WorldWideScience

Sample records for exhibit altered phenotypes

  1. High-fertility phenotypes: two outbred mouse models exhibit substantially different molecular and physiological strategies warranting improved fertility.

    Science.gov (United States)

    Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M

    2014-01-01

    Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.

  2. Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3-/- mice, but not wildtype mice.

    Science.gov (United States)

    Martynhak, Bruno Jacson; Hogben, Alexandra L; Zanos, Panos; Georgiou, Polymnia; Andreatini, Roberto; Kitchen, Ian; Archer, Simon N; von Schantz, Malcolm; Bailey, Alexis; van der Veen, Daan R

    2017-01-10

    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are 'direct' effects of light on affect, an 'indirect' pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3 -/- mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3 -/- ) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2-3 of dim light at night, whereas WT mice did not. Per3 -/- mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3 -/- nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3 -/- phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light.

  3. Phenotype- and genotype-specific structural alterations in spasmodic dysphonia.

    Science.gov (United States)

    Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F; Frucht, Steven J; Blitzer, Andrew; Ozelius, Laurie J; Simonyan, Kristina

    2017-04-01

    Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  4. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin.

    Science.gov (United States)

    Evstatiev, Rayko; Bukaty, Adam; Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Surman, Lidia; Schmid, Werner; Eferl, Robert; Lippert, Kathrin; Scheiber-Mojdehkar, Barbara; Kvasnicka, Hans Michael; Khare, Vineeta; Gasche, Christoph

    2014-05-01

    Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding. Copyright © 2014 Wiley Periodicals, Inc.

  5. Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3−/− mice, but not wildtype mice

    Science.gov (United States)

    Martynhak, Bruno Jacson; Hogben, Alexandra L.; Zanos, Panos; Georgiou, Polymnia; Andreatini, Roberto; Kitchen, Ian; Archer, Simon N.; von Schantz, Malcolm; Bailey, Alexis; van der Veen, Daan R.

    2017-01-01

    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are ‘direct’ effects of light on affect, an ‘indirect’ pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3−/− mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3−/−) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2–3 of dim light at night, whereas WT mice did not. Per3−/− mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3−/− nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3−/− phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light. PMID:28071711

  6. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  7. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken

    Science.gov (United States)

    Zhang, Yonghong; Liu, Zhen; Liu, Ranran; Wang, Jie; Zheng, Maiqing; Li, Qinghe; Cui, Huanxian; Zhao, Guiping; Wen, Jie

    2018-01-01

    Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF) diet and a methionine choline-deficient (MCD) diet. The results showed that the dwarf Jingxing-Huang (JXH) chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL) and local Beijing-You (BJY) breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism (ACACA, FASN, SCD, ACSL5, FADS2, FABP1, APOA4 and ME1). This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers. PMID:29642504

  8. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken.

    Science.gov (United States)

    Zhang, Yonghong; Liu, Zhen; Liu, Ranran; Wang, Jie; Zheng, Maiqing; Li, Qinghe; Cui, Huanxian; Zhao, Guiping; Wen, Jie

    2018-04-08

    Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF) diet and a methionine choline-deficient (MCD) diet. The results showed that the dwarf Jingxing-Huang (JXH) chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL) and local Beijing-You (BJY) breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism ( ACACA , FASN , SCD , ACSL5 , FADS2 , FABP1 , APOA4 and ME1 ). This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers.

  9. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2018-04-01

    Full Text Available Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF diet and a methionine choline-deficient (MCD diet. The results showed that the dwarf Jingxing-Huang (JXH chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL and local Beijing-You (BJY breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism (ACACA, FASN, SCD, ACSL5, FADS2, FABP1, APOA4 and ME1. This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers.

  10. FSHD myotubes with different phenotypes exhibit distinct proteomes.

    Science.gov (United States)

    Tassin, Alexandra; Leroy, Baptiste; Laoudj-Chenivesse, Dalila; Wauters, Armelle; Vanderplanck, Céline; Le Bihan, Marie-Catherine; Coppée, Frédérique; Wattiez, Ruddy; Belayew, Alexandra

    2012-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4) gene. DUX4 expresses a transcription factor that plays a major role in the development of FSHD through the initiation of a large gene dysregulation cascade that causes myogenic differentiation defects, atrophy and reduced response to oxidative stress. Because miRNAs variably affect mRNA expression, proteomic approaches are required to define the dysregulated pathways in FSHD. In this study, we optimized a differential isotope protein labeling (ICPL) method combined with shotgun proteomic analysis using a gel-free system (2DLC-MS/MS) to study FSHD myotubes. Primary CD56(+) FSHD myoblasts were found to fuse into myotubes presenting various proportions of an atrophic or a disorganized phenotype. To better understand the FSHD myogenic defect, our improved proteomic procedure was used to compare predominantly atrophic or disorganized myotubes to the same matching healthy control. FSHD atrophic myotubes presented decreased structural and contractile muscle components. This phenotype suggests the occurrence of atrophy-associated proteolysis that likely results from the DUX4-mediated gene dysregulation cascade. The skeletal muscle myosin isoforms were decreased while non-muscle myosin complexes were more abundant. In FSHD disorganized myotubes, myosin isoforms were not reduced, and increased proteins were mostly involved in microtubule network organization and myofibrillar remodeling. A common feature of both FSHD myotube phenotypes was the disturbance of several caveolar proteins, such as PTRF and MURC. Taken together, our data suggest changes in trafficking and in the membrane microdomains of FSHD myotubes. Finally, the adjustment of a

  11. FSHD myotubes with different phenotypes exhibit distinct proteomes.

    Directory of Open Access Journals (Sweden)

    Alexandra Tassin

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4 gene. DUX4 expresses a transcription factor that plays a major role in the development of FSHD through the initiation of a large gene dysregulation cascade that causes myogenic differentiation defects, atrophy and reduced response to oxidative stress. Because miRNAs variably affect mRNA expression, proteomic approaches are required to define the dysregulated pathways in FSHD. In this study, we optimized a differential isotope protein labeling (ICPL method combined with shotgun proteomic analysis using a gel-free system (2DLC-MS/MS to study FSHD myotubes. Primary CD56(+ FSHD myoblasts were found to fuse into myotubes presenting various proportions of an atrophic or a disorganized phenotype. To better understand the FSHD myogenic defect, our improved proteomic procedure was used to compare predominantly atrophic or disorganized myotubes to the same matching healthy control. FSHD atrophic myotubes presented decreased structural and contractile muscle components. This phenotype suggests the occurrence of atrophy-associated proteolysis that likely results from the DUX4-mediated gene dysregulation cascade. The skeletal muscle myosin isoforms were decreased while non-muscle myosin complexes were more abundant. In FSHD disorganized myotubes, myosin isoforms were not reduced, and increased proteins were mostly involved in microtubule network organization and myofibrillar remodeling. A common feature of both FSHD myotube phenotypes was the disturbance of several caveolar proteins, such as PTRF and MURC. Taken together, our data suggest changes in trafficking and in the membrane microdomains of FSHD myotubes. Finally, the

  12. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal β-hexamer structure

    International Nuclear Information System (INIS)

    Wispelaere, Melissanne de; Chaturvedi, Sonali; Wilkens, Stephan; Rao, A.L.N.

    2011-01-01

    The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids 28 QPVIV 32 , highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a β-hexamer structure. In this study we report that alteration of the β-hexamer structure by mutating 28 QPVIV 32 to 28 AAAAA 32 had no effect either on symptom phenotype, local and systemic movement in Chenopodium quinoa and RNA profile of in vivo assembled virions. However, sensitivity to RNase and assembly phenotypes distinguished virions assembled with CP subunits having β-hexamer from those of wild type. A comparison of 3-D models obtained by cryo electron microscopy revealed overall similar structural features for wild type and mutant virions, with small but significant differences near the 3-fold axes of symmetry.

  13. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.

    Science.gov (United States)

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K H; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L; Sandholzer, Michael; Lisse, Thomas S; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-12-07

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3 N294K/N294K ), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3 N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3 N294K/N294K mice. The Scube3 N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. Copyright © 2016 Fuchs et al.

  14. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Helmut Fuchs

    2016-12-01

    Full Text Available The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K, which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC. Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB, associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.

  15. Structures of Rotavirus Reassortants Demonstrate Correlation of Altered Conformation of the VP4 Spike and Expression of Unexpected VP4-Associated Phenotypes

    Science.gov (United States)

    Pesavento, Joseph B.; Billingsley, Angela M.; Roberts, Ed J.; Ramig, Robert F.; Prasad, B. V. Venkataram

    2003-01-01

    Numerous prior studies have indicated that viable rotavirus reassortants containing structural proteins of heterologous parental origin may express unexpected phenotypes, such as changes in infectivity and immunogenicity. To provide a structural basis for alterations in phenotypic expression, a three-dimensional structural analysis of these reassortants was conducted. The structures of the reassortants show that while VP4 generally maintains the parental structure when moved to a heterologous protein background, in certain reassortants, there are subtle alterations in the conformation of VP4. The alterations in VP4 conformation correlated with expression of unexpected VP4-associated phenotypes. Interactions between heterologous VP4 and VP7 in reassortants expressing unexpected phenotypes appeared to induce the conformational alterations seen in VP4. PMID:12584352

  16. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Isabel Miranda

    Full Text Available BACKGROUND: The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG(Ser. We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS: We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE: Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.

  17. Changes in insulin-like growth factor signaling alter phenotypes in Fragile X Mice.

    Science.gov (United States)

    Wise, T L

    2017-02-01

    Fragile X syndrome (FXS) is an inherited form of intellectual disability that is usually caused by expansion of a polymorphic CGG repeat in the 5' untranslated region of the X-linked FMR1 gene, which leads to hypermethylation and transcriptional silencing. Two non-neurological phenotypes of FXS are enlarged testes and connective tissue dysplasia, which could be caused by alterations in a growth factor signaling pathway. FXS patients also frequently have autistic-like symptoms, suggesting that the signaling pathways affected in FXS may overlap with those affected in autism. Identifying these pathways is important for both understanding the effects of FMR1 inactivation and developing treatments for both FXS and autism. Here we show that decreasing the levels of the insulin-like growth factor (Igf) receptor 1 corrects a number of phenotypes in the mouse model of FXS, including macro-orchidism, and that increasing the levels of IGF2 exacerbates the seizure susceptibility phenotype. These results suggest that the pathways altered by the loss of the FMR1-encoded protein (FMRP) may overlap with the pathways affected by changes in Igf signaling or that one or more of the proteins that play a role in Igf signaling could interact with FMRP. They also indicate a new set of potential targets for drug treatment of FXS and autism spectrum disorders. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  19. The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Moonil Son

    2016-08-01

    Full Text Available The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1 strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence of its fungal host. To characterize function(s of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s in FgV1 induced phenotype alteration such as delayed vegetative growth.

  20. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation.

    Science.gov (United States)

    Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji

    2010-11-01

    Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.

  1. Litter size reduction accentuates maternal care and alters behavioral and physiological phenotypes in rat adult offspring.

    Science.gov (United States)

    Enes-Marques, Silvia; Giusti-Paiva, Alexandre

    2018-01-27

    Maternal behavior has a substantial impact on the behavioral, endocrine, and neural development of the pups. This study investigated the effect of altering the neonatal nutritional environment by modifying the litter size on maternal care and anxiety- and fear-like behaviors in rats during adulthood. On postnatal day (PND) 2, litters were adjusted to a small litter (SL) size of three pups per dam or normal litter (NL) size of 12 pups per dam. Maternal behaviors were scored daily during lactation (PND2-21). The weight gain, food intake, adiposity, and biochemical landmarks of offspring rats were evaluated. On PND60, performances in the open field, elevated plus-maze (EPM), and fear conditioning test were measured. The reduction of the litter size enhanced maternal care in lactating rats, increasing the arched-back posture and licking pups. SL offspring exhibited accelerated weight gain, hyperphagia, increased visceral fat mass, dyslipidemia, and hyperleptinemia in adulthood. The SL offspring of both sexes showed an increase in the anti-thigmotactic effect in the open field, an intact anxious-phenotype in the EPM, and a decrease in the time spent freezing during the fear-conditioning test, compared to NL. The neonatal environment as determined by litter size plays a crucial role in programming the adult metabolic phenotype as well as behavioral responses to stressful stimuli, with an impact on anxiety-like and fear behaviors. These behavioral changes in offspring may be, at least in part, a result of increased maternal care.

  2. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    Science.gov (United States)

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  3. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  4. Advancement of Phenotype Transformation of Cancer-associated Fibroblasts: 
from Genetic Alterations to Epigenetic Modification

    Directory of Open Access Journals (Sweden)

    Dali CHEN

    2015-02-01

    Full Text Available In the field of human cancer research, even though the vast majority attentions were paid to tumor cells as “the seeds”, the roles of tumor microenvironments as “the soil” are gradually explored in recent years. As a dominant compartment of tumor microenvironments, cancer-associated fibroblasts (CAFs were discovered to correlated with tumorigenesis, tumor progression and prognosis. And the exploration of the mechanisms of CAF phenotype transformation would conducive to the further understand of the CAFs function in human cancers. As we known that CAFs have four main origins, including epithelial cells, endothelial cells, mesenchymal stem cells (MSCs and local mesenchymal cells. However, researchers found that all these origins finally conduct similiar phenotypes from intrinsic to extrinsic ones. Thus, what and how a mechanism can conduct the phenotype transformation of CAFs with different origins? Two viewpoints are proposed to try to answer the quetsion, involving genetic alterations and epigenetic modifications. This review will systematically summarize the advancement of mechanisms of CAF phenotype transformations in the aspect of genentic and epigenetic modifications.

  5. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model

    Directory of Open Access Journals (Sweden)

    Katherine A. Willard

    2017-12-01

    Full Text Available Zika virus (ZIKV has quietly circulated in Africa and Southeast Asia for the past 65 years. However, the recent ZIKV epidemic in the Americas propelled this mosquito-borne virus to the forefront of flavivirus research. Based on historical evidence, ZIKV infections in Africa were sporadic and caused mild symptoms such as fever, skin rash, and general malaise. In contrast, recent Asian-lineage ZIKV infections in the Pacific Islands and the Americas are linked to birth defects and neurological disorders. The aim of this study is to compare replication, pathogenicity, and transmission efficiency of two historic and two contemporary ZIKV isolates in cell culture, the mosquito host, and an embryo model to determine if genetic variation between the African and Asian lineages results in phenotypic differences. While all tested isolates replicated at similar rates in Vero cells, the African isolates displayed more rapid viral replication in the mosquito C6/36 cell line, yet they exhibited poor infection rates in Aedes aegypti mosquitoes compared to the contemporary Asian-lineage isolates. All isolates could infect chicken embryos; however, infection with African isolates resulted in higher embryo mortality than infection with Asian-lineage isolates. These results suggest that genetic variation between ZIKV isolates can significantly alter experimental outcomes.

  6. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia

    Science.gov (United States)

    Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568

  7. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia.

    Science.gov (United States)

    Battistella, G; Fuertinger, S; Fleysher, L; Ozelius, L J; Simonyan, K

    2016-10-01

    Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. © 2016 EAN.

  8. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  9. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    Science.gov (United States)

    Li, Bobby W. S.; Stadhouders, Ralph; de Bruijn, Marjolein J. W.; Lukkes, Melanie; Beerens, Dior M. J. M.; Brem, Maarten D.; KleinJan, Alex; Bergen, Ingrid; Vroman, Heleen; Kool, Mirjam; van IJcken, Wilfred F. J.; Rao, Tata Nageswara; Fehling, Hans Jörg; Hendriks, Rudi W.

    2017-01-01

    Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought

  10. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Bobby W. S. Li

    2017-12-01

    Full Text Available Group 2 innate lymphoid cells (ILC2 are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than

  11. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Koshida, Ryusuke, E-mail: rkoshida-myz@umin.ac.jp; Oishi, Hisashi, E-mail: hoishi@md.tsukuba.ac.jp; Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  12. Phenotypic Changes Exhibited by E. coli Cultured in Space

    Directory of Open Access Journals (Sweden)

    Luis Zea

    2017-08-01

    Full Text Available Bacteria will accompany humans in our exploration of space, making it of importance to study their adaptation to the microgravity environment. To investigate potential phenotypic changes for bacteria grown in space, Escherichia coli was cultured onboard the International Space Station with matched controls on Earth. Samples were challenged with different concentrations of gentamicin sulfate to study the role of drug concentration on the dependent variables in the space environment. Analyses included assessments of final cell count, cell size, cell envelope thickness, cell ultrastructure, and culture morphology. A 13-fold increase in final cell count was observed in space with respect to the ground controls and the space flight cells were able to grow in the presence of normally inhibitory levels of gentamicin sulfate. Contrast light microscopy and focused ion beam/scanning electron microscopy showed that, on average, cells in space were 37% of the volume of their matched controls, which may alter the rate of molecule–cell interactions in a diffusion-limited mass transport regime as is expected to occur in microgravity. TEM imagery showed an increase in cell envelope thickness of between 25 and 43% in space with respect to the Earth control group. Outer membrane vesicles were observed on the spaceflight samples, but not on the Earth cultures. While E. coli suspension cultures on Earth were homogenously distributed throughout the liquid medium, in space they tended to form a cluster, leaving the surrounding medium visibly clear of cells. This cell aggregation behavior may be associated with enhanced biofilm formation observed in other spaceflight experiments.

  13. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  14. Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Catherine B. Lawrence

    2012-09-01

    Obesity is associated with an increase in the prevalence and severity of infections. Genetic animal models of obesity (ob/ob and db/db mice display altered centrally-mediated sickness behaviour in response to acute inflammatory stimuli such as lipopolysaccharide (LPS. However, the effect of diet-induced obesity (DIO on the anorectic and febrile response to LPS in mice is unknown. This study therefore determined how DIO and ob/ob mice respond to a systemic inflammatory challenge. C57BL/6 DIO and ob/ob mice, and their respective controls, were given an intraperitoneal (i.p. injection of LPS. Compared with controls, DIO and ob/ob mice exhibited an altered febrile response to LPS (100 μg/kg over 8 hours. LPS caused a greater and more prolonged anorexic effect in DIO compared with control mice and, in ob/ob mice, LPS induced a reduction in food intake and body weight earlier than it did in controls. These effects of LPS in obese mice were also seen after a fixed dose of LPS (5 μg. LPS (100 μg/kg induced Fos protein expression in several brain nuclei of control mice, with fewer Fos-positive cells observed in the brains of obese mice. An altered inflammatory response to LPS was also observed in obese mice compared with controls: changes in cytokine expression and release were detected in the plasma, spleen, liver and peritoneal macrophages in obese mice. In summary, DIO and ob/ob mice displayed an altered behavioural response and cytokine release to systemic inflammatory challenge. These findings could help explain why obese humans show increased sensitivity to infections.

  15. Cortical plasticity within and across lifetimes: How can development inform us about phenotypic transformations?

    Directory of Open Access Journals (Sweden)

    James C Dooley

    2013-10-01

    Full Text Available The neocortex is the part of the mammalian brain that is involved in perception, cognition, and volitional motor control. It is a highly dynamic structure that is dramatically altered within the lifetime of an animal and in different lineages throughout the course of evolution. These alterations account for the remarkable variations in behavior that species exhibit. Of particular interest is how these cortical phenotypes change within the lifetime of the individual and eventually evolve in species over time. Because we cannot study the evolution of the neocortex directly we use comparative analysis to appreciate the types of changes that have been made to the neocortex and the similarities that exist across taxa. Developmental studies inform us about how these phenotypic transitions may arise by alterations in developmental cascades or changes in the physical environment in which the brain develops. Both genes and the sensory environment contribute to aspects of the phenotype and similar features, such as the size of a cortical field, can be altered in a variety of ways. Although both genes and the laws of physics place constraints on the evolution of the neocortex, mammals have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution.

  16. Alterations in Mesenteric Lymph Node T Cell Phenotype and Cytokine Secretion are Associated with Changes in Thymocyte Phenotype after LP-BM5 Retrovirus Infection

    Directory of Open Access Journals (Sweden)

    Maria C. Lopez

    2005-01-01

    Full Text Available In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7+ cells and an increase in the percentage of IL-16+ cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-Υ secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-Υ secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4+CD8- or CD4- CD8+ cells was due to accumulation of both immature (CD3- and mature (CD3+ single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection.

  17. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  18. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    Directory of Open Access Journals (Sweden)

    Sônia C. Melo

    2015-06-01

    Full Text Available Heterologous expression of a putative manganese superoxide dismutase gene (SOD2 of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs located the protein of M. perniciosa (MpSod2p in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  19. Altered Functional Subnetwork During Emotional Face Processing: A Potential Intermediate Phenotype for Schizophrenia.

    Science.gov (United States)

    Cao, Hengyi; Bertolino, Alessandro; Walter, Henrik; Schneider, Michael; Schäfer, Axel; Taurisano, Paolo; Blasi, Giuseppe; Haddad, Leila; Grimm, Oliver; Otto, Kristina; Dixson, Luanna; Erk, Susanne; Mohnke, Sebastian; Heinz, Andreas; Romanczuk-Seiferth, Nina; Mühleisen, Thomas W; Mattheisen, Manuel; Witt, Stephanie H; Cichon, Sven; Noethen, Markus; Rietschel, Marcella; Tost, Heike; Meyer-Lindenberg, Andreas

    2016-06-01

    Although deficits in emotional processing are prominent in schizophrenia, it has been difficult to identify neural mechanisms related to the genetic risk for this highly heritable illness. Prior studies have not found consistent regional activation or connectivity alterations in first-degree relatives compared with healthy controls, suggesting that a more comprehensive search for connectomic biomarkers is warranted. To identify a potential systems-level intermediate phenotype linked to emotion processing in schizophrenia and to examine the psychological association, task specificity, test-retest reliability, and clinical validity of the identified phenotype. The study was performed in university research hospitals from June 1, 2008, through December 31, 2013. We examined 58 unaffected first-degree relatives of patients with schizophrenia and 94 healthy controls with an emotional face-matching functional magnetic resonance imaging paradigm. Test-retest reliability was analyzed with an independent sample of 26 healthy participants. A clinical association study was performed in 31 patients with schizophrenia and 45 healthy controls. Data analysis was performed from January 1 to September 30, 2014. Conventional amygdala activity and seeded connectivity measures, graph-based global and local network connectivity measures, Spearman rank correlation, intraclass correlation, and gray matter volumes. Among the 152 volunteers included in the relative-control sample, 58 were unaffected first-degree relatives of patients with schizophrenia (mean [SD] age, 33.29 [12.56]; 38 were women), and 94 were healthy controls without a first-degree relative with mental illness (mean [SD] age, 32.69 [10.09] years; 55 were women). A graph-theoretical connectivity approach identified significantly decreased connectivity in a subnetwork that primarily included the limbic cortex, visual cortex, and subcortex during emotional face processing (cluster-level P corrected for familywise error =

  20. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  1. CD44+/CD24- breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold

    Directory of Open Access Journals (Sweden)

    Mi K

    2015-04-01

    Full Text Available Kun Mi,1 Zhihua Xing2 1Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, 2Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Self-assembling peptide nanofiber scaffolds have been shown to be a ­permissive biological material for tissue repair, cell proliferation, differentiation, etc. Recently, a subpopulation (CD44+/CD24- of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells have different phenotypes in self-assembling COCH3-RADARADARADARADA-CONH2 (RADA16 peptide nanofiber scaffold compared with Matrigel® (BD Biosciences, Two Oak Park, Bedford, MA, USA and collagen I.Methods: CD44 and CD24 expression was determined by flow cytometry. Cell proliferation was measured by 5-bromo-2'-deoxyuridine assay and DNA content measurement. Immunostaining was used to indicate the morphologies of cells in three-dimensional (3D cultures of different scaffolds and the localization of β-catenin in the colonies. Western blot was used to determine the expression of signaling proteins. In vitro migration assay and inoculation into nude mice were used to evaluate invasion and tumorigenesis in vivo.Results: The breast cancer cell line MDA-MB-435S contained a high percentage (>99% of CD44+/CD24- cells, which exhibited phenotypic reversion in 3D RADA16 nanofiber scaffold compared with collagen I and Matrigel. The newly formed reverted acini-like colonies reassembled a basement membrane and reorganized their cytoskeletons. At the same time, cells cultured and embedded in RADA16 peptide scaffold exhibited growth arrest. Also, they exhibited different migration potential, which links their migration ability with their cellular morphology. Consistent with studies in vitro, the in vivo tumor

  2. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  3. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin......, MSC populations obtained from different tissues exhibit significant differences in their proliferation, differentiation and molecular phenotype, which should be taken into consideration when planning their use in clinical protocols....

  4. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    Science.gov (United States)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823

  5. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    Science.gov (United States)

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  6. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    Directory of Open Access Journals (Sweden)

    Anna K. Simonsen

    2015-10-01

    Full Text Available Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia, a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community

  7. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.

    Science.gov (United States)

    Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z

    2017-07-17

    Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.

  8. Mouse Embryonic Fibroblasts (MEF) Exhibit a Similar but not Identical Phenotype to Bone Marrow Stromal Stem Cells (BMSC)

    DEFF Research Database (Denmark)

    Saeed, Hamid; Taipaleenmäki, Hanna; Aldahmash, Abdullah M

    2012-01-01

    Mouse embryonic fibroblasts have been utilized as a surrogate stem cell model for the postnatal bone marrow-derived stromal stem cells (BMSC) to study mesoderm-type cell differentiation e.g. osteoblasts, adipocytes and chondrocytes. However, no formal characterization of MEF phenotype has been...... by real-time PCR analysis. Compared to BMSC, MEF exhibited a more enhanced differentiation into adipocyte and chondrocyte lineages. Interestingly, both MEF and BMSC formed the same amount of heterotopic bone and bone marrow elements upon in vivo subcutaneous implantation with hydroxyapatite...... and differentiation to osteoblasts, adipocytes and chondrocytes....

  9. Attachment, invasion, chemotaxis, and proteinase expression of B16-BL6 melanoma cells exhibiting a low metastatic phenotype after exposure to dietary restriction of tyrosine and phenylalanine.

    Science.gov (United States)

    Uhlenkott, C E; Huijzer, J C; Cardeiro, D J; Elstad, C A; Meadows, G G

    1996-03-01

    We previously reported that low levels of tyrosine (Tyr) and phenylalanine (Phe) alter the metastatic phenotype of B16-BL6 (BL6) murine melanoma and select for tumor cell populations with decreased lung colonizing ability. To more specifically characterize the effects of Tyr and Phe restriction on the malignant phenotype of BL6, we investigated in vitro attachment, invasion, proteinase expression, and chemotaxis of high and low metastatic BL6 variants. High metastatic variant cells were isolated from subcutaneous tumors of mice fed a nutritionally complete diet (ND cells) and low metastatic variant cells were isolated from mice fed a diet restricted in Tyr and Phe (LTP cells). Results indicate that attachment to reconstituted basement membrane (Matrigel) was significantly reduced in LTP cells as compared to ND cells. Attachment to collagen IV, laminin, and fibronectin were similar between the two variants. Invasion through Matrigel and growth factor-reduced Matrigel were significantly decreased in LTP cells as compared to ND cells. Zymography revealed the presence of M(r) 92,000 and M(r) 72,000 progelatinases, tissue plasminogen activator, and urokinase plasminogen activator in the conditioned medium of both variants; however, there were no differences in activity of these secreted proteinases between the two variants. Growth of the variants on growth factor-reduced Matrigel similarly induced expression of the M(r) 92,000 progelatinase. The variants exhibited similar chemotactic responses toward laminin. However, the chemotactic response toward fibronectin by LTP cells was significantly increased. MFR5, a monoclonal antibody which selectively blocks function of the alpha 5 chain of the alpha 5 beta 1 integrin, VLA-5, decreased the chemotactic response toward fibronectin of ND cells by 37%; the chemotactic response by LTP cells was reduced by 49%. This effect was specific for fibronectin-mediated chemotaxis since the chemotaxis toward laminin and invasion through

  10. The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters.

    Science.gov (United States)

    Cheng, Ning-Hui; Pittman, Jon K; Barkla, Bronwyn J; Shigaki, Toshiro; Hirschi, Kendal D

    2003-02-01

    The Arabidopsis Ca(2+)/H(+) transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca(2+) levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca(2+)/H(+) antiport activity, a 40% reduction in tonoplast V-type H(+)-translocating ATPase activity, a 36% increase in tonoplast Ca(2+)-ATPase activity, and increased expression of the putative vacuolar Ca(2+)/H(+) antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn(2+) and Mg(2+) stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters.

  11. The Arabidopsis cax1 Mutant Exhibits Impaired Ion Homeostasis, Development, and Hormonal Responses and Reveals Interplay among Vacuolar Transporters

    Science.gov (United States)

    Cheng, Ning-Hui; Pittman, Jon K.; Barkla, Bronwyn J.; Shigaki, Toshiro; Hirschi, Kendal D.

    2003-01-01

    The Arabidopsis Ca2+/H+ transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca2+ levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca2+/H+ antiport activity, a 40% reduction in tonoplast V-type H+-translocating ATPase activity, a 36% increase in tonoplast Ca2+-ATPase activity, and increased expression of the putative vacuolar Ca2+/H+ antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn2+ and Mg2+ stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters. PMID:12566577

  12. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  13. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.

    Science.gov (United States)

    Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M

    2008-10-01

    Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.

  14. Data in support of dyslipidemia-associated alterations in B cell subpopulations frequency and phenotype during experimental atherosclerosis

    Directory of Open Access Journals (Sweden)

    Héctor Rincón-Arévalo

    2016-06-01

    Full Text Available Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE−/− mice fed or not with high-fat diet (HFD, by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410 [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia.

  15. Data in support of dyslipidemia-associated alterations in B cell subpopulations frequency and phenotype during experimental atherosclerosis

    Science.gov (United States)

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A.; Ramírez-Pineda, José R.; Yassin, Lina M.

    2016-01-01

    Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE−/−) mice fed or not with high-fat diet (HFD), by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410) [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia. PMID:27081674

  16. A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Fejgin, Kim; Sotty, Florence

    2017-01-01

    on schizophrenia-related assays. Df(h1q21)/+ mice displayed increased hyperactivity in response to amphetamine challenge and increased sensitivity to the disruptive effects of amphetamine and phencyclidine hydrochloride (PCP) on prepulse inhibition. Probing of the direct dopamine (DA) pathway using the DA D1...... and basic functions such as reflexes, ASR, thermal pain sensitivity, and motor performance were unaltered. Similarly, anxiety related measures, baseline prepulse inhibition, and seizure threshold were unaltered. In addition to the central nervous system-related phenotypes, Df(h1q21)/+ mice exhibited reduced...

  17. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats.

    Science.gov (United States)

    Zamberletti, Erica; Gabaglio, Marina; Grilli, Massimo; Prini, Pamela; Catanese, Alberto; Pittaluga, Anna; Marchi, Mario; Rubino, Tiziana; Parolaro, Daniela

    2016-09-01

    Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its

  18. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  19. Sterile mutant of Verbena hybrida induced by heavy ion beam irradiation and wild species V. peruviana exhibit self-incompatible phenotype

    International Nuclear Information System (INIS)

    Saito, H.; Hayashi, Y.; Abe, T.; Kanaya, T.; Suzuki, K.

    2005-01-01

    Full text: Garden verbenas (Verbena hybrida) belonging to the Verbenaceae family are originated from interspecific hybridization among several species, many cultivars frequently produce seeds. Recently, a sterile mutant has been isolated in the verbena cultivar 'Coral Pink' of Temari series (Suntory Flowers Ltd., Tokyo, Japan) by mutation induction using heavy-ion beams at RIKEN Accelarator Research Facility (RARF, Saitama, Japan). We investigated pollen and ovule fertility assessed by acetocarmin staining, seed-set following controlled-pollination tests and behavior of pollen tubes in pistils with the sterile mutant of 'Coral Pink' (SC) and its original fertile one (FC). As the results, although SC has functional male and female gametes, few self-pollinated flowers carry out seed-set, leading to sterile phenotype. Additionally, the sterile mechanism of SC was compared with the wild species V. peruviana (VP) which is one of origin of Temari series and exhibits sterility. Interestingly, similar phenotype was observed in PV. We further investigated, therefore, whether there are differences on self-incompatible reaction between SC and VP. (author)

  20. Sterile mutant of Verbena hybrida induced by heavy ion beam irradiation and wild species V. peruviana exhibit self-incompatible phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H; Hayashi, Y; Abe, T [RIKEN, Wako (Japan); Kanaya, T; Suzuki, K [Suntory Flowers Ltd., Higashiomi (Japan)

    2005-07-01

    Full text: Garden verbenas (Verbena hybrida) belonging to the Verbenaceae family are originated from interspecific hybridization among several species, many cultivars frequently produce seeds. Recently, a sterile mutant has been isolated in the verbena cultivar 'Coral Pink' of Temari series (Suntory Flowers Ltd., Tokyo, Japan) by mutation induction using heavy-ion beams at RIKEN Accelarator Research Facility (RARF, Saitama, Japan). We investigated pollen and ovule fertility assessed by acetocarmin staining, seed-set following controlled-pollination tests and behavior of pollen tubes in pistils with the sterile mutant of 'Coral Pink' (SC) and its original fertile one (FC). As the results, although SC has functional male and female gametes, few self-pollinated flowers carry out seed-set, leading to sterile phenotype. Additionally, the sterile mechanism of SC was compared with the wild species V. peruviana (VP) which is one of origin of Temari series and exhibits sterility. Interestingly, similar phenotype was observed in PV. We further investigated, therefore, whether there are differences on self-incompatible reaction between SC and VP. (author)

  1. Endometria from Obese PCOS Women with Hyperinsulinemia Exhibit Altered Adiponectin Signaling.

    Science.gov (United States)

    García, V; Oróstica, L; Poblete, C; Rosas, C; Astorga, I; Romero, C; Vega, M

    2015-11-01

    Hyperandrogenemia, hyperinsulinemia, and obesity affect 60-70% of patients with Polycystic Ovarian Syndrome (PCOS), who exhibit an altered endometrial insulin signaling. The aim of the study was to evaluate whether hyperandrogenism, hyperinsulinism, and obesity present in PCOS patients impair the endometrial adiponectin signaling pathway. The ex vivo study was conducted on 27 samples from lean (n=9), obese (n=9), and obese-PCOS (n=9) patients. The in vitro assays were performed in immortalized human endometrial stromal cells stimulated with testosterone, insulin, or testosterone plus insulin. Serum steroid-hormones, adiponectin, glucose, and insulin; body mass index, free androgen index, ISI-Composite, and HOMA were evaluated in the 3 groups. Ex vivo and in vitro gene expression and protein content of adiponectin, AdipoR1, AdipoR2, and APPL1 were determined. Adiponectin serum levels were decreased in obese-PCOS patients compared to lean (78%) and obese (54%) controls (pPCOS and lean groups (2-fold, plean group (6-fold, pPCOS patients, corroborated in the in vitro model, which could affect endometrial function and potentially the implantation process. © Georg Thieme Verlag KG Stuttgart · New York.

  2. RNaseT2 knockout rats exhibit hippocampal neuropathology and deficits in memory.

    Science.gov (United States)

    Sinkevicius, Kerstin W; Morrison, Thomas R; Kulkarni, Praveen; Cagliostro, Martha K Caffrey; Iriah, Sade; Malmberg, Samantha; Sabrick, Julia; Honeycutt, Jennifer A; Askew, Kim L; Trivedi, Malav; Ferris, Craig F

    2018-05-10

    RNASET2 deficiency in humans is associated with infant cystic leukoencephalopathy, which causes psychomotor impairment, spasticity, and epilepsy. A zebrafish mutant model suggests that loss of RNASET2 function leads to neurodegeneration due to the accumulation of non-degraded RNA in the lysosomes. The goal of this study was to characterize the first rodent model of RNASET2 deficiency. The brains of 3- and 12-month-old RNaseT2 knockout rats were studied using multiple magnetic resonance imaging modalities and behavioral tests. While T1 and T2 weighted images of RNaseT2 knockout rats exhibited no evidence of cystic lesions, the prefrontal cortex and hippocampal complex were enlarged in knockout animals. Diffusion weighted imaging showed altered anisotropy and putative gray matter changes in the hippocampal complex of the RNaseT2 knockout rats. Immunohistochemistry for glial fibrillary acidic protein (GFAP) showed the presence of hippocampal neuroinflammation. Decreased levels of lysosome-associated membrane protein 2 (LAMP2) and elevated acid phosphatase and β-N-Acetylglucosaminidase (NAG) activities indicated that the RNASET2 knockout rats likely had altered lysosomal function and potential defects in autophagy. Object recognition tests confirmed the RNaseT2 knockout rats exhibited memory deficits. However, the Barnes maze, and balance beam and rotarod tests, indicated there were no differences in spatial memory or motor impairments, respectively. Overall, patients with RNASET2 deficiency exhibited a more severe neurodegeneration phenotype than was observed in the RNaseT2 knockout rats. However, the vulnerability of the knockout rat hippocampus as evidenced by neuroinflammation, altered lysosomal function, and cognitive defects indicates this is still a useful in vivo model to study RNASET2 function. © 2018. Published by The Company of Biologists Ltd.

  3. Catalase deletion promotes prediabetic phenotype in mice.

    Science.gov (United States)

    Heit, Claire; Marshall, Stephanie; Singh, Surrendra; Yu, Xiaoqing; Charkoftaki, Georgia; Zhao, Hongyu; Orlicky, David J; Fritz, Kristofer S; Thompson, David C; Vasiliou, Vasilis

    2017-02-01

    Hydrogen peroxide is produced endogenously and can be toxic to living organisms by inducing oxidative stress and cell damage. However, it has also been identified as a signal transduction molecule. By metabolizing hydrogen peroxide, catalase protects cells and tissues against oxidative damage and may also influence signal transduction mechanisms. Studies suggest that acatalasemic individuals (i.e., those with very low catalase activity) have a higher risk for the development of diabetes. We now report catalase knockout (Cat -/- ) mice, when fed a normal (6.5% lipid) chow, exhibit an obese phenotype that manifests as an increase in body weight that becomes more pronounced with age. The mice demonstrate altered hepatic and muscle lipid deposition, as well as increases in serum and hepatic triglycerides (TGs), and increased hepatic transcription and protein expression of PPARγ. Liver morphology revealed steatosis with inflammation. Cat -/- mice also exhibited pancreatic morphological changes that correlated with impaired glucose tolerance and increased fasting serum insulin levels, conditions consistent with pre-diabetic status. RNA-seq analyses revealed a differential expression of pathways and genes in Cat -/- mice, many of which are related to metabolic syndrome, diabetes, and obesity, such as Pparg and Cidec. In conclusion, the results of the present study show mice devoid of catalase develop an obese, pre-diabetic phenotype and provide compelling evidence for catalase (or its products) being integral in metabolic regulation. Copyright © 2016. Published by Elsevier Inc.

  4. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43.

    Directory of Open Access Journals (Sweden)

    Merlin Nanayakkara

    Full Text Available Celiac disease (CD is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP gene was identified as strongly associated with CD using genome-wide association studies (GWAS. The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD and controls, without and with treatment with A-gliadin peptide P31-43. We observed a "CD cellular phenotype" in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.

  5. Neuropsychiatry phenotype in asthma: Psychological stress-induced alterations of the neuroendocrine-immune system in allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Isao Ohno

    2017-09-01

    Full Text Available Since the recognition of asthma as a syndrome with complex pathophysiological signs and symptoms, recent research has sought to classify asthma phenotypes based on its clinical and molecular pathological features. Psychological stress was first recognized as a potential immune system modulator of asthma at the end of the 19th century. The activation of the central nervous system (CNS upon exposure to psychological stress is integral for the initiation of signal transduction processes. The stress hormones, including glucocorticoids, epinephrine, and norepinephrine, which are secreted following CNS activation, are involved in the immunological alterations involved in psychological stress-induced asthma exacerbation. The mechanisms underlying this process may involve a pathological series of events from the brain to the lungs, which is attracting attention as a conceptually advanced phenotype in asthma pathogenesis. This review presents insights into the critical role of psychological stress in the development and exacerbation of allergic asthma, with a special focus on our own data that emphasizes on the continuity from the central sensing of psychological stress to enhanced eosinophilic airway inflammation.

  6. Phenotypic plasticity of southern ocean diatoms: key to success in the sea ice habitat?

    Directory of Open Access Journals (Sweden)

    Olivia Sackett

    Full Text Available Diatoms are the primary source of nutrition and energy for the Southern Ocean ecosystem. Microalgae, including diatoms, synthesise biological macromolecules such as lipids, proteins and carbohydrates for growth, reproduction and acclimation to prevailing environmental conditions. Here we show that three key species of Southern Ocean diatom (Fragilariopsis cylindrus, Chaetoceros simplex and Pseudo-nitzschia subcurvata exhibited phenotypic plasticity in response to salinity and temperature regimes experienced during the seasonal formation and decay of sea ice. The degree of phenotypic plasticity, in terms of changes in macromolecular composition, was highly species-specific and consistent with each species' known distribution and abundance throughout sea ice, meltwater and pelagic habitats, suggesting that phenotypic plasticity may have been selected for by the extreme variability of the polar marine environment. We argue that changes in diatom macromolecular composition and shifts in species dominance in response to a changing climate have the potential to alter nutrient and energy fluxes throughout the Southern Ocean ecosystem.

  7. Interspecific competition alters natural selection on shade avoidance phenotypes in Impatiens capensis.

    Science.gov (United States)

    McGoey, Brechann V; Stinchcombe, John R

    2009-08-01

    Shade avoidance syndrome is a known adaptive response for Impatiens capensis growing in dense intraspecific competition. However, I. capensis also grow with dominant interspecific competitors in marshes. Here, we compare the I. capensis shade-avoidance phenotypes produced in the absence and presence of heterospecific competitors, as well as selection on those traits. Two treatments were established in a marsh; in one treatment all heterospecifics were removed, while in the other, all competitors remained. We compared morphological traits, light parameters, seed output and, using phenotypic selection analysis, examined directional and nonlinear selection operating in the different competitive treatments. Average phenotypes, light parameters and seed production all varied depending on competitive treatment. Phenotypic selection analyses revealed different directional, disruptive, stabilizing and correlational selection. The disparities seen in both phenotypes and selection between the treatments related to the important differences in elongation timing depending on the presence of heterospecifics, although environmental covariances between traits and fitness could also contribute. Phenotypes produced by I. capensis depend on their competitive environment, and differing selection on shade-avoidance traits between competitive environments could indirectly select for increased plasticity given gene flow between populations in different competitive contexts.

  8. Phenotypic plasticity despite source-sink population dynamics in a long-lived perennial plant.

    Science.gov (United States)

    Anderson, Jill T; Sparks, Jed P; Geber, Monica A

    2010-11-01

    • Species that exhibit adaptive plasticity alter their phenotypes in response to environmental conditions, thereby maximizing fitness in heterogeneous landscapes. However, under demographic source-sink dynamics, selection should favor traits that enhance fitness in the source habitat at the expense of fitness in the marginal habitat. Consistent with source-sink dynamics, the perennial blueberry, Vaccinium elliottii (Ericaceae), shows substantially higher fitness and population sizes in dry upland forests than in flood-prone bottomland forests, and asymmetrical gene flow occurs from upland populations into bottomland populations. Here, we examined whether this species expresses plasticity to these distinct environments despite source-sink dynamics. • We assessed phenotypic responses to a complex environmental gradient in the field and to water stress in the glasshouse. • Contrary to expectations, V. elliottii exhibited a high degree of plasticity in foliar and root traits (specific leaf area, carbon isotope ratios, foliar nitrogen content, root : shoot ratio, root porosity and root architecture). • We propose that plasticity can be maintained in source-sink systems if it is favored within the source habitat and/or a phylogenetic artifact that is not costly. Additionally, plasticity could be advantageous if habitat-based differences in fitness result from incipient niche expansion. Our results illuminate the importance of evaluating phenotypic traits and fitness components across heterogeneous landscapes. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  9. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Martin

    2015-10-01

    Full Text Available Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability, and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo and central memory (CD62Lhi cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit

  10. Alterations in Skin Temperature and Sleep in the Fear of Harm Phenotype of Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Patricia J. Murphy

    2014-08-01

    Full Text Available In children diagnosed with pediatric bipolar disorder (PBD, disturbances in the quality of sleep and wakefulness are prominent. A novel phenotype of PBD called Fear of Harm (FOH associated with separation anxiety and aggressive obsessions is associated with sleep onset insomnia, parasomnias (nightmares, night-terrors, enuresis, REM sleep-related problems, and morning sleep inertia. Children with FOH often experience thermal discomfort (e.g., feeling hot, excessive sweating in neutral ambient temperature conditions, as well as no discomfort during exposure to the extreme cold, and alternate noticeably between being excessively hot in the evening and cold in the morning. We hypothesized that these sleep- and temperature-related symptoms were overt symptoms of an impaired ability to dissipate heat, particularly in the evening hours near the time of sleep onset. We measured sleep/wake variables using actigraphy, and nocturnal skin temperature variables using thermal patches and a wireless device, and compared these data between children with PBD/FOH and a control sample of healthy children. The results are suggestive of a thermoregulatory dysfunction that is associated with sleep onset difficulties. Further, they are consistent with our hypothesis that alterations in neural circuitry common to thermoregulation and emotion regulation underlie affective and behavioral symptoms of the FOH phenotype.

  11. Extended phenotype: nematodes turn ants into bird-dispersed fruits

    DEFF Research Database (Denmark)

    Hughes, D P; Kronauer, D J C; Boomsma, J J

    2008-01-01

    A recent study has discovered a novel extended phenotype of a nematode which alters its ant host to resemble ripe fruit. The infected ants are in turn eaten by frugivorous birds that disperse the nematode's eggs.......A recent study has discovered a novel extended phenotype of a nematode which alters its ant host to resemble ripe fruit. The infected ants are in turn eaten by frugivorous birds that disperse the nematode's eggs....

  12. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice.

    Science.gov (United States)

    Bernhards, R C; Cote, C K; Amemiya, K; Waag, D M; Klimko, C P; Worsham, P L; Welkos, S L

    2017-03-01

    Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3-180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.

  13. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*

    Science.gov (United States)

    Dong, Ke; Yan, Qingshang; Lu, Ming; Wan, Laxiang; Hu, Haiyan; Guo, Junhua; Boulpaep, Emile; Wang, WenHui; Giebisch, Gerhard; Hebert, Steven C.; Wang, Tong

    2016-01-01

    Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk−/− mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1−/− mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1+/+ and Romk1−/− mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1+/+, but such regulation by high K intake was diminished with significant hyperkalemia in Romk1−/− mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K+ secretion in the collecting tubule. PMID:26728465

  14. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion.

    Science.gov (United States)

    Dong, Ke; Yan, Qingshang; Lu, Ming; Wan, Laxiang; Hu, Haiyan; Guo, Junhua; Boulpaep, Emile; Wang, WenHui; Giebisch, Gerhard; Hebert, Steven C; Wang, Tong

    2016-03-04

    Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk(-/-) mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1(-/-) mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1(+/+) and Romk1(-/-) mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1(+/+), but such regulation by high K intake was diminished with significant hyperkalemia in Romk1(-/-) mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K(+) secretion in the collecting tubule. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Can a Proper T-Cell Development Occur in an Altered Thymic Epithelium? Lessons From EphB-Deficient Thymi

    Directory of Open Access Journals (Sweden)

    Juan José Muñoz

    2018-04-01

    Full Text Available For a long time, the effects of distinct Eph tyrosine kinase receptors and their ligands, ephrins on the structure, immunophenotype, and development of thymus and their main cell components, thymocytes (T and thymic epithelial cells (TECs, have been studied. In recent years, the thymic phenotype of mutant mice deficient in several Ephs and ephrins B has been determined. Remarkably, thymic stroma in these animals exhibits important defects that appear early in ontogeny but little alterations in the proportions of distinct lymphoid cell populations. In the present manuscript, we summarize and extend these results discussing possible mechanisms governing phenotypical and functional thymocyte maturation in an absence of the critical T–TEC interactions, concluding that some signaling mediated by key molecules, such as MHCII, CD80, β5t, Aire, etc. could be sufficient to enable a proper maturation of thymocytes, independently of morphological alterations affecting thymic epithelium.

  16. Altered GPM6A/M6 dosage impairs cognition and causes phenotypes responsive to cholesterol in human and Drosophila.

    Science.gov (United States)

    Gregor, Anne; Kramer, Jamie M; van der Voet, Monique; Schanze, Ina; Uebe, Steffen; Donders, Rogier; Reis, André; Schenck, Annette; Zweier, Christiane

    2014-12-01

    Glycoprotein M6A (GPM6A) is a neuronal transmembrane protein of the PLP/DM20 (proteolipid protein) family that associates with cholesterol-rich lipid rafts and promotes filopodia formation. We identified a de novo duplication of the GPM6A gene in a patient with learning disability and behavioral anomalies. Expression analysis in blood lymphocytes showed increased GPM6A levels. An increase of patient-derived lymphoblastoid cells carrying membrane protrusions supports a functional effect of this duplication. To study the consequences of GPM6A dosage alterations in an intact nervous system, we employed Drosophila melanogaster as a model organism. We found that knockdown of Drosophila M6, the sole member of the PLP family in flies, in the wing, and whole organism causes malformation and lethality, respectively. These phenotypes as well as the protrusions of patient-derived lymphoblastoid cells with increased GPM6A levels can be alleviated by cholesterol supplementation. Notably, overexpression as well as loss of M6 in neurons specifically compromises long-term memory in the courtship conditioning paradigm. Our findings thus indicate a critical role of correct GPM6A/M6 levels for cognitive function and support a role of the GPM6A duplication for the patient's phenotype. Together with other recent findings, this study highlights compromised cholesterol homeostasis as a recurrent feature in cognitive phenotypes. © 2014 WILEY PERIODICALS, INC.

  17. Leaf micro-environment influence the altered foliar phenotype of columnar apple (Malus x domestica Borkh.) trees

    DEFF Research Database (Denmark)

    Talwara, Susheela; Grout, Brian William Wilson; Toldam-Andersen, Torben Bo

    2015-01-01

    in the phenotype of the leaves in the leaf clusters that subtend the fruits of CATs, compared to their standard counterparts. This initial investigation considers standard and columnar trees at different levels of genetic relatedness and records significant increases in leaf area, leaf mass per unit area......Columnar apple trees (CATs) have radically-altered architecture (significantly shorter internodes and lateral branches) when compared to standard apple trees, attributed to a mutation of the Co gene involved in apical dominance. These changes in architecture have been associated with changes......, chlorophyll content and competitive shading in the fruiting leaf clusters of columnar cultivars. Additionally, significant increases in intercepted light have been shown to be associated with the columnar structure, and carbon fixation is also increased. We propose that leaf micro-environment of columnar...

  18. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    Science.gov (United States)

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  19. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  20. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs in 3D Collagen Microspheres.

    Directory of Open Access Journals (Sweden)

    Sejin Han

    Full Text Available Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  1. HIV infection is associated with preservation of MAIT cells in the lungs but alteration of their phenotype and T cell receptor repertoire

    DEFF Research Database (Denmark)

    Wong, E. B.; Xulu, B.; Prakadan, S.

    2016-01-01

    Tuberculosis remains the leading cause of death in HIV-positive people. A better understanding of the impact of HIV on lung immunity may lead to novel immunotherapeutic interventions. MAIT cells are tissue-homing donor-unrestricted T cells with broad anti-microbial activity. HIV infection causes ...... to determine the mechanisms underlying the altered phenotypes of lung-resident MAITs and whether these can be targeted to improve anti-microbial lung immunity in people living with HIV....

  2. The nature of stable insomnia phenotypes.

    Science.gov (United States)

    Pillai, Vivek; Roth, Thomas; Drake, Christopher L

    2015-01-01

    We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Longitudinal. Urban, community-based. Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). None. At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the 'neither criterion' phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With the exception of daytime sleepiness, few clinical differences are apparent across stable phenotypes.

  3. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.

    Science.gov (United States)

    Crosas-Molist, Eva; Meirelles, Thayna; López-Luque, Judit; Serra-Peinado, Carla; Selva, Javier; Caja, Laia; Gorbenko Del Blanco, Darya; Uriarte, Juan José; Bertran, Esther; Mendizábal, Yolanda; Hernández, Vanessa; García-Calero, Carolina; Busnadiego, Oscar; Condom, Enric; Toral, David; Castellà, Manel; Forteza, Alberto; Navajas, Daniel; Sarri, Elisabet; Rodríguez-Pascual, Fernando; Dietz, Harry C; Fabregat, Isabel; Egea, Gustavo

    2015-04-01

    Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation. © 2015 American Heart Association, Inc.

  4. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Science.gov (United States)

    2012-01-01

    Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of

  5. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Directory of Open Access Journals (Sweden)

    Li Muyang

    2012-06-01

    Full Text Available Abstract Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses

  6. Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene.

    Science.gov (United States)

    Poussier, Stéphane; Thoquet, Philippe; Trigalet-Demery, Danièle; Barthet, Séverine; Meyer, Damien; Arlat, Matthieu; Trigalet, André

    2003-08-01

    Ralstonia solanacearum is a plant pathogenic bacterium that undergoes a spontaneous phenotypic conversion (PC) from a wild-type pathogenic to a non-pathogenic form. PC is often associated with mutations in phcA, which is a key virulence regulatory gene. Until now, reversion to the wild-type pathogenic form has not been observed for PC variants and the biological significance of PC has been questioned. In this study, we characterized various alterations in phcA (eight IS element insertions, three tandem duplications, seven deletions and a base substitution) in 19 PC mutants from the model strain GMI1000. In five of these variants, reversion to the pathogenic form was observed in planta, while no reversion was ever noticed in vitro whatever culture media used. However, reversion was observed for a 64 bp tandem duplication in vitro in the presence of tomato root exudate. This is the first report showing a complete cycle of phenotypic conversion/reversion in a plant pathogenic bacterium.

  7. Investigation of GRIN2A in common epilepsy phenotypes

    NARCIS (Netherlands)

    Lal, Dennis; Steinbrücker, Sandra; Schubert, Julian; Sander, Thomas; Becker, Felicitas; Weber, Yvonne; Lerche, Holger; Thiele, Holger; Krause, Roland; Lehesjoki, Anna Elina; Nürnberg, Peter; Palotie, Aarno; Neubauer, Bernd A.; Muhle, Hiltrud; Stephani, Ulrich; Helbig, Ingo; Becker, Albert J.; Schoch, Susanne; Hansen, Jörg; Dorn, Thomas; Hohl, Christin; Lüscher, Nicole; von Spiczak, Sarah; Lemke, Johannes R.; Zimprich, Fritz; Feucht, Martha; Suls, Arvid; Weckhuysen, Sarah; Claes, Lieve; Deprez, Liesbet; Smets, Katrien; Dyck, Tine Van; Deconinck, Tine; De Jonghe, Peter; Møller, Rikke S.; Klitten, Laura L.; Hjalgrim, Helle; Campus, Kiel; Ostertag, Philipp; Trucks, Hol ger; Elger, Christian E.; Kleefuß-Lie, Ailing A.; Kunz, Wolfram S.; Surges, Rainer; Gaus, Verena; Janz, Dieter; Schmitz, Bettina; Klein, Karl Martin; Reif, Philipp S.; Oertel, Wolfgang H.; Hamer, Hajo M.; Rosenow, Felix; Kapser, Claudia; Schankin, Christoph J.; Koeleman, Bobby P C; de Kovel, Carolien; Lindhout, Dick; Reinthaler, Eva M.; Steinboeck, Hannelore; Neo-phytou, Birgit; Geldner, Julia; Gruber-Sedlmayr, Ursula; Haberlandt, Edda; Ronen, Gabriel M.; Altmueller, Janine; Nuernberg, Peter; Neubauer, Bernd; Sirén, Auli

    2015-01-01

    Recently, mutations and deletions in the GRIN2A gene have been identified to predispose to benign and severe idiopathic focal epilepsies (IFE), revealing a higher incidence of GRIN2A alterations among the more severe phenotypes. This study aimed to explore the phenotypic boundaries of GRIN2A

  8. The Nature of Stable Insomnia Phenotypes

    Science.gov (United States)

    Pillai, Vivek; Roth, Thomas; Drake, Christopher L.

    2015-01-01

    Study Objectives: We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Design: Longitudinal. Setting: Urban, community-based. Participants: Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). Interventions: None. Measurements and results: At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the “neither criterion” phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. Conclusions: By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With

  9. Investigation of GRIN2A> in common epilepsy phenotypes

    DEFF Research Database (Denmark)

    Lal, Dennis; Steinbrücker, Sandra; Schubert, Julian

    2015-01-01

    Recently, mutations and deletions in the GRIN2A gene have been identified to predispose to benign and severe idiopathic focal epilepsies (IFE), revealing a higher incidence of GRIN2A alterations among the more severe phenotypes. This study aimed to explore the phenotypic boundaries of GRIN2A muta...

  10. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com [Department of Applied Mathematics and Sciences, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Christoforou, Nicolas, E-mail: nicolas.christoforou@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States); Teo, Jeremy C.M., E-mail: jeremy.teo@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates)

    2016-05-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  11. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    International Nuclear Information System (INIS)

    Timraz, Sara B.H.; Farhat, Ilyas A.H.; Alhussein, Ghada; Christoforou, Nicolas; Teo, Jeremy C.M.

    2016-01-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  12. Secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Pereira, Manuel Pedro; Werner, Mads Utke

    2015-01-01

    of the burn-injury) (p right (p = 0.001) and left caudate nucleus (p = 0.01) was detected....... To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47 °C, 7 min......, 9 cm(2)) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary...

  13. Adiposity Indexes as Phenotype-Specific Markers of Preclinical Metabolic Alterations and Cardiovascular Risk in Polycystic Ovary Syndrome: A Cross-Sectional Study.

    Science.gov (United States)

    Mario, Fernanda Missio; Graff, Scheila Karen; Spritzer, Poli Mara

    2017-05-01

    Polycystic ovary syndrome (PCOS) is a common condition in women of reproductive age. 2 PCOS phenotypes (classic and ovulatory) are currently recognized as the most prevalent, with important differences in terms of cardiometabolic features. We studied the performance of different adiposity indexes to predict preclinical metabolic alterations and cardiovascular risk in 234 women with PCOS (173 with classic and 61 with ovulatory PCOS) and 129 controls. Performance of waist circumference, waist-to-height ratio, conicity index, lipid accumulation product, and visceral adiposity index was assessed based on HOMA-IR ≥ 3.8 as reference standard for screening preclinical metabolic alterations and cardiovascular risk factors in each group. Lipid accumulation product had the best accuracy for classic PCOS, and visceral adiposity index had the best accuracy for ovulatory PCOS. By applying the cutoff point of lipid accumulation productcardiometabolic alterations (Prisk for hypertension, dyslipidemia, and impaired glucose tolerance. In ovulatory PCOS, visceral adiposity index ≥ 1.32 was capable of detecting women with significantly higher blood pressure and less favorable glycemic and lipid variables as compared to ovulatory PCOS with lower visceral adiposity index (Pcardiometabolic risk and secure early interventions. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Quality Control Test for Sequence-Phenotype Assignments

    Science.gov (United States)

    Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel

    2015-01-01

    Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273

  15. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun; Jiang, Xuemei; Zhu, Jian; Jin, Yang; Lin, Feng; Zhong, Jun; Xu, Rong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030 (China); Mao, Lizheng [Jiangsu Asialand Biomed-Technology Co. Ltd., Changzhou, Jiangsu 213164 (China); Deng, Linhong, E-mail: dlh@cczu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030 (China); Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164 (China)

    2016-11-15

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells for stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes

  16. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    International Nuclear Information System (INIS)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun; Jiang, Xuemei; Zhu, Jian; Jin, Yang; Lin, Feng; Zhong, Jun; Xu, Rong; Mao, Lizheng; Deng, Linhong

    2016-01-01

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells for stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes a

  17. CD11c-positive cells from brain, spleen, lung, and liver exhibit site-specific immune phenotypes and plastically adapt to new environments.

    Science.gov (United States)

    Immig, Kerstin; Gericke, Martin; Menzel, Franziska; Merz, Felicitas; Krueger, Martin; Schiefenhövel, Fridtjof; Lösche, Andreas; Jäger, Kathrin; Hanisch, Uwe-Karsten; Biber, Knut; Bechmann, Ingo

    2015-04-01

    The brain's immune privilege has been also attributed to the lack of dendritic cells (DC) within its parenchyma and the adjacent meninges, an assumption, which implies maintenance of antigens rather than their presentation in lymphoid organs. Using mice transcribing the green fluorescent protein under the promoter of the DC marker CD11c (itgax), we identified a juxtavascular population of cells expressing this DC marker and demonstrated their origin from bone marrow and local microglia. We now phenotypically compared this population with CD11c/CD45 double-positive cells from lung, liver, and spleen in healthy mice using seven-color flow cytometry. We identified unique, site-specific expression patterns of F4/80, CD80, CD86, CX3CR1, CCR2, FLT3, CD103, and MHC-II. Furthermore, we observed the two known CD45-positive populations (CD45(high) and CD45(int) ) in the brain, whereas liver, lung, and spleen exhibited a homogeneous CD45(high) population. CD11c-positive microglia lacked MHC-II expression and CD45(high) /CD11c-positive cells from the brain have a lower percentage of MHC-II-positive cells. To test whether phenotypical differences are fixed by origin or specifically develop due to environmental factors, we transplanted brain and spleen mononuclear cells on organotypic slice cultures from brain (OHSC) and spleen (OSSC). We demonstrate that adaption and ramification of MHC-II-positive splenocytes is paralleled by down-regulation of MHC-II, whereas brain-derived mononuclear cells neither ramified nor up-regulated MHC-II in OSSCs. Thus, brain-derived mononuclear cells maintain their MHC-II-negative phenotype within the environment of an immune organ. Intraparenchymal CD11c-positive cells share immunophenotypical characteristics of DCs from other organs but remain unique for their low MHC-II expression. © 2014 Wiley Periodicals, Inc.

  18. Genetic and phenotypic intra-species variation in Candida albicans.

    Science.gov (United States)

    Hirakawa, Matthew P; Martinez, Diego A; Sakthikumar, Sharadha; Anderson, Matthew Z; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M; Greenberg, Joshua M; Berman, Judith; Bennett, Richard J; Cuomo, Christina A

    2015-03-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. © 2015 Hirakawa et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2016-02-01

    Full Text Available The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+ or a duplication (Dup/+ of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.

  20. Expanding the phenotypic spectrum of ARID1B-mediated disorders and identification of altered cell-cycle dynamics due to ARID1B haploinsufficiency.

    Science.gov (United States)

    Sim, Joe C H; White, Susan M; Fitzpatrick, Elizabeth; Wilson, Gabrielle R; Gillies, Greta; Pope, Kate; Mountford, Hayley S; Torring, Pernille M; McKee, Shane; Vulto-van Silfhout, Anneke T; Jhangiani, Shalini N; Muzny, Donna M; Leventer, Richard J; Delatycki, Martin B; Amor, David J; Lockhart, Paul J

    2014-03-27

    Mutations in genes encoding components of the Brahma-associated factor (BAF) chromatin remodeling complex have recently been shown to contribute to multiple syndromes characterised by developmental delay and intellectual disability. ARID1B mutations have been identified as the predominant cause of Coffin-Siris syndrome and have also been shown to be a frequent cause of nonsyndromic intellectual disability. Here, we investigate the molecular basis of a patient with an overlapping but distinctive phenotype of intellectual disability, plantar fat pads and facial dysmorphism. High density microarray analysis of the patient demonstrated a heterozygous deletion at 6q25.3, which resulted in the loss of four genes including AT Rich Interactive Domain 1B (ARID1B). Subsequent quantitative real-time PCR analysis revealed ARID1B haploinsufficiency in the patient. Analysis of both patient-derived and ARID1B knockdown fibroblasts after serum starvation demonstrated delayed cell cycle re-entry associated with reduced cell number in the S1 phase. Based on the patient's distinctive phenotype, we ascertained four additional patients and identified heterozygous de novo ARID1B frameshift or nonsense mutations in all of them. This study broadens the spectrum of ARID1B associated phenotypes by describing a distinctive phenotype including plantar fat pads but lacking the hypertrichosis or fifth nail hypoplasia associated with Coffin-Siris syndrome. We present the first direct evidence in patient-derived cells that alterations in cell cycle contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency.

  1. Consistent inhibition of cyclooxygenase drives macrophages towards the inflammatory phenotype.

    Directory of Open Access Journals (Sweden)

    Yi Rang Na

    Full Text Available Macrophages play important roles in defense against infection, as well as in homeostasis maintenance. Thus alterations of macrophage function can have unexpected pathological results. Cyclooxygenase (COX inhibitors are widely used to relieve pain, but the effects of long-term usage on macrophage function remain to be elucidated. Using bone marrow-derived macrophage culture and long-term COX inhibitor treatments in BALB/c mice and zebrafish, we showed that chronic COX inhibition drives macrophages into an inflammatory state. Macrophages differentiated in the presence of SC-560 (COX-1 inhibitor, NS-398 (COX-2 inhibitor or indomethacin (COX-1/2 inhibitor for 7 days produced more TNFα or IL-12p70 with enhanced p65/IκB phosphoylation. YmI and IRF4 expression was reduced significantly, indicative of a more inflammatory phenotype. We further observed that indomethacin or NS-398 delivery accelerated zebrafish death rates during LPS induced sepsis. When COX inhibitors were released over 30 days from an osmotic pump implant in mice, macrophages from peritoneal cavities and adipose tissue produced more TNFα in both the basal state and under LPS stimulation. Consequently, indomethacin-exposed mice showed accelerated systemic inflammation after LPS injection. Our findings suggest that macrophages exhibit a more inflammatory phenotype when COX activities are chronically inhibited.

  2. Phenotypic Resistance to Antibiotics

    Directory of Open Access Journals (Sweden)

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  3. Gender-specific alteration of energy balance and circadian locomotor activity in the Crtc1 knockout mouse model of depression

    KAUST Repository

    Rossetti, Clara

    2017-12-06

    Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1\\'s role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males\\' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.

  4. Gender-specific alteration of energy balance and circadian locomotor activity in the Crtc1 knockout mouse model of depression

    KAUST Repository

    Rossetti, Clara; Sciarra, Daniel; Petit, Jean-Marie; Eap, Chin B.; Halfon, Olivier; Magistretti, Pierre J.; Boutrel, Benjamin; Cardinaux, Jean-René

    2017-01-01

    Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1's role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.

  5. Rescue of Metabolic Alterations in AR113Q Skeletal Muscle by Peripheral Androgen Receptor Gene Silencing

    Directory of Open Access Journals (Sweden)

    Elisa Giorgetti

    2016-09-01

    Full Text Available Spinal and bulbar muscular atrophy (SBMA, a progressive degenerative disorder, is caused by a CAG/glutamine expansion in the androgen receptor (polyQ AR. Recent studies demonstrate that skeletal muscle is an important site of toxicity that contributes to the SBMA phenotype. Here, we sought to identify critical pathways altered in muscle that underlie disease manifestations in AR113Q mice. This led to the unanticipated identification of gene expression changes affecting regulators of carbohydrate metabolism, similar to those triggered by denervation. AR113Q muscle exhibits diminished glycolysis, altered mitochondria, and an impaired response to exercise. Strikingly, the expression of genes regulating muscle energy metabolism is rescued following peripheral polyQ AR gene silencing by antisense oligonucleotides (ASO, a therapeutic strategy that alleviates disease. Our data establish the occurrence of a metabolic imbalance in SBMA muscle triggered by peripheral expression of the polyQ AR and indicate that alterations in energy utilization contribute to non-neuronal disease manifestations.

  6. Epigenetic Alterations in Fanconi Anaemia: Role in Pathophysiology and Therapeutic Potential.

    Directory of Open Access Journals (Sweden)

    Hélio Belo

    Full Text Available Fanconi anaemia (FA is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average. Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.

  7. Subsets of microsatellite-unstable colorectal cancers exhibit discordance between the CpG island methylator phenotype and MLH1 methylation status.

    Science.gov (United States)

    Kim, Jung H; Rhee, Ye-Y; Bae, Jeong-M; Kwon, Hyeong-J; Cho, Nam-Y; Kim, Mi J; Kang, Gyeong H

    2013-07-01

    Although the presence of MLH1 methylation in microsatellite-unstable colorectal cancer generally indicates involvement of the CpG island methylator phenotype (CIMP) in the development of the tumor, these two conditions do not always correlate. A minority of microsatellite-unstable colorectal cancers exhibit discordance between CIMP and MLH1 methylation statuses. However, the clinicopathological features of such microsatellite-unstable colorectal cancers with discrepant MLH1 methylation and CIMP statuses remain poorly studied. Microsatellite-unstable colorectal cancers (n=220) were analyzed for CIMP and MLH1 methylation statuses using the MethyLight assay. Based on the combinatorial CIMP and MLH1 methylation statuses, the microsatellite-unstable colorectal cancers were grouped into four subtypes (CIMP-high (CIMP-H) MLH1 methylation-positive (MLH1m+), CIMP-H MLH1 methylation-negative, CIMP-low/0 (CIMP-L/0) MLH1m+, and CIMP-L/0 MLH1 methylation-negative), which were compared in terms of their associations with clinicopathological and molecular features. The CIMP-L/0 MLH1 methylation-negative and CIMP-H MLH1m+ subtypes were predominant, comprising 63.6 and 24.1% of total microsatellite-unstable colorectal cancers, respectively. The discordant subtypes, CIMP-H MLH1 methylation-negative and CIMP-L/0 MLH1m+, were found in 5 and 7% of microsatellite-unstable colorectal cancers, respectively. The CIMP-H MLH1 methylation-negative subtype exhibited elevated incidence rates in male patients and was associated with larger tumor size, more frequent loss of MSH2 expression, increased frequency of KRAS mutation, and advanced cancer stage. The CIMP-L/0 MLH1m+ subtype was associated with onset at an earlier age, a predominance of MLH1 loss, and earlier cancer stage. None of the CIMP-L/0 MLH1m+ subtype patients succumbed to death during the follow-up. Our findings suggest that the discordant subtypes of colorectal cancers exhibit distinct clinicopathological and molecular features

  8. Metabolic profiles to define the genome: can we hear the phenotypes?

    OpenAIRE

    Griffin, Julian L

    2004-01-01

    There is an increased reliance on genetically modified organisms as a functional genomic tool to elucidate the role of genes and their protein products. Despite this, many models do not express the expected phenotype thought to be associated with the gene or protein. There is thus an increased need to further define the phenotype resultant from a genetic modification to understand how the transcriptional or proteomic network may conspire to alter the expected phenotype. This is best typified ...

  9. Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data.

    Directory of Open Access Journals (Sweden)

    Jonathan D Mosley

    Full Text Available A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1 non-synonymous SNPs (nsSNPs associated with "mechanistic phenotypes", comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1 thrombosis, evaluated in a population of 1,655 African Americans; and (2 four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs, and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher's p = 0.0001, FDR p = 0.03, driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10-5, FDR p = 0.03 (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L while the additive model showed enrichment related to chromatid segregation (p = 4×10-6, FDR p = 0.005 (KIF25, PINX1. We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.

  10. Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes.

    Science.gov (United States)

    Mukhopadhyay, Partha; Farrell, Tracy; Sharma, Gayatri; McGuire, Timothy R; O'Kane, Barbara; Sharp, J Graham

    2013-01-01

    Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.

  11. Loss of Heterozygosity at an Unlinked Genomic Locus Is Responsible for the Phenotype of a Candida albicans sap4Δ sap5Δ sap6Δ Mutant ▿

    OpenAIRE

    Dunkel, Nico; Morschhäuser, Joachim

    2011-01-01

    The diploid genome of the pathogenic yeast Candida albicans exhibits a high degree of heterozygosity. Genomic alterations that result in a loss of heterozygosity at specific loci may affect phenotypes and confer a selective advantage under certain conditions. Such genomic rearrangements can also occur during the construction of C. albicans mutants and remain undetected. The SAP2 gene on chromosome R encodes a secreted aspartic protease that is induced and required for growth of C. albicans wh...

  12. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment

    Directory of Open Access Journals (Sweden)

    Jean-Paul Vernot

    2017-02-01

    Full Text Available An understanding of the cell interactions occurring in the leukemic microenvironment and their functional consequences for the different cell players has therapeutic relevance. By co-culturing mesenchymal stem cells (MSC with the REH acute lymphocytic leukemia (ALL cell line, we have established an in vitro leukemic niche for the functional evaluation of hematopoietic stem/progenitor cells (HSPC, CD34+ cells. We showed that the normal homeostatic control exerted by the MSC over the HSPC is considerably lost in this leukemic microenvironment: HSPC increased their proliferation rate and adhesion to MSC. The adhesion molecules CD54 and CD44 were consequently upregulated in HSPC from the leukemic niche. Consequently, with this adhesive phenotype, HSPC showed less Stromal derived factor-1 (SDF-1-directed migration. Interestingly, multipotency was severely affected with an important reduction in the absolute count and the percentage of primitive progenitor colonies. It was possible to simulate most of these HSPC alterations by incubation of MSC with a REH-conditioned medium, suggesting that REH soluble factors and their effect on MSC are important for the observed changes. Of note, these HSPC alterations were reproduced when primary leukemic cells from an ALL type B (ALL-B patient were used to set up the leukemic niche. These results suggest that a general response is induced in the leukemic niche to the detriment of HSPC function and in favor of leukemic cell support. This in vitro leukemic niche could be a valuable tool for the understanding of the molecular events responsible for HSPC functional failure and a useful scenario for therapeutic evaluation.

  13. Generation of New Genotypic and Phenotypic Features in Artificial and Natural Yeast Hybrids

    Directory of Open Access Journals (Sweden)

    Walter P. Pfliegler

    2014-01-01

    Full Text Available Evolution and genome stabilization have mostly been studied on the Saccharomyces hybrids isolated from natural and alcoholic fermentation environments. Genetic and phenotypic properties have usually been compared to the laboratory and reference strains, as the true ancestors of the natural hybrid yeasts are unknown. In this way the exact impact of different parental fractions on the genome organization or metabolic activity of the hybrid yeasts is difficult to resolve completely. In the present work the evolution of geno- and phenotypic properties is studied in the interspecies hybrids created by the cross-breeding of S. cerevisiae with S. uvarum or S. kudriavzevii auxotrophic mutants. We hypothesized that the extent of genomic alterations in S. cerevisiae × S. uvarum and S. cerevisiae × S. kudriavzevii should affect the physiology of their F1 offspring in different ways. Our results, obtained by amplified fragment length polymorphism (AFLP genotyping and karyotyping analyses, showed that both subgenomes of the S. cerevisiae x S. uvarum and of S. cerevisiae × S. kudriavzevii hybrids experienced various modifications. However, the S. cerevisiae × S. kudriavzevii F1 hybrids underwent more severe genomic alterations than the S. cerevisiae × S. uvarum ones. Generation of the new genotypes also influenced the physiological performances of the hybrids and the occurrence of novel phenotypes. Significant differences in carbohydrate utilization and distinct growth dynamics at increasing concentrations of sodium chloride, urea and miconazole were observed within and between the S. cerevisiae × S. uvarum and S. cerevisiae × S. kudriavzevii hybrids. Parental strains also demonstrated different contributions to the final metabolic outcomes of the hybrid yeasts. A comparison of the genotypic properties of the artificial hybrids with several hybrid isolates from the wine-related environments and wastewater demonstrated a greater genetic variability of

  14. IDH Mutations: Genotype-Phenotype Correlation and Prognostic Impact

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Wang

    2014-01-01

    Full Text Available IDH1/2 mutation is the most frequent genomic alteration found in gliomas, affecting 40% of these tumors and is one of the earliest alterations occurring in gliomagenesis. We investigated a series of 1305 gliomas and showed that IDH mutation is almost constant in 1p19q codeleted tumors. We found that the distribution of IDH1R132H, IDH1nonR132H, and IDH2 mutations differed between astrocytic, mixed, and oligodendroglial tumors, with an overrepresentation of IDH2 mutations in oligodendroglial phenotype and an overrepresentation of IDH1nonR132H in astrocytic tumors. We stratified grade II and grade III gliomas according to the codeletion of 1p19q and IDH mutation to define three distinct prognostic subgroups: 1p19q and IDH mutated, IDH mutated—which contains mostly TP53 mutated tumors, and none of these alterations. We confirmed that IDH mutation with a hazard ratio = 0.358 is an independent prognostic factor of good outcome. These data refine current knowledge on IDH mutation prognostic impact and genotype-phenotype associations.

  15. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice.

    Science.gov (United States)

    Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin

    2018-03-07

    Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.

  16. A Constitutively Mannose-Sensitive Agglutinating Salmonella enterica subsp. enterica Serovar Typhimurium Strain, Carrying a Transposon in the Fimbrial Usher Gene stbC, Exhibits Multidrug Resistance and Flagellated Phenotypes

    Directory of Open Access Journals (Sweden)

    Kuan-Hsun Wu

    2012-01-01

    Full Text Available Static broth culture favors Salmonella enterica subsp. enterica serovar Typhimurium to produce type 1 fimbriae, while solid agar inhibits its expression. A transposon inserted in stbC, which would encode an usher for Stb fimbriae of a non-flagellar Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, conferred it to agglutinate yeast cells on both cultures. RT-PCR revealed that the expression of the fimbrial subunit gene fimA, and fimZ, a regulatory gene of fimA, were both increased in the stbC mutant when grown on LB agar; fimW, a repressor gene of fimA, exhibited lower expression. Flagella were observed in the stbC mutant and this phenotype was correlated with the motile phenotype. Microarray data and RT-PCR indicated that the expression of three genes, motA, motB, and cheM, was enhanced in the stbC mutant. The stbC mutant was resistant to several antibiotics, consistent with the finding that expression of yhcQ and ramA was enhanced. A complementation test revealed that transforming a recombinant plasmid possessing the stbC restored the mannose-sensitive agglutination phenotype to the stbC mutant much as that in the parental Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, indicating the possibility of an interplay of different fimbrial systems in coordinating their expression.

  17. Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits.

    Science.gov (United States)

    Schmidt, Monica A; Parrott, Wayne A; Hildebrand, David F; Berg, R Howard; Cooksey, Amanda; Pendarvis, Ken; He, Yonghua; McCarthy, Fiona; Herman, Eliot M

    2015-05-01

    Transgenic soya bean (Glycine max) plants overexpressing a seed-specific bacterial phytoene synthase gene from Pantoea ananatis modified to target to plastids accumulated 845 μg β carotene g(-1) dry seed weight with a desirable 12:1 ratio of β to α. The β carotene accumulating seeds exhibited a shift in oil composition increasing oleic acid with a concomitant decrease in linoleic acid and an increase in seed protein content by at least 4% (w/w). Elevated β-carotene accumulating soya bean cotyledons contain 40% the amount of abscisic acid compared to nontransgenic cotyledons. Proteomic and nontargeted metabolomic analysis of the mid-maturation β-carotene cotyledons compared to the nontransgenic did not reveal any significant differences that would account for the altered phenotypes of both elevated oleate and protein content. Transcriptomic analysis, confirmed by RT-PCR, revealed a number of significant differences in ABA-responsive transcripton factor gene expression in the crtB transgenics compared to nontransgenic cotyledons of the same maturation stage. The altered seed composition traits seem to be attributed to altered ABA hormone levels varying transcription factor expression. The elevated β-carotene, oleic acid and protein traits in the β-carotene soya beans confer a substantial additive nutritional quality to soya beans. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Stabilization of the wheel running phenotype in mice.

    Science.gov (United States)

    Bowen, Robert S; Cates, Brittany E; Combs, Eric B; Dillard, Bryce M; Epting, Jessica T; Foster, Brittany R; Patterson, Shawnee V; Spivey, Thomas P

    2016-03-01

    Increased physical activity is well known to improve health and wellness by modifying the risks for many chronic diseases. Rodent wheel running behavior is a beneficial surrogate model to evaluate the biology of daily physical activity in humans. Upon initial exposure to a running wheel, individual mice differentially respond to the experience, which confounds the normal activity patterns exhibited in this otherwise repeatable phenotype. To promote phenotypic stability, a minimum seven-day (or greater) acclimation period is utilized. Although phenotypic stabilization is achieved during this 7-day period, data to support acclimation periods of this length are not currently available in the literature. The purpose of this project is to evaluate the wheel running response in C57BL/6j mice immediately following exposure to a running wheel. Twenty-eight male and thirty female C57BL/6j mice (Jackson Laboratory, Bar Harbor, ME) were acquired at eight weeks of age and were housed individually with free access to running wheels. Wheel running distance (km), duration (min), and speed (m∙min(-1)) were measured daily for fourteen days following initial housing. One-way ANOVAs were used to evaluate day-to-day differences in each wheel running character. Limits of agreement and mean difference statistics were calculated between days 1-13 (acclimating) and day 14 (acclimated) to assess day-to-day agreement between each parameter. Wheel running distance (males: F=5.653, p=2.14 × 10(-9); females: F=8.217, p=1.20 × 10(-14)), duration (males: F=2.613, p=0.001; females: F=4.529, p=3.28 × 10(-7)), and speed (males: F=7.803, p=1.22 × 10(-13); females: F=13.140, p=2.00 × 10(-16)) exhibited day-to-day differences. Tukey's HSD post-hoc testing indicated differences between early (males: days 1-3; females: days 1-6) and later (males: days >3; females: days >6) wheel running periods in distance and speed. Duration only exhibited an anomalous difference between wheel running on day 13

  19. A case of paroxysmal kinesigenic dyskinesia which exhibited the phenotype of anxiety disorder

    Directory of Open Access Journals (Sweden)

    Kunii Y

    2017-08-01

    Full Text Available Yasuto Kunii,1,2 Nozomu Matsuda,3 Hirooki Yabe1 1Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan; 2Department of Neuropsychiatry, Aizu Medical Center, School of Medicine, Fukushima Medical University, Fukushima, Japan; 3Department of Neurology, Fukushima Medical University School of Medicine, Fukushima, Japan Background: Paroxysmal kinesigenic dyskinesia (PKD is a rare heritable neurologic disorder characterized by attacks of involuntary movement induced by sudden voluntary movements. No previous reports have described cases showing comorbidity with psychiatric disease or symptoms. In this case, we showed a patient with PKD who exhibited several manifestations of anxiety disorder.Case: A 35-year-old Japanese man with PKD had been maintained on carbamazepine since he was 16 years of age without any attacks. However, 10 years before this referral, he became aware of a feeling of breakdown in his overall physical functions. He had then avoided becoming familiar with people out of concern that his physical dysfunctions might be perceived in a negative light. One day he was referred by the neurologic department at our hospital to the Department of Psychiatry because of severe anxiety and hyperventilation triggered by carbamazepine. We treated with escitalopram, aripiprazole, and ethyl loflazepate. Both his subjective physical condition and objective expressions subsequently showed gradual improvement. At last, the feelings of chest compression and anxiety entirely disappeared. Accordingly, increases in plasma monoamine metabolite levels were observed, and the c.649dupC mutation, which has been found in most Japanese PKD families, was detected in his proline-rich transmembrane protein 2 gene.Conclusion: This is the first report to describe psychiatric comorbidities or symptoms in a PKD case. The efficacy of psychotropic medication used in this case, the resulting changes in plasma monoamine metabolite

  20. Progressive obesity alters the steroidogenic response to ovulatory stimulation and increases the abundance of mRNAs stored in the ovulated oocyte.

    Science.gov (United States)

    Pohlmeier, William E; Xie, Fang; Kurz, Scott G; Lu, Ningxia; Wood, Jennifer R

    2014-08-01

    Obese women who are able to attain pregnancy are at increased risk for early-pregnancy loss due, in part, to reduced oocyte quality. We and others have demonstrated that female Lethal Yellow (LY) mice and female C57BL/6 mice fed a high fat diet (B6-HFD) exhibit phenotypes consistent with human obesity. These studies also showed that zygotes collected from LY and B6-HFD females have reduced developmental competence. The current hypothesis is that LY and B6-HFD females exhibit an abnormal response to gonadotropin stimulation compared to C57BL/6 controls fed normal rodent chow (B6-ND), resulting in the ovulation of oocytes with an altered molecular phenotype which may contribute to its reduced developmental competence. To test this hypothesis, age-matched B6-ND, B6-HFD, and LY females were stimulated with exogenous gonadotropins, then circulating hormone levels and the phenotypes of ovulated oocytes were analyzed. There was no difference in ovulation rate or in the percentage of morphologically abnormal oocytes collected from the oviduct of any females. Progesterone and progesterone/estradiol ratios, however, were increased in B6-HFD and LY compared to B6-ND females 16 hr post-human chorionic gonadotropin treatment. The transcript abundance of several candidate oocyte genes was also increased in B6-HFD- and LY-derived oocytes compared to B6-ND-derived oocytes. These data suggest that increased insulin and leptin levels of obese females elevated circulating progesterone concentrations, altered transcriptional activity during oocyte growth, and/or impaired mechanisms of RNA translation and degradation during oocyte maturation. These changes in mRNA abundance likely contribute to reduced oocyte quality and the subsequent poor embryogenesis associated with obesity. © 2014 Wiley Periodicals, Inc.

  1. Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2012-02-01

    Full Text Available Abstract Background There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example Fmr1 knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models. Methods To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes. Findings We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1 Changes in brain and neuronal morphology; (2 electrophysiological changes; (3 neurological changes; and (4 higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms. Conclusions The results indicated that mutations

  2. Phenotypic variation in California populations of valley oak (Quercus lobata Née) sampled along elevational gradients

    Science.gov (United States)

    Ana L. Albarrán-Lara; Jessica W. Wright; Paul F. Gugger; Annette Delfino-Mix; Juan Manuel Peñaloza-Ramírez; Victoria L. Sork

    2015-01-01

    California oaks exhibit tremendous phenotypic variation throughout their range. This variation reflects phenotypic plasticity in tree response to local environmental conditions as well as genetic differences underlying those phenotypes. In this study, we analyze phenotypic variation in leaf traits for valley oak adults sampled along three elevational transects and in...

  3. Dissecting phenotypic variation among AIS patients

    International Nuclear Information System (INIS)

    Wang Minghua; Wang Jiucun; Zhang Zhen; Zhao Zhimin; Zhang Rongmei; Hu Xiaohua; Tan Tao; Luo Shijing; Luo Zewei

    2005-01-01

    We have created genital skin fibroblast cell lines directly from three patients in a Chinese family affected by androgen insensitivity syndrome (AIS). All patients in the family share an identical AR Arg 840 Cys mutant but show different disease phenotypes. By using the cell lines, we find that the mutation has not influenced a normal androgen-binding capacity at 37 deg C but has reduced the affinity for androgens and may cause thermolability of the androgen-receptor complex. The impaired nuclear trafficking of the androgen receptor in the cell lines is highly correlated with the severity of donors' disease phenotype. The transactivity of the mutant is substantially weakened and the extent of the reduced transactivity reflects severity of the donors' disease symptom. Our data reveal that although etiology of AIS is monogenic and the mutant may alter the major biological functions of its wild allele, the function of the mutant AR can also be influenced by the different genetic backgrounds and thus explains the divergent disease phenotypes

  4. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    Science.gov (United States)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  5. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  6. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure.

    Directory of Open Access Journals (Sweden)

    Susanna L Lundström

    Full Text Available Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications.This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air.Sixty-four oxylipins representing the cyclooxygenase (COX, lipoxygenase (LOX and cytochrome P450 (CYP metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS of bronchoalveolar lavage (BAL-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ. Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information.Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2 (PGE(2. Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change.Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.

  7. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure.

    Science.gov (United States)

    Lundström, Susanna L; Levänen, Bettina; Nording, Malin; Klepczynska-Nyström, Anna; Sköld, Magnus; Haeggström, Jesper Z; Grunewald, Johan; Svartengren, Magnus; Hammock, Bruce D; Larsson, Britt-Marie; Eklund, Anders; Wheelock, Åsa M; Wheelock, Craig E

    2011-01-01

    Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2) (PGE(2)). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.

  8. Maneuvering in the Complex Path from Genotype to Phenotype

    Science.gov (United States)

    Strohman, Richard

    2002-04-01

    Human disease phenotypes are controlled not only by genes but by lawful self-organizing networks that display system-wide dynamics. These networks range from metabolic pathways to signaling pathways that regulate hormone action. When perturbed, networks alter their output of matter and energy which, depending on the environmental context, can produce either a pathological or a normal phenotype. Study of the dynamics of these networks by approaches such as metabolic control analysis may provide new insights into the pathogenesis and treatment of complex diseases.

  9. Spectrum of phenotypic anomalies in four families with deletion of the SHOX enhancer region.

    Science.gov (United States)

    Gatta, Valentina; Palka, Chiara; Chiavaroli, Valentina; Franchi, Sara; Cannataro, Giovanni; Savastano, Massimo; Cotroneo, Antonio Raffaele; Chiarelli, Francesco; Mohn, Angelika; Stuppia, Liborio

    2014-07-23

    SHOX alterations have been reported in 67% of patients affected by Léri-Weill dyschondrosteosis (LWD), with a larger prevalence of gene deletions than point mutations. It has been recently demonstrated that these deletions can involve the SHOX enhancer region, rather that the coding region, with variable phenotype of the affected patients.Here, we report a SHOX gene analysis carried out by MLPA in 14 LWD patients from 4 families with variable phenotype. All patients presented a SHOX enhancer deletion. In particular, a patient with a severe bilateral Madelung deformity without short stature showed a homozygous alteration identical to the recently described 47.5 kb PAR1 deletion. Moreover, we identified, for the first time, in three related patients with a severe bilateral Madelung deformity, a smaller deletion than the 47.5 kb PAR1 deletion encompassing the same enhancer region (ECR1/CNE7). Data reported in this study provide new information about the spectrum of phenotypic alterations showed by LWD patients with different deletions of the SHOX enhancer region.

  10. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy.

    Science.gov (United States)

    Syrbe, Steffen; Harms, Frederike L; Parrini, Elena; Montomoli, Martino; Mütze, Ulrike; Helbig, Katherine L; Polster, Tilman; Albrecht, Beate; Bernbeck, Ulrich; van Binsbergen, Ellen; Biskup, Saskia; Burglen, Lydie; Denecke, Jonas; Heron, Bénédicte; Heyne, Henrike O; Hoffmann, Georg F; Hornemann, Frauke; Matsushige, Takeshi; Matsuura, Ryuki; Kato, Mitsuhiro; Korenke, G Christoph; Kuechler, Alma; Lämmer, Constanze; Merkenschlager, Andreas; Mignot, Cyril; Ruf, Susanne; Nakashima, Mitsuko; Saitsu, Hirotomo; Stamberger, Hannah; Pisano, Tiziana; Tohyama, Jun; Weckhuysen, Sarah; Werckx, Wendy; Wickert, Julia; Mari, Francesco; Verbeek, Nienke E; Møller, Rikke S; Koeleman, Bobby; Matsumoto, Naomichi; Dobyns, William B; Battaglia, Domenica; Lemke, Johannes R; Kutsche, Kerstin; Guerrini, Renzo

    2017-09-01

    De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/β spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/βII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup

  11. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability.

    Science.gov (United States)

    Allaman, Igor; Gavillet, Mathilde; Bélanger, Mireille; Laroche, Thierry; Viertl, David; Lashuel, Hilal A; Magistretti, Pierre J

    2010-03-03

    Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.

  12. Ankyrin-1 Gene Exhibits Allelic Heterogeneity in Conferring Protection Against Malaria

    Directory of Open Access Journals (Sweden)

    Hong Ming Huang

    2017-09-01

    Full Text Available Allelic heterogeneity is a common phenomenon where a gene exhibits a different phenotype depending on the nature of its genetic mutations. In the context of genes affecting malaria susceptibility, it allowed us to explore and understand the intricate host–parasite interactions during malaria infections. In this study, we described a gene encoding erythrocytic ankyrin-1 (Ank-1 which exhibits allelic-dependent heterogeneous phenotypes during malaria infections. We conducted an ENU mutagenesis screen on mice and identified two Ank-1 mutations, one resulting in an amino acid substitution (MRI95845, and the other a truncated Ank-1 protein (MRI96570. Both mutations caused hereditary spherocytosis-like phenotypes and confer differing protection against Plasmodium chabaudi infections. Upon further examination, the Ank-1(MRI96570 mutation was found to inhibit intraerythrocytic parasite maturation, whereas Ank-1(MRI95845 caused increased bystander erythrocyte clearance during infection. This is the first description of allelic heterogeneity in ankyrin-1 from the direct comparison between two Ank-1 mutations. Despite the lack of direct evidence from population studies, this data further supported the protective roles of ankyrin-1 mutations in conferring malaria protection. This study also emphasized the importance of such phenomena in achieving a better understanding of host–parasite interactions, which could be the basis of future studies.

  13. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice.

    Science.gov (United States)

    Ryman, K D; Xie, H; Ledger, T N; Campbell, G A; Barrett, A D

    1997-04-14

    The live-attenuated yellow fever (YF) vaccine virus, strain 17D-204, has long been known to consist of a heterologous population of virions. Gould et al. (J. Gen. Virol. 70, 1889-1894 (1989)) previously demonstrated that variant viruses exhibiting a YF wild-type-specific envelope (E) protein epitope are present at low frequency in the vaccine pool and were able to isolate representative virus variants with and without this epitope, designated 17D(+wt) and 17D(-wt), respectively. These variants were employed here in an investigation of YF virus pathogenesis in the mouse model. Both the 17D-204 parent and the 17D(+wt) variant viruses were lethal for adult outbred mice by the intracerebral route of inoculation. However, the 17D(-wt) variant was significantly attenuated (18% mortality rate) and replicated to much lower titer in the brains of infected mice. A single amino acid substitution in the envelope (E) protein at E-240 (Ala-->Val) was identified as responsible for the restricted replication of the 17D(-wt) variant in vivo. The 17D(+wt) variant has an additional second-site mutation, believed to encode a reversion to the neurovirulence phenotype of the 17D-204 parent virus. The amino acid substitution in the E protein at E-173 (Thr-->Ile) of the 17D(+wt) variant which results in the appearance of the wild-type-specific epitope or nucleotide changes in the 5' and 3' noncoding regions of the virus are proposed as a candidates.

  14. Criticality is an emergent property of genetic networks that exhibit evolvability.

    Directory of Open Access Journals (Sweden)

    Christian Torres-Sosa

    Full Text Available Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype while allowing for switching between multiple phenotypes (network states as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i preserve all the already acquired phenotypes (dynamical attractor states and (ii generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation while conserving the existing phenotypes (conservation suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape.

  15. Clinical evaluation of R202Q alteration of MEFV genes in Turkish children.

    Science.gov (United States)

    Comak, Elif; Akman, Sema; Koyun, Mustafa; Dogan, Cagla Serpil; Gokceoglu, Arife Uslu; Arikan, Yunus; Keser, Ibrahim

    2014-12-01

    To date, over 200 alterations have been reported in Mediterranean fever (MEFV) genes, but it is not clear whether all these alterations are disease-causing mutations. This study aims to evaluate the clinical features of the children with R202Q alteration. The medical records of children with R202Q alteration were reviewed retrospectively. A total of 225 children, with 113 males, were included. Fifty-five patients were heterozygous, 30 patients were homozygous for R202Q, and 140 patients were compound heterozygous. Classical familial Mediterranean fever (FMF) phenotype was present in 113 patients: 2 heterozygous and 7 homozygous R202Q, 46 double homozygous R202Q and M694V, and 58 compound heterozygous. The main clinical characteristics of the patients were abdominal pain in 71.5 %, fever in 37.7 %, arthralgia/myalgia in 30.2 %, arthritis in 10.2 %, chest pain in 14.6 % and erysipelas-like erythema in 13.3 %. The frequency of abdominal pain was significantly lower in patients with homozygous R202Q alteration (p = 0.021), whereas patients with heterozygous R202Q mutations, though not statistically significant, had a higher frequency of arthralgia/myalgia (40.0 %, p = 0.05). R202Q alteration of the MEFV gene leads to symptoms consistent with FMF in some cases. This alteration may be associated with a mild phenotype and shows phenotypic differences other than the common MEFV mutations.

  16. Diet alters performance and transcription patterns in Oedaleus asiaticus (Orthoptera: Acrididae) grasshoppers.

    Science.gov (United States)

    Huang, Xunbing; Whitman, Douglas W; Ma, Jingchuan; McNeill, Mark Richard; Zhang, Zehua

    2017-01-01

    We reared Oedaleus asiaticus grasshoppers under four different single-plant diets to examine the relationships among diet, performance, stress, and transcription patterns. Grasshoppers fed only Artemisia frigida (Asteraceae) were stressed, as indicated by their lower growth, size, development, and survival, in comparison to grasshoppers fed on any of three grasses, Cleistogenes squarrosa, Leymus chinensis, or Stipa krylovii (all Poaceae). We then used transcriptome analysis to examine how gene expression levels in O. asiaticus were altered by feeding on these diets. Nymphs fed A. frigida had the largest variation in gene expression profiles with a total of 299 genes significantly up- or down-regulated compared to those feeding on the three grasses: down-regulated genes included those involved in cuticle biosynthesis, DNA replication, biosynthesis and metabolism of nutrition. The up-regulated genes included stress-resistant and detoxifying enzymes. GO and KEGG enrichment analysis also showed that feeding on A. frigida could down-regulate biosynthesis and metabolism related pathways, and up-regulate stress-resistant and detoxification terms and pathways. Our results show that diet significantly altered gene-expression, and that unfavorable, stressful diets induce more transcriptional changes than favorable diets. Altered gene-expression represents phenotypic plasticity, and many such changes appear to be evolved, adaptive responses. The ease and regularity by which individuals shift phenotypes via altered transcription suggests that populations consist not of similar, fixed phenotypes, but of a collection of ever-changing, divergent phenotypes.

  17. Phenotypic instability of Saos-2 cells in long-term culture

    International Nuclear Information System (INIS)

    Hausser, Heinz-Juergen; Brenner, Rolf E.

    2005-01-01

    The human osteosarcoma cell line Saos-2 is widely used as a model system for human osteoblastic cells, though its phenotypic stability has not been ascertained. We therefore propagated these cells over 100 passages and compared relevant phenotypic properties. In general, higher passage cells exhibited higher proliferation rates and lower specific alkaline phosphatase activities, though mineralization was significantly more pronounced in cultures of late passage cells. Whereas expression of most genes investigated did not vary profoundly, some genes exhibited remarkable differences. Decorin, for instance, that has been discussed as a regulator of proliferation and mineralization, is strongly expressed only in early passage cells, and two receptors for pleiotrophin and midkine exhibited an almost mutually exclusive expression pattern in early and late passage cells, respectively. Our observations indicate that special care is required when results obtained with Saos-2 cells with different culture history are to be compared

  18. Transgenerational Inheritance of Paternal Neurobehavioral Phenotypes: Stress, Addiction, Ageing and Metabolism.

    Science.gov (United States)

    Yuan, Ti-Fei; Li, Ang; Sun, Xin; Ouyang, Huan; Campos, Carlos; Rocha, Nuno B F; Arias-Carrión, Oscar; Machado, Sergio; Hou, Gonglin; So, Kwok Fai

    2016-11-01

    Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants.

  19. Contrasting gene expression programs correspond with predator-induced phenotypic plasticity within and across generations in Daphnia.

    Science.gov (United States)

    Hales, Nicole R; Schield, Drew R; Andrew, Audra L; Card, Daren C; Walsh, Matthew R; Castoe, Todd A

    2017-10-01

    Research has shown that a change in environmental conditions can alter the expression of traits during development (i.e., "within-generation phenotypic plasticity") as well as induce heritable phenotypic responses that persist for multiple generations (i.e., "transgenerational plasticity", TGP). It has long been assumed that shifts in gene expression are tightly linked to observed trait responses at the phenotypic level. Yet, the manner in which organisms couple within- and TGP at the molecular level is unclear. Here we tested the influence of fish predator chemical cues on patterns of gene expression within- and across generations using a clone of Daphnia ambigua that is known to exhibit strong TGP but weak within-generation plasticity. Daphnia were reared in the presence of predator cues in generation 1, and shifts in gene expression were tracked across two additional asexual experimental generations that lacked exposure to predator cues. Initial exposure to predator cues in generation 1 was linked to ~50 responsive genes, but such shifts were 3-4× larger in later generations. Differentially expressed genes included those involved in reproduction, exoskeleton structure and digestion; major shifts in expression of genes encoding ribosomal proteins were also identified. Furthermore, shifts within the first-generation and transgenerational shifts in gene expression were largely distinct in terms of the genes that were differentially expressed. Such results argue that the gene expression programmes involved in within- vs. transgeneration plasticity are fundamentally different. Our study provides new key insights into the plasticity of gene expression and how it relates to phenotypic plasticity in nature. © 2017 John Wiley & Sons Ltd.

  20. β2-Adrenergic Receptor Knockout Mice Exhibit A Diabetic Retinopathy Phenotype

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Liu, Li; Tang, Jie; Kern, Timothy S.; Steinle, Jena J.

    2013-01-01

    There is considerable evidence from our lab and others for a functional link between β-adrenergic receptor and insulin receptor signaling pathways in retina. Furthermore, we hypothesize that this link may contribute to lesions similar to diabetic retinopathy in that the loss of adrenergic input observed in diabetic retinopathy may disrupt normal anti-apoptotic insulin signaling, leading to retinal cell death. Our studies included assessment of neural retina function (ERG), vascular degeneration, and Müller glial cells (which express only β1 and β2-adrenergic receptor subtypes). In the current study, we produced β2-adrenergic receptor knockout mice to examine this deletion on retinal neurons and vasculature, and to identify specific pathways through which β2-adrenergic receptor modulates insulin signaling. As predicted from our hypothesis, β2-adrenergic receptor knockout mice display certain features similar to diabetic retinopathy. In addition, loss of β2-adrenergic input resulted in an increase in TNFα, a key inhibitor of insulin receptor signaling. Increased TNFα may be associated with insulin-dependent production of the anti-apoptotic factor, Akt. Since the effects occurred in vivo under normal glucose conditions, we postulate that aspects of the diabetic retinopathy phenotype might be triggered by loss of β2-adrenergic receptor signaling. PMID:23894672

  1. Sequence and ionomic analysis of divergent strains of maize inbred line B73 with an altered growth phenotype.

    Science.gov (United States)

    Mascher, Martin; Gerlach, Nina; Gahrtz, Manfred; Bucher, Marcel; Scholz, Uwe; Dresselhaus, Thomas

    2014-01-01

    Maize (Zea mays) is the most widely grown crop species in the world and a classical model organism for plant research. The completion of a high-quality reference genome sequence and the advent of high-throughput sequencing have greatly empowered re-sequencing studies in maize. In this study, plants of maize inbred line B73 descended from two different sets of seed material grown for several generations either in the field or in the greenhouse were found to show a different growth phenotype and ionome under phosphate starvation conditions and moreover a different responsiveness towards mycorrhizal fungi of the species Glomus intraradices (syn: Rhizophagus irregularis). Whole genome re-sequencing of individuals from both sets and comparison to the B73 reference sequence revealed three cryptic introgressions on chromosomes 1, 5 and 10 in the line grown in the greenhouse summing up to a total of 5,257 single-nucleotide polymorphisms (SNPs). Transcriptome sequencing of three individuals from each set lent further support to the location of the introgression intervals and confirmed them to be fixed in all sequenced individuals. Moreover, we identified >120 genes differentially expressed between the two B73 lines. We thus have found a nearly-isogenic line (NIL) of maize inbred line B73 that is characterized by an altered growth phenotype under phosphate starvation conditions and an improved responsiveness towards symbiosis with mycorrhizal fungi. Through next-generation sequencing of the genomes and transcriptomes we were able to delineate exact introgression intervals. Putative de novo mutations appeared approximately uniformly distributed along the ten maize chromosomes mainly representing G:C -> A:T transitions. The plant material described in this study will be a valuable tool both for functional studies of genes differentially expressed in both B73 lines and for research on growth behavior especially in response to symbiosis between maize and mycorrhizal fungi.

  2. Sequence and ionomic analysis of divergent strains of maize inbred line B73 with an altered growth phenotype.

    Directory of Open Access Journals (Sweden)

    Martin Mascher

    Full Text Available Maize (Zea mays is the most widely grown crop species in the world and a classical model organism for plant research. The completion of a high-quality reference genome sequence and the advent of high-throughput sequencing have greatly empowered re-sequencing studies in maize. In this study, plants of maize inbred line B73 descended from two different sets of seed material grown for several generations either in the field or in the greenhouse were found to show a different growth phenotype and ionome under phosphate starvation conditions and moreover a different responsiveness towards mycorrhizal fungi of the species Glomus intraradices (syn: Rhizophagus irregularis. Whole genome re-sequencing of individuals from both sets and comparison to the B73 reference sequence revealed three cryptic introgressions on chromosomes 1, 5 and 10 in the line grown in the greenhouse summing up to a total of 5,257 single-nucleotide polymorphisms (SNPs. Transcriptome sequencing of three individuals from each set lent further support to the location of the introgression intervals and confirmed them to be fixed in all sequenced individuals. Moreover, we identified >120 genes differentially expressed between the two B73 lines. We thus have found a nearly-isogenic line (NIL of maize inbred line B73 that is characterized by an altered growth phenotype under phosphate starvation conditions and an improved responsiveness towards symbiosis with mycorrhizal fungi. Through next-generation sequencing of the genomes and transcriptomes we were able to delineate exact introgression intervals. Putative de novo mutations appeared approximately uniformly distributed along the ten maize chromosomes mainly representing G:C -> A:T transitions. The plant material described in this study will be a valuable tool both for functional studies of genes differentially expressed in both B73 lines and for research on growth behavior especially in response to symbiosis between maize and

  3. Prader-Willi-like phenotypes: a systematic review of their chromosomal abnormalities.

    Science.gov (United States)

    Rocha, C F; Paiva, C L A

    2014-03-31

    Prader-Willi syndrome (PWS) is caused by the lack of expression of genes located on paternal chromosome 15q11-q13. This lack of gene expression may be due to a deletion in this chromosomal segment, to maternal uniparental disomy of chromosome 15, or to a defect in the imprinting center on 15q11-q13. PWS is characterized by hypotonia during the neonatal stage and in childhood, accompanied by a delay in neuropsychomotor development. Overeating, obesity, and mental deficiency arise later on. The syndrome has a clinical overlap with other diseases, which makes it difficult to accurately diagnose. The purpose of this article is to review the Prader-Willi-like phenotype in the scientific literature from 2000 to 2013, i.e., to review the cases of PWS caused by chromosomal abnormalities different from those found on chromosome 15. A search was carried out using the "National Center for Biotechnology Information" (www.pubmed.com) and "Scientific Electronic Library Online (www.scielo.br) databases and combinations of key words such as "Prader-Willi-like phenotype" and "Prader-Willi syndrome phenotype". Editorials, letters, reviews, and guidelines were excluded. Articles chosen contained descriptions of patients diagnosed with the PWS phenotype but who were negative for alterations on 15q11-q13. Our search found 643 articles about PWS, but only 14 of these matched with the Prader-Willi-like phenotype and with the selected years of publication (2000-2013). If two or more articles reported the same chromosomal alterations for Prader-Willi-like phenotype, the most recent was chosen. Twelve articles of 14 were case reports and 2 reported series of cases.

  4. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish

    KAUST Repository

    Schunter, Celia Marei

    2017-12-15

    The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO2, and to test how these responses are influenced by variations in tolerance to elevated CO2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO2 are crucial factors in determining the response of reef fish to changing ocean chemistry.

  5. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish.

    Science.gov (United States)

    Schunter, Celia; Welch, Megan J; Nilsson, Göran E; Rummer, Jodie L; Munday, Philip L; Ravasi, Timothy

    2018-02-01

    The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO 2 , and to test how these responses are influenced by variations in tolerance to elevated CO 2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO 2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO 2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO 2 are crucial factors in determining the response of reef fish to changing ocean chemistry.

  6. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish

    KAUST Repository

    Schunter, Celia Marei; Welch, Megan J.; Nilsson, Gö ran E.; Rummer, Jodie L.; Munday, Philip L.; Ravasi, Timothy

    2017-01-01

    The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO2, and to test how these responses are influenced by variations in tolerance to elevated CO2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO2 are crucial factors in determining the response of reef fish to changing ocean chemistry.

  7. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  8. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    ). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially......Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  9. Spice: discovery of phenotype-determining component interplays

    Directory of Open Access Journals (Sweden)

    Chen Zhengzhang

    2012-05-01

    Full Text Available Abstract Background A latent behavior of a biological cell is complex. Deriving the underlying simplicity, or the fundamental rules governing this behavior has been the Holy Grail of systems biology. Data-driven prediction of the system components and their component interplays that are responsible for the target system’s phenotype is a key and challenging step in this endeavor. Results The proposed approach, which we call System Phenotype-related Interplaying Components Enumerator (Spice, iteratively enumerates statistically significant system components that are hypothesized (1 to play an important role in defining the specificity of the target system’s phenotype(s; (2 to exhibit a functionally coherent behavior, namely, act in a coordinated manner to perform the phenotype-specific function; and (3 to improve the predictive skill of the system’s phenotype(s when used collectively in the ensemble of predictive models. Spice can be applied to both instance-based data and network-based data. When validated, Spice effectively identified system components related to three target phenotypes: biohydrogen production, motility, and cancer. Manual results curation agreed with the known phenotype-related system components reported in literature. Additionally, using the identified system components as discriminatory features improved the prediction accuracy by 10% on the phenotype-classification task when compared to a number of state-of-the-art methods applied to eight benchmark microarray data sets. Conclusion We formulate a problem—enumeration of phenotype-determining system component interplays—and propose an effective methodology (Spice to address this problem. Spice improved identification of cancer-related groups of genes from various microarray data sets and detected groups of genes associated with microbial biohydrogen production and motility, many of which were reported in literature. Spice also improved the predictive skill of the

  10. Is rate of skin wound healing associated with aging or longevity phenotype?

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Fraifeld, Vadim E

    2011-12-01

    Wound healing (WH) is a fundamental biological process. Is it associated with a longevity or aging phenotype? In an attempt to answer this question, we compared the established mouse models with genetically modified life span and also an altered rate of WH in the skin. Our analysis showed that the rate of skin WH in advanced ages (but not in the young animals) may be used as a marker for biological age, i.e., to be indicative of the longevity or aging phenotype. The ability to preserve the rate of skin WH up to an old age appears to be associated with a longevity phenotype, whereas a decline in WH-with an aging phenotype. In the young, this relationship is more complex and might even be inversed. While the aging process is likely to cause wounds to heal slowly, an altered WH rate in younger animals could indicate a different cellular proliferation and/or migration capacity, which is likely to affect other major processes such as the onset and progression of cancer. As a point for future studies on WH and longevity, using only young animals might yield confusing or misleading results, and therefore including older animals in the analysis is encouraged.

  11. Slack length reduces the contractile phenotype of the Swine carotid artery.

    Science.gov (United States)

    Rembold, Christopher M; Garvey, Sean M; Tejani, Ankit D

    2013-01-01

    Contraction is the primary function of adult arterial smooth muscle. However, in response to vessel injury or inflammation, arterial smooth muscle is able to phenotypically modulate from the contractile state to several 'synthetic' states characterized by proliferation, migration and/or increased cytokine secretion. We examined the effect of tissue length (L) on the phenotype of intact, isometrically held, initially contractile swine carotid artery tissues. Tissues were studied (1) without prolonged incubation at the optimal length for force generation (1.0 Lo, control), (2) with prolonged incubation for 17 h at 1.0 Lo, or (3) with prolonged incubation at slack length (0.6 Lo) for 16 h and then restoration to 1.0 Lo for 1 h. Prolonged incubation at 1.0 Lo minimally reduced the contractile force without substantially altering the mediators of contraction (crossbridge phosphorylation, shortening velocity or stimulated actin polymerization). Prolonged incubation of tissues at slack length (0.6 Lo), despite return of length to 1.0 Lo, substantially reduced contractile force, reduced crossbridge phosphorylation, nearly abolished crossbridge cycling (shortening velocity) and abolished stimulated actin polymerization. These data suggest that (1) slack length treatment significantly alters the contractile phenotype of arterial tissue, and (2) slack length treatment is a model to study acute phenotypic modulation of intact arterial smooth muscle. Copyright © 2013 S. Karger AG, Basel.

  12. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity

    Directory of Open Access Journals (Sweden)

    Madelaine eBartlett

    2013-10-01

    Full Text Available Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; hypomorphic and hypermorphic alleles; altered protein-protein interactions; altered domain content; altered protein stability; and altered activity as an activator or repressor. Variability was also observed in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution.

  13. Mutations and phenotype in isolated glycerol kinase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.P.; Muscatelli, F.; Stafford, A.N.; Monaco, A.P. [Inst. of Molecular Medicine, Oxford (United Kingdom)] [and others

    1996-06-01

    We demonstrate that isolated glycerol kinase (GK) deficiency in three families results from mutation of the Xp21 GK gene. GK mutations were detected in four patients with widely differing phenotypes. Patient 1 had a splice-site mutation causing premature termination. His general health was good despite absent GK activity, indicating that isolated GK deficiency can be silent. Patient 2 had GK deficiency and a severe phenotype involving psychomotor retardation and growth delay, bone dysplasia, and seizures, similar to the severe phenotype of one of the first described cases of GK deficiency. His younger brother, patient 3, also had GK deficiency, but so far his development has been normal. GK exon 17 was deleted in both brothers, implicating additional factors in causation of the severe phenotype of patient 2. Patient 4 had both GK deficiency with mental retardation and a GK missense mutation (D440V). Possible explanations for the phenotypic variation of these four patients include ascertainment bias; metabolic or environmental stress as a precipitating factor in revealing GK-related changes, as has previously been described in juvenile GK deficiency; and interactions with functional polymorphisms in other genes that alter the effect of GK deficiency on normal development. 36 refs., 4 figs., 1 tab.

  14. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S

    Science.gov (United States)

    Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Rivera, Alicia; Heneghan, John F.; Li, Xiaojin; Hsu, Ann; Karpatkin, Margaret; O'Neill, Allison F.; Bauer, Daniel E.; Heeney, Matthew M.; John, Kathryn; Kuypers, Frans A.; Gallagher, Patrick G.; Lux, Samuel E.; Brugnara, Carlo; Westhoff, Connie M.

    2011-01-01

    Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li+ and 86Rb+, with secondarily increased 86Rb+ influx sensitive to ouabain and to bumetanide. Increased RhAG-associated 14C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li+, 86Rb+, and 14C-MA were pharmacologically distinct, and Li+ uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH4+ and Gd3+. RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH3/NH4+, but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA+). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH4Cl, but MA/MA+ elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li+ substitution or bath addition of 5 mM NH4Cl or MA/MA+. These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH3/NH4+ and MA/MA+; 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA+ transport, and decreased NH3/NH4+-associated depolarization; and 3) RhAG transports NH3/NH4+ and MA/MA+ by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms. PMID:21849667

  15. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns.

    Science.gov (United States)

    Wise, Alexandria; Tenezaca, Luis; Fernandez, Robert W; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.

  17. Altered B cell homeostasis and Toll-like receptor 9-driven response in patients affected by autoimmune polyglandular syndrome Type 1: Altered B cell phenotype and dysregulation of the B cell function in APECED patients.

    Science.gov (United States)

    Perri, Valentina; Gianchecchi, Elena; Scarpa, Riccardo; Valenzise, Mariella; Rosado, Maria Manuela; Giorda, Ezio; Crinò, Antonino; Cappa, Marco; Barollo, Susi; Garelli, Silvia; Betterle, Corrado; Fierabracci, Alessandra

    2017-02-01

    APECED is a T-cell mediated disease with increased frequencies of CD8+ effector and reduction of FoxP3+ T regulatory cells. Antibodies against affected organs and neutralizing to cytokines are found in the peripheral blood. The contribution of B cells to multiorgan autoimmunity in Aire-/- mice was reported opening perspectives on the utility of anti-B cell therapy. We aimed to analyse the B cell phenotype of APECED patients compared to age-matched controls. FACS analysis was conducted on PBMC in basal conditions and following CpG stimulation. Total B and switched memory (SM) B cells were reduced while IgM memory were increased in patients. In those having more than 15 years from the first clinical manifestation the defect included also mature and transitional B cells; total memory B cells were increased, while SM were unaffected. In patients with shorter disease duration, total B cells were unaltered while SM and IgM memory behaved as in the total group. A defective B cell proliferation was detected after 4day-stimulation. In conclusion APECED patients show, in addition to a significant alteration of the B cell phenotype, a dysregulation of the B cell function involving peripheral innate immune mechanisms particularly those with longer disease duration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Genotype-phenotype correlation in patients suspected of having Sotos syndrome

    NARCIS (Netherlands)

    de Boer, Lonneke; Kant, Sarina G.; Karperien, Marcel; van Beers, Lotte; Tjon, Jennifer; Vink, Geraldine R.; van Tol, Dewy; Dauwerse, Hans; le Cessie, Saskia; Beemer, Frits A.; van der Burgt, Ineke; Hamel, Ben C. J.; Hennekam, Raoul C.; Kuhnle, Ursula; Mathijssen, Inge B.; Veenstra-Knol, Hermine E.; Stumpel, Connie T. Schrander; Breuning, Martijn H.; Wit, Jan M.

    2004-01-01

    Background: Deletions and mutations in the NSD1 gene are the major cause of Sotos syndrome. We wanted to evaluate the genotype-phenotype correlation in patients suspected of having Sotos syndrome and determine the best discriminating parameters for the presence of a NSD1 gene alteration. Methods:

  19. Genotype-phenotype correlation in patients suspected of having sotos syndrome.

    NARCIS (Netherlands)

    Boer, L. de; Kant, S.; Karperien, M.; Beers, L. van; Tjon, J.; Vink, G.R.; Tol, D. van; Dauwerse, H.G.; Cessie, S. le; Beemer, F.A.; Burgt, C.J.A.M. van der; Hamel, B.C.J.; Hennekam, R.C.M.; Kuhnle, U.; Mathijssen, I.B.; Veenstra-Knol, H.E.; Stumpel, C.T.; Breuning, M.H.; Wit, J.M.

    2004-01-01

    BACKGROUND: Deletions and mutations in the NSD1 gene are the major cause of Sotos syndrome. We wanted to evaluate the genotype-phenotype correlation in patients suspected of having Sotos syndrome and determine the best discriminating parameters for the presence of a NSD1 gene alteration. METHODS:

  20. Increasing leaf longevity and disease resistance by altering salicylic acid catabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Susheng; Zhang, Kewei

    2018-01-23

    The present invention relates to a transgenic plant having an altered level of salicylic acid 3-hydroxylase ("S3H") protein, compared to that of a non-transgenic plant, where the transgenic plant displays an altered leaf senescence phenotype, relative to a non-transgenic plant. The present invention relates to a mutant plant comprising an inactivated gene encoding S3H protein, where the mutant plant displays a premature or precocious leaf senescence phenotype, relative to a non-mutant plant. The present invention also relates to methods for promoting premature or precocious leaf senescence in a plant, delaying leaf senescence in a plant, and making a mutant plant having a decreased level of S3H protein compared to that of a non-mutant plant, where the mutant plant displays a premature or precocious leaf senescence phenotype relative to a non-mutant plant. The present invention also relates to inducing or promoting pathogen resistance in plants.

  1. Theory of mind network activity is altered in subjects with familial liability for schizophrenia

    Science.gov (United States)

    Mohnke, Sebastian; Erk, Susanne; Schnell, Knut; Romanczuk-Seiferth, Nina; Schmierer, Phöbe; Romund, Lydia; Garbusow, Maria; Wackerhagen, Carolin; Ripke, Stephan; Grimm, Oliver; Haller, Leila; Witt, Stephanie H.; Degenhardt, Franziska; Tost, Heike; Heinz, Andreas; Meyer-Lindenberg, Andreas; Walter, Henrik

    2016-01-01

    As evidenced by a multitude of studies, abnormalities in Theory of Mind (ToM) and its neural processing might constitute an intermediate phenotype of schizophrenia. If so, neural alterations during ToM should be observable in unaffected relatives of patients as well, since they share a considerable amount of genetic risk. While behaviorally, impaired ToM function is confirmed meta-analytically in relatives, evidence on aberrant function of the neural ToM network is sparse and inconclusive. The present study therefore aimed to further explore the neural correlates of ToM in relatives of schizophrenia. About 297 controls and 63 unaffected first-degree relatives of patients with schizophrenia performed a ToM task during functional magnetic resonance imaging. Consistent with the literature relatives exhibited decreased activity of the medial prefrontal cortex. Additionally, increased recruitment of the right middle temporal gyrus and posterior cingulate cortex was found, which was related to subclinical paranoid symptoms in relatives. These results further support decreased medial prefrontal activation during ToM as an intermediate phenotype of genetic risk for schizophrenia. Enhanced recruitment of posterior ToM areas in relatives might indicate inefficiency mechanisms in the presence of genetic risk. PMID:26341902

  2. A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions.

    Science.gov (United States)

    Rouzier, Cécile; Moore, David; Delorme, Cécile; Lacas-Gervais, Sandra; Ait-El-Mkadem, Samira; Fragaki, Konstantina; Burté, Florence; Serre, Valérie; Bannwarth, Sylvie; Chaussenot, Annabelle; Catala, Martin; Yu-Wai-Man, Patrick; Paquis-Flucklinger, Véronique

    2017-05-01

    Wolfram syndrome (WS) is a progressive neurodegenerative disease characterized by early-onset optic atrophy and diabetes mellitus, which can be associated with more extensive central nervous system and endocrine complications. The majority of patients harbour pathogenic WFS1 mutations, but recessive mutations in a second gene, CISD2, have been described in a small number of families with Wolfram syndrome type 2 (WFS2). The defining diagnostic criteria for WFS2 also consist of optic atrophy and diabetes mellitus, but unlike WFS1, this phenotypic subgroup has been associated with peptic ulcer disease and an increased bleeding tendency. Here, we report on a novel homozygous CISD2 mutation (c.215A > G; p.Asn72Ser) in a Moroccan patient with an overlapping phenotype suggesting that Wolfram syndrome type 1 and type 2 form a continuous clinical spectrum with genetic heterogeneity. The present study provides strong evidence that this particular CISD2 mutation disturbs cellular Ca2+ homeostasis with enhanced Ca2+ flux from the ER to mitochondria and cytosolic Ca2+ abnormalities in patient-derived fibroblasts. This Ca2+ dysregulation was associated with increased ER-mitochondria contact, a swollen ER lumen and a hyperfused mitochondrial network in the absence of overt ER stress. Although there was no marked alteration in mitochondrial bioenergetics under basal conditions, culture of patient-derived fibroblasts in glucose-free galactose medium revealed a respiratory chain defect in complexes I and II, and a trend towards decreased ATP levels. Our results provide important novel insight into the potential disease mechanisms underlying the neurodegenerative consequences of CISD2 mutations and the subsequent development of multisystemic disease. © The Author 2017. Published by Oxford University Press.

  3. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin

    Directory of Open Access Journals (Sweden)

    Alejandra Hernández-Terán

    2017-12-01

    Full Text Available Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE. Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE, and domesticated without genetic engineering (domNGE]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance, the phenotypic differences between domGE and domNGE would be either less (or inexistent than between the wild and domesticated relatives (either domGE or domNGE. We conclude that (1 genetic modification (either by selective breeding or GE can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE and (2 the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop

  4. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  5. Carotenoid production and phenotypic variation in Azospirillum brasilense.

    Science.gov (United States)

    Brenholtz, Gal Reem; Tamir-Ariel, Dafna; Okon, Yaacov; Burdman, Saul

    2017-06-01

    We assessed the occurrence of phenotypic variation in Azospirillum brasilense strains Sp7, Cd, Sp245, Az39 and phv2 during growth in rich media, screening for variants altered in colony pigmentation or extracellular polysaccharide (EPS) production. Previous studies showed that EPS-overproducing variants of Sp7 appear frequently following starvation or growth in minimal medium. In contrast, no such variants were detected during growth in rich media in the tested strains except for few variants of phv2. Regarding alteration in colony pigmentation (from pink to white in strain Cd and from white to pink in the others), strain Sp7 showed a relatively high frequency of variation (0.009-0.026%). Strain Cd showed a lower frequency of alteration in pigmentation (0-0.008%), and this type of variation was not detected in the other strains. In A. brasilense, carotenoid synthesis is controlled by two RpoE sigma factors and their cognate ChrR anti-sigma factors, the latter acting as negative regulators of carotenoid synthesis. Here, all tested (n = 28) pink variants of Sp7 carried mutations in one of the anti-sigma factor genes, chrR1. Our findings indicate that, in A. brasilense, phenotypic variation is strain- and environment-dependent and support the central role of ChrR1 in regulation of carotenoid production. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Association of classical markers and establishment of the dyslipidemic sub-phenotype of sickle cell anemia.

    Science.gov (United States)

    Aleluia, Milena Magalhães; da Guarda, Caroline Conceição; Santiago, Rayra Pereira; Fonseca, Teresa Cristina Cardoso; Neves, Fábia Idalina; de Souza, Regiana Quinto; Farias, Larissa Alves; Pimenta, Felipe Araújo; Fiuza, Luciana Magalhães; Pitanga, Thassila Nogueira; Ferreira, Júnia Raquel Dutra; Adorno, Elisângela Vitória; Cerqueira, Bruno Antônio Veloso; Gonçalves, Marilda de Souza

    2017-04-11

    Sickle cell anemia (SCA) patients exhibit sub-phenotypes associated to hemolysis and vaso-occlusion. The disease has a chronic inflammatory nature that has been also associated to alterations in the lipid profile. This study aims to analyze hematological and biochemical parameters to provide knowledge about the SCA sub-phenotypes previously described and suggest a dyslipidemic sub-phenotype. A cross-sectional study was conducted from 2013 to 2014, and 99 SCA patients in steady state were enrolled. We assessed correlations and associations with hematological and biochemical data and investigated the co-inheritance of -α 3.7Kb -thalassemia (-α 3.7Kb -thal). Correlation analyses were performed using Spearman and Pearson coefficient. The median of quantitative variables between two groups was compared using t-test and Mann-Whitney. P-values <0.05 were considered statistically significant. We found significant association of high lactate dehydrogenase levels with decreased red blood cell count and hematocrit as well as high levels of total and indirect bilirubin. SCA patients with low nitric oxide metabolites had high total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and reduced very low-density cholesterol, triglycerides, direct bilirubin level and reticulocyte counts. In SCA patients with high-density lipoprotein cholesterol greater than 40 mg/dL, we observed increased red blood cell count, hemoglobin, hematocrit, and fetal hemoglobin and decreased nitric oxide metabolites levels. The presence of -α 3.7Kb -thal was associated with high red blood cell count and low mean corpuscular volume, mean corpuscular hemoglobin, platelet count and total and indirect bilirubin levels. Our results provide additional information about the association between biomarkers and co-inheritance of -α 3.7Kb -thal in SCA, and suggest the role of dyslipidemia and nitric oxide metabolites in the characterization of this sub-phenotype.

  7. Breast tumor copy number aberration phenotypes and genomic instability

    International Nuclear Information System (INIS)

    Fridlyand, Jane; Jain, Ajay N; McLennan, Jane; Ziegler, John; Chin, Koei; Devries, Sandy; Feiler, Heidi; Gray, Joe W; Waldman, Frederic; Pinkel, Daniel; Albertson, Donna G; Snijders, Antoine M; Ylstra, Bauke; Li, Hua; Olshen, Adam; Segraves, Richard; Dairkee, Shanaz; Tokuyasu, Taku; Ljung, Britt Marie

    2006-01-01

    Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

  8. Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress - An animal model of depression.

    Science.gov (United States)

    Zurawek, Dariusz; Kusmider, Maciej; Faron-Gorecka, Agata; Gruca, Piotr; Pabian, Paulina; Kolasa, Magdalena; Solich, Joanna; Szafran-Pilch, Kinga; Papp, Mariusz; Dziedzicka-Wasylewska, Marta

    2016-01-01

    MicroRNAs (miRNAs) are involved in stress-related pathologies. However, the molecular mechanisms underlying stress resilience are elusive. Using chronic mild stress (CMS), an animal model of depression, we identified animals exhibiting a resilient phenotype. We investigated serum levels of corticosterone, melatonin and 376 mature miRNAs to find peripheral biomarkers associated with the resilient phenotype. miR-16, selected during screening step, was assayed in different brain regions in order to find potential relationship between brain and peripheral alterations in response to stress. Two CMS experiments that lasted for 2 and 7 consecutive weeks were performed. During both CMS procedures, sucrose consumption levels were significantly decreased in anhedonic-like animals (panimals, whereas the drinking profiles of resilient rats did not change despite the rats being stressed. Serum corticosterone measurements indicated that anhedonic-like animals had blunted hypothalamic-pituitary-adrenal (HPA) axis activity, whereas resilient animals exhibited dynamic responses to stress. miRNA profiling revealed that resilient animals had elevated serum levels of miR-16 after 7 weeks of CMS (adjusted p-valueanimals exhibited reciprocal changes in miR-16 expression level in mesocortical pathway after 2 weeks of CMS (panimals can actively cope with stress on a biochemical level and miR-16 may contribute to a "stress-resistant" behavioral phenotype by pleiotropic modulation of the expression of genes involved in the function of the nervous system. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  9. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  10. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.

    Science.gov (United States)

    Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.

  11. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.

    Science.gov (United States)

    Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor-McCourt, Maureen

    2015-02-01

    Tumor genome sequencing leads to documenting thousands of DNA mutations and other genomic alterations. At present, these data cannot be analyzed adequately to aid in the understanding of tumorigenesis and its evolution. Moreover, we have little insight into how to use these data to predict clinical phenotypes and tumor progression to better design patient treatment. To meet these challenges, we discuss a cancer hallmark network framework for modeling genome sequencing data to predict cancer clonal evolution and associated clinical phenotypes. The framework includes: (1) cancer hallmarks that can be represented by a few molecular/signaling networks. 'Network operational signatures' which represent gene regulatory logics/strengths enable to quantify state transitions and measures of hallmark traits. Thus, sets of genomic alterations which are associated with network operational signatures could be linked to the state/measure of hallmark traits. The network operational signature transforms genotypic data (i.e., genomic alterations) to regulatory phenotypic profiles (i.e., regulatory logics/strengths), to cellular phenotypic profiles (i.e., hallmark traits) which lead to clinical phenotypic profiles (i.e., a collection of hallmark traits). Furthermore, the framework considers regulatory logics of the hallmark networks under tumor evolutionary dynamics and therefore also includes: (2) a self-promoting positive feedback loop that is dominated by a genomic instability network and a cell survival/proliferation network is the main driver of tumor clonal evolution. Surrounding tumor stroma and its host immune systems shape the evolutionary paths; (3) cell motility initiating metastasis is a byproduct of the above self-promoting loop activity during tumorigenesis; (4) an emerging hallmark network which triggers genome duplication dominates a feed-forward loop which in turn could act as a rate-limiting step for tumor formation; (5) mutations and other genomic alterations have

  12. Mitochondrial Alterations by PARKIN in Dopaminergic Neurons Using PARK2 Patient-Specific and PARK2 Knockout Isogenic iPSC Lines

    Directory of Open Access Journals (Sweden)

    Atossa Shaltouki

    2015-05-01

    Full Text Available In this study, we used patient-specific and isogenic PARK2-induced pluripotent stem cells (iPSCs to show that mutations in PARK2 alter neuronal proliferation. The percentage of TH+ neurons was decreased in Parkinson’s disease (PD patient-derived neurons carrying various mutations in PARK2 compared with an age-matched control subject. This reduction was accompanied by alterations in mitochondrial:cell volume fraction (mitochondrial volume fraction. The same phenotype was confirmed in isogenic PARK2 null lines. The mitochondrial phenotype was also seen in non-midbrain neurons differentiated from the PARK2 null line, as was the functional phenotype of reduced proliferation in culture. Whole genome expression profiling at various stages of differentiation confirmed the mitochondrial phenotype and identified pathways altered by PARK2 dysfunction that include PD-related genes. Our results are consistent with current model of PARK2 function where damaged mitochondria are targeted for degradation via a PARK2/PINK1-mediated mechanism.

  13. A Developed NK-92MI Cell Line with Siglec-7neg Phenotype Exhibits High and Sustainable Cytotoxicity against Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Chin-Han Huang

    2018-04-01

    Full Text Available Altered sialic acid processing that leads to upregulation of cell surface sialylation is recognized as a key change in malignant tissue glycosylation. This cancer-associated hypersialylation directly impacts the signaling interactions between tumor cells and their surrounding microenvironment, especially the interactions mediated by immune cell surface sialic acid-binding immunoglobulin-like lectins (Siglecs to relay inhibitory signals for cytotoxicity. First, we obtained a Siglec-7neg NK-92MI cell line, NK-92MI-S7N, by separating a group of Siglec-7neg cell population from an eight-month-long-term NK-92MI in vitro culture by fluorescence-activated cell sorting (FACS. The effect of Siglec-7 loss on NK-92MI-S7N cells was characterized by the cell morphology, proliferation, and cytotoxic activity via FACS, MTS assay, cytotoxic assay, and natural killer (NK degranulation assay. We found the expression levels of Siglec-7 in NK-92MI were negatively correlated with NK cytotoxicity against leukemia cells. This NK-92MI-S7N cell not only shared very similar phenotypes with its parental cells but also possessed a high and sustainable killing activity. Furthermore, this Siglec-7neg NK line was unexpectedly capable of eliminating a NK-92MI-resistant leukemia cell, THP-1, through enhancing the effector-target interaction. In this study, a NK cell line with high and sustainable cytotoxicity was established and this cell may provide a potential application in NK-based treatment for leukemia patients.

  14. Heritability of eleven metabolic phenotypes in Danish and Chinese twins

    DEFF Research Database (Denmark)

    Li, Shuxia; Duan, Hongmei; Pang, Zengchang

    2013-01-01

    modeling was performed on full and nested models with the best fitting models selected. Results: Heritability estimates were compared between Danish and Chinese samples to identify differential genetic influences on each of the phenotypes. Except for hip circumference, all other body measures exhibited...

  15. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport.

    Science.gov (United States)

    Bygd, Hannah C; Bratlie, Kaitlin M

    2016-07-01

    Macrophage (MΦ) reprogramming has received significant attention in applications such as cancer therapeutics and tissue engineering where the host immune response to biomaterials is crucial in determining the success or failure of an implanted device. Polymeric systems can potentially be used to redirect infiltrating M1 MΦs toward a proangiogenic phenotype. This work exploits the concept of MΦ reprogramming in the engineering of materials for improving the longevity of tissue engineering scaffolds. We have investigated the effect of 13 different chemical modifications of alginate on MΦ phenotype. Markers of the M1 response-tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase-and the M2 response-arginase-were measured and used to determine the ability of the materials to alterphenotype. It was found that some modifications were able to reduce the pro-inflammatory response of M1 MΦs, others appeared to amplify the M2 phenotype, and the results for two materials suggested they were able to reprogram a MΦ population from M1 to M2. These findings were supplemented by studies done to examine the permselectivity of the materials. Diffusion of TNF-α was completely prevented through some of these materials, while up to 84% was found to diffuse through others. The diffusion of insulin through the materials was statistically consistent. These results suggest that the modification of these materials might alter mass transport in beneficial ways. The ability to control polarization of MΦ phenotypes with immunoprotective materials has the potential to augment the success of tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1707-1719, 2016. © 2016 Wiley Periodicals, Inc.

  16. Hereditary rickets. How genetic alterations explain the biochemical and clinical phenotypes.

    Science.gov (United States)

    Papadopoulou, Anna; Gole, Evaggelia; Nicolaidou, Polyxeni

    2013-12-01

    The reemergence of vitamin D deficiency in the industrialized countries resurrects the "threat" of nutritional rickets, especially among pediatric populations, a fact that may lead to underdiagnosis of hereditary rickets. Today, hereditary rickets may be subdivided into two main groups according to their biochemical profile: the one associated with defects in vitamin D synthesis and action and the second associated with abnormal phosphorus metabolism. The classification of the patients in a particular group of hereditary rickets is determinative of the treatment to follow. This review, through the recent advances on vitamin D and P metabolism, discusses the molecular and biochemical defects associated to each group of inherited rickets, as well as the clinical phenotypes and the recommended therapeutic approaches.

  17. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  18. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth.

    Directory of Open Access Journals (Sweden)

    Anupama Yadav

    Full Text Available The ability of a genotype to show diverse phenotypes in different environments is called phenotypic plasticity. Phenotypic plasticity helps populations to evade extinctions in novel environments, facilitates adaptation and fuels evolution. However, most studies focus on understanding the genetic basis of phenotypic regulation in specific environments. As a result, while it's evolutionary relevance is well established, genetic mechanisms regulating phenotypic plasticity and their overlap with the environment specific regulators is not well understood. Saccharomyces cerevisiae is highly sensitive to the environment, which acts as not just external stimulus but also as signalling cue for this unicellular, sessile organism. We used a previously published dataset of a biparental yeast population grown in 34 diverse environments and mapped genetic loci regulating variation in phenotypic plasticity, plasticity QTL, and compared them with environment-specific QTL. Plasticity QTL is one whose one allele exhibits high plasticity whereas the other shows a relatively canalised behaviour. We mapped phenotypic plasticity using two parameters-environmental variance, an environmental order-independent parameter and reaction norm (slope, an environmental order-dependent parameter. Our results show a partial overlap between pleiotropic QTL and plasticity QTL such that while some plasticity QTL are also pleiotropic, others have a significant effect on phenotypic plasticity without being significant in any environment independently. Furthermore, while some plasticity QTL are revealed only in specific environmental orders, we identify large effect plasticity QTL, which are order-independent such that whatever the order of the environments, one allele is always plastic and the other is canalised. Finally, we show that the environments can be divided into two categories based on the phenotypic diversity of the population within them and the two categories have

  19. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  20. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair.

    Directory of Open Access Journals (Sweden)

    Yong Jun Choi

    Full Text Available Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS to repair DNA double strand breaks (DSBs through the nonhomologous end joining (NHEJ pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70(-/- cells and ku80(-/- cells also appeared to have a defect in base excision repair (BER. BER corrects base lesions, apurinic/apyrimidinic (AP sites and single stand breaks (SSBs utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1 and DNA Polymerase β (Pol β. In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80 and/or free Ku80 (not bound to Ku70 possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80(-/- mice had a shorter life span than dna-pkcs(-/- mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol β. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT, an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER.

  1. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    Science.gov (United States)

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for

  2. Mice with an Oncogenic HRAS Mutation are Resistant to High-Fat Diet-Induced Obesity and Exhibit Impaired Hepatic Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Daiju Oba

    2018-01-01

    Full Text Available Costello syndrome is a “RASopathy” that is characterized by growth retardation, dysmorphic facial appearance, hypertrophic cardiomyopathy and tumor predisposition. >80% of patients with Costello syndrome harbor a heterozygous germline G12S mutation in HRAS. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and their growth is severely retarded. To examine the mechanisms of energy reprogramming by HRAS activation in vivo, we generated knock-in mice expressing a heterozygous Hras G12S mutation (HrasG12S/+ mice as a mouse model of Costello syndrome. On a high-fat diet, HrasG12S/+ mice developed a lean phenotype with microvesicular hepatic steatosis, resulting in early death compared with wild-type mice. Under starvation conditions, hypoketosis and elevated blood levels of long-chain fatty acylcarnitines were observed, suggesting impaired mitochondrial fatty acid oxidation. Our findings suggest that the oncogenic Hras mutation modulates energy homeostasis in vivo.

  3. High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia

    Directory of Open Access Journals (Sweden)

    Fanny A. Pelissier Vatter

    2018-04-01

    Full Text Available Summary: Aging is associated with tissue-level changes in cellular composition that are correlated with increased susceptibility to disease. Aging human mammary tissue shows skewed progenitor cell potency, resulting in diminished tumor-suppressive cell types and the accumulation of defective epithelial progenitors. Quantitative characterization of these age-emergent human cell subpopulations is lacking, impeding our understanding of the relationship between age and cancer susceptibility. We conducted single-cell resolution proteomic phenotyping of healthy breast epithelia from 57 women, aged 16–91 years, using mass cytometry. Remarkable heterogeneity was quantified within the two mammary epithelial lineages. Population partitioning identified a subset of aberrant basal-like luminal cells that accumulate with age and originate from age-altered progenitors. Quantification of age-emergent phenotypes enabled robust classification of breast tissues by age in healthy women. This high-resolution mapping highlighted specific epithelial subpopulations that change with age in a manner consistent with increased susceptibility to breast cancer. : Vatter et al. find that single-cell mass cytometry of human mammary epithelial cells from 57 women, from 16 to 91 years old, depicts an in-depth phenotyping of aging mammary epithelia. Subpopulations of altered luminal and progenitor cells that accumulate with age may be at increased risk for oncogenic transformation. Keywords: human mammary epithelia, aging, mass cytometry, single-cell analysis, heterogeneity, breast cancer

  4. Genotype and phenotype correlation in von Hippel-Lindau disease based on alteration of the HIF-α binding site in VHL protein.

    Science.gov (United States)

    Liu, Sheng-Jie; Wang, Jiang-Yi; Peng, Shuang-He; Li, Teng; Ning, Xiang-Hui; Hong, Bao-An; Liu, Jia-Yuan; Wu, Peng-Jie; Zhou, Bo-Wen; Zhou, Jing-Cheng; Qi, Nie-Nie; Peng, Xiang; Zhang, Jiu-Feng; Ma, Kai-Fang; Cai, Lin; Gong, Kan

    2018-03-29

    PurposeVon Hippel-Lindau (VHL) disease is a rare hereditary cancer syndrome that reduces life expectancy. We aimed to construct a more valuable genotype-phenotype correlation based on alterations in VHL protein (pVHL).MethodsVHL patients (n = 339) were recruited and grouped based on mutation types: HIF-α binding site missense (HM) mutations, non-HIF-α binding site missense (nHM) mutations, and truncating (TR) mutations. Age-related risks of VHL-associated tumors and patient survival were compared.ResultsMissense mutations conferred an increased risk of pheochromocytoma (HR = 1.854, p = 0.047) compared with truncating mutations. The risk of pheochromocytoma was lower in the HM group than in the nHM group (HR = 0.298, p = 0.003) but was similar between HM and TR groups (HR = 0.901, p = 0.810). Patients in the nHM group had a higher risk of pheochromocytoma (HR = 3.447, p counseling and pathogenesis studies.Genetics in Medicine advance online publication, 29 March 2018; doi:10.1038/gim.2017.261.

  5. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Gregory R Rompala

    Full Text Available Pharmacological and genetic studies support a role for NMDA receptor (NMDAR hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1 deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice, in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior. Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  6. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Science.gov (United States)

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  7. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients

    Science.gov (United States)

    Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro

    2017-01-01

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903

  8. Automated local bright feature image analysis of nuclear proteindistribution identifies changes in tissue phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-02-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues.

  9. Fibrocytes in the Fibrotic Lung: Altered Phenotype Detected by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Charles eReese

    2014-06-01

    Full Text Available Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study’s relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD, a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the

  10. Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood

    KAUST Repository

    Al-Garawi, A

    2011-08-31

    The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c + CD11b + inflammatory dendritic cell and CD8α + plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood.

  11. Linking human diseases to animal models using ontology-based phenotype annotation.

    Directory of Open Access Journals (Sweden)

    Nicole L Washington

    2009-11-01

    Full Text Available Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ methodology, wherein the affected entity (E and how it is affected (Q are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM. These human annotations were loaded into our Ontology-Based Database (OBD along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify

  12. Obesity-Associated Hypertension: the Upcoming Phenotype in African-American Women.

    Science.gov (United States)

    Samson, Rohan; Qi, Andrea; Jaiswal, Abhishek; Le Jemtel, Thierry H; Oparil, Suzanne

    2017-05-01

    The present obesity epidemic particularly affects African-American women. Whether the obesity epidemic will alter the hypertension phenotype in African-American women is entertained. The prevalence of morbid obesity is steadily increasing in African-American women, who are prone to developing hypertension (HTN) even in the absence of obesity. The obesity-associated hypertension phenotype is characterized by marked sympathetic nervous system activation and resistance/refractoriness to antihypertensive therapy. Weight loss achieved through lifestyle interventions and pharmacotherapy has a modest and rarely sustained antihypertensive effect. In contrast, bariatric surgery has a sustained antihypertensive effect, as evidenced by normalization of hypertension or lessening of antihypertensive therapy. The prevalence of HTN and its obesity-associated phenotype is likely to increase in African-American women over the next decades. Obese African-American women may be increasingly referred for bariatric surgery when hypertension remains uncontrolled despite lifestyle interventions and pharmacological therapy for weight loss and blood pressure (BP) control.

  13. METALLOPROTEINS DURING DEVELOPMENT OF WALKER-256 CARCINOSARCOMA RESISTANT PHENOTYPE.

    Science.gov (United States)

    Chekhun, V F; Lozovska, Yu V; Burlaka, A P; Ganusevich, I I; Shvets, Yu V; Lukianova, N Yu; Todor, I M; Demash, D V; Pavlova, A A; Naleskina, L A

    2015-01-01

    The study was focused on the detection of changes in serum and tumor metal-containing proteins in animals during development ofdoxorubicin-resistant phenotype in malignant cells after 12 courses of chemotherapy. We found that on every stage of resistance development there was a significant increase in content of ferritin and transferrin proteins (which take part in iron traffick and storage) in Walker-256 carc'inosarcoma tissue. We observed decreased serumferritin levels at the beginning stage of the resistance development and significant elevation of this protein levels in the cases withfully developed resistance phenotype. Transferrin content showed changes opposite to that offerritin. During the development of resistance phenotype the tumor tissue also exhibited increased 'free iron' concentration that putatively correlate with elevation of ROS generation and levels of MMP-2 and MMP-9 active forms. The tumor non-protein thiol content increases gradually as well. The serum of animals with early stages of resistance phenotype development showed high ceruloplasmin activity and its significant reduction after loss of tumor sensitivity to doxorubicin. Therefore, the development of resistance phenotype in Walker-256 carcinosarcoma is accompanied by both the deregulation of metal-containing proteins in serum and tumor tissue and by the changes in activity of antioxidant defense system. Thus, the results of this study allow us to determine the spectrum of metal-containing proteins that are involved in the development of resistant tumor phenotype and that may be targeted for methods for doxorubicin sensitivity correction therapy.

  14. Identification of a novel PMS2 alteration c.505C>G (R169G) in trans with a PMS2 pathogenic mutation in a patient with constitutional mismatch repair deficiency.

    Science.gov (United States)

    Mork, Maureen E; Borras, Ester; Taggart, Melissa W; Cuddy, Amanda; Bannon, Sarah A; You, Y Nancy; Lynch, Patrick M; Ramirez, Pedro T; Rodriguez-Bigas, Miguel A; Vilar, Eduardo

    2016-10-01

    Constitutional mismatch repair deficiency syndrome (CMMRD) is a rare autosomal recessive predisposition to colorectal polyposis and other malignancies, often childhood-onset, that is caused by biallelic inheritance of mutations in the same mismatch repair gene. Here, we describe a patient with a clinical diagnosis of CMMRD based on colorectal polyposis and young-onset endometrial cancer who was identified to have two alterations in trans in PMS2: one known pathogenic mutation (c.1831insA; p.Ile611Asnfs*2) and one novel variant of uncertain significance (c.505C>G; p.Arg169Glu), a missense alteration. We describe the clinical and molecular features in the patient harboring this novel alteration c.505C>G, who meets clinical criteria for CMMRD and exhibits molecular evidence supporting a diagnosis of CMMRD. Although experimental validation is needed to confirm its pathogenicity, PMS2 c.505C>G likely has functional consequences that contributes to our patient's phenotype based on the patient's clinical presentation, tumor studies, and bioinformatics analysis.

  15. Developmental Research in Space: Predicting Adult Neurobehavioral Phenotypes via Metabolomic Imaging

    Science.gov (United States)

    Schorn, Julia M.; Moyer, Eric L.; Lowe, Moniece M.; Morgan, Jonathan; Tulbert, Christina D.; Olson, John; Olson, John; Horita, David A.; Kleven, Gale A.

    2017-01-01

    As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.

  16. Strategy revealing phenotypic differences among synthetic oscillator designs.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2014-09-19

    Considerable progress has been made in identifying and characterizing the component parts of genetic oscillators, which play central roles in all organisms. Nonlinear interaction among components is sufficiently complex that mathematical models are required to elucidate their elusive integrated behavior. Although natural and synthetic oscillators exhibit common architectures, there are numerous differences that are poorly understood. Utilizing synthetic biology to uncover basic principles of simpler circuits is a way to advance understanding of natural circadian clocks and rhythms. Following this strategy, we address the following questions: What are the implications of different architectures and molecular modes of transcriptional control for the phenotypic repertoire of genetic oscillators? Are there designs that are more realizable or robust? We compare synthetic oscillators involving one of three architectures and various combinations of the two modes of transcriptional control using a methodology that provides three innovations: a rigorous definition of phenotype, a procedure for deconstructing complex systems into qualitatively distinct phenotypes, and a graphical representation for illuminating the relationship between genotype, environment, and the qualitatively distinct phenotypes of a system. These methods provide a global perspective on the behavioral repertoire, facilitate comparisons of alternatives, and assist the rational design of synthetic gene circuitry. In particular, the results of their application here reveal distinctive phenotypes for several designs that have been studied experimentally as well as a best design among the alternatives that has yet to be constructed and tested.

  17. Choline Phospholipid Metabolites of Human Vascular Endothelial Cells Altered by Cyclooxygenase Inhibition, Growth Factor Depletion, and Paracrine Factors Secreted by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Noriko Mori

    2003-04-01

    Full Text Available Magnetic resonance studies have previously shown that solid tumors and cancer cells in culture typically exhibit high phosphocholine and total choline. Treatment of cancer cells with the anti-inflammatory agent, indomethacin (INDO, reverted the phenotype of choline phospholipid metabolites in cancer cells towards a less malignant phenotype. Since endothelial cells form a key component of tumor vasculature, in this study, we used MR spectroscopy to characterize the phenotype of choline phospholipid metabolites in human umbilical vein endothelial cells (HUVECs. We determined the effect of growth factors, the anti-inflammatory agent INDO, and conditioned media obtained from a malignant cell line, on choline phospholipid metabolites. Growth factor depletion or treatment with INDO induced similar changes in the choline phospholipid metabolites of HUVECs. Treatment with conditioned medium obtained from MDA-MB-231 cancer cells induced changes similar to the presence of growth factor supplements. These results suggest that cancer cells secrete growth factors and/or other molecules that influence the choline phospholipid metabolism of HUVECs. The ability of INDO to alter choline phospholipid metabolism in the presence of growth factor supplements suggests that the inflammatory response pathways of HUVECs may play a role in cancer cell-HUVEC interaction and in the response of HUVECs to growth factors.

  18. Hippocampal transcriptomic and proteomic alterations in the BTBR mouse model of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Caitlin M Daimon

    2015-11-01

    Full Text Available Autism spectrum disorders (ASD are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred to simply as BTBR display deficits in social functioning, lack of communication ability, and engagement in stereotyped behavior. Despite extensive behavioral phenotypic characterization, little is known about the genes and proteins responsible for the presentation of the ASD-like phenotype in the BTBR mouse model. In this study, we employed bioinformatics techniques to gain a wide-scale understanding of the transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR mice. We found a number of genes and proteins to be significantly altered in BTBR mice compared to C57BL/6J (B6 control mice controls such as BDNF, Shank3, and ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified distinct functional pathways altered in BTBR mice compared to B6 controls that have been previously shown to be altered in both mouse models of ASD, some human clinical populations, and have been suggested as a possible etiological mechanism of ASD, including axon guidance and regulation of actin cytoskeleton. In addition, our wide-scale bioinformatics approach also discovered several previously unidentified genes and proteins associated with the ASD phenotype in BTBR mice, such as Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic targets for ASD are uncovered. As a result, we believe that informed use of synergistic bioinformatics applications represents an invaluable tool for elucidating the etiology of complex disorders like ASD.

  19. Tetralogy of Fallot and Hypoplastic Left Heart Syndrome – Complex Clinical Phenotypes Meet Complex Genetic Networks

    Science.gov (United States)

    Lahm, Harald; Schön, Patric; Doppler, Stefanie; Dreßen, Martina; Cleuziou, Julie; Deutsch, Marcus-André; Ewert, Peter; Lange, Rüdiger; Krane, Markus

    2015-01-01

    In many cases congenital heart disease (CHD) is represented by a complex phenotype and an array of several functional and morphological cardiac disorders. These malformations will be briefly summarized in the first part focusing on two severe CHD phenotypes, hypoplastic left heart syndrome (HLHS) and tetralogy of Fallot (TOF). In most cases of CHD the genetic origin remains largely unknown, though the complexity of the clinical picture strongly argues against a dysregulation which can be attributed to a single candidate gene but rather suggests a multifaceted polygenetic origin with elaborate interactions. Consistent with this idea, genome-wide approaches using whole exome sequencing, comparative sequence analysis of multiplex families to identify de novo mutations and global technologies to identify single nucleotide polymorphisms, copy number variants, dysregulation of the transcriptome and epigenetic variations have been conducted to obtain information about genetic alterations and potential predispositions possibly linked to the occurrence of a CHD phenotype. In the second part of this review we will summarize and discuss the available literature on identified genetic alterations linked to TOF and HLHS. PMID:26069455

  20. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model.

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Morbin, Michela; Uggetti, Andrea; Moda, Fabio; D'Amato, Ilaria; Giordano, Carla; d'Amati, Giulia; Cozzi, Anna; Levi, Sonia; Hayflick, Susan; Tiranti, Valeria

    2012-12-15

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration.

  1. Red hair is the null phenotype of MC1R.

    Science.gov (United States)

    Beaumont, Kimberley A; Shekar, Sri N; Cook, Anthony L; Duffy, David L; Sturm, Richard A

    2008-08-01

    The Melanocortin-1 Receptor (MC1R) is a G-protein coupled receptor, which is responsible for production of the darker eumelanin pigment and the tanning response. The MC1R gene has many polymorphisms, some of which have been linked to variation in pigmentation phenotypes within human populations. In particular, the p.D84E, p.R151C, p.R160W and p.D294 H alleles have been strongly associated with red hair, fair skin and increased skin cancer risk. These red hair colour (RHC) variants are relatively well described and are thought to result in altered receptor function, while still retaining varying levels of signaling ability in vitro. The mouse Mc1r null phenotype is yellow fur colour, the p.R151C, p.R160W and p.D294 H alleles were able to partially rescue this phenotype, leading to the question of what the true null phenotype of MC1R would be in humans. Due to the rarity of MC1R null alleles in human populations, they have only been found in the heterozygous state until now. We report here the first case of a homozygous MC1R null individual, phenotypic analysis indicates that red hair and fair skin is found in the absence of MC1R function.

  2. Pheno-phenotypes: a holistic approach to the psychopathology of schizophrenia.

    Science.gov (United States)

    Stanghellini, Giovanni; Rossi, Rodolfo

    2014-05-01

    Mental disorders are mainly characterized via symptom assessment. Symptoms are state-like macroscopic anomalies of behaviour, experience, and expression that are deemed relevant for diagnostic purposes. An alternative approach is based on the concept of endophenotypes, which are physiological or behavioural measures occupying the terrain between symptoms and risk genotypes. We will critically discuss these two approaches, and later focus on the concept of pheno-phenotype as it is revealed by recent phenomenological research on schizophrenia. Several studies have been recently published on the schizophrenic pheno-phenotype mainly addressing self-disorders, as well as disorders of time and bodily experience. The mainstream approach to psychopathological phenotypes is focussed on easy-to-assess operationalizable symptoms. Thinness of phenotypes and simplification of clinical constructs are the consequences of this. Also, this approach has not been successful in investigating the biological causes of mental disorders. An integrative approach is based on the concept of 'endophenotype'. Endophenotypes were conceptualized as a supportive tool for the genetic dissection of psychiatric disorders. The underlying rationale states that disease-specific phenotypes should be the upstream phenotypic manifestation of a smaller genotype than the whole disease-related genotype. Psychopathological phenotypes can also be characterized in terms of pheno-phenotypes. This approach aims at delineating the manifold phenomena experienced by patients in all of their concrete and distinctive features, so that the features of a pathological condition emerge, while preserving their peculiar feel, meaning, and value for the patient. Systematic explorations of anomalies in the patients' experience, for example, of time, space, body, self, and otherness, may provide a useful integration to the symptom-based and endophenotype-based approaches. These abnormal phenomena can be used as pointers to the

  3. Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice

    DEFF Research Database (Denmark)

    Møller-Kristensen, Mette; Hamblin, Michael R; Thiel, Steffen

    2007-01-01

    Burn injury destroys skin, the second largest innate immune organ in the body, and triggers chaotic immune and inflammatory responses. The pattern recognition molecule, mannan-binding lectin (MBL), plays an important role in the first-line host defense against infectious agents. MBL initiates...... the lectin complement pathway and acts as an opsonin. Recent studies suggest that MBL also modulates inflammatory responses. We report that local responses after burn in MBL null mice differ from those found in wild-type (WT) mice in the following important biological markers: spontaneous eschar separation......, thinned epidermis and dermis, upregulation of soluble factors including cytokines, chemokines, cell adhesion molecules, a growth factor-binding protein, and matrix metalloproteinases. Mice lacking C1q, C4, or C3 did not show the lack of eschar separation seen in MBL null-burn phenotype. These findings...

  4. Automated local bright feature image analysis of nuclear protein distribution identifies changes in tissue phenotype

    International Nuclear Information System (INIS)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-01-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues

  5. Phenotypic Variation Is Almost Entirely Independent of the Host-Pathogen Relationship in Clinical Isolates of S. aureus.

    Directory of Open Access Journals (Sweden)

    Adrian D Land

    Full Text Available A key feature of Staphylococcus aureus biology is its ability to switch from an apparently benign colonizer of ~30% of the population to a cutaneous pathogen, to a deadly invasive pathogen. Little is known about the mechanisms driving this transition or the propensity of different S. aureus strains to engender different types of host-pathogen interactions. At the same time, significant weight has been given to the role of specific in vitro phenotypes in S. aureus virulence. Biofilm formation, hemolysis and pigment formation have all been associated with virulence in mice.To determine if there is a correlation between in vitro phenotype and the three types of host-pathogen relationships commonly exhibited by S. aureus in the context of its natural human host, we assayed 300 clinical isolates for phenotypes implicated in virulence including hemolysis, sensitivity to autolysis, and biofilm formation. For comparative purposes, we also assayed phenotype in 9 domesticated S. aureus strains routinely used for analysis of virulence determinants in laboratory settings.Strikingly, the clinical strains exhibited significant phenotypic uniformity in each of the assays evaluated in this study. One exception was a small, but significant, correlation between an increased propensity for biofilm formation and isolation from skin and soft tissue infections (SSTIs. In contrast, we observed a high degree of phenotypic variation between common laboratory strains that exhibit virulence in mouse models. These data suggest the existence of significant evolutionary pressure on the S. aureus genome and highlight a role for host factors as a strong determinant of the host-pathogen relationship. In addition, the high degree of variation between laboratory strains emphasizes the need for caution when applying data obtained in one lab strain to the analysis of another.

  6. Predictable Phenotypes of Antibiotic Resistance Mutations.

    Science.gov (United States)

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain

  7. Cell Phenotype Transitions in Cardiovascular Calcification

    Directory of Open Access Journals (Sweden)

    Luis Hortells

    2018-03-01

    Full Text Available Cardiovascular calcification was originally considered a passive, degenerative process, however with the advance of cellular and molecular biology techniques it is now appreciated that ectopic calcification is an active biological process. Vascular calcification is the most common form of ectopic calcification, and aging as well as specific disease states such as atherosclerosis, diabetes, and genetic mutations, exhibit this pathology. In the vessels and valves, endothelial cells, smooth muscle cells, and fibroblast-like cells contribute to the formation of extracellular calcified nodules. Research suggests that these vascular cells undergo a phenotypic switch whereby they acquire osteoblast-like characteristics, however the mechanisms driving the early aspects of these cell transitions are not fully understood. Osteoblasts are true bone-forming cells and differentiate from their pluripotent precursor, the mesenchymal stem cell (MSC; vascular cells that acquire the ability to calcify share aspects of the transcriptional programs exhibited by MSCs differentiating into osteoblasts. What is unknown is whether a fully-differentiated vascular cell directly acquires the ability to calcify by the upregulation of osteogenic genes or, whether these vascular cells first de-differentiate into an MSC-like state before obtaining a “second hit” that induces them to re-differentiate down an osteogenic lineage. Addressing these questions will enable progress in preventative and regenerative medicine strategies to combat vascular calcification pathologies. In this review, we will summarize what is known about the phenotypic switching of vascular endothelial, smooth muscle, and valvular cells.

  8. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype

    NARCIS (Netherlands)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J. C.; Biessen, Erik A. L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic

  10. Methylator phenotype of malignant germ cell tumours in children identifies strong candidates for chemotherapy resistance.

    Science.gov (United States)

    Jeyapalan, J N; Noor, D A Mohamed; Lee, S-H; Tan, C L; Appleby, V A; Kilday, J P; Palmer, R D; Schwalbe, E C; Clifford, S C; Walker, D A; Murray, M J; Coleman, N; Nicholson, J C; Scotting, P J

    2011-08-09

    Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date, the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect to only a few genes. A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of regulatory elements using GoldenGate methylation arrays. Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas, methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large proportion of the loci tested, showing a 'methylator' phenotype, including silencing of genes associated with Caspase-8-dependent apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype. Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might explain the relative resistance of YSTs to conventional therapy.

  11. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    Science.gov (United States)

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.

  12. Microarray Analysis Reveals Higher Gestational Folic Acid Alters Expression of Genes in the Cerebellum of Mice Offspring—A Pilot Study

    Directory of Open Access Journals (Sweden)

    Subit Barua

    2015-01-01

    Full Text Available Folate is a water-soluble vitamin that is critical for nucleotide synthesis and can modulate methylation of DNA by altering one-carbon metabolism. Previous studies have shown that folate status during pregnancy is associated with various congenital defects including the risk of aberrant neural tube closure. Maternal exposure to a methyl supplemented diet also can alter DNA methylation and gene expression, which may influence the phenotype of offspring. We investigated if higher gestational folic acid (FA in the diet dysregulates the expression of genes in the cerebellum of offspring in C57BL/6 J mice. One week before gestation and throughout the pregnancy, groups of dams were supplemented with FA either at 2 mg/kg or 20 mg/kg of diet. Microarray analysis was used to investigate the genome wide gene expression profile in the cerebellum from day old pups. Our results revealed that exposure to the higher dose FA diet during gestation dysregulated expression of several genes in the cerebellum of both male and female pups. Several transcription factors, imprinted genes, neuro-developmental genes and genes associated with autism spectrum disorder exhibited altered expression levels. These findings suggest that higher gestational FA potentially dysregulates gene expression in the offspring brain and such changes may adversely alter fetal programming and overall brain development.

  13. Increased entropy of signal transduction in the cancer metastasis phenotype

    Directory of Open Access Journals (Sweden)

    Teschendorff Andrew E

    2010-07-01

    Full Text Available Abstract Background The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Results Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may

  14. Mycorrhizae Alter Toxin Sequestration and Performance of Two Specialist Herbivores

    Directory of Open Access Journals (Sweden)

    Amanda R. Meier

    2018-04-01

    Full Text Available Multitrophic species interactions are shaped by both top-down and bottom-up factors. Belowground symbionts of plants, such as arbuscular mycorrhizal fungi (AMF, can alter the strength of these forces by altering plant phenotype. For example, AMF-mediated changes in foliar toxin and nutrient concentrations may influence herbivore growth and fecundity. In addition, many specialist herbivores sequester toxins from their host plants to resist natural enemies, and the extent of sequestration varies with host plant secondary chemistry. Therefore, by altering plant phenotype, AMF may affect both herbivore performance and their resistance to natural enemies. We examined how inoculation of plants with AMF influences toxin sequestration and performance of two specialist herbivores feeding upon four milkweed species (Asclepias incarnata, A. curassavica, A. latifolia, A. syriaca. We raised aphids (Aphis nerii and caterpillars (Danaus plexippus on plants for 6 days in a fully factorial manipulation of milkweed species and level of AMF inoculation (zero, medium, and high. We then assessed aphid and caterpillar sequestration of toxins (cardenolides and performance, and measured defensive and nutritive traits of control plants. Aphids and caterpillars sequestered higher concentrations of cardenolides from plants inoculated with AMF across all milkweed species. Aphid per capita growth rates and aphid body mass varied non-linearly with increasing AMF inoculum availability; across all milkweed species, aphids had the lowest performance under medium levels of AMF availability and highest performance under high AMF availability. In contrast, caterpillar survival varied strongly with AMF availability in a plant species-specific manner, and caterpillar growth was unaffected by AMF. Inoculation with AMF increased foliar cardenolide concentrations consistently among milkweed species, but altered aboveground biomasses and foliar phosphorous concentrations in a plant

  15. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    Science.gov (United States)

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  16. Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice.

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Lin

    Full Text Available In order to identify genes involved in stress and metabolic regulation, we carried out a Drosophila P-element-mediated mutagenesis screen for starvation resistance. We isolated a mutant, m2, that showed a 23% increase in survival time under starvation conditions. The P-element insertion was mapped to the region upstream of the vha16-1 gene, which encodes the c subunit of the vacuolar-type H+-ATPase. We found that vha16-1 is highly expressed in the fly midgut, and that m2 mutant flies are hypomorphic for vha16-1 and also exhibit reduced midgut acidity. This deficit is likely to induce altered metabolism and contribute to accelerated aging, since vha16-1 mutant flies are short-lived and display increases in body weight and lipid accumulation. Similar phenotypes were also induced by pharmacological treatment, through feeding normal flies and mice with a carbonic anhydrase inhibitor (acetazolamide or proton pump inhibitor (PPI, lansoprazole to suppress gut acid production. Our study may thus provide a useful model for investigating chronic acid suppression in patients.

  17. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness

    Science.gov (United States)

    Bauer, Christopher R; Li, Shuang; Siegal, Mark L

    2015-01-01

    The concept of robustness in biology has gained much attention recently, but a mechanistic understanding of how genetic networks regulate phenotypic variation has remained elusive. One approach to understand the genetic architecture of variability has been to analyze dispensable gene deletions in model organisms; however, the most important genes cannot be deleted. Here, we have utilized two systems in yeast whereby essential genes have been altered to reduce expression. Using high-throughput microscopy and image analysis, we have characterized a large number of morphological phenotypes, and their associated variation, for the majority of essential genes in yeast. Our results indicate that phenotypic robustness is more highly dependent upon the expression of essential genes than on the presence of dispensable genes. Morphological robustness appears to be a general property of a genotype that is closely related to pleiotropy. While the fitness profile across a range of expression levels is idiosyncratic to each gene, the global pattern indicates that there is a window in which phenotypic variation can be released before fitness effects are observable. PMID:25609648

  18. Metalloproteins during development of Walker-256 carcinosarcoma resistant phenotype

    Directory of Open Access Journals (Sweden)

    V. F. Chekhun

    2015-04-01

    Full Text Available The study was focused on the detection of changes in serum and tumor metal-containing proteins in animals during development of doxorubicin-resistant phenotype in malignant cells after 12 courses of chemotherapy. We found that on every stage of resistance development there was a significant increase in content of ferritin and transferrin proteins (which take part in iron traffick and storage in Walker-256 carcinosarcoma tissue. We observed decreased serum ferritin levels at the beginning stage of the resistance development and significant elevation of this protein levels in the cases with fully developed resistance phenotype. Transferrin content showed changes opposite to that of ferritin. During the development of resistance phenotype the tumor tissue also exhibited increased ‘free iron’ concentration that putatively correlate with elevation of ROS generation and levels of MMP-2 and MMP-9 active forms. The tumor non-protein thiol content increases gradually as well. The serum of animals with early stages of resistance phenotype development showed high ceruloplasmin activity and its significant reduction after loss of tumor sensitivity to doxorubicin. Therefore, the development of resistance phenotype in Walker-256 carcinosarcoma is accompanied by both the deregulation of metal-containing proteins in serum and tumor tissue and by the changes in activity of antioxidant defense system. Thus, the results of this study allow us to determine the spectrum of metal-containing proteins that are involved in the development of resistant tumor phenotype and that may be targeted for methods for doxorubicin sensitivity correction therapy.

  19. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Directory of Open Access Journals (Sweden)

    Sabine M Hölter

    Full Text Available Huntington's disease (HD is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  20. Nicotine can skew the characterization of the macrophage type-1 (MΦ1) phenotype differentiated with granulocyte-macrophage colony-stimulating factor to the MΦ2 phenotype

    International Nuclear Information System (INIS)

    Yanagita, Manabu; Kobayashi, Ryohei; Murakami, Shinya

    2009-01-01

    Macrophages (MΦs) exhibit functional heterogeneity and plasticity in the local microenvironment. Recently, it was reported that MΦs can be divided into proinflammatory MΦs (MΦ1) and anti-inflammatory MΦs (MΦ2) based on their polarized functional properties. Here, we report that nicotine, the major ingredient of cigarette smoke, can modulate the characteristics of MΦ1. Granulocyte-macrophage colony-stimulating factor-driven MΦ1 with nicotine (Ni-MΦ1) showed the phenotypic characteristics of MΦ2. Like MΦ2, Ni-MΦ1 exhibited antigen-uptake activities. Ni-MΦ1 suppressed IL-12, but maintained IL-10 and produced high amounts of MCP-1 upon lipopolysaccharide stimulation compared with MΦ1. Moreover, we observed strong proliferative responses of T cells to lipopolysaccharide-stimulated MΦ1, whereas Ni-MΦ1 reduced T cell proliferation and inhibited IFN-γ production by T cells. These results suggest that nicotine can change the functional characteristics of MΦ and skew the MΦ1 phenotype to MΦ2. We propose that nicotine is a potent regulator that modulates immune responses in microenvironments.

  1. Connectomic intermediate phenotypes for psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Alex eFornito

    2012-04-01

    Full Text Available Psychiatric disorders are phenotypically heterogeneous entities with a complex genetic basis. To mitigate this complexity, many investigators study so-called intermediate phenotypes that putatively provide a more direct index of the physiological effects of candidate genetic risk variants than overt psychiatric syndromes. Magnetic resonance imaging (MRI is a particularly popular technique for measuring such phenotypes because it allows interrogation of diverse aspects of brain structure and function in vivo. Much of this work however, has focused on relatively simple measures that quantify variations in the physiology or tissue integrity of specific brain regions in isolation, contradicting an emerging consensus that most major psychiatric disorders do not arise from isolated dysfunction in one or a few brain regions, but rather from disturbed interactions within and between distributed neural circuits; i.e., they are disorders of brain connectivity. The recent proliferation of new MRI techniques for comprehensively mapping the entire connectivity architecture of the brain, termed the human connectome, has provided a rich repertoire of tools for understanding how genetic variants implicated in mental disorder impact distinct neural circuits. In this article, we review research using these connectomic techniques to understand how genetic variation influences the connectivity and topology of human brain networks. We highlight recent evidence from twin and imaging genetics studies suggesting that the penetrance of candidate risk variants for mental illness, such as those in SLC6A4, MAOA, ZNF804A and APOE, may be higher for intermediate phenotypes characterised at the level of distributed neural systems than at the level of spatially localised brain regions. The findings indicate that imaging connectomics provides a powerful framework for understanding how genetic risk for psychiatric disease is expressed through altered structure and function of

  2. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    Science.gov (United States)

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Alterations in urine, serum and brain metabolomic profiles exhibit sexual dimorphism during malaria disease progression

    Directory of Open Access Journals (Sweden)

    Sharma Shobhona

    2010-04-01

    Full Text Available Abstract Background Metabolic changes in the host in response to Plasmodium infection play a crucial role in the pathogenesis of malaria. Alterations in metabolism of male and female mice infected with Plasmodium berghei ANKA are reported here. Methods 1H NMR spectra of urine, sera and brain extracts of these mice were analysed over disease progression using Principle Component Analysis and Orthogonal Partial Least Square Discriminant Analysis. Results Analyses of overall changes in urinary profiles during disease progression demonstrate that females show a significant early post-infection shift in metabolism as compared to males. In contrast, serum profiles of female mice remain unaltered in the early infection stages; whereas that of the male mice changed. Brain metabolite profiles do not show global changes in the early stages of infection in either sex. By the late stages urine, serum and brain profiles of both sexes are severely affected. Analyses of individual metabolites show significant increase in lactate, alanine and lysine, kynurenic acid and quinolinic acid in sera of both males and females at this stage. Early changes in female urine are marked by an increase of ureidopropionate, lowering of carnitine and transient enhancement of asparagine and dimethylglycine. Several metabolites when analysed individually in sera and brain reveal significant changes in their levels in the early phase of infection mainly in female mice. Asparagine and dimethylglycine levels decrease and quinolinic acid increases early in sera of infected females. In brain extracts of females, an early rise in levels is also observed for lactate, alanine and glycerol, kynurenic acid, ureidopropionate and 2-hydroxy-2-methylbutyrate. Conclusions These results suggest that P. berghei infection leads to impairment of glycolysis, lipid metabolism, metabolism of tryptophan and degradation of uracil. Characterization of early changes along these pathways may be crucial for

  4. Neuronal redox imbalance results in altered energy homeostasis and early postnatal lethality.

    Science.gov (United States)

    Maity-Kumar, Gandhari; Thal, Dietmar R; Baumann, Bernd; Scharffetter-Kochanek, Karin; Wirth, Thomas

    2015-07-01

    Redox imbalance is believed to contribute to the development and progression of several neurodegenerative disorders. Our aim was to develop an animal model that exhibits neuron-specific oxidative stress in the CNS to study the consequences and eventually find clues regarding the pathomechanisms of oxidative insults in neuronal homeostasis. We therefore generated a novel neuron-specific superoxide dismutase 2 (SOD2)-deficient mouse by deleting exon 3 of the SOD2 gene using CamKIIα promoter-driven Cre expression. These neuron-specific SOD2 knockout (SOD2(nko)) mice, although born at normal frequencies, died at the age of 4 weeks with critical growth retardation, severe energy failure, and several neurologic phenotypes. In addition, SOD2(nko) mice exhibited severe neuronal alterations such as reactive astrogliosis, neuronal cell cycle inhibition, and induction of apoptosis. JNK activation and stabilization of p53, as a result of reactive oxygen species accumulation, are most likely the inducers of neuronal apoptosis in SOD2(nko) mice. It is remarkable that hypothalamic regulation of glucose metabolism was affected, which in turn induced necrotic brain lesions in SOD2(nko) mice. Taken together, our findings suggest that exclusive deficiency of SOD2 in neurons results in an impaired central regulation of energy homeostasis that leads to persistent hypoglycemia, hypoglycemia-related neuropathology, and an early lethality of the mutant mice. © FASEB.

  5. Musculoskeletal phenotype through the life course: the role of nutrition.

    Science.gov (United States)

    Ward, Kate

    2012-02-01

    This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.

  6. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  7. Open innovation for phenotypic drug discovery: The PD2 assay panel.

    Science.gov (United States)

    Lee, Jonathan A; Chu, Shaoyou; Willard, Francis S; Cox, Karen L; Sells Galvin, Rachelle J; Peery, Robert B; Oliver, Sarah E; Oler, Jennifer; Meredith, Tamika D; Heidler, Steven A; Gough, Wendy H; Husain, Saba; Palkowitz, Alan D; Moxham, Christopher M

    2011-07-01

    Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.

  8. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes.

    Science.gov (United States)

    Martinelli, Simone; Krumbach, Oliver H F; Pantaleoni, Francesca; Coppola, Simona; Amin, Ehsan; Pannone, Luca; Nouri, Kazem; Farina, Luciapia; Dvorsky, Radovan; Lepri, Francesca; Buchholzer, Marcel; Konopatzki, Raphael; Walsh, Laurence; Payne, Katelyn; Pierpont, Mary Ella; Vergano, Samantha Schrier; Langley, Katherine G; Larsen, Douglas; Farwell, Kelly D; Tang, Sha; Mroske, Cameron; Gallotta, Ivan; Di Schiavi, Elia; Della Monica, Matteo; Lugli, Licia; Rossi, Cesare; Seri, Marco; Cocchi, Guido; Henderson, Lindsay; Baskin, Berivan; Alders, Mariëlle; Mendoza-Londono, Roberto; Dupuis, Lucie; Nickerson, Deborah A; Chong, Jessica X; Meeks, Naomi; Brown, Kathleen; Causey, Tahnee; Cho, Megan T; Demuth, Stephanie; Digilio, Maria Cristina; Gelb, Bruce D; Bamshad, Michael J; Zenker, Martin; Ahmadian, Mohammad Reza; Hennekam, Raoul C; Tartaglia, Marco; Mirzaa, Ghayda M

    2018-01-17

    Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Utilization of genomic signatures to identify phenotype-specific drugs.

    Directory of Open Access Journals (Sweden)

    Seiichi Mori

    2009-08-01

    Full Text Available Genetic and genomic studies highlight the substantial complexity and heterogeneity of human cancers and emphasize the general lack of therapeutics that can match this complexity. With the goal of expanding opportunities for drug discovery, we describe an approach that makes use of a phenotype-based screen combined with the use of multiple cancer cell lines. In particular, we have used the NCI-60 cancer cell line panel that includes drug sensitivity measures for over 40,000 compounds assayed on 59 independent cells lines. Targets are cancer-relevant phenotypes represented as gene expression signatures that are used to identify cells within the NCI-60 panel reflecting the signature phenotype and then connect to compounds that are selectively active against those cells. As a proof-of-concept, we show that this strategy effectively identifies compounds with selectivity to the RAS or PI3K pathways. We have then extended this strategy to identify compounds that have activity towards cells exhibiting the basal phenotype of breast cancer, a clinically-important breast cancer characterized as ER-, PR-, and Her2- that lacks viable therapeutic options. One of these compounds, Simvastatin, has previously been shown to inhibit breast cancer cell growth in vitro and importantly, has been associated with a reduction in ER-, PR- breast cancer in a clinical study. We suggest that this approach provides a novel strategy towards identification of therapeutic agents based on clinically relevant phenotypes that can augment the conventional strategies of target-based screens.

  10. Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells.

    Science.gov (United States)

    Okubo-Kurihara, Emiko; Matsui, Minami

    2018-01-01

    The plant cell wall is an important and abundant biomass with great potential for use as a modern recyclable resource. For effective utilization of this cellulosic biomass, its ability to degrade efficiently is key point. With the aim of modifying the cell wall to allow easy decomposition, we used chemical biological technology to alter its structure. As a first step toward evaluating the chemicals in the cell wall we employed a phenotype-based approach using high-throughput screening. As the plant cell wall is essential in determining cell morphology, phenotype-based screening is particularly effective in identifying compounds that bring about alterations in the cell wall. For rapid and reproducible screening, tobacco BY-2 cell is an excellent system in which to observe cell morphology. In this chapter, we provide a detailed chemical biological methodology for studying cell morphology using tobacco BY-2 cells.

  11. Maternal genetic mutations as gestational and early life influences in producing psychiatric disease-like phenotypes in mice

    Directory of Open Access Journals (Sweden)

    Georgia eGleason

    2011-05-01

    Full Text Available Risk factors for psychiatric disorders have traditionally been classified as genetic or environmental. Risk (candidate genes, although typically possessing small effects, represent a clear starting point to elucidate downstream cellular/molecular pathways of disease. Environmental effects, especially during development, can also lead to altered behavior and increased risk for disease. An important environmental factor is the mother, demonstrated by the negative effects elicited by maternal gestational stress and altered maternal care. These maternal effects can also have a genetic basis (e.g. maternal genetic variability and mutations. The focus of this review is maternal genotype effects that influence the emotional development of the offspring resulting in life-long psychiatric disease-like phenotypes. We have recently found that genetic inactivation of the serotonin1A receptor (5-HT1AR and the fmr-1 gene (encoding the fragile X mental retardation protein in mouse dams results in psychiatric disease-like phenotypes in their genetically unaffected offspring. 5-HT1AR deficiency in dams results in anxiety and increased stress responsiveness in their offspring. Mice with 5-HT1AR deficient dams display altered development of the hippocampus, which could be linked to their anxiety-like phenotype. Maternal inactivation of fmr-1, like its inactivation in the offspring, results in a hyperactivity-like condition and is associated with receptor alterations in the striatum. These data indicate a high sensitivity of the offspring to maternal mutations and suggest that maternal genotype effects can increase the impact of genetic risk factors in a population by increasing the risk of the genetically normal offspring as well as by enhancing the effects of offspring mutations.

  12. Phenotypic, Genotypic, and Antibiotic Sensitivity Patterns of Strains Isolated from the Cholera Epidemic in Zimbabwe

    NARCIS (Netherlands)

    Islam, Mohammad S.; Mahmud, Zahid H.; Ansaruzzaman, Mohammad; Faruque, Shah M.; Talukder, Kaisar A.; Qadri, Firdausi; Alam, Munirul; Islam, Shafiqul; Bardhan, Pradip K.; Mazumder, Ramendra N.; Khan, Azharul I.; Ahmed, Sirajuddin; Iqbal, Anwarul; Chitsatso, Owen; Mudzori, James; Patel, Sheetal; Midzi, Stanley M.; Charimari, Lincoln; Endtz, Hubert P.; Cravioto, Alejandro

    This paper details the phenotypic, genotypic, and antibiotic sensitivity patterns of 88 Vibrio cholerae strains from Zimbabwe. Of the 88 strains, 83 were classified as "altered El Tor" and 5 as "hybrid El Tor" strains. All of the strains were susceptible to tetracycline, doxycycline, ciprofloxacin,

  13. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system.

    Science.gov (United States)

    Hur, Matthew; Gistelinck, Charlotte A; Huber, Philippe; Lee, Jane; Thompson, Marjorie H; Monstad-Rios, Adrian T; Watson, Claire J; McMenamin, Sarah K; Willaert, Andy; Parichy, David M; Coucke, Paul; Kwon, Ronald Y

    2017-09-08

    Phenomics, which ideally involves in-depth phenotyping at the whole-organism scale, may enhance our functional understanding of genetic variation. Here, we demonstrate methods to profile hundreds of phenotypic measures comprised of morphological and densitometric traits at a large number of sites within the axial skeleton of adult zebrafish. We show the potential for vertebral patterns to confer heightened sensitivity, with similar specificity, in discriminating mutant populations compared to analyzing individual vertebrae in isolation. We identify phenotypes associated with human brittle bone disease and thyroid stimulating hormone receptor hyperactivity. Finally, we develop allometric models and show their potential to aid in the discrimination of mutant phenotypes masked by alterations in growth. Our studies demonstrate virtues of deep phenotyping in a spatially distributed organ system. Analyzing phenotypic patterns may increase productivity in genetic screens, and facilitate the study of genetic variants associated with smaller effect sizes, such as those that underlie complex diseases.

  14. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling

    International Nuclear Information System (INIS)

    Park, Joon-Heum; Jung, Sunyo

    2017-01-01

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. - Highlights: • Two modes of photooxidation by carotenoid and tetrapyrrole biosynthetic inhibitors. • We examine differential alterations in chloroplast function and plastid signaling. • NF and OF cause differential alterations in chloroplast ultrastructure and function. • Photooxidation coordinates photosynthetic gene expression from nucleus and plastid.

  15. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy.

    Science.gov (United States)

    Dale, Matthew A; Ruhlman, Melissa K; Baxter, B Timothy

    2015-08-01

    Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. © 2015 American Heart Association, Inc.

  16. Inflammatory cell phenotypes in AAAs; their role and potential as targets for therapy

    Science.gov (United States)

    Dale, Matthew A; Ruhlman, Melissa K.; Baxter, B. Timothy

    2015-01-01

    Abdominal aortic aneurysms are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused approximately 15,000 deaths annually in the U.S. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4+ T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Pro-inflammatory CD4+ T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to pro-inflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the pro-inflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. PMID:26044582

  17. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.

    Science.gov (United States)

    Kreznar, Julia H; Keller, Mark P; Traeger, Lindsay L; Rabaglia, Mary E; Schueler, Kathryn L; Stapleton, Donald S; Zhao, Wen; Vivas, Eugenio I; Yandell, Brian S; Broman, Aimee Teo; Hagenbuch, Bruno; Attie, Alan D; Rey, Federico E

    2017-02-14

    Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    Science.gov (United States)

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  19. Search for Genomic Alterations in Monozygotic Twins Discordant for Cleft Lip and/or Palate

    DEFF Research Database (Denmark)

    Kimani, Jane W; Yoshiura, Koh-Ichiro; Shi, Min

    2009-01-01

    consisting of 1,536 SNPs, to scan for genomic alterations in a sample of monozygotic twin pairs with discordant cleft lip and/or palate phenotypes. Paired analysis for deletions, amplifications and loss of heterozygosity, along with sequence verification of SNPs with discordant genotype calls did not reveal...... any genomic discordance between twin pairs in lymphocyte DNA samples. Our results demonstrate that postzygotic genomic alterations are not a common cause of monozygotic twin discordance for isolated cleft lip and/or palate. However, rare or balanced genomic alterations, tissue-specific events...

  20. Intervention in gene regulatory networks with maximal phenotype alteration.

    Science.gov (United States)

    Yousefi, Mohammadmahdi R; Dougherty, Edward R

    2013-07-15

    A basic issue for translational genomics is to model gene interaction via gene regulatory networks (GRNs) and thereby provide an informatics environment to study the effects of intervention (say, via drugs) and to derive effective intervention strategies. Taking the view that the phenotype is characterized by the long-run behavior (steady-state distribution) of the network, we desire interventions to optimally move the probability mass from undesirable to desirable states Heretofore, two external control approaches have been taken to shift the steady-state mass of a GRN: (i) use a user-defined cost function for which desirable shift of the steady-state mass is a by-product and (ii) use heuristics to design a greedy algorithm. Neither approach provides an optimal control policy relative to long-run behavior. We use a linear programming approach to optimally shift the steady-state mass from undesirable to desirable states, i.e. optimization is directly based on the amount of shift and therefore must outperform previously proposed methods. Moreover, the same basic linear programming structure is used for both unconstrained and constrained optimization, where in the latter case, constraints on the optimization limit the amount of mass that may be shifted to 'ambiguous' states, these being states that are not directly undesirable relative to the pathology of interest but which bear some perceived risk. We apply the method to probabilistic Boolean networks, but the theory applies to any Markovian GRN. Supplementary materials, including the simulation results, MATLAB source code and description of suboptimal methods are available at http://gsp.tamu.edu/Publications/supplementary/yousefi13b. edward@ece.tamu.edu Supplementary data are available at Bioinformatics online.

  1. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking.

    Science.gov (United States)

    Bowton, E; Saunders, C; Reddy, I A; Campbell, N G; Hamilton, P J; Henry, L K; Coon, H; Sakrikar, D; Veenstra-VanderWeele, J M; Blakely, R D; Sutcliffe, J; Matthies, H J G; Erreger, K; Galli, A

    2014-10-14

    Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission

  2. Phenotypic Progression of Stargardt Disease in a Large Consanguineous Tunisian Family Harboring New ABCA4 Mutations

    Directory of Open Access Journals (Sweden)

    Yousra Falfoul

    2018-01-01

    Full Text Available To assess the progression of Stargardt (STGD disease over nine years in two branches of a large consanguineous Tunisian family. Initially, different phenotypes were observed with clinical intra- and interfamilial variations. At presentation, four different retinal phenotypes were observed. In phenotype 1, bull’s eye maculopathy and slight alteration of photopic responses in full-field electroretinography were observed in the youngest child. In phenotype 2, macular atrophy and yellow white were observed in two brothers. In phenotype 3, diffuse macular, peripapillary, and peripheral RPE atrophy and hyperfluorescent dots were observed in two sisters. In phenotype 4, Stargardt disease-fundus flavimaculatus phenotype was observed in two cousins with later age of onset. After a progression of 9 years, all seven patients displayed the same phenotype 3 with advanced stage STGD and diffuse atrophy. WES and MLPA identified two ABCA4 mutations M1: c.[(?_4635_(5714+?dup; (?_6148_(6479_+? del] and M2: c.[2041C>T], p.[R681∗]. In one branch, the three affected patients had M1/M1 causal mutations and in the other branch the two affected patients had M1/M2 causal mutations. After 9-year follow-up, all patients showed the same phenotypic evolution, confirming the progressive nature of the disease. Genetic variations in the two branches made no difference to similar end-stage disease.

  3. What role does heritability play in transgenerational phenotypic responses to captivity? Implications for managing captive populations.

    Science.gov (United States)

    Courtney Jones, Stephanie K; Byrne, Phillip G

    2017-12-01

    Animals maintained in captivity exhibit rapid changes in phenotypic traits, which may be maladaptive for natural environments. The phenotype can shift away from the wild phenotype via transgenerational effects, with the environment experienced by parents influencing the phenotype and fitness of offspring. There is emerging evidence that controlling transgenerational effects could help mitigate the effects of captivity, improving the success of captively bred animals post release. However, controlling transgenerational effects requires knowledge of the mechanisms driving transgenerational changes. To better understand the genetic mechanisms that contribute to transgenerational effects in captivity we investigated the heritability of behavioral phenotypes using mid parent- and single parent-offspring regressions in a population of captive-reared house mouse (Mus musculus) that we had previously shown exhibit transgenerational changes in boldness and activity behavioral types. Slopes for boldness and activity were all positive, indicating a low to moderate degree of heritability. Though, none of the heritability estimates were statistically significant due to the large surrounding errors. However, the large error surrounding the heritability estimates may also indicate that there is variability in heritability between behavioral traits within the boldness and activity behavioral types. The implication of this finding is that the potential for heritable genetic changes in captivity varies considerably between traits. We conclude that continued investigation of the potential for traits to evolve in captivity is needed to better inform captive breeding and reintroduction programs. © 2017 Wiley Periodicals, Inc.

  4. Morphological analysis and DNA methylation in Conyza bonariensis L. cronquist (Asteraceae phenotypes

    Directory of Open Access Journals (Sweden)

    Juliana Maria de Paula

    2017-08-01

    Full Text Available ABSTRACT The species Conyza bonariensis (L. cause losses in agriculture due to their invasive capacity and resistance to herbicides like glyphosate. The species of this genus exhibit phenotypic plasticity, which complicates their identification and characterization. Thus, experiments were performed with 2 extreme C. bonariensis phenotypes (called broad leaf and narrow leaf in greenhouse conditions and in the laboratory, in order to verify if the morphological differences among these phenotypes are a genetic character or result from environmental effects. In addition to the comparative morphological analysis, assessment of DNA methylation profile was performed to detect the occurrence, or not, of differences in the epigenetic level. The morphological characteristics evaluated were length, width, shape, margin and leaves indument; plant height and stem indument; the number of capitula, flowers and seeds. The Methylation Sensitive Amplified Polymorphism technique was used to investigate the methylation levels. The morphological differences of phenotypes supposed to be C. bonariensis are probably genetic in origin and not the result of environmental effects, since, after 6 crop cycles in a greenhouse under the same environmental conditions, these phenotypes remained with the same morphological characteristics and seed production in relation to the original phenotypes found in the collection site. The different phenotypes did not show differences corresponding to DNA methylation patterns that could indicate an epigenetic effect as the cause of the differences between the 2 phenotypes. The results of morphological analysis and methylation probably indicate that maybe they are individuals of populations from different taxa not registered yet in the literature.

  5. The Grass Might Be Greener: Medical Marijuana Patients Exhibit Altered Brain Activity and Improved Executive Function after 3 Months of Treatment

    Directory of Open Access Journals (Sweden)

    Staci A. Gruber

    2018-01-01

    Full Text Available The vast majority of states have enacted full or partial medical marijuana (MMJ programs, causing the number of patients seeking certification for MMJ use to increase dramatically in recent years. Despite increased use of MMJ across the nation, no studies thus far have examined the specific impact of MMJ on cognitive function and related brain activation. In the present study, MMJ patients seeking treatment for a variety of documented medical conditions were assessed prior to initiating MMJ treatment and after 3 months of treatment as part of a larger longitudinal study. In order to examine the effect of MMJ treatment on task-related brain activation, MMJ patients completed the Multi-Source Interference Test (MSIT while undergoing functional magnetic resonance imaging (fMRI. We also collected data regarding conventional medication use, clinical state, and health-related measures at each visit. Following 3 months of treatment, MMJ patients demonstrated improved task performance accompanied by changes in brain activation patterns within the cingulate cortex and frontal regions. Interestingly, after MMJ treatment, brain activation patterns appeared more similar to those exhibited by healthy controls from previous studies than at pre-treatment, suggestive of a potential normalization of brain function relative to baseline. These findings suggest that MMJ use may result in different effects relative to recreational marijuana (MJ use, as recreational consumers have been shown to exhibit decrements in task performance accompanied by altered brain activation. Moreover, patients in the current study also reported improvements in clinical state and health-related measures as well as notable decreases in prescription medication use, particularly opioids and benzodiapezines after 3 months of treatment. Further research is needed to clarify the specific neurobiologic impact, clinical efficacy, and unique effects of MMJ for a range of indications and how it

  6. The Grass Might Be Greener: Medical Marijuana Patients Exhibit Altered Brain Activity and Improved Executive Function after 3 Months of Treatment.

    Science.gov (United States)

    Gruber, Staci A; Sagar, Kelly A; Dahlgren, Mary K; Gonenc, Atilla; Smith, Rosemary T; Lambros, Ashley M; Cabrera, Korine B; Lukas, Scott E

    2017-01-01

    The vast majority of states have enacted full or partial medical marijuana (MMJ) programs, causing the number of patients seeking certification for MMJ use to increase dramatically in recent years. Despite increased use of MMJ across the nation, no studies thus far have examined the specific impact of MMJ on cognitive function and related brain activation. In the present study, MMJ patients seeking treatment for a variety of documented medical conditions were assessed prior to initiating MMJ treatment and after 3 months of treatment as part of a larger longitudinal study. In order to examine the effect of MMJ treatment on task-related brain activation, MMJ patients completed the Multi-Source Interference Test (MSIT) while undergoing functional magnetic resonance imaging (fMRI). We also collected data regarding conventional medication use, clinical state, and health-related measures at each visit. Following 3 months of treatment, MMJ patients demonstrated improved task performance accompanied by changes in brain activation patterns within the cingulate cortex and frontal regions. Interestingly, after MMJ treatment, brain activation patterns appeared more similar to those exhibited by healthy controls from previous studies than at pre-treatment, suggestive of a potential normalization of brain function relative to baseline. These findings suggest that MMJ use may result in different effects relative to recreational marijuana (MJ) use, as recreational consumers have been shown to exhibit decrements in task performance accompanied by altered brain activation. Moreover, patients in the current study also reported improvements in clinical state and health-related measures as well as notable decreases in prescription medication use, particularly opioids and benzodiapezines after 3 months of treatment. Further research is needed to clarify the specific neurobiologic impact, clinical efficacy, and unique effects of MMJ for a range of indications and how it compares to

  7. Microarray analysis of altered gene expression in murine fibroblasts transformed by nickel(II) to nickel(II)-resistant malignant phenotype

    International Nuclear Information System (INIS)

    Kowara, Renata; Karaczyn, Aldona; Cheng, Robert Y.S.; Salnikow, Konstantin; Kasprzak, Kazimierz S.

    2005-01-01

    B200 cells are Ni(II)-transformed mouse BALB/c-3T3 fibroblasts displaying a malignant phenotype and increased resistance to Ni(II) toxicity. In an attempt to find genes whose expression has been altered by the transformation, the Atlas Mouse Stress/Toxicology cDNA Expression Array (Clontech Laboratories, Inc., Palo Alto, CA) was used to analyze the levels of gene expression in both parental and Ni(II)-transformed cells. Comparison of the results revealed a significant up- or downregulation of the expression of 62 of the 588 genes present in the array (approximately 10.5%) in B200 cells. These genes were assigned to different functional groups, including transcription factors and oncogenes (9/14; fractions in parentheses denote the number of up-regulated versus the total number of genes assigned to this group), stress and DNA damage response genes (11/12), growth factors and hormone receptors (6/9), metabolism (7/7), cell adhesion (2/7), cell cycle (3/6), apoptosis (3/4), and cell proliferation (2/3). Among those genes, overexpression of beta-catenin and its downstream targets c-myc and cyclin D1, together with upregulated cyclin G, points at the malignant character of B200 cells. While the increased expression of glutathione (GSH) synthetase, glutathione-S-transferase A4 (GSTA4), and glutathione-S-transferase theta (GSTT), together with high level of several genes responding to oxidative stress, suggests the enforcement of antioxidant defenses in Ni-transformed cells

  8. G protein-coupled receptor kinase-3-deficient mice exhibit WHIM syndrome features and attenuated inflammatory responses

    Science.gov (United States)

    Tarrant, Teresa K.; Billard, Matthew J.; Timoshchenko, Roman G.; McGinnis, Marcus W.; Serafin, D. Stephen; Foreman, Oded; Esserman, Denise A.; Chao, Nelson J.; Lento, William E.; Lee, David M.; Patel, Dhavalkumar; Siderovski, David P.

    2013-01-01

    Chemokine receptor interactions coordinate leukocyte migration in inflammation. Chemokine receptors are GPCRs that when activated, are phosphorylated by GRKs to turn off G protein-mediated signaling yet recruit additional signaling machinery. Recently, GRK3 was identified as a negative regulator of CXCL12/CXCR4 signaling that is defective in human WHIM syndrome. Here, we report that GRK3−/− mice exhibit numerous features of human WHIM, such as impaired CXCL12-mediated desensitization, enhanced CXCR4 signaling to ERK activation, altered granulocyte migration, and a mild myelokathexis. Moreover, GRK3−/− protects mice from two acute models of inflammatory arthritis (K/BxN serum transfer and CAIA). In these granulocyte-dependent disease models, protection of GRK3−/− mice is mediated by retention of cells in the marrow, fewer circulating granulocytes in the peripheral blood, and reduced granulocytes in the joints during active inflammation. In contrast to WHIM, GRK3−/− mice have minimal hypogammaglobulinemia and a peripheral leukocytosis with increased lymphocytes and absent neutropenia. Thus, we conclude that the loss of GRK3-mediated regulation of CXCL12/CXCR4 signaling contributes to some, but not all, of the complete WHIM phenotype and that GRK3 inhibition may be beneficial in the treatment of inflammatory arthritis. PMID:23935208

  9. Characterization of the Pseudomonas aeruginosa recA gene: the Les- phenotype

    International Nuclear Information System (INIS)

    Kokjohn, T.A.; Miller, R.V.

    1988-01-01

    The Les- phenotype (lysogeny establishment deficient) is a pleiotropic effect of the lesB908 mutation of Pseudomonas aeruginosa PAO. lesB908-containing strains are also (i) deficient in general recombination, (ii) sensitive to UV irradiation, and (iii) deficient in UV-stimulated induction of prophages. The P. aeruginosa recA-containing plasmid pKML3001 complemented each of these pleiotropic characteristics of the lesB908 mutation, supporting the hypothesis that lesB908 is an allele of the P. aeruginosa recA gene. The phenotypic effects of the lesB908 mutation may be best explained by the hypothesis that the lesB908 gene product is altered in such a way that it has lost synaptase activity but possesses intrinsic protease activity in the absence of DNA damage. The Les- phenotype is a result of the rapid destruction of newly synthesized phage repressor, resulting in lytic growth of the infecting virus. This hypothesis is consistent with the observations that increasing the number of copies of the phage repressor gene by increasing the multiplicity of infection (i.e., average number of phage genomes per cell) or by introducing the cloned phage repressor gene into a lesB908 mutant will also suppress the Les- phenotype in a phage-specific fashion

  10. Driving gradual endogenous c-myc overexpression by flow-sorting: intracellular signaling and tumor cell phenotype correlate with oncogene expression

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Holm, G.M.N.; Krabbe, J.S.

    2009-01-01

    Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c-myc overex...

  11. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    Science.gov (United States)

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  12. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant

    DEFF Research Database (Denmark)

    Dauber, Andrew; Golzio, Christelle; Guenot, Cécile

    2013-01-01

    phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr...... genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions....

  13. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    Energy Technology Data Exchange (ETDEWEB)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S. (Montreal Neurological Institute, McGill University, Quebec (Canada))

    1991-07-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy.

  14. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    International Nuclear Information System (INIS)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S.

    1991-01-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy

  15. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells

    International Nuclear Information System (INIS)

    Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko; Ohta, Keisuke; Miura, Masahiko

    2007-01-01

    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also found that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis

  16. Genotype-phenotype correlations in neurogenetics: Lesch-Nyhan disease as a model disorder.

    Science.gov (United States)

    Fu, Rong; Ceballos-Picot, Irene; Torres, Rosa J; Larovere, Laura E; Yamada, Yasukazu; Nguyen, Khue V; Hegde, Madhuri; Visser, Jasper E; Schretlen, David J; Nyhan, William L; Puig, Juan G; O'Neill, Patrick J; Jinnah, H A

    2014-05-01

    Establishing meaningful relationships between genetic variations and clinical disease is a fundamental goal for all human genetic disorders. However, these genotype-phenotype correlations remain incompletely characterized and sometimes conflicting for many diseases. Lesch-Nyhan disease is an X-linked recessive disorder that is caused by a wide variety of mutations in the HPRT1 gene. The gene encodes hypoxanthine-guanine phosphoribosyl transferase, an enzyme involved in purine metabolism. The fine structure of enzyme has been established by crystallography studies, and its function can be measured with very precise biochemical assays. This rich knowledge of genetic alterations in the gene and their functional effect on its protein product provides a powerful model for exploring factors that influence genotype-phenotype correlations. The present study summarizes 615 known genetic mutations, their influence on the gene product, and their relationship to the clinical phenotype. In general, the results are compatible with the concept that the overall severity of the disease depends on how mutations ultimately influence enzyme activity. However, careful evaluation of exceptions to this concept point to several additional genetic and non-genetic factors that influence genotype-phenotype correlations. These factors are not unique to Lesch-Nyhan disease, and are relevant to most other genetic diseases. The disease therefore serves as a valuable model for understanding the challenges associated with establishing genotype-phenotype correlations for other disorders.

  17. The Autism-Spectrum Quotient--Italian version: a cross-cultural confirmation of the broader autism phenotype.

    Science.gov (United States)

    Ruta, Liliana; Mazzone, Domenico; Mazzone, Luigi; Wheelwright, Sally; Baron-Cohen, Simon

    2012-04-01

    The Autism Spectrum Quotient (AQ) has been used to define the 'broader' (BAP), 'medium' (MAP) and 'narrow' autism phenotypes (NAP). We used a new Italian version of the AQ to test if difference on AQ scores and the distribution of BAP, MAP and NAP in autism parents (n = 245) versus control parents (n = 300) were replicated in a Sicilian sample. Parents of children with autism spectrum conditions scored higher than the control parents on total AQ, social skills and communication subscales, and exhibited higher rates of BAP, MAP and NAP. We conclude that the Italian AQ is a cross-culturally reliable measure of these different phenotypes, and can be used to identify a phenotypic gradient of severity of autistic traits in families. To understand the molecular basis of these phenotypes will require its use in genetic association studies.

  18. O-Linked β-N-Acetylglucosaminylation (O-GlcNAcylation) in Primary and Metastatic Colorectal Cancer Clones and Effect of N-Acetyl-β-d-glucosaminidase Silencing on Cell Phenotype and Transcriptome*

    Science.gov (United States)

    Yehezkel, Galit; Cohen, Liz; Kliger, Adi; Manor, Esther; Khalaila, Isam

    2012-01-01

    O-Linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is a regulatory post-translational modification occurring on the serine or threonine residues of nucleocytoplasmic proteins. O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase and O-GlcNAcase (OGA), which are responsible for O-GlcNAc addition and removal, respectively. Although O-GlcNAcylation was found to play a significant role in several pathologies such as type II diabetes and neurodegenerative diseases, the role of O-GlcNAcylation in the etiology and progression of cancer remains vague. Here, we followed O-GlcNAcylation and its catalytic machinery in metastatic clones of human colorectal cancer and the effect of OGA knockdown on cellular phenotype and on the transcriptome. The colorectal cancer SW620 metastatic clone exhibited increased O-GlcNAcylation and decreased OGA expression compared with its primary clone, SW480. O-GlcNAcylation elevation in SW620 cells, through RNA interference of OGA, resulted in phenotypic alterations that included acquisition of a fibroblast-like morphology, which coincides with epithelial metastatic progression and growth retardation. Microarray analysis revealed that OGA silencing altered the expression of about 1300 genes, mostly involved in cell movement and growth, and specifically affected metabolic pathways of lipids and carbohydrates. These findings support the involvement of O-GlcNAcylation in various aspects of tumor cell physiology and suggest that this modification may serve as a link between metabolic changes and cancer. PMID:22730328

  19. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism

    Directory of Open Access Journals (Sweden)

    Chomiak Taylor

    2010-08-01

    Full Text Available Abstract Background Autism is a behaviourally defined neurodevelopmental disorder with unknown etiology. Recent studies in autistic children consistently point to neuropathological and functional abnormalities in the temporal association cortex (TeA and its associated structures. It has been proposed that the trajectory of postnatal development in these regions may undergo accelerated maturational alterations that predominantly affect sensory recognition and social interaction. Indeed, the temporal association regions that are important for sensory recognition and social interaction are one of the last regions to mature suggesting a potential vulnerability to early maturation. However, direct evaluation of the emerging hypothesis that an altered time course of early postnatal development can lead to an ASD phenotype remains lacking. Results We used electrophysiological, histological, and behavioural techniques to investigate if the known neuronal maturational promoter valproate, similar to that in culture systems, can influence the normal developmental trajectory of TeA in vivo. Brain sections obtained from postnatal rat pups treated with VPA in vivo revealed that almost 40% of cortical cells in TeA prematurely exhibited adult-like intrinsic electrophysiological properties and that this was often associated with gross cortical hypertrophy and a reduced predisposition for social play behaviour. Conclusions The co-manifestation of these functional, structural and behavioural features suggests that alteration of the developmental time course in certain high-order cortical networks may play an important role in the neurophysiological basis of autism.

  20. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  1. Epilepsy in patients with GRIN2A alterations

    DEFF Research Database (Denmark)

    von Stülpnagel, Celina; Ensslen, M; Møller, R S

    2017-01-01

    indicate that children with epilepsy due to pathogenic GRIN2A mutations present with different clinical phenotypes and a spectrum of seizure types in the context of a pharmacoresistant epilepsy providing information for clinicians treating children with this form of genetically determined epileptic......OBJECTIVE: To delineate the genetic, neurodevelopmental and epileptic spectrum associated with GRIN2A alterations with emphasis on epilepsy treatment. METHODS: Retrospective study of 19 patients (7 females; age: 1-38 years; mean 10.1 years) with epilepsy and GRIN2A alteration. Genetic variants were...... classified according to the guidelines and recommendations of the American College of Medical Genetics (ACMG). Clinical findings including epilepsy classification, treatment, EEG findings, early childhood development and neurodevelopmental outcome were collected with an electronic questionnaire. RESULTS: 7...

  2. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    Science.gov (United States)

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  3. When can stress facilitate divergence by altering time to flowering?

    OpenAIRE

    Jordan, Crispin Y.; Ally, Dilara; Hodgins, Kathryn A.

    2015-01-01

    Abstract Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce ...

  4. Sexual dimorphism, age and fat mass are key phenotypic drivers of proteomic signatures

    DEFF Research Database (Denmark)

    Curran, Aoife M; Fogarty Draper, Colleen; Scott-Boyer, Marie-Pier

    2017-01-01

    Validated protein biomarkers are needed for assessing health trajectories, predicting and sub-classifying disease, and optimizing diagnostic and therapeutic clinical decision-making. The sensitivity, specificity, accuracy, and precision of single or combinations of protein biomarkers may be alter...... female) and continuous phenotypes (age, fat mass) which may influence the identification and use of biomarkers of clinical utility for health diagnosis and therapeutic strategies....

  5. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu

    2011-07-28

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  6. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu; Mithani, Aziz; Gan, Xiangchao; Belfield, Eric J.; Klingler, John  P.; Zhu, Jian-Kang; Ragoussis, Jiannis; Mott, Richard; Harberd, Nicholas  P.

    2011-01-01

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  7. Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice.

    Science.gov (United States)

    Osterstock, Guillaume; El Yandouzi, Taoufik; Romanò, Nicola; Carmignac, Danielle; Langlet, Fanny; Coutry, Nathalie; Guillou, Anne; Schaeffer, Marie; Chauvet, Norbert; Vanacker, Charlotte; Galibert, Evelyne; Dehouck, Bénédicte; Robinson, Iain C A F; Prévot, Vincent; Mollard, Patrice; Plesnila, Nikolaus; Méry, Pierre-François

    2014-05-01

    Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice. Furthermore, GHRH stimulation enhanced GH to lower level in injured than in control or sham mice. Because many characteristics were unchanged in the pituitary glands of CCI mice, we looked for changes at the hypothalamic level. Hypertrophied astrocytes were seen both within the arcuate nucleus and the median eminence, two pivotal structures of the GH axis, spatially remote to the injury site. In the arcuate nucleus, GHRH neurons were unaltered. In the median eminence, injured mice exhibited unexpected alterations. First, the distributions of claudin-1 and zonula occludens-1 between tanycytes were disorganized, suggesting tight junction disruptions. Second, endogenous IgG was increased in the vicinity of the third ventricle, suggesting abnormal barrier properties after CCI. Third, intracerebroventricular injection of a fluorescent-dextran derivative highly stained the hypothalamic parenchyma only after CCI, demonstrating an increased permeability of the third ventricle edges. This alteration of the third ventricle might jeopardize the communication between the hypothalamus and the pituitary gland. In conclusion, the phenotype of CCI mice had similarities to the posttraumatic hypopituitarism seen in humans with intact pituitary gland and pituitary stalk. It is the first report of a pathological status in which tanycyte dysfunctions appear as a major acquired syndrome.

  8. New insights on the maternal diet induced-hypertension: potential role of the phenotypic plasticity and sympathetic-respiratory overactivity

    Directory of Open Access Journals (Sweden)

    JOAO HENRIQUE eDA COSTA SILVA

    2015-11-01

    Full Text Available Systemic arterial hypertension (SAH is an important risk factor for cardiovascular disease and affects worldwide population. Current environment including life style coupled with genetic programming have been attributed to the rising incidence of hypertension. Besides, environmental conditions during perinatal development such as maternal malnutrition can program changes in the integration among renal, neural and endocrine system leading to hypertension. This phenomenon is termed phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental input without genetic change, following a novel or unusual input during development. Human and animal studies indicate that fetal exposure to an adverse maternal environment may alter the renal morphology and physiology that contribute to the development of hypertension. Recently, it has been shown that the maternal protein restriction alter the central control of SAH by a mechanism that include respiratory dysfunction and enhanced sympathetic-respiratory coupling at early life, which may contribute to adult hypertension. This review will address the new insights on the maternal diet induced-hypertension that include the potential role of the phenotypic plasticity, specifically the perinatal protein malnutrition, and sympathetic-respiratory overactivity.

  9. Peruvian Maca (Lepidium peruvianum): (I) Phytochemical and Genetic Differences in Three Maca Phenotypes.

    Science.gov (United States)

    Meissner, Henry O; Mscisz, Alina; Mrozikiewicz, Mieczyslaw; Baraniak, Marek; Mielcarek, Sebastian; Kedzia, Bogdan; Piatkowska, Ewa; Jólkowska, Justyna; Pisulewski, Pawel

    2015-09-01

    Glucosinolates were previously reported as physiologically-important constituents present in Peruvian Maca (Lepidium peruvianum Chacon) and linked to various therapeutic functions of differently-colored Peruvian Maca hypocotyls. In two separate Trials, three colours of Maca hypocotyls "Black", "Red" and "Yellow" (termed "Maca phenotypes"), were selected from mixed crops of Peruvian Maca for laboratory studies as fresh and after being dried. Individual Maca phenotypes were cultivated in the highlands of the Peruvian Andes at 4,200m a.s.l. (Junin and Ninacaca). Glucosinolate levels, chromatographic HPLC profiles and DNA variability in the investigated Maca phenotypes are presented. Genotypic profiles were determined by the ISSR-PCR and RAPD techniques. Compared to the Black and Red phenotypes, the Yellow phenotype contained much lower Glucosinolate levels measured against Glucotropaeolin and m-methoxy-glucotropaeolin standards, and exhibited different RAPD and ISSR-PCR reactions. The Red Maca phenotype showed the highest concentrations of Glucosinolates as compared to the Black and Yellow Maca. It appears that the traditional system used by natives of the Peruvian Andean highlands in preparing Maca as a vegetable dish (boiling dried Maca after soaking in water), to supplement their daily meals, is as effective as laboratory methods - for extracting Glucosinolates, which are considered to be one of the key bioactive constituents responsible for therapeutic functions of Peruvian Maca phenotypes. It is reasonable to assume that the HPLC and DNA techniques combined, or separately, may assist in determining ID and "Fingerprints" identifying individual Peruvian Maca phenotypes, hence confirming the authenticity of marketable Maca products. The above assumptions warrant further laboratory testing.

  10. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria).

    Science.gov (United States)

    Acinas, Silvia G; Haverkamp, Thomas H A; Huisman, Jef; Stal, Lucas J

    2009-01-01

    Pseudanabaena species are poorly known filamentous bloom-forming cyanobacteria closely related to Limnothrix. We isolated 28 Pseudanabaena strains from the Baltic Sea (BS) and the Albufera de Valencia (AV; Spain). By combining phenotypic and genotypic approaches, the phylogeny, diversity and evolutionary diversification of these isolates were explored. Analysis of the in vivo absorption spectra of the Pseudanabaena strains revealed two coexisting pigmentation phenotypes: (i) phycocyanin-rich (PC-rich) strains and (ii) strains containing both PC and phycoerythrin (PE). Strains of the latter phenotype were all capable of complementary chromatic adaptation (CCA). About 65 kb of the Pseudanabaena genomes were sequenced through a multilocus sequencing approach including the sequencing of the16 and 23S rRNA genes, the ribosomal intergenic spacer (IGS), internal transcribed spacer 1 (ITS-1), the cpcBA operon encoding PC and the IGS between cpcA and cpcB. In addition, the presence of nifH, one of the structural genes of nitrogenase, was investigated. Sequence analysis of ITS and cpcBA-IGS allowed the differentiation between Pseudanabaena isolates exhibiting high levels of microdiversity. This multilocus sequencing approach revealed specific clusters for the BS, the AV and a mixed cluster with strains from both ecosystems. The latter comprised exclusively CCA phenotypes. The phylogenies of the 16 and 23S rRNA genes are consistent, but analysis of other loci indicated the loss of substructure, suggesting that the recombination between these loci has occurred. Our preliminary results on population genetic analyses of the PC genes suggest an evolutionary diversification of Pseudanabaena through purifying selection.

  11. A probabilistic model to predict clinical phenotypic traits from genome sequencing.

    Science.gov (United States)

    Chen, Yun-Ching; Douville, Christopher; Wang, Cheng; Niknafs, Noushin; Yeo, Grace; Beleva-Guthrie, Violeta; Carter, Hannah; Stenson, Peter D; Cooper, David N; Li, Biao; Mooney, Sean; Karchin, Rachel

    2014-09-01

    Genetic screening is becoming possible on an unprecedented scale. However, its utility remains controversial. Although most variant genotypes cannot be easily interpreted, many individuals nevertheless attempt to interpret their genetic information. Initiatives such as the Personal Genome Project (PGP) and Illumina's Understand Your Genome are sequencing thousands of adults, collecting phenotypic information and developing computational pipelines to identify the most important variant genotypes harbored by each individual. These pipelines consider database and allele frequency annotations and bioinformatics classifications. We propose that the next step will be to integrate these different sources of information to estimate the probability that a given individual has specific phenotypes of clinical interest. To this end, we have designed a Bayesian probabilistic model to predict the probability of dichotomous phenotypes. When applied to a cohort from PGP, predictions of Gilbert syndrome, Graves' disease, non-Hodgkin lymphoma, and various blood groups were accurate, as individuals manifesting the phenotype in question exhibited the highest, or among the highest, predicted probabilities. Thirty-eight PGP phenotypes (26%) were predicted with area-under-the-ROC curve (AUC)>0.7, and 23 (15.8%) of these were statistically significant, based on permutation tests. Moreover, in a Critical Assessment of Genome Interpretation (CAGI) blinded prediction experiment, the models were used to match 77 PGP genomes to phenotypic profiles, generating the most accurate prediction of 16 submissions, according to an independent assessor. Although the models are currently insufficiently accurate for diagnostic utility, we expect their performance to improve with growth of publicly available genomics data and model refinement by domain experts.

  12. Hypoxia‐induced alterations of G2 checkpoint regulators

    OpenAIRE

    Hasvold, Grete; Lund-Andersen, Christin; Lando, Malin; Patzke, Sebastian; Hauge, Sissel; Suo, ZhenHe; Lyng, Heidi; Syljuåsen, Randi G.

    2016-01-01

    Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage‐induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting o...

  13. Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies.

    Science.gov (United States)

    Takahashi, Yuma; Kagawa, Kotaro; Svensson, Erik I; Kawata, Masakado

    2014-07-18

    The effect of evolutionary changes in traits and phenotypic/genetic diversity on ecological dynamics has received much theoretical attention; however, the mechanisms and ecological consequences are usually unknown. Female-limited colour polymorphism in damselflies is a counter-adaptation to male mating harassment, and thus, is expected to alter population dynamics through relaxing sexual conflict. Here we show the side effect of the evolution of female morph diversity on population performance (for example, population productivity and sustainability) in damselflies. Our theoretical model incorporating key features of the sexual interaction predicts that the evolution of increased phenotypic diversity will reduce overall fitness costs to females from sexual conflict, which in turn will increase productivity, density and stability of a population. Field data and mesocosm experiments support these model predictions. Our study suggests that increased phenotypic diversity can enhance population performance that can potentially reduce extinction rates and thereby influence macroevolutionary processes.

  14. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes.

    Science.gov (United States)

    Gargul, Joanna Maria; Mibus, Heiko; Serek, Margrethe

    2015-01-01

    The establishment of alternative methods to chemical treatments for growth retardation and pathogen protection in ornamental plant production has become a major goal in recent breeding programmes. This study evaluates the effect of manipulating MAP kinase 4 nuclear substrate 1 (MKS1) expression in Kalanchoë blossfeldiana and Petunia hybrida. The Arabidopsis thaliana MKS1 gene was overexpressed in both species via Agrobacterium-mediated transformation, resulting in dwarfed phenotypes and delayed flowering in both species and increased tolerance to Pseudomonas syringae pv. tomato in transgenic Petunia plants. The lengths of the stems and internodes were decreased, while the number of nodes in the transgenic plants was similar to that of the control plants in both species. The transgenic Kalanchoë flowers had an increased anthocyanin concentration, and the length of the inflorescence stem was decreased. The morphology of transgenic Petunia flowers was not altered. The results of the Pseudomonas syringae tolerance test showed that Petunia plants with one copy of the transgene reacted similarly to the nontransgenic control plants; however, plants with four copies of the transgene exhibited considerably higher tolerance to bacterial attack. Transgene integration and expression was determined by Southern blot hybridization and RT-PCR analyses. MKS1 in wild-type Petunia plants was down-regulated through a virus-induced gene silencing (VIGS) method using tobacco rattle virus vectors. There were no significant phenotypic differences between the plants with silenced MKS1 genes and the controls. The relative concentration of the MKS1 transcript in VIGS-treated plants was estimated by quantitative RT-PCR. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes

    KAUST Repository

    AlShahrani, Mona; Hoehndorf, Robert

    2018-01-01

    In the past years, several methods have been developed to incorporate information about phenotypes into computational disease gene prioritization methods. These methods commonly compute the similarity between a disease's (or patient's) phenotypes and a database of gene-to-phenotype associations to find the phenotypically most similar match. A key limitation of these methods is their reliance on knowledge about phenotypes associated with particular genes which is highly incomplete in humans as well as in many model organisms such as the mouse. Results: We developed SmuDGE, a method that uses feature learning to generate vector-based representations of phenotypes associated with an entity. SmuDGE can be used as a trainable semantic similarity measure to compare two sets of phenotypes (such as between a disease and gene, or a disease and patient). More importantly, SmuDGE can generate phenotype representations for entities that are only indirectly associated with phenotypes through an interaction network; for this purpose, SmuDGE exploits background knowledge in interaction networks comprising of multiple types of interactions. We demonstrate that SmuDGE can match or outperform semantic similarity in phenotype-based disease gene prioritization, and furthermore significantly extends the coverage of phenotype-based methods to all genes in a connected interaction network.

  16. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes

    KAUST Repository

    Alshahrani, Mona

    2018-04-30

    In the past years, several methods have been developed to incorporate information about phenotypes into computational disease gene prioritization methods. These methods commonly compute the similarity between a disease\\'s (or patient\\'s) phenotypes and a database of gene-to-phenotype associations to find the phenotypically most similar match. A key limitation of these methods is their reliance on knowledge about phenotypes associated with particular genes which is highly incomplete in humans as well as in many model organisms such as the mouse. Results: We developed SmuDGE, a method that uses feature learning to generate vector-based representations of phenotypes associated with an entity. SmuDGE can be used as a trainable semantic similarity measure to compare two sets of phenotypes (such as between a disease and gene, or a disease and patient). More importantly, SmuDGE can generate phenotype representations for entities that are only indirectly associated with phenotypes through an interaction network; for this purpose, SmuDGE exploits background knowledge in interaction networks comprising of multiple types of interactions. We demonstrate that SmuDGE can match or outperform semantic similarity in phenotype-based disease gene prioritization, and furthermore significantly extends the coverage of phenotype-based methods to all genes in a connected interaction network.

  17. Immersive Exhibitions

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2015-01-01

    The immersive exhibition is a specialized exhibition genre in museums, which creates the illusion of time and place by representing key characteristics of a reference world and by integrating the visitor in this three-dimensionally reconstructed world (Mortensen 2010). A successful representation...... of the reference world depends on three criteria: whether the exhibition is staged as a coherent whole with all the displayed objects supporting the representation, whether the visitor is integrated as a component of the exhibition, and whether the content and message of the exhibition become dramatized...

  18. Cyclic-AMP metabolism in synaptic growth, strength and precision: Neural and behavioral phenotype-specific counterbalancing effects between dnc PDE and rut AC mutations

    Science.gov (United States)

    Ueda, Atsushi; Wu, Chun-Fang

    2012-01-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cAMP synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrate that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29–30 °C) decreased synaptic transmission in rut, but did not alter dnc and WT. Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the

  19. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-03-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.

  20. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    International Nuclear Information System (INIS)

    Greco, Sonia A; Leggett, Barbara A; Whitehall, Vicki LJ; Chia, June; Inglis, Kelly J; Cozzi, Sarah-Jane; Ramsnes, Ingunn; Buttenshaw, Ronald L; Spring, Kevin J; Boyle, Glen M; Worthley, Daniel L

    2010-01-01

    Thrombospondin-4 (THBS4) is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP) were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and negatively with the occurrence of adenomas elsewhere in the

  1. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    Directory of Open Access Journals (Sweden)

    Greco Sonia A

    2010-09-01

    Full Text Available Abstract Background Thrombospondin-4 (THBS4 is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Methods Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. Results THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and

  2. Selective dicer suppression in the kidney alters GSK3β/β-catenin pathways promoting a glomerulocystic disease.

    Directory of Open Access Journals (Sweden)

    Anna Iervolino

    Full Text Available Dicer is a crucial enzyme for the maturation of miRNAs. Mutations in the Dicer gene are highly associated with Pleuro Pulmonary Blastoma-Family Dysplasia Syndrome (PPB-FDS, OMIM 601200, recently proposed to be renamed Dicer syndrome. Aside from the pulmonary phenotype (blastoma, renal nephroma and thyroid goiter are frequently part of Dicer syndrome. To investigate the renal phenotype, conditional knockout (cKO mice for Dicer in Pax8 expressing cells were generated. Dicer cKO mice progressively develop a glomerulocystic phenotype coupled with urinary concentration impairment, proteinuria and severe renal failure. Higher cellular turnover of the parietal cells of Bowman's capsule precedes the development of the cysts and the primary cilium progressively disappears with cyst-enlargement. Upregulation of GSK3β precedes the development of the glomerulocystic phenotype. Downregulation of β-catenin in the renal cortex and its cytosolic removal in the cells lining the cysts may be associated with observed accumulation of GSK3β. Alterations of β-catenin regulating pathways could promote cystic degeneration as in other models. Thus, miRNAs are fundamental in preserving renal morphology and function. Alteration of the GSK3β/β-catenin pathway could be a crucial mechanism linking miRNA dysregulation and the development of a glomerulocystic disease.

  3. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion.

    Directory of Open Access Journals (Sweden)

    Koen J F Verhoeven

    Full Text Available Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects.

  4. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion.

    Science.gov (United States)

    Verhoeven, Koen J F; van Gurp, Thomas P

    2012-01-01

    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects.

  5. Nicotine can skew the characterization of the macrophage type-1 (M{Phi}1) phenotype differentiated with granulocyte-macrophage colony-stimulating factor to the M{Phi}2 phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Yanagita, Manabu; Kobayashi, Ryohei [Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka 565-0871 (Japan); Murakami, Shinya, E-mail: ipshinya@dent.osaka-u.ac.jp [Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka 565-0871 (Japan)

    2009-10-09

    Macrophages (M{Phi}s) exhibit functional heterogeneity and plasticity in the local microenvironment. Recently, it was reported that M{Phi}s can be divided into proinflammatory M{Phi}s (M{Phi}1) and anti-inflammatory M{Phi}s (M{Phi}2) based on their polarized functional properties. Here, we report that nicotine, the major ingredient of cigarette smoke, can modulate the characteristics of M{Phi}1. Granulocyte-macrophage colony-stimulating factor-driven M{Phi}1 with nicotine (Ni-M{Phi}1) showed the phenotypic characteristics of M{Phi}2. Like M{Phi}2, Ni-M{Phi}1 exhibited antigen-uptake activities. Ni-M{Phi}1 suppressed IL-12, but maintained IL-10 and produced high amounts of MCP-1 upon lipopolysaccharide stimulation compared with M{Phi}1. Moreover, we observed strong proliferative responses of T cells to lipopolysaccharide-stimulated M{Phi}1, whereas Ni-M{Phi}1 reduced T cell proliferation and inhibited IFN-{gamma} production by T cells. These results suggest that nicotine can change the functional characteristics of M{Phi} and skew the M{Phi}1 phenotype to M{Phi}2. We propose that nicotine is a potent regulator that modulates immune responses in microenvironments.

  6. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression.

    Science.gov (United States)

    Pandey, Dhananjay K; Chaudhary, Bhupendra

    2016-05-13

    Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP

  7. An efficient Bayesian meta-analysis approach for studying cross-phenotype genetic associations.

    Directory of Open Access Journals (Sweden)

    Arunabha Majumdar

    2018-02-01

    Full Text Available Simultaneous analysis of genetic associations with multiple phenotypes may reveal shared genetic susceptibility across traits (pleiotropy. For a locus exhibiting overall pleiotropy, it is important to identify which specific traits underlie this association. We propose a Bayesian meta-analysis approach (termed CPBayes that uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. This method uses a unified Bayesian statistical framework based on a spike and slab prior. CPBayes performs a fully Bayesian analysis by employing the Markov Chain Monte Carlo (MCMC technique Gibbs sampling. It takes into account heterogeneity in the size and direction of the genetic effects across traits. It can be applied to both cohort data and separate studies of multiple traits having overlapping or non-overlapping subjects. Simulations show that CPBayes can produce higher accuracy in the selection of associated traits underlying a pleiotropic signal than the subset-based meta-analysis ASSET. We used CPBayes to undertake a genome-wide pleiotropic association study of 22 traits in the large Kaiser GERA cohort and detected six independent pleiotropic loci associated with at least two phenotypes. This includes a locus at chromosomal region 1q24.2 which exhibits an association simultaneously with the risk of five different diseases: Dermatophytosis, Hemorrhoids, Iron Deficiency, Osteoporosis and Peripheral Vascular Disease. We provide an R-package 'CPBayes' implementing the proposed method.

  8. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  9. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change.

    Science.gov (United States)

    Aspinwall, Michael J; Loik, Michael E; Resco de Dios, Victor; Tjoelker, Mark G; Payton, Paxton R; Tissue, David T

    2015-09-01

    Climate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype-by-environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity-productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity-productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions. © 2014 John Wiley & Sons Ltd.

  10. When should we expect microbial phenotypic traits to predict microbial abundances?

    Directory of Open Access Journals (Sweden)

    Jeremy W. Fox

    2012-08-01

    Full Text Available Species’ phenotypic traits may predict their relative abundances. Intuitively, this is because locally-abundant species have traits making them well adapted to local abiotic and biotic conditions, while locally-rare species are not as well-adapted. But this intuition may not be valid. If competing species vary in how well-adapted they are to local conditions, why doesn’t the best-adapted species simply exclude the others entirely? But conversely, if species exhibit niche differences that allow them to coexist, then by definition there is no single best adapted species. Rather, demographic rates depend on species’ relative abundances, so that phenotypic traits conferring high adaptedness do not necessarily confer high abundance. I illustrate these points using a simple theoretical model incorporating adjustable levels of "adaptedness" and "niche differences". Even very small niche differences can weaken or even reverse the expected correlation between adaptive traits and abundance. Conversely, adaptive traits confer high abundance when niche differences are very strong. Future work should be directed towards understanding the link between phenotypic traits and frequency-dependence of demographic rates.

  11. When should we expect microbial phenotypic traits to predict microbial abundances?

    Science.gov (United States)

    Fox, Jeremy W

    2012-01-01

    Species' phenotypic traits may predict their relative abundances. Intuitively, this is because locally abundant species have traits making them well-adapted to local abiotic and biotic conditions, while locally rare species are not as well-adapted. But this intuition may not be valid. If competing species vary in how well-adapted they are to local conditions, why doesn't the best-adapted species simply exclude the others entirely? But conversely, if species exhibit niche differences that allow them to coexist, then by definition there is no single best adapted species. Rather, demographic rates depend on species' relative abundances, so that phenotypic traits conferring high adaptedness do not necessarily confer high abundance. I illustrate these points using a simple theoretical model incorporating adjustable levels of "adaptedness" and "niche differences." Even very small niche differences can weaken or even reverse the expected correlation between adaptive traits and abundance. Conversely, adaptive traits confer high abundance when niche differences are very strong. Future work should be directed toward understanding the link between phenotypic traits and frequency-dependence of demographic rates.

  12. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells

    International Nuclear Information System (INIS)

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M.; Wells, Alan

    2016-01-01

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  13. iTRAQ quantitative proteomics-based identification of cell adhesion as a dominant phenotypic modulation in thrombin-stimulated human aortic endothelial cells.

    Science.gov (United States)

    Wang, Huang-Joe; Chen, Sung-Fang; Lo, Wan-Yu

    2015-05-01

    The phenotypic changes in thrombin-stimulated endothelial cells include alterations in permeability, cell shape, vasomotor tone, leukocyte trafficking, migration, proliferation, and angiogenesis. Previous studies regarding the pleotropic effects of thrombin on the endothelium used human umbilical vein endothelial cells (HUVECs)-cells derived from fetal tissue that does not exist in adults. Only a few groups have used screening approaches such as microarrays to profile the global effects of thrombin on endothelial cells. Moreover, the proteomic changes of thrombin-stimulated human aortic endothelial cells (HAECs) have not been elucidated. HAECs were stimulated with 2 units/mL thrombin for 5h and their proteome was investigated using isobaric tags for the relative and absolute quantification (iTRAQ) and the MetaCore(TM) software. A total of 627 (experiment A) and 622 proteins (experiment B) were quantified in the duplicated iTRAQ analyses. MetaCore(TM) pathway analysis identified cell adhesion as a dominant phenotype in thrombin-stimulated HAECs. Replicated iTRAQ data revealed that "Cell adhesion_Chemokines and adhesion," "Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity," and "Cell adhesion_Integrin-mediated cell adhesion and migration" were among the top 10 statistically significant pathways. The cell adhesion phenotype was verified by increased THP-1 adhesion to thrombin-stimulated HAECs. In addition, the expression of ICAM-1, VCAM-1, and SELE was significantly upregulated in thrombin-stimulated HAECs. Several regulatory pathways are altered in thrombin-stimulated HAECs, with cell adhesion being the dominant altered phenotype. Our findings show the feasibility of the iTRAQ technique for evaluating cellular responses to acute stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The phenotypic plasticity of developmental modules

    Directory of Open Access Journals (Sweden)

    Aabha I. Sharma

    2016-08-01

    Full Text Available Abstract Background Organisms develop and evolve in a modular fashion, but how individual modules interact with the environment remains poorly understood. Phenotypically plastic traits are often under selection, and studies are needed to address how traits respond to the environment in a modular fashion. In this study, tissue-specific plasticity of melanic spots was examined in the large milkweed bug, Oncopeltus fasciatus. Results Although the size of the abdominal melanic bands varied according to rearing temperatures, wing melanic bands were more robust. To explore the regulation of abdominal pigmentation plasticity, candidate genes involved in abdominal melanic spot patterning and biosynthesis of melanin were analyzed. While the knockdown of dopa decarboxylase (Ddc led to lighter pigmentation in both the wings and the abdomen, the shape of the melanic elements remained unaffected. Although the knockdown of Abdominal-B (Abd-B partially phenocopied the low-temperature phenotype, the abdominal bands were still sensitive to temperature shifts. These observations suggest that regulators downstream of Abd-B but upstream of DDC are responsible for the temperature response of the abdomen. Ablation of wings led to the regeneration of a smaller wing with reduced melanic bands that were shifted proximally. In addition, the knockdown of the Wnt signaling nuclear effector genes, armadillo 1 and armadillo 2, altered both the melanic bands and the wing shape. Thus, the pleiotropic effects of Wnt signaling may constrain the amount of plasticity in wing melanic bands. Conclusions We propose that when traits are regulated by distinct pre-patterning mechanisms, they can respond to the environment in a modular fashion, whereas when the environment impacts developmental regulators that are shared between different modules, phenotypic plasticity can manifest as a developmentally integrated system.

  15. Retinal function in patients with the neuronal ceroid lipofuscinosis phenotype

    Directory of Open Access Journals (Sweden)

    Elizabeth Maria Aparecida Barasnevicius Quagliato

    Full Text Available ABSTRACT Purpose: To analyze the clinical features, visual acuity, and full-field electroretinogram (ERG findings of 15 patients with the neuronal ceroid lipofuscinosis (NCL phenotype and to establish the role of ERG testing in NCL diagnosis. Methods: The medical records of five patients with infantile NCL, five with Jansky-Bielschowsky disease, and five with juvenile NCL who underwent full-field ERG testing were retrospectively analyzed. Results: Progressive vision loss was the initial symptom in 66.7% of patients and was isolated or associated with ataxia, epilepsy, and neurodevelopmental involution. Epilepsy was present in 93.3% of patients, of whom 86.6% presented with neurodevelopmental involution. Fundus findings ranged from normal to pigmentary/atrophic abnormalities. Cone-rod, rod-cone, and both types of dysfunction were observed in six, one, and eight patients, respectively. Conclusion: In our study, all patients with the NCL phenotype had abnormal ERG findings, and the majority exhibited both cone-rod and rod-cone dysfunction. We conclude that ERG is a valuable tool for the characterization of visual dysfunction in patients with the NCL phenotype and is useful for diagnosis.

  16. Cultivation in space flight produces minimal alterations in the susceptibility of Bacillus subtilis cells to 72 different antibiotics and growth-inhibiting compounds.

    Science.gov (United States)

    Morrison, Michael D; Fajardo-Cavazos, Patricia; Nicholson, Wayne L

    2017-08-18

    Past results have suggested that bacterial antibiotic susceptibility is altered during space flight. To test this notion, Bacillus subtilis cells were cultivated in matched hardware, medium, and environmental conditions either in spaceflight microgravity on the International Space Station, termed Flight (FL) samples, or at Earth-normal gravity, termed Ground Control (GC) samples. Susceptibility of FL and GC samples was compared to 72 antibiotics and growth-inhibitory compounds using the Omnilog Phenotype Microarray (PM) system. Only 9 compounds were identified by PM screening as exhibiting significant differences ( P flight. Importance: This study addresses a major concern of mission planners for human spaceflight, that bacteria accompanying astronauts on long-duration missions might develop a higher level of resistance to antibiotics due to exposure to the spaceflight environment. The results of this study do not support that notion. Copyright © 2017 American Society for Microbiology.

  17. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    Science museums define the objectives of their exhibitions in terms of visitor learning outcomes. Yet, exhibit designers lack theoretical and empirical research findings on which to base the creation of such educational environments. Here, this shortcoming is addressed through the development...... of tools and processes to guide the design of educational science exhibits. The guiding paradigm for this development is design-based research, which is characterised by an iterative cycle of design, enactment, and analysis. In the design phase, an educational intervention is planned and carried out based...... on the generation of theoretical ideas for exhibit design is offered in a fourth and parallel research undertaking, namely the application of the notion of cultural border-crossing to a hypothetical case of exhibit design....

  18. Altered reward sensitivity in female offspring of cocaine-exposed fathers.

    Science.gov (United States)

    Fischer, Delaney K; Rice, Richard C; Martinez Rivera, Arlene; Donohoe, Mary; Rajadhyaksha, Anjali M

    2017-08-14

    Recent rodent studies have demonstrated that parental cocaine exposure can influence offspring behavior, supporting the idea that environmental insults can impact subsequent generations. However, studies on the effects of paternal cocaine exposure are limited and multiple inconsistencies exist. In the current study, we behaviorally characterize the effects of paternal cocaine exposure in a C57BL/6J intergenerational mouse model. Male sires were administered cocaine hydrochloride (20mg/kg) or saline (0.01mL/g) once a day for 75days, and bred with drug naïve females twenty-four hours after the final injection. Offspring, separated by sex, were tested in a battery of behaviors. We found that paternal cocaine exposure altered sensitivity to the rewarding and stimulant effects of psychostimulants and natural reward (sucrose) in female offspring; female cocaine-sired offspring showed blunted cocaine preference using cocaine conditioned place preference (CPP) at a low dose (5mg/kg), but displayed similar preference at a higher dose (10mg/kg) compared to saline-sired controls. Additionally, cocaine-sired female offspring exhibited higher psychomotor sensitivity to cocaine (10mg/kg) and amphetamine (2mg/kg) and consumed more sucrose. Cocaine-sired males exhibited increased psychomotor effects of cocaine and amphetamine. Male offspring also displayed an anxiety-like phenotype. No effect of paternal cocaine exposure was observed on depressive-like, learning and memory or social behavior in male or female offspring. Collectively, our findings show that paternal, chronic cocaine exposure induces intergenerational behavioral effects in male and female offspring with greatest impact on sensitivity to psychostimulants and sucrose in females. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-10-01

    Full Text Available AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2 on untransfected human corneal endothelial cells (HCECs in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01 and the length of F-actin, reduced the mean optical density (P<0.01 of the collagen type IV in extracellular matrix (ECM and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  20. Ocean acidification challenges copepod phenotypic plasticity

    Science.gov (United States)

    Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah; Riebesell, Ulf; Furuhagen, Sara; Engström-Öst, Jonna

    2016-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ˜ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  1. The phenotype of FancB-mutant mouse embryonic stem cells

    OpenAIRE

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu, Lingchuan; Hasty, Paul

    2011-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslink...

  2. Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment.

    Directory of Open Access Journals (Sweden)

    Adam D Hughes

    Full Text Available The trophic interactions of sea urchins are known to be the agents of phase shifts in benthic marine habitats such as tropical and temperate reefs. In temperate reefs, the grazing activity of sea urchins has been responsible for the destruction of kelp forests and the formation of 'urchin barrens', a rocky habitat dominated by crustose algae and encrusting invertebrates. Once formed, these urchin barrens can persist for decades. Trophic plasticity in the sea urchin may contribute to the stability and resilience of this alternate stable state by increasing diet breadth in sea urchins. This plasticity promotes ecological connectivity and weakens species interactions and so increases ecosystem stability. We test the hypothesis that sea urchins exhibit trophic plasticity using an approach that controls for other typically confounding environmental and genetic factors. To do this, we exposed a genetically homogenous population of sea urchins to two very different trophic environments over a period of two years. The sea urchins exhibited a wide degree of phenotypic trophic plasticity when exposed to contrasting trophic environments. The two populations developed differences in their gross morphology and the test microstructure. In addition, when challenged with unfamiliar prey, the response of each group was different. We show that sea urchins exhibit significant morphological and behavioural phenotypic plasticity independent of their environment or their nutritional status.

  3. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes

    Science.gov (United States)

    Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M.; Batista, Claudia Maria de Castro; Mattson, Mark P.; de Mello Coelho, Valeria

    2016-01-01

    We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648

  4. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes.

    Science.gov (United States)

    Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M; Batista, Claudia Maria de Castro; Mattson, Mark P; Mello Coelho, Valeria de

    2016-03-31

    We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.

  5. Epistatic and Independent Effects on Schizophrenia-Related Phenotypes Following Co-disruption of the Risk Factors Neuregulin-1 × DISC1.

    Science.gov (United States)

    O'Tuathaigh, Colm M P; Fumagalli, Fabio; Desbonnet, Lieve; Perez-Branguli, Francesc; Moloney, Gerard; Loftus, Samim; O'Leary, Claire; Petit, Emilie; Cox, Rachel; Tighe, Orna; Clarke, Gerard; Lai, Donna; Harvey, Richard P; Cryan, John F; Mitchell, Kevin J; Dinan, Timothy G; Riva, Marco A; Waddington, John L

    2017-01-01

    Few studies have addressed likely gene × gene (ie, epistatic) interactions in mediating risk for schizophrenia. Using a preclinical genetic approach, we investigated whether simultaneous disruption of the risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) would produce a disease-relevant phenotypic profile different from that observed following disruption to either gene alone. NRG1 heterozygotes exhibited hyperactivity and disruption to prepulse inhibition, both reversed by antipsychotic treatment, and accompanied by reduced striatal dopamine D2 receptor protein expression, impaired social cognition, and altered glutamatergic synaptic protein expression in selected brain areas. Single gene DISC1 mutants demonstrated a disruption in social cognition and nest-building, altered brain 5-hydroxytryptamine levels and hippocampal ErbB4 expression, and decreased cortical expression of the schizophrenia-associated microRNA miR-29b. Co-disruption of DISC1 and NRG1, indicative of epistasis, evoked an impairment in sociability and enhanced self-grooming, accompanied by changes in hypothalamic oxytocin/vasopressin gene expression. The findings indicate specific behavioral correlates and underlying cellular pathways downstream of main effects of DNA variation in the schizophrenia-associated genes NRG1 and DISC1. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    Science.gov (United States)

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss

  7. Investment in boney defensive traits alters organismal stoichiometry and excretion in fish.

    Science.gov (United States)

    El-Sabaawi, Rana W; Warbanski, Misha L; Rudman, Seth M; Hovel, Rachel; Matthews, Blake

    2016-08-01

    Understanding how trait diversification alters ecosystem processes is an important goal for ecological and evolutionary studies. Ecological stoichiometry provides a framework for predicting how traits affect ecosystem function. The growth rate hypothesis of ecological stoichiometry links growth and phosphorus (P) body composition in taxa where nucleic acids are a significant pool of body P. In vertebrates, however, most of the P is bound within bone, and organisms with boney structures can vary in terms of the relative contributions of bones to body composition. Threespine stickleback populations have substantial variation in boney armour plating. Shaped by natural selection, this variation provides a model system to study the links between evolution of bone content, elemental body composition, and P excretion. We measure carbon:nitrogen:P body composition from stickleback populations that vary in armour phenotype. We develop a mechanistic mass-balance model to explore factors affecting P excretion, and measure P excretion from two populations with contrasting armour phenotypes. Completely armoured morphs have higher body %P but excrete more P per unit body mass than other morphs. The model suggests that such differences are driven by phenotypic differences in P intake as well as body %P composition. Our results show that while investment in boney traits alters the elemental composition of vertebrate bodies, excretion rates depend on how acquisition and assimilation traits covary with boney trait investment. These results also provide a stoichiometric hypothesis to explain the repeated loss of boney armour in threespine sticklebacks upon colonizing freshwater ecosystems.

  8. A Complex Structural Variation on Chromosome 27 Leads to the Ectopic Expression of HOXB8 and the Muffs and Beard Phenotype in Chickens

    Science.gov (United States)

    Wang, Yanqiang; Luo, Chenglong; Liu, Ranran; Qu, Hao; Shu, Dingming; Wen, Jie; Crooijmans, Richard P. M. A.; Zhao, Yiqiang; Hu, Xiaoxiang; Li, Ning

    2016-01-01

    Muffs and beard (Mb) is a phenotype in chickens where groups of elongated feathers gather from both sides of the face (muffs) and below the beak (beard). It is an autosomal, incomplete dominant phenotype encoded by the Muffs and beard (Mb) locus. Here we use genome-wide association (GWA) analysis, linkage analysis, Identity-by-Descent (IBD) mapping, array-CGH, genome re-sequencing and expression analysis to show that the Mb allele causing the Mb phenotype is a derived allele where a complex structural variation (SV) on GGA27 leads to an altered expression of the gene HOXB8. This Mb allele was shown to be completely associated with the Mb phenotype in nine other independent Mb chicken breeds. The Mb allele differs from the wild-type mb allele by three duplications, one in tandem and two that are translocated to that of the tandem repeat around 1.70 Mb on GGA27. The duplications contain total seven annotated genes and their expression was tested during distinct stages of Mb morphogenesis. A continuous high ectopic expression of HOXB8 was found in the facial skin of Mb chickens, strongly suggesting that HOXB8 directs this regional feather-development. In conclusion, our results provide an interesting example of how genomic structural rearrangements alter the regulation of genes leading to novel phenotypes. Further, it again illustrates the value of utilizing derived phenotypes in domestic animals to dissect the genetic basis of developmental traits, herein providing novel insights into the likely role of HOXB8 in feather development and differentiation. PMID:27253709

  9. Quantitative DNA methylation analysis improves epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome

    Science.gov (United States)

    Calvello, Mariarosaria; Tabano, Silvia; Colapietro, Patrizia; Maitz, Silvia; Pansa, Alessandra; Augello, Claudia; Lalatta, Faustina; Gentilin, Barbara; Spreafico, Filippo; Calzari, Luciano; Perotti, Daniela; Larizza, Lidia; Russo, Silvia; Selicorni, Angelo; Sirchia, Silvia M; Miozzo, Monica

    2013-01-01

    Beckwith-Wiedemann syndrome (BWS) is a rare disorder characterized by overgrowth and predisposition to embryonal tumors. BWS is caused by various epigenetic and/or genetic alterations that dysregulate the imprinted genes on chromosome region 11p15.5. Molecular analysis is required to reinforce the clinical diagnosis of BWS and to identify BWS patients with cancer susceptibility. This is particularly crucial prenatally because most signs of BWS cannot be recognized in utero. We established a reliable molecular assay by pyrosequencing to quantitatively evaluate the methylation profiles of ICR1 and ICR2. We explored epigenotype-phenotype correlations in 19 patients that fulfilled the clinical diagnostic criteria for BWS, 22 patients with suspected BWS, and three fetuses with omphalocele. Abnormal methylation was observed in one prenatal case and 19 postnatal cases, including seven suspected BWS. Seven cases showed ICR1 hypermethylation, five cases showed ICR2 hypomethylation, and eight cases showed abnormal methylation of ICR1 and ICR2 indicating paternal uniparental disomy (UPD). More cases of ICR1 alterations and UPD were found than expected. This is likely due to the sensitivity of this approach, which can detect slight deviations in methylation from normal levels. There was a significant correlation (p < 0.001) between the percentage of ICR1 methylation and BWS features: severe hypermethylation (range: 75–86%) was associated with macroglossia, macrosomia, and visceromegaly, whereas mild hypermethylation (range: 55–59%) was associated with umbilical hernia and diastasis recti. Evaluation of ICR1 and ICR2 methylation by pyrosequencing in BWS can improve epigenotype-phenotype correlations, detection of methylation alterations in suspected cases, and identification of UPD. PMID:23917791

  10. Altered inflammatory responsiveness in serotonin transporter mutant rats

    NARCIS (Netherlands)

    Macchi, F.; Homberg, J.R.; Calabrese, F.; Zecchillo, C.; Racagni, G.; Riva, M.A.; Molteni, R.

    2013-01-01

    BACKGROUND: Growing evidence suggests that alterations of the inflammatory/immune system contribute to the pathogenesis of depression. Indeed, depressed patients exhibit increased levels of inflammatory markers in both the periphery and the brain, and high comorbidity exists between major depression

  11. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joe Tien

    Full Text Available This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.

  12. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Nazia Chaudhuri

    Full Text Available Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease.

  13. Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community

    Directory of Open Access Journals (Sweden)

    Yook Karen

    2011-01-01

    Full Text Available Abstract Background Caenorhabditis elegans gene-based phenotype information dates back to the 1970's, beginning with Sydney Brenner and the characterization of behavioral and morphological mutant alleles via classical genetics in order to understand nervous system function. Since then C. elegans has become an important genetic model system for the study of basic biological and biomedical principles, largely through the use of phenotype analysis. Because of the growth of C. elegans as a genetically tractable model organism and the development of large-scale analyses, there has been a significant increase of phenotype data that needs to be managed and made accessible to the research community. To do so, a standardized vocabulary is necessary to integrate phenotype data from diverse sources, permit integration with other data types and render the data in a computable form. Results We describe a hierarchically structured, controlled vocabulary of terms that can be used to standardize phenotype descriptions in C. elegans, namely the Worm Phenotype Ontology (WPO. The WPO is currently comprised of 1,880 phenotype terms, 74% of which have been used in the annotation of phenotypes associated with greater than 18,000 C. elegans genes. The scope of the WPO is not exclusively limited to C. elegans biology, rather it is devised to also incorporate phenotypes observed in related nematode species. We have enriched the value of the WPO by integrating it with other ontologies, thereby increasing the accessibility of worm phenotypes to non-nematode biologists. We are actively developing the WPO to continue to fulfill the evolving needs of the scientific community and hope to engage researchers in this crucial endeavor. Conclusions We provide a phenotype ontology (WPO that will help to facilitate data retrieval, and cross-species comparisons within the nematode community. In the larger scientific community, the WPO will permit data integration, and

  14. Ratings of Broader Autism Phenotype and Personality Traits in Optimal Outcomes from Autism Spectrum Disorder

    Science.gov (United States)

    Suh, Joyce; Orinstein, Alyssa; Barton, Marianne; Chen, Chi-Ming; Eigsti, Inge-Marie; Ramirez-Esparza, Nairan; Fein, Deborah

    2016-01-01

    The study examines whether "optimal outcome" (OO) children, despite no longer meeting diagnostic criteria for Autism Spectrum Disorder (ASD), exhibit personality traits often found in those with ASD. Nine zero acquaintance raters evaluated Broader Autism Phenotype (BAP) and Big Five personality traits of 22 OO individuals, 27 high…

  15. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha

    Directory of Open Access Journals (Sweden)

    Otaki Joji M

    2010-08-01

    Full Text Available Abstract Background Many butterfly species have been experiencing the northward range expansion and physiological adaptation, probably due to climate warming. Here, we document an extraordinary field case of a species of lycaenid butterfly, Zizeeria maha, for which plastic phenotypes of wing color-patterns were revealed at the population level in the course of range expansion. Furthermore, we examined whether this outbreak of phenotypic changes was able to be reproduced in a laboratory. Results In the recently expanded northern range margins of this species, more than 10% of the Z. maha population exhibited characteristic color-pattern modifications on the ventral wings for three years. We physiologically reproduced similar phenotypes by an artificial cold-shock treatment of a normal southern population, and furthermore, we genetically reproduced a similar phenotype after selective breeding of a normal population for ten generations, demonstrating that the cold-shock-induced phenotype was heritable and partially assimilated genetically in the breeding line. Similar genetic process might have occurred in the previous and recent range-margin populations as well. Relatively minor modifications expressed in the tenth generation of the breeding line together with other data suggest a role of founder effect in this field case. Conclusions Our results support the notion that the outbreak of the modified phenotypes in the recent range-margin population was primed by the revelation of plastic phenotypes in response to temperature stress and by the subsequent genetic process in the previous range-margin population, followed by migration and temporal establishment of genetically unstable founders in the recent range margins. This case presents not only an evolutionary role of phenotypic plasticity in the field but also a novel evolutionary aspect of range expansion at the species level.

  16. Technology Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1979-09-15

    Linked to the 25th Anniversary celebrations, an exhibition of some of CERN's technological achievements was opened on 22 June. Set up in a new 600 m{sup 2} Exhibition Hall on the CERN site, the exhibition is divided into eight technology areas — magnets, vacuum, computers and data handling, survey and alignment, radiation protection, beam monitoring and handling, detectors, and workshop techniques.

  17. The Impact of Marine Protected Areas on Reef-Wide Population Structure and Fishing-Induced Phenotypes in Coral-Reef Fishes

    Science.gov (United States)

    Fidler, Robert Young, III

    targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.

  18. Dairy Cows Naturally Infected with Bovine Leukemia Virus Exhibit Abnormal B- and T-Cell Phenotypes after Primary and Secondary Exposures to Keyhole Limpet Hemocyanin

    Science.gov (United States)

    Frie, Meredith C.; Sporer, Kelly R. B.; Benitez, Oscar J.; Wallace, Joseph C.; Droscha, Casey J.; Bartlett, Paul C.; Coussens, Paul M.

    2017-01-01

    Bovine leukemia virus (BLV) is a retrovirus that is highly prevalent in US dairy herds: over 83% are BLV infected and the within-herd infection rate can be almost 50% on average. While BLV is known to cause lymphosarcomas, only 5% or fewer infected cattle will develop lymphoma; this low prevalence of cancer has historically not been a concern to dairy producers. However, more recent research has found that BLV+ cows without lymphoma produce less milk and have shorter lifespans than uninfected herdmates. It has been hypothesized that BLV infection interferes with normal immune function in infected cattle, and this could lead to reduced dairy production. To assess how naturally infected BLV+ cows responded to a primary and secondary immune challenge, 10 BLV+ and 10 BLV− cows were injected subcutaneously with keyhole limpet hemocyanin (KLH) and dimethyldioctadecylammonium bromide. B- and T-cell responses were characterized over the following 28 days. A total of 56 days after primary KLH exposure, cows were re-injected with KLH and B- and T-cell responses were characterized again over the following 28 days. BLV+ cows produced less KLH-specific IgM after primary immune stimulation; demonstrated fewer CD45R0+ B cells, altered proportions of CD5+ B cells, altered expression of CD5 on CD5+ B cells, and reduced MHCII surface expression on B cells ex vivo; exhibited reduced B-cell activation in vitro; and displayed an increase in BLV proviral load after KLH exposure. In addition, BLV+ cows had a reduced CD45R0+γδ+ T-cell population in the periphery and demonstrated a greater prevalence of IL4-producing T cells in vitro. All together, our results demonstrate that both B- and T-cell immunities are disrupted in BLV+ cows and that antigen-specific deficiencies can be detected in BLV+ cows even after a primary immune exposure. PMID:28770217

  19. The importance of immunohistochemical analyses in evaluating the phenotype of Kv channel knockout mice.

    Science.gov (United States)

    Menegola, Milena; Clark, Eliana; Trimmer, James S

    2012-06-01

    To gain insights into the phenotype of voltage-gated potassium (Kv)1.1 and Kv4.2 knockout mice, we used immunohistochemistry to analyze the expression of component principal or α subunits and auxiliary subunits of neuronal Kv channels in knockout mouse brains. Genetic ablation of the Kv1.1 α subunit did not result in compensatory changes in the expression levels or subcellular distribution of related ion channel subunits in hippocampal medial perforant path and mossy fiber nerve terminals, where high levels of Kv1.1 are normally expressed. Genetic ablation of the Kv4.2 α subunit did not result in altered neuronal cytoarchitecture of the hippocampus. Although Kv4.2 knockout mice did not exhibit compensatory changes in the expression levels or subcellular distribution of the related Kv4.3 α subunit, we found dramatic decreases in the cellular and subcellular expression of specific Kv channel interacting proteins (KChIPs) that reflected their degree of association and colocalization with Kv4.2 in wild-type mouse and rat brains. These studies highlight the insights that can be gained by performing detailed immunohistochemical analyses of Kv channel knockout mouse brains. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  20. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  1. Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes

    DEFF Research Database (Denmark)

    Ketterer, Caroline; Müssig, Karsten; Heni, Martin

    2011-01-01

    The functional knockout of the calcium-sensitive, nonselective cation channel TRPM5 alters glucose-induced insulin secretion and glucose tolerance. We hypothesized that genetic variation in the TRPM5 gene may contribute to prediabetic phenotypes, including pancreatic ß-cell dysfunction. We...... glucagon-like peptide-1 levels at 30 minutes during the OGTT compared with major allele homozygotes (P = .0124), whereas in male subjects, no significant differences were found (P = .3). In our German population, the common TRPM5 variants are likely to be associated with prediabetic phenotypes...

  2. Maternal pravastatin prevents altered fetal brain development in a preeclamptic CD-1 mouse model.

    Directory of Open Access Journals (Sweden)

    Alissa R Carver

    Full Text Available Using an animal model, we have previously shown that preeclampsia results in long-term adverse neuromotor outcomes in the offspring, and this phenotype was prevented by antenatal treatment with pravastatin. This study aims to localize the altered neuromotor programming in this animal model and to evaluate the role of pravastatin in its prevention.For the preeclampsia model, pregnant CD-1 mice were randomly allocated to injection of adenovirus carrying sFlt-1 or its control virus carrying mFc into the tail vein. Thereafter they received pravastatin (sFlt-1-pra "experimental group" or water (sFlt-1 "positive control" until weaning. The mFc group ("negative control" received water. Offspring at 6 months of age were sacrificed, and whole brains underwent magnetic resonance imaging (MRI. MRIs were performed using an 11.7 Tesla vertical bore MRI scanner. T2 weighted images were acquired to evaluate the volumes of 28 regions of interest, including areas involved in adaptation and motor, spatial and sensory function. Cytochemistry and cell quantification was performed using neuron-specific Nissl stain. One-way ANOVA with multiple comparison testing was used for statistical analysis.Compared with control offspring, male sFlt-1 offspring have decreased volumes in the fimbria, periaquaductal gray, stria medullaris, and ventricles and increased volumes in the lateral globus pallidus and neocortex; however, female sFlt-1 offspring showed increased volumes in the ventricles, stria medullaris, and fasciculus retroflexus and decreased volumes in the inferior colliculus, thalamus, and lateral globus pallidus. Neuronal quantification via Nissl staining exhibited decreased cell counts in sFlt-1 offspring neocortex, more pronounced in males. Prenatal pravastatin treatment prevented these changes.Preeclampsia alters brain development in sex-specific patterns, and prenatal pravastatin therapy prevents altered neuroanatomic programming in this animal model.

  3. Clinical diagnostic exome evaluation for an infant with a lethal disorder: genetic diagnosis of TARP syndrome and expansion of the phenotype in a patient with a newly reported RBM10 alteration.

    Science.gov (United States)

    Powis, Zöe; Hart, Alexa; Cherny, Sara; Petrik, Igor; Palmaer, Erika; Tang, Sha; Jones, Carolyn

    2017-06-02

    Diagnostic Exome Sequencing (DES) has been shown to be an effective tool for diagnosis individuals with suspected genetic conditions. We report a male infant born with multiple anomalies including bilateral dysplastic kidneys, cleft palate, bilateral talipes, and bilateral absence of thumbs and first toes. Prenatal testing including chromosome analysis and microarray did not identify a cause for the multiple congenital anomalies. Postnatal diagnostic exome studies (DES) were utilized to find a molecular diagnosis for the patient. Exome sequencing of the proband, mother, and father showed a previously unreported maternally inherited RNA binding motif protein 10 (RBM10) c.1352_1353delAG (p.E451Vfs*66) alteration. Mutations in RBM10 are associated with TARP syndrome, an X-linked recessive disorder originally described with cardinal features of talipes equinovarus, atrial septal defect, Robin sequence, and persistent left superior vena cava. DES established a molecular genetic diagnosis of TARP syndrome for a neonatal patient with a poor prognosis in whom traditional testing methods were uninformative and allowed for efficient diagnosis and future reproductive options for the parents. Other reported cases of TARP syndrome demonstrate significant variability in clinical phenotype. The reported features in this infant including multiple hemivertebrae, imperforate anus, aplasia of thumbs and first toes have not been reported in previous patients, thus expanding the clinical phenotype for this rare disorder.

  4. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    OpenAIRE

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2008-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models...

  5. Cardiac troponin and tropomyosin: structural and cellular perspectives to unveil the Hypertrophic Cardiomyopathy phenotype

    Directory of Open Access Journals (Sweden)

    Mayra de A. Marques

    2016-09-01

    Full Text Available Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1,400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the disease of the sarcomere. The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53, seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We

  6. Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kothari Shankar L

    2010-05-01

    Full Text Available Abstract Background Biofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents. Results In this study, we compared the hydrocarbon rich algae Botryococcus braunii against the photoautotrophic model algae Chlamydomonas reinhardtii using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS. Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In Botryococcus samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species C. reinhardtii, B. braunii race A and B. braunii race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents. Conclusion Pyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions.

  7. Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway.

    Science.gov (United States)

    Chen, Shuang; Liu, Baoqin; Kong, Dehui; Li, Si; Li, Chao; Wang, Huaqin; Sun, Yingxian

    2015-01-01

    Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.

  8. Targeted Disruption of NF1 in Osteocytes Increases FGF23 and Osteoid With Osteomalacia-like Bone Phenotype.

    Science.gov (United States)

    Kamiya, Nobuhiro; Yamaguchi, Ryosuke; Aruwajoye, Olumide; Kim, Audrey J; Kuroyanagi, Gen; Phipps, Matthew; Adapala, Naga Suresh; Feng, Jian Q; Kim, Harry Kw

    2017-08-01

    Neurofibromatosis type 1 (NF1, OMIM 162200), caused by NF1 gene mutations, exhibits multi-system abnormalities, including skeletal deformities in humans. Osteocytes play critical roles in controlling bone modeling and remodeling. However, the role of neurofibromin, the protein product of the NF1 gene, in osteocytes is largely unknown. This study investigated the role of neurofibromin in osteocytes by disrupting Nf1 under the Dmp1-promoter. The conditional knockout (Nf1 cKO) mice displayed serum profile of a metabolic bone disorder with an osteomalacia-like bone phenotype. Serum FGF23 levels were 4 times increased in cKO mice compared with age-matched controls. In addition, calcium-phosphorus metabolism was significantly altered (calcium reduced; phosphorus reduced; parathyroid hormone [PTH] increased; 1,25(OH) 2 D decreased). Bone histomorphometry showed dramatically increased osteoid parameters, including osteoid volume, surface, and thickness. Dynamic bone histomorphometry revealed reduced bone formation rate and mineral apposition rate in the cKO mice. TRAP staining showed a reduced osteoclast number. Micro-CT demonstrated thinner and porous cortical bones in the cKO mice, in which osteocyte dendrites were disorganized as assessed by electron microscopy. Interestingly, the cKO mice exhibited spontaneous fractures in long bones, as found in NF1 patients. Mechanical testing of femora revealed significantly reduced maximum force and stiffness. Immunohistochemistry showed significantly increased FGF23 protein in the cKO bones. Moreover, primary osteocytes from cKO femora showed about eightfold increase in FGF23 mRNA levels compared with control cells. The upregulation of FGF23 was specifically and significantly inhibited by PI3K inhibitor Ly294002, indicating upregulation of FGF23 through PI3K in Nf1-deficient osteocytes. Taken together, these results indicate that Nf1 deficiency in osteocytes dramatically increases FGF23 production and causes a mineralization

  9. ACE phenotyping in Gaucher disease.

    Science.gov (United States)

    Danilov, Sergei M; Tikhomirova, Victoria E; Metzger, Roman; Naperova, Irina A; Bukina, Tatiana M; Goker-Alpan, Ozlem; Tayebi, Nahid; Gayfullin, Nurshat M; Schwartz, David E; Samokhodskaya, Larisa M; Kost, Olga A; Sidransky, Ellen

    2018-04-01

    Gaucher disease is characterized by the activation of splenic and hepatic macrophages, accompanied by dramatically increased levels of angiotensin-converting enzyme (ACE). To evaluate the source of the elevated blood ACE, we performed complete ACE phenotyping using blood, spleen and liver samples from patients with Gaucher disease and controls. ACE phenotyping included 1) immunohistochemical staining for ACE; 2) measuring ACE activity with two substrates (HHL and ZPHL); 3) calculating the ratio of the rates of substrate hydrolysis (ZPHL/HHL ratio); 4) assessing the conformational fingerprint of ACE by evaluating the pattern of binding of monoclonal antibodies to 16 different ACE epitopes. We show that in patients with Gaucher disease, the dramatically increased levels of ACE originate from activated splenic and/or hepatic macrophages (Gaucher cells), and that both its conformational fingerprint and kinetic characteristics (ZPHL/HHL ratio) differ from controls and from patients with sarcoid granulomas. Furthermore, normal spleen was found to produce high levels of endogenous ACE inhibitors and a novel, tightly-bound 10-30 kDa ACE effector which is deficient in Gaucher spleen. The conformation of ACE is tissue-specific. In Gaucher disease, ACE produced by activated splenic macrophages differs from that in hepatic macrophages, as well as from macrophages and dendritic cells in sarcoid granulomas. The observed differences are likely due to altered ACE glycosylation or sialylation in these diseased organs. The conformational differences in ACE may serve as a specific biomarker for Gaucher disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. 3D Adaptive Virtual Exhibit for the University of Denver Digital Collections

    Directory of Open Access Journals (Sweden)

    Shea-Tinn Yeh

    2015-07-01

    Full Text Available While the gaming industry has taken the world by storm with its three-dimensional (3D user interfaces, current digital collection exhibits presented by museums, historical societies, and libraries are still limited to a two-dimensional (2D interface display. Why can’t digital collections take advantage of this 3D interface advancement? The prototype discussed in this paper presents to the visitor a 3D virtual exhibit containing a set of digital objects from the University of Denver Libraries’ digital image collections, giving visitors an immersive experience when viewing the collections. In particular, the interface is adaptive to the visitor’s browsing behaviors and alters the selection and display of the objects throughout the exhibit to encourage serendipitous discovery. Social media features were also integrated to allow visitors to share items of interest and to create a sense of virtual community.

  11. White matter alterations in temporal lobe epilepsy

    Science.gov (United States)

    Diniz, P. B.; Salmon, C. E.; Velasco, T. R.; Sakamoto, A. C.; Leite, J. P.; Santos, A. C.

    2011-03-01

    In This study, we used Fractional anisotropy (FA), mean diffusivity (D), parallel diffusivity (D//) and perpendicular diffusivity (D), to localize the regions where occur axonal lesion and demyelization. TBSS was applied to analyze the FA data. After, the regions with alteration were studied with D, D// and D maps. Patients exhibited widespread degradation of FA. With D, D// and D maps analysis we found alterations in corpus callosum, corticospinal tract, fornix, internal capsule, corona radiate, Sagittal stratum, cingulum, fronto-occipital fasciculus and uncinate fasciculus. Our results are consistent with the hypothesis that exist demyelization and axonal damage in patients with TLE.

  12. A phenotypic profile of the Candida albicans regulatory network.

    Directory of Open Access Journals (Sweden)

    Oliver R Homann

    2009-12-01

    Full Text Available Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of

  13. A phenotypic profile of the Candida albicans regulatory network.

    Science.gov (United States)

    Homann, Oliver R; Dea, Jeanselle; Noble, Suzanne M; Johnson, Alexander D

    2009-12-01

    Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but

  14. Heteroresistance to Fluconazole Is a Continuously Distributed Phenotype among Candida glabrata Clinical Strains Associated with In Vivo Persistence

    Directory of Open Access Journals (Sweden)

    Ronen Ben-Ami

    2016-08-01

    Full Text Available Candida glabrata causes persistent infections in patients treated with fluconazole and often acquires resistance following exposure to the drug. Here we found that clinical strains of C. glabrata exhibit cell-to-cell variation in drug response (heteroresistance. We used population analysis profiling (PAP to assess fluconazole heteroresistance (FLCHR and to ask if it is a binary trait or a continuous phenotype. Thirty (57.6% of 52 fluconazole-sensitive clinical C. glabrata isolates met accepted dichotomous criteria for FLCHR. However, quantitative grading of FLCHR by using the area under the PAP curve (AUC revealed a continuous distribution across a wide range of values, suggesting that all isolates exhibit some degree of heteroresistance. The AUC correlated with rhodamine 6G efflux and was associated with upregulation of the CDR1 and PDH1 genes, encoding ATP-binding cassette (ABC transmembrane transporters, implying that HetR populations exhibit higher levels of drug efflux. Highly FLCHRC. glabrata was recovered more frequently than nonheteroresistant C. glabrata from hematogenously infected immunocompetent mice following treatment with high-dose fluconazole (45.8% versus 15%, P = 0.029. Phylogenetic analysis revealed some phenotypic clustering but also variations in FLCHR within clonal groups, suggesting both genetic and epigenetic determinants of heteroresistance. Collectively, these results establish heteroresistance to fluconazole as a graded phenotype associated with ABC transporter upregulation and fluconazole efflux. Heteroresistance may explain the propensity of C. glabrata for persistent infection and the emergence of breakthrough resistance to fluconazole.

  15. Asthma phenotypes in childhood.

    Science.gov (United States)

    Reddy, Monica B; Covar, Ronina A

    2016-04-01

    This review describes the literature over the past 18 months that evaluated childhood asthma phenotypes, highlighting the key aspects of these studies, and comparing these studies to previous ones in this area. Recent studies on asthma phenotypes have identified new phenotypes on the basis of statistical analyses (using cluster analysis and latent class analysis methodology) and have evaluated the outcomes and associated risk factors of previously established early childhood asthma phenotypes that are based on asthma onset and patterns of wheezing illness. There have also been investigations focusing on immunologic, physiologic, and genetic correlates of various phenotypes, as well as identification of subphenotypes of severe childhood asthma. Childhood asthma remains a heterogeneous condition, and investigations into these various presentations, risk factors, and outcomes are important since they can offer therapeutic and prognostic relevance. Further investigation into the immunopathology and genetic basis underlying childhood phenotypes is important so therapy can be tailored accordingly.

  16. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Patricia S. Estes

    2013-05-01

    Amyotrophic lateral sclerosis (ALS is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.

  17. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Estes, Patricia S; Daniel, Scott G; McCallum, Abigail P; Boehringer, Ashley V; Sukhina, Alona S; Zwick, Rebecca A; Zarnescu, Daniela C

    2013-05-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.

  18. Discovery of a “White-Gray-Opaque” Tristable Phenotypic Switching System in Candida albicans: Roles of Non-genetic Diversity in Host Adaptation

    Science.gov (United States)

    Guan, Guobo; Dai, Yu; Nobile, Clarissa J.; Liang, Weihong; Cao, Chengjun; Zhang, Qiuyu; Zhong, Jin; Huang, Guanghua

    2014-01-01

    Non-genetic phenotypic variations play a critical role in the adaption to environmental changes in microbial organisms. Candida albicans, a major human fungal pathogen, can switch between several morphological phenotypes. This ability is critical for its commensal lifestyle and for its ability to cause infections. Here, we report the discovery of a novel morphological form in C. albicans, referred to as the “gray” phenotype, which forms a tristable phenotypic switching system with the previously reported white and opaque phenotypes. White, gray, and opaque cell types differ in a number of aspects including cellular and colony appearances, mating competency, secreted aspartyl proteinase (Sap) activities, and virulence. Of the three cell types, gray cells exhibit the highest Sap activity and the highest ability to cause cutaneous infections. The three phenotypes form a tristable phenotypic switching system, which is independent of the regulation of the mating type locus (MTL). Gray cells mate over 1,000 times more efficiently than do white cells, but less efficiently than do opaque cells. We further demonstrate that the master regulator of white-opaque switching, Wor1, is essential for opaque cell formation, but is not required for white-gray transitions. The Efg1 regulator is required for maintenance of the white phenotype, but is not required for gray-opaque transitions. Interestingly, the wor1/wor1 efg1/efg1 double mutant is locked in the gray phenotype, suggesting that Wor1 and Efg1 could function coordinately and play a central role in the regulation of gray cell formation. Global transcriptional analysis indicates that white, gray, and opaque cells exhibit distinct gene expression profiles, which partly explain their differences in causing infections, adaptation ability to diverse host niches, metabolic profiles, and stress responses. Therefore, the white-gray-opaque tristable phenotypic switching system in C. albicans may play a significant role in a wide

  19. c-di-GMP Regulates Various Phenotypes and Insecticidal Activity of Gram-Positive Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Yang Fu

    2018-02-01

    Full Text Available C-di-GMP has been well investigated to play significant roles in the physiology of many Gram-negative bacteria. However, its effect on Gram-positive bacteria is less known. In order to more understand the c-di-GMP functions in Gram-positive bacteria, we have carried out a detailed study on the c-di-GMP-metabolizing enzymes and their physiological functions in Bacillus thuringiensis, a Gram-positive entomopathogenic bacterium that has been applied as an insecticide successfully. We performed a systematic study on the ten putative c-di-GMP-synthesizing enzyme diguanylate cyclases (DGCs and c-di-GMP-degrading enzyme phosphodiesterases (PDEs in B. thuringiensis BMB171, and artificially elevated the intracellular c-di-GMP level in BMB171 by deleting one or more pde genes. We found increasing level of intracellular c-di-GMP exhibits similar activities as those in Gram-negative bacteria, including altered activities in cell motility, biofilm formation, and cell-cell aggregation. Unexpectedly, we additionally found a novel function exhibited by the increasing level of c-di-GMP to promote the insecticidal activity of this bacterium against Helicoverpa armigera. Through whole-genome transcriptome profile analyses, we found that 4.3% of the B. thuringiensis genes were differentially transcribed when c-di-GMP level was increased, and 77.3% of such gene products are involved in some regulatory pathways not reported in other bacteria to date. In summary, our study represents the first comprehensive report on the c-di-GMP-metabolizing enzymes, their effects on phenotypes, and the transcriptome mediated by c-di-GMP in an important Gram-positive bacterium.

  20. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    NARCIS (Netherlands)

    Kohler, S.; Doelken, S.C.; Mungall, C.J.; Bauer, S.; Firth, H.V.; Bailleul-Forestier, I.; Black, G.C.M.; Brown, D.L.; Brudno, M.; Campbell, J.; FitzPatrick, D.R.; Eppig, J.T.; Jackson, A.P.; Freson, K.; Girdea, M.; Helbig, I.; Hurst, J.A.; Jahn, J.; Jackson, L.G.; Kelly, A.M.; Ledbetter, D.H.; Mansour, S.; Martin, C.L.; Moss, C.; Mumford, A.; Ouwehand, W.H.; Park, S.M.; Riggs, E.R.; Scott, R.H.; Sisodiya, S.; Vooren, S. van der; Wapner, R.J.; Wilkie, A.O.; Wright, C.F.; Silfhout, A.T. van; Leeuw, N. de; Vries, B. de; Washingthon, N.L.; Smith, C.L.; Westerfield, M.; Schofield, P.; Ruef, B.J.; Gkoutos, G.V.; Haendel, M.; Smedley, D.; Lewis, S.E.; Robinson, P.N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have

  1. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    Science.gov (United States)

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-01-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus. PMID:7793931

  2. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    Science.gov (United States)

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-06-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus.

  3. Altered growth pattern, not altered growth per se, is the hallmark of early lesions preceding cancer development.

    Science.gov (United States)

    Doratiotto, S; Marongiu, F; Faedda, S; Pani, P; Laconi, E

    2009-01-01

    Many human solid cancers arise from focal proliferative lesions that long precede the overt clinical appearance of the disease. The available evidence supports the notion that cancer precursor lesions are clonal in origin, and this notion forms the basis for most of the current theories on the pathogenesis of neoplastic disease. In contrast, far less attention has been devoted to the analysis of the phenotypic property that serves to define these focal lesions, i.e. their altered growth pattern. In fact, the latter is often considered a mere morphological by-product of clonal growth, with no specific relevance in the process. In the following study, evidence will be presented to support the concept that focal growth pattern is an inherent property of altered cells, independent of clonal growth; furthermore, it will be discussed how such a property, far from being merely descriptive, might indeed play a fundamental role in the sequence of events leading to the development of cancer. Within this paradigm, the earliest steps of neoplasia should be considered and analysed as defects in the mechanisms of tissue pattern formation.

  4. Relationship of histochemically detectable altered hepatocyte foci to hepatic tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Peraino, C.; Staffeldt, E.F.; Carnes, B.A.; Ludeman, V.A.; Blomquist, J.A.; Vesselinovitch, S.D.

    1984-01-01

    A new experimental system was used to examine the stages of chemically induced hepatic neoplasia in the rat. The treatment protocol involved the intraperitoneal injection of a single non-necrogenic dose of carcinogen (N-nitrosodiethylamine (NDEA) or benzo(a)pyrene (BP)) into male and female rats within one day after birth, followed by dietary exposure to promoter (0.05% phenobarbital) from weaning. Rats were killed at intervals, and their livers were examined for tumors and for histochemically detectable foci of altered hepatocytes. The data showed that (1) the new treatment protocol was highly efficient in foci and tumor production; (2) growth rates and incidence levels of foci were directly related to hepatocarcinogenic effectiveness (NDEA > BP), whereas both carcinogens had similar effects on foci phenotypic properties; (3) after their formation, foci at a given level of phenotypic complexity did not become progressively more complex; (4) incidence levels of foci were sex-dependent (females > males), but growth rates of foci were the same for both sexes; (5) growth rates and growth capacities (ranges of possible growth rates) of foci were directly related to phenotypic complexity levels of foci; (6) frequencies and phenotypic complexities of foci were inversely related; the reverse was true for tumors, although 10% of the tumors were relatively simple (three markers or fewer); (7) marker frequency distribution patterns were completely different in foci and in tumors.

  5. Phenotypical expression of reduced mobility during limb ontogeny in frogs: the knee-joint case

    Directory of Open Access Journals (Sweden)

    Maria Laura Ponssa

    2016-02-01

    Full Text Available Movement is one of the most important epigenetic factors for normal development of the musculoskeletal system, particularly during genesis and joint development. Studies regarding alterations to embryonic mobility, performed on anurans, chickens and mammals, report important phenotypical similarities as a result of the reduction or absence of this stimulus. The precise stage of development at which the stimulus modification generates phenotypic modifications however, is yet to be determined. In this work we explore whether the developmental effects of abnormal mobility can appear at any time during development or whether they begin to express themselves in particular phases of tadpole ontogeny. We conducted five experiments that showed that morphological abnormalities are not visible until Stages 40–42. Morphology in earlier stages remains normal, probably due to the fact that the bones/muscles/tendons have not yet developed and therefore are not affected by immobilization. These results suggest the existence of a specific period of phenotypical expression in which normal limb movement is necessary for the correct development of the joint tissue framework.

  6. Growth and alteration of uranium-rich microlite

    International Nuclear Information System (INIS)

    Giere, R.; Swope, R. J.; Buck, E. C.; Guggenheim, R.; Mathys, D.; Reusser, E.

    2000-01-01

    Uranium-rich microlite, a pyrochlore-group mineral, occurs in 440 Ma old lithium pegmatites of the Mozambique Belt in East Africa. Microlite exhibits a pronounced growth zoning, with a U-free core surrounded by a U-rich rim (UO 2 up to 17 wt.%). The core exhibits conjugate sets of straight cracks (cleavage planes) which provided pathways for a late-stage U-enriched pegmatitic fluid which interacted with the U-free microlite to produce a distinct U enrichment along the cracks and led to the formation of the U-rich rim. Following the stage of U incorporation into microlite, a second generation of hydrothermal fluids deposited mica along the cleavage planes. Subsequent to these two hydrothermal stages, the host rock was uplifted and subjected to intense low-temperature alteration during which Na, Ca and F were leached from the microlite crystals. This alteration also led to a hydration of microlite, but there is no evidence of U loss. These low-temperature alteration effects were only observed in the U-rich rim which is characterized by a large number of irregular cracks which are most probably the result of metamictization, as indicated by electron diffraction images and powder X-ray patterns. The pyrochlore-group minerals provide excellent natural analogues for pyrochlore-based nuclear waste forms, because samples of variable age and with high actinide contents are available

  7. Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn's disease and their unaffected siblings.

    Science.gov (United States)

    Hedin, Charlotte R; McCarthy, Neil E; Louis, Petra; Farquharson, Freda M; McCartney, Sara; Taylor, Kirstin; Prescott, Natalie J; Murrells, Trevor; Stagg, Andrew J; Whelan, Kevin; Lindsay, James O

    2014-10-01

    Crohn's disease (CD) is associated with intestinal dysbiosis, altered blood T cell populations, elevated faecal calprotectin (FC) and increased intestinal permeability (IP). CD-associated features present in siblings (increased risk of CD) but not in healthy controls, provide insight into early CD pathogenesis. We aimed to (1) Delineate the genetic, immune and microbiological profile of patients with CD, their siblings and controls and (2) Determine which factors discriminate between groups. Faecal microbiology was analysed by quantitative PCR targeting 16S ribosomal RNA, FC by ELISA, blood T cell phenotype by flow cytometry and IP by differential lactulose-rhamnose absorption in 22 patients with inactive CD, 21 of their healthy siblings and 25 controls. Subject's genotype relative risk was determined by Illumina Immuno BeadChip. Strikingly, siblings shared aspects of intestinal dysbiosis with patients with CD (lower concentrations of Faecalibacterium prausnitzii (p=0.048), Clostridia cluster IV (p=0.003) and Roseburia spp. (p=0.09) compared with controls). As in CD, siblings demonstrated a predominance of memory T cells (p=0.002) and elevated naïve CD4 T cell β7 integrin expression (p=0.01) compared with controls. FC was elevated (>50 μg/g) in 8/21 (38%) siblings compared with 2/25 (8%) controls (p=0.028); whereas IP did not differ between siblings and controls. Discriminant function analysis determined that combinations of these factors significantly discriminated between groups (χ(2)=80.4, df=20, pmicrobiological variables. Healthy siblings of patients with CD manifest immune and microbiological abnormalities associated with CD distinct from their genotype-related risk and provide an excellent model in which to investigate early CD pathogenesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Lipid accumulation product as a marker of cardiometabolic susceptibility in women with different phenotypes of polycystic ovary syndrome.

    Science.gov (United States)

    Božić-Antić, Ivana; Ilić, Dušan; Bjekić-Macut, Jelica; Bogavac, Tamara; Vojnović-Milutinović, Danijela; Kastratovic-Kotlica, Biljana; Milić, Nataša; Stanojlović, Olivera; Andrić, Zoran; Macut, Djuro

    2016-12-01

    There are limited data on cardiometabolic risk factors and the prevalence of metabolic syndrome (MetS) across the different PCOS phenotypes in Caucasian population. Lipid accumulation product (LAP) is a clinical surrogate marker that could be used for evaluation of MetS in clinical practice. The aim of the study was to analyze metabolic characteristics and the ability of LAP to predict MetS in different PCOS phenotypes. Cross-sectional clinical study analyzing 365 women with PCOS divided into four phenotypes according to the ESHRE/ASRM criteria, and 125 healthy BMI-matched controls. In all subjects, LAP was determined and MetS was diagnosed according to the National Cholesterol Education Program/Adult Treatment Panel III (NCEP-ATP III), the International Diabetes Federation (IDF) and the Joint Interim Statement (JIS) criteria. Logistic regression and ROC curve analyses were used to determine predictors of MetS in each PCOS phenotype. All analyses were performed with age and BMI adjustment. All PCOS phenotypes in comparison to controls had higher prevalence of MetS assessed by NCEP-ATP III criteria, and only classic phenotypes when IDF and JIS criteria were used. All phenotypes had the same prevalence of MetS irrespective of used definition. LAP and exhibited the highest diagnostic accuracy and was an independent predictor of MetS in all phenotypes. LAP is an independent and accurate clinical determinant of MetS in all PCOS phenotypes in our Caucasian population. All PCOS phenotypes, including non-classic ones, are metabolically challenged and with cardiovascular risk, particularly phenotype B. © 2016 European Society of Endocrinology.

  9. Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Léonie Suter

    Full Text Available Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha. Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana.

  10. Phenotypic equilibrium as probabilistic convergence in multi-phenotype cell population dynamics.

    Directory of Open Access Journals (Sweden)

    Da-Quan Jiang

    Full Text Available We consider the cell population dynamics with n different phenotypes. Both the Markovian branching process model (stochastic model and the ordinary differential equation (ODE system model (deterministic model are presented, and exploited to investigate the dynamics of the phenotypic proportions. We will prove that in both models, these proportions will tend to constants regardless of initial population states ("phenotypic equilibrium" under weak conditions, which explains the experimental phenomenon in Gupta et al.'s paper. We also prove that Gupta et al.'s explanation is the ODE model under a special assumption. As an application, we will give sufficient and necessary conditions under which the proportion of one phenotype tends to 0 (die out or 1 (dominate. We also extend our results to non-Markovian cases.

  11. Ocean acidification challenges copepod phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    A. Vehmaa

    2016-11-01

    Full Text Available Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC as a function of acidification (fCO2  ∼  365–1231 µatm and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm or quality (C : N weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  12. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes

    Science.gov (United States)

    Qie, Yaqing; Yuan, Hengfeng; von Roemeling, Christina A.; Chen, Yuanxin; Liu, Xiujie; Shih, Kevin D.; Knight, Joshua A.; Tun, Han W.; Wharen, Robert E.; Jiang, Wen; Kim, Betty Y. S.

    2016-05-01

    Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.

  13. Profiling the repertoire of phenotypes influenced by environmental cues that occur during asexual reproduction.

    Science.gov (United States)

    Dombrovsky, Aviv; Arthaud, Laury; Ledger, Terence N; Tares, Sophie; Robichon, Alain

    2009-11-01

    The aphid Acyrthosiphon pisum population is composed of different morphs, such as winged and wingless parthenogens, males, and sexual females. The combined effect of reduced photoperiodicity and cold in fall triggers the apparition of sexual morphs. In contrast they reproduce asexually in spring and summer. In our current study, we provide evidence that clonal individuals display phenotypic variability within asexual morph categories. We describe that clones sharing the same morphological features, which arose from the same founder mother, constitute a repertoire of variants with distinct behavioral and physiological traits. Our results suggest that the prevailing environmental conditions influence the recruitment of adaptive phenotypes from a cohort of clonal individuals exhibiting considerable molecular diversity. However, we observed that the variability might be reduced or enhanced by external factors, but is never abolished in accordance with a model of stochastically produced phenotypes. This overall mechanism allows the renewal of colonies from a few adapted individuals that survive drastic episodic changes in a fluctuating environment.

  14. Impaired clock output by altered connectivity in the circadian network.

    Science.gov (United States)

    Fernández, María de la Paz; Chu, Jessie; Villella, Adriana; Atkinson, Nigel; Kay, Steve A; Ceriani, María Fernanda

    2007-03-27

    Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity.

  15. Knowledge-based analysis of phenotypes

    KAUST Repository

    Hoendorf, Robert

    2016-01-27

    Phenotypes are the observable characteristics of an organism, and they are widely recorded in biology and medicine. To facilitate data integration, ontologies that formally describe phenotypes are being developed in several domains. I will describe a formal framework to describe phenotypes. A formalized theory of phenotypes is not only useful for domain analysis, but can also be applied to assist in the diagnosis of rare genetic diseases, and I will show how our results on the ontology of phenotypes is now applied in biomedical research.

  16. Semi-automatic classification of skeletal morphology in genetically altered mice using flat-panel volume computed tomography.

    Directory of Open Access Journals (Sweden)

    Christian Dullin

    2007-07-01

    Full Text Available Rapid progress in exploring the human and mouse genome has resulted in the generation of a multitude of mouse models to study gene functions in their biological context. However, effective screening methods that allow rapid noninvasive phenotyping of transgenic and knockout mice are still lacking. To identify murine models with bone alterations in vivo, we used flat-panel volume computed tomography (fpVCT for high-resolution 3-D imaging and developed an algorithm with a computational intelligence system. First, we tested the accuracy and reliability of this approach by imaging discoidin domain receptor 2- (DDR2- deficient mice, which display distinct skull abnormalities as shown by comparative landmark-based analysis. High-contrast fpVCT data of the skull with 200 microm isotropic resolution and 8-s scan time allowed segmentation and computation of significant shape features as well as visualization of morphological differences. The application of a trained artificial neuronal network to these datasets permitted a semi-automatic and highly accurate phenotype classification of DDR2-deficient compared to C57BL/6 wild-type mice. Even heterozygous DDR2 mice with only subtle phenotypic alterations were correctly determined by fpVCT imaging and identified as a new class. In addition, we successfully applied the algorithm to classify knockout mice lacking the DDR1 gene with no apparent skull deformities. Thus, this new method seems to be a potential tool to identify novel mouse phenotypes with skull changes from transgenic and knockout mice on the basis of random mutagenesis as well as from genetic models. However for this purpose, new neuronal networks have to be created and trained. In summary, the combination of fpVCT images with artificial neuronal networks provides a reliable, novel method for rapid, cost-effective, and noninvasive primary screening tool to detect skeletal phenotypes in mice.

  17. Mice lacking Brinp2 or Brinp3, or both, exhibit behaviours consistent with neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Susie Ruth Berkowicz

    2016-10-01

    Full Text Available Background: Brinps 1 – 3, and Astrotactins (Astn 1 and 2, are members of the Membrane Attack Complex / Perforin (MACPF superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1-/- mice exhibit behaviour reminiscent of autism spectrum disorder (ASD and attention deficit hyperactivity disorder (ADHD.Method: We created Brinp2-/- mice and Brinp3-/- mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behaviour. Additionally, Brinp2-/-Brinp3-/- double knock-out mice were generated by interbreeding Brinp2-/- and Brinp3-/- mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioural examination. Brinp1-/-Brinp2-/-Brinp3-/- triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1-/- mice, and examined by weight and histological analysis.Results: Brinp2-/- and Brinp3-/- mice differ in their behaviour: Brinp2-/- mice are hyperactive, whereas Brinp3-/- mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3-/- mice also show evidence of altered sociability. Both Brinp2-/- and Brinp3-/- mice have normal short-term memory, olfactory responses, pre-pulse inhibition and motor learning. The double knock-out mice show behaviours of Brinp2-/- and Brinp3-/- mice, without evidence of new or exacerbated phenotypes. Conclusion: Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2-/- and Brinp3-/- genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.

  18. A Comprehensive Dataset of Genes with a Loss-of-Function Mutant Phenotype in Arabidopsis1[W][OA

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-01-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms. PMID:22247268

  19. Advanced phenotyping and phenotype data analysis for the plant growth and development study

    Directory of Open Access Journals (Sweden)

    Md. Matiur eRahaman

    2015-08-01

    Full Text Available Due to increase in the consumption of food, feed, fuel and to ensure global food security for rapidly growing human population, there is need to breed high yielding crops that can adapt to future climate. To solve these global issues, novel approaches are required to provide quantitative phenotypes to elucidate the genetic basis of agriculturally import traits and to screen germplasm with super performance in function under resource-limited environment. At present, plant phenomics has offered and integrated suite technologies for understanding the complete set of phenotypes of plants, towards the progression of the full characteristics of plants with whole sequenced genomes. In this aspect, high-throughput phenotyping platforms have been developed that enables to capture extensive and intensive phenotype data from non-destructive imaging over time. These developments advance our view on plant growth and performance with responses to the changing climate and environment. In this paper, we present a brief review on currently developed high-throughput plant phenotyping infrastructures based on imaging techniques and corresponding principles for phenotype data analysis.

  20. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection.

    Science.gov (United States)

    MacDuff, Donna A; Reese, Tiffany A; Kimmey, Jacqueline M; Weiss, Leslie A; Song, Christina; Zhang, Xin; Kambal, Amal; Duan, Erning; Carrero, Javier A; Boisson, Bertrand; Laplantine, Emmanuel; Israel, Alain; Picard, Capucine; Colonna, Marco; Edelson, Brian T; Sibley, L David; Stallings, Christina L; Casanova, Jean-Laurent; Iwai, Kazuhiro; Virgin, Herbert W

    2015-01-20

    Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies.

  1. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs.

    Science.gov (United States)

    Schuster, Andrew; Skinner, Michael K; Yan, Wei

    Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5' halves of mature tRNAs (5' halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5' halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon.

  2. Electromagnetic Evidence of Altered Visual Processing in Autism

    Science.gov (United States)

    Neumann, Nicola; Dubischar-Krivec, Anna M.; Poustka, Fritz; Birbaumer, Niels; Bolte, Sven; Braun, Christoph

    2011-01-01

    Individuals with autism spectrum disorder (ASD) demonstrate intact or superior local processing of visual-spatial tasks. We investigated the hypothesis that in a disembedding task, autistic individuals exhibit a more local processing style than controls, which is reflected by altered electromagnetic brain activity in response to embedded stimuli…

  3. Deep Phenotyping: Deep Learning For Temporal Phenotype/Genotype Classification

    OpenAIRE

    Najafi, Mohammad; Namin, Sarah; Esmaeilzadeh, Mohammad; Brown, Tim; Borevitz, Justin

    2017-01-01

    High resolution and high throughput, genotype to phenotype studies in plants are underway to accelerate breeding of climate ready crops. Complex developmental phenotypes are observed by imaging a variety of accessions in different environment conditions, however extracting the genetically heritable traits is challenging. In the recent years, deep learning techniques and in particular Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and Long-Short Term Memories (LSTMs), h...

  4. Use of the enhanced frog embryo teratogenesis assay-Xenopus (FETAX) to determine chemically-induced phenotypic effects.

    Science.gov (United States)

    Hu, Lingling; Zhu, Jingmin; Rotchell, Jeanette M; Wu, Lijiao; Gao, Jinjuan; Shi, Huahong

    2015-03-01

    The frog embryo teratogenesis assay-Xenopus (FETAX) is an established method for the evaluation of the developmental toxicities of chemicals. To develop an enhanced FETAX that is appropriate for common environmental contaminants, we exposed Xenopus tropicalis embryos to eight compounds, including tributyltin, triphenyltin, CdCl2, pyraclostrobin, picoxystrobin, coumoxystrobin, all-trans-retinoic acid and 9-cis-retinoic acid. Multiple malformations were induced in embryos particularly following exposure to tributyltin, triphenyltin and pyraclostrobin at environmentally relevant concentrations. Based on the range of observed malformations, we proposed a phenotypic assessment method with 20 phenotypes and a 0-5 scoring system. This derived index exhibited concentration-dependent relationships for all of the chemicals tested. Furthermore, the phenotype profiles were characteristic of the different tested chemicals. Our results indicate that malformation phenotypes can be quantitatively integrated with the primary endpoints in conventional FETAX assessments to allow for increased sensitivity and measurement of quantitative effects and to provide indicative mechanistic information for each tested chemical. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.

    2002-01-01

    The fab1 mutant of Arabidopsis is partially deficient in activity of ß-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16 : 0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a c......DNA from Brassica napus encoding a KAS II enzyme resulted in complementation of both mutant phenotypes. The dual complementation by expression of the single gene proves that low-temperature damage is a consequence of altered membrane unsaturation. The fab1 mutation is a single nucleotide change...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  6. Genetic Disruption of Arc/Arg3.1 in Mice Causes Alterations in Dopamine and Neurobehavioral Phenotypes Related to Schizophrenia

    Directory of Open Access Journals (Sweden)

    Francesca Managò

    2016-08-01

    Full Text Available Human genetic studies have recently suggested that the postsynaptic activity-regulated cytoskeleton-associated protein (Arc complex is a convergence signal for several genes implicated in schizophrenia. However, the functional significance of Arc in schizophrenia-related neurobehavioral phenotypes and brain circuits is unclear. Here, we find that, consistent with schizophrenia-related phenotypes, disruption of Arc in mice produces deficits in sensorimotor gating, cognitive functions, social behaviors, and amphetamine-induced psychomotor responses. Furthermore, genetic disruption of Arc leads to concomitant hypoactive mesocortical and hyperactive mesostriatal dopamine pathways. Application of a D1 agonist to the prefrontal cortex or a D2 antagonist in the ventral striatum rescues Arc-dependent cognitive or psychomotor abnormalities, respectively. Our findings demonstrate a role for Arc in the regulation of dopaminergic neurotransmission and related behaviors. The results also provide initial biological support implicating Arc in dopaminergic and behavioral abnormalities related to schizophrenia.

  7. The Human Phenotype Ontology in 2017

    International Nuclear Information System (INIS)

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie

    2016-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  8. Exploring the phenotypic expression of a regulatory proteome- altering gene by spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Munck, L.; Nielsen, J.P.; Møller, B.

    2001-01-01

    electrophoresis, resulting in a radically changed amino acid and chemical composition. A synergy interval partial least squares regression model (si-PLSR) is tested to select combinations of spectral segments which have a high correlation to defined chemical components indicative of the lys3a gene, such as direct...... effects of the changed proteome, for example, the amide content, or indirect effects due to changes in carbohydrate and fat composition. It is concluded that the redundancy of biological information on the DNA sequence level is also represented at the phenotypic level in the dataset read by the NIR...... spectroscopic sensor from the chemical physical fingerprint. The PLS algorithm chooses spectral intervals: which combine both direct and indirect proteome effects. This explains the robustness of NIR spectral predictions by PLSR for a wide range of chemical components. The new option of using spectroscopy...

  9. Versican V1 Overexpression Induces a Myofibroblast-Like Phenotype in Cultured Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jon M Carthy

    Full Text Available Versican, a chondroitin sulphate proteoglycan, is one of the key components of the provisional extracellular matrix expressed after injury. The current study evaluated the hypothesis that a versican-rich matrix alters the phenotype of cultured fibroblasts.The full-length cDNA for the V1 isoform of human versican was cloned and the recombinant proteoglycan was expressed in murine fibroblasts. Versican expression induced a marked change in fibroblast phenotype. Functionally, the versican-expressing fibroblasts proliferated faster and displayed enhanced cell adhesion, but migrated slower than control cells. These changes in cell function were associated with greater N-cadherin and integrin β1 expression, along with increased FAK phosphorylation. The versican-expressing fibroblasts also displayed expression of smooth muscle α-actin, a marker of myofibroblast differentiation. Consistent with this observation, the versican fibroblasts displayed increased synthetic activity, as measured by collagen III mRNA expression, as well as a greater capacity to contract a collagen lattice. These changes appear to be mediated, at least in part, by an increase in active TGF-β signaling in the versican expressing fibroblasts, and this was measured by phosphorylation and nuclear accumulation of SMAD2.Collectively, these data indicate versican expression induces a myofibroblast-like phenotype in cultured fibroblasts.

  10. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    Science.gov (United States)

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.

  11. Exhibition

    CERN Document Server

    Staff Association

    2017-01-01

    A Look of Hope Islam Mahmoud Sweity From 19 to 30 June 2017 CERN Meyrin, Main Building Islam Mahmoud Sweity Islam Mahmoud Sweity was born in 1997 at Beit Awwa, Palestine. She is currently following a course to get an Art diploma of Painting at the college of Fine Arts at An-Najah National University under the supervision of Esmat Al As'aad. Her portraits, landscapes and still life paintings are full of life and shining colours. Charged of emotional empathy they catch the attention of the viewer and are reminding us that life is beautiful and worth living in spite of all difficulties we have to go through. She participated in many exhibitions and has exposed her drawings in 2015 at CERN and in France in the framework of the exhibition "The Origin“, and in 2017 in the Former Yugoslav Republic of Macedonia, Palestina and Jordan. In this exhibition the oil paintings made in the past year will be presented. For more information : staff.association@cern.ch | T&eacu...

  12. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    International Nuclear Information System (INIS)

    Bruzzone, Santina; Battaglia, Florinda; Mannino, Elena; Parodi, Alessia; Fruscione, Floriana; Basile, Giovanna; Salis, Annalisa; Sturla, Laura; Negrini, Simone; Kalli, Francesca; Stringara, Silvia; Filaci, Gilberto

    2012-01-01

    Highlights: ► ABA is an endogenous hormone in humans, regulating different cell responses. ► ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. ► UV-B irradiation increases ABA content in SSc cultures. ► SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-β (TGF-β). Conversely, migration toward ABA, but not toward TGF-β, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  13. The Effect of Parkinson Disease Tremor Phenotype on Cepstral Peak Prominence and Transglottal Airflow in Vowels and Speech.

    Science.gov (United States)

    Burk, Brittany R; Watts, Christopher R

    2018-02-19

    The physiological manifestations of Parkinson disease are heterogeneous, as evidenced by disease subtypes. Dysphonia has been well documented as an early and progressively significant impairment associated with the disease. The purpose of this study was to investigate how acoustic and aerodynamic measures of vocal function were affected by Parkinson tremor subtype (phenotype) in an effort to better understand the heterogeneity of voice impairment severity in Parkinson disease. This is a prospective case-control study. Thirty-two speakers with Parkinson disease assigned to tremor and nontremor phenotypes and 10 healthy controls were recruited. Sustained vowels and connected speech were recorded from each speaker. Acoustic measures of cepstral peak prominence (CPP) and aerodynamic measures of transglottal airflow (TAF) were calculated from the recorded acoustic and aerodynamic waveforms. Speakers with a nontremor dominant phenotype exhibited significantly (P Parkinson tremor phenotype in mild to moderate stages of the disease. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations

    Directory of Open Access Journals (Sweden)

    Eva Y. G. De Vilder

    2017-01-01

    Full Text Available Gamma-carboxylation, performed by gamma-glutamyl carboxylase (GGCX, is an enzymatic process essential for activating vitamin K-dependent proteins (VKDP with important functions in various biological processes. Mutations in the encoding GGCX gene are associated with multiple phenotypes, amongst which vitamin K-dependent coagulation factor deficiency (VKCFD1 is best known. Other patients have skin, eye, heart or bone manifestations. As genotype–phenotype correlations were never described, literature was systematically reviewed in search of patients with at least one GGCX mutation with a phenotypic description, resulting in a case series of 47 patients. Though this number was too low for statistically valid correlations—a frequent problem in orphan diseases—we demonstrate the crucial role of the horizontally transferred transmembrane domain in developing cardiac and bone manifestations. Moreover, natural history suggests ageing as the principal determinant to develop skin and eye symptoms. VKCFD1 symptoms seemed more severe in patients with both mutations in the same protein domain, though this could not be linked to a more perturbed coagulation factor function. Finally, distinct GGCX functional domains might be dedicated to carboxylation of very specific VKDP. In conclusion, this systematic review suggests that there indeed may be genotype–phenotype correlations for GGCX-related phenotypes, which can guide patient counseling and management.

  15. Interoperability between phenotype and anatomy ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-12-15

    Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.

  16. RAC1 GTP-ase signals Wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers.

    Science.gov (United States)

    De, Pradip; Carlson, Jennifer H; Jepperson, Tyler; Willis, Scooter; Leyland-Jones, Brian; Dey, Nandini

    2017-01-10

    The acquisition of integrin-directed metastasis-associated (ID-MA) phenotypes by Triple-Negative Breast Cancer (TNBC) cells is caused by an upregulation of the Wnt-beta-catenin pathway (WP). We reported that WP is one of the salient genetic features of TNBC. RAC-GTPases, small G-proteins which transduce signals from cell surface proteins including integrins, have been implicated in tumorigenesis and metastasis by their role in essential cellular functions like motility. The collective percentage of alteration(s) in RAC1 in ER+ve BC was lower as compared to ER-ve BC (35% vs 57%) (brca/tcga/pub2015). High expression of RAC1 was associated with poor outcome for RFS with HR=1.48 [CI: 1.15-1.9] p=0.0019 in the Hungarian ER-veBC cohort. Here we examined how WP signals are transduced via RAC1 in the context of ID-MA phenotypes in TNBC. Using pharmacological agents (sulindac sulfide), genetic tools (beta-catenin siRNA), WP modulators (Wnt-C59, XAV939), RAC1 inhibitors (NSC23766, W56) and WP stimulations (LWnt3ACM, Wnt3A recombinant) in a panel of 6-7 TNBC cell lines, we studied fibronectin-directed (1) migration, (2) matrigel invasion, (3) RAC1 and Cdc42 activation, (4) actin dynamics (confocal microscopy) and (5) podia-parameters. An attenuation of WP, which (a) decreased cellular levels of beta-catenin, as well as its nuclear active-form, (b) decreased fibronectin-induced migration, (c) decreased invasion, (d) altered actin dynamics and (e) decreased podia-parameters was successful in blocking fibronectin-mediated RAC1/Cdc42 activity. Both Wnt-antagonists and RAC1 inhibitors blocked fibronectin-induced RAC1 activation and inhibited the fibronectin-induced ID-MA phenotypes following specific WP stimulation by LWnt3ACM as well as Wnt3A recombinant protein. To test a direct involvement of RAC1-activation in WP-mediated ID-MA phenotypes, we stimulated brain-metastasis specific MDA-MB231BR cells with LWnt3ACM. LWnt3ACM-stimulated fibronectin-directed migration was blocked by

  17. Early Detection of Apathetic Phenotypes in Huntington's Disease Knock-in Mice Using Open Source Tools.

    Science.gov (United States)

    Minnig, Shawn; Bragg, Robert M; Tiwana, Hardeep S; Solem, Wes T; Hovander, William S; Vik, Eva-Mari S; Hamilton, Madeline; Legg, Samuel R W; Shuttleworth, Dominic D; Coffey, Sydney R; Cantle, Jeffrey P; Carroll, Jeffrey B

    2018-02-02

    Apathy is one of the most prevalent and progressive psychiatric symptoms in Huntington's disease (HD) patients. However, preclinical work in HD mouse models tends to focus on molecular and motor, rather than affective, phenotypes. Measuring behavior in mice often produces noisy data and requires large cohorts to detect phenotypic rescue with appropriate power. The operant equipment necessary for measuring affective phenotypes is typically expensive, proprietary to commercial entities, and bulky which can render adequately sized mouse cohorts as cost-prohibitive. Thus, we describe here a home-built, open-source alternative to commercial hardware that is reliable, scalable, and reproducible. Using off-the-shelf hardware, we adapted and built several of the rodent operant buckets (ROBucket) to test Htt Q111/+ mice for attention deficits in fixed ratio (FR) and progressive ratio (PR) tasks. We find that, despite normal performance in reward attainment in the FR task, Htt Q111/+ mice exhibit reduced PR performance at 9-11 months of age, suggesting motivational deficits. We replicated this in two independent cohorts, demonstrating the reliability and utility of both the apathetic phenotype, and these ROBuckets, for preclinical HD studies.

  18. Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones.

    Science.gov (United States)

    Geiselhardt, Sven; Otte, Tobias; Hilker, Monika

    2012-09-01

    The role of phenotypical plasticity in ecological speciation and the evolution of sexual isolation remains largely unknown. We investigated whether or not divergent host plant use in an herbivorous insect causes assortative mating by phenotypically altering traits involved in mate recognition. We found that males of the mustard leaf beetle Phaedon cochleariae preferred to mate with females that were reared on the same plant species to females provided with a different plant species, based on divergent cuticular hydrocarbon profiles that serve as contact pheromones. The cuticular hydrocarbon phenotypes of the beetles were host plant specific and changed within 2 weeks after a shift to a novel host plant species. We suggest that plant-induced phenotypic divergence in mate recognition cues may act as an early barrier to gene flow between herbivorous insect populations on alternative host species, preceding genetic divergence and thus, promoting ecological speciation. © 2012 Blackwell Publishing Ltd/CNRS.

  19. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  20. B-cell subset alterations and correlated factors in HIV-1 infection.

    Science.gov (United States)

    Pensieroso, Simone; Galli, Laura; Nozza, Silvia; Ruffin, Nicolas; Castagna, Antonella; Tambussi, Giuseppe; Hejdeman, Bo; Misciagna, Donatella; Riva, Agostino; Malnati, Mauro; Chiodi, Francesca; Scarlatti, Gabriella

    2013-05-15

    During HIV-1 infection, the development, phenotype, and functionality of B cells are impaired. Transitional B cells and aberrant B-cell populations arise in blood, whereas a declined percentage of resting memory B cells is detected. Our study aimed at pinpointing the demographic, immunological, and viral factors driving these pathological findings, and the role of antiretroviral therapy in reverting these alterations. B-cell phenotype and correlating factors were evaluated. Variations in B-cell subsets were evaluated by flow cytometry in HIV-1-infected individuals naive to therapy, elite controllers, and patients treated with antiretroviral drugs (virological control or failure). Multivariable analysis was performed to identify variables independently associated with the B-cell alterations. Significant differences were observed among patients' groups in relation to all B-cell subsets. Resting memory B cells were preserved in patients naive to therapy and elite controllers, but reduced in treated patients. Individuals naive to therapy and experiencing multidrug failure, as well as elite controllers, had significantly higher levels of activated memory B cells compared to healthy controls. In the multivariate analysis, plasma viral load and nadir CD4 T cells independently correlated with major B-cell alterations. Coinfection with hepatitis C but not hepatitis B virus also showed an impact on specific B-cell subsets. Successful protracted antiretroviral treatment led to normalization of all B-cell subsets with exception of resting memory B cells. Our results indicate that viremia and nadir CD4 T cells are important prognostic markers of B-cell perturbations and provide evidence that resting memory B-cell depletion during chronic infection is not reverted upon successful antiretroviral therapy.

  1. Beneficial renal and pancreatic phenotypes in a mouse deficient in FXYD2 regulatory subunit of Na,K-ATPase

    Directory of Open Access Journals (Sweden)

    Elena eArystarkhova

    2016-03-01

    Full Text Available The fundamental role of Na,K-ATPase in eukaryotic cells calls for complex and efficient regulation of its activity. Besides alterations in gene expression and trafficking, kinetic properties of the pump are modulated by reversible association with single span membrane proteins, the FXYDs. Seven members of the family are expressed in a tissue-specific manner, affecting pump kinetics in all possible permutations. This mini-review focuses on functional properties of FXYD2 studied in transfected cells, and on noteworthy and unexpected phenotypes discovered in a Fxyd2-/- mouse. FXYD2, the gamma subunit, reduces activity of Na,K-ATPase either by decreasing affinity for Na+, or reducing Vmax. FXYD2 mRNA splicing and editing provide another layer for regulation of Na,K-ATPase. In kidney of knockouts, there was elevated activity for Na,K-ATPase and for NCC and NKCC2 apical sodium transporters. That should lead to sodium retention and hypertension, however, the mice were in sodium balance and normotensive. Adult Fxyd2-/- mice also exhibited a mild pancreatic phenotype with enhanced glucose tolerance, elevation of circulating insulin, but no insulin resistance. There was an increase in beta cell proliferation and beta cell mass that correlated with activation of the PI3K-Akt pathway. The Fxyd2-/- mice are thus in a highly desirable state: the animals are resistant to Na+ retention, and showed improved glucose control, i.e. they display favorable metabolic adaptations to protect against development of salt-sensitive hypertension and diabetes. Investigation of the mechanisms of these adaptations in the mouse has the potential to unveil a novel therapeutic FXYD2-dependent strategy.

  2. Exhibiting Epistemic Objects

    DEFF Research Database (Denmark)

    Tybjerg, Karin

    2017-01-01

    of exhibiting epistemic objects that utilize their knowledge-generating potential and allow them to continue to stimulate curiosity and generate knowledge in the exhibition. The epistemic potential of the objects can then be made to work together with the function of the exhibition as a knowledge-generating set...

  3. Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability

    Directory of Open Access Journals (Sweden)

    Xu Chunming

    2009-05-01

    Full Text Available Abstract Background Inter-specific hybridization occurs frequently in plants, which may induce genetic and epigenetic instabilities in the resultant hybrids, allopolyploids and introgressants. It remains unclear however whether pollination by alien pollens of an incompatible species may impose a "biological stress" even in the absence of genome-merger or genetic introgression, whereby genetic and/or epigenetic instability of the maternal recipient genome might be provoked. Results We report here the identification of a rice mutator-phenotype from a set of rice plants derived from a crossing experiment involving two remote and apparently incompatible species, Oryza sativa L. and Oenothera biennis L. The mutator-phenotype (named Tong211-LP showed distinct alteration in several traits, with the most striking being substantially enlarged panicles. Expectably, gel-blotting by total genomic DNA of the pollen-donor showed no evidence for introgression. Characterization of Tong211-LP (S0 and its selfed progenies (S1 ruled out contamination (via seed or pollen or polyploidy as a cause for its dramatic phenotypic changes, but revealed transgenerational mobilization of several previously characterized transposable elements (TEs, including a MITE (mPing, and three LTR retrotransposons (Osr7, Osr23 and Tos17. AFLP and MSAP fingerprinting revealed extensive, transgenerational alterations in cytosine methylation and to a less extent also genetic variation in Tong211-LP and its immediate progenies. mPing mobility was found to correlate with cytosine methylation alteration detected by MSAP but not with genetic variation detected by AFLP. Assay by q-RT-PCR of the steady-state transcript abundance of a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, and small interference RNA (siRNA pathway-related proteins showed that, relative to the rice parental line, heritable perturbation in expression of 12 out of

  4. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  5. AMH MEASUREMENT VERSUS OVARIAN ULTRASOUND IN THE DIAGNOSIS OF POLYCYSTIC OVARY SYNDROME IN DIFFERENT PHENOTYPES.

    Science.gov (United States)

    Carmina, Enrico; Campagna, Anna M; Fruzzetti, Franca; Lobo, Rogerio A

    2016-03-01

    This study was designed to assess the value of serum anti-Müllerian hormone (AMH) in the diagnosis of polycystic ovary syndrome (PCOS) in various phenotypes and to assess ovarian ultrasound parameters. We performed a retrospective matched controlled study of 113 females with various PCOS phenotypes and 47 matched controls. The diagnostic utility of AMH measurement and ovarian ultrasound were compared. Using receiver operating characteristic (ROC) curve analyses, the threshold for AMH (>4.7 ng/mL) and ultrasound parameters (follicle number per ovary [FNPO] >22 and ovarian volume [OV] >8 cc) were established. In the entire cohort, AMH had a low sensitivity of 79%; while FNPO and OV were 93% and 68%, respectively. Specificities ranged from 85 to 96%. In classic anovulatory PCOS, AMH exhibited a sensitivity of 91%, and for FNPO and OV the corresponding sensitivities were 92% and 72%. In the ovulatory phenotype, AMH sensitivity was only 50%, while FNPO and OV were 95% and 50%, respectively. In the nonhyperandrogenic phenotype, the sensitivity of AMH was 53% while those for FNPO and OV were 93% and 67%. AMH does not appear to be helpful for all subjects with PCOS but may be of some value in those who are anovulatory. However, FNPO was highly sensitive in all phenotypes, and was the single best criterion assessed for all subjects, suggesting the important role of ultrasound.

  6. Onco-proteogenomics: Multi-omics level data integration for accurate phenotype prediction.

    Science.gov (United States)

    Dimitrakopoulos, Lampros; Prassas, Ioannis; Diamandis, Eleftherios P; Charames, George S

    2017-09-01

    The overall goal of translational oncology is to identify molecular alterations indicative of cancer or of responsiveness to specific therapeutic regimens. While next-generation sequencing has played a pioneering role in this quest, the latest advances in proteomic technologies promise to provide a holistic approach to the further elucidation of tumor biology. Genetic information may be written in DNA and flow from DNA to RNA to protein, according to the central dogma of molecular biology, but the observed phenotype is dictated predominantly by the DNA protein coding region-derived proteotype. Proteomics holds the potential to bridge the gap between genotype and phenotype, because the powerful analytical tool of mass spectrometry has reached a point of maturity to serve this purpose effectively. This integration of "omics" data has given birth to the novel field of onco-proteogenomics, which has much to offer to precision medicine and personalized patient management. Here, we review briefly how each "omics" technology has individually contributed to cancer research, discuss technological and computational advances that have contributed to the realization of onco-proteogenomics, and summarize current and future translational applications.

  7. Obstructive sleep apnea alters sleep stage transition dynamics.

    Directory of Open Access Journals (Sweden)

    Matt T Bianchi

    2010-06-01

    Full Text Available Enhanced characterization of sleep architecture, compared with routine polysomnographic metrics such as stage percentages and sleep efficiency, may improve the predictive phenotyping of fragmented sleep. One approach involves using stage transition analysis to characterize sleep continuity.We analyzed hypnograms from Sleep Heart Health Study (SHHS participants using the following stage designations: wake after sleep onset (WASO, non-rapid eye movement (NREM sleep, and REM sleep. We show that individual patient hypnograms contain insufficient number of bouts to adequately describe the transition kinetics, necessitating pooling of data. We compared a control group of individuals free of medications, obstructive sleep apnea (OSA, medical co-morbidities, or sleepiness (n = 374 with mild (n = 496 or severe OSA (n = 338. WASO, REM sleep, and NREM sleep bout durations exhibited multi-exponential temporal dynamics. The presence of OSA accelerated the "decay" rate of NREM and REM sleep bouts, resulting in instability manifesting as shorter bouts and increased number of stage transitions. For WASO bouts, previously attributed to a power law process, a multi-exponential decay described the data well. Simulations demonstrated that a multi-exponential process can mimic a power law distribution.OSA alters sleep architecture dynamics by decreasing the temporal stability of NREM and REM sleep bouts. Multi-exponential fitting is superior to routine mono-exponential fitting, and may thus provide improved predictive metrics of sleep continuity. However, because a single night of sleep contains insufficient transitions to characterize these dynamics, extended monitoring of sleep, probably at home, would be necessary for individualized clinical application.

  8. Sex hormone binding globulin phenotypes

    DEFF Research Database (Denmark)

    Cornelisse, M M; Bennett, Patrick; Christiansen, M

    1994-01-01

    Human sex hormone binding globulin (SHBG) is encoded by a normal and a variant allele. The resulting SHBG phenotypes (the homozygous normal SHBG, the heterozygous SHBG and the homozygous variant SHBG phenotype) can be distinguished by their electrophoretic patterns. We developed a novel detection....... This method of detection was used to determine the distribution of SHBG phenotypes in healthy controls of both sexes and in five different pathological conditions characterized by changes in the SHBG level or endocrine disturbances (malignant and benign ovarian neoplasms, hirsutism, liver cirrhosis...... on the experimental values. Differences in SHBG phenotypes do not appear to have any clinical significance and no sex difference was found in the SHBG phenotype distribution....

  9. Text-based phenotypic profiles incorporating biochemical phenotypes of inborn errors of metabolism improve phenomics-based diagnosis.

    Science.gov (United States)

    Lee, Jessica J Y; Gottlieb, Michael M; Lever, Jake; Jones, Steven J M; Blau, Nenad; van Karnebeek, Clara D M; Wasserman, Wyeth W

    2018-05-01

    Phenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses. To channel the benefits of phenomics into the field of inborn errors of metabolism (IEM), we have recently launched IEMbase, an expert-curated knowledgebase of IEM and their disease-characterizing phenotypes. While our efforts with IEMbase have realized benefits, taking full advantage of phenomics requires a comprehensive curation of IEM phenotypes in core phenomics projects, which is dependent upon contributions from the IEM clinical and research community. Here, we assess the inclusion of IEM biochemical phenotypes in a core phenomics project, the Human Phenotype Ontology. We then demonstrate the utility of biochemical phenotypes using a text-based phenomics method to predict gene-disease relationships, showing that the prediction of IEM genes is significantly better using biochemical rather than clinical profiles. The findings herein provide a motivating goal for the IEM community to expand the computationally accessible descriptions of biochemical phenotypes associated with IEM in phenomics resources.

  10. DNA Fingerprinting Techniques for the Analysis of Genetic and Epigenetic Alterations in Colorectal Cancer

    OpenAIRE

    Samuelsson, Johanna K.; Alonso, Sergio; Yamamoto, Fumiichiro; Perucho, Manuel

    2010-01-01

    Genetic somatic alterations are fundamental hallmarks of cancer. In addition to point and other small mutations targeting cancer genes, solid tumors often exhibit aneuploidy as well as multiple chromosomal rearrangements of large fragments of the genome. Whether somatic chromosomal alterations and aneuploidy are a driving force or a mere consequence of tumorigenesis remains controversial. Recently it became apparent that not only genetic but also epigenetic alterations play a major role in ca...

  11. Overexpression of suppressor of cytokine signaling 3 in the arcuate nucleus of juvenile Phodopus sungorus alters seasonal body weight changes.

    Science.gov (United States)

    Ganjam, Goutham K; Benzler, Jonas; Pinkenburg, Olaf; Boucsein, Alisa; Stöhr, Sigrid; Steger, Juliane; Culmsee, Carsten; Barrett, Perry; Tups, Alexander

    2013-12-01

    The profound seasonal cycle in body weight exhibited by the Djungarian hamster (Phodopus sungorus) is associated with the development of hypothalamic leptin resistance during long day photoperiod (LD, 16:8 h light dark cycle), when body weight is elevated relative to short day photoperiod (SD, 8:16 h light dark cycle). We previously have shown that this seasonal change in physiology is associated with higher levels of mRNA for the potent inhibitor of leptin signaling, suppressor of cytokine signaling-3 (SOCS3), in the arcuate nucleus (ARC) of LD hamsters relative to hamsters in SD. The alteration in SOCS3 gene expression preceded the body weight change suggesting that SOCS3 might be the molecular switch of seasonal body weight changes. To functionally characterize the role of SOCS3 in seasonal body weight regulation, we injected SOCS3 expressing recombinant adeno-associated virus type-2 (rAAV2-SOCS3) constructs into the ARC of leptin sensitive SD hamsters immediately after weaning. Hamsters that received rAAV2 expressing enhanced green fluorescent protein (rAAV2-EGFP) served as controls. ARC-directed SOCS3 overexpression led to a significant increase in body weight over a period of 12 weeks without fully restoring the LD phenotype. This increase was partially due to elevated brown and white adipose tissue mass. Gene expression of pro-opiomelanocortin was increased while thyroid hormone converting enzyme DIO3 mRNA levels were reduced in SD hamsters with SOCS3 overexpression. In conclusion, our data suggest that ARC-directed SOCS3 overexpression partially overcomes the profound seasonal body weight cycle exhibited by the hamster which is associated with altered pro-opiomelanocortin and DIO3 gene expression.

  12. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, Jie; Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology and Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine

  13. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    International Nuclear Information System (INIS)

    Luo, Hanwen; Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng; Ping, Jie; Xu, Dan; Ma, Lu; Chen, Liaobin; Wang, Hui

    2014-01-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine

  14. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    Directory of Open Access Journals (Sweden)

    Jason Gunther Lomnitz

    2016-07-01

    Full Text Available Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1 enumeration of the repertoire of model phenotypes, (2 prediction of values for the parameters for any model phenotype and (3 analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3 and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between 3 stable states by transient stimulation through one of two input channels: a positive channel that increases

  15. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    Science.gov (United States)

    Lomnitz, Jason G.; Savageau, Michael A.

    2016-01-01

    Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment, and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1) enumeration of the repertoire of model phenotypes, (2) prediction of values for the parameters for any model phenotype, and (3) analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between three stable states by transient stimulation through one of two input channels: a positive channel that increases the count

  16. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2016-01-01

    Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment, and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1) enumeration of the repertoire of model phenotypes, (2) prediction of values for the parameters for any model phenotype, and (3) analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between three stable states by transient stimulation through one of two input channels: a positive channel that increases the count

  17. Childhood asthma-predictive phenotype.

    Science.gov (United States)

    Guilbert, Theresa W; Mauger, David T; Lemanske, Robert F

    2014-01-01

    Wheezing is a fairly common symptom in early childhood, but only some of these toddlers will experience continued wheezing symptoms in later childhood. The definition of the asthma-predictive phenotype is in children with frequent, recurrent wheezing in early life who have risk factors associated with the continuation of asthma symptoms in later life. Several asthma-predictive phenotypes were developed retrospectively based on large, longitudinal cohort studies; however, it can be difficult to differentiate these phenotypes clinically as the expression of symptoms, and risk factors can change with time. Genetic, environmental, developmental, and host factors and their interactions may contribute to the development, severity, and persistence of the asthma phenotype over time. Key characteristics that distinguish the childhood asthma-predictive phenotype include the following: male sex; a history of wheezing, with lower respiratory tract infections; history of parental asthma; history of atopic dermatitis; eosinophilia; early sensitization to food or aeroallergens; or lower lung function in early life. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Williams' paradox and the role of phenotypic plasticity in sexual systems.

    Science.gov (United States)

    Leonard, Janet L

    2013-10-01

    As George Williams pointed out in 1975, although evolutionary explanations, based on selection acting on individuals, have been developed for the advantages of simultaneous hermaphroditism, sequential hermaphroditism and gonochorism, none of these evolutionary explanations adequately explains the current distribution of these sexual systems within the Metazoa (Williams' Paradox). As Williams further pointed out, the current distribution of sexual systems is explained largely by phylogeny. Since 1975, we have made a great deal of empirical and theoretical progress in understanding sexual systems. However, we still lack a theory that explains the current distribution of sexual systems in animals and we do not understand the evolutionary transitions between hermaphroditism and gonochorism. Empirical data, collected over the past 40 years, demonstrate that gender may have more phenotypic plasticity than was previously realized. We know that not only sequential hermaphrodites, but also simultaneous hermaphrodites have phenotypic plasticity that alters sex allocation in response to social and environmental conditions. A focus on phenotypic plasticity suggests that one sees a continuum in animals between genetically determined gonochorism on the one hand and simultaneous hermaphroditism on the other, with various types of sequential hermaphroditism and environmental sex determination as points along the spectrum. Here I suggest that perhaps the reason we have been unable to resolve Williams' Paradox is because the problem was not correctly framed. First, because, for example, simultaneous hermaphroditism provides reproductive assurance or dioecy ensures outcrossing does not mean that there are no other evolutionary paths that can provide adaptive responses to those selective pressures. Second, perhaps the question we need to ask is: What selective forces favor increased versus reduced phenotypic plasticity in gender expression? It is time to begin to look at the question

  19. Lansoprazole Is Associated with Worsening Asthma Control in Children with the CYP2C19 Poor Metabolizer Phenotype.

    Science.gov (United States)

    Lang, Jason E; Holbrook, Janet T; Mougey, Edward B; Wei, Christine Y; Wise, Robert A; Teague, W Gerald; Lima, John J

    2015-06-01

    Gastric acid blockade in children with asymptomatic acid reflux has not improved asthma control in published studies. There is substantial population variability regarding metabolism of and response to proton pump inhibitors based on metabolizer phenotype. How metabolizer phenotype affects asthma responses to acid blockage is not known. To determine how metabolizer phenotype based on genetic analysis of CYP2C19 affects asthma control among children treated with a proton pump inhibitor. Asthma control as measured by the Asthma Control Questionnaire (ACQ) and other questionnaires from a 6-month clinical trial of lansoprazole in children with asthma was analyzed for associations with surrogates of lansoprazole exposure (based on treatment assignment and metabolizer phenotype). Groups included placebo-treated children; lansoprazole-treated extensive metabolizers (EMs); and lansoprazole-treated poor metabolizers (PMs). Metabolizer phenotypes were based on CYP2C19 haplotypes. Carriers of the CYP2C19*2, *3, *8, *9, or *10 allele were PMs; carriers of two wild-type alleles were extensive metabolizers (EMs). Asthma control through most of the treatment period was unaffected by lansoprazole exposure or metabolizer phenotype. At 6 months, PMs displayed significantly worsened asthma control compared with EMs (+0.16 vs. -0.13; P = 0.02) and placebo-treated children (+0.16 vs. -0.23; P lansoprazole-treated PMs. Children with the PM phenotype developed worse asthma control after 6 months of lansoprazole treatment for poorly controlled asthma. Increased exposure to proton pump inhibitor may worsen asthma control by altering responses to respiratory infections. Clinical trial registered with www.clinicaltrials.gov (NCT00604851).

  20. A “Forward Genomics” Approach Links Genotype to Phenotype using Independent Phenotypic Losses among Related Species

    Directory of Open Access Journals (Sweden)

    Michael Hiller

    2012-10-01

    Full Text Available Genotype-phenotype mapping is hampered by countless genomic changes between species. We introduce a computational “forward genomics” strategy that—given only an independently lost phenotype and whole genomes—matches genomic and phenotypic loss patterns to associate specific genomic regions with this phenotype. We conducted genome-wide screens for two metabolic phenotypes. First, our approach correctly matches the inactivated Gulo gene exactly with the species that lost the ability to synthesize vitamin C. Second, we attribute naturally low biliary phospholipid levels in guinea pigs and horses to the inactivated phospholipid transporter Abcb4. Human ABCB4 mutations also result in low phospholipid levels but lead to severe liver disease, suggesting compensatory mechanisms in guinea pig and horse. Our simulation studies, counts of independent changes in existing phenotype surveys, and the forthcoming availability of many new genomes all suggest that forward genomics can be applied to many phenotypes, including those relevant for human evolution and disease.

  1. Altered Global Signal Topography in Schizophrenia.

    Science.gov (United States)

    Yang, Genevieve J; Murray, John D; Glasser, Matthew; Pearlson, Godfrey D; Krystal, John H; Schleifer, Charlie; Repovs, Grega; Anticevic, Alan

    2017-11-01

    Schizophrenia (SCZ) is a disabling neuropsychiatric disease associated with disruptions across distributed neural systems. Resting-state functional magnetic resonance imaging has identified extensive abnormalities in the blood-oxygen level-dependent signal in SCZ patients, including alterations in the average signal over the brain-i.e. the "global" signal (GS). It remains unknown, however, if these "global" alterations occur pervasively or follow a spatially preferential pattern. This study presents the first network-by-network quantification of GS topography in healthy subjects and SCZ patients. We observed a nonuniform GS contribution in healthy comparison subjects, whereby sensory areas exhibited the largest GS component. In SCZ patients, we identified preferential GS representation increases across association regions, while sensory regions showed preferential reductions. GS representation in sensory versus association cortices was strongly anti-correlated in healthy subjects. This anti-correlated relationship was markedly reduced in SCZ. Such shifts in GS topography may underlie profound alterations in neural information flow in SCZ, informing development of pharmacotherapies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Changes in Muscle Metabolism are Associated with Phenotypic Variability in Golden Retriever Muscular Dystrophy




    Science.gov (United States)

    Nghiem, Peter P.; Bello, Luca; Stoughton, William B.; López, Sara Mata; Vidal, Alexander H.; Hernandez, Briana V.; Hulbert, Katherine N.; Gourley, Taylor R.; Bettis, Amanda K.; Balog-Alvarez, Cynthia J.; Heath-Barnett, Heather; Kornegay, Joe N.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level. Our laboratory is particularly interested in muscle metabolism changes in dystrophin-deficient muscle. We identified several metabolic alterations, including myofiber type switching from fast (type II) to slow (type I), reduced glycolytic enzyme expression, reduced and morphologically abnormal mitochondria, and differential AMP-kinase phosphorylation (activation) between hypertrophied and wasted muscle. We hypothesize that muscle metabolism changes are, in part, responsible for phenotypic variability in GRMD. Pharmacological therapies aimed at modulating muscle metabolism can be tested in GRMD dogs for efficacy. PMID:28955176

  3. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.

    Science.gov (United States)

    Masino, Aaron J; Dechene, Elizabeth T; Dulik, Matthew C; Wilkens, Alisha; Spinner, Nancy B; Krantz, Ian D; Pennington, Jeffrey W; Robinson, Peter N; White, Peter S

    2014-07-21

    Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype. To assist interpretation, we implemented an algorithm that ranks a given set of genes relative to patient phenotype. The algorithm orders genes by the semantic similarity computed between phenotypic descriptors associated with each gene and those describing the patient. Phenotypic descriptor terms are taken from the Human Phenotype Ontology (HPO) and semantic similarity is derived from each term's information content. Model validation was performed via simulation and with clinical data. We simulated 33 Mendelian diseases with 100 patients per disease. We modeled clinical conditions by adding noise and imprecision, i.e. phenotypic terms unrelated to the disease and terms less specific than the actual disease terms. We ranked the causative gene against all 2488 HPO annotated genes. The median causative gene rank was 1 for the optimal and noise cases, 12 for the imprecision case, and 60 for the imprecision with noise case. Additionally, we examined a clinical cohort of subjects with hearing impairment. The disease gene median rank was 22. However, when also considering the patient's exome data and filtering non-exomic and common variants, the median rank improved to 3. Semantic similarity can rank a causative gene highly within a gene list relative to patient phenotype characteristics, provided that imprecision is mitigated. The clinical case results suggest that phenotype rank combined with variant analysis provides significant improvement over the individual approaches. We expect that this combined prioritization approach may increase accuracy and decrease effort for

  4. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells.

    Science.gov (United States)

    Bernal, Giovanna M; Peterson, Daniel A

    2011-06-01

    Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  5. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas.

    Science.gov (United States)

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko; Kanai, Yae

    2015-12-01

    CpG-island methylator phenotype (CIMP)-positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP-positive renal carcinogenesis. Genome (whole-exome and copy number), transcriptome and proteome (two-dimensional image converted analysis of liquid chromatography-mass spectrometry) analyses were performed using tissue specimens of 87 CIMP-negative and 14 CIMP-positive clear cell RCCs and corresponding specimens of non-cancerous renal cortex. Genes encoding microtubule-associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non-synonymous single-nucleotide mutations and insertions/deletions) in CIMP-positive RCCs, whereas CIMP-negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP-positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the "The metaphase checkpoint (p = 1.427 × 10(-6))," "Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10(-6))" and "Spindle assembly and chromosome separation (p = 9.260 × 10(-6))" pathways. Quantitative RT-PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP-positive than in CIMP-negative RCCs. All CIMP-positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP-positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP-positive RCCs.

  6. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral

    KAUST Repository

    Liew, Yi Jin; Zoccola, Didier; Li, Yong; Tambutté , Eric; Venn, Alexander A.; Michell, Craig; Cui, Guoxin; Deutekom, Eva S.; Kaandorp, Jaap A.; Voolstra, Christian R.; Forê t, Sylvain; Allemand, Denis; Tambutté , Sylvie; Aranda, Manuel

    2017-01-01

    Over the last century, the anthropogenic production of CO2 has led to warmer (+0.74 C) and more acidic (-0.1 pH) oceans, resulting in increasingly frequent and severe mass bleaching events worldwide that precipitate global coral reef decline. To mitigate this decline, proposals to augment the stress tolerance of corals through genetic and non-genetic means have been gaining traction. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been observed in corals, its potential role in phenotypic plasticity has not yet been described. Here, we show that, similar to findings in mice, DNA methylation significantly reduces spurious transcription in the Red Sea coral Stylophora pistillata, suggesting the evolutionary conservation of this essential mechanism in corals. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the maintenance of linear extension rates under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization, providing corals with an additional mechanism to cope with climate change.

  7. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral

    KAUST Repository

    Liew, Yi Jin

    2017-09-14

    Over the last century, the anthropogenic production of CO2 has led to warmer (+0.74 C) and more acidic (-0.1 pH) oceans, resulting in increasingly frequent and severe mass bleaching events worldwide that precipitate global coral reef decline. To mitigate this decline, proposals to augment the stress tolerance of corals through genetic and non-genetic means have been gaining traction. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been observed in corals, its potential role in phenotypic plasticity has not yet been described. Here, we show that, similar to findings in mice, DNA methylation significantly reduces spurious transcription in the Red Sea coral Stylophora pistillata, suggesting the evolutionary conservation of this essential mechanism in corals. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the maintenance of linear extension rates under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization, providing corals with an additional mechanism to cope with climate change.

  8. Phenotypic and molecular characterizations of Yersinia pestis isolates from Kazakhstan and adjacent regions.

    Science.gov (United States)

    Lowell, Jennifer L; Zhansarina, Aigul; Yockey, Brook; Meka-Mechenko, Tatyana; Stybayeva, Gulnaz; Atshabar, Bakyt; Nekrassova, Larissa; Tashmetov, Rinat; Kenghebaeva, Kuralai; Chu, May C; Kosoy, Michael; Antolin, Michael F; Gage, Kenneth L

    2007-01-01

    Recent interest in characterizing infectious agents associated with bioterrorism has resulted in the development of effective pathogen genotyping systems, but this information is rarely combined with phenotypic data. Yersinia pestis, the aetiological agent of plague, has been well defined genotypically on local and worldwide scales using multi-locus variable number tandem repeat analysis (MLVA), with emphasis on evolutionary patterns using old isolate collections from countries where Y. pestis has existed the longest. Worldwide MLVA studies are largely based on isolates that have been in long-term laboratory culture and storage, or on field material from parts of the world where Y. pestis has potentially circulated in nature for thousands of years. Diversity in these isolates suggests that they may no longer represent the wild-type organism phenotypically, including the possibility of altered pathogenicity. This study focused on the phenotypic and genotypic properties of 48 Y. pestis isolates collected from 10 plague foci in and bordering Kazakhstan. Phenotypic characterization was based on diagnostic tests typically performed in reference laboratories working with Y. pestis. MLVA was used to define the genotypic relationships between the central-Asian isolates and a group of North American isolates, and to examine Kazakh Y. pestis diversity according to predefined plague foci and on an intermediate geographical scale. Phenotypic properties revealed that a large portion of this collection lacks one or more plasmids necessary to complete the blocked flea/mammal transmission cycle, has lost Congo red binding capabilities (Pgm-), or both. MLVA analysis classified isolates into previously identified biovars, and in some cases groups of isolates collected within the same plague focus formed a clade. Overall, MLVA did not distinguish unique phylogeographical groups of Y. pestis isolates as defined by plague foci and indicated higher genetic diversity among older biovars.

  9. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  10. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Janani Iyer

    2016-05-01

    Full Text Available About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net, to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions.

  11. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  12. New mutation of the MPZ gene in a family with the Dejerine-Sottas disease phenotype.

    Science.gov (United States)

    Floroskufi, Paraskewi; Panas, Marios; Karadima, Georgia; Vassilopoulos, Demetris

    2007-05-01

    Charcot-Marie-Tooth disease type 1B is associated with mutations in the myelin protein zero gene. In the present study a new myelin protein zero gene mutation (c.89T>C,Ile30Thr) was detected in a family with the Dejerine-Sottas disease phenotype. The results support the hypothesis that severe, early-onset neuropathy may be related to either an alteration of a conserved amino acid or a disruption of the tertiary structure of myelin protein zero.

  13. Effect of liver disease on dextromethorphan oxidation capacity and phenotype: a study in 107 patients.

    OpenAIRE

    Larrey, D; Babany, G; Tinel, M; Freneaux, E; Amouyal, G; Habersetzer, F; Letteron, P; Pessayre, D

    1989-01-01

    1. The O-demethylation of dextromethorphan to dextrorphan exhibits a genetically-controlled polymorphism, co-segregating with that of debrisoquine hydroxylation. Dextromethorphan has been proposed as a test compound to assess drug oxidation polymorphism. 2. We studied the effects of liver disease of varying severity on dextromethorphan oxidation capacity. Phenotyping was performed using the urinary dextromethorphan/dextrorphan metabolic ratio after oral administration of 40 mg dextromethorpha...

  14. Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster

    Science.gov (United States)

    Mishra, Monalisa; Sabat, Debabrat; Ekka, Basanti; Sahu, Swetapadma; P, Unnikannan; Dash, Priyabrat

    2017-08-01

    Zirconia nanoparticles (ZrO2 NPs) have been extensively used in teeth and bone implants and thus get a chance to interact with the physiological system. The current study investigated the oral administration of various concentrations of ZrO2 NPs synthesized by the hydrothermal method (0.25 to 5.0 mg L-1) on Drosophila physiology and behaviour. The size of the currently studied nanoparticle varies from 10 to 12 nm. ZrO2 NPs accumulated within the gut in a concentration-dependent manner and generate reactive oxygen species (ROS) only at 2.5 and 5.0 mg L-1 concentrations. ROS was detected by nitroblue tetrazolium (NBT) assay and 2',7'-dichlorofluorescein http://www.ncbi.nlm.nih.gov/pubmed/20370560 (H2DCF) staining. The ROS toxicity alters the larval gut structure as revealed by DAPI staining. The NP stress of larvae affects the Drosophila development by distressing pupa count and varying the phenotypic changes in sensory organs (eye, thorax bristle, wings). Besides phenotypic changes, flawed climbing behaviour against gravity was seen in ZrO2 NP-treated flies. All together, for the first time, we have reported that a ROS-mediated ZrO2 NP toxicity alters neuronal development and functioning using Drosophila as a model organism. [Figure not available: see fulltext.

  15. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we...... studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc(-/-) mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc(-/-) mice. MSCs and osteoprogenitors isolated from Terc(-l-) mice exhibited intrinsic defects...

  16. Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis.

    Science.gov (United States)

    Hao, Xiaoke; Li, Chanxiu; Yan, Jingwen; Yao, Xiaohui; Risacher, Shannon L; Saykin, Andrew J; Shen, Li; Zhang, Daoqiang

    2017-07-15

    Neuroimaging genetics identifies the relationships between genetic variants (i.e., the single nucleotide polymorphisms) and brain imaging data to reveal the associations from genotypes to phenotypes. So far, most existing machine-learning approaches are widely used to detect the effective associations between genetic variants and brain imaging data at one time-point. However, those associations are based on static phenotypes and ignore the temporal dynamics of the phenotypical changes. The phenotypes across multiple time-points may exhibit temporal patterns that can be used to facilitate the understanding of the degenerative process. In this article, we propose a novel temporally constrained group sparse canonical correlation analysis (TGSCCA) framework to identify genetic associations with longitudinal phenotypic markers. The proposed TGSCCA method is able to capture the temporal changes in brain from longitudinal phenotypes by incorporating the fused penalty, which requires that the differences between two consecutive canonical weight vectors from adjacent time-points should be small. A new efficient optimization algorithm is designed to solve the objective function. Furthermore, we demonstrate the effectiveness of our algorithm on both synthetic and real data (i.e., the Alzheimer's Disease Neuroimaging Initiative cohort, including progressive mild cognitive impairment, stable MCI and Normal Control participants). In comparison with conventional SCCA, our proposed method can achieve strong associations and discover phenotypic biomarkers across multiple time-points to guide disease-progressive interpretation. The Matlab code is available at https://sourceforge.net/projects/ibrain-cn/files/ . dqzhang@nuaa.edu.cn or shenli@iu.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy.

    Science.gov (United States)

    Mack, S C; Witt, H; Piro, R M; Gu, L; Zuyderduyn, S; Stütz, A M; Wang, X; Gallo, M; Garzia, L; Zayne, K; Zhang, X; Ramaswamy, V; Jäger, N; Jones, D T W; Sill, M; Pugh, T J; Ryzhova, M; Wani, K M; Shih, D J H; Head, R; Remke, M; Bailey, S D; Zichner, T; Faria, C C; Barszczyk, M; Stark, S; Seker-Cin, H; Hutter, S; Johann, P; Bender, S; Hovestadt, V; Tzaridis, T; Dubuc, A M; Northcott, P A; Peacock, J; Bertrand, K C; Agnihotri, S; Cavalli, F M G; Clarke, I; Nethery-Brokx, K; Creasy, C L; Verma, S K; Koster, J; Wu, X; Yao, Y; Milde, T; Sin-Chan, P; Zuccaro, J; Lau, L; Pereira, S; Castelo-Branco, P; Hirst, M; Marra, M A; Roberts, S S; Fults, D; Massimi, L; Cho, Y J; Van Meter, T; Grajkowska, W; Lach, B; Kulozik, A E; von Deimling, A; Witt, O; Scherer, S W; Fan, X; Muraszko, K M; Kool, M; Pomeroy, S L; Gupta, N; Phillips, J; Huang, A; Tabori, U; Hawkins, C; Malkin, D; Kongkham, P N; Weiss, W A; Jabado, N; Rutka, J T; Bouffet, E; Korbel, J O; Lupien, M; Aldape, K D; Bader, G D; Eils, R; Lichter, P; Dirks, P B; Pfister, S M; Korshunov, A; Taylor, M D

    2014-02-27

    Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.

  18. Effect of Pelargonidin isolated from Ficus benghalensis L. on phenotypic changes in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Uday Kundap

    2017-02-01

    Based on the results obtained, we infer that Pelargonidin can exhibit phenotypic anti-angiogenic variations in embryonic stage of fish embryos and it can be applied in future for exploration of its anti-angiogenic potential. Furthermore, Pelargonidin could serve as a candidate drug for in vivo inhibition of angiogenesis and can be applied for the treatment of neovascular diseases and tumor.

  19. Offspring of prenatal IV nicotine exposure exhibit increased sensitivity to the reinforcing effects of methamphetamine

    Directory of Open Access Journals (Sweden)

    Steven Brown Harrod

    2012-06-01

    Full Text Available Maternal smoking during pregnancy is associated with increased substance abuse in offspring. Preclinical research shows that in utero exposure to nicotine, the primary psychoactive compound in tobacco smoke, influences the neurodevelopment of reward systems and alters motivated behavior in offspring. The present study determined if prenatal nicotine (PN exposure altered the sensitivity to the reinforcing and aversive effects of methamphetamine (METH in offspring using a low dose, intravenous (IV exposure method. Pregnant dams were administered nicotine (0.05 mg/kg/injection or prenatal saline (PS 3×/day on gestational days 8-21, and adult offspring were tested using METH self-administration (experiment 1 or METH-induced conditioned taste aversion (CTA; experiment 2 procedures. For METH self-administration, animals were trained to respond for IV METH (0.05 mg/kg/injection; fixed-ratio 3 and they were tested on varying doses the reinforcer (0.0005-1.0 mg/kg/injection. For METH CTA, rats received three saccharin and METH pairings (0, 0.3, or 0.5 mg/kg, sc followed by fourteen daily extinction trials. Experiment 1: PN and PS animals exhibited inverted U-shaped dose-response curves; however, the PN animal’s curve was shifted to the left, suggesting PN animals were more sensitive to the reinforcing effects of METH. Experiment 2: METH CTA was acquired in a dose-dependent manner and the factor of PN exposure was not related to the acquisition or extinction of METH-induced CTA. There were no sex differences in either experiment. These results indicate that adult offspring of IV PN exposure exhibited altered motivation for the reinforcing effects of METH. This suggests that PN exposure, via maternal smoking, will alter the reinforcing effects of METH during later stages of development, and furthermore, will influence substance use vulnerability in adult human offspring.

  20. Neuroanatomic alterations and social and communication deficits in monozygotic twins discordant for autism disorder.

    Science.gov (United States)

    Mitchell, Shanti R; Reiss, Allan L; Tatusko, Danielle H; Ikuta, Ichiro; Kazmerski, Dana B; Botti, Jo-Anna C; Burnette, Courtney P; Kates, Wendy R

    2009-08-01

    Investigating neuroanatomic differences in monozygotic twins who are discordant for autism can help unravel the relative contributions of genetics and environment to this pervasive developmental disorder. The authors used magnetic resonance imaging (MRI) to investigate several brain regions of interest in monozygotic twins who varied in degree of phenotypic discordance for narrowly defined autism. The subjects were 14 pairs of monozygotic twins between the ages of 5 and 14 years old and 14 singleton age- and gender-matched typically developing comparison subjects. The monozygotic twin group was a cohort of children with narrowly defined autistic deficits and their co-twins who presented with varying levels of autistic deficits. High-resolution MRIs were acquired and volumetric/area measurements obtained for the frontal lobe, amygdala, and hippocampus and subregions of the prefrontal cortex, corpus callosum, and cerebellar vermis. No neurovolumetric/area differences were found between twin pairs. Relative to typically developing comparison subjects, dorsolateral prefrontal cortex volumes and anterior areas of the corpus callosum were significantly altered in autistic twins, and volumes of the posterior vermis were altered in both autistic twins and co-twins. Intraclass correlation analysis of brain volumes between children with autism and their co-twins indicated that the degree of within-pair neuroanatomic concordance varied with brain region. In the group of subjects with narrowly defined autism only, dorsolateral prefrontal cortex, amygdala, and posterior vermis volumes were significantly associated with the severity of autism based on scores from the Autism Diagnostic Observation Schedule-Generic. These findings support previous research demonstrating alterations in the prefrontal cortex, corpus callosum, and posterior vermis in children with autism and further suggest that alterations are associated with the severity of the autism phenotype. Continued research

  1. Clinical phenotypes of asthma

    NARCIS (Netherlands)

    Bel, Elisabeth H.

    2004-01-01

    PURPOSE OF REVIEW: Asthma is a phenotypically heterogeneous disorder and, over the years, many different clinical subtypes of asthma have been described. A precise definition of asthma phenotypes is now becoming more and more important, not only for a better understanding of pathophysiologic

  2. Assessment of metabolic phenotypic variability in children’s urine using 1H NMR spectroscopy

    Science.gov (United States)

    Maitre, Léa; Lau, Chung-Ho E.; Vizcaino, Esther; Robinson, Oliver; Casas, Maribel; Siskos, Alexandros P.; Want, Elizabeth J.; Athersuch, Toby; Slama, Remy; Vrijheid, Martine; Keun, Hector C.; Coen, Muireann

    2017-04-01

    The application of metabolic phenotyping in clinical and epidemiological studies is limited by a poor understanding of inter-individual, intra-individual and temporal variability in metabolic phenotypes. Using 1H NMR spectroscopy we characterised short-term variability in urinary metabolites measured from 20 children aged 8-9 years old. Daily spot morning, night-time and pooled (50:50 morning and night-time) urine samples across six days (18 samples per child) were analysed, and 44 metabolites quantified. Intraclass correlation coefficients (ICC) and mixed effect models were applied to assess the reproducibility and biological variance of metabolic phenotypes. Excellent analytical reproducibility and precision was demonstrated for the 1H NMR spectroscopic platform (median CV 7.2%). Pooled samples captured the best inter-individual variability with an ICC of 0.40 (median). Trimethylamine, N-acetyl neuraminic acid, 3-hydroxyisobutyrate, 3-hydroxybutyrate/3-aminoisobutyrate, tyrosine, valine and 3-hydroxyisovalerate exhibited the highest stability with over 50% of variance specific to the child. The pooled sample was shown to capture the most inter-individual variance in the metabolic phenotype, which is of importance for molecular epidemiology study design. A substantial proportion of the variation in the urinary metabolome of children is specific to the individual, underlining the potential of such data to inform clinical and exposome studies conducted early in life.

  3. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  4. Arachidonic Acid Metabolism Pathway Is Not Only Dominant in Metabolic Modulation but Associated With Phenotypic Variation After Acute Hypoxia Exposure

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2018-03-01

    Full Text Available Background: The modulation of arachidonic acid (AA metabolism pathway is identified in metabolic alterations after hypoxia exposure, but its biological function is controversial. We aimed at integrating plasma metabolomic and transcriptomic approaches to systematically explore the roles of the AA metabolism pathway in response to acute hypoxia using an acute mountain sickness (AMS model.Methods: Blood samples were obtained from 53 enrolled subjects before and after exposure to high altitude. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and RNA sequencing were separately performed for metabolomic and transcriptomic profiling, respectively. Influential modules comprising essential metabolites and genes were identified by weighted gene co-expression network analysis (WGCNA after integrating metabolic information with phenotypic and transcriptomic datasets, respectively.Results: Enrolled subjects exhibited diverse response manners to hypoxia. Combined with obviously altered heart rate, oxygen saturation, hemoglobin, and Lake Louise Score (LLS, metabolomic profiling detected that 36 metabolites were highly related to clinical features in hypoxia responses, out of which 27 were upregulated and nine were downregulated, and could be mapped to AA metabolism pathway significantly. Integrated analysis of metabolomic and transcriptomic data revealed that these dominant molecules showed remarkable association with genes in gas transport incapacitation and disorders of hemoglobin metabolism pathways, such as ALAS2, HEMGN. After detailed description of AA metabolism pathway, we found that the molecules of 15-d-PGJ2, PGA2, PGE2, 12-O-3-OH-LTB4, LTD4, LTE4 were significantly up-regulated after hypoxia stimuli, and increased in those with poor response manner to hypoxia particularly. Further analysis in another cohort showed that genes in AA metabolism pathway such as PTGES, PTGS1, GGT1, TBAS1 et al. were excessively

  5. Is Neurofibromatosis Type 1-Noonan Syndrome a Phenotypic Result of Combined Genetic and Epigenetic Factors?

    Science.gov (United States)

    Yapijakis, Christos; Pachis, Nikos; Natsis, Stavros; Voumvourakis, Costas

    2016-01-01

    Neurofibromatosis 1-Noonan syndrome (NFNS) presents combined characteristics of both autosomal dominant disorders: NF1 and Noonan syndrome (NS). The genes causing NF1 and NS are located on different chromosomes, making it uncertain whether NFNS is a separate entity as previously suggested, or rather a clinical variation. We present a four-membered Greek family. The father was diagnosed with familial NF1 and the mother with generalized epilepsy, being under hydantoin treatment since the age of 18 years. Their two male children exhibited NFNS characteristics. The father and his sons shared R1947X mutation in the NF1 gene. The two children with NFNS phenotype presented with NF1 signs inherited from their father and fetal hydantoin syndrome-like phenotype due to exposure to that anticonvulsant during fetal development. The NFNS phenotype may be the result of both a genetic factor (mutation in the NF1 gene) and an epigenetic/environmental factor (e.g. hydantoin). Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Obesity Promotes Alterations in Iron Recycling

    Directory of Open Access Journals (Sweden)

    Marta Citelli

    2015-01-01

    Full Text Available Hepcidin is a key hormone that induces the degradation of ferroportin (FPN, a protein that exports iron from reticuloendothelial macrophages and enterocytes. The aim of the present study was to experimentally evaluate if the obesity induced by a high-fat diet (HFD modifies the expression of FPN in macrophages and enterocytes, thus altering the iron bioavailability. In order to directly examine changes associated with iron metabolism in vivo, C57BL/6J mice were fed either a control or a HFD. Serum leptin levels were evaluated. The hepcidin, divalent metal transporter-1 (DMT1, FPN and ferritin genes were analyzed by real-time polymerase chain reaction. The amount of iron present in both the liver and spleen was determined by flame atomic absorption spectrometry. Ferroportin localization within reticuloendothelial macrophages was observed by immunofluorescence microscopy. Obese animals were found to exhibit increased hepcidin gene expression, while iron accumulated in the spleen and liver. They also exhibited changes in the sublocation of splenic cellular FPN and a reduction in the FPN expression in the liver and the spleen, while no changes were observed in enterocytes. Possible explanations for the increased hepcidin expression observed in HFD animals may include: increased leptin levels, the liver iron accumulation or endoplasmic reticulum (ER stress. Together, the results indicated that obesity promotes changes in iron bioavailability, since it altered the iron recycling function.

  7. Altered genotypic and phenotypic frequencies of aphid populations under enriched CO2 and O3 atmospheres

    Science.gov (United States)

    Edward B. Mondor; Michelle N. Tremblay; Caroline S. Awmack; Richard L. Lindroth

    2005-01-01

    Environmental change is anticipated to negatively affect both plant and animal populations. As abiotic factors rapidly change habitat suitability, projections range from altered genetic diversity to wide-spread species loss. Here, we assess the degree to which changes in atmospheric composition associated with environmental change will influence not only the abundance...

  8. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Hatta, Mitsutoki; Naganuma, Kaori; Kato, Kenichi; Yamazaki, Jun

    2015-01-01

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  9. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan); Naganuma, Kaori [Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka (Japan); Kato, Kenichi; Yamazaki, Jun [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan)

    2015-12-04

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  10. Induction of an altered lipid phenotype by two cancer promoting treatments in rat liver.

    Science.gov (United States)

    Riedel, S; Abel, S; Swanevelder, S; Gelderblom, W C A

    2015-04-01

    Changes in lipid metabolism have been associated with tumor promotion in rat liver. Similarities and differences of lipid parameters were investigated using the mycotoxin fumonisin B1 (FB1) and the 2-acetylaminofluorene/partial hepatectomy (AAF/PH) treatments as cancer promoters in rat liver. A typical lipid phenotype was observed, including increased membranal phosphatidylethanolamine (PE) and cholesterol content, increased levels of C16:0 and monounsaturated fatty acids in PE and phosphatidylcholine (PC), as well as a decrease in C18:0 and long-chained polyunsaturated fatty acids in the PC fraction. The observed lipid changes, which likely resulted in changes in membrane structure and fluidity, may represent a growth stimulus exerted by the cancer promoters that could provide initiated cells with a selective growth advantage. This study provided insight into complex lipid profiles induced by two different cancer promoting treatments and their potential role in the development of hepatocyte nodules, which can be used to identify targets for the development of chemopreventive strategies against cancer promotion in the liver. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature.

    Science.gov (United States)

    Brunetti, Orazio; Imbrici, Paola; Botti, Fabio Massimo; Pettorossi, Vito Enrico; D'Adamo, Maria Cristina; Valentino, Mario; Zammit, Christian; Mora, Marina; Gibertini, Sara; Di Giovanni, Giuseppe; Muscat, Richard; Pessia, Mauro

    2012-09-01

    Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K(+) channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1(V408A/+)). Here, we investigated the neuromuscular transmission of Kv1.1(V408A/+) ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve-muscle from Kv1.1(+/+) and Kv1.1(V408A/+) mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca(2+) signals that occurred abnormally only in preparations dissected from Kv1.1(V408A/+) mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca(2+) homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K(+) channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during

  12. Fear and Reward Circuit Alterations in Pediatric CRPS.

    Science.gov (United States)

    Simons, Laura E; Erpelding, Nathalie; Hernandez, Jessica M; Serrano, Paul; Zhang, Kunyu; Lebel, Alyssa A; Sethna, Navil F; Berde, Charles B; Prabhu, Sanjay P; Becerra, Lino; Borsook, David

    2015-01-01

    In chronic pain, a number of brain regions involved in emotion (e.g., amygdala, hippocampus, nucleus accumbens, insula, anterior cingulate, and prefrontal cortex) show significant functional and morphometric changes. One phenotypic manifestation of these changes is pain-related fear (PRF). PRF is associated with profoundly altered behavioral adaptations to chronic pain. For example, patients with a neuropathic pain condition known as complex regional pain syndrome (CRPS) often avoid use of and may even neglect the affected body area(s), thus maintaining and likely enhancing PRF. These changes form part of an overall maladaptation to chronic pain. To examine fear-related brain circuit alterations in humans, 20 pediatric patients with CRPS and 20 sex- and age-matched healthy controls underwent functional magnetic resonance imaging (fMRI) in response to a well-established fearful faces paradigm. Despite no significant differences on self-reported emotional valence and arousal between the two groups, CRPS patients displayed a diminished response to fearful faces in regions associated with emotional processing compared to healthy controls. Additionally, increased PRF levels were associated with decreased activity in a number of brain regions including the right amygdala, insula, putamen, and caudate. Blunted activation in patients suggests that (a) individuals with chronic pain may have deficits in cognitive-affective brain circuits that may represent an underlying vulnerability or consequence to the chronic pain state; and (b) fear of pain may contribute and/or maintain these brain alterations. Our results shed new light on altered affective circuits in patients with chronic pain and identify PRF as a potentially important treatment target.

  13. Genotype-phenotype associations in obesity dependent on definition of the obesity phenotype.

    Science.gov (United States)

    Kring, Sofia Inez Iqbal; Larsen, Lesli Hingstrup; Holst, Claus; Toubro, Søren; Hansen, Torben; Astrup, Arne; Pedersen, Oluf; Sørensen, Thorkild I A

    2008-01-01

    In previous studies of associations of variants in the genes UCP2, UCP3, PPARG2, CART, GRL, MC4R, MKKS, SHP, GHRL, and MCHR1 with obesity, we have used a case-control approach with cases defined by a threshold for BMI. In the present study, we assess the association of seven abdominal, peripheral, and overall obesity phenotypes, which were analyzed quantitatively, and thirteen candidate gene polymorphisms in these ten genes in the same cohort. Obese Caucasian men (n = 234, BMI >or= 31.0 kg/m(2)) and a randomly sampled non-obese group (n = 323), originally identified at the draft board examinations, were re-examined at median ages of 47.0 or 49.0 years by anthropometry and DEXA scanning. Obesity phenotypes included BMI, fat body mass index, waist circumference, waist for given BMI, intra-abdominal adipose tissue, hip circumference and lower body fat mass (%). Using logistic regression models, we estimated the odds for defined genotypes (dominant or recessive genetic transmission) in relation to z-scores of the phenotypes. The minor (rare) allele for SHP 512G>C (rs6659176) was associated with increased hip circumference. The minor allele for UCP2 Ins45bp was associated with increased BMI, increased abdominal obesity, and increased hip circumference. The minor allele for UCP2 -866G>A (rs6593669) was associated with borderline increased fat body mass index. The minor allele for MCHR1 100213G>A (rs133072) was associated with reduced abdominal obesity. None of the other genotype-phenotype combinations showed appreciable associations. If replicated in independent studies with focus on the specific phenotypes, our explorative studies suggest significant associations between some candidate gene polymorphisms and distinct obesity phenotypes, predicting beneficial and detrimental effects, depending on compartments for body fat accumulation. Copyright 2008 S. Karger AG, Basel.

  14. Generation of Infectious Poliovirus with Altered Genetic Information from Cloned cDNA.

    Science.gov (United States)

    Bujaki, Erika

    2016-01-01

    The effect of specific genetic alterations on virus biology and phenotype can be studied by a great number of available assays. The following method describes the basic protocol to generate infectious poliovirus with altered genetic information from cloned cDNA in cultured cells.The example explained here involves generation of a recombinant poliovirus genome by simply replacing a portion of the 5' noncoding region with a synthetic gene by restriction cloning. The vector containing the full length poliovirus genome and the insert DNA with the known mutation(s) are cleaved for directional cloning, then ligated and transformed into competent bacteria. The recombinant plasmid DNA is then propagated in bacteria and transcribed to RNA in vitro before RNA transfection of cultured cells is performed. Finally, viral particles are recovered from the cell culture.

  15. Hypertriglyceridemic waist phenotype in primary health care: comparison of two cutoff points

    Directory of Open Access Journals (Sweden)

    Braz MAD

    2017-09-01

    Full Text Available Marina Augusta Dias Braz,1 Jallyne Nunes Vieira,1 Flayane Oliveira Gomes,1 Priscilla Rafaella da Silva,1 Ohanna Thays de Medeiros Santos,1 Ilanna Marques Gomes da Rocha,2 Iasmin Matias de Sousa,2 Ana Paula Trussardi Fayh2 1Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte (UFRN, Santa Cruz, 2Department of Nutrition, Centro de Ciências da Saúde, UFRN, Natal, Rio Grande do Norte, Brazil Objective: We aimed to evaluate the prevalence of hypertriglyceridemic waist (HTGW phenotype among users of primary health care using two different cutoff points used in the literature. Methods: We evaluated adults and elderly individuals of both sexes who attended the same level of primary health care. HTGW phenotype was determined with measurements of waist circumference (WC and triglyceride levels and compared using cutoff points proposed by the National Cholesterol Education Program – NCEP/ATP III (WC ≥102 cm for men and ≥88 cm for women; triglyceride levels ≥150 mg/dL for both sexes and by Lemieux et al (WC ≥90 cm for men and ≥85 cm for women; triglyceride levels ≥177 mg/dL for both. Results: Within the sample of 437 individuals, 73.7% was female. The prevalence of HTGW phenotype was high and statistically different with the use of different cutoff points from the literature. The prevalence was higher using the NCEP/ATP III criteria compared to those proposed by Lemieux et al (36.2% and 32.5%, respectively, p<0.05. Individuals with the presence of the phenotype also presented alterations in other traditional cardiovascular risk markers. Conclusion: The HTGW phenotype identified high prevalence of cardiovascular risk in the population, with higher cutoff points from the NCEP/ATP III criteria. The difference in frequency of risk alerts us to the need to establish cutoff points for the Brazilian population. Keywords: abdominal obesity, cardiovascular disease, dyslipidemia, cardiovascular risk

  16. The phenotypic spectrum of ARHGEF9 includes intellectual disability, focal epilepsy and febrile seizures.

    Science.gov (United States)

    Klein, Karl Martin; Pendziwiat, Manuela; Eilam, Anda; Gilad, Ronit; Blatt, Ilan; Rosenow, Felix; Kanaan, Moien; Helbig, Ingo; Afawi, Zaid

    2017-07-01

    Mutations or structural genomic alterations of the X-chromosomal gene ARHGEF9 have been described in male and female patients with intellectual disability. Hyperekplexia and epilepsy were observed to a variable degree, but incompletely described. Here, we expand the phenotypic spectrum of ARHGEF9 by describing a large Ethiopian-Jewish family with epilepsy and intellectual disability. The four affected male siblings, their unaffected parents and two unaffected female siblings were recruited and phenotyped. Parametric linkage analysis was performed using SNP microarrays. Variants from exome sequencing in two affected individuals were confirmed by Sanger sequencing. All affected male siblings had febrile seizures from age 2-3 years and intellectual disability. Three developed afebrile seizures between age 7-17 years. Three showed focal seizure semiology. None had hyperekplexia. A novel ARHGEF9 variant (c.967G>A, p.G323R, NM_015185.2) was hemizygous in all affected male siblings and heterozygous in the mother. This family reveals that the phenotypic spectrum of ARHGEF9 is broader than commonly assumed and includes febrile seizures and focal epilepsy with intellectual disability in the absence of hyperekplexia or other clinically distinguishing features. Our findings suggest that pathogenic variants in ARHGEF9 may be more common than previously assumed in patients with intellectual disability and mild epilepsy.

  17. Maternal effects alter the severity of inbreeding depression in the offspring.

    Science.gov (United States)

    Pilakouta, Natalie; Smiseth, Per T

    2016-09-14

    A maternal effect is a causal influence of the maternal phenotype on the offspring phenotype over and above any direct effects of genes. There is abundant evidence that maternal effects can have a major impact on offspring fitness. Yet, no previous study has investigated the potential role of maternal effects in influencing the severity of inbreeding depression in the offspring. Inbreeding depression is a reduction in the fitness of inbred offspring relative to outbred offspring. Here, we tested whether maternal effects due to body size alter the magnitude of inbreeding depression in the burying beetle Nicrophorus vespilloides We found that inbreeding depression in larval survival was more severe for offspring of large females than offspring of small females. This might be due to differences in how small and large females invest in an inbred brood because of their different prospects for future breeding opportunities. To our knowledge, this is the first evidence for a causal effect of the maternal phenotype on the severity of inbreeding depression in the offspring. In natural populations that are subject to inbreeding, maternal effects may drive variation in inbreeding depression and therefore contribute to variation in the strength and direction of selection for inbreeding avoidance. © 2016 The Author(s).

  18. Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates

    Directory of Open Access Journals (Sweden)

    Spadafora Domenico

    2007-04-01

    Full Text Available Abstract Background Clinical isolates of the gastric pathogen Helicobacter pylori display a high level of genetic macro- and microheterogeneity, featuring a panmictic, rather than clonal structure. The ability of H. pylori to survive the stomach acid is due, in part, to the arginase-urease enzyme system. Arginase (RocF hydrolyzes L-arginine to L-ornithine and urea, and urease hydrolyzes urea to carbon dioxide and ammonium, which can neutralize acid. Results The degree of variation in arginase was explored at the DNA sequence, enzyme activity and protein expression levels. To this end, arginase activity was measured from 73 minimally-passaged clinical isolates and six laboratory-adapted strains of H. pylori. The rocF gene from 21 of the strains was cloned into genetically stable E. coli and the enzyme activities measured. Arginase activity was found to substantially vary (>100-fold in both different H. pylori strains and in the E. coli model. Western blot analysis revealed a positive correlation between activity and amount of protein expressed in most H. pylori strains. Several H. pylori strains featured altered arginase activity upon in vitro passage. Pairwise alignments of the 21 rocF genes plus strain J99 revealed extensive microheterogeneity in the promoter region and 3' end of the rocF coding region. Amino acid S232, which was I232 in the arginase-negative clinical strain A2, was critical for arginase activity. Conclusion These studies demonstrated that H. pylori arginase exhibits extensive genotypic and phenotypic variation which may be used to understand mechanisms of microheterogeneity in H. pylori.

  19. Alteration of rod and cone function in children with Usher syndrome.

    Science.gov (United States)

    Malm, Eva; Ponjavic, Vesna; Möller, Claes; Kimberling, William J; Stone, Edwin S; Andréasson, Sten

    2011-01-01

    To evaluate the retinal function, with emphasis on phenotype and rate of progression, in infants and children with different genotypes of Usher syndrome. Fourteen children (2-10 years of age) with retinitis pigmentosa and hearing impairment were examined with full-field electroretinography (ERG) during general anesthesia, ophthalmologic examination, and genetic analysis. Five children were repeatedly examined (follow-up 5-10 years) with full-field ERG under local anesthesia and in 2 children multifocal ERG and optical coherence tomography (OCT) were performed. These results were compared to full-field ERG data from 58 children without retinal eye disorder. Six children were genotyped as Usher 1B, 2A, and 3A. Full-field ERG demonstrated early alterations corresponding to a rod-cone dystrophy in all children. A remaining rod function could be verified in the majority of the children up to 4 years of age. After 4 years of age, there was a further deterioration of the rod function; the progress was severe in Usher types 1 and 2 and moderate in Usher type 3. In all children, the cone function was moderately reduced, in a few cases almost normal. The results from the 58 children without retinal disorder confirm that full-field ERG during general anesthesia is reliable. Multifocal ERG confirmed a preserved central cone function and in OCT there were discrete structural alterations. Full-field ERG during general anesthesia in children with Usher syndrome demonstrates variable phenotypes and different degrees in rate of progression during childhood.

  20. A crucial role of ROCK for alleviation of senescence-associated phenotype.

    Science.gov (United States)

    Park, Joon Tae; Kang, Hyun Tae; Park, Chi Hyun; Lee, Young-Sam; Cho, Kyung A; Park, Sang Chul

    2018-06-01

    In our previous study, we uncovered a novel mechanism in which amelioration of Hutchinson-Gilford progeria syndrome (HGPS) phenotype is mediated by mitochondrial functional recovery upon rho-associated protein kinase (ROCK) inhibition. However, it remains elusive whether this mechanism is also applied to the amelioration of normal aging cells. In this study, we used Y-27632 and fasudil as effective ROCK inhibitors, and examined their role in senescence. We found that ROCK inhibition induced the functional recovery of the mitochondria as well as the metabolic reprogramming, which are two salient features that are altered in normal aging cells. Moreover, microarray analysis revealed that the up-regulated pathway upon ROCK inhibition is enriched for chromatin remodeling genes, which may play an important role in the alleviation of senescence-associated cell cycle arrest. Indeed, ROCK inhibition induced cellular proliferation, concomitant with the amelioration of senescent phenotype. Furthermore, the restorative effect by ROCK inhibition was observed in vivo as evidenced by the facilitated cutaneous wound healing. Taken together, our data indicate that ROCK inhibition might be utilized to ameliorate normal aging process and to treat age-related disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Behavioral phenotype relates to physiological differences in immunological and stress responsiveness in reactive and proactive birds.

    Science.gov (United States)

    Pusch, Elizabeth A; Navara, Kristen J

    2018-05-15

    It has now been demonstrated in many species that individuals display substantial variation in coping styles, generally separating into two major behavioral phenotypes that appear to be linked to the degree of physiological stress responsiveness. Laying hens are perfect examples of these dichotomous phenotypes; white laying hens are reactive, flighty, and exhibit large hormonal and behavioral responses to both acute and chronic stress, while brown laying hens are proactive, exploratory, and exhibit low hormonal and behavioral responses to stress. Given the linkages between stress physiology and many other body systems, we hypothesized that behavioral phenotype would correspond to additional physiological responses beyond the stress response, in this case, immunological responses. Because corticosterone is widely known to be immunosuppressive, we predicted that the reactive white hens would show more dampened immune responses than the proactive brown hens due to their exposure to higher levels of corticosterone throughout life. To assess immune function in white and brown hens, we compared febrile responses, corticosterone elevations, feed consumption, and egg production that occurred in response an injection of lipopolysaccharide (LPS) or saline, inflammatory responses to phytohemagglutinin (PHA) injection in the toe web, innate phagocytic activity in whole blood, and antibody responses to an injection of Sheep Red Blood Cells (SRBCs). Contrary to our predictions, white hens had significantly greater swelling of the toe web in response to PHA and showed a greater inhibition of feeding and reproductive output in response to LPS. These results indicated that reactive individuals are more reactive in both stress and immunological responsiveness. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine

    International Nuclear Information System (INIS)

    Reed, Karen R; Meniel, Valerie S; Marsh, Victoria; Cole, Alicia; Sansom, Owen J; Clarke, Alan R

    2008-01-01

    p53 is an important tumour suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated. We have conditionally deleted the Adenomatous Polyposis coli gene (Apc) from the adult murine intestine in wild type and p53 deficient environments and subsequently compared the phenotype and transcriptome profiles in both genotypes. Expression of p53 was shown to be elevated following the conditional deletion of Apc in the adult small intestine. Furthermore, p53 status was shown to impact on the transcription profile observed following Apc loss. A number of key Wnt pathway components and targets were altered in the p53 deficient environment. However, the aberrant phenotype observed following loss of Apc (rapid nuclear localisation of β-catenin, increased levels of DNA damage, nuclear atypia, perturbed cell death, proliferation, differentiation and migration) was not significantly altered by the absence of p53. p53 related feedback mechanisms regulating Wnt signalling activity are present in the intestine, and become activated following loss of Apc. However, the physiological Wnt pathway regulation by p53 appears to be overwhelmed by Apc loss and consequently the activity of these regulatory mechanisms is not sufficient to modulate the immediate phenotypes seen following Apc loss. Thus we are able to provide an explanation to the apparent contradiction that, despite having a Wnt regulatory capacity, p53 loss is not associated with early lesion development

  3. CD133+CD24lo defines a 5-Fluorouracil-resistant colon cancer stem cell-like phenotype

    Science.gov (United States)

    Paschall, Amy V.; Yang, Dafeng; Lu, Chunwan; Redd, Priscilla S.; Choi, Jeong-Hyeon; Heaton, Christopher M.; Lee, Jeffrey R.; Nayak-Kapoor, Asha; Liu, Kebin

    2016-01-01

    The chemotherapeutic agent 5-Fluorouracil (5-FU) is the most commonly used drug for patients with advanced colon cancer. However, development of resistance to 5-FU is inevitable in almost all patients. The mechanism by which colon cancer develops 5-FU resistance is still unclear. One recently proposed theory is that cancer stem-like cells underlie colon cancer 5-FU resistance, but the phenotypes of 5-FU-resistant colon cancer stem cells are still controversial. We report here that 5-FU treatment selectively enriches a subset of CD133+ colon cancer cells in vitro. 5-FU chemotherapy also increases CD133+ tumor cells in human colon cancer patients. However, sorted CD133+ colon cancer cells exhibit no increased resistance to 5-FU, and CD133 levels exhibit no correlation with colon cancer patient survival or cancer recurrence. Genome-wide analysis of gene expression between sorted CD133+ colon cancer cells and 5-FU-selected colon cancer cells identifies 207 differentially expressed genes. CD24 is one of the genes whose expression level is lower in the CD133+ and 5-FU-resistant colon cancer cells as compared to CD133+ and 5-FU-sensitive colon cancer cells. Consequently, CD133+CD24lo cells exhibit decreased sensitivity to 5-FU. Therefore, we determine that CD133+CD24lo phenotype defines 5-FU-resistant human colon cancer stem cell-like cells. PMID:27659530

  4. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  5. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder.

    Science.gov (United States)

    Coretti, Lorena; Cristiano, Claudia; Florio, Ermanno; Scala, Giovanni; Lama, Adriano; Keller, Simona; Cuomo, Mariella; Russo, Roberto; Pero, Raffaela; Paciello, Orlando; Mattace Raso, Giuseppina; Meli, Rosaria; Cocozza, Sergio; Calignano, Antonio; Chiariotti, Lorenzo; Lembo, Francesca

    2017-03-28

    Alterations of microbiota-gut-brain axis have been invoked in the pathogenesis of autism spectrum disorders (ASD). Mouse models could represent an excellent tool to understand how gut dysbiosis and related alterations may contribute to autistic phenotype. In this study we paralleled gut microbiota (GM) profiles, behavioral characteristics, intestinal integrity and immunological features of colon tissues in BTBR T + tf/J (BTBR) inbred mice, a well established animal model of ASD. Sex differences, up to date poorly investigated in animal models, were specifically addressed. Results showed that BTBR mice of both sexes presented a marked intestinal dysbiosis, alterations of behavior, gut permeability and immunological state with respect to prosocial C57BL/6j (C57) strain. Noticeably, sex-related differences were clearly detected. We identified Bacteroides, Parabacteroides, Sutterella, Dehalobacterium and Oscillospira genera as key drivers of sex-specific gut microbiota profiles associated with selected pathological traits. Taken together, our findings indicate that alteration of GM in BTBR mice shows relevant sex-associated differences and supports the use of BTBR mouse model to dissect autism associated microbiota-gut-brain axis alteration.

  6. Early Retinal Defects in Fmr1-/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    Science.gov (United States)

    Perche, Olivier; Felgerolle, Chloé; Ardourel, Maryvonne; Bazinet, Audrey; Pâris, Arnaud; Rossignol, Rafaëlle; Meyer-Dilhet, Géraldine; Mausset-Bonnefont, Anne-Laure; Hébert, Betty; Laurenceau, David; Montécot-Dubourg, Céline; Menuet, Arnaud; Bizot, Jean-Charles; Pichon, Jacques; Ranchon-Cole, Isabelle; Briault, Sylvain

    2018-01-01

    Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1 -/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1 -/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1 -/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.

  7. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.

    Science.gov (United States)

    Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J

    2015-05-12

    Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.

  8. Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Andersen, Tom; Bollerslev, Jens

    2007-01-01

    in iliac crest bone biopsies from patients with the HBM phenotype and controls. We also used retrovirus-mediated gene transduction to establish three different human mesenchymal stem cell (hMSC) strains stably expressing wildtype LRP5 (hMSC-LRP5WT), LRP5T244 (hMSC-LRP5T244, inactivation mutation leading...... to osteoporosis), or LRP5T253 (hMSC-LRP5T253, activation mutation leading to high bone mass). We characterized Wnt signaling activation using a dual luciferase assay, cell proliferation, lineage biomarkers using real-time PCR, and in vivo bone formation. Results: In bone biopsies, we found increased trabecular...... mineralized bone when implanted subcutaneously with hydroxyapatite/tricalcium phosphate in SCID/NOD mice. Conclusions: LRP5 mutations and the level of Wnt signaling determine differentiation fate of hMSCs into osteoblasts or adipocytes. Activation of Wnt signaling can thus provide a novel approach to increase...

  9. Neuronal vacuolation and spinocerebellar degeneration associated with altered neurotransmission

    Directory of Open Access Journals (Sweden)

    Aggeliki Giannakopoulou

    2017-06-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species, such as the domestic dog (Canis lupus familiaris, and many are caused by mutations in the same genes as corresponding human conditions. In the present study, we report an inherited neurodegenerative condition, termed ‘neuronal vacuolation and spinocerebellar degeneration’ (NVSD which affects neonatal or young dogs, mainly Rottweilers, which recently has been linked with the homozygosity for the RAB3GAP1:c.743delC allele. Mutations in human RAB3GAP1 cause Warburg micro syndrome (WARBM, a severe developmental disorder characterized predominantly by abnormalities of the nervous system including axonal peripheral neuropathy. RAB3GAP1 encodes the catalytic subunit of a GTPase activator protein and guanine exchange factor for Rab3 and Rab18 proteins, respectively. Rab proteins are involved in membrane trafficking in the endoplasmic reticulum, autophagy, axonal transport and synaptic transmission. The present study attempts to carry out a detailed histopathological examination of NVSD disease, extending from peripheral nerves to lower brain structures focusing on the neurotransmitter alterations noted in the cerebellum, the major structure affected. NVSD dogs presented with progressive cerebellar ataxia and some clinical manifestations that recapitulate the WARBM phenotype. Neuropathological examination revealed dystrophic axons, neurodegeneration and intracellular vacuolization in specific nuclei. In the cerebellum, severe vacuolation of cerebellar nuclei neurons, atrophy of Purkinje cells, and diminishing of GABAergic and glutamatergic fibres constitute the most striking lesions. The balance of evidence suggests that the neuropathological lesions are a reaction to the altered neurotransmission. The canine phenotype could serve as a model to delineate the disease-causing pathological mechanisms in RAB3GAP1 mutation.

  10. Alteration of gene expression in MDA-MB-453 breast cancer cell line in response to continuous exposure to Trastuzumab.

    Science.gov (United States)

    Sharieh, Elham Abu; Awidi, Abdulla S; Ahram, Mamoun; Zihlif, Malek A

    2016-01-10

    Development of resistance against cancer therapeutic agents is a common problem in cancer management. Trastuzumab resistance is one of the challenges in management of HER-2-positive breast cancer patients resulting in breast cancer progression, metastasis, and patient poor outcome. The aim of this study is to determine the alteration in gene expression in response to Trastuzumab resistance after long-term exposure to Trastuzumab. The Trastuzumab-resistant MDA-MB-453 (MDA-MB-453/TR) cell line was developed by exposing cells to 10 μM Trastuzumab continuously for 6 months. Sensitivity toward Trastuzumab was tested using cell viability assays. The acquisition of an epithelial-to mesenchymal transition (EMT) phenotype was also observed in parallel with the development of resistance. Based on the real-time-based PCR array technology, several genes were altered affecting multiple networks. The most up-regulated genes were TGF-β1 and EGF, and IGFBP-3. These genes are known to have a critical role in Trastuzumab resistance in breast cancer cell lines and/or in the acquisition of EMT. They are also recognized for their role in cancer progression and metastasis. These alterations indicate that the development of Trastuzumab resistance is multifactorial and involves a development of a mesenchymal like phenotype. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Stochastic switching in biology: from genotype to phenotype

    International Nuclear Information System (INIS)

    Bressloff, Paul C

    2017-01-01

    There has been a resurgence of interest in non-equilibrium stochastic processes in recent years, driven in part by the observation that the number of molecules (genes, mRNA, proteins) involved in gene expression are often of order 1–1000. This means that deterministic mass-action kinetics tends to break down, and one needs to take into account the discrete, stochastic nature of biochemical reactions. One of the major consequences of molecular noise is the occurrence of stochastic biological switching at both the genotypic and phenotypic levels. For example, individual gene regulatory networks can switch between graded and binary responses, exhibit translational/transcriptional bursting, and support metastability (noise-induced switching between states that are stable in the deterministic limit). If random switching persists at the phenotypic level then this can confer certain advantages to cell populations growing in a changing environment, as exemplified by bacterial persistence in response to antibiotics. Gene expression at the single-cell level can also be regulated by changes in cell density at the population level, a process known as quorum sensing. In contrast to noise-driven phenotypic switching, the switching mechanism in quorum sensing is stimulus-driven and thus noise tends to have a detrimental effect. A common approach to modeling stochastic gene expression is to assume a large but finite system and to approximate the discrete processes by continuous processes using a system-size expansion. However, there is a growing need to have some familiarity with the theory of stochastic processes that goes beyond the standard topics of chemical master equations, the system-size expansion, Langevin equations and the Fokker–Planck equation. Examples include stochastic hybrid systems (piecewise deterministic Markov processes), large deviations and the Wentzel–Kramers–Brillouin (WKB) method, adiabatic reductions, and queuing/renewal theory. The major aim of

  12. Altering ethanol pharmacokinetics to treat alcohol use disorder: Can you teach an old dog new tricks?

    Science.gov (United States)

    Haass-Koffler, Carolina L; Akhlaghi, Fatemeh; Swift, Robert M; Leggio, Lorenzo

    2017-07-01

    Disulfiram was the first pharmacotherapy approved to treat alcohol use disorder in the 1950s. Disulfiram alters ethanol pharmacokinetics and causes uncomfortable reactions (e.g. headache, tachycardia, nausea, flushing and hypotension) when alcohol is consumed. Subsequently, a better understanding of the neurobiological pathways involved in alcohol use disorder led to the development of other medications (e.g. naltrexone and acamprosate). These neurobiological-based medications act on alcohol use disorder-related phenotypes including craving, stress, and/or withdrawal. The original approach to treat alcohol use disorder, by altering ethanol pharmacokinetics has been much less investigated. Recent research on ethanol pharmacokinetics has shed light on the mechanisms of action underlying alcohol use disorder and how some medications that alter ethanol pharmacokinetics may be helpful in treating alcohol use disorder. This review summarizes and discusses the complex pharmacokinetics of ethanol, and proposes that altering ethanol pharmacokinetics via novel pharmacological approaches may be a viable approach to treat alcohol use disorder.

  13. Altering ethanol pharmacokinetics to treat alcohol use disorder: can you teach an old dog new tricks?

    Science.gov (United States)

    Haass-Koffler, Carolina L.; Akhlaghi, Fatemeh; Swift, Robert M.; Leggio, Lorenzo

    2018-01-01

    Disulfiram was the first pharmacotherapy approved to treat alcohol use disorder (AUD) in the 1950s. Disulfiram alters ethanol pharmacokinetics (PK) and causes uncomfortable reactions (e.g.: headache, tachycardia, nausea, flushing and hypotension) when alcohol is consumed. Subsequently, a better understanding of the neurobiological pathways involved in AUD led to the development of other medications (e.g.: naltrexone and acamprosate) to treat AUD. These neurobiological-based medications act on AUD-related phenotypes including craving, stress, and/or withdrawal. The original approach to treat AUD, by altering ethanol PK has been much less investigated. Recent research on ethanol PK has shed light on the mechanisms of action underlying AUD and how some medications that alter ethanol PK may be helpful in treating AUD. This review summarizes and discusses the complex PK of ethanol, and proposes that altering ethanol PK via novel pharmacological approaches may be a viable approach to treat AUD. PMID:28093021

  14. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    Science.gov (United States)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  15. Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review.

    Science.gov (United States)

    Simpson, Jeffrey D; Stewart, Ethan M; Macias, David M; Chander, Harish; Knight, Adam C

    2018-06-13

    To evaluate the literature regarding unilateral landing biomechanics and dynamic postural stability in individuals with and without chronic ankle instability (CAI). Four online databases (PubMed, ScienceDirect, Scopus, and SportDiscus) were searched from the earliest records to 31 January 2018, as well as reference sections of related journal articles, to complete the systematic search. Studies investigating the influence of CAI on unilateral landing biomechanics and dynamic postural stability were systematically reviewed and evaluated. Twenty articles met the criteria and were included in the systematic review. Individuals with CAI were found to have deficits in dynamic postural stability on the affected limb with medium to large effect sizes and altered lower extremity kinematics, most notably in the ankle and knee, with medium to large effect sizes. Additionally, greater loading rates and peak ground reaction forces, in addition to reductions in ankle muscle activity were also found in individuals with CAI during unilateral jump-landing tasks. Individuals with CAI demonstrate dynamic postural stability deficits, lower extremity kinematic alterations, and reduced neuromuscular control during unilateral jump-landings. These are likely factors that contribute recurrent lateral ankle sprain injuries during dynamic activity in individuals with CAI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Clustering high-dimensional mixed data to uncover sub-phenotypes: joint analysis of phenotypic and genotypic data.

    Science.gov (United States)

    McParland, D; Phillips, C M; Brennan, L; Roche, H M; Gormley, I C

    2017-12-10

    The LIPGENE-SU.VI.MAX study, like many others, recorded high-dimensional continuous phenotypic data and categorical genotypic data. LIPGENE-SU.VI.MAX focuses on the need to account for both phenotypic and genetic factors when studying the metabolic syndrome (MetS), a complex disorder that can lead to higher risk of type 2 diabetes and cardiovascular disease. Interest lies in clustering the LIPGENE-SU.VI.MAX participants into homogeneous groups or sub-phenotypes, by jointly considering their phenotypic and genotypic data, and in determining which variables are discriminatory. A novel latent variable model that elegantly accommodates high dimensional, mixed data is developed to cluster LIPGENE-SU.VI.MAX participants using a Bayesian finite mixture model. A computationally efficient variable selection algorithm is incorporated, estimation is via a Gibbs sampling algorithm and an approximate BIC-MCMC criterion is developed to select the optimal model. Two clusters or sub-phenotypes ('healthy' and 'at risk') are uncovered. A small subset of variables is deemed discriminatory, which notably includes phenotypic and genotypic variables, highlighting the need to jointly consider both factors. Further, 7 years after the LIPGENE-SU.VI.MAX data were collected, participants underwent further analysis to diagnose presence or absence of the MetS. The two uncovered sub-phenotypes strongly correspond to the 7-year follow-up disease classification, highlighting the role of phenotypic and genotypic factors in the MetS and emphasising the potential utility of the clustering approach in early screening. Additionally, the ability of the proposed approach to define the uncertainty in sub-phenotype membership at the participant level is synonymous with the concepts of precision medicine and nutrition. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Digital collections and exhibits

    CERN Document Server

    Denzer, Juan

    2015-01-01

    Today's libraries are taking advantage of cutting-edge technologies such as flat panel displays using touch, sound, and hands-free motions to design amazing exhibits using everything from simple computer hardware to advanced technologies such as the Microsoft Kinect. Libraries of all types are striving to add new interactive experiences for their patrons through exciting digital exhibits, both online and off. Digital Collections and Exhibits takes away the mystery of designing stunning digital exhibits to spotlight library trea

  18. The Molecular Basis for Altered Cation Permeability in Hereditary Stomatocytic Human Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Joanna F. Flatt

    2018-04-01

    Full Text Available Normal human RBCs have a very low basal permeability (leak to cations, which is continuously corrected by the Na,K-ATPase. The leak is temperature-dependent, and this temperature dependence has been evaluated in the presence of inhibitors to exclude the activity of the Na,K-ATPase and NaK2Cl transporter. The severity of the RBC cation leak is altered in various conditions, most notably the hereditary stomatocytosis group of conditions. Pedigrees within this group have been classified into distinct phenotypes according to various factors, including the severity and temperature-dependence of the cation leak. As recent breakthroughs have provided more information regarding the molecular basis of hereditary stomatocytosis, it has become clear that these phenotypes elegantly segregate with distinct genetic backgrounds. The cryohydrocytosis phenotype, including South-east Asian Ovalocytosis, results from mutations in SLC4A1, and the very rare condition, stomatin-deficient cryohydrocytosis, is caused by mutations in SLC2A1. Mutations in RHAG cause the very leaky condition over-hydrated stomatocytosis, and mutations in ABCB6 result in familial pseudohyperkalemia. All of the above are large multi-spanning membrane proteins and the mutations may either modify the structure of these proteins, resulting in formation of a cation pore, or otherwise disrupt the membrane to allow unregulated cation movement across the membrane. More recently mutations have been found in two RBC cation channels, PIEZO1 and KCNN4, which result in dehydrated stomatocytosis. These mutations alter the activation and deactivation kinetics of these channels, leading to increased opening and allowing greater cation fluxes than in wild type.

  19. Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes.

    Directory of Open Access Journals (Sweden)

    Michelle E White

    Full Text Available Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests. After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10-13 was evident between a region of canine chromosome 13 (CFA13 and alanine aminotransferase (ALT, explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.

  20. Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes.

    Science.gov (United States)

    White, Michelle E; Hayward, Jessica J; Stokol, Tracy; Boyko, Adam R

    2015-01-01

    Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS) at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests). After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10-13) was evident between a region of canine chromosome 13 (CFA13) and alanine aminotransferase (ALT), explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.

  1. Novel SOX2 mutations and genotype-phenotype correlation in anophthalmia and microphthalmia.

    Science.gov (United States)

    Schneider, Adele; Bardakjian, Tanya; Reis, Linda M; Tyler, Rebecca C; Semina, Elena V

    2009-12-01

    SOX2 represents a High Mobility Group domain containing transcription factor that is essential for normal development in vertebrates. Mutations in SOX2 are known to result in a spectrum of severe ocular phenotypes in humans, also typically associated with other systemic defects. Ocular phenotypes include anophthalmia/microphthalmia (A/M), optic nerve hypoplasia, ocular coloboma and other eye anomalies. We screened 51 unrelated individuals with A/M and identified SOX2 mutations in the coding region of the gene in 10 individuals. Seven of the identified mutations are novel alterations, while the remaining three individuals carry the previously reported recurrent 20-nucleotide deletion in SOX2, c.70del20. Among the SOX2-positive cases, seven patients had bilateral A/M and mutations resulting in premature termination of the normal protein sequence (7/38; 18% of all bilateral cases), one patient had bilateral A/M associated with a single amino acid insertion (1/38; 3% of bilateral cases), and the final two patients demonstrated unilateral A/M associated with missense mutations (2/13; 15% of all unilateral cases). These findings and review of previously reported cases suggest a potential genotype/phenotype correlation for SOX2 mutations with missense changes generally leading to less severe ocular defects. In addition, we report a new familial case of affected siblings with maternal mosaicism for the identified SOX2 mutation, which further underscores the importance of parental testing to provide accurate genetic counseling to families.

  2. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    Science.gov (United States)

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. © 2016 Wiley Periodicals, Inc.

  3. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  4. The phenotypic variance gradient - a novel concept.

    Science.gov (United States)

    Pertoldi, Cino; Bundgaard, Jørgen; Loeschcke, Volker; Barker, James Stuart Flinton

    2014-11-01

    Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life-history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in phenotypic plasticity, whereas significant differences among phenotypic variances (variance or coefficient of variation) are interpreted as differences in the degree of developmental instability or canalization. We highlight some potential problems with this approach to quantifying phenotypic variance and suggest a novel and more informative way to plot reaction norms: namely "a plot of log (variance) on the y-axis versus log (mean) on the x-axis, with a reference line added". This approach gives an immediate impression of how the degree of phenotypic variance varies across an environmental gradient, taking into account the consequences of the scaling effect of the variance with the mean. The evolutionary implications of the variation in the degree of phenotypic variance, which we call a "phenotypic variance gradient", are discussed together with its potential interactions with variation in the degree of phenotypic plasticity and canalization.

  5. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene.

    Science.gov (United States)

    Horvath, Rita; Hudson, Gavin; Ferrari, Gianfrancesco; Fütterer, Nancy; Ahola, Sofia; Lamantea, Eleonora; Prokisch, Holger; Lochmüller, Hanns; McFarland, Robert; Ramesh, V; Klopstock, Thomas; Freisinger, Peter; Salvi, Fabrizio; Mayr, Johannes A; Santer, Rene; Tesarova, Marketa; Zeman, Jiri; Udd, Bjarne; Taylor, Robert W; Turnbull, Douglass; Hanna, Michael; Fialho, Doreen; Suomalainen, Anu; Zeviani, Massimo; Chinnery, Patrick F

    2006-07-01

    Mutations in the gene coding for the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (POLG1) have recently been described in patients with diverse clinical presentations, revealing a complex relationship between genotype and phenotype in patients and their families. POLG1 was sequenced in patients from different European diagnostic and research centres to define the phenotypic spectrum and advance understanding of the recurrence risks. Mutations were identified in 38 cases, with the majority being sporadic compound heterozygotes. Eighty-nine DNA sequence changes were identified, including 2 predicted to alter a splice site, 1 predicted to cause a premature stop codon and 13 predicted to cause novel amino acid substitutions. The majority of children had a mutation in the linker region, often 1399G-->A (A467T), and a mutation affecting the polymerase domain. Others had mutations throughout the gene, and 11 had 3 or more substitutions. The clinical presentation ranged from the neonatal period to late adult life, with an overlapping phenotypic spectrum from severe encephalopathy and liver failure to late-onset external ophthalmoplegia, ataxia, myopathy and isolated muscle pain or epilepsy. There was a strong gender bias in children, with evidence of an environmental interaction with sodium valproate. POLG1 mutations cause an overlapping clinical spectrum of disease with both dominant and recessive modes of inheritance. 1399G-->A (A467T) is common in children, but complete POLG1 sequencing is required to identify multiple mutations that can have complex implications for genetic counselling.

  6. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Ana [Vanderbilt University; Airey, David [University of Tennessee Health Science Center, Memphis; Thompson, Brent [Vanderbilt University; Zhu, C [Vanderbilt University; Rinchik, Eugene M [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Chesler, Elissa J [ORNL; Erikson, Keith [University of North Carolina; Blakely, Randy [Vanderbilt University

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  7. A speculated ribozyme site in the herpes simplex virus type 1 latency-associated transcript gene is not essential for a wild-type reactivation phenotype

    Science.gov (United States)

    Carpenter, Dale; Singh, Sukhpreet; Osorio, Nelson; Hsiang, Chinhui; Jiang, Xianzhi; Jin, Ling; Jones, Clinton; Wechsler, Steven L

    2010-01-01

    During herpes simplex virus-1 (HSV-1) latency in sensory neurons, LAT (latency-associated transcript) is the only abundantly expressed viral gene. LAT plays an important role in the HSV-1 latency-reactivation cycle, because LAT deletion mutants have a significantly decreased reactivation phenotype. Based solely on sequence analysis, it was speculated that LAT encodes a ribozyme that plays an important role in how LAT enhances the virus’ reactivation phenotype. Because LAT ribozyme activity has never been reported, we decided to test the converse hypothesis, namely, that this region of LAT does not encode a ribozyme function important for LAT’s ability to enhance the reactivation phenotype. We constructed a viral mutant (LAT-Rz) in which the speculated ribozyme consensus sequence was altered such that no ribozyme was encoded. We report here that LAT-Rz had a wild-type reactivation phenotype in mice, confirming the hypothesis that the speculated LAT ribozyme is not a dominant factor in stimulating the latency-reactivation cycle in mice. PMID:18982533

  8. ABO blood group phenotype frequency estimation using molecular phenotyping in rhesus and cynomolgus macaques.

    Science.gov (United States)

    Kanthaswamy, S; Ng, J; Oldt, R F; Valdivia, L; Houghton, P; Smith, D G

    2017-11-01

    A much larger sample (N = 2369) was used to evaluate a previously reported distribution of the A, AB and B blood group phenotypes in rhesus and cynomolgus macaques from six different regional populations. These samples, acquired from 15 different breeding and research facilities in the United States, were analyzed using a real-time quantitative polymerase chain reaction (qPCR) assay that targets single nucleotide polymorphisms (SNPs) responsible for the macaque A, B and AB phenotypes. The frequency distributions of blood group phenotypes of the two species differ significantly from each other and significant regional differentiation within the geographic ranges of each species was also observed. The B blood group phenotype was prevalent in rhesus macaques, especially those from India, while the frequencies of the A, B and AB phenotypes varied significantly among cynomolgus macaques from different geographic regions. The Mauritian cynomolgus macaques, despite having originated in Indonesia, showed significant (P ≪ .01) divergence from the Indonesian animals at the ABO blood group locus. Most Mauritian animals belonged to the B blood group while the Indonesian animals were mostly A. The close similarity in blood group frequency distributions between the Chinese rhesus and Indochinese cynomolgus macaques demonstrates that the introgression between these two species extends beyond the zone of intergradation in Indochina. This study underscores the importance of ABO blood group phenotyping of the domestic supply of macaques and their biospecimens. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Elucidating the genotype-phenotype map by automatic enumeration and analysis of the phenotypic repertoire.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    The gap between genotype and phenotype is filled by complex biochemical systems most of which are poorly understood. Because these systems are complex, it is widely appreciated that quantitative understanding can only be achieved with the aid of mathematical models. However, formulating models and measuring or estimating their numerous rate constants and binding constants is daunting. Here we present a strategy for automating difficult aspects of the process. The strategy, based on a system design space methodology, is applied to a class of 16 designs for a synthetic gene oscillator that includes seven designs previously formulated on the basis of experimentally measured and estimated parameters. Our strategy provides four important innovations by automating: (1) enumeration of the repertoire of qualitatively distinct phenotypes for a system; (2) generation of parameter values for any particular phenotype; (3) simultaneous realization of parameter values for several phenotypes to aid visualization of transitions from one phenotype to another, in critical cases from functional to dysfunctional; and (4) identification of ensembles of phenotypes whose expression can be phased to achieve a specific sequence of functions for rationally engineering synthetic constructs. Our strategy, applied to the 16 designs, reproduced previous results and identified two additional designs capable of sustained oscillations that were previously missed. Starting with a system's relatively fixed aspects, its architectural features, our method enables automated analysis of nonlinear biochemical systems from a global perspective, without first specifying parameter values. The examples presented demonstrate the efficiency and power of this automated strategy.

  10. CDKL5 alterations lead to early epileptic encephalopathy in both genders.

    Science.gov (United States)

    Liang, Jao-Shwann; Shimojima, Keiko; Takayama, Rumiko; Natsume, Jun; Shichiji, Minobu; Hirasawa, Kyoko; Imai, Kaoru; Okanishi, Tohru; Mizuno, Seiji; Okumura, Akihisa; Sugawara, Midori; Ito, Tomoshiro; Ikeda, Hiroko; Takahashi, Yukitoshi; Oguni, Hirokazu; Imai, Katsumi; Osawa, Makiko; Yamamoto, Toshiyuki

    2011-10-01

    Genetic mutations of the cyclin-dependent kinase-like 5 gene (CDKL5) have been reported in patients with epileptic encephalopathy, which is characterized by intractable seizures and severe-to-profound developmental delay. We investigated the clinical relevance of CDKL5 alterations in both genders. A total of 125 patients with epileptic encephalopathy were examined for genomic copy number aberrations, and 119 patients with no such aberrations were further examined for CDKL5 mutations. Five patients with Rett syndrome, who did not show methyl CpG-binding protein 2 gene (MECP2) mutations, were also examined for CDKL5 mutations. One male and three female patients showed submicroscopic deletions including CDKL5, and two male and six female patients showed CDKL5 nucleotide alterations. Development of early onset seizure was a characteristic clinical feature for the patients with CDKL5 alterations in both genders despite polymorphous seizure types, including myoclonic seizures, tonic seizures, and spasms. Severe developmental delays and mild frontal lobe atrophies revealed by brain magnetic resonance imaging (MRI) were observed in almost all patients, and there was no gender difference in phenotypic features. We observed that 5% of the male patients and 14% of the female patients with epileptic encephalopathy had CDKL5 alterations. These findings indicate that alterations in CDKL5 are associated with early epileptic encephalopathy in both female and male patients. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  11. MODY3 in the child with type 2 diabetes mellitus phenotype: case report

    Directory of Open Access Journals (Sweden)

    Tamara Leonidovna Kuraeva

    2013-06-01

    Full Text Available MODY is a heterogeneous group of diseases that stem from certain genetic mutations and are characterized by beta-cell dysfunction, early clinical onset (before the age of 25 and autosomal dominant inheritance. Nowadays many studies address atypical variants of diabetes mellitus (DM and consequential problems in differential diagnosis. Though generally patients with MODY have normal body weight, the ongoing spread of obesity will probably produce comorbid forms and thus alter clinical picture. We present a case of DM in a 13-year-old patient that characterizes development of MODY3 in type 2 DM-like phenotype.

  12. Tracing alteration of mantle peridotite in the Samail ophiolite using Mg isotopes

    Science.gov (United States)

    de Obeso, J. C.; Kelemen, P. B.; Higgins, J. A.

    2017-12-01

    Magnesium is one of the main constituents of mantle peridotite ( 22.8 wt%), which has a homogeneous Mg isotopic composition (d26Mg = -0.25 ± 0.04 ‰ (2 sd) DSM3, Teng et al 2010 GCA). Mg isotopes are used as tracers of continental and oceanic weathering as they exhibit variable degrees of fractionation during alteration depending on the lithology. Here we report some of the first Mg isotopic compositions of the mantle section of the Samail ophiolite in Oman and its alteration products. The mantle section of the ophiolite is composed mainly of depleted harzburgites and dunites with mantle-like d26Mg (-0.25, -0.21 ‰). Mantle peridotite is far from equilibrium in near surface conditions leading to rapid, extensive serpentinization, carbonation and oxidation, as well as other geochemical changes. Our analyzed samples encompass most of the alteration of peridotite products observed in Oman including listvenites (completely carbonated peridotite) near the basal thrust of the ophiolite, massive magnesite veins within peridotite outcrops, and heavily altered harzburgites. Magnesite listvenites have d26Mg slightly below mantle values (-0.33, -0.33‰) while dolomite listvenites are significantly lighter (-1.46, -0.89‰). This suggests that heavy Mg isotopes were removed from the listvenites during ophiolite emplacement. Heavily altered peridotite from Wadi Fins exhibit alteration halos with drastic changes in composition. The most oxidized areas are enriched in Fe and depleted in Mg compared to the cores of the samples. These variations in Mg concentrations are complemented by a shift to heavy Mg isotopic compositions (0.74, 0.86‰), among the heaviest d26Mg values that have been reported in altered peridotite. Potential sinks for light isotopes removed from such alteration zones are massive magnesite veins with very light compositions (-3.39, -3.14‰). The fractionation of Mg isotopes observed in the mantle section of the ophiolite spans more than 50% of the known

  13. Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension

    Science.gov (United States)

    Anwar, Adil; Li, Min; Frid, Maria G.; Kumar, Binod; Gerasimovskaya, Evgenia V.; Riddle, Suzette R.; McKeon, B. Alexandre; Thukaram, Roopa; Meyrick, Barbara O.; Fini, Mehdi A.

    2012-01-01

    Increased cell proliferation and migration, of several cell types are key components of vascular remodeling observed in pulmonary hypertension (PH). Our previous data demonstrate that adventitial fibroblasts isolated from pulmonary arteries of chronically hypoxic hypertensive calves (termed PH-Fibs) exhibit a “constitutively activated” phenotype characterized by high proliferative and migratory potential. Osteopontin (OPN) has been shown to promote several cellular activities including growth and migration in cancer cells. We thus tested the hypothesis that elevated OPN expression confers the “activated” highly proproliferative and promigratory/invasive phenotype of PH-Fibs. Our results demonstrate that, both in vivo and ex vivo, PH-Fibs exhibited increased expression of OPN, as well as its cognate receptors, αVβ3 and CD44, compared with control fibroblasts (CO-Fibs). Augmented OPN expression in PH-Fibs corresponded to their high proliferative, migratory, and invasive properties and constitutive activation of ERK1/2 and AKT signaling. OPN silencing via small interfering RNA or sequestering OPN production by specific antibodies led to decreased proliferation, migration, invasion, and attenuated ERK1/2, AKT phosphorylation in PH-Fibs. Furthermore, increasing OPN levels in CO-Fibs via recombinant OPN resulted in significant increases in their proliferative, migratory, and invasive capabilities to the levels resembling those of PH-Fibs. Thus our data suggest OPN as an essential contributor to the activated (highly proliferative, migratory, and proinvasive) phenotype of pulmonary adventitial fibroblasts in hypoxic PH. PMID:22582113

  14. Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders.

    Directory of Open Access Journals (Sweden)

    Tallulah Andrews

    2015-03-01

    Full Text Available Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51% groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.

  15. Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders.

    Science.gov (United States)

    Andrews, Tallulah; Meader, Stephen; Vulto-van Silfhout, Anneke; Taylor, Avigail; Steinberg, Julia; Hehir-Kwa, Jayne; Pfundt, Rolph; de Leeuw, Nicole; de Vries, Bert B A; Webber, Caleb

    2015-03-01

    Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.

  16. Delineation of C12orf65-related phenotypes: a genotype-phenotype relationship.

    Science.gov (United States)

    Spiegel, Ronen; Mandel, Hanna; Saada, Ann; Lerer, Issy; Burger, Ayala; Shaag, Avraham; Shalev, Stavit A; Jabaly-Habib, Haneen; Goldsher, Dorit; Gomori, John M; Lossos, Alex; Elpeleg, Orly; Meiner, Vardiella

    2014-08-01

    C12orf65 participates in the process of mitochondrial translation and has been shown to be associated with a spectrum of phenotypes, including early onset optic atrophy, progressive encephalomyopathy, peripheral neuropathy, and spastic paraparesis.We used whole-genome homozygosity mapping as well as exome sequencing and targeted gene sequencing to identify novel C12orf65 disease-causing mutations in seven affected individuals originating from two consanguineous families. In four family members affected with childhood-onset optic atrophy accompanied by slowly progressive peripheral neuropathy and spastic paraparesis, we identified a homozygous frame shift mutation c.413_417 delAACAA, which predicts a truncated protein lacking the C-terminal portion. In the second family, we studied three affected individuals who presented with early onset optic atrophy, peripheral neuropathy, and spastic gait in addition to moderate intellectual disability. Muscle biopsy in two of the patients revealed decreased activities of the mitochondrial respiratory chain complexes I and IV. In these patients, we identified a homozygous splice mutation, g.21043 T>A (c.282+2 T>A) which leads to skipping of exon 2. Our study broadens the phenotypic spectrum of C12orf65 defects and highlights the triad of optic atrophy, axonal neuropathy and spastic paraparesis as its key clinical features. In addition, a clear genotype-phenotype correlation is anticipated in which deleterious mutations which disrupt the GGQ-containing domain in the first coding exon are expected to result in a more severe phenotype, whereas down-stream C-terminal mutations may result in a more favorable phenotype, typically lacking cognitive impairment.

  17. Vitamin D depletion does not affect key aspects of the preeclamptic phenotype in a transgenic rodent model for preeclampsia

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Golic, Michaela; Przybyl, Lukasz

    2016-01-01

    Maternal vitamin D deficiency is proposed as a risk factor for preeclampsia in humans. We tested the hypothesis that vitamin D depletion aggravates and high supplementation ameliorates the preeclampsia phenotype in an established transgenic rat model of human renin-angiotensin system......-mediated preeclampsia. Adult rat dams, transgenic for human angiotensinogen (hAGT) and mated with male rats transgenic for human renin (hREN), were fed either vitamin D-depleted chow (VDd) or enriched chow (VDh) 2 weeks before mating and during pregnancy. Mean blood pressure was recorded by tail-cuff, and 24-hour urine...... of the preeclampsia phenotype using the transgenic rodent model of human renin-angiotensin system-mediated pre-eclampsia, plausibly due to altered vitamin D metabolism or excretion in the transgenic rats....

  18. The small, dense LDL phenotype and the risk of coronary heart disease: epidemiology, patho-physiology and therapeutic aspects.

    Science.gov (United States)

    Lamarche, B; Lemieux, I; Després, J P

    1999-09-01

    More than decade ago, several cross-sectional studies have reported differences in LDL particle size, density and composition between coronary heart disease (CHD) patients and healthy controls. Three recent prospective, nested case-control studies have since confirmed that the presence of small, dense LDL particles was associated with more than a three-fold increase in the risk of CHD. The small, dense LDL phenotype rarely occurs as an isolated disorder. It is most frequently accompanied by hypertriglyceridemia, reduced HDL cholesterol levels, abdominal obesity, insulin resistance and by a series of other metabolic alterations predictive of an impaired endothelial function and increased susceptibility to thrombosis. Whether or not the small, dense LDL phenotype should be considered an independent CHD risk factor remains to be clearly established. The cluster of metabolic abnormalities associated with small, dense LDL particles has been referred to as the insulin resistance-dyslipidemic phenotype of abdominal obesity. Results from the Québec Cardiovascular Study have indicated that individuals displaying three of the numerous features of insulin resistance (elevated plasma insulin and apolipoprotein B concentrations and small, dense LDL particles) showed a remarkable increase in CHD risk. Our data suggest that the increased risk of CHD associated with having small, dense LDL particles may be modulated to a significant extent by the presence/absence of insulin resistance, abdominal obesity and increased LDL particle concentration. We suggest that the complex interactions among the metabolic alterations of the insulin resistance syndrome should be considered when evaluating the risk of CHD associated with the small, dense LDL phenotype. From a therapeutic standpoint, the treatment of this condition should not only aim at reducing plasma triglyceride levels, but also at improving all features of the insulin resistance syndrome, for which body weight loss and

  19. Machine-learning phenotypic classification of bicuspid aortopathy.

    Science.gov (United States)

    Wojnarski, Charles M; Roselli, Eric E; Idrees, Jay J; Zhu, Yuanjia; Carnes, Theresa A; Lowry, Ashley M; Collier, Patrick H; Griffin, Brian; Ehrlinger, John; Blackstone, Eugene H; Svensson, Lars G; Lytle, Bruce W

    2018-02-01

    Bicuspid aortic valves (BAV) are associated with incompletely characterized aortopathy. Our objectives were to identify distinct patterns of aortopathy using machine-learning methods and characterize their association with valve morphology and patient characteristics. We analyzed preoperative 3-dimensional computed tomography reconstructions for 656 patients with BAV undergoing ascending aorta surgery between January 2002 and January 2014. Unsupervised partitioning around medoids was used to cluster aortic dimensions. Group differences were identified using polytomous random forest analysis. Three distinct aneurysm phenotypes were identified: root (n = 83; 13%), with predominant dilatation at sinuses of Valsalva; ascending (n = 364; 55%), with supracoronary enlargement rarely extending past the brachiocephalic artery; and arch (n = 209; 32%), with aortic arch dilatation. The arch phenotype had the greatest association with right-noncoronary cusp fusion: 29%, versus 13% for ascending and 15% for root phenotypes (P < .0001). Severe valve regurgitation was most prevalent in root phenotype (57%), followed by ascending (34%) and arch phenotypes (25%; P < .0001). Aortic stenosis was most prevalent in arch phenotype (62%), followed by ascending (50%) and root phenotypes (28%; P < .0001). Patient age increased as the extent of aneurysm became more distal (root, 49 years; ascending, 53 years; arch, 57 years; P < .0001), and root phenotype was associated with greater male predominance compared with ascending and arch phenotypes (94%, 76%, and 70%, respectively; P < .0001). Phenotypes were visually recognizable with 94% accuracy. Three distinct phenotypes of bicuspid valve-associated aortopathy were identified using machine-learning methodology. Patient characteristics and valvular dysfunction vary by phenotype, suggesting that the location of aortic pathology may be related to the underlying pathophysiology of this disease. Copyright © 2017 The American

  20. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype

    Science.gov (United States)

    Capote, Joana; Martinez, Leonel; Vetrone, Sylvia; Barton, Elisabeth R.; Sweeney, H. Lee; Miceli, M. Carrie

    2016-01-01

    In the degenerative disease Duchenne muscular dystrophy, inflammatory cells enter muscles in response to repetitive muscle damage. Immune factors are required for muscle regeneration, but chronic inflammation creates a profibrotic milieu that exacerbates disease progression. Osteopontin (OPN) is an immunomodulator highly expressed in dystrophic muscles. Ablation of OPN correlates with reduced fibrosis and improved muscle strength as well as reduced natural killer T (NKT) cell counts. Here, we demonstrate that the improved dystrophic phenotype observed with OPN ablation does not result from reductions in NKT cells. OPN ablation skews macrophage polarization toward a pro-regenerative phenotype by reducing M1 and M2a and increasing M2c subsets. These changes are associated with increased expression of pro-regenerative factors insulin-like growth factor 1, leukemia inhibitory factor, and urokinase-type plasminogen activator. Furthermore, altered macrophage polarization correlated with increases in muscle weight and muscle fiber diameter, resulting in long-term improvements in muscle strength and function in mdx mice. These findings suggest that OPN ablation promotes muscle repair via macrophage secretion of pro-myogenic growth factors. PMID:27091452

  1. Chronic ethanol intake alters circadian phase shifting and free-running period in mice.

    Science.gov (United States)

    Seggio, Joseph A; Fixaris, Michael C; Reed, Jeffrey D; Logan, Ryan W; Rosenwasser, Alan M

    2009-08-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes.

  2. Search for methylation-sensitive amplification polymorphisms associated with the mantled variant phenotype in oil palm (Elaeis guineensis Jacq).

    Science.gov (United States)

    Jaligot, E; Beulé, T; Baurens, F-C; Billotte, N; Rival, A

    2004-02-01

    The methylation-sensitive amplification polymorphism (MSAP) technique has been employed on somatic embryo-derived oil palms (Elaeis guineensis Jacq.) to identify methylation polymorphisms correlated with the "mantled" somaclonal variation. The variant phenotype displays an unstable feminization of male organs in both male and female flowers. Using MSAP, the methylation status of CCGG sites was compared in three normal versus three mantled regenerants sampled in clonal populations obtained through somatic embryogenesis from four genotypically distinct mother palms. Overall, 64 selective primer combinations were used and they have amplified 23 markers exhibiting a differential methylation pattern between the two phenotypes. Our results indicate that CCGG sites are poorly affected by the considerable decrease in global DNA methylation that has been previously associated with the mantled phenotype. Each of the 23 markers isolated in the present study could discriminate between the two phenotypes only when they were from the same genetic origin. This result hampers at the moment the direct use of MSAP markers for the early detection of variants, even though valuable information on putative target sequences will be obtained from a further characterization of these polymorphic markers.

  3. Deep Learning for Plant Phenotyping

    OpenAIRE

    Mori, Matteo

    2016-01-01

    Plant Phenotyping is an emerging science which provides us the knowledge to better understand plants. Indeed, the study of the link between genetic background and environment in which plants develop can help us to determine cures for plants’ sicknesses and new ways to improve yields using limited resources. In this regard, one of the main aspects of Plant Phenotyping that were studied in the past, was Root Phenotyping, which is based on the study of the root architectures. In particular, toda...

  4. Integrating phenotype ontologies with PhenomeNET

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2017-12-19

    Background Integration and analysis of phenotype data from humans and model organisms is a key challenge in building our understanding of normal biology and pathophysiology. However, the range of phenotypes and anatomical details being captured in clinical and model organism databases presents complex problems when attempting to match classes across species and across phenotypes as diverse as behaviour and neoplasia. We have previously developed PhenomeNET, a system for disease gene prioritization that includes as one of its components an ontology designed to integrate phenotype ontologies. While not applicable to matching arbitrary ontologies, PhenomeNET can be used to identify related phenotypes in different species, including human, mouse, zebrafish, nematode worm, fruit fly, and yeast. Results Here, we apply the PhenomeNET to identify related classes from two phenotype and two disease ontologies using automated reasoning. We demonstrate that we can identify a large number of mappings, some of which require automated reasoning and cannot easily be identified through lexical approaches alone. Combining automated reasoning with lexical matching further improves results in aligning ontologies. Conclusions PhenomeNET can be used to align and integrate phenotype ontologies. The results can be utilized for biomedical analyses in which phenomena observed in model organisms are used to identify causative genes and mutations underlying human disease.

  5. Early Retinal Defects in Fmr1−/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    Science.gov (United States)

    Perche, Olivier; Felgerolle, Chloé; Ardourel, Maryvonne; Bazinet, Audrey; Pâris, Arnaud; Rossignol, Rafaëlle; Meyer-Dilhet, Géraldine; Mausset-Bonnefont, Anne-Laure; Hébert, Betty; Laurenceau, David; Montécot-Dubourg, Céline; Menuet, Arnaud; Bizot, Jean-Charles; Pichon, Jacques; Ranchon-Cole, Isabelle; Briault, Sylvain

    2018-01-01

    Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1−/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1−/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1−/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions. PMID:29681800

  6. Early Retinal Defects in Fmr1−/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    Directory of Open Access Journals (Sweden)

    Olivier Perche

    2018-04-01

    Full Text Available Fragile X Syndrome (FXS is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1−/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1−/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1−/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.

  7. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice.

    Science.gov (United States)

    Lecoq, Anne-Lise; Zizzari, Philippe; Hage, Mirella; Decourtye, Lyvianne; Adam, Clovis; Viengchareun, Say; Veldhuis, Johannes D; Geoffroy, Valérie; Lombès, Marc; Tolle, Virginie; Guillou, Anne; Karhu, Auli; Kappeler, Laurent; Chanson, Philippe; Kamenický, Peter

    2016-10-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas, particularly of the somatotroph lineage. Mice with global heterozygous inactivation of Aip (Aip(+/-)) also develop pituitary adenomas but differ from AIP-mutated patients by the high penetrance of pituitary disease. The endocrine phenotype of these mice is unknown. The aim of this study was to determine the endocrine phenotype of Aip(+/-) mice by assessing the somatic growth, ultradian pattern of GH secretion and IGF1 concentrations of longitudinally followed male mice at 3 and 12 months of age. As the early stages of pituitary tumorigenesis are controversial, we also studied the pituitary histology and somatotroph cell proliferation in these mice. Aip(+/-) mice did not develop gigantism but exhibited a leaner phenotype than wild-type mice. Analysis of GH pulsatility by deconvolution in 12-month-old Aip(+/-) mice showed a mild increase in total GH secretion, a conserved GH pulsatility pattern, but a normal IGF1 concentration. No pituitary adenomas were detected up to 12 months of age. An increased ex vivo response to GHRH of pituitary explants from 3-month-old Aip(+/-) mice, together with areas of enlarged acini identified on reticulin staining in the pituitary of some Aip(+/-) mice, was suggestive of somatotroph hyperplasia. Global heterozygous Aip deficiency in mice is accompanied by subtle increase in GH secretion, which does not result in gigantism. The absence of pituitary adenomas in 12-month-old Aip(+/-) mice in our experimental conditions demonstrates the important phenotypic variability of this congenic mouse model. © 2016 Society for Endocrinology.

  8. Asporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure

    DEFF Research Database (Denmark)

    Maccarana, Marco; Svensson, René B; Knutsson, Anki

    2017-01-01

    SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry......) was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered......The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs' effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated...

  9. CD4+ FOXP3+ Regulatory T Cells Exhibit Impaired Ability to Suppress Effector T Cell Proliferation in Patients with Turner Syndrome.

    Directory of Open Access Journals (Sweden)

    Young Ah Lee

    Full Text Available We investigated whether the frequency, phenotype, and suppressive function of CD4+ FOXP3+ regulatory T cells (Tregs are altered in young TS patients with the 45,X karyotype compared to age-matched controls.Peripheral blood mononuclear cells from young TS patients (n = 24, 17.4-35.9 years and healthy controls (n = 16 were stained with various Treg markers to characterize their phenotypes. Based on the presence of thyroid autoimmunity, patients were categorized into TS (- (n = 7 and TS (+ (n = 17. Tregs sorted for CD4+ CD25bright were co-cultured with autologous CD4+ CD25- target cells in the presence of anti-CD3 and -CD28 antibodies to assess their suppressive function.Despite a lower frequency of CD4+ T cells in the TS (- and TS (+ patients (mean 30.8% and 31.7%, vs. 41.2%; P = 0.003 and P < 0.001, respectively, both groups exhibited a higher frequency of FOXP3+ Tregs among CD4+ T cells compared with controls (means 1.99% and 2.05%, vs. 1.33%; P = 0.029 and P = 0.004, respectively. There were no differences in the expression of CTLA-4 and the frequency of Tregs expressing CXCR3+, and CCR4+ CCR6+ among the three groups. However, the ability of Tregs to suppress the in vitro proliferation of autologous CD4+ CD25- T cells was significantly impaired in the TS (- and TS (+ patients compared to controls (P = 0.003 and P = 0.041. Meanwhile, both the TS (- and TS (+ groups had lower frequencies of naïve cells (P = 0.001 for both but higher frequencies of effector memory cells (P = 0.004 and P = 0.002 than did the healthy control group.The Tregs of the TS patients could not efficiently suppress the proliferation of autologous effector T cells, despite their increased frequency in peripheral CD4+ T cells.

  10. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  11. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  12. Discrimination? - Exhibition of posters

    OpenAIRE

    Jakimovska, Jana

    2017-01-01

    Participation in the exhibition with the students form the Art Academy. The exhibition consisted of 15 posters tackling the subjects of hate speech and discrimination. The exhibition happened thanks to the invitation of the Faculty of Law at UGD, and it was a part of a larger event of launching books on the aforementioned subjects.

  13. Identifying niche-mediated regulatory factors of stem cell phenotypic state: a systems biology approach.

    Science.gov (United States)

    Ravichandran, Srikanth; Del Sol, Antonio

    2017-02-01

    Understanding how the cellular niche controls the stem cell phenotype is often hampered due to the complexity of variegated niche composition, its dynamics, and nonlinear stem cell-niche interactions. Here, we propose a systems biology view that considers stem cell-niche interactions as a many-body problem amenable to simplification by the concept of mean field approximation. This enables approximation of the niche effect on stem cells as a constant field that induces sustained activation/inhibition of specific stem cell signaling pathways in all stem cells within heterogeneous populations exhibiting the same phenotype (niche determinants). This view offers a new basis for the development of single cell-based computational approaches for identifying niche determinants, which has potential applications in regenerative medicine and tissue engineering. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  14. Elucidating the genotype–phenotype map by automatic enumeration and analysis of the phenotypic repertoire

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2015-01-01

    Background: The gap between genotype and phenotype is filled by complex biochemical systems most of which are poorly understood. Because these systems are complex, it is widely appreciated that quantitative understanding can only be achieved with the aid of mathematical models. However, formulating models and measuring or estimating their numerous rate constants and binding constants is daunting. Here we present a strategy for automating difficult aspects of the process. Methods: The strategy, based on a system design space methodology, is applied to a class of 16 designs for a synthetic gene oscillator that includes seven designs previously formulated on the basis of experimentally measured and estimated parameters. Results: Our strategy provides four important innovations by automating: (1) enumeration of the repertoire of qualitatively distinct phenotypes for a system; (2) generation of parameter values for any particular phenotype; (3) simultaneous realization of parameter values for several phenotypes to aid visualization of transitions from one phenotype to another, in critical cases from functional to dysfunctional; and (4) identification of ensembles of phenotypes whose expression can be phased to achieve a specific sequence of functions for rationally engineering synthetic constructs. Our strategy, applied to the 16 designs, reproduced previous results and identified two additional designs capable of sustained oscillations that were previously missed. Conclusions: Starting with a system’s relatively fixed aspects, its architectural features, our method enables automated analysis of nonlinear biochemical systems from a global perspective, without first specifying parameter values. The examples presented demonstrate the efficiency and power of this automated strategy. PMID:26998346

  15. Phenex: ontological annotation of phenotypic diversity.

    Directory of Open Access Journals (Sweden)

    James P Balhoff

    2010-05-01

    Full Text Available Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge.Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices.Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.

  16. Phenex: ontological annotation of phenotypic diversity.

    Science.gov (United States)

    Balhoff, James P; Dahdul, Wasila M; Kothari, Cartik R; Lapp, Hilmar; Lundberg, John G; Mabee, Paula; Midford, Peter E; Westerfield, Monte; Vision, Todd J

    2010-05-05

    Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.

  17. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    International Nuclear Information System (INIS)

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-01-01

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function

  18. Targeting the latest hallmark of cancer: another attempt at 'magic bullet' drugs targeting cancers' metabolic phenotype.

    Science.gov (United States)

    Cuperlovic-Culf, M; Culf, A S; Touaibia, M; Lefort, N

    2012-10-01

    The metabolism of tumors is remarkably different from the metabolism of corresponding normal cells and tissues. Metabolic alterations are initiated by oncogenes and are required for malignant transformation, allowing cancer cells to resist some cell death signals while producing energy and fulfilling their biosynthetic needs with limiting resources. The distinct metabolic phenotype of cancers provides an interesting avenue for treatment, potentially with minimal side effects. As many cancers show similar metabolic characteristics, drugs targeting the cancer metabolic phenotype are, perhaps optimistically, expected to be 'magic bullet' treatments. Over the last few years there have been a number of potential drugs developed to specifically target cancer metabolism. Several of these drugs are currently in clinical and preclinical trials. This review outlines examples of drugs developed for different targets of significance to cancer metabolism, with a focus on small molecule leads, chemical biology and clinical results for these drugs.

  19. Do convergent developmental mechanisms underlie convergent phenotypes?

    Science.gov (United States)

    Wray, Gregory A.

    2002-01-01

    Convergence is a pervasive evolutionary process, affecting many aspects of phenotype and even genotype. Relatively little is known about convergence in developmental processes, however, nor about the degree to which convergence in development underlies convergence in anatomy. A switch in the ecology of sea urchins from feeding to nonfeeding larvae illustrates how convergence in development can be associated with convergence in anatomy. Comparisons to more distantly related taxa, however, suggest that this association may be limited to relatively close phylogenetic comparisons. Similarities in gene expression during development provide another window into the association between convergence in developmental processes and convergence in anatomy. Several well-studied transcription factors exhibit likely cases of convergent gene expression in distantly related animal phyla. Convergence in regulatory gene expression domains is probably more common than generally acknowledged, and can arise for several different reasons. Copyright 2002 S. Karger AG, Basel.

  20. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...