analysing correlations between music groups of different genres with percolation-idea based methods, we probe the reality of these subdivisions and construct a music genre cartography, with a tree representation. We also discuss an alternative objective way to classify music, that is based on the complex structure of the groups audience. Finally, a link is drawn with the theory of hidden variables in complex networks.

  19. Capillary condensation, invasion percolation, hysteresis, and discrete memory

    International Nuclear Information System (INIS)

    Guyer, R.A.; McCall, K.R.

    1996-01-01

    A model of the capillary condensation process, i.e., of adsorption-desorption isotherms, having only pore-pore interactions is constructed. The model yields (1) hysteretic isotherms, (2) invasion percolation on desorption, and (3) hysteresis with discrete memory for interior chemical potential loops. All of these features are seen in experiment. The model is compared to a model with no pore-pore interactions (the Preisach model) and to a related model of interacting pore systems (the random field Ising model). The capillary condensation model differs from both. copyright 1996 The American Physical Society

  20. Preparation of Mn doped CeO_2 nanoparticles with enhanced ferromagnetism

    International Nuclear Information System (INIS)

    Ravi, S.; Winfred Shashikanth, F.

    2017-01-01

    Spherical-like CeO_2 and Mn-doped CeO_2 using 6-aminohexanoic acid as surfactant exhibit enhanced ferromagnetism. The optical absorption spectra reveal a red shift with a band gap of 2.51 eV. The mechanics of ferromagnetism and the red shift were analyzed. These results provide a promising platform for developing a dilute magnetic semiconductor in spintronics. - Highlights: • Pure and Mn-doped CeO_2 is prepared with aminohexanoic acid as capping. • They exhibit wide optical absorption with red-shift in their band gap. • Mn-doped CeO_2 nanoparticle exhibit hysteresis at room temperature. • Results were promising to use in spintronics and opto-electronics field.

  1. Preparation of Mn doped CeO{sub 2} nanoparticles with enhanced ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@mepcoeng.ac.in; Winfred Shashikanth, F.

    2017-06-15

    Spherical-like CeO{sub 2} and Mn-doped CeO{sub 2} using 6-aminohexanoic acid as surfactant exhibit enhanced ferromagnetism. The optical absorption spectra reveal a red shift with a band gap of 2.51 eV. The mechanics of ferromagnetism and the red shift were analyzed. These results provide a promising platform for developing a dilute magnetic semiconductor in spintronics. - Highlights: • Pure and Mn-doped CeO{sub 2} is prepared with aminohexanoic acid as capping. • They exhibit wide optical absorption with red-shift in their band gap. • Mn-doped CeO{sub 2} nanoparticle exhibit hysteresis at room temperature. • Results were promising to use in spintronics and opto-electronics field.

  2. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    Science.gov (United States)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-10-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  3. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    Directory of Open Access Journals (Sweden)

    E. M. A. Perrier

    2010-10-01

    Full Text Available Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009. Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  4. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  5. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  6. Spin wave and percolation studies in epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ettayfi, A. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Moubah, R., E-mail: reda.moubah@hotmail.fr [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France); Colis, S.; Lenertz, M.; Dinia, A. [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 UDS-CNRS (UDS-ECPM), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Lassri, H. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco)

    2016-07-01

    We investigate the magnetic and transport properties of high quality La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition. X-ray diffraction shows that the deposited films are epitaxial with the expected pseudo-cubic structure. Using the spin wave theory, the temperature dependence of magnetization was satisfactory modeled at low temperature, in which several fundamental magnetic parameters were obtained (spin wave stiffness, exchange constants, Fermi wave-vector, Mn–Mn interatomic distance). The transport properties were studied via the temperature dependence of electrical resistivity [ρ(T)], which shows a peak at Curie temperature due to metal to insulator transition. The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases. Reasonable agreement with the experimental data is reported. - Highlights: • The magnetic and transport properties of epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films are investigated. • The M(T) curve was modeled at low temperature, and several magnetic parameters were obtained using spin wave theory. • The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases.

  7. Edge passivation induced single-edge ferromagnetism of zigzag MoS_2 nanoribbons

    International Nuclear Information System (INIS)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo; Pan, Jing

    2017-01-01

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS_2 nanoribbons (ZMoS_2NRs) with and without oxygen (O) passivation. The bare ZMoS_2NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS_2NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS_2NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS_2NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS_2NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS_2 nanoribbons (ZMoS_2NRs) is proposed. • Edge passivation can tune ZMoS_2NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS_2NRs and motivate numerous experimental researches.

  8. Quantum percolation transition in Eu{sub 1-x}Ca{sub x}B{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, V.V. [A.M.Prokhorov General Physics Institute of RAS, 38, Vavilov str., Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, 9, Institutskii per., Dolgoprudny, Moscow Region 141700 (Russian Federation); Anisimov, M.A. [Moscow Institute of Physics and Technology, 9, Institutskii per., Dolgoprudny, Moscow Region 141700 (Russian Federation); Bogach, A.V.; Demishev, S.V.; Sluchanko, N.E. [A.M.Prokhorov General Physics Institute of RAS, 38, Vavilov str., Moscow 119991 (Russian Federation); Filipov, V.B.; Levchenko, A.V.; Shitsevalova, N.Yu. [Institute for Problems of Materials Science NAS, 3, Krzhyzhanovsky str., Kiev 03680 (Ukraine); Flachbart, K. [Centre of Low Temperature Physics, IEP SAS and IPS FS UPJS, Kosice SK-04001 (Slovakia); Kuznetsov, A.V. [Moscow Engineering Physics Institute, 31, Kashirskoe Shosse, Moscow 115409 (Russian Federation)

    2010-03-15

    The study of transport and magnetic properties performed on Eu{sub 1-x}Ca{sub x}B{sub 6} single crystals with nominal Ca content 0 {<=} x {<=} 0.4 at temperatures 1.8-300 K in magnetic fields up to 80 kOe provides the direct experimental evidence of metal-to-insulator transition (MIT) earlier proposed for the system by V. M. Pereira et al. [Phys. Rev. Lett., 93, 147202 (2004)]. A giant enhancement of magnetoresistance up to the values of ({rho}(0) - {rho}(H))/{rho}(H) {proportional_to} 7 x 10{sup 7}% was detected for x = 0.4 in the wide vicinity of the ferromagnetic insulating state. The field induced crossover from hole-like to electron-like regime of charge transport observed for the first time in the paramagnetic phase of Eu{sub 0.6}Ca{sub 0.4}B{sub 6} is discussed in terms of quantum percolation transition predicted for this low carrier density system within double exchange model. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  10. Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres

    Directory of Open Access Journals (Sweden)

    John Canning

    2014-03-01

    Full Text Available Percolation diffusion into long (11.5 cm self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS. Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm2∙s−1 of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP observed under similar loading conditions. The failure of ZnTPP to enter the microfibre was confirmed, in higher resolution, using LA-ICP-MS. In the latter case, LA-ICP-MS was used to determine the diffusion of zinc acetate dihydrate, D~3 × 10−4 nm2∙s−1. The large differences between the molecules are accounted for by proposing ordered solvent and structure assisted accelerated diffusion of the Rhodamine B based on its hydrophilicity relative to the zinc compounds. The broader implications and applications for filtration, molecular sieves and a range of devices and uses are described.

  11. Percolation behavior of tritiated water into a soil packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Takeishi, T. [Faculty of Engineering, Kyushu University, Motooka Nishi-ku, Fukuoka (Japan)

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  12. Percolation behavior of tritiated water into a soil packed bed

    International Nuclear Information System (INIS)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-01-01

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  13. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes.

    Science.gov (United States)

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-02-18

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors.

  14. Electron percolation in realistic models of carbon nanotube networks

    International Nuclear Information System (INIS)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-01-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models

  15. Link overlap, viability, and mutual percolation in multiplex networks

    International Nuclear Information System (INIS)

    Min, Byungjoon; Lee, Sangchul; Lee, Kyu-Min; Goh, K.-I.

    2015-01-01

    Many real-world complex systems are best modeled by multiplex networks. The multiplexity has proved to have broad impact on the system’s structure and function. Most theoretical studies on multiplex networks to date, however, have largely ignored the effect of the link overlap across layers despite strong empirical evidences for its significance. In this article, we investigate the effect of the link overlap in the viability of multiplex networks, both analytically and numerically. After a short recap of the original multiplex viability study, the distinctive role of overlapping links in viability and mutual connectivity is emphasized and exploited for setting up a proper analytic framework. A rich phase diagram for viability is obtained and greatly diversified patterns of hysteretic behavior in viability are observed in the presence of link overlap. Mutual percolation with link overlap is revisited as a limit of multiplex viability problem, and the controversy between existing results is clarified. The distinctive role of overlapping links is further demonstrated by the different responses of networks under random removals of overlapping and non-overlapping links, respectively, as well as under several link-removal strategies. Our results show that the link overlap facilitates the viability and mutual percolation; at the same time, the presence of link overlap poses a challenge in analytical approaches to the problem

  16. Polymer collapse, protein folding, and the percolation threshold.

    Science.gov (United States)

    Meirovitch, Hagai

    2002-01-15

    We study the transition of polymers in the dilute regime from a swollen shape at high temperatures to their low-temperature structures. The polymers are modeled by a single self-avoiding walk (SAW) on a lattice for which l of the monomers (the H monomers) are self-attracting, i.e., if two nonbonded H monomers become nearest neighbors on the lattice they gain energy of interaction (epsilon = -/epsilon/); the second type of monomers, denoted P, are neutral. This HP model was suggested by Lau and Dill (Macromolecules 1989, 22, 3986-3997) to study protein folding, where H and P are the hydrophobic and polar amino acid residues, respectively. The model is simulated on the square and simple cubic (SC) lattices using the scanning method. We show that the ground state and the sharpness of the transition depend on the lattice, the fraction g of the H monomers, as well as on their arrangement along the chain. In particular, if the H monomers are distributed at random and g is larger than the site percolation threshold of the lattice, a collapsed transition is very likely to occur. This conclusion, drawn for the lattice models, is also applicable to proteins where an effective lattice with coordination number between that of the SC lattice and the body centered cubic lattice is defined. Thus, the average fraction of hydrophobic amino acid residues in globular proteins is found to be close to the percolation threshold of the effective lattice.

  17. Rubber elasticity for percolation network consisting of Gaussian chains

    International Nuclear Information System (INIS)

    Nishi, Kengo; Noguchi, Hiroshi; Shibayama, Mitsuhiro; Sakai, Takamasa

    2015-01-01

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G 0 , must be equal to G/G 0 = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels

  18. Rubber elasticity for percolation network consisting of Gaussian chains

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Kengo, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp; Noguchi, Hiroshi; Shibayama, Mitsuhiro, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Sakai, Takamasa, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G{sub 0}, must be equal to G/G{sub 0} = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  19. Electron percolation in realistic models of carbon nanotube networks

    Science.gov (United States)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  20. Ising percolation in a three-state majority vote model

    Science.gov (United States)

    Balankin, Alexander S.; Martínez-Cruz, M. A.; Gayosso Martínez, Felipe; Mena, Baltasar; Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier

    2017-02-01

    In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the "magnetization" of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.

  1. Spectrum of ferromagnetic transition metal magnetic excitations and neutron scattering

    International Nuclear Information System (INIS)

    Kuzemskij, A.L.

    1979-01-01

    Quantum statistical models of ferromagnetic transition metals as well as methods of their solutions are reviewed. The correspondence of results on solving these models and the data on scattering thermal neutrons in ferromagnetic is discussed

  2. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in [Department of Physics, Indian institute of Technology Guwahati, Guwahati 781 039 (India)

    2015-08-15

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  3. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    Directory of Open Access Journals (Sweden)

    Patta Ravikumar

    2015-08-01

    Full Text Available We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μB/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (TC around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high TC and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  4. Interface currents in topological superconductor–ferromagnet heterostructures

    International Nuclear Information System (INIS)

    Brydon, P M R; Timm, Carsten; Schnyder, Andreas P

    2013-01-01

    We propose the existence of a substantial charge current parallel to the interface between a noncentrosymmetric superconductor and a metallic ferromagnet. Our analysis focuses upon two complementary orbital-angular-momentum pairing states of the superconductor, exemplifying topologically nontrivial states which are gapped and gapless in the bulk, respectively. Utilizing a quasiclassical scattering theory, we derive an expression for the interface current in terms of Andreev reflection coefficients. Performing a systematic study of the current, we find stark qualitative differences between the gapped and gapless superconductors, which reflect the very different underlying topological properties. For the fully gapped superconductor, there is a sharp drop in the zero-temperature current as the system is tuned from a topologically nontrivial to a trivial phase. We explain this in terms of the sudden disappearance of the contribution to the current from the subgap edge states at the topological transition. The current in the gapless superconductor is characterized by a dramatic enhancement at low temperatures, and exhibits a singular dependence on the exchange-field strength in the ferromagnetic metal at zero temperature. This is caused by the energy shift of the strongly spin-polarized nondegenerate zero-energy flat bands due to their coupling to the exchange field. We argue that the interface current provides a novel test of the topology of the superconductor, and discuss prospects for the experimental verification of our predictions. (paper)

  5. Surface ferromagnetism and superconducting properties of nanocrystalline niobium nitride

    International Nuclear Information System (INIS)

    Shipra, R.; Kumar, Nitesh; Sundaresan, A.

    2013-01-01

    Nanocrystalline δ-NbN x samples have been synthesized by reacting NbCl 5 and urea at three different temperatures. A comparison of their structural, magnetic, transport and thermal properties is reported in the present study. The size of the particles and their agglomeration extent increase with increasing reaction temperature. The sample prepared at 900 °C showed the highest superconducting transition temperature (T c ) of 16.2 K with a transition width, ∼1.8 K, as obtained from the resistivity measurement on cold-pressed bars. Above T c , magnetization measurements revealed the presence of surface ferromagnetism which coexists with superconductivity below T c . Heat capacity measurements confirm superconductivity with strong electron–phonon coupling constant. The sample prepared at 800 °C shows a lower T c (10 K) while that prepared at 700 °C exhibit no superconductivity down to the lowest temperature (3 K) measured. - Highlights: ► Synthesis of δ-NbN nanoparticles by urea nitridation of NbCl 5 . ► Superconducting transition temperature (T c ) is 16.2 K. ► Superconductivity and surface ferromagnetism coexist in the nanoparticles. ► Effect of size and agglomeration on the physical properties of nanoparticles

  6. Possibility of a ferromagnetic and conducting metal-organic network

    Science.gov (United States)

    Mabrouk, Manel; Hayn, Roland; Denawi, Hassan; Ben Chaabane, Rafik

    2018-05-01

    In this paper, we present first principles calculations based on the spin-polarized generalized gradient approximation with on-site Coulomb repulsion term (SGGA + U), to explore the electronic and magnetic properties of the novel planar metal-organic networks TM-Pc and TM-TCNB (where TM means a transition metal of the 3d series: Ti, V, Cr, …, or Zn, Pc - Phthalocyanine, and TCNB - Tetracyanobenzene) as free-standing sheets. This work is an extension of two earlier research works dealing with the Mn (Mabrouk et al., 2015) and Fe (Mabrouk et al., 2017) cases. Our theoretical investigations demonstrate that TM-Pc are more stable than TM-TCNB. Our results unveil that all the TM-Pc frameworks have an insulating behavior with the exception of Mn-Pc which is half-metallic and favor antiferromagnetic order in the case of our magnetic systems except for V-Pc which is ferromagnetic. In contrast, the TM-TCNB networks are metallic at least in one spin direction and exhibit long-range ferromagnetic coupling in case for magnetic structures, which represent ideal candidates and an interesting prospect of unprecedented applications in spintronics. In addition, these results may shed light to achieve a new pathway on further experimental research in molecular spintronics.

  7. Transport and magnetism correlations in thin-film ferromagnetic oxides

    International Nuclear Information System (INIS)

    Hundley, M.F.; Neumeier, J.J.; Heffner, R.H.; Jia, Q.X.; Wu, X.D.; Thompson, J.D.

    1995-01-01

    In order to determine the T c -dependence of the colossal magnetoresistance (MR) exhibited by the ferromagnetic La 0.7 M 0.3 MnO 3+σ (M = Ba, Ca, Sr) system, the authors examine the magnetic-field and temperature dependent resistivity and magnetization of a series of thin films that were grown via pulsed-laser deposition. The films had magnetic ordering temperatures (T C ) ranging from 150 to 350 K; all samples displayed a large negative MR that is largest near T c . The magnitude of a given sample's MR at T c inversely correlates with T c ; samples with a low T c display significantly larger MR values than do samples with large T c 's. The quantity ρ(T c )/ρ(4 K), the amount by which the resistivity is reduced by full ferromagnetic order, is an activated function of T c with an activation energy E a = 0.1 eV. These results indicate that the magnitude of the CMR effect in a given specimen is controlled not by ρ(T c ), but by T c via the ratio ρ(T c )/ρ(4 K). Phenomenological scaling relationships are also reported that link ρ(H,T) to both H and M(H, T)

  8. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Science.gov (United States)

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  9. Giant magnetotransmission and magnetoreflection in ferromagnetic materials

    International Nuclear Information System (INIS)

    Telegin, A.V.; Sukhorukov, Yu.P.; Loshkareva, N.N.; Mostovshchikova, E.V.; Bebenin, N.G.; Gan'shina, E.A.; Granovsky, A.B.

    2015-01-01

    We present a brief review on magnetotransmission (magnetoabsorption) and magnetoreflection of natural (unpolarized) light in ferromagnetic chromium chalcogenide spinel, manganites with perovskite structure and thin-film metallic nanostructures in the middle infrared spectral range. The magnetooptical effects under discussion are of high interest for numerous and promising applications in the infrared optoelectronics. - Highlights: • Magnetotransmission and magnetoreflection of light in ferromagnetic are presented. • The effects are greater than common magnetooptical phenomena in the infrared. • The effects may have a different origin depending on a material or spectral range. • Possible applications of the magnetotransmission and magnetoreflection are discussed

  10. Giant magnetotransmission and magnetoreflection in ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620137 Yekaterinburg (Russian Federation); Sukhorukov, Yu.P.; Loshkareva, N.N.; Mostovshchikova, E.V.; Bebenin, N.G. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620137 Yekaterinburg (Russian Federation); Gan' shina, E.A.; Granovsky, A.B. [Moscow State University, 119991 Moscow (Russian Federation)

    2015-06-01

    We present a brief review on magnetotransmission (magnetoabsorption) and magnetoreflection of natural (unpolarized) light in ferromagnetic chromium chalcogenide spinel, manganites with perovskite structure and thin-film metallic nanostructures in the middle infrared spectral range. The magnetooptical effects under discussion are of high interest for numerous and promising applications in the infrared optoelectronics. - Highlights: • Magnetotransmission and magnetoreflection of light in ferromagnetic are presented. • The effects are greater than common magnetooptical phenomena in the infrared. • The effects may have a different origin depending on a material or spectral range. • Possible applications of the magnetotransmission and magnetoreflection are discussed.

  11. Nonlinear nuclear magnetic resonance in ferromagnets

    International Nuclear Information System (INIS)

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  12. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  13. Proximity effects in ferromagnet/superconductor structures

    International Nuclear Information System (INIS)

    Yu, H.L.; Sun, G.Y.; Yang, L.Y.; Xing, D.Y.

    2004-01-01

    The Nambu spinor Green's function approach is applied to study proximity effects in ferromagnet/superconductor (FM/SC) structures. They include the induced superconducting order parameter and density of states (DOS) with superconducting feature on the FM side, and spin-dependent DOS within the energy gap on the SC side. The latter indicates an appearance of gapless superconductivity and a coexistence of ferromagnetism and superconductivity in a small regime near the interface. The influence of exchange energy in FM and barrier strength at interface on the proximity effects is discussed

  14. Magnon-photon interaction in ferromagnets

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1980-01-01

    A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self-energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width that is in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. (orig.)

  15. Wellhead with non-ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  16. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  17. Temperature limited heater utilizing non-ferromagnetic conductor

    Science.gov (United States)

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  18. International Space Station exhibit

    Science.gov (United States)

    2000-01-01

    The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.

  19. Upcycling CERN Exhibitions

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Summer is coming - and with it, a new Microcosm exhibition showcasing CERN (see here). But while the new exhibit is preparing to enchant visitors, many have been asking about the site's former content. Will it simply be out with the old and in with the new? Not as such!   The plasma ball from Microcosm is now on display at the LHCb site. As Microcosm's new content is moving in, its old content is moving up. From LHCb to IdeaSquare, former Microcosm displays and objects are being installed across the CERN site. "Microcosm featured many elements that were well suited to life outside of the exhibition," says Emma Sanders, Microcosm project leader in the EDU group. "We didn't want this popular content to go to waste, and so set out to find them new homes across CERN." The LHCb experiment has received a number of Microcosm favourites, including the Rutherford experiment, the cosmic ray display and the Thomson experiment. "We&...

  20. Ferromagnets as pure spin current generators and detectors

    Science.gov (United States)

    Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen

    2015-09-08

    Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.

  1. Walking on fractals: diffusion and self-avoiding walks on percolation clusters

    International Nuclear Information System (INIS)

    Blavatska, V; Janke, W

    2009-01-01

    We consider random walks (RWs) and self-avoiding walks (SAWs) on disordered lattices directly at the percolation threshold. Applying numerical simulations, we study the scaling behavior of the models on the incipient percolation cluster in space dimensions d = 2, 3, 4. Our analysis yields estimates of universal exponents, governing the scaling laws for configurational properties of RWs and SAWs

  2. A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.

    Science.gov (United States)

    Halloran, John T; Rocke, David M

    2018-05-04

    Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .

  3. Pseudo-random-number generators and the square site percolation threshold.

    Science.gov (United States)

    Lee, Michael J

    2008-09-01

    Selected pseudo-random-number generators are applied to a Monte Carlo study of the two-dimensional square-lattice site percolation model. A generator suitable for high precision calculations is identified from an application specific test of randomness. After extended computation and analysis, an ostensibly reliable value of p_{c}=0.59274598(4) is obtained for the percolation threshold.

  4. Current Percolation in Medium with Boundaries under Quantum Hall Effect Conditions

    Directory of Open Access Journals (Sweden)

    M. U. Malakeeva

    2012-01-01

    Full Text Available The current percolation has been considered in the medium with boundaries under quantum Hall effect conditions. It has been shown that in that case the effective Hall conductivity has a nonzero value due to percolation of the Hall current through the finite number of singular points (in our model these are corners at the phase joints.

  5. Numerical calculation of the conductivity of percolation clusters and the use of special purpose computers

    International Nuclear Information System (INIS)

    Herrmann, H.J.

    1989-01-01

    Electrical conductivity diffusion or phonons, have an anomalous behaviour on percolation clusters at the percolation threshold due to the fractality of these clusters. The results that have been found numerically for this anomalous behaviour are reviewed. A special purpose computer built for this purpose is described and the evaluation of the data from this machine is discussed

  6. Towards ferromagnet/superconductor junctions on graphene

    International Nuclear Information System (INIS)

    Pakkayil, Shijin Babu

    2015-01-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  7. Towards ferromagnet/superconductor junctions on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Pakkayil, Shijin Babu

    2015-07-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  8. Online Exhibits & Concept Maps

    Science.gov (United States)

    Douma, M.

    2009-12-01

    Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors

  9. Effect of particle size ratio on the conducting percolation threshold of granular conductive-insulating composites

    International Nuclear Information System (INIS)

    He Da; Ekere, N N

    2004-01-01

    In this paper, we apply Monte Carlo simulation to investigate the conductive percolation threshold of granular composite of conductive and insulating powders with amorphous structure. We focus on the effect of insulating to conductive particle size ratio λ = d i /d c on the conducting percolation threshold p c (the volume fraction of the conductive powder). Simulation results show that, for λ = 1, the percolation threshold p c lies between simple cubic and body centred cubic site percolation thresholds, and that as λ increases the percolation threshold decreases. We also use the structural information obtained by the simulation to study the nonlinear current-voltage characteristics of composite with solid volume fraction of conductive powder below p c in terms of electron tunnelling for nanoscale powders, dielectric breakdown for microscale or larger powders, and pressing induced conduction for non-rigid insulating powders

  10. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  11. Ferromagnetism in poly(N-perfluorophenylpyrrole)

    Energy Technology Data Exchange (ETDEWEB)

    Čík, G., E-mail: gabriel.cik@stuba.sk [Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Šeršeň, F. [Institute of Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava (Slovakia); Dlháň, L. [Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Zálupský, P. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Rapta, P. [Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Hrnčariková, K. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava (Slovakia)

    2015-10-01

    Magnetic properties of the synthesized poly(N-perfluorophenylpyrrole) were studied. The synthesized polymer dissolves in common organic solvents. By the zero-field cooling-field cooling method (ZFC–FC) we found that at low temperatures (T{sub b}<50 K) the synthetic polymer reaches a state with prevailing ferromagnetism. The synthesized polymer retained ferromagnetism even at 300 K. The anomalous magnetic behavior was explained in terms of spin–spin interaction of triplet polarons. As can be seen from the calculated spin density of SOMO and SOMO 1 such a state arise as a consequence of 1-D spin interactions of polarons. Based on the calculated and visualized spin density (SOMO) on the polymer chain such interactions can be explained by the theory of flat-band-ferromagnetism. - Highlights: • We synthesized a new conducting polymer poly(N-perfluorophenylpyrrole). • By the ZFC–FC and EPR methods we measured magnetic properties of the prepared polymer. • We discussed stability and interactions of the polarons in triplet states. • At low temperatures the synthesized polymer reached ferromagnetism.

  12. On piezomagnetism at viscoplasticity of ferromagnetics

    International Nuclear Information System (INIS)

    Micunovic, M.

    2001-01-01

    The paper deals with viscoplasticity of ferromagnetic materials. Tensor representation is applied to a set of evolution equations comprising the plastic stretching and residual magnetization tensors. Small magnetoelastic strains of isotropic insulators are considered in detail in two special cases of finite as well as small plastic strain. A special emphasis is given to piezomagnetism effects in the case of uniaxial cycling strain (author)

  13. Magnetic profiles in ferromagnetic/superconducting superlattices.

    Energy Technology Data Exchange (ETDEWEB)

    te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

    2007-02-28

    The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

  14. Angular and linear momentum of excited ferromagnets

    NARCIS (Netherlands)

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist

  15. Ferromagnetic hysteresis and the effective field

    NARCIS (Netherlands)

    Naus, H.W.L.

    2002-01-01

    The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical

  16. Ferromagnetism in diluted magnetic semiconductor heterojunction systems

    Czech Academy of Sciences Publication Activity Database

    Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.

    2002-01-01

    Roč. 17, - (2002), s. 393-403 ISSN 0268-1242 R&D Projects: GA ČR GA202/98/0085; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * heterostructures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.241, year: 2002

  17. Pseudospin anisotropy classification of quantum Hall ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; MacDonald, A. H.

    2000-01-01

    Roč. 63, č. 3 (2000), s. 035305-1 - 035305-9 ISSN 0163-1829 R&D Projects: GA ČR GA202/98/0085 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.065, year: 2000

  18. Skyrmion physics in Bose-Einstein ferromagnets

    NARCIS (Netherlands)

    Al Khawaja, U.; Stoof, H.T.C.

    2001-01-01

    We show that a ferromagnetic Bose-Einstein condensate has not only line-like vortex excitations, but in general, also allows for pointlike topological excitations, i.e., skyrmions. We discuss the thermodynamic stability and the dynamic properties of these skyrmions for both spin-1/2 and

  19. Magnetization dissipation in ferromagnets from scattering theory

    NARCIS (Netherlands)

    Brataas, A.; Tserkovnyak, Y.; Bauer, G.E.W.

    2011-01-01

    The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping

  20. Room-temperature ferromagnetic and photoluminescence ...

    Indian Academy of Sciences (India)

    the ferromagnetic nature of ITO and the strength of magnetization is superior to those of In2O3 and SnO2. However, ... ties in the spintronic devices, the materials suitable for such devices ... into suitable quartz test tubes (10mm) whose interior was enclosed in .... related to metal indium In0 with binding energy 443.6 eV was.

  1. Neutron Depolarization in Submicron Ferromagnetic Materials

    NARCIS (Netherlands)

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains

  2. Lattice effects on ferromagnetism in perovskite ruthenates

    Science.gov (United States)

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  3. Absence of magnetic long-range order in Y2CrSbO7 : Bond-disorder-induced magnetic frustration in a ferromagnetic pyrochlore

    Science.gov (United States)

    Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.

    2017-09-01

    The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.

  4. Ferromagnetic resonance study of sputtered NiFe/V/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Alayo, W., E-mail: willian.rodriguez@ufpel.edu.br [Departamento de Física – IFM, Universidade Federal de Pelotas, 96010-900 Rio Grande do Sul (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, 22290-180 (Brazil)

    2015-03-01

    The Ni{sub 81}Fe{sub 19}/V/Ni{sub 81}Fe{sub 19} heterostructures has been produced by magnetron sputtering and analyzed by ferromagnetic resonance. Two systems were investigated: the non symmetrical NiFe(50 Å)/V(t)/NiFe(30 Å) trilayers and the symmetrical NiFe(80 Å)/V(t)/NiFe(80 Å) trilayers, with variable ultrathin V thickness t. Ferromagnetic exchange coupling was evidenced for t below 10 Å by the excitation of the optic mode, in the case of the non symmetrical samples, and by the observation of a single resonance mode for the symmetrical trilayers. For larger V thickness, all samples exhibited two modes, which were attributed to the resonance of the individual NiFe layers with different effective magnetizations. The analysis with the equilibrium and resonance conditions provided the exchange coupling constants and effective magnetizations. - Highlights: • We present a study of symmetrical and non symmetrical NiFe/V/NiFe trilayers deposited on Si single crystals by ferromagnetic resonance (FMR) at room temperature. • For the non symmetrical trilayers, the FMR spectra show the optic and acoustic modes for samples with very thin V layer thicknesses, evidencing ferromagnetic exchange coupling, whereas, for larger V thickness, the spectra exhibited two well resolved modes associated to each independent NiFe layer. For the symmetrical trilayers, strong ferromagnetic exchange coupling is evidenced by the observation of a single resonance mode. • The analysis with the equilibrium condition and dispersion relation provides the exchange coupling constants and effective magnetizations.

  5. Tricritical point of a ferromagnetic transition in UGe2

    International Nuclear Information System (INIS)

    Kabeya, N; Iijima, R; Osaki, E; Ban, S; Imura, K; Deguchi, K; Sato, N K; Aso, N; Homma, Y; Shiokawa, Y

    2010-01-01

    Thermal expansion and magnetostriction measurements of the superconducting ferromagnet UGe 2 under pressure were carried out. The temperature dependence of the thermal expansion coefficient shows a peak at the Curie temperature. When pressure is varied, the peak exhibits a maximum in the vicinity of a tricritical point (TCP), which separates the second-order phase transition from the first-order transition. From results of these measurements, we first construct the magnetic phase diagram including the TCP (P TCP ∼ 12.5 kbar). We also show that two lines characterizing the metamagnetism and the magnetic susceptibility emerge from the TCP. We argue that these magnetic properties in the vicinity of the TCP can be understood within a phenomenological frame of spin fluctuations.

  6. Experimental study of mixed ferromagnetic spin glass systems

    International Nuclear Information System (INIS)

    Mirebeau, I.

    1987-01-01

    The mixed ferromagnetic spin glass systems are characterized by a distribution of positive and negative exchange interactions whose maximum occurs at a positive value. We have undertaken an experimental study of amorphous (Fe 1-x Mn x ) .75 PBA1, polycrystalline and monocrystalline Ni 1-x Mn x and Au 1-x Fe x alloys. By Moessbauer effect, magnetization and neutron scattering, we show that below a ''canting'' temperature T K , spin components transverse to the mean magnetization become frozen. Small angle neutron scattering studies with an applied field show a magnetic ''structure'' i.e. the intensity exhibits a maximum at a finite q value for temperatures below T K . This structure has been studied as a function of temperature, applied field and concentration using both small angle neutron scattering and 3 axis spectrometry where we separate the elastic from the inelastic components. Possible interpretations of this new structure will be given [fr

  7. Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations

    Science.gov (United States)

    Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro

    2018-03-01

    We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.

  8. Magnetic properties of a ferromagnet spin-S, Ising, XY and Heisenberg models semi-infinites systems

    International Nuclear Information System (INIS)

    Masrour, R.; Hamedoun, M.; Hourmatallah, A.; Bouslykhane, K.; Benzakour, N.

    2008-01-01

    The magnetic properties of a ferromagnet spin-S a disordered semi-infinite system with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τ c =(k B T c )/(2S(S+1)J b ) is studied as function of the thickness of the film and the exchange interactions in the bulk, and within the surfaces J b ,J s and J perpendicular , respectively. It is found that τ c increases with the exchange interactions of surface. The magnetic phase diagrams (τ c versus the dilution x) and the percolation threshold are obtained

  9. Mobile exhibition in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    Since January this year, a mobile atomic energy exhibition has been touring the principal cities of Mexico. In organizing this exhibition, the National Nuclear Energy Commission of Mexico was assisted by the International Atomic Energy Agency which has placed its second mobile radioisotope laboratory at the disposal of the Mexican authorities. In many States of the Republic, the visit of the mobile laboratory has given a powerful impetus to atomic training and research. Universities have made use of the laboratory for the training of young scientists in the basic isotope techniques. As a sequel to the work initiated with its aid, some universities are planning to start regular training courses in this field. The laboratory, which is a gift to the Agency from the United States, has been put to its first assignment in Mexico. It will shortly be sent to Argentina for a period of six months for use in training courses. IAEA's first mobile radioisotope unit, also donated by the United States, has been used for training purposes in Austria, the Federal Republic of Germany, Greece and Yugoslavia, and has now been sent to the Far East

  10. Mobile exhibition in Mexico

    International Nuclear Information System (INIS)

    1960-01-01

    Since January this year, a mobile atomic energy exhibition has been touring the principal cities of Mexico. In organizing this exhibition, the National Nuclear Energy Commission of Mexico was assisted by the International Atomic Energy Agency which has placed its second mobile radioisotope laboratory at the disposal of the Mexican authorities. In many States of the Republic, the visit of the mobile laboratory has given a powerful impetus to atomic training and research. Universities have made use of the laboratory for the training of young scientists in the basic isotope techniques. As a sequel to the work initiated with its aid, some universities are planning to start regular training courses in this field. The laboratory, which is a gift to the Agency from the United States, has been put to its first assignment in Mexico. It will shortly be sent to Argentina for a period of six months for use in training courses. IAEA's first mobile radioisotope unit, also donated by the United States, has been used for training purposes in Austria, the Federal Republic of Germany, Greece and Yugoslavia, and has now been sent to the Far East

  11. Pretreatment Characteristics of Waste Oak Wood by Ammonia Percolation

    Science.gov (United States)

    Kim, Jun-Seok; Kim, Hyunjoon; Lee, Jin-Suk; Lee, Joon-Pyo; Park, Soon-Chul

    A log of waste oak wood collected from a Korean mushroom farm has been tested for ammonia percolation pretreatment. The waste log has different physical characteristics from that of virgin oak wood. The density of the waste wood was 30% lower than that of virgin oak wood. However, there is little difference in the chemical compositions between the woods. Due to the difference in physical characteristics, the optimal pretreatment conditions were also quite different. While for waste oak the optimum temperature was determined to be 130°C, for virgin oak wood the optimum pretreatment was only achieved at 170°C. Presoaking for 12 h with ammonia solution before pretreatment was helpful to increase the delignification efficiency.

  12. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites

    KAUST Repository

    Tu, Shao Bo

    2018-04-06

    near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene/P(VDF-TrFE-CFE) composite indicates only an approximately 5-fold increase (from 0.06 to 0.35), while the dielectric constant increased by 25 times over the same composition range. Furthermore, the ratio of permittivity to loss factor of the MXene-polymer composite is superior to that of all previously reported fillers in this same polymer. The dielectric constant enhancement effect is demonstrated to exist in other polymers as well when loaded with MXene. We show that the dielectric constant enhancement is largely due to the charge accumulation caused by the formation of microscopic dipoles at the surfaces between the MXene sheets and the polymer matrix under an external applied electric field.

  13. Benefits of current percolation in superconducting coated conductors

    International Nuclear Information System (INIS)

    Rutter, N.A.; Durrell, J.H.; Blamire, M.G.; MacManus-Driscoll, J.L.; Wang, H.; Foltyn, S.R.

    2005-01-01

    The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca

  14. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film

    KAUST Repository

    Lai, K.; Nakamura, M.; Kundhikanjana, W.; Kawasaki, M.; Tokura, Y.; Kelly, M. A.; Shen, Z.-X.

    2010-01-01

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd 1/2Sr1/2MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  15. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film

    KAUST Repository

    Lai, K.

    2010-07-08

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd 1/2Sr1/2MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  16. Percolation Effects in Very-High-Energy Cosmic Rays

    International Nuclear Information System (INIS)

    Dias de Deus, J.; Santo, M.C. Espirito; Pimenta, M.; Pajares, C.

    2006-01-01

    Cosmic ray data at high energies present a number of well-known puzzles. At very high energies (E∼10 20 eV) there are indications of a discrepancy between ground array experiments and fluorescence detectors. On the other hand, the dependence of the depth of the shower maximum X max with the primary energy shows a change in slope (E∼10 17 eV) which is usually explained assuming a composition change. Both effects could be accounted for in models predicting that above a certain energy showers would develop deeper in the atmosphere. In this Letter we argue that this can be done naturally by including percolation effects in the description of the shower development, which cause a change in the behavior of the inelasticity K above E≅10 17 eV

  17. Evaluation of percolation rate of bedrock aquifer in coastal area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hwan; Jung, Hae Ryong; Park, Joo Wan; Yoon, Jeong Hyoun; Cheong, Jae Yeol [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Park, Sun Ju [NEXGEO Co. Ltd, Seoul (Korea, Republic of); Jun, Seong Chun [GeoGreen21 Co. Ltd, Seoul (Korea, Republic of)

    2016-03-15

    Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evapotranspiration was computed by using the Thornthwaite method, and surface runoff was determined by using the SCS-CN technique. Groundwater storage change was obtained as 229 mm/a (17.8% of the average annual rainfall, 1286 mm/a), with 693 mm/a (60.1%) of evapotranspiration and 124 mm/a (9.6%) of surface runoff. Rainfall and groundwater storage change was highly correlated, comparing with the relationships between rainfall and evapotranspiration, and between rainfall and surface runoff. This result indicates that groundwater storage change responds more sensitively to precipitation than evapotranspiration and surface runoff.

  18. Evaluation of percolation rate of bedrock aquifer in coastal area

    International Nuclear Information System (INIS)

    Lee, Jeong Hwan; Jung, Hae Ryong; Park, Joo Wan; Yoon, Jeong Hyoun; Cheong, Jae Yeol; Park, Sun Ju; Jun, Seong Chun

    2016-01-01

    Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evapotranspiration was computed by using the Thornthwaite method, and surface runoff was determined by using the SCS-CN technique. Groundwater storage change was obtained as 229 mm/a (17.8% of the average annual rainfall, 1286 mm/a), with 693 mm/a (60.1%) of evapotranspiration and 124 mm/a (9.6%) of surface runoff. Rainfall and groundwater storage change was highly correlated, comparing with the relationships between rainfall and evapotranspiration, and between rainfall and surface runoff. This result indicates that groundwater storage change responds more sensitively to precipitation than evapotranspiration and surface runoff

  19. Mesoscopic percolating resistance network in a strained manganite thin film.

    Science.gov (United States)

    Lai, Keji; Nakamura, Masao; Kundhikanjana, Worasom; Kawasaki, Masashi; Tokura, Yoshinori; Kelly, Michael A; Shen, Zhi-Xun

    2010-07-09

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd(1/2)Sr(1/2)MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  20. Scaling and percolation in the small-world network model

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M. E. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States); Watts, D. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States)

    1999-12-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society.

  1. Scaling and percolation in the small-world network model

    International Nuclear Information System (INIS)

    Newman, M. E. J.; Watts, D. J.

    1999-01-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society

  2. Criticality of the Potts ferromagnet in Midgal-Kadanoff - like hierarchical lattices

    International Nuclear Information System (INIS)

    Silva, L.R. da; Tsallis, C.

    1987-01-01

    Within the real space renormalisation group framework, we discuss the critical point and exponent υ of the Potts ferromagnet in b-sized Migdal-Kadanoff-like hierarchical lattices. Both b → ∞ and b → 1 limits are exhibited. The important discrepancies that might exist between the exact results for d-dimensional hierarchical lattices and d-dimensional Bravais lattices are illustrated. (Author) [pt

  3. Quenched bond-dilute Ising ferromagnet in square lattice: thermodynamical properties

    International Nuclear Information System (INIS)

    Honmura, R.; Sarmento, E.F.; Tsallis, C.

    1982-01-01

    Within an effective field framework which improves the Molecular Field Approximation, the phase diagram, magnetization, specific heat and susceptibility associated with the quenched bond-dilute Ising ferromagnet in square lattice is calculated. The results are qualitatively (and within certain extent quantitatively) satisfactory; in particular the effects, on the specific heat and susceptibility, of the (eventually) coexisting finite and infinite clusters are exhibited. (Author) [pt

  4. Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.

    2012-01-01

    We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.

  5. Critical points for spread-out self-avoiding walk, percolation and the contact process above the upper critical dimensions

    NARCIS (Netherlands)

    Hofstad, van der R.W.; Sakai, A.

    2005-01-01

    We consider self-avoiding walk and percolation in d, oriented percolation in d×+, and the contact process in d, with p D(·) being the coupling function whose range is proportional to L. For percolation, for example, each bond is independently occupied with probability p D(y–x). The above models are

  6. Anniversary Exhibition. Nechvolodov.

    Directory of Open Access Journals (Sweden)

    - -

    2006-03-01

    Full Text Available On the 10th of August, 2005 in Tartu (the second biggest educational and cultural city in Estonia Stanislav Nechvolodov's exhibition was opened to show the 5-year cycle of his work, traditional for the author and his admirers. At the opening ceremony Nechvolodov said that the exhibition was the last one and appointed on his 70th anniversary.The architectural and building society in Irkutsk remembers Stanislav Nechvolodov as an architect working on dwelling and civil buildings in 1960-70s. Below are some extracts from the Estonian press.«Postimees» newspaper, December 1993. The interview «Expressionistic naturalist, conservative Nechvolodov» by journalist Eric Linnumyagi. He asks about all the details and describes the troubles experienced by Nechvolodov during the perestroika period in Estonia, for example: the Tartu University refused to install the sculpture of Socrat, the art school refused to engage him as an instructor, the sculpture of Socrat moved to Vrotzlav, Poland, and Nechvolodov moved to Poland to read lectures there.«Tartu» newspaper, November 2000. Mats Oun, artist, says in the article «Nechvolodov: a man of Renaissance»: «Nechvolodov works in Estonia, his works are placed in many local and foreign museums. Regardless some insignificant faults, he deserves a high estimation, and his manysided open exhibition can be an example for other artists. He is a man of Renaissance».

  7. Mobile impurities in ferromagnetic liquids

    Science.gov (United States)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  8. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  9. Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer

    Science.gov (United States)

    Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun

    2018-04-01

    The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr3 monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr - Br6 units. As an example, we further show that (CrBr3)2Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.

  10. Coexistence of ferromagnetism and spin glass behavior in antiferromagnetic Y2BaCuO5

    International Nuclear Information System (INIS)

    Zhu, Zhonghua; Gao, Daqiang; Zhang, Jing; Shi, Zhenhua; Gao, Hua; Yang, Zhaolong; Zhang, Zhipeng; Xue, Desheng

    2013-01-01

    Highlights: • Room temperature ferromagnetism is observed in ultrafine Y 2 BaCuO 5 particles. • The observed ferromagnetism originates from the oxygen defects. • A very interesting spin glass transition located at about 110 K is found. -- Abstract: We report the synthesis of a series of Y 2 BaCuO 5 samples by varying the annealing temperature with a citrate pyrolysis technique. X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observation show the formation of a columnar Y 2 BaCuO 5 phase and these samples are composed of many irregular particles with different particle size. Magnetic measurements show that these samples exhibit room temperature ferromagnetism and the saturation magnetization decreases with increasing sintering temperature. Post-heating treatment under argon atmosphere can enhance the ferromagnetism greatly, suggesting that the magnetism is attributed to the surface oxygen defects. By measuring magnetization versus temperature curves after zero field cooling with various applied magnetic fields, two magnetic phase transitions located at about 11 and 110 K are revealed. The position of the peak at about 11 K is independent of the magnetic field; the other peak, however, becomes rounder and shifts to lower temperatures with increasing the magnetic field, showing a strong field dependence. In addition, the virgin magnetization curves with the measured temperature below 110 K display an S-type. These features are suggestive of an antiferromagnetic phase transition at about 11 K and a spin glass transition at about 110 K

  11. Factors affecting water balance and percolate production for a landfill in operation.

    Science.gov (United States)

    Poulsen, Tjalfe G; Møoldrup, Per

    2005-02-01

    Percolate production and precipitation data for a full-scale landfill in operation measured over a 13-year period were used to evaluate the impact and importance of the hydrological conditions of landfill sections on the percolate production rates. Both active (open) and closed landfill sections were included in the evaluation. A simple top cover model requiring a minimum of input data was used to simulate the percolate production as a function of precipitation and landfill section hydrology. The results showed that changes over time in the hydrology of individual landfill sections (such as section closure or plantation of trees on top of closed sections) can change total landfill percolate production by more than 100%; thus, percolate production at an active landfill can be very different from percolate production at the same landfill after closure. Furthermore, plantation of willow on top of closed sections can increase the evapotranspiration rate thereby reducing percolate production rates by up to 47% compared to a grass cover. This process, however, depends upon the availability of water in the top layer, and so the evaporation rate will be less than optimal during the summer where soil-water contents in the top cover are low.

  12. The local domain wall position in ferromagnetic thin wires: simultaneous measurement of resistive and transverse voltages at multiple points

    International Nuclear Information System (INIS)

    Hanada, R.; Sugawara, H.; Aoki, Y.; Sato, H.; Shigeto, K.; Shinjo, T.; Ono, T.; Miyajima, H.

    2002-01-01

    We have simultaneously measured the field dependences of voltages at multiple pairs of resistance and transverse voltage probes in ferromagnetic wires (with either magnetic or non-magnetic voltage probes). Both the resistive (through the giant magnetoresistance and anisotropic magnetoresistance) and transverse voltages (through the planar Hall effect) exhibit abrupt jumps, reflecting discrete motion of domain walls or rotations of magnetization. Voltage probes, even if non-magnetic, are found to affect the jump fields depending on the sample conditions. We demonstrate that the specific information on the domain (wall) motion along a thin ferromagnetic wire could be obtained from the jump fields. (author)

  13. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  14. Interlocking-induced stiffness in stochastically microcracked materials beyond the transport percolation threshold

    Science.gov (United States)

    Picu, R. C.; Pal, A.; Lupulescu, M. V.

    2016-04-01

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.

  15. Structurally Stable Attractive Nanoscale Emulsions with Dipole-Dipole Interaction-Driven Interdrop Percolation.

    Science.gov (United States)

    Shin, Kyounghee; Gong, Gyeonghyeon; Cuadrado, Jonas; Jeon, Serim; Seo, Mintae; Choi, Hong Sung; Hwang, Jae Sung; Lee, Youngbok; Fernandez-Nieves, Alberto; Kim, Jin Woong

    2017-03-28

    This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T 2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Topological Aspects of Solitons in Ferromagnets

    International Nuclear Information System (INIS)

    Ren Jirong; Wang Jibiao; Li Ran; Xu Donghui; Duan Yishi

    2008-01-01

    Two kinds of topological soliton (skyrmion and magnetic vortex ring) in ferromagnets are studied. They have the common topological origin, a tensor H αβ = n-vector · (∂ α n-vector x ∂ β n-vector ), which describes the non-trivial distribution of local orientation of magnetization n-vector at large distances in space. The topological stability of skyrmion is protected by the winding number. Knot-like topological defect as magnetic vortex rings is also studied. On the assumption that magnetic vortex rings are geometric lines, we present their δ-function distribution in ferromagnetic materials. Furthermore, it is briefly shown that Hopf invariant is a proper topological invariant to describe the topology of magnetic vortex rings

  17. Ising ferromagnet: zero-temperature dynamic evolution

    International Nuclear Information System (INIS)

    Oliveira, P M C de; Newman, C M; Sidoravicious, V; Stein, D L

    2006-01-01

    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of 'chaotic time dependence' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest an equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit

  18. Silicon spintronics with ferromagnetic tunnel devices

    International Nuclear Information System (INIS)

    Jansen, R; Sharma, S; Dash, S P; Min, B C

    2012-01-01

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of silicon spintronics, namely the creation, detection and manipulation of spin polarization in silicon. Ferromagnetic tunnel contacts are the key elements and provide a robust and viable approach to induce and probe spins in silicon, at room temperature. We describe the basic physics of spin tunneling into silicon, the spin-transport devices, the materials aspects and engineering of the magnetic tunnel contacts, and discuss important quantities such as the magnitude of the spin accumulation and the spin lifetime in the silicon. We highlight key experimental achievements and recent progress in the development of a spin-based information technology. (topical review)

  19. On the critical frontiers of Potts ferromagnets

    International Nuclear Information System (INIS)

    Magalhaes, A.C.N. de; Tsallis, C.

    1981-01-01

    A conjecture concerning the critical frontiers of q- state Potts ferromagnets on d- dimensional lattices (d > 1) which generalize a recent one stated for planar lattices is formulated. The present conjecture is verified within satisfactory accuracy (exactly in some cases) for all the lattices or arrays whose critical points are known. Its use leads to the prediction of: a) a considerable amount of new approximate critical points (26 on non-planar regular lattices, some others on Husimi trees and cacti); b) approximate critical frontiers for some 3- dimensional lattices; c) the possibly asymptotically exact critical point on regular lattices in the limit d→infinite for all q>=1; d) the possibly exact critical frontier for the pure Potts model on fully anisotropic Bethe lattices; e) the possibly exact critical frontier for the general quenched random-bond Potts ferromagnet (any P(J)) on isotropic Bethe lattices. (Author) [pt

  20. Influence of voltage on magnetization of ferromagnetic semiconductors with colossal magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Povzner, A.A., E-mail: a.a.povzner@urfu.ru; Volkov, A.G., E-mail: agvolkov@yandex.ru

    2017-06-15

    Graphical abstract: We investigate nonequilibrium states of strongly correlated electron subsystem of lanthanum manganite, resulting in an external electric field. It is shown that the Joule heat leads to localization of electrons. As result, electric resistance, magnetization and other characteristics of the electronic system are depending on the applied voltage. This leads to the formation of the bistable state of the electronic system in the vicinity of the Curie point in an external electric field. This manifests itself in non-linear current-voltage characteristics of these substances, and should lead to oscillations of the magnetization and current. - Abstract: The nonequilibrium processes of “self-heating” arising during the flow of electric current are studied for ferromagnetic semiconductors with colossal magnetoresistance near the Curie temperature. These processes lead to the emergence of “hot” paramagnons and the destruction of ferromagnetic order. The solution to the heat balance equation takes into account the temperature dependence of the electrical conductivity caused by Anderson localization of electrons due to their scattering on magnetic inhomogeneities. Description of delocalized electrons subsystem takes into account the spin-flip processes leading to the double exchange. At that, the value of the Anderson percolation threshold and the double exchange depends on the amplitude of spin fluctuations. It was found that N-shaped current-voltage characteristics and hysteresis dependencies of magnetization on the voltage arise in a steady state due to the emergence of “hot” (by internal sample temperature) semiconductor paramagnetic phase. It is shown that the occurrence of self-oscillations of current and magnetization there may be.

  1. Influence of voltage on magnetization of ferromagnetic semiconductors with colossal magnetoresistance

    International Nuclear Information System (INIS)

    Povzner, A.A.; Volkov, A.G.

    2017-01-01

    Graphical abstract: We investigate nonequilibrium states of strongly correlated electron subsystem of lanthanum manganite, resulting in an external electric field. It is shown that the Joule heat leads to localization of electrons. As result, electric resistance, magnetization and other characteristics of the electronic system are depending on the applied voltage. This leads to the formation of the bistable state of the electronic system in the vicinity of the Curie point in an external electric field. This manifests itself in non-linear current-voltage characteristics of these substances, and should lead to oscillations of the magnetization and current. - Abstract: The nonequilibrium processes of “self-heating” arising during the flow of electric current are studied for ferromagnetic semiconductors with colossal magnetoresistance near the Curie temperature. These processes lead to the emergence of “hot” paramagnons and the destruction of ferromagnetic order. The solution to the heat balance equation takes into account the temperature dependence of the electrical conductivity caused by Anderson localization of electrons due to their scattering on magnetic inhomogeneities. Description of delocalized electrons subsystem takes into account the spin-flip processes leading to the double exchange. At that, the value of the Anderson percolation threshold and the double exchange depends on the amplitude of spin fluctuations. It was found that N-shaped current-voltage characteristics and hysteresis dependencies of magnetization on the voltage arise in a steady state due to the emergence of “hot” (by internal sample temperature) semiconductor paramagnetic phase. It is shown that the occurrence of self-oscillations of current and magnetization there may be.

  2. Ferromagnetism in doped or undoped spintronics nanomaterials

    Science.gov (United States)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  3. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  4. Anomalous hall effect in ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Niu, Q.; MacDonald, A. H.

    2002-01-01

    Roč. 88, č. 20 (2002), s. 207208-1-207208-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  5. Magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Wang Junfeng; Cheng Ze; Ping Yunxia; Wan Jinyin; Zhang Yanmin

    2006-01-01

    In this Letter we discuss squeezing state of magnon in ferromagnet, which permits a reduction in the quantum fluctuation of the spin component to below the zero-point quantum noise level of coherent magnon states. We investigate the generation of squeezed magnon state through calculating the expectation values of spin component fluctuation. The mean field theory is introduced in dealing with the nonlinear interaction terms of Hamiltonian of magnon system

  6. The Kondo effect in ferromagnetic atomic contacts.

    Science.gov (United States)

    Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos

    2009-04-30

    Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.

  7. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores.

    Science.gov (United States)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-07

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ[over ¯] of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  8. Ferroelectricity with Ferromagnetic Moment in Orthoferrites

    Science.gov (United States)

    Tokunaga, Yusuke

    2010-03-01

    Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).

  9. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    Science.gov (United States)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  10. Josephson junctions with ferromagnetic alloy interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  11. Josephson junctions with ferromagnetic alloy interlayer

    International Nuclear Information System (INIS)

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  12. Influence of Ti addition on the room temperature ferromagnetism of tin oxide (SnO{sub 2}) nanocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Sakthiraj, K.; Balachandrakumar, K., E-mail: dkbaldr@gmail.com

    2015-12-01

    Nano-crystalline Sn{sub 1−x}Ti{sub x}O{sub 2} (x=0.00, 0.02, 0.05 and 0.07) particles were synthesized by the sol–gel method without any surfactant and dispersant material. The X-ray diffraction (XRD) pattern shows the formation of the tetragonal rutile phase structure for the undoped SnO{sub 2} nanoparticle and Ti doping does not alter the structure of undoped tin oxide. Due to quantum confinement effect, a larger optical band gap for as-synthesized materials was found. Vibrating sample magnetometer (VSM) result demonstrates the undoped and 2% Ti doped SnO{sub 2} samples exhibit perfect room temperature ferromagnetism (RTFM) but 5% and 7% of Ti doped samples show a weak ferromagnetism with diamagnetic contribution. The ferromagnetic property of the material was initiated with the help of oxygen vacancy. The amount of oxygen vacancy present in the samples were identified from the photoluminescence spectra and the value of oxygen vacancy decreased with increasing Ti concentration. - Highlights: • Pure Ti doped and undoped SnO{sub 2} nanocrystal were prepared using sol–gel method. • Oxygen vacancy induced RTFM was observed in SnO{sub 2} nanostructures. • Higher amount of ferromagnetism was detected in pristine SnO{sub 2} nanocrystal. • Ferromagnetic property was decreased with increasing Ti concentration. • Redshift of energy band gap was noted with increasing Ti content.

  13. Percolation effect on electrical, mechanical, and electrochemical properties of Sr{sub 0.8}La{sub 0.2}TiO{sub 3}–Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} composite anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ji-Hoon [Division of Advanced Materials Engineering, Chonbuk National University, Jeonbuk, 561-756 (Korea, Republic of); Lee, Ki-Tae, E-mail: ktlee71@jbnu.ac.kr [Division of Advanced Materials Engineering, Chonbuk National University, Jeonbuk, 561-756 (Korea, Republic of); Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonbuk, 561-756 (Korea, Republic of)

    2016-05-15

    Both the electrical conductivity and mechanical strength of a Sr{sub 0.8}La{sub 0.2}TiO{sub 3}–Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (SLT-GDC) composite decreased non-linearly as the GDC content increased. In the GDC percolation region, the electrical conductivity and the mechanical strength decreased significantly. Because the carbon deposition rate increased with increasing GDC content, the redox stability decreased. The area specific resistance (ASR) of the SLT-GDC composite anode at 800 °C in H{sub 2} decreased up to 15 vol.% GDC (SLT-GDC15) and then increased at the SLT-GDC20 and the SLT-GDC33 compositions, due to the high electro–catalytic activity and low electrical conductivity of GDC. Consequently, the SLT-GDC15 composition within the mixed region below SLT and GDC percolation limit exhibited the best electrochemical performance due to the optimized electronic and ionic conduction network. - Highlights: • SLT-GDC composite anodes can be designed by percolation theory. • Incorporation of GDC improves catalytic activity. • Composite within SLT percolation threshold exhibits high mechanical strength. • Composite within the mixed percolation region exhibits the best catalytic activity. • Redox stability of the SLT-GDC composite is correlated with GDC volume.

  14. Nuclear fragmentation with secondary decay in the context of conventional percolation model

    International Nuclear Information System (INIS)

    Santiago, A.J.

    1989-09-01

    Mass and energy spectra arising from proton-nucleus collisions at energies between 80 and 350 GeV were studied, using the conventional percolation model coupled with secondary decay of the clusters. (L.C.J.A.)

  15. Novel scaling of the multiplicity distributions in the sequential fragmentation process and in the percolation

    International Nuclear Information System (INIS)

    Botet, R.

    1996-01-01

    A novel scaling of the multiplicity distributions is found in the shattering phase of the sequential fragmentation process with inhibition. The same scaling law is shown to hold in the percolation process. (author)

  16. Effect of electrostatic Interactions on the Percolation Concentration of Fibrillar ß-Lactoglobuline Gels

    NARCIS (Netherlands)

    Veerman, C.; Ruis, H.G.M.; Sagis, L.M.C.; Linden, van der E.

    2002-01-01

    The effect of electrostatic interactions on the critical percolation concentration (cp) of fibrillar -lactoglobulin gels at pH 2 was investigated using rheological measurements, transmission electron microscopy (TEM), and performing conversion experiments. A decreasing cp with increasing ionic

  17. PRETREATMENT AND FRACTIONATION OF CORN STOVER BY AMMONIA RECYCLE PERCOLATION PROCESS. (R831645)

    Science.gov (United States)

    Corn stover was pretreated with aqueous ammonia in a flow-through column reactor,a process termed as Ammonia Recycle Percolation (ARP). The aqueous ammonia causesswelling and efficient delignification of biomass at high temperatures. The ARPprocess solubilizes abou...

  18. Logarithmic corrections to scaling in critical percolation and random resistor networks.

    Science.gov (United States)

    Stenull, Olaf; Janssen, Hans-Karl

    2003-09-01

    We study the critical behavior of various geometrical and transport properties of percolation in six dimensions. By employing field theory and renormalization group methods we analyze fluctuation induced logarithmic corrections to scaling up to and including the next-to-leading order correction. Our study comprehends the percolation correlation function, i.e., the probability that two given points are connected, and some of the fractal masses describing percolation clusters. To be specific, we calculate the mass of the backbone, the red bonds, and the shortest path. Moreover, we study key transport properties of percolation as represented by the random resistor network. We investigate the average two-point resistance as well as the entire family of multifractal moments of the current distribution.

  19. Percolation pond as a method of managed aquifer recharge in a ...

    Indian Academy of Sciences (India)

    Raicy Mani Christy

    2017-07-17

    Jul 17, 2017 ... Percolation ponds have become very popular methods of managed aquifer recharge due to their low ... effect of recharge structures by some researchers .... qualitative comparison of observed responses of .... Two types of.

  20. Percolation testing at the F- and H-Area Seepage Basins

    International Nuclear Information System (INIS)

    McHood, M.D.

    1993-01-01

    The design of the F- and H-Area Seepage Basin contaminated groundwater remediation system requires information from multiple well pump tests (Reference 1). Soil percolation rates are needed in order to support the multiple well pump test planning. The objective of this task was to determine characteristic percolation rates for soils in four select areas where infiltration galleries are proposed. These infiltration galleries will be temporary installations built on the ground surface and used to disposes of water from the multiple well pump tests. A procedure defining the specific work process for collecting percolation rate data is contained in Appendix 3. Results from these percolation tests will be used in the design of infiltration galleries for the disposal of well water extracted during the multiple well pump tests

  1. Diffusion of test particles in stochastic magnetic fields in the percolative regime

    International Nuclear Information System (INIS)

    Neuer, Marcus; Spatschek, Karl H.

    2006-01-01

    For stochastic magnetic flux functions with percolative contours the test particle transport is investigated. The calculations make use of the stochastic Liouville approach. They start from the so-called A-Langevin equations, including stochastic magnetic field components and binary collisions. Using the decorrelation trajectory method, a relation between the Lagrangian velocity correlation function and the Eulerian magnetic field correlation is derived and introduced into the Green-Kubo formalism. Finite Larmor radius effects are included. Interesting results are presented in the percolation regime corresponding to high Kubo numbers. Previous results are found to be limiting cases for small Kubo numbers. For different percolative scenarios the diffusion is analyzed and strong influences of the percolative structures on the transport scaling are found. The finite Larmor radius effects are discussed in detail. Numerical simulations of the A-Langevin equation confirm the semianalytical predictions

  2. The selected models of the mesostructure of composites percolation, clusters, and force fields

    CERN Document Server

    Herega, Alexander

    2018-01-01

    This book presents the role of mesostructure on the properties of composite materials. A complex percolation model is developed for the material structure containing percolation clusters of phases and interior boundaries. Modeling of technological cracks and the percolation in the Sierpinski carpet are described. The interaction of mesoscopic interior boundaries of the material, including the fractal nature of interior boundaries, the oscillatory nature of it interaction and also the stochastic model of the interior boundaries’ interaction, the genesis, structure, and properties are discussed. One of part of the book introduces the percolation model of the long-range effect which is based on the notion on the multifractal clusters with transforming elements, and the theorem on the field interaction of multifractals is described. In addition small clusters, their characteristic properties and the criterion of stability are presented.

  3. Leveraging percolation theory to single out influential spreaders in networks

    Science.gov (United States)

    Radicchi, Filippo; Castellano, Claudio

    2016-06-01

    Among the consequences of the disordered interaction topology underlying many social, technological, and biological systems, a particularly important one is that some nodes, just because of their position in the network, may have a disproportionate effect on dynamical processes mediated by the complex interaction pattern. For example, the early adoption of a commercial product by an opinion leader in a social network may change its fate or just a few superspreaders may determine the virality of a meme in social media. Despite many recent efforts, the formulation of an accurate method to optimally identify influential nodes in complex network topologies remains an unsolved challenge. Here, we present the exact solution of the problem for the specific, but highly relevant, case of the susceptible-infected-removed (SIR) model for epidemic spreading at criticality. By exploiting the mapping between bond percolation and the static properties of the SIR model, we prove that the recently introduced nonbacktracking centrality is the optimal criterion for the identification of influential spreaders in locally tree-like networks at criticality. By means of simulations on synthetic networks and on a very extensive set of real-world networks, we show that the nonbacktracking centrality is a highly reliable metric to identify top influential spreaders also in generic graphs not embedded in space and for noncritical spreading.

  4. Inorganic arsenic removal in rice bran by percolating cooking water.

    Science.gov (United States)

    Signes-Pastor, Antonio J; Carey, Manus; Meharg, Andrew A

    2017-11-01

    Rice bran, a by-product of milling rice, is highly nutritious but contains very high levels of the non-threshold carcinogen inorganic arsenic (i-As), at concentrations around 1mg/kg. This i-As content needs to be reduced to make rice bran a useful food ingredient. Evaluated here is a novel approach to minimizing rice bran i-As content which is also suitable for its stabilization namely, cooking bran in percolating arsenic-free boiling water. Up to 96% of i-As removal was observed for a range of rice bran products, with i-As removal related to the volume of cooking water used. This process reduced the copper, potassium, and phosphorus content, but had little effect on other trace- and macro-nutrient elements in the rice bran. There was little change in organic composition, as assayed by NIR, except for a decrease in the soluble sugar and an increase, due to biomass loss, in dietary fiber. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Percolation on shopping and cashback electronic commerce networks

    Science.gov (United States)

    Fu, Tao; Chen, Yini; Qin, Zhen; Guo, Liping

    2013-06-01

    Many realistic networks live in the form of multiple networks, including interacting networks and interdependent networks. Here we study percolation properties of a special kind of interacting networks, namely Shopping and Cashback Electronic Commerce Networks (SCECNs). We investigate two actual SCECNs to extract their structural properties, and develop a mathematical framework based on generating functions for analyzing directed interacting networks. Then we derive the necessary and sufficient condition for the absence of the system-wide giant in- and out- component, and propose arithmetic to calculate the corresponding structural measures in the sub-critical and supercritical regimes. We apply our mathematical framework and arithmetic to those two actual SCECNs to observe its accuracy, and give some explanations on the discrepancies. We show those structural measures based on our mathematical framework and arithmetic are useful to appraise the status of SCECNs. We also find that the supercritical regime of the whole network is maintained mainly by hyperlinks between different kinds of websites, while those hyperlinks between the same kinds of websites can only enlarge the sizes of in-components and out-components.

  6. Influence maximization in complex networks through optimal percolation

    Science.gov (United States)

    Morone, Flaviano; Makse, Hernan; CUNY Collaboration; CUNY Collaboration

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. Reference: F. Morone, H. A. Makse, Nature 524,65-68 (2015)

  7. An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials

    Science.gov (United States)

    Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.

    2008-03-01

    This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.

  8. Ferromagnetic resonance investigation in permalloy magnetic antidot arrays on alumina nanoporous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Suárez, R.L., E-mail: rrodriguez@fis.puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Palma, J.L.; Burgos, E.O. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Michea, S. [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J.; Denardin, J.C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Aliaga, C. [Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago (Chile)

    2014-01-15

    The magnetic properties of Ni{sub 80}Fe{sub 20} antidot arrays with hole diameters of 18 and 70 nm fabricated by a template-assisted method were investigated using the ferromagnetic resonance technique. Tuning the antidot arrays by changing the hole diameter enables control on the angular dependence of the ferromagnetic resonance field. The scanning electron microscope images reveal a quite regular hexagonal arrangement of the pores, however the angular dependence of the resonance field do not exhibit the six-fold symmetry expected for this symmetry. Micromagnetic simulations performed on a perfect hexagonal lattice, when compared with those made on our real system taken from the scanning microscope images, reveal that the presence of defects in the antidot lattice affects the ferromagnetic resonance field symmetry. - Highlights: • We use the FMR technique to investigate the magnetic properties of Py antidots. • We studied the effect of pore diameter on FMR angular measurement. • FMR field does not exhibit the six-fold symmetry. • For all angular positions there are two resonance modes always present. • Micromagnetic simulations agree with the experimental results with defects.

  9. Note: Optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems

    Energy Technology Data Exchange (ETDEWEB)

    Moscicki, J. K.; Sokolowska, D.; Dziob, D.; Nowak, J. [Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Kwiatkowski, L. [Department of Econometrics and Operations Research, Cracow University of Economics, Rakowicka 27, 31-510 Krakow (Poland)

    2014-02-15

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  10. On Equivalence between Critical Probabilities of Dynamic Gossip Protocol and Static Site Percolation

    Science.gov (United States)

    Ishikawa, Tetsuya; Hayakawa, Tomohisa

    The relationship between the critical probability of gossip protocol on the square lattice and the critical probability of site percolation on the square lattice is discussed. Specifically, these two critical probabilities are analytically shown to be equal to each other. Furthermore, we present a way of evaluating the critical probability of site percolation by approximating the saturation of gossip protocol. Finally, we provide numerical results which support the theoretical analysis.

  11. Effective modelling of percolation at the landscape scale using data-based approaches

    Science.gov (United States)

    Selle, Benny; Lischeid, Gunnar; Huwe, Bernd

    2008-06-01

    Process-based models have been extensively applied to assess the impact of landuse change on water quantity and quality at landscape scales. However, the routine application of those models suffers from large computational efforts, lack of transparency and the requirement of many input parameters. Data-based models such as Feed-Forward Multilayer Perceptrons (MLP) and Classification and Regression Trees (CART) may be used as effective models, i.e. simple approximations of complex process-based models. These data-based approaches can subsequently be applied for scenario analysis and as a transparent management tool provided climatic boundary conditions and the basic model assumptions of the process-based models do not change dramatically. In this study, we apply MLP, CART and Multiple Linear Regression (LR) to model the spatially distributed and spatially aggregated percolation in soils using weather, groundwater and soil data. The percolation data is obtained via numerical experiments with Hydrus1D. Thus, the complex process-based model is approximated using simpler data-based approaches. The MLP model explains most of the percolation variance in time and space without using any soil information. This reflects the effective dimensionality of the process-based model and suggests that percolation in the study area may be modelled much simpler than using Hydrus1D. The CART model shows that soil properties play a negligible role for percolation under wet climatic conditions. However, they become more important if the conditions turn drier. The LR method does not yield satisfactory predictions for the spatially distributed percolation however the spatially aggregated percolation is well approximated. This may indicate that the soils behave simpler (i.e. more linear) when percolation dynamics are upscaled.

  12. Influence of the growth process on some laws deduced from percolation theory

    International Nuclear Information System (INIS)

    Hachi, M.; Olivier, G.

    1985-09-01

    A brutal application of the percolation theory to some physical problems can lead to erroneous interpretation of the experimental results. Among these problems, the influence of the growth process on the percolation laws is studied. The behaviour of nsub(s)(t), the number of clusters of size s, at time t, is analyzed and linked to a macroscopic property of the system for a comparison to experimental laws. (author)

  13. Percolation dans des reseaux realistes de nanostructures de carbone

    Science.gov (United States)

    Simoneau, Louis-Philippe

    versatility in the choice of network components that can be simulated. The tools we have developed, grouped together in the RPH-HPN software Reseaux percolatifs hybrides - Hybrid Percolation Networks, construct random networks, detect contact between the tubes, translate the systems to equivalent electrical circuits and calculate global properties. An infinity of networks can have the same basic characteristics (size, diameter, etc.) and therefore the properties of a particular random network are not necessarily representative of the average properties of all networks. To obtain those general properties, we simulate a large number of random networks with the same basic characteristics and the average of the quantities is determined. The network constituent elements can be spheres, rods or snakes. The use of such geometries for network elements makes contact detection simple and quick, and more faithfully reproduce the form of carbon nanotubes. We closely monitor the geometrical and electrical properties of these elements through stochastic distributions of our choice. We can choose the length, diameter, orientation, chirality, tortuosity and impenetrable nature of the elements in order to properly reproduce real networks characteristics. We have considered statistical distribution functions that are rectangular, Gaussian, and Lorentzian, but all other distributions that can be expressed mathematically can also be envisioned. During the creation of a particular network, we generate the elements one by one. Each of their properties is sampled from a preselected distribution. Efficient algorithms used in various fields were adapted to our needs to manage the detection of contacts, clusters and percolation. In addition, we model more realistic contact between rigid nanotubes using an original method used to create the network that does not require a relaxation phase. Finally, we use Kirchhoff's laws to solve the equivalent electrical circuit conventionally. First, we evaluated

  14. Tunnel barrier and noncollinear magnetization effects on shot noise in ferromagnetic/semiconductor/ferromagnetic heterojunctions

    International Nuclear Information System (INIS)

    An Xingtao; Liu Jianjun

    2008-01-01

    Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers

  15. Modelling characteristics of ferromagnetic cores with the influence of temperature

    International Nuclear Information System (INIS)

    Górecki, K; Rogalska, M; Zarȩbski, J; Detka, K

    2014-01-01

    The paper is devoted to modelling characteristics of ferromagnetic cores with the use of SPICE software. Some disadvantages of the selected literature models of such cores are discussed. A modified model of ferromagnetic cores taking into account the influence of temperature on the magnetizing characteristics and the core losses is proposed. The form of the elaborated model is presented and discussed. The correctness of this model is verified by comparing the calculated and the measured characteristics of the selected ferromagnetic cores.

  16. A method for measuring exchange stiffness in ferromagnetic films

    International Nuclear Information System (INIS)

    Girt, Erol; Huttema, W.; Montoya, E.; Kardasz, B.; Eyrich, C.; Heinrich, B.; Mryasov, O. N.; Dobin, A. Yu.; Karis, O.

    2011-01-01

    An exchange stiffness, A ex , in ferromagnetic films is obtained by fitting the M(H) dependence of two ferromagnetic layers antiferromagnetically coupled across a nonmagnetic spacer layer with a simple micromagnetic model. In epitaxial and textured structures this method allows measuring A ex between the crystallographic planes perpendicular to the growth direction of ferromagnetic films. Our results show that A ex between [0001] planes in textured Co grains is 1.54 ± 0.12 x 10 -11 J/m.

  17. Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction

    International Nuclear Information System (INIS)

    Tian Hong-Yu; Wang Jun

    2012-01-01

    We investigate the spin-dependent electron transport in single and double normal/ferromagnetic/normal zigzag graphene nanoribbon (NG/FG/NG) junctions. The ferromagnetism in the FG region originates from the spontaneous magnetization of the zigzag graphene nanoribbon. It is shown that when the zigzag-chain number of the ribbon is even and only a single transverse mode is actived, the single NG/FG/NG junction can act as a spin polarizer and/or a spin analyzer because of the valley selection rule and the spin-exchange field in the FG, while the double NG/FG/NG/FG/NG junction exhibits a quantum switching effect, in which the on and the off states switch rapidly by varying the cross angle between two FG magnetizations. Our findings may shed light on the application of magnetized graphene nanoribbons to spintronics devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Spin exchange between ion probes and localized moments in ferromagnets as the origin of transient fields

    International Nuclear Information System (INIS)

    Hagelberg, F.; Das, T.P.; Speidel, K.

    1993-01-01

    The transient field phenomenon has been ascribed to a polarization transfer between the electrons of the ionic projectiles and the surplus of majority spin electrons of the ferromagnetic host over the minority spin electrons. Earlier attempts to explain this crucial process failed to account for the order of magnitude of the experimentally observed transient field strengths. A recent model which proposes spin exchange scattering between bound projectile electrons and quasifree host electrons as the mechanism of polarization transfer arrives at the correct orders of magnitude but is in conflict with the weak velocity dependence of the experimental polarization, exhibiting a strongly decreasing behavior with increasing velocity. The new model presented here proposes spin exchange between the ionic shell and localized electrons of the ferromagnet as a more adequate approach to the problem. It is shown that calculations involving hydrogenlike ions explain the size of the experimentally observed polarization effects as well as their velocity dependence for various ion probes traversing thin iron foils

  19. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui

    2014-03-01

    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  20. Tunneling density of states as a function of thickness in superconductor/ strong ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Reymond, S.

    2010-04-29

    We have made an experimental study of the tunneling density of states (DOS) in strong ferromagnetic thin films (CoFe) in proximity with a thick superconducting film (Nb) as a function of d{sub F}, the ferromagnetic thickness. Remarkably, we find that as d{sub F} increases, the superconducting DOS exhibits a scaling behavior in which the deviations from the normal-state conductance have a universal shape that decreases exponentially in amplitude with characteristic length d* {approx} 0.4 nm. We do not see oscillations in the DOS as a function of d{sub F}, as expected from predictions based on the Usadel equations, although an oscillation in T{sub c}(d{sub F}) has been seen in the same materials.

  1. Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals

    Science.gov (United States)

    Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li

    2018-04-01

    Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.

  2. Deep percolation in greenhouse-cultivated celery using the technique of subsurface film strips placement

    Directory of Open Access Journals (Sweden)

    Zhida Du

    2014-05-01

    Full Text Available To reduce the deep percolation during greenhouse vegetable cultivation, the technique of subsurface film strips placement was tested. Four treatments with two kinds of cross-sections (flat and U-shaped and two different spacings (10 cm and 40 cm of subsurface film strips were arranged in a greenhouse before planting celery. At the same time, a non-film treatment was arranged for comparison. Soil water content was measured and irrigation time was adjusted according to the soil water content. Evapotranspiration of celery during growth was calculated by the method of energy balance and the deep percolation was calculated by the equation of water balance. Deep percolation was reduced in all experimental treatments. Greater reduction in deep percolation was observed when using U-shaped cross-section strips compared with that using the flat cross-section strips. In addition, greater reduction in deep percolation was observed when the spacing between the film strips was smaller. The results of this test showed that the technique of subsurface film strips placement can reduce deep percolation and conserve irrigation water for greenhouse vegetables cultivation. However, the optimal layout variables for the use of the technique of subsurface film strips placement need further experimental and numerical analysis.

  3. Monte Carlo simulations of electrical percolation in multicomponent thin films with nanofillers

    Science.gov (United States)

    Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Jiang, Wei; Liu, Feng

    2018-02-01

    We developed a 2D disk-stick percolation model to investigate the electrical percolation behavior of an insulating thin film reinforced with 1D and 2D conductive nanofillers via Monte Carlo simulation. Numerical predictions of the percolation threshold in single component thin films showed good agreement with the previous published work, validating our model for investigating the characteristics of the percolation phenomena. Parametric studies of size effect, i.e., length of 1D nanofiller and diameter of 2D nanofiller, were carried out to predict the electrical percolation threshold for hybrid systems. The relationships between the nanofillers in two hybrid systems was established, which showed differences from previous linear assumption. The effective electrical conductance was evaluated through Kirchhoff’s current law by transforming it into a resistor network. The equivalent resistance was obtained from the distribution of nodal voltages by solving a system of linear equations with a Gaussian elimination method. We examined the effects of stick length, relative concentration, and contact patterns of 1D/2D inclusions on electrical performance. One novel aspect of our study is its ability to investigate the effective conductance of nanocomposites as a function of relative concentrations, which shows there is a synergistic effect when nanofillers with different dimensionalities combine properly. Our work provides an important theoretical basis for designing the conductive networks and predicting the percolation properties of multicomponent nanocomposites.

  4. Fibrillar organization in tendons: A pattern revealed by percolation characteristics of the respective geometric network

    Directory of Open Access Journals (Sweden)

    Daniel Andres Dos Santos

    2014-06-01

    Full Text Available Since the tendon is composed by collagen fibrils of various sizes connected between them through molecular cross-links, it sounds logical to model it via a heterogeneous network of fibrils. Using cross sectional images, that network is operatively inferred from the respective Gabriel graph of the fibril mass centers. We focus on network percolation characteristics under an ordered activation of fibrils (progressive recruitment going from the smallest to the largest fibril. Analyses of percolation were carried out on a repository of images of digital flexor tendons obtained from samples of lizards and frogs. Observed percolation thresholds were compared against values derived from hypothetical scenarios of random activation of nodes. Strikingly, we found a significant delay for the occurrence of percolation in actual data. We interpret this finding as the consequence of some non-random packing of fibrillar units into a size-constrained geometric pattern. We erect an ideal geometric model of balanced interspersion of polymorphic units that accounts for the delayed percolating instance. We also address the circumstance of being percolation curves mirrored by the empirical curves of stress-strain obtained from the same studied tendons. By virtue of this isomorphism, we hypothesize that the inflection points of both curves are different quantitative manifestations of a common transitional process during mechanical load transference.

  5. Room temperature ferromagnetism in ZnO prepared by microemulsion

    Directory of Open Access Journals (Sweden)

    Qingyu Xu

    2011-09-01

    Full Text Available Clear room temperature ferromagnetism has been observed in ZnO powders prepared by microemulsion. The O vacancy (VO clusters mediated by the VO with one electron (F center contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism. Annealing in H2 incorporated interstitial H (Hi in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.

  6. AC and DC electrical behavior of MWCNT/epoxy nanocomposite near percolation threshold: Equivalent circuits and percolation limits

    Science.gov (United States)

    Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser

    2018-03-01

    This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.

  7. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  8. Magnetic enhancement of ferroelectric polarization in a self-grown ferroelectric-ferromagnetic composite

    Science.gov (United States)

    Kumar, Amit; Narayan, Bastola; Pachat, Rohit; Ranjan, Rajeev

    2018-02-01

    Ferroelectric-ferromagnetic multiferroic composites are of great interest both from the scientific and technological standpoints. The extent of coupling between polarization and magnetization in such two-phase systems depends on how efficiently the magnetostrictive and electrostrictive/piezoelectric strain gets transferred from one phase to the other. This challenge is most profound in the easy to make 0-3 ferroelectric-ferromagnetic particulate composites. Here we report a self-grown ferroelectric-ferromagnetic 0-3 particulate composite through controlled spontaneous precipitation of ferrimagnetic barium hexaferrite phase (BaF e12O19 ) amid ferroelectric grains in the multiferroic alloy system BiFe O3-BaTi O3 . We demonstrate that a composite specimen exhibiting merely ˜1% hexaferrite phase exhibits ˜34% increase in saturation polarization in a dc magnetic field of ˜10 kOe. Using modified Rayleigh analysis of the polarization field loop in the subcoercive field region we argue that the substantial enhancement in the ferroelectric switching is associated with the reduction in the barrier heights of the pinning centers of the ferroelectric-ferroelastic domain walls in the stress field generated by magnetostriction in the hexaferrite grains when the magnetic field is turned on. Our study proves that controlled precipitation of the magnetic phase is a good strategy for synthesis of 0-3 ferroelectric-ferromagnetic particulate multiferroic composite as it not only helps in ensuring a good electrical insulating character of the composite, enabling it to sustain high enough electric field for ferroelectric switching, but also the factors associated with the spontaneity of the precipitation process ensure efficient transfer of the magnetostrictive strain/stress to the surrounding ferroelectric matrix making domain wall motion easy.

  9. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    Science.gov (United States)

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were

  10. Do diatoms percolate through soil and can they be used for tracing the origin of runoff?

    Science.gov (United States)

    De Graaf, Lenka; Cammeraat, Erik; Pfister, Laurent; Wetzel, Carlos; Klaus, Julian; Hissler, Christophe

    2015-04-01

    Tracers are widely used to study the movement of water in a catchment. Because of depletion of scientific possibilities with most common tracer types, we proposed the use of diatoms as a natural tracer. Paradoxical results on the contribution of surface runoff to the storm hydrograph were obtained in pioneer research on this idea. Diatom transport via the subsurface flow to the stream would explain this paradox. Prerequisite for this is vertical transport of diatoms through soils, which is the topic of this study. Emphasis is on percolation behavior (speed of percolation, speed of percolation over time, and species distribution) of Pseudostaurosira sp. and Melosira sp. (Bacillariophyceae) through undisturbed soil columns of contrasting substrates. Co-objective is to study the flowpaths of water through the soil columns. Natural undisturbed soil columns were sampled in the Attert basin (Luxembourg) on schist, marl and sandstone substrates. Rain simulation experiments were performed to study vertical diatom transport. Rhodamine dye experiments were carried out to gain insight in the active flowpaths of water, and breakthrough experiments were performed to study the responses of the soil columns to applied water. Diatoms were transported through the soil columns of the three substrates. A vast majority of diatom percolation took place within the first 15 minutes, percolation hereafter was marginal but nevertheless present. Peaks in diatom percolation corresponded with a high flux caused by the addition of the diatom culture, but seepage of diatoms along the sides is unlikely according to the species distribution and the rhodamine dye experiment. Pseudostaurosira sp. percolated significantly better than Melosira sp. Significantly more diatoms percolated through the marl columns compared to the schist columns and variance within the sandstone group was very high. Absolute differences between substrates however, were marginal. Most preferential flowpaths were observed in

  11. Leaders of neuronal cultures in a quorum percolation model

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Eckmann

    2010-09-01

    Full Text Available We present a theoretical framework using quorum-percolation for describing the initiation of activity in a neural culture. The cultures are modeled as random graphs, whose nodes are neurons with $kin$ inputs and $kout$ outputs, and whose input degrees $kin=k$ obey given distribution functions $p_k$. We examine the firing activity of the population of neurons according to their input degree ($k$ classes and calculate for each class its firing probability $Phi_k(t$ as a function of $t$. The probability of a node to fire is found to be determined by its in-degree $k$, and the first-to-fire neurons are those that have a high $k$. A small minority of high-$k$ classes may be called ``Leaders,'' as they form an inter-connected subnetwork that consistently fires much before the rest of the culture. Once initiated, the activity spreads from the Leaders to the less connected majority of the culture. We then use the distribution of in-degree of the Leaders to study the growth rate of the number of neurons active in a burst, which was experimentally measured to be initially exponential. We find that this kind of growth rate is best described by a population that has an in-degree distribution that is a Gaussian centered around $k=75$ with width $sigma=31$ for the majority of the neurons, but also has a power law tail with exponent $-2$ for ten percent of the population. Neurons in the tail may have as many as $k=4,700$ inputs. We explore and discuss the correspondence between the degree distribution and a dynamic neuronal threshold, showing that from the functional point of view, structure and elementary dynamics are interchangeable. We discuss possible geometric origins of this distribution, and comment on the importance of size, or of having a large number of neurons, in the culture.

  12. Multi-Type Directed Scale-Free Percolation

    International Nuclear Information System (INIS)

    Shang Yilun

    2012-01-01

    In this paper, we study a long-range percolation model on the lattice ℤ d with multi-type vertices and directed edges. Each vertex x in ℤ d is independently assigned a non-negative weight W x and a type ψ x , where (W x ) xinℤ d are i.i.d. random variables, and (ψ x ) xinℤ d are also i.i.d. Conditionally on weights and types, and given λ, α > 0, the edges are independent and the probability that there is a directed edge from x to y is given by p xy = 1 - exp(-λφ ψ x ψ y W x W y /|x-y| α ), where φ ij 's are entries from a type matrix Φ. We show that, when the tail of the distribution of W x is regularly varying with exponent τ - 1, the tails of the out/in-degree distributions are both regularly varying with exponent γ = α(τ - 1)/d. We formulate conditions under which there exist critical values λ c WCC in (0, ∞) and λ c SCC in (0, ∞) such that an infinite weak component and an infinite strong component emerge, respectively, when λ exceeds them. A phase transition is established for the shortest path lengths of directed and undirected edges in the infinite component at the point γ = 2, where the out/in-degrees switch from having finite to infinite variances. The random graph model studied here features some structures of multi-type vertices and directed edges which appear naturally in many real-world networks, such as the SNS networks and computer communication networks. (condensed matter: structural, mechanical, and thermal properties)

  13. Magnetic microstructure of nanocrystalline ferromagnets and nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.; Wagner, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kostorz, G. [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Wiedenmann, A. [HMI Berlin (Germany)

    1997-09-01

    Magnetic small-angle neutron scattering measurements were performed on nanostructured ferromagnetic materials on the basis of Fe, Ni and Co, produced preferentially by the inert-gas condensation technique, with the aim to determine the magnetic microstructure of mesoscopic small-particle systems. (author) 1 fig., 3 refs.

  14. Competing ferromagnetic and anti-ferromagnetic interactions in iron nitride ζ-Fe2N

    Science.gov (United States)

    Rao, K. Sandeep; Salunke, H. G.

    2018-03-01

    The paper discusses the magnetic state of zeta phase of iron nitride viz. ζ-Fe2N on the basis of spin polarized first principles electronic structure calculations together with a review of already published data. Results of our first principles study suggest that the ground state of ζ-Fe2N is ferromagnetic (FM) with a magnetic moment of 1.528μB on the Fe site. The FM ground state is lower than the anti-ferromagnetic (AFM) state by 8.44 meV and non-magnetic (NM) state by 191 meV per formula unit. These results are important in view of reports which claim that ζ-Fe2N undergoes an AFM transition below 10 K and others which do not observe any magnetic transition up to 4.2 K. We argue that the experimental results of AFM transition below 10 K are inconclusive and we propose the presence of competing FM and AFM superexchange interactions between Fe sites mediated by nitrogen atoms, which are consistent with Goodenough-Kanamori-Anderson rules. We find that the anti-ferromagnetically coupled Fe sites are outnumbered by ferromagnetically coupled Fe sites leading to a stable FM ground state. A Stoner analysis of the results also supports our claim of a FM ground state.

  15. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  16. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    KAUST Repository

    Akosa, Collins A.

    2016-12-07

    In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.

  17. The generalized spherical model of ferromagnetic films

    International Nuclear Information System (INIS)

    Costache, G.

    1977-12-01

    The D→ infinity of the D-vectorial model of a ferromagnetic film with free surfaces is exactly solved. The mathematical mechanism responsible for the onset of a phase transition in the system is a generalized sticking phenomenon. It is shown that the temperature at which the sticking appears, the transition temperature of the model is monotonously increasing with increasing the number of layers of the film, contrary to what happens in the spherical model with overall constraint. Certain correlation inequalities of Griffiths type are shown to hold. (author)

  18. Ferromagnetic film on a superconducting substrate

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2001-01-01

    We study the equilibrium domain structure and magnetic flux around a ferromagnetic film with perpendicular magnetization M{sub 0} on a superconducting (SC) substrate. At 4{pi}M{sub 0}>1; {lambda}{sub L} being the London penetration length.

  19. Ferromagnetic film on a superconducting substrate

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2001-01-01

    We study the equilibrium domain structure and magnetic flux around a ferromagnetic film with perpendicular magnetization M 0 on a superconducting (SC) substrate. At 4πM 0 c1 the SC is in the Meissner state and the equilibrium domain width in the film, l, scales as (l/4πλ L )=(l N /4πλ L ) 2/3 with the domain width on a normal (nonsuperconducting) substrate, l N /4πλ L >>1; λ L being the London penetration length

  20. Ferromagnetic Film on a Superconducting Substrate

    OpenAIRE

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2000-01-01

    We study the equilibrium domain structure and magnetic flux around a ferromagnetic (FM) film with perpendicular magnetization M_0 on a superconducting (SC) substrate. At 4{\\pi}M_0> 1. Here \\lambda_L is the London penetration length. For 4{\\pi}M_0 > H_{c1} and l_{N} in excess of about 35 {\\lambda}_{L}, the domains are connected by SC vortices. We argue that pinning of vortices by magnetic domains in FM/SC multilayers can provide high critical currents.

  1. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  2. Itinerant ferromagnetism in the narrow band limit

    CERN Document Server

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  3. Carbon Nanotubes Filled with Ferromagnetic Materials

    Science.gov (United States)

    Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd

    2010-01-01

    Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology. PMID:28883334

  4. Eddy current inspection of mildly ferromagnetic tubing

    International Nuclear Information System (INIS)

    Mayo, W.R.; Carter, J.R.

    1984-02-01

    The past decade has seen the development of eddy current probes for inspection of the mildly ferro-magnetic alloy Monel 400. Due to the rapid advances in permanent magnet technology similar probes have been upgraded to magnetically saturate, and hence inspect, the duplex stainless steel Sandvik 3RE60, which has saturation induction more than twice that of Monel 400. Prototypes of these probes have been tested in three ways: saturation capability, quality of typical eddy current data, and ability to eliminate permeability induced signals. Successful laboratory testing, potential applications, and limitations of these type probes are discussed

  5. Excitation spectrum of ferromagnetic xxz-chains

    International Nuclear Information System (INIS)

    Schneider, T.; Stoll, E.

    1983-01-01

    In the history of xxz-Heisenberg spin chains, understanding of the dynamic form factors (DFF) is much less advanced. In this paper the DFF of ferromagnetic xxz chains as a tool to probe and interpret excitation spectrum is reviewed. The Isingheisenberg chain, and the Planar-Heisenberg chain (where HF approximations become exact) are studied. The results provide instructive connections between spin systems, interacting fermions and bosons. Various new aspects--thermally induced bound state effects in terms of central peaks in DFF for Isinglike xxz chains; the possibility to observe bound states in S /SUB zz/ (q,w) accessible by neutron scattering techniques, in the planar system--are found

  6. Spin transport in ferromagnetically contacted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Exhibition

    CERN Multimedia

    Staff Association

    2014-01-01

    Energie sombre, matière noire J.-J. Dalmais - J. Maréchal Du 11 au 27 novembre 2014, CERN Meyrin, Bâtiment principal A l’image des particules atomiques qui ont tissé des liens pour créer la matière, deux artistes haut bugistes croisent leurs regards et conjuguent leurs expressions singulières pour faire naître une vision commune de l’univers, produit des forces primordiales. Les sculptures de Jean-Jacques Dalmais et les peintures de Jacki Maréchal se rencontrent pour la première fois et se racontent par un enrichissement mutuel la belle histoire de la Vie. Dialogue magique des œuvres en mouvement qui questionnent en écho l’énergie sombre et la matière noire. Cette harmonieuse confluence de jeux de miroir et de résonnance illumine de poésie et de sobriété l’espace expos&...

  8. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Gaïa Manuella Cany Du 10 au 28 avril 2017 CERN Meyrin, Bâtiment principal Oiseau - Manuella Cany. Tableaux abstraits inspirés de vues satellites ou photos prises du ciel. Certains sont à la frontière du figuratif alors que d'autres permettent de laisser libre cours à son imagination. Aux détails infinis, ces tableaux sont faits pour être vus de loin et de près grâce à une attention toute particulière apportée aux effets de matières et aux couleurs le long de volutes tantôt nuancées tantôt contrastées.   Pour plus d’informations : staff.association@cern.ch | Tél: 022 766 37 38

  9. Exhibition

    CERN Document Server

    Staff Association

    2018-01-01

    En dehors des frontières Maxence Piquet Du 2 au 11 mai 2018 | CERN Meyrin, Bâtiment principal Exposition de peinture d'un artiste autodidacte Maxence Piquet (signature artiste M-P), avec différentes techniques (acrylique, huile, fusain, collage...) et sur différents supports. Un art souvent brut et parfois provoquant, avec des touches expressionnistes et cubistes principale origine de son art. Des œuvres souvent vivent et colorées... Cette exposition est la première en dehors d ses frontières Lorraine et a pour but de faire voyager son art au regard du plus grand nombre . Pour plus d’informations et demandes d’accès : staff.association@cern.ch | Tél: 022 766 37 38

  10. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    The Elementary Particles of Painting Alfonso Fratteggiani Bianchi and Ermanno Imbergamo From September 26 to October 7, 2016 CERN Meyrin, Main Building With intentions similar to those of CERN physicists, the artist Alfonso Fratteggiani Bianchi investigates the color pigment, studying its interaction with light and with the support on which it is deposited. He creates monochrome paintings by spreading the color pigment in the pure state on stones, without using glue or any other type of adhesive. With intentions similar to artists, the physicist Ermanno Imbergamo investigates the use of luminescent wavelength shifters, materials commonly used in Particle Physics, for art. He creates other monochrome artworks, which disclose further aspects of interaction among light, color pigments and support. For more information: staff.association@cern.ch | Tel: 022 767 28 19

  11. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    COLORATION Sandra Duchêne From September 5 to 16, 2016 CERN Meyrin, Main Building La recherche de l’Universel. Après tout ! C’est de l’Amour ! What else to say ? …La couleur, l’ENERGIE de la vie…

  12. Exhibition

    CERN Multimedia

    Staff Association

    2014-01-01

      Parallels vision Astronomical subjects which evoke extrasensory kinetic visions Alberto Di Fabio From 8 to 10 October, CERN Meyrin, Main Building In the framework of Italy@cern, the Staff Association presents Alberto Di Fabio. Di Fabio’s work is inspired by the fundamental laws of the physical world, as well as organic elements and their interrelation. His paintings and works on paper merge the worlds of art and science, depicting natural forms and biological structures in vivid colour and imaginative detail. For all additional information: staff.association@cern.ch | Tel: 022 767 28 19

  13. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Le Point Isabelle Gailland Du 20 février au 3 mars 2017 CERN Meyrin, Bâtiment principal La Diagonale - Isabelle Gailland. Au départ, un toujours même point minuscule posé au centre de ce que la toile est un espace. Une réplique d'autres points, condensés, alignés, isolés, disséminés construiront dans leur extension, la ligne. Ces lignes, croisées, courbées, déviées, prolongées, seront la structure contenant et séparant la matière des couleurs. La rotation de chaque toile en cours d'exécution va offrir un accès illimité à la non-forme et à la forme. Le point final sera l'ouverture sur différents points de vue de ce que le point et la ligne sont devenus une représentation pour l'œil et l'im...

  14. Exhibition

    CERN Multimedia

    Staff Association

    2018-01-01

    La danse mécanique Daria Grigoryeva Du 22 mai au 1er juin 2018 | CERN Meyrin, Bâtiment principal La danse mécanique est une métaphore large. La mécanique établit les règles et les limites, les frontières dans lesquelles la vie et la créativité peuvent se développer. La musique est « mathématique », une poupée mécanique se tourne toujours dans la même direction, selon les règles prescrites par la nature les fleurs fleurissent au printemps. Même s'ils ne le voulaient pas. La participation à la "danse mécanique" est prédéterminée et inévitable. Il ne reste plus qu'à comprendre comment le faire "magnifiquement". En tout, il y a une signification cachée et un...

  15. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Still Life Jérémy Bajulaz Du 25 septembre au 6 octobre 2017 CERN Meyrin, Main Building (Aubergine - Jérémy Bajulaz) Né en 1991 en Haute-Savoie, France. Diplômé de l'Ecole Emile Cohl à Lyon, Jérémy Bajulaz intègre en 2014 le programme d'artiste en résidence au Centre Genevois de Gravure Contemporaine. C'est là que son travail prendra corps, autour de la lumière et de ses vibrations aux travers de sujets comme le portrait et la nature morte, dans le souci de l'observation; le regard prenant une place importante dans le processus créatif. Lauréat 2017 du VII Premio AAAC, son travail a été présenté dans de nombreuses expositions collectives, en 2015 au Bâtiment d’Art Contemporain de Genève, en 2016 au 89e Salon de Lyon et du ...

  16. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Œuvres recentes Fabienne Wyler Du 6 au 17 février 2017 CERN Meyrin, Bâtiment principal L'escalier du diable B - aquarelle, encre de Chine XLV - Fabienne Wyler. En relation avec certains procédés d’écriture contemporaine (par ex. Webern ou certaines musiques conçues par ordinateur), les compositions picturales de Fabienne Wyler s’élaborent à partir de « modules » (groupes de quadrangles) qu’elle reproduit en leur faisant subir toutes sortes de transformations et de déplacements : étirements, renversements, rotations, effet miroir, transpositions, déphasages, superpositions, etc., et ceci à toutes les échelles. Au fil des œuvres sont apparues des séries intitulées, Bifurcations, Intermittences, Attracteurs étranges, Polyrythmies. Ces titres ont un lien &e...

  17. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Les vibrantes Patrick Robbe-Grillet Du 30 octobre au 10 novembre 2017 CERN Meyrin, Main Building Patrick Robbe-Grillet - Feux d'artifices Qui est Patrick Robbe-Grillet ? Artiste Franco-Suisse, né en 1968 à Genève. En recherche du sentiment de paix, autodidacte, après un séjour en Chine en 2000, puis au Japon en 2002, suivi d’un long questionnement, il trouve sa voie dans la peinture, élément libérateur de sa créativité et expression de sa sensibilité à fleur de peau. « La Chine m’a enseigné les courbes, les nuances. Le Japon, la ligne droite, la rigueur. » Vous avez su rendre visible l'invisible ! - commentaire de Monsieur Fawaz Gruosi Pour plus d’informations et demandes d’accès : staff.association@cern.ch | Tél : 022 766 37 38

  18. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    La couleur des jours oriSio Du 2 au 12 mai 2017 CERN Meyrin, Bâtiment principal oriSio - Motus Suite à un fort intérêt pour la Chine et une curiosité pour un médium très ancien, la laque ! Je réinterprète cet art à travers un style abstrait. Je présente ici des laques sur aluminium, travaillés au plasma et ensuite colorés à l’aide de pigments pour l’essentiel. Mes œuvres je les veux brutes, déchirées, évanescentes, gondolées, voire trouées mais avec une belle approche de profondeur de la couleur.   Pour plus d’informations : staff.association@cern.ch | Tél: 022 766 37 38

  19. Exhibition

    CERN Multimedia

    Staff Association

    2011-01-01

    Jan Hladky, physicien de l'Institut de Physique de l'Académie des Sciences de la République tchèque, et membre de la collaboration Alice, expose ses œuvres au Bâtiment principal du 20 avril au 6 mai. Son exposition est dédiée aux victimes du séisme de Sendai. Des copies de ses œuvres seront mises en vente et les sommes récoltées seront versées au profit des victimes.

  20. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    La mosaïque ou quand détruire permet de construire Lauren Decamps Du 28 novembre au 9 décembre 2016 CERN Meyrin, Bâtiment principal Paysage d'Amsterdam - Lauren Decamps On ne doit jamais rien détruire qu'on ne soit sûr de pouvoir remplacer aussi avantageusement " écrivait Plutarque dans ses Œuvres morales du 1er siècle après JC. L'artiste mosaïste Lauren Decamps adhère à cette idée et tente à sa manière de donner une nouvelle vie à ses matériaux en les taillant puis les réassemblant, créant ainsi des œuvres abstraites et figuratives.

  1. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Firmament des toiles Joëlle Lalagüe Du 6 au 16 juin 2017 CERN Meyrin, Bâtiment principal Phylaë Voyage - Joëlle Lalagüe. Each picture is an invitation for a cosmic trip. This is a whispering of soul, which comes from origins. A symphony of the world, some notes of love, a harmony for us to fly to infinity. Pour plus d’informations et demandes d'accès : staff.association@cern.ch | Tél: 022 766 37 38

  2. Exhibition

    CERN Multimedia

    Staff Association

    2018-01-01

    Univers Du 9 au 20 avril 2018 | CERN Meyrin, Bâtiment principal Stéphanie Cousin Obsédée par les rêves, les mondes surréalistes et insolites, je m’empare de formes provenant des mes propres travaux photographiques ou d’images que je modifie et mixe. Je fais évoluer mes univers oniriques de femmes-animaux ainsi que mes espaces et natures imaginaires. Avec ma démarche artistique, je cherche à mettre en images nos rêves et nos cauchemars, l’irréel et le surréel, le mystique et les affres de notre inconscient. Je cherche à représenter tout ce qui sommeille au plus profond de nous-même à l’aide de symboles, parfois en utilisant des images de cultures ancestrales. Photographie-collage, je cherche à ajouter quelques notes à la définition de la photographie du 21iè...

  3. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Harmonie Nathalie Lenoir Du 4 au 15 septembre 2017 CERN Meyrin, Bâtiment principal Peindre est un langage. Le tracé du pinceau sur le lin en est l'expression. A qui appartient un tableau en définitive ? A celui qui l'a peint ? A celui qui le regarde ? A celui qui l'emporte ? La peinture est une émotion partagée... Laissez-vous projeter de l'autre côté de la toile, prenez un moment pour rêver, en harmonie avec les éléments, parce-que la peinture parle à votre âme… Pour plus d’informations et demandes d’accès : staff.association@cern.ch | Tél : 022 766 37 38

  4. Exhibition

    CERN Multimedia

    Staff Association

    2018-01-01

    Cosmos KOLI Du 15 au 26 janvier 2018 CERN Meyrin, Main Building (Nébuleuse d'Orion- KOLI) KOLI, Artiste confirmé, diplômé de l’Académie de Beaux Arts de Tirana, depuis 26 ans en Suisse, où il a participé à maintes expositions collectives et organisé 10 expositions privées avec  beaucoup de succès, s’exprime actuellement dans un bonheur de couleur et de matières qui côtoient des hautes sphères… le cosmos ! Gagnant d’un premier prix lors d’une exposition collective organisée par le consulat Italien, il s’est installé au bord du lac dans le canton de Vaud où il vit depuis maintenant déjà 13 ans. www.kolicreation.com Pour plus d’informations et demandes d’accès : staff.association@cern.ch | T&eacut...

  5. Exhibition at the AAA library

    DEFF Research Database (Denmark)

    2013-01-01

    Sonnesgade 11 The exhibition at the AAA library presents selected work produced by students prior to the exhibition of installations in project and praxis constructing an archive at Sonnesgade 11. The exhibition at Sonnesgade 11 was the culmination of collaboration with SLETH architects and studio...

  6. Nonlinear wave propagation through a ferromagnet with damping in ...

    Indian Academy of Sciences (India)

    magnetic waves in a ferromagnet can be reduced to an integro-differential equation. Keywords. Solitons; integro-differential equations; reductive perturbation method. PACS Nos 41.20 Jb; 05.45 Yv; 03.50 De; 78.20 Ls. 1. Introduction. The phenomenon of propagation of electromagnetic waves in ferromagnets are not only.

  7. Levitation properties of maglev systems using soft ferromagnets

    Science.gov (United States)

    Huang, Chen-Guang; Zhou, You-He

    2015-03-01

    Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.

  8. Spin Heat Accumulation Induced by Tunneling from a Ferromagnet

    NARCIS (Netherlands)

    Vera-Marun, I.J.; Wees, B.J. van; Jansen, R.

    2014-01-01

    An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the

  9. Modelling the power losses in the ferromagnetic materials

    Directory of Open Access Journals (Sweden)

    Detka Kalina

    2017-07-01

    Full Text Available In this paper, the problem of describing power losses in ferromagnetic materials is considered. The limitations of Steinmetz formula are shown and a new analytical description of losses in a considered material is proposed. The correctness of the developed description is demonstrated experimentally by comparing the results of calculation with the catalogue characteristics for different ferromagnetic materials.

  10. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  11. Electrical percolation in the presence of attractive interactions: An effective medium lattice approach applied to microemulsion systems

    Science.gov (United States)

    Hattori, Y.; Ushiki, H.; Engl, W.; Courbin, L.; Panizza, P.

    2005-08-01

    Within the framework of an effective medium approach and a mean-field approximation, we present a simple lattice model to treat electrical percolation in the presence of attractive interactions. We show that the percolation line depends on the magnitude of interactions. In 2 dimensions, the percolation line meets the binodal line at the critical point. A good qualitative agreement is observed with experimental results on a ternary AOT-based water-in-oil microemulsion system.

  12. Giant proximity effect in ferromagnetic bilayers

    Science.gov (United States)

    Ramos, Silvia; Charlton, Tim; Quintanilla, Jorge; Suter, Andreas; Moodera, Jagadeesh; Prokscha, Thomas; Salman, Zaher; Forgan, Ted

    2013-03-01

    The proximity effect is a phenomenon where an ordered state leaks from a material into an adjacent one over some finite distance, ξ. For superconductors, this distance is ~ the coherence length. Nevertheless much longer-range, ``giant'' proximity effects have been observed in cuprate junctions. This surprising effect can be understood as a consequence of critical opalescence. Since this occurs near all second order phase transitions, giant proximity effects should be very general and, in particular, they should be present in magnetic systems. The ferromagnetic proximity effect has the advantage that its order parameter (magnetization) can be observed directly. We investigate the above phenomenon in Co/EuS bilayer films, where both materials undergo ferromagnetic transitions but at rather different temperatures (bulk TC of 1400K for Co and 16.6K for EuS). A dramatic increase in the range of the proximity effect is expected near the TC of EuS. We present the results of our measurements of the magnetization profiles as a function of temperature, carried out using the complementary techniques of low energy muon rotation and polarized neutron reflectivity. Work supported by EPSRC, STFC and ONR grant N00014-09-1-0177 and NSF grant DMR 0504158.

  13. Titanium nitride room-temperature ferromagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Iu.G., E-mail: morozov@ism.ac.ru [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belyakov, O.A. [Ogarev Mordovia State University, Saransk, 68 Bol' shevistskaya Street, 430005 (Russian Federation); Parkin, I.P., E-mail: i.p.parkin@ucl.ac.uk [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Sathasivam, S. [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia (EMERCOM), 7 Davidkovskaya Street, Moscow, 121352 (Russian Federation)

    2016-08-05

    Cubic and near-spherical TiN nanoparticles ranging in average size from 20 to 125 nm were prepared by levitation-jet aerosol synthesis through condensation of titanium vapor in an inert gas flow with gaseous nitrogen injection. The nanoparticles were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET measurements, UV–Vis, FT-IR, Raman spectroscopy, XPS, and vibrating-sample magnetometry. Room-temperature ferromagnetism with maximum magnetization up to 2.5 emu/g was recorded for the nanoparticles. The results indicate that the observed ferromagnetic ordering was related to the defect Ti–N structures on the surface of nanoparticles. This suggestion is in good correlation with the measured spectroscopical data. - Highlights: • Levitation-jet aerosol synthesis of TiN nanoparticles (NPs). • SEM, XRD, BET, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between optical and XPS measurements data and maximum magnetization of the NPs.

  14. Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix composite as a function of relative particle size

    Science.gov (United States)

    Barbero, Ever J.; Bedard, Antoine Joseph

    2018-04-01

    Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.

  15. CO2 injection into fractured peridotites: a reactive percolation experiment

    Science.gov (United States)

    Escario, S.; Godard, M.; Gouze, P.; Leprovost, R.; Luquot, L.; Garcia-Rios, M.

    2017-12-01

    Mantle peridotites have the potential to trap CO2 as carbonates. This process observed in ophiolites and in oceanic environments provides a long term and safe storage for CO2. It occurs as a part of a complex suite of fluid-rock reactions involving silicate dissolution and precipitation of hydrous phases, carbonates and minor phases that may in turn modify the hydrodynamic properties and the reactivity of the reacted rocks. The efficiency and lastingness of the process require the renewal of fluids at the mineral-fluid interface. Fractures are dominant flow paths in exhumed mantle sections. This study aims at better understanding the effect of CO2-enriched saline fluids on hydrodynamic and chemical processes through fractured peridotites. Experiments were performed using the reactive percolation bench ICARE Lab 3 - Géosciences Montpellier. It allows monitoring the permeability changes during experiments. Effluents are recurrently sampled for analysing cation concentration, pH and alkalinity. Reacted rock samples were characterized by high resolution X-ray microtomography (ESRF ID19, Grenoble, France) and SEM. Experiments consisted in injecting CO2-enriched brines (NaCl 0.5 M) at a rate of 6 mL.h-1 into artificially fractured cores (9 mm diameter × 20 mm length) of Oman harzburgites at T=170°C and Ptotal = 25 MPa for up to 2 weeks. Fractures are of few µm apertures with rough walls. Three sets of experiments were performed at increasing value of [CO2] (0, 0.1 and 1 mol/kg). All experiments showed a decrease in permeability followed by steady state regime that can be caused by a decrease in the roughness of fracture walls (dissolution dominated process), thus favouring fracture closing, or by the precipitation of secondary phases. Maximum enrichments in Mg, Fe and Ca of the effluent fluids occur during the first 2 hours of the experiments whereas Si displays a maximum enrichment at t = 20 h, suggesting extensive dissolution. Maximum enrichments are observed with

  16. Growth and characterization of epitaxial thin films and multiferroic heterostructures of ferromagnetic and ferroelectric materials

    Science.gov (United States)

    Mukherjee, Devajyoti

    Multiferroic materials exhibit unique properties such as simultaneous existence of two or more of coupled ferroic order parameters (ferromagnetism, ferroelectricity, ferroelasticity or their anti-ferroic counterparts) in a single material. Recent years have seen a huge research interest in multiferroic materials for their potential application as high density non-volatile memory devices. However, the scarcity of these materials in single phase and the weak coupling of their ferroic components have directed the research towards multiferroic heterostructures. These systems operate by coupling the magnetic and electric properties of two materials, generally a ferromagnetic material and a ferroelectric material via strain. In this work, horizontal heterostructures of composite multiferroic materials were grown and characterized using pulsed laser ablation technique. Alternate magnetic and ferroelectric layers of cobalt ferrite and lead zirconium titanate, respectively, were fabricated and the coupling effect was studied by X-ray stress analysis. It was observed that the interfacial stress played an important role in the coupling effect between the phases. Doped zinc oxide (ZnO) heterostructures were also studied where the ferromagnetic phase was a layer of manganese doped ZnO and the ferroelectric phase was a layer of vanadium doped ZnO. For the first time, a clear evidence of possible room temperature magneto-elastic coupling was observed in these heterostructures. This work provides new insight into the stress mediated coupling mechanisms in composite multiferroics.

  17. Spin current and spin transfer torque in ferromagnet/superconductor spin valves

    Science.gov (United States)

    Moen, Evan; Valls, Oriol T.

    2018-05-01

    Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.

  18. Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.

    Science.gov (United States)

    Pal, Bappaditya; Giri, P K

    2011-10-01

    Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.

  19. Room temperature ferromagnetism in Fe-doped CeO2 nanoparticles.

    Science.gov (United States)

    Maensiri, Santi; Phokha, Sumalin; Laokul, Paveena; Seraphin, Supapan

    2009-11-01

    RT ferromagnetism was observed in nanoparticles of Fe-doped CeO2 (i.e., Ce(0.97)Fe(0.03)O2) synthesized by a sol-gel method. The undoped and Fe-doped CeO2 were characterized by XRD, Raman spectroscopy, TEM, and VSM. The undoped samples and Ce(0.97)Fe(0.03)O2 precursor exhibit a diamagnetic behavior. The 673 K-calcined Ce(0.97)Fe(0.03)O2 sample is paramagnetic whereas 773 and 873 K-calcined Ce(0.97)Fe(0.03)O2 samples are ferromagnetism having the magnetizations of 4.65 x 10(-3) emu/g and 6.20 x 10(-3) emu/g at 10 kOe, respectively. Our results indicate that the ferromagnetic property is intrinsic to the Fe-doped CeO2 system and is not a result of any secondary magnetic phase or cluster formation.

  20. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiu-Hua, E-mail: xhli.univ@gmail.com [College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, 350117 Fujian (China); Zhang, Qi [School of Life Science, Changchun Normal University, Changchun, 130032 Jilin (China); Hu, Ping [Southampton Management School, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2014-10-15

    A multifunctional homochiral coordination polymer, [Co(H{sub 2}O)(BDC)(4,4′-BPY)]∙3H{sub 2}O (1) (H{sub 2}BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions.