WorldWideScience

Sample records for exert complementary neuronal

  1. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.

    Science.gov (United States)

    Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-04-04

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.

  2. Complementary neural correlates of motivation in dopaminergic and noradrenergic neurons of monkeys.

    Directory of Open Access Journals (Sweden)

    Sebastien eBouret

    2012-07-01

    Full Text Available Rewards have many influences on learning, decision-making and performance. All seem to rely on complementary actions of two closely related catecholaminergic neuromodulators, dopamine and noradrenaline. We compared single unit activity of dopaminergic neurons of the substantia nigra pars compacta and noradrenergic neurons of the locus coeruleus in monkeys performing a reward schedule task. Their motivation, indexed using operant performance, increased as they progressed through schedules ending in reward delivery. The responses of dopaminergic and noradrenergic neurons around the time of major task events, visual cues predicting trial outcome and operant action to complete a trial, were similar, in that they occurred at the same time. They were also similar in that they both responded most strongly to the first cues in schedules, which are the most informative cues. The neuronal responses around the time of the monkeys’ actions were different, in that the response intensity profiles changed in opposite directions. Dopaminergic responses were stronger around predictably rewarded correct actions whereas noradrenergic responses were greater around predictably unrewarded correct actions. The complementary response profiles related to the monkeys operant actions suggest that dopamine neurons might relate to the value of the current action whereas the noradrenergic neurons relate to the psychological cost of that action.

  3. Comparison of the force exerted by hippocampal and DRG growth cones.

    Science.gov (United States)

    Amin, Ladan; Ercolini, Erika; Ban, Jelena; Torre, Vincent

    2013-01-01

    Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 µm(2) and did not vary between P1-P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10-P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties.

  4. Supraphysiological Doses of Performance Enhancing Anabolic-Androgenic Steroids Exert Direct Toxic Effects on Neuron-like Cells

    Directory of Open Access Journals (Sweden)

    John Robert Basile

    2013-05-01

    Full Text Available Anabolic-androgenic steroids (AAS are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.

  5. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release

    OpenAIRE

    Rau, Andrew R.; Hentges, Shane T.

    2017-01-01

    Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA re...

  6. Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase

    International Nuclear Information System (INIS)

    Leblanc, G.C.; Trimmer, B.A.; Landis, S.C.

    1987-01-01

    Neuropeptide Y (NPY) is widely distributed in the sympathetic nervous system, where it is colocalized with norepinephrine. The authors report here that NPY-immunoreactive neurons are also abundant in three cranial parasympathetic ganglia, the otic, sphenopalatine, and ciliary, in the rat measured by radioimmunoassay. High-performance liquid chromatographic analysis of the immunoreactive material present in the otic ganglion indicates that this material is very similar to porcine NPY and indistinguishable from the NPY-like immunoreactivity present in rat sympathetic neurons. These findings raise the possibility that NPY acts as a neuromodulator in the parasympathetic as well as the sympathetic nervous system. In contrast to what had been observed for sympathetic neurons, NPY-immunoreactive neurons in cranial parasympathetic ganglia do not contain detectable catecholamines or tyrosine hydroxylase immunoreactivity, and many do contain immunoreactivity for vasoactive intestinal peptide and/or choline acetyltransferase. These findings suggest that there is no simple rule governing coexpression of NPY with norepinephrine, acetylcholine, or vasoactive intestinal peptide in autonomic neurons. Further, while functional studies have indicated that NPY exerts actions on the peripheral vasculature which are antagonistic to those of acetylcholine and vasoactive intestinal peptide, the present results raise the possibility that these three substances may have complementary effects on other target tissues

  7. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons.

    Science.gov (United States)

    Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F

    2009-11-18

    Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.

  8. Combination of Tramadol with Minocycline Exerted Synergistic Effects on a Rat Model of Nerve Injury-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Mei

    2012-09-01

    Full Text Available Neuropathic pain is a refractory clinical problem. Certain drugs, such as tramadol, proved useful for the treatment of neuropathic pain by inhibiting the activity of nociceptive neurons. Moreover, studies indicated that suppression or modulation of glial activation could prevent or reverse neuropathic pain, for example with the microglia inhibitor minocycline. However, few present clinical therapeutics focused on both neuronal and glial participation when treating neuropathic pain. Therefore, the present study hypothesized that combination of tramadol with minocycline as neuronal and glial activation inhibitor may exert some synergistic effects on spinal nerve ligation (SNL-induced neuropathic pain. Intrathecal tramadol or minocycline relieved SNL-induced mechanical allodynia in a dose-dependent manner. SNL-induced spinal dorsal horn Fos or OX42 expression was downregulated by intrathecal tramadol or minocycline. Combination of tramadol with minocycline exerted powerful and synergistic effects on SNL-induced neuropathic pain also in a dose-dependent manner. Moreover, the drug combination enhanced the suppression effects on SNL-induced spinal dorsal horn Fos and OX42 expression, compared to either drug administered alone. These results indicated that combination of tramadol with minocycline could exert synergistic effects on peripheral nerve injury-induced neuropathic pain; thus, a new strategy for treating neuropathic pain by breaking the interaction between neurons and glia bilaterally was also proposed.

  9. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2016-12-17

    Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. [Responses of bat cochlear nucleus neurons to ultrasonic stimuli].

    Science.gov (United States)

    Vasil'ev, A G; Grigor'eva, T I

    1977-01-01

    The responses of cochlear nuclei single units in Vespertilionidae and Rhinolophidae were studied by means of ultrasound stimuli of different frequencies. Most neurons were found to have one or two complementary response areas with best frequencies equal to 1/2 and 1/3 of the highest one (which we regard as the basic best frequency). In Vespertilionidae which emit frequency-modulated signals some neurons have complementary areas with upper thresholds. The latency of responses do not correlate with the stimulus frequency. This suggests that there is no correlative reception of echosignals at this level of auditory system in bats.

  11. Overexpression of GDNF in the uninjured DRG exerts analgesic effects on neuropathic pain following segmental spinal nerve ligation in mice.

    Science.gov (United States)

    Takasu, Kumiko; Sakai, Atsushi; Hanawa, Hideki; Shimada, Takashi; Suzuki, Hidenori

    2011-11-01

    Glial cell line-derived neurotrophic factor (GDNF), a survival-promoting factor for a subset of nociceptive small-diameter neurons, has been shown to exert analgesic effects on neuropathic pain. However, its detailed mechanisms of action are still unknown. In the present study, we investigated the site-specific analgesic effects of GDNF in the neuropathic pain state using lentiviral vector-mediated GDNF overexpression in mice with left fifth lumbar (L5) spinal nerve ligation (SNL) as a neuropathic pain model. A lentiviral vector expressing both GDNF and enhanced green fluorescent protein (EGFP) was constructed and injected into the left dorsal spinal cord, uninjured fourth lumbar (L4) dorsal root ganglion (DRG), injured L5 DRG, or plantar skin of mice. In SNL mice, injection of the GDNF-EGFP-expressing lentivirus into the dorsal spinal cord or uninjured L4 DRG partially but significantly reduced the mechanical allodynia in association with an increase in GDNF protein expression in each virus injection site, whereas injection into the injured L5 DRG or plantar skin had no effects. These results suggest that GDNF exerts its analgesic effects in the neuropathic pain state by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by the uninjured DRG neurons. This article shows that GDNF exerts its analgesic effects on neuropathic pain by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by these neurons. Therefore, research focusing on these GDNF-dependent neurons in the uninjured DRG would provide a new strategy for treating neuropathic pain. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector.

    Science.gov (United States)

    Rincon, Melvin Y; de Vin, Filip; Duqué, Sandra I; Fripont, Shelly; Castaldo, Stephanie A; Bouhuijzen-Wenger, Jessica; Holt, Matthew G

    2018-04-01

    Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.

  13. Adrenal Steroids: Biphasic Effects on Neurons

    NARCIS (Netherlands)

    Joels, M.; Karst, H.; Squire, L.R.

    2009-01-01

    Corticosteroid hormones are released from the adrenal gland after stress. They enter the brain and bind to high-affinity mineralocorticoid and lower affinity glucocorticoid receptors. Through these nuclear receptors, corticosteroids exert long-lasting effects on essential properties of neurons, such

  14. Data Exporter: A complementary tool to export data simulation from NEURON

    Directory of Open Access Journals (Sweden)

    Óscar Emilio Hernández

    2013-01-01

    Full Text Available Objetivos: Desarrollar una herramienta computacional en ambiente lenguaje de pro- gramación hoc de NEURON y de fácil uso, que permita el rápido almacenamiento de los resultados obtenidos para su posterior análisis en otros software tales como Matlab or IgorPro. Materiales y métodos: Para el desarrollo de Data Exporter se escribió un algoritmo en lenguaje de programación hoc de NEURON. El algoritmo, escrito en un único archivo de texto, esta dividido en 13 bloques, de los cuales solo el primero debe ser modificado para adaptarlo a una geometría y biofísica neuronal particular y para determinar la ruta de almacenamiento de los datos. Resultados: Se desarrollo un software que simula la propagación de potenciales de ac- ción a través de geometrías neuronales complejas. El uso de esta herramienta permite el almacenamiento de los resultados obtenidos, como potenciales y corrientes de membrana en diferentes puntos de toda la neurona, sin incremento significativo en el tiempo para el desarrollo de los procesos. Conclusiones: Data Exporter es un software que le da mayor flexibilidad a NEURON facilitando el acceso a nuevos neurocientíficos, los cuales pueden usarlo con solo conocer los códigos necesarios para el desarrollo de los archivos relacionados con las propiedades geométricas y biofísicas neuronales.

  15. Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures

    International Nuclear Information System (INIS)

    Howard, Angela S.; Bucelli, Robert; Jett, David A.; Bruun, Donald; Yang, Dongren; Lein, Pamela J.

    2005-01-01

    Evidence that children are widely exposed to organophosphorus pesticides (OPs) and that OPs cause developmental neurotoxicity in animal models raises significant concerns about the risks these compounds pose to the developing human nervous system. Critical to assessing this risk is identifying specific neurodevelopmental events targeted by OPs. Observations that OPs alter brain morphometry in developing rodents and inhibit neurite outgrowth in neural cell lines suggest that OPs perturb neuronal morphogenesis. However, an important question yet to be answered is whether the dysmorphogenic effect of OPs reflects perturbation of axonal or dendritic growth. We addressed this question by quantifying axonal and dendritic growth in primary cultures of embryonic rat sympathetic neurons derived from superior cervical ganglia (SCG) following in vitro exposure to chlorpyrifos (CPF) or its metabolites CPF-oxon (CPFO) and trichloropyridinol (TCP). Axon outgrowth was significantly inhibited by CPF or CPFO, but not TCP, at concentrations ≥0.001 μM or 0.001 nM, respectively. In contrast, all three compounds enhanced BMP-induced dendritic growth. Acetylcholinesterase was inhibited only by the highest concentrations of CPF (≥1 μM) and CPFO (≥1 nM); TCP had no effect on this parameter. In summary, these compounds perturb neuronal morphogenesis via opposing effects on axonal and dendritic growth, and both effects are independent of acetylcholinesterase inhibition. These findings have important implications for current risk assessment practices of using acetylcholinesterase inhibition as a biomarker of OP neurotoxicity and suggest that OPs may disrupt normal patterns of neuronal connectivity in the developing nervous system

  16. NeuronMetrics: software for semi-automated processing of cultured neuron images.

    Science.gov (United States)

    Narro, Martha L; Yang, Fan; Kraft, Robert; Wenk, Carola; Efrat, Alon; Restifo, Linda L

    2007-03-23

    Using primary cell culture to screen for changes in neuronal morphology requires specialized analysis software. We developed NeuronMetrics for semi-automated, quantitative analysis of two-dimensional (2D) images of fluorescently labeled cultured neurons. It skeletonizes the neuron image using two complementary image-processing techniques, capturing fine terminal neurites with high fidelity. An algorithm was devised to span wide gaps in the skeleton. NeuronMetrics uses a novel strategy based on geometric features called faces to extract a branch number estimate from complex arbors with numerous neurite-to-neurite contacts, without creating a precise, contact-free representation of the neurite arbor. It estimates total neurite length, branch number, primary neurite number, territory (the area of the convex polygon bounding the skeleton and cell body), and Polarity Index (a measure of neuronal polarity). These parameters provide fundamental information about the size and shape of neurite arbors, which are critical factors for neuronal function. NeuronMetrics streamlines optional manual tasks such as removing noise, isolating the largest primary neurite, and correcting length for self-fasciculating neurites. Numeric data are output in a single text file, readily imported into other applications for further analysis. Written as modules for ImageJ, NeuronMetrics provides practical analysis tools that are easy to use and support batch processing. Depending on the need for manual intervention, processing time for a batch of approximately 60 2D images is 1.0-2.5 h, from a folder of images to a table of numeric data. NeuronMetrics' output accelerates the quantitative detection of mutations and chemical compounds that alter neurite morphology in vitro, and will contribute to the use of cultured neurons for drug discovery.

  17. Distemper virus encephalitis exerts detrimental effects on hippocampal neurogenesis.

    Science.gov (United States)

    von Rüden, E-L; Avemary, J; Zellinger, C; Algermissen, D; Bock, P; Beineke, A; Baumgärtner, W; Stein, V M; Tipold, A; Potschka, H

    2012-08-01

    Despite knowledge about the impact of brain inflammation on hippocampal neurogenesis, data on the influence of virus encephalitis on dentate granule cell neurogenesis are so far limited. Canine distemper is considered an interesting model of virus encephalitis, which can be associated with a chronic progressing disease course and can cause symptomatic seizures. To determine the impact of canine distemper virus (CDV) infection on hippocampal neurogenesis, we compared post-mortem tissue from dogs with infection with and without seizures, from epileptic dogs with non-viral aetiology and from dogs without central nervous system diseases. The majority of animals with infection and with epilepsy of non-viral aetiology exhibited neuronal progenitor numbers below the age average in controls. Virus infection with and without seizures significantly decreased the mean number of neuronal progenitor cells by 43% and 76% as compared to age-matched controls. Ki-67 labelling demonstrated that hippocampal cell proliferation was neither affected by infection nor by epilepsy of non-viral aetiology. Analysis of CDV infection in cells expressing caspase-3, doublecortin or Ki-67 indicated that infection of neuronal progenitor cells is extremely rare and suggests that infection might damage non-differentiated progenitor cells, hamper neuronal differentiation and promote glial differentiation. A high inter-individual variance in the number of lectin-reactive microglial cells was evident in dogs with distemper infection. Statistical analyses did not reveal a correlation between the number of lectin-reactive microglia cells and neuronal progenitor cells. Our data demonstrate that virus encephalitis with and without seizures can exert detrimental effects on hippocampal neurogenesis, which might contribute to long-term consequences of the disease. The lack of a significant impact of distemper virus on Ki-67-labelled cells indicates that the infection affected neuronal differentiation and

  18. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not

  19. Chronic lithium treatment increased intracellular S100ß levels in rat primary neuronal culture.

    Directory of Open Access Journals (Sweden)

    Masoumeh Emamghoreishi

    2015-02-01

    Full Text Available S100ß a neurotrophic factor mainly released by astrocytes, has been implicated in the pathogenesis of bipolar disorder. Thus, lithium may exert its neuroprotective effects to some extent through S100ß. Furthermore, the possible effects of lithium on astrocytes as well as on interactions between neurons and astrocytes as a part of its mechanisms of actions are unknown. This study was undertaken to determine the effect of lithium on S100β in neurons, astrocytes and a mixture of neurons and astrocytes. Rat primary astrocyte, neuronal and mixed neuro-astroglia cultures were prepared from cortices of 18-day's embryos. Cell cultures were exposed to lithium (1mM or vehicle for 1day (acute or 7 days (chronic. RT-PCR and ELISA determined S100β mRNA and intra- and extracellular protein levels. Chronic lithium treatment significantly increased intracellular S100β in neuronal and neuro-astroglia cultures in comparison to control cultures (P<0.05. Acute and chronic lithium treatments exerted no significant effects on intracellular S100β protein levels in astrocytes, and extracellular S100β protein levels in three studied cultures as compared to control cultures. Acute and chronic lithium treatments did not significantly alter S100β mRNA levels in three studied cultures, compared to control cultures. Chronic lithium treatment increased intracellular S100ß protein levels in a cell-type specific manner which may favor its neuroprotective action. The findings of this study suggest that lithium may exert its neuroprotective action, at least partly, by increasing neuronal S100ß level, with no effect on astrocytes or interaction between neurons and astrocytes.

  20. Synergy optimization and operation management on syndicate complementary knowledge cooperation

    Science.gov (United States)

    Tu, Kai-Jan

    2014-10-01

    The number of multi enterprises knowledge cooperation has grown steadily, as a result of global innovation competitions. I have conducted research based on optimization and operation studies in this article, and gained the conclusion that synergy management is effective means to break through various management barriers and solve cooperation's chaotic systems. Enterprises must communicate system vision and access complementary knowledge. These are crucial considerations for enterprises to exert their optimization and operation knowledge cooperation synergy to meet global marketing challenges.

  1. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation.

    Science.gov (United States)

    Fröhlich, Dominik; Kuo, Wen Ping; Frühbeis, Carsten; Sun, Jyh-Jang; Zehendner, Christoph M; Luhmann, Heiko J; Pinto, Sheena; Toedling, Joern; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2014-09-26

    Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell-cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen-glucose deprivation, a model of cerebral ischaemia. We show the transfer from oligodendrocytes to neurons of superoxide dismutase and catalase, enzymes which are known to help cells to resist oxidative stress. Additionally, we identify various effects of oligodendroglial exosomes on neuronal physiology. Electrophysiological analysis using in vitro multi-electrode arrays revealed an increased firing rate of neurons exposed to oligodendroglial exosomes. Moreover, gene expression analysis and phosphorylation arrays uncovered differentially expressed genes and altered signal transduction pathways in neurons after exosome treatment. Our study thus provides new insight into the broad spectrum of action of oligodendroglial exosomes and their effects on neuronal physiology. The exchange of extracellular vesicles between neural cells may exhibit remarkable potential to impact brain performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Tlx3 exerts context-dependent transcriptional regulation and promotes neuronal differentiation from embryonic stem cells

    OpenAIRE

    Kondo, Takako; Sheets, Patrick L.; Zopf, David A.; Aloor, Heather L.; Cummins, Theodore R.; Chan, Rebecca J.; Hashino, Eri

    2008-01-01

    The T cell leukemia 3 (Tlx3) gene has been implicated in specification of glutamatergic sensory neurons in the spinal cord. In cranial sensory ganglia, Tlx3 is highly expressed in differentiating neurons during early embryogenesis. To study a role of Tlx3 during neural differentiation, mouse embryonic stem (ES) cells were transfected with a Tlx3 expression vector. ES cells stably expressing Tlx3 were grown in the presence or absence of a neural induction medium. In undifferentiated ES cells, ...

  3. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

    Science.gov (United States)

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-08-09

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

  4. [Dynamics of the dominance of identified cardioregulatory neurons in the snail Achatina fulica] .

    Science.gov (United States)

    Zhuravlev, V L; Bugaĭ, V V; Safronova, T A

    2000-08-01

    9 cardioregulating neurones belonging to 5 different functional groups were studied in visceral and right parietal ganglia of the Giant African snail Achatina fulica. The neuronal network included multimodal and multifunctional cells exerting short- or long-lasting chronoionotropic effects on the cardiac electro- and mechanograms. Mechanisms of the differences in the cardioregulating effectiveness of these groups were discussed.

  5. The importance of neuronal growth factors in the ovary.

    Science.gov (United States)

    Streiter, S; Fisch, B; Sabbah, B; Ao, A; Abir, R

    2016-01-01

    The neurotrophin family consists of nerve growth factor (NGF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT4/5), in addition to brain-derived neurotrophic factor (BDNF) and the neuronal growth factors, glial cell line-derived neurotrophic factor (GDNF) and vasointestinal peptide (VIP). Although there are a few literature reviews, mainly of animal studies, on the importance of neurotrophins in the ovary, we aimed to provide a complete review of neurotrophins as well as neuronal growth factors and their important roles in normal and pathological processes in the ovary. Follicular assembly is probably stimulated by complementary effects of NGF, NT4/5 and BDNF and their receptors. The neurotrophins, GDNF and VIP and their receptors have all been identified in preantral and antral follicles of mammalian species, including humans. Transgenic mice with mutations in the genes encoding for Ngf, Nt4/5 and Bdnf and their tropomyosin-related kinase β receptor showed a reduction in preantral follicles and an abnormal ovarian morphology, whereas NGF, NT3, GDNF and VIP increased the in vitro activation of primordial follicles in rats and goats. Additionally, NGF, NT3 and GDNF promoted follicular cell proliferation; NGF, BDNF and VIP were shown to be involved in ovulation; VIP inhibited follicular apoptosis; NT4/5, BDNF and GDNF promoted oocyte maturation and NGF, NT3 and VIP stimulated steroidogenesis. NGF may also exert a stimulatory effect in ovarian cancer and polycystic ovarian syndrome (PCOS). Low levels of NGF and BDNF in follicular fluid may be associated with diminished ovarian reserve and high levels with endometriosis. More knowledge of the roles of neuronal growth factors in the ovary has important implications for the development of new therapeutic drugs (such as anti-NGF agents) for ovarian cancer and PCOS as well as various infertility problems, warranting further research. © The Author 2015. Published by Oxford University Press on behalf of the European Society

  6. Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury

    DEFF Research Database (Denmark)

    Zhang, Ming Dong; Tortoriello, Giuseppe; Hsueh, Brian

    2014-01-01

    , and nerve injury-induced regulation of NECAB1/NECAB2 in mouse dorsal root ganglia (DRGs) and spinal cord. In DRGs, NECAB1/2 are expressed in around 70% of mainly small- and medium-sized neurons. Many colocalize with calcitonin gene-related peptide and isolectin B4, and thus represent nociceptors. NECAB1....../2 neurons are much more abundant in DRGs than the Ca2+-binding proteins (parvalbumin, calbindin, calretinin, and secretagogin) studied to date. In the spinal cord, the NECAB1/2 distribution is mainly complementary. NECAB1 labels interneurons and a plexus of processes in superficial layers of the dorsal horn....... In the dorsal horn, most NECAB1/2 neurons are glutamatergic. Both NECAB1/2 are transported into dorsal roots and peripheral nerves. Peripheral nerve injury reduces NECAB2, but not NECAB1, expression in DRG neurons. Our study identifies NECAB1/2 as abundant Ca2+-binding proteins in pain-related DRG neurons...

  7. Neurons for hunger and thirst transmit a negative-valence teaching signal

    Science.gov (United States)

    Gong, Rong; Magnus, Christopher J.; Yu, Yang; Sternson, Scott M.

    2015-01-01

    Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics and dynamics of two separate neuron populations that regulate energy and fluid homeostasis by using cell type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis. PMID:25915020

  8. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus.

    Science.gov (United States)

    Dufourny, Laurence; Lomet, Didier

    2017-12-01

    Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Tramadol and propentofylline coadministration exerted synergistic effects on rat spinal nerve ligation-induced neuropathic pain.

    Science.gov (United States)

    Zhang, Jin; Wu, Dan; Xie, Cheng; Wang, Huan; Wang, Wei; Zhang, Hui; Liu, Rui; Xu, Li-Xian; Mei, Xiao-Peng

    2013-01-01

    Neuropathic pain is an intractable clinical problem. Drug treatments such as tramadol have been reported to effectively decrease neuropathic pain by inhibiting the activity of nociceptive neurons. It has also been reported that modulating glial activation could also prevent or reverse neuropathic pain via the administration of a glial modulator or inhibitor, such as propentofylline. Thus far, there has been no clinical strategy incorporating both neuronal and glial participation for treating neuropathic pain. Therefore, the present research study was designed to assess whether coadministration of tramadol and propentofylline, as neuronal and glial activation inhibitors, respectively, would exert a synergistic effect on the reduction of rat spinal nerve ligation (SNL)-induced neuropathic pain. Rats underwent SNL surgery to induce neuropathic pain. Pain behavioral tests were conducted to ascertain the effect of drugs on SNL-induced mechanical allodynia with von-Frey hairs. Proinflammatory factor interleukin-1β (IL-1β) expression was also detected by Real-time RT-PCR. Intrathecal tramadol and propentofylline administered alone relieved SNL-induced mechanical allodynia in a dose-dependent manner. Tramadol and propentofylline coadministration exerted a more potent effect in a synergistic and dose dependent manner than the intrathecal administration of either drug alone. Real-time RT-PCR demonstrated IL-1β up-expression in the ipsilateral spinal dorsal horn after the lesion, which was significantly decreased by tramadol and propentofylline coadministration. Inhibiting proinflammatory factor IL-1β contributed to the synergistic effects of tramadol and propentofylline coadministration on rat peripheral nerve injury-induced neuropathic pain. Thus, our study provided a rationale for utilizing a novel strategy for treating neuropathic pain by blocking the proinflammatory factor related pathways in the central nervous system.

  10. Endogenous IFN-β signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia

    DEFF Research Database (Denmark)

    Inácio, Ana R; Liu, Yawei; Clausen, Bettina H

    2015-01-01

    of infiltrating leukocytes in the brain 2 days after stroke. Concomitantly, in the blood of IFN-βKO mice, we found a higher percentage of total B cells but a similar percentage of mature and activated B cells, collectively indicating a higher proliferation rate. The additional differential regulation......BACKGROUND: Interferon (IFN)-β exerts anti-inflammatory effects, coupled to remarkable neurological improvements in multiple sclerosis, a neuroinflammatory condition of the central nervous system. Analogously, it has been hypothesized that IFN-β, by limiting inflammation, decreases neuronal death...... strength tests, and cerebral infarct volumes were given by lack of neuronal nuclei immunoreactivity. RESULTS: Here, we report alterations in local and systemic inflammation in IFN-β knockout (IFN-βKO) mice over 8 days after induction of focal cerebral ischemia. Notably, IFN-βKO mice showed a higher number...

  11. Telomerase activity-independent function of telomerase reverse transcriptase is involved in acrylamide-induced neuron damage.

    Science.gov (United States)

    Zhang, P; Pan, H; Wang, J; Liu, X; Hu, X

    2014-07-01

    Polyacrylamide is used widely in industry, and its decomposition product, acrylamide (ACR), readily finds its way into commonly consumed cosmetics and baked and fried foods. ACR exerts potent neurotoxic effects in human and animal models. Telomerase reverse transcriptase (TERT), the catalytic subunit of telomerase, traditionally has been considered to play an important role in maintaining telomere length. Emerging evidence has shown, however, that TERT plays an important role in neuroprotection by inhibiting apoptosis and excitotoxicity, and by promoting angiogenesis, neuronal survival and neurogenesis, which are closely related to the telomere-independent functions of TERT. We investigated whether and how the TERT pathway is involved in ACR induced neurotoxicity in rat cortical neurons. We found that ACR 1) significantly reduced the viability of cortical neurons as measured by MTT assay, 2) induced neuron apoptosis as revealed by FITC-conjugated Annexin V/PI double staining and flow cytometry (FACS) analysis, 3) elevated expression of cleaved caspase-3, and 4) decreased bcl-2 expression of cortical neurons. ACR also increased intracellular ROS levels in cortical neurons, increased MDA levels and reduced GSH, SOD and GSH-Px levels in mitochondria in a dose-dependent manner. We found that TERT expression in mitochondria was increased by ACR at concentrations of 2.5 and 5.0 mM, but TERT expression was decreased by 10 mM ACR. Telomerase activity, however, was undetectable in rat cortical neurons. Our results suggest that the TERT pathway is involved in ACR induced apoptosis of cortical neurons. TERT also may exert its neuroprotective role in a telomerase activity-independent way, especially in mitochondria.

  12. Assessing neurodevelopmental effects of arsenolipids in pre-differentiated human neurons.

    Science.gov (United States)

    Witt, Barbara; Ebert, Franziska; Meyer, Sören; Francesconi, Kevin A; Schwerdtle, Tanja

    2017-11-01

    In the general population exposure to arsenic occurs mainly via diet. Highest arsenic concentrations are found in seafood, where arsenic is present predominantly in its organic forms including arsenolipids. Since recent studies have provided evidence that arsenolipids could reach the brain of an organism and exert toxicity in fully differentiated human neurons, this work aims to assess the neurodevelopmental toxicity of arsenolipids. Neurodevelopmental effects of three arsenic-containing hydrocarbons (AsHC), two arsenic-containing fatty acids (AsFA), arsenite and dimethylarsinic acid (DMA V ) were characterized in pre-differentiated human neurons. AsHCs and arsenite caused substantial cytotoxicity in a similar, low concentration range, whereas AsFAs and DMA V were less toxic. AsHCs were highly accessible for cells and exerted pronounced neurodevelopmental effects, with neurite outgrowth and the mitochondrial membrane potential being sensitive endpoints; arsenite did not substantially decrease those two endpoints. In fully differentiated neurons, arsenite and AsHCs caused neurite toxicity. These results indicate for a neurodevelopmental potential of AsHCs. Taken into account the possibility that AsHCs might easily reach the developing brain when exposed during early life, neurotoxicity and neurodevelopmental toxicity cannot be excluded. Further studies are needed in order to progress the urgently needed risk assessment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release.

    Science.gov (United States)

    Rau, Andrew R; Hentges, Shane T

    2017-08-02

    Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA release from AgRP neurons either by cell type-specific deletion of the vesicular GABA transporter or by expression of botulinum toxin in AgRP neurons to prevent vesicle-associated membrane protein 2-dependent vesicle fusion. Additionally, there was no difference in the ability of μ-opioid receptor (MOR) agonists to inhibit sIPSCs in POMC neurons when MORs were deleted from AgRP neurons, and activation of the inhibitory designer receptor hM4Di on AgRP neurons did not affect sIPSCs recorded from POMC neurons. These approaches collectively indicate that AgRP neurons do not significantly contribute to the strong spontaneous GABA input to POMC neurons. Despite these observations, optogenetic stimulation of AgRP neurons reliably produced evoked IPSCs in POMC neurons, leading to the inhibition of POMC neuron firing. Thus, AgRP neurons can potently affect POMC neuron function without contributing a significant source of spontaneous GABA input to POMC neurons. Together, these results indicate that the relevance of GABAergic inputs from AgRP to POMC neurons is state dependent and highlight the need to consider different types of transmitter release in circuit mapping and physiologic regulation. SIGNIFICANCE STATEMENT Agouti-related peptide (AgRP) neurons play an important role in driving food intake, while proopiomelanocortin (POMC) neurons inhibit feeding. Despite the importance of these two well characterized neuron types in maintaining metabolic homeostasis, communication between these

  14. Mesencephalic neuron death induced by congeners of nitrogen monoxide is prevented by the lazaroid U-83836E.

    Science.gov (United States)

    Grasbon-Frodl, E M; Brundin, P

    1997-01-01

    We explored the effects of congeners of nitrogen monoxide (NO) on cultured mesencephalic neurons. Sodium nitroprusside (SNP) was used as a donor of NO, the congeners of which have been found to exert either neurotoxic or neuroprotective effects depending on the surrounding redox milieu. In contrast to a previous report that suggests that the nitrosonium ion (NO+) is neuroprotective to cultured cortical neurons, we found that the nitrosonium ion reduces the survival of cultured dopamine neurons to 32% of control. There was a trend for further impairment of dopamine neuron survival, to only 7% of untreated control, when the cultures were treated with SNP plus ascorbate, i.e. when the nitric oxide radical (NO.) had presumably been formed. We also evaluated the effects of an inhibitor of lipid peroxidation, the lazaroid U-83836E, against SNP toxicity. U-83836E exerted marked neuroprotective effects in both insult models. More than twice as many dopamine neurons (75% of control) survived when the lazaroid was added to SNP-treated cultures and the survival was increased eight-fold (to 55% of control) when U-83836E was added to cultures treated with SNP plus ascorbate. We conclude that the congeners of NO released by SNP are toxic to mesencephalic neurons in vitro and that the lazaroid U-83836E significantly increases the survival of dopamine neurons in situations where congeners of NO are generated.

  15. First-spike latency in Hodgkin's three classes of neurons.

    Science.gov (United States)

    Wang, Hengtong; Chen, Yueling; Chen, Yong

    2013-07-07

    We study the first-spike latency (FSL) in Hodgkin's three classes of neurons with the Morris-Lecar neuron model. It is found that all the three classes of neurons can encode an external stimulus into FSLs. With DC inputs, the FSLs of all of the neurons decrease with input intensity. With input current decreased to the threshold, class 1 neurons show an arbitrary long FSL whereas class 2 and 3 neurons exhibit the short-limit FSLs. When the input current is sinusoidal, the amplitude, frequency and initial phase can be encoded by all the three classes of neurons. The FSLs of all of the neurons decrease with the input amplitude and frequency. When the input frequency is too high, all of the neurons respond with infinite FSLs. When the initial phase increases, the FSL decreases and then jumps to a maximal value and finally decreases linearly. With changes in the input parameters, the FSLs of the class 1 and 2 neurons exhibit similar properties. However, the FSL of the class 3 neurons became slightly longer and only produces responses for a narrow range of initial phase if input frequencies are low. Moreover, our results also show that the FSL and firing rate responses are mutually independent processes and that neurons can encode an external stimulus into different FSLs and firing rates simultaneously. This finding is consistent with the current theory of dual or multiple complementary coding mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Perspectives on Exertional Rhabdomyolysis.

    Science.gov (United States)

    Rawson, Eric S; Clarkson, Priscilla M; Tarnopolsky, Mark A

    2017-03-01

    Exertional (exercise-induced) rhabdomyolysis is a potentially life threatening condition that has been the subject of research, intense discussion, and media attention. The causes of rhabdomyolysis are numerous and can include direct muscle injury, unaccustomed exercise, ischemia, extreme temperatures, electrolyte abnormalities, endocrinologic conditions, genetic disorders, autoimmune disorders, infections, drugs, toxins, and venoms. The objective of this article is to review the literature on exertional rhabdomyolysis, identify precipitating factors, and examine the role of the dietary supplement creatine monohydrate. PubMed and SPORTDiscus databases were searched using the terms rhabdomyolysis, muscle damage, creatine, creatine supplementation, creatine monohydrate, and phosphocreatine. Additionally, the references of papers identified through this search were examined for relevant studies. A meta-analysis was not performed. Although the prevalence of rhabdomyolysis is low, instances still occur where exercise is improperly prescribed or used as punishment, or incomplete medical history is taken, and exertional rhabdomyolysis occurs. Creatine monohydrate does not appear to be a precipitating factor for exertional rhabdomyolysis. Healthcare professionals should be able to recognize the basic signs of exertional rhabdomyolysis so prompt treatment can be administered. For the risk of rhabdomyolysis to remain low, exercise testing and prescription must be properly conducted based on professional standards.

  17. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability

    OpenAIRE

    Allaman, Igor; Gavillet, Mathilde; Bélanger, Mireille; Laroche, Thierry; Viertl, David; Lashuel, Hilal A.; Magistretti, Pierre J.

    2010-01-01

    Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism ...

  18. The definition of exertion-related cardiac events.

    Science.gov (United States)

    Rai, M; Thompson, P D

    2011-02-01

    Vigorous physical activity increases the risk of sudden cardiac death (SCD) and acute myocardial infarction (AMI) but there is no standard definition as to what constitutes an exertion-related cardiac event, specifically the time interval between physical exertion and cardiac event. A systematic review of studies related to exertion-related cardiac events was performed and the time interval between exertion and the event or the symptoms leading to the event was looked for in all the articles selected for inclusion. A total of 12 of 26 articles "suggested" or "defined" exertion-related events as those events whose symptoms started during or within 1 h of exertion. Others used definitions of 0.5 h, 2 h, "during exertion", "during or immediately post exertion" and "during or within several hours after exertion". It is suggested, therefore, that the definition of an exertion-related cardiac event be established as a cardiac event in which symptoms started during or within 1 h of physical exertion.

  19. Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions

    Directory of Open Access Journals (Sweden)

    Chrysanthi eSamara

    2013-11-01

    Full Text Available The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs. SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.

  20. Enhancing action of LSD on neuronal responsiveness to serotonin in a brain structure involved in obsessive-compulsive disorder.

    Science.gov (United States)

    Zghoul, Tarek; Blier, Pierre

    2003-03-01

    Potent serotonin (5-HT) reuptake inhibitors are the only drugs that consistently exert a therapeutic action in obsessive-compulsive disorder (OCD). Given that some hallucinogens were reported to exert an anti-OCD effect outlasting their psychotomimetic action, possible modifications of neuronal responsiveness to 5-HT by LSD were examined in two rat brain structures: one associated with OCD, the orbitofrontal cortex (OFC), and another linked to depression, the hippocampus. The effects of concurrent microiontophoretic application of LSD and 5-HT were examined on neuronal firing rate in the rat OFC and hippocampus under chloral hydrate anaesthesia. In order to determine whether LSD could also exert a modification of 5-HT neuronal responsiveness upon systemic administration, after a delay when hallucinosis is presumably no longer present, it was given once daily (100 microg/kg i.p.) for 4 d and the experiments were carried out 24 h after the last dose. LSD attenuated the firing activity of OFC neurons, and enhanced the inhibitory effect of 5-HT when concomitantly ejected on the same neurons. In the hippocampus, LSD also decreased firing rate by itself but decreased the inhibitory action of 5-HT. The inhibitory action of 5-HT was significantly greater in the OFC, but smaller in the hippocampus, when examined after subacute systemic administration of LSD. It is postulated that some hallucinogens could have a beneficial action in OCD by enhancing the responsiveness to 5-HT in the OFC, and not necessarily in direct relation to hallucinosis. The latter observation may have theoretical implications for the pharmacotherapy of OCD.

  1. Glucose-monitoring neurons in the mediodorsal prefrontal cortex.

    Science.gov (United States)

    Nagy, Bernadett; Szabó, István; Papp, Szilárd; Takács, Gábor; Szalay, Csaba; Karádi, Zoltán

    2012-03-20

    The mediodorsal prefrontal cortex (mdPFC), a key structure of the limbic neural circuitry, plays important roles in the central regulation of feeding. As an integrant part of the forebrain dopamine (DA) system, it performs complex roles via interconnections with various brain areas where glucose-monitoring (GM) neurons have been identified. The main goal of the present experiments was to examine whether similar GM neurons exist in the mediodorsal prefrontal cortex. To search for such chemosensory cells here, and to estimate their involvement in the DA circuitry, extracellular single neuron activity of the mediodorsal prefrontal cortex of anesthetized Wistar and Sprague-Dawley rats was recorded by means of tungsten wire multibarreled glass microelectrodes during microelectrophoretic administration of d-glucose and DA. One fourth of the neurons tested changed in firing rate in response to glucose, thus, proved to be elements of the forebrain GM neural network. DA responsive neurons in the mdPFC were found to represent similar proportion of all cells; the glucose-excited units were shown to display excitatory whereas the glucose-inhibited neurons were demonstrated to exert mainly inhibitory responses to dopamine. The glucose-monitoring neurons of the mdPFC and their distinct DA sensitivity are suggested to be of particular significance in adaptive processes of the central feeding control. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Doubly stochastic coherence in complex neuronal networks

    Science.gov (United States)

    Gao, Yang; Wang, Jianjun

    2012-11-01

    A system composed of coupled FitzHugh-Nagumo neurons with various topological structures is investigated under the co-presence of two independently additive and multiplicative Gaussian white noises, in which particular attention is paid to the neuronal networks spiking regularity. As the additive noise intensity and the multiplicative noise intensity are simultaneously adjusted to optimal values, the temporal periodicity of the output of the system reaches the maximum, indicating the occurrence of doubly stochastic coherence. The network topology randomness exerts different influences on the temporal coherence of the spiking oscillation for dissimilar coupling strength regimes. At a small coupling strength, the spiking regularity shows nearly no difference in the regular, small-world, and completely random networks. At an intermediate coupling strength, the temporal periodicity in a small-world neuronal network can be improved slightly by adding a small fraction of long-range connections. At a large coupling strength, the dynamical behavior of the neurons completely loses the resonance property with regard to the additive noise intensity or the multiplicative noise intensity, and the spiking regularity decreases considerably with the increase of the network topology randomness. The network topology randomness plays more of a depressed role than a favorable role in improving the temporal coherence of the spiking oscillation in the neuronal network research study.

  3. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer's disease model

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yingjia [School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600 (China); Gao, Zhong [Department of Interventional Therapy, Dalian Municipal Central Hospital, Dalian 116033 (China); Liang, Wenbo [Medical College of Dalian University, Dalian 116600, Liaoning (China); Kong, Liang; Jiao, Yanan; Li, Shaoheng; Tao, Zhenyu; Yan, Yuhui [School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600 (China); Yang, Jingxian, E-mail: jingxianyang@yahoo.com [School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600 (China)

    2015-12-15

    Neurogenesis is the process by which neural stem cells (NSCs) proliferate and differentiate into neurons. This is diminished in several neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by the deposition of amyloid (A)β peptides and neuronal loss. Stimulating NSCs to replace lost neurons is therefore a promising approach for AD treatment. Our previous study demonstrated that osthole modulates NSC proliferation and differentiation, and may reduce Aβ protein expression in nerve cells. Here we investigated the mechanism underlying the effects of osthole on NSCs. We found that osthole enhances NSC proliferation and neuronal differentiation while suppressing apoptosis, effects that were exerted via activation of Wnt/β-catenin signaling. These results provide evidence that osthole can potentially be used as a therapeutic agent in the treatment of AD and other neurodegenerative disorders. - Highlights: • An Alzheimer's disease model was successfully established by transfecting APP gene into neural stem cells in vitro. • Roles of osthole in experimental AD cells were studied. • Osthole promotes proliferation and differentiation into neurons and inhibits accumulation of Aβ{sub 1–42} peptide and apoptosis. • Osthole exerts protection via Wnt/β-catenin signaling pathway.

  4. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer's disease model

    International Nuclear Information System (INIS)

    Yao, Yingjia; Gao, Zhong; Liang, Wenbo; Kong, Liang; Jiao, Yanan; Li, Shaoheng; Tao, Zhenyu; Yan, Yuhui; Yang, Jingxian

    2015-01-01

    Neurogenesis is the process by which neural stem cells (NSCs) proliferate and differentiate into neurons. This is diminished in several neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by the deposition of amyloid (A)β peptides and neuronal loss. Stimulating NSCs to replace lost neurons is therefore a promising approach for AD treatment. Our previous study demonstrated that osthole modulates NSC proliferation and differentiation, and may reduce Aβ protein expression in nerve cells. Here we investigated the mechanism underlying the effects of osthole on NSCs. We found that osthole enhances NSC proliferation and neuronal differentiation while suppressing apoptosis, effects that were exerted via activation of Wnt/β-catenin signaling. These results provide evidence that osthole can potentially be used as a therapeutic agent in the treatment of AD and other neurodegenerative disorders. - Highlights: • An Alzheimer's disease model was successfully established by transfecting APP gene into neural stem cells in vitro. • Roles of osthole in experimental AD cells were studied. • Osthole promotes proliferation and differentiation into neurons and inhibits accumulation of Aβ 1–42 peptide and apoptosis. • Osthole exerts protection via Wnt/β-catenin signaling pathway.

  5. Does mental exertion alter maximal muscle activation?

    Directory of Open Access Journals (Sweden)

    Vianney eRozand

    2014-09-01

    Full Text Available Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 minutes each: i high mental exertion (incongruent Stroop task, ii moderate mental exertion (congruent Stroop task, iii low mental exertion (watching a movie. In each condition, mental exertion was combined with ten intermittent maximal voluntary contractions of the knee extensor muscles (one maximal voluntary contraction every 3 minutes. Neuromuscular function was assessed using electrical nerve stimulation. Maximal voluntary torque, maximal muscle activation and other neuromuscular parameters were similar across mental exertion conditions and did not change over time. These findings suggest that mental exertion does not affect neuromuscular function during intermittent maximal voluntary contractions of the knee extensors.

  6. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.

    Science.gov (United States)

    Essner, Rachel A; Smith, Alison G; Jamnik, Adam A; Ryba, Anna R; Trutner, Zoe D; Carter, Matthew E

    2017-09-06

    To maintain energy homeostasis, orexigenic (appetite-inducing) and anorexigenic (appetite suppressing) brain systems functionally interact to regulate food intake. Within the hypothalamus, neurons that express agouti-related protein (AgRP) sense orexigenic factors and orchestrate an increase in food-seeking behavior. In contrast, calcitonin gene-related peptide (CGRP)-expressing neurons in the parabrachial nucleus (PBN) suppress feeding. PBN CGRP neurons become active in response to anorexigenic hormones released following a meal, including amylin, secreted by the pancreas, and cholecystokinin (CCK), secreted by the small intestine. Additionally, exogenous compounds, such as lithium chloride (LiCl), a salt that creates gastric discomfort, and lipopolysaccharide (LPS), a bacterial cell wall component that induces inflammation, exert appetite-suppressing effects and activate PBN CGRP neurons. The effects of increasing the homeostatic drive to eat on feeding behavior during appetite suppressing conditions are unknown. Here, we show in mice that food deprivation or optogenetic activation of AgRP neurons induces feeding to overcome the appetite suppressing effects of amylin, CCK, and LiCl, but not LPS. AgRP neuron photostimulation can also increase feeding during chemogenetic-mediated stimulation of PBN CGRP neurons. AgRP neuron stimulation reduces Fos expression in PBN CGRP neurons across all conditions. Finally, stimulation of projections from AgRP neurons to the PBN increases feeding following administration of amylin, CCK, and LiCl, but not LPS. These results demonstrate that AgRP neurons are sufficient to increase feeding during noninflammatory-based appetite suppression and to decrease activity in anorexigenic PBN CGRP neurons, thereby increasing food intake during homeostatic need. SIGNIFICANCE STATEMENT The motivation to eat depends on the relative balance of activity in distinct brain regions that induce or suppress appetite. An abnormal amount of activity in

  7. Daidzein induces neuritogenesis in DRG neuronal cultures

    Directory of Open Access Journals (Sweden)

    Yang Shih-Hung

    2012-08-01

    Full Text Available Absract Background Daidzein, a phytoestrogen found in isoflavone, is known to exert neurotrophic and neuroprotective effects on the nervous system. Using primary rat dorsal root ganglion (DRG neuronal cultures, we have examined the potential neurite outgrowth effect of daidzein. Methods Dissociated dorsal root ganglia (DRG cultures were used to study the signaling mechanism of daidzein-induced neuritogenesis by immunocytochemistry and Western blotting. Results In response to daidzein treatment, DRG neurons showed a significant increase in total neurite length and in tip number per neuron. The neuritogenic effect of daidzein was significantly hampered by specific blockers for Src, protein kinase C delta (PKCδ and mitogen-activated protein kinase/extracellular signal-regulated kinase kinases (MEK/ERK, but not by those for estrogen receptor (ER. Moreover, daidzein induced phosphorylation of Src, PKCδ and ERK. The activation of PKCδ by daidzein was attenuated in the presence of a Src kinase inhibitor, and that of ERK by daidzein was diminished in the presence of either a Src or PKCδ inhibitor. Conclusion Daidzein may stimulate neurite outgrowth of DRG neurons depending on Src kinase, PKCδ and ERK signaling pathway.

  8. Bax regulates neuronal Ca2+ homeostasis.

    Science.gov (United States)

    D'Orsi, Beatrice; Kilbride, Seán M; Chen, Gang; Perez Alvarez, Sergio; Bonner, Helena P; Pfeiffer, Shona; Plesnila, Nikolaus; Engel, Tobias; Henshall, David C; Düssmann, Heiko; Prehn, Jochen H M

    2015-01-28

    Excessive Ca(2+) entry during glutamate receptor overactivation ("excitotoxicity") induces acute or delayed neuronal death. We report here that deficiency in bax exerted broad neuroprotection against excitotoxic injury and oxygen/glucose deprivation in mouse neocortical neuron cultures and reduced infarct size, necrotic injury, and cerebral edema formation after middle cerebral artery occlusion in mice. Neuronal Ca(2+) and mitochondrial membrane potential (Δψm) analysis during excitotoxic injury revealed that bax-deficient neurons showed significantly reduced Ca(2+) transients during the NMDA excitation period and did not exhibit the deregulation of Δψm that was observed in their wild-type (WT) counterparts. Reintroduction of bax or a bax mutant incapable of proapoptotic oligomerization equally restored neuronal Ca(2+) dynamics during NMDA excitation, suggesting that Bax controlled Ca(2+) signaling independently of its role in apoptosis execution. Quantitative confocal imaging of intracellular ATP or mitochondrial Ca(2+) levels using FRET-based sensors indicated that the effects of bax deficiency on Ca(2+) handling were not due to enhanced cellular bioenergetics or increased Ca(2+) uptake into mitochondria. We also observed that mitochondria isolated from WT or bax-deficient cells similarly underwent Ca(2+)-induced permeability transition. However, when Ca(2+) uptake into the sarco/endoplasmic reticulum was blocked with the Ca(2+)-ATPase inhibitor thapsigargin, bax-deficient neurons showed strongly elevated cytosolic Ca(2+) levels during NMDA excitation, suggesting that the ability of Bax to support dynamic ER Ca(2+) handling is critical for cell death signaling during periods of neuronal overexcitation. Copyright © 2015 the authors 0270-6474/15/351706-17$15.00/0.

  9. Exertional dyspnoea in obesity

    Directory of Open Access Journals (Sweden)

    Vipa Bernhardt

    2016-12-01

    Full Text Available The purpose of cardiopulmonary exercise testing (CPET in the obese person, as in any cardiopulmonary exercise test, is to determine the patient's exercise tolerance, and to help identify and/or distinguish between the various physiological factors that could contribute to exercise intolerance. Unexplained dyspnoea on exertion is a common reason for CPET, but it is an extremely complex symptom to explain. Sometimes obesity is the simple answer by elimination of other possibilities. Thus, distinguishing among multiple clinical causes for exertional dyspnoea depends on the ability to eliminate possibilities while recognising response patterns that are unique to the obese patient. This includes the otherwise healthy obese patient, as well as the obese patient with potentially multiple cardiopulmonary limitations. Despite obvious limitations in lung function, metabolic disease and/or cardiovascular dysfunction, obesity may be the most likely reason for exertional dyspnoea. In this article, we will review the more common cardiopulmonary responses to exercise in the otherwise healthy obese adult with special emphasis on dyspnoea on exertion.

  10. Neuron-derived IgG protects dopaminergic neurons from insult by 6-OHDA and activates microglia through the FcγR I and TLR4 pathways.

    Science.gov (United States)

    Zhang, Jie; Niu, Na; Wang, Mingyu; McNutt, Michael A; Zhang, Donghong; Zhang, Baogang; Lu, Shijun; Liu, Yuqing; Liu, Zhihui

    2013-08-01

    Oxidative and immune attacks from the environment or microglia have been implicated in the loss of dopaminergic neurons of Parkinson's disease. The role of IgG which is an important immunologic molecule in the process of Parkinson's disease has been unclear. Evidence suggests that IgG can be produced by neurons in addition to its traditionally recognized source B lymphocytes, but its function in neurons is poorly understood. In this study, extensive expression of neuron-derived IgG was demonstrated in dopaminergic neurons of human and rat mesencephalon. With an in vitro Parkinson's disease model, we found that neuron-derived IgG can improve the survival and reduce apoptosis of dopaminergic neurons induced by 6-hydroxydopamine toxicity, and also depress the release of NO from microglia triggered by 6-hydroxydopamine. Expression of TNF-α and IL-10 in microglia was elevated to protective levels by neuron-derived IgG at a physiologic level via the FcγR I and TLR4 pathways and microglial activation could be attenuated by IgG blocking. All these data suggested that neuron-derived IgG may exert a self-protective function by activating microglia properly, and IgG may be involved in maintaining immunity homeostasis in the central nervous system and serve as an active factor under pathological conditions such as Parkinson's disease. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Diet and cognition: interplay between cell metabolism and neuronal plasticity.

    Science.gov (United States)

    Gomez-Pinilla, Fernando; Tyagi, Ethika

    2013-11-01

    To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long-term neuronal plasticity. The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid docosahexenoic acid, disrupting neuronal signaling. Thus, dietary docosahexenoic acid seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation.

  12. Cell-Specific Cholinergic Modulation of Excitability of Layer 5B Principal Neurons in Mouse Auditory Cortex

    Science.gov (United States)

    Joshi, Ankur; Kalappa, Bopanna I.; Anderson, Charles T.

    2016-01-01

    The neuromodulator acetylcholine (ACh) is crucial for several cognitive functions, such as perception, attention, and learning and memory. Whereas, in most cases, the cellular circuits or the specific neurons via which ACh exerts its cognitive effects remain unknown, it is known that auditory cortex (AC) neurons projecting from layer 5B (L5B) to the inferior colliculus, corticocollicular neurons, are required for cholinergic-mediated relearning of sound localization after occlusion of one ear. Therefore, elucidation of the effects of ACh on the excitability of corticocollicular neurons will bridge the cell-specific and cognitive properties of ACh. Because AC L5B contains another class of neurons that project to the contralateral cortex, corticocallosal neurons, to identify the cell-specific mechanisms that enable corticocollicular neurons to participate in sound localization relearning, we investigated the effects of ACh release on both L5B corticocallosal and corticocollicular neurons. Using in vitro electrophysiology and optogenetics in mouse brain slices, we found that ACh generated nicotinic ACh receptor (nAChR)-mediated depolarizing potentials and muscarinic ACh receptor (mAChR)-mediated hyperpolarizing potentials in AC L5B corticocallosal neurons. In corticocollicular neurons, ACh release also generated nAChR-mediated depolarizing potentials. However, in contrast to the mAChR-mediated hyperpolarizing potentials in corticocallosal neurons, ACh generated prolonged mAChR-mediated depolarizing potentials in corticocollicular neurons. These prolonged depolarizing potentials generated persistent firing in corticocollicular neurons, whereas corticocallosal neurons lacking mAChR-mediated depolarizing potentials did not show persistent firing. We propose that ACh-mediated persistent firing in corticocollicular neurons may represent a critical mechanism required for learning-induced plasticity in AC. SIGNIFICANCE STATEMENT Acetylcholine (ACh) is crucial for cognitive

  13. Rational modulation of neuronal processing with applied electric fields.

    Science.gov (United States)

    Bikson, Marom; Radman, Thomas; Datta, Abhishek

    2006-01-01

    Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.

  14. Exerting Capacity.

    Science.gov (United States)

    Leger, J Michael; Phillips, Carolyn A

    2017-05-01

    Patient safety has been at the forefront of nursing research since the release of the Institute of Medicine's report estimating the number of preventable adverse events in hospital settings; yet no research to date has incorporated the perspectives of bedside nurses using classical grounded theory (CGT) methodology. This CGT study explored the perceptions of bedside registered nurses regarding patient safety in adult acute care hospitals. Data analysis used three techniques unique to CGT-the constant comparative method, coding, and memoing-to explore the values, realities, and beliefs of bedside nurses about patient safety. The analysis resulted in a substantive theory, Exerting Capacity, which explained how bedside nurses balance the demands of keeping their patients safe. Exerting Capacity has implications for health care organization leaders, nursing leaders, and bedside nurses; it also has indications for future research into the concept of patient safety.

  15. GABA regulates synaptic integration of newly generated neurons in the adult brain

    Science.gov (United States)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  16. Metformin Protects Neurons against Oxygen-Glucose Deprivation/Reoxygenation -Induced Injury by Down-Regulating MAD2B.

    Science.gov (United States)

    Meng, Xianfang; Chu, Guangpin; Yang, Zhihua; Qiu, Ping; Hu, Yue; Chen, Xiaohe; Peng, Wenpeng; Ye, Chen; He, Fang-Fang; Zhang, Chun

    2016-01-01

    Metformin, the common medication for type II diabetes, has protective effects on cerebral ischemia. However, the molecular mechanisms are far from clear. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of the anaphase-promoting complex (APC), is widely expressed in hippocampal and cortical neurons and plays an important role in mediating high glucose-induced neurotoxicity. The present study investigated whether metformin modifies the expression of MAD2B and to exert its neuroprotective effects in primary cultured cortical neurons during oxygen-glucose deprivation/reoxygenation (OGD/R), a widely used in vitro model of ischemia/reperfusion. Primary cortical neurons were cultured, deprived of oxygen-glucose for 1 h, and then recovered with oxygen-glucose for 12 h and 24 h. Cell viability was measured by detecting the levels of lactate dehydrogenase (LDH) in culture medium. The levels of MAD2B, cyclin B and p-histone 3 were measured by Western blot. Cell viability of neurons was reduced under oxygen-glucose deprivation/reoxygenation (OGD/R). The expression of MAD2B was increased under OGD/R. The levels of cyclin B1, which is a substrate of APC, were also increased. Moreover, OGD/R up-regulated the phosphorylation levels of histone 3, which is the induction of aberrant re-entry of post-mitotic neurons. However, pretreatment of neurons with metformin alleviated OGD/R-induced injury. Metformin further decreased the expression of MAD2B, cyclin B1 and phosphorylation levels of histone 3. Metformin exerts its neuroprotective effect through regulating the expression of MAD2B in neurons under OGD/R. © 2016 The Author(s) Published by S. Karger AG, Basel.

  17. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish.

    Science.gov (United States)

    Fontaine, Romain; Affaticati, Pierre; Bureau, Charlotte; Colin, Ingrid; Demarque, Michaël; Dufour, Sylvie; Vernier, Philippe; Yamamoto, Kei; Pasqualini, Catherine

    2015-08-01

    Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.

  18. Complementary Therapies for Significant Dysfunction from Tinnitus: Treatment Review and Potential for Integrative Medicine

    Directory of Open Access Journals (Sweden)

    Ruth Q. Wolever

    2015-01-01

    Full Text Available Tinnitus is a prevalent and costly chronic condition; no universally effective treatment exists. Only 20% of patients who report tinnitus actually seek treatment, and when treated, most patients commonly receive sound-based and educational (SBE therapy. Additional treatment options are necessary, however, for nonauditory aspects of tinnitus (e.g., anxiety, depression, and significant interference with daily life and when SBE therapy is inefficacious or inappropriate. This paper provides a comprehensive review of (1 conventional tinnitus treatments and (2 promising complementary therapies that have demonstrated some benefit for severe dysfunction from tinnitus. While there has been no systematic study of the benefits of an Integrative Medicine approach for severe tinnitus, the current paper reviews emerging evidence suggesting that synergistic combinations of complementary therapies provided within a whole-person framework may augment SBE therapy and empower patients to exert control over their tinnitus symptoms without the use of medications, expensive devices, or extended programs.

  19. Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25-35) in cultured hippocampal neurons.

    Science.gov (United States)

    Sendrowski, Krzysztof; Sobaniec, Wojciech; Stasiak-Barmuta, Anna; Sobaniec, Piotr; Popko, Janusz

    2015-04-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder, in which progressive neuron loss, mainly in the hippocampus, is observed. The critical events in the pathogenesis of AD are associated with accumulation of β-amyloid (Aβ) peptides in the brain. Deposits of Aβ initiate a neurotoxic "cascade" leading to apoptotic death of neurons. Aim of this study was to assess a putative neuroprotective effects of two nootropic drugs: piracetam (PIR) and levetiracetam (LEV) on Aβ-injured hippocampal neurons in culture. Primary cultures of rat's hippocampal neurons at 7 day in vitro were exposed to Aβ(25-35) in the presence or absence of nootropics in varied concentrations. Flow cytometry with Annexin V/PI staining was used for counting and establishing neurons as viable, necrotic or apoptotic. Additionally, release of lactate dehydrogenase (LDH) to the culture medium, as a marker of cell death, was evaluated. Aβ(25-35) caused concentration-dependent death of about one third number of hippocampal neurons, mainly through an apoptotic pathway. In drugs-containing cultures, number of neurons injured with 20 μM Aβ(25-35) was about one-third lesser for PIR and almost two-fold lesser for LEV. When 40 μM Aβ(25-35) was used, only LEV exerted beneficial neuroprotective action, while PIR was ineffective. Our results suggest the protective potential of both studied nootropics against Aβ-induced death of cultured hippocampal neurons with more powerful neuroprotective effects of LEV. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Directory of Open Access Journals (Sweden)

    Jun Hu

    Full Text Available Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+, EPSC(-, and EPSC(+/- based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs, using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+ neurons, but increased it in EPSC(- neurons. Unlike EPSC(+ and EPSC(- neurons, EPSC(+/- neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/- neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  1. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  2. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  3. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis.

    Directory of Open Access Journals (Sweden)

    Luyan Guo

    Full Text Available Curcumin is a molecule found in turmeric root that has anti-inflammatory, antioxidant, and anti-tumor properties and has been widely used as both an herbal drug and a food additive to treat or prevent neurodegenerative diseases. To explore whether curcumin is able to ameliorate HIV-1-associated neurotoxicity, we treated a murine microglial cell line (N9 and primary rat cortical neurons with curcumin in the presence or absence of neurotoxic HIV-1 gp120 (V3 loop protein. We found that HIV-1 gp120 profoundly induced N9 cells to produce reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α and monocyte chemoattractant protein-1 (MCP-1. HIV-1 gp120 also induced apoptosis of primary rat cortical neurons. Curcumin exerted a powerful inhibitory effect against HIV-1 gp120-induced neuronal damage, reducing the production of ROS, TNF-α and MCP-1 by N9 cells and inhibiting apoptosis of primary rat cortical neurons. Curcumin may exert its biological activities through inhibition of the delayed rectification and transient outward potassium (K(+ current, as curcumin effectively reduced HIV-1 gp120-mediated elevation of the delayed rectification and transient outward K(+ channel current in neurons. We conclude that HIV-1 gp120 increases ROS, TNF-α and MCP-1 production in microglia, and induces cortical neuron apoptosis by affecting the delayed rectification and transient outward K(+ channel current. Curcumin reduces production of ROS and inflammatory mediators in HIV-1-gp120-stimulated microglia, and protects cortical neurons against HIV-1-mediated apoptosis, most likely through inhibition of HIV-1 gp120-induced elevation of the delayed rectification and transient outward K(+ current.

  4. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    Science.gov (United States)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  5. Target-specific M1 inputs to infragranular S1 pyramidal neurons

    Science.gov (United States)

    Fanselow, Erika E.; Simons, Daniel J.

    2016-01-01

    The functional role of input from the primary motor cortex (M1) to primary somatosensory cortex (S1) is unclear; one key to understanding this pathway may lie in elucidating the cell-type specific microcircuits that connect S1 and M1. Recently, we discovered that a subset of pyramidal neurons in the infragranular layers of S1 receive especially strong input from M1 (Kinnischtzke AK, Simons DJ, Fanselow EE. Cereb Cortex 24: 2237–2248, 2014), suggesting that M1 may affect specific classes of pyramidal neurons differently. Here, using combined optogenetic and retrograde labeling approaches in the mouse, we examined the strengths of M1 inputs to five classes of infragranular S1 neurons categorized by their projections to particular cortical and subcortical targets. We found that the magnitude of M1 synaptic input to S1 pyramidal neurons varies greatly depending on the projection target of the postsynaptic neuron. Of the populations examined, M1-projecting corticocortical neurons in L6 received the strongest M1 inputs, whereas ventral posterior medial nucleus-projecting corticothalamic neurons, also located in L6, received the weakest. Each population also possessed distinct intrinsic properties. The results suggest that M1 differentially engages specific classes of S1 projection neurons, thereby regulating the motor-related influence S1 exerts over subcortical structures. PMID:27334960

  6. Complementary responses to mean and variance modulations in the perfect integrate-and-fire model.

    Science.gov (United States)

    Pressley, Joanna; Troyer, Todd W

    2009-07-01

    In the perfect integrate-and-fire model (PIF), the membrane voltage is proportional to the integral of the input current since the time of the previous spike. It has been shown that the firing rate within a noise free ensemble of PIF neurons responds instantaneously to dynamic changes in the input current, whereas in the presence of white noise, model neurons preferentially pass low frequency modulations of the mean current. Here, we prove that when the input variance is perturbed while holding the mean current constant, the PIF responds preferentially to high frequency modulations. Moreover, the linear filters for mean and variance modulations are complementary, adding exactly to one. Since changes in the rate of Poisson distributed inputs lead to proportional changes in the mean and variance, these results imply that an ensemble of PIF neurons transmits a perfect replica of the time-varying input rate for Poisson distributed input. A more general argument shows that this property holds for any signal leading to proportional changes in the mean and variance of the input current.

  7. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons.

    Science.gov (United States)

    Tepper, James M; Wilson, Charles J; Koós, Tibor

    2008-08-01

    There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local axon collaterals. This network has long been assumed to provide the majority of striatal GABAergic inhibition and to sharpen and shape striatal output through lateral inhibition, producing increased activity in the most strongly excited spiny cells at the expense of their less strongly excited neighbors. Recent results, mostly from recording experiments of synaptically connected pairs of neurons, have revealed that the two GABAergic circuits differ markedly in terms of the total number of synapses made by each, the strength of the postsynaptic response detected at the soma, the extent of presynaptic convergence and divergence and the net effect of the activation of each circuit on the postsynaptic activity of the spiny neuron. These data have revealed that the feedforward inhibition is powerful and widespread, with spiking in a single interneuron being capable of significantly delaying or even blocking the generation of spikes in a large number of postsynaptic spiny neurons. In contrast, the postsynaptic effects of spiking in a single presynaptic spiny neuron on postsynaptic spiny neurons are weak when measured at the soma, and unable to significantly affect spike timing or generation. Further, reciprocity of synaptic connections between spiny neurons is only rarely observed. These results suggest that the bulk of the fast inhibition that has the strongest effects on spiny neuron spike timing comes from the feedforward interneuronal system whereas the axon collateral feedback system acts principally at the dendrites to control local excitability as well as the overall level of

  8. Differential distribution of voltage-gated ion channels in cortical neurons: implications for epilepsy.

    Science.gov (United States)

    Child, Nicholas D; Benarroch, Eduardo E

    2014-03-18

    Neurons contain different functional somatodendritic and axonal domains, each with a characteristic distribution of voltage-gated ion channels, synaptic inputs, and function. The dendritic tree of a cortical pyramidal neuron has 2 distinct domains, the basal and the apical dendrites, both containing dendritic spines; the different domains of the axon are the axonal initial segment (AIS), axon proper (which in myelinated axons includes the node of Ranvier, paranodes, juxtaparanodes, and internodes), and the axon terminals. In the cerebral cortex, the dendritic spines of the pyramidal neurons receive most of the excitatory synapses; distinct populations of γ-aminobutyric acid (GABA)ergic interneurons target specific cellular domains and thus exert different influences on pyramidal neurons. The multiple synaptic inputs reaching the somatodendritic region and generating excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) sum and elicit changes in membrane potential at the AIS, the site of initiation of the action potential.

  9. Glucose Rapidly Induces Different Forms of Excitatory Synaptic Plasticity in Hypothalamic POMC Neurons

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J.; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals. PMID:25127258

  10. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity.

    Science.gov (United States)

    Zhang, Wei; Qin, Liya; Wang, Tongguang; Wei, Sung-Jen; Gao, Hui-ming; Liu, Jie; Wilson, Belinda; Liu, Bin; Zhang, Wanqin; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2005-03-01

    The purpose of this study was to develop a novel therapy for Parkinson's disease (PD). We recently reported that dextromethorphan (DM), an active ingredient in a variety of widely used anticough remedies, protected dopaminergic neurons in rat primary mesencephalic neuron-glia cultures against lipopolysaccharide (LPS)-mediated degeneration and provided potent protection for dopaminergic neurons in a MPTP mouse model. The underlying mechanism for the protective effect of DM was attributed to its anti-inflammatory activity through inhibition of microglia activation. In an effort to develop more potent compounds for the treatment of PD, we have screened a series of analogs of DM, and 3-hydroxymorphinan (3-HM) emerged as a promising candidate for this purpose. Our study using primary mesencephalic neuron-glia cultures showed that 3-HM provided more potent neuroprotection against LPS-induced dopaminergic neurotoxicity than its parent compound. The higher potency of 3-HM was attributed to its neurotrophic effect in addition to the anti-inflammatory effect shared by both DM and 3-HM. First, we showed that 3-HM exerted potent neuroprotective and neurotrophic effects on dopaminergic neurons in rat primary mesencephalic neuron-glia cultures treated with LPS. The neurotrophic effect of 3-HM was glia-dependent since 3-HM failed to show any protective effect in the neuron-enriched cultures. We subsequently demonstrated that it was the astroglia, not the microglia, that contributed to the neurotrophic effect of 3-HM. This conclusion was based on the reconstitution studies, in which we added different percentages of microglia (10-20%) or astroglia (40-50%) back to the neuron-enriched cultures and found that 3-HM was neurotrophic after the addition of astroglia, but not microglia. Furthermore, 3-HM-treated astroglia-derived conditioned media exerted a significant neurotrophic effect on dopaminergic neurons. It appeared likely that 3-HM caused the release of neurotrophic factor

  11. Design Strategies for Balancing Exertion Games

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Grønbæk, Kaj

    2016-01-01

    In sports, if players' physical and technical abilities are mismatched, the competition is often uninteresting for them. With the emergence of exertion games, this could be changing. Player balancing, known from video games, allows players with different skill levels to compete, however, it is un......In sports, if players' physical and technical abilities are mismatched, the competition is often uninteresting for them. With the emergence of exertion games, this could be changing. Player balancing, known from video games, allows players with different skill levels to compete, however......, it is unclear how balancing mechanisms should be applied in exertion games, where physical and digital elements are fused. In this paper, we present an exertion game and three approaches for balancing it; a physical, an explicit-digital and an implicit-digital balancing approach. A user study that compares...... these three approaches is used to investigate the qualities and challenges within each approach and explore how the player experience is affected by them. Based on these findings, we suggest four design strategies for balancing exertion games, so that players will stay engaged in the game and contain...

  12. Electrophysiological Properties of Melanin-Concentrating Hormone and Orexin Neurons in Adolescent Rats

    Directory of Open Access Journals (Sweden)

    Victoria Linehan

    2018-03-01

    Full Text Available Orexin and melanin-concentrating hormone (MCH neurons have complementary roles in various physiological functions including energy balance and the sleep/wake cycle. in vitro electrophysiological studies investigating these cells typically use post-weaning rodents, corresponding to adolescence. However, it is unclear whether these neurons are functionally mature at this period and whether these studies can be generalized to adult cells. Therefore, we examined the electrophysiological properties of orexin and MCH neurons in brain slices from post-weaning rats and found that MCH neurons undergo an age-dependent reduction in excitability, but not orexin neurons. Specifically, MCH neurons displayed an age-dependent hyperpolarization of the resting membrane potential (RMP, depolarizing shift of the threshold, and decrease in excitatory transmission, which reach the adult level by 7 weeks of age. In contrast, basic properties of orexin neurons were stable from 4 weeks to 14 weeks of age. Furthermore, a robust short-term facilitation of excitatory synapses was found in MCH neurons, which showed age-dependent changes during the post-weaning period. On the other hand, a strong short-term depression was observed in orexin neurons, which was similar throughout the same period. These differences in synaptic responses and age dependence likely differentially affect the network activity within the lateral hypothalamus where these cells co-exist. In summary, our study suggests that orexin neurons are electrophysiologically mature before adolescence whereas MCH neurons continue to develop until late adolescence. These changes in MCH neurons may contribute to growth spurts or consolidation of adult sleep patterns associated with adolescence. Furthermore, these results highlight the importance of considering the age of animals in studies involving MCH neurons.

  13. Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron Activity?

    Directory of Open Access Journals (Sweden)

    Mauricio A. Retamal

    2017-11-01

    Full Text Available In this review article, we summarize the current insight on the role of Connexin- and Pannexin-based channels as modulators of sensory neurons. The somas of sensory neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia. It is well known that within sensory ganglia, sensory neurons do not form neither electrical nor chemical synapses. One of the reasons for this is that each soma is surrounded by glial cells, known as satellite glial cells (SGCs. Recent evidence shows that connexin43 (Cx43 hemichannels and probably pannexons located at SGCs have an important role in paracrine communication between glial cells and sensory neurons. This communication may be exerted via the release of bioactive molecules from SGCs and their subsequent action on receptors located at the soma of sensory neurons. The glio-neuronal communication seems to be relevant for the establishment of chronic pain, hyperalgesia and pathologies associated with tissue inflammation. Based on the current literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could be a novel pharmacological target for treating chronic pain, which need to be directly evaluated in future studies.

  14. Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness.

    Science.gov (United States)

    Fiorenza, Anna; Lopez-Atalaya, Jose P; Rovira, Victor; Scandaglia, Marilyn; Geijo-Barrientos, Emilio; Barco, Angel

    2016-04-01

    The RNase Dicer is essential for the maturation of most microRNAs, a molecular system that plays an essential role in fine-tuning gene expression. To gain molecular insight into the role of Dicer and the microRNA system in brain function, we conducted 2 complementary RNA-seq screens in the hippocampus of inducible forebrain-restricted Dicer1 mutants aimed at identifying the microRNAs primarily affected by Dicer loss and their targets, respectively. Functional genomics analyses predicted the main biological processes and phenotypes associated with impaired microRNA maturation, including categories related to microRNA biology, signal transduction, seizures, and synaptic transmission and plasticity. Consistent with these predictions, we found that, soon after recombination, Dicer-deficient mice exhibited an exaggerated seizure response, enhanced induction of immediate early genes in response to different stimuli, stronger and more stable fear memory, hyperphagia, and increased excitability of CA1 pyramidal neurons. In the long term, we also observed slow and progressive excitotoxic neurodegeneration. Overall, our results indicate that interfering with microRNA biogenesis causes an increase in neuronal responsiveness and disrupts homeostatic mechanisms that protect the neuron against overactivation, which may explain both the initial and late phenotypes associated with the loss of Dicer in excitatory neurons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  16. Wave-processing of long-scale information by neuronal chains.

    Directory of Open Access Journals (Sweden)

    José Antonio Villacorta-Atienza

    Full Text Available Investigation of mechanisms of information handling in neural assemblies involved in computational and cognitive tasks is a challenging problem. Synergetic cooperation of neurons in time domain, through synchronization of firing of multiple spatially distant neurons, has been widely spread as the main paradigm. Complementary, the brain may also employ information coding and processing in spatial dimension. Then, the result of computation depends also on the spatial distribution of long-scale information. The latter bi-dimensional alternative is notably less explored in the literature. Here, we propose and theoretically illustrate a concept of spatiotemporal representation and processing of long-scale information in laminar neural structures. We argue that relevant information may be hidden in self-sustained traveling waves of neuronal activity and then their nonlinear interaction yields efficient wave-processing of spatiotemporal information. Using as a testbed a chain of FitzHugh-Nagumo neurons, we show that the wave-processing can be achieved by incorporating into the single-neuron dynamics an additional voltage-gated membrane current. This local mechanism provides a chain of such neurons with new emergent network properties. In particular, nonlinear waves as a carrier of long-scale information exhibit a variety of functionally different regimes of interaction: from complete or asymmetric annihilation to transparent crossing. Thus neuronal chains can work as computational units performing different operations over spatiotemporal information. Exploiting complexity resonance these composite units can discard stimuli of too high or too low frequencies, while selectively compress those in the natural frequency range. We also show how neuronal chains can contextually interpret raw wave information. The same stimulus can be processed differently or identically according to the context set by a periodic wave train injected at the opposite end of the

  17. When exercise causes exertional rhabdomyolysis.

    Science.gov (United States)

    Furman, Janet

    2015-04-01

    Exertional rhabdomyolysis is a clinical condition caused by intense, repetitive exercise or a sudden increase in exercise in an untrained person, although rhabdomyolysis can occur in trained athletes. In many cases, the presentation of early, uncomplicated rhabdomyolysis is subtle, but serious complications such as renal failure, compartment syndrome, and dysrhythmias may arise if severe exertional rhabdomyolysis is undiagnosed or untreated. Management is further complicated by the lack of concrete management guidelines for treating rhabdomyolysis and returning patients to activity.

  18. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol

    Directory of Open Access Journals (Sweden)

    Mamoru Takeda

    2016-10-01

    Full Text Available Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM.

  19. Neuron-glia metabolic coupling: Role in plasticity and neuroprotection

    KAUST Repository

    Magistretti, Pierre J.

    2017-12-02

    A tight metabolic coupling between astrocytes and neurons is a key feature of brain energy metabolism (Magistretti and Allaman, Neuron, 2015). Over the years we have described two basic mechanisms of neurometabolic coupling. First the glycogenolytic effect of VIP and of noradrenaline indicating a regulation of brain homeostasis by neurotransmitters acting on astrocytes, as glycogen is exclusively localized in these cells. Second, the glutamate-stimulated aerobic glycolysis in astrocytes. Both the VIP-and noradrenaline-induced glycogenolysis and the glutamate-stimulated aerobic glycolysis result in the release of lactate from astrocytes as an energy substrate for neurons (Magistretti and Allaman, Neuron, 2015). We have recently shown that lactate is necessary not only as an energy substrate but is also a signaling molecule for long-term memory consolidation and for maintenance of LTP (Suzuki et al, Cell, 2011). At the molecular level we have found that L-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, Zif268 and BDNF through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2 (Yang et al, PNAS, 2014). L-lactate potentiates NMDA receptor-mediated currents and the ensuing increases in intracellular calcium. These results reveal a novel action of L-lactate as a signaling molecule for neuronal plasticity. We have also recently shown that peripheral administration of lactate exerts antidepressant-like effects in three animal models of depression (Carrard et al, Mol.Psy., 2016).

  20. Complementary and Integrative Medicine

    Science.gov (United States)

    ... medical treatments that are not part of mainstream medicine. When you are using these types of care, it may be called complementary, integrative, or alternative medicine. Complementary medicine is used together with mainstream medical ...

  1. Neurotensin enhances glutamatergic EPSCs in VTA neurons by acting on different neurotensin receptors.

    Science.gov (United States)

    Bose, Poulomee; Rompré, Pierre-Paul; Warren, Richard A

    2015-11-01

    Neurotensin (NT) is an endogenous neuropeptide that modulates dopamine and glutamate neurotransmission in several limbic regions innervated by neurons located in the ventral tegmental area (VTA). While several studies showed that NT exerted a direct modulation on VTA dopamine neurons less is known about its role in the modulation of glutamatergic neurotransmission in this region. The present study was aimed at characterising the effects of NT on glutamate-mediated responses in different populations of VTA neurons. Using whole cell patch clamp recording technique in horizontal rat brain slices, we measured the amplitude of glutamatergic excitatory post-synaptic currents (EPSCs) evoked by electrical stimulation of VTA afferents before and after application of different concentrations of NT1-13 or its C-terminal fragment, NT8-13. Neurons were classified as either Ih(+) or Ih(-) based on the presence or absence of a hyperpolarisation activated cationic current (Ih). We found that NT1-13 and NT8-13 produced comparable concentration dependent increase in the amplitude of EPSCs in both Ih(+) and Ih(-) neurons. In Ih(+) neurons, the enhancement effect of NT8-13 was blocked by both antagonists, while in Ih(-) neurons it was blocked by the NTS1/NTS2 antagonist, SR142948A, but not the preferred NTS1 antagonist, SR48692. In as much as Ih(-) neurons are non-dopaminergic neurons and Ih(+) neurons represent both dopamine and non-dopamine neurons, we can conclude that NT enhances glutamatergic mediated responses in dopamine, and in a subset of non-dopamine, neurons by acting respectively on NTS1 and an NT receptor other than NTS1. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Wang Feifei

    2008-08-01

    Full Text Available Abstract Background Parkinson's disease (PD is a neurological disorder characterized by the degeneration of nigrostriatal dopaminergic systems. Free radicals induced by oxidative stress are involved in the mechanisms of cell death in PD. This study clarifies the neuroprotective effects of edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one, which has already been used for the treatment of cerebral ischemia in Japan, on TH-positive dopaminergic neurons using PD model both in vitro and in vivo. 6-hydroxydopamine (6-OHDA, a neurotoxin for dopaminergic neurons, was added to cultured dopaminergic neurons derived from murine embryonal ventral mesencephalon with subsequet administration of edaravone or saline. The number of surviving TH-positive neurons and the degree of cell damage induced by free radicals were analyzed. In parallel, edaravone or saline was intravenously administered for PD model of rats receiving intrastriatal 6-OHDA lesion with subsequent behavioral and histological analyses. Results In vitro study showed that edaravone significantly ameliorated the survival of TH-positive neurons in a dose-responsive manner. The number of apoptotic cells and HEt-positive cells significantly decreased, thus indicating that the neuroprotective effects of edaravone might be mediated by anti-apoptotic effects through the suppression of free radicals by edaravone. In vivo study demonstrated that edaravone-administration at 30 minutes after 6-OHDA lesion reduced the number of amphetamine-induced rotations significantly than edaravone-administration at 24 hours. Tyrosine hydroxylase (TH staining of the striatum and substantia nigra pars compacta revealed that edaravone might exert neuroprotective effects on nigrostriatal dopaminergic systems. The neuroprotective effects were prominent when edaravone was administered early and in high concentration. TUNEL, HEt and Iba-1 staining in vivo might demonstrate the involvement of anti-apoptotic, anti

  3. Special Section: Complementary and Alternative Medicine (CAM):Quiz on Complementary and Alternative Medicine

    Science.gov (United States)

    ... Special Section CAM Quiz on Complementary and Alternative Medicine Past Issues / Winter 2009 Table of Contents For ... low back pain. True False Complementary and alternative medicine (CAM) includes: Meditation Chiropractic Use of natural products, ...

  4. Complementary and Alternative Medicine

    Science.gov (United States)

    ... for Educators Search English Español Complementary and Alternative Medicine KidsHealth / For Teens / Complementary and Alternative Medicine What's ... a replacement. How Is CAM Different From Conventional Medicine? Conventional medicine is based on scientific knowledge of ...

  5. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling.

    Science.gov (United States)

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek; Lee, Jong Eun

    2016-02-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia.

  6. Enhancing excitability of dopamine neurons promotes motivational behaviour through increased action initiation.

    Science.gov (United States)

    Boekhoudt, Linde; Wijbrans, Ellen C; Man, Jodie H K; Luijendijk, Mieneke C M; de Jong, Johannes W; van der Plasse, Geoffrey; Vanderschuren, Louk J M J; Adan, Roger A H

    2018-01-01

    Motivational deficits are a key symptom in multiple psychiatric disorders, including major depressive disorder, schizophrenia and addiction. A likely neural substrate for these motivational deficits is the brain dopamine (DA) system. In particular, DA signalling in the nucleus accumbens, which originates from DA neurons in the ventral tegmental area (VTA), has been identified as a crucial substrate for effort-related and activational aspects of motivation. Unravelling how VTA DA neuronal activity relates to motivational behaviours is required to understand how motivational deficits in psychiatry can be specifically targeted. In this study, we therefore used designer receptors exclusively activated by designer drugs (DREADD) in TH:Cre rats, in order to determine the effects of chemogenetic DA neuron activation on different aspects of motivational behaviour. We found that chemogenetic activation of DA neurons in the VTA, but not substantia nigra, significantly increased responding for sucrose under a progressive ratio schedule of reinforcement. More specifically, high effort exertion was characterized by increased initiations of reward-seeking actions. This effect was dependent on effort requirements and instrumental contingencies, but was not affected by sucrose pre-feeding. Together, these findings indicate that VTA DA neuronal activation drives motivational behaviour by facilitating action initiation. With this study, we show that enhancing excitability of VTA DA neurons is a viable strategy to improve motivational behaviour. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  7. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI

    Science.gov (United States)

    Tomassy, Giulio Srubek; De Leonibus, Elvira; Jabaudon, Denis; Lodato, Simona; Alfano, Christian; Mele, Andrea; Macklis, Jeffrey D.; Studer, Michèle

    2010-01-01

    Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise. PMID:20133588

  8. Modulation of the spike activity of neocortex neurons during a conditioned reflex.

    Science.gov (United States)

    Storozhuk, V M; Sanzharovskii, A V; Sachenko, V V; Busel, B I

    2000-01-01

    Experiments were conducted on cats to study the effects of iontophoretic application of glutamate and a number of modulators on the spike activity of neurons in the sensorimotor cortex during a conditioned reflex. These studies showed that glutamate, as well as exerting a direct influence on neuron spike activity, also had a delayed facilitatory action lasting 10-20 min after iontophoresis was finished. Adrenomimetics were found to have a double modulatory effect on intracortical glutamate connections: inhibitory and facilitatory effects were mediated by beta1 and beta2 adrenoceptors respectively. Although dopamine, like glutamate, facilitated neuron spike activity during the period of application, the simultaneous facilitatory actions of glutamate and L-DOPA were accompanied by occlusion of spike activity, and simultaneous application of glutamate and haloperidol suppressed spike activity associated with the conditioned reflex response. Facilitation thus appears to show a significant level of dependence on metabotropic glutamate receptors which, like dopamine receptors, are linked to the intracellular medium via Gi proteins.

  9. Species and Sex Differences in the Morphogenic Response of Primary Rodent Neurons to 3,3'-Dichlorobiphenyl (PCB 11).

    Science.gov (United States)

    Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J

    2017-12-23

    PCB 11 is an emerging global pollutant that we recently showed promotes axonal and dendritic growth in primary rat neuronal cell cultures. Here, we address the influence of sex and species on neuronal responses to PCB 11. Neuronal morphology was quantified in sex-specific primary hippocampal and cortical neuron-glia co-cultures derived from neonatal C57BL/6J mice and Sprague Dawley rats exposed for 48 h to vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM. Total axonal length was quantified in tau-1 immunoreactive neurons at day in vitro (DIV) 2; dendritic arborization was assessed by Sholl analysis at DIV 9 in neurons transfected with MAP2B-FusRed. In mouse cultures, PCB 11 enhanced dendritic arborization in female, but not male, hippocampal neurons and male, but not female, cortical neurons. In rat cultures, PCB 11 promoted dendritic arborization in male and female hippocampal and cortical neurons. PCB 11 also increased axonal growth in mouse and rat neurons of both sexes and neuronal cell types. These data demonstrate that PCB 11 exerts sex-specific effects on neuronal morphogenesis that vary depending on species, neurite type, and neuronal cell type. These findings have significant implications for risk assessment of this emerging developmental neurotoxicant.

  10. Noggin and Wnt3a enable BMP4-dependent differentiation of telencephalic stem cells into GluR-agonist responsive neurons

    DEFF Research Database (Denmark)

    Andersson, Therese; Duckworth, Joshua K; Fritz, Nicolas

    2011-01-01

    levels, that in turn exerted a concentration-dependent inhibition of BMP4-mediated mesenchymal differentiation of NSCs. Instead, BMP4 exposure of NSCs induced neuronal differentiation in mesenchyme-preventing conditions, whereas treatment with recombinant noggin alone did not. Wnt signaling is known...... to be essential for the development of neurons derived from the dorsal telencephalon, and co-stimulation of NSCs with BMP4+Wnt3a resulted in a synergistic effect yielding significantly increased number of mature neurons compared to stimulation with each factor alone. Thus whereas only a subset of BMP4-induced...... neurons derived from telencephalic NSCs, responded to glutamate receptor (GluR) agonists, over 80% of BMP4+Wnt3a-induced neurons responded appropriately to GluR-agonists. Our results increase the understanding of the role for BMP4 in differentiation of telencephalic multipotent progenitors, and reveal...

  11. Microelectrode array-induced neuronal alignment directs neurite outgrowth: analysis using a fast Fourier transform (FFT).

    Science.gov (United States)

    Radotić, Viktorija; Braeken, Dries; Kovačić, Damir

    2017-12-01

    Many studies have shown that the topography of the substrate on which neurons are cultured can promote neuronal adhesion and guide neurite outgrowth in the same direction as the underlying topography. To investigate this effect, isotropic substrate-complementary metal-oxide-semiconductor (CMOS) chips were used as one example of microelectrode arrays (MEAs) for directing neurite growth of spiral ganglion neurons. Neurons were isolated from 5 to 7-day-old rat pups, cultured 1 day in vitro (DIV) and 4 DIV, and then fixed with 4% paraformaldehyde. For analysis of neurite alignment and orientation, fast Fourier transformation (FFT) was used. Results revealed that on the micro-patterned surface of a CMOS chip, neurons orient their neurites along three directional axes at 30, 90, and 150° and that neurites aligned in straight lines between adjacent pillars and mostly followed a single direction while occasionally branching perpendicularly. We conclude that the CMOS substrate guides neurites towards electrodes by means of their structured pillar organization and can produce electrical stimulation of aligned neurons as well as monitoring their neural activities once neurites are in the vicinity of electrodes. These findings are of particular interest for neural tissue engineering with the ultimate goal of developing a new generation of MEA essential for improved electrical stimulation of auditory neurons.

  12. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1?7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils

    OpenAIRE

    Mizuno, Dai; Konoha-Mizuno, Keiko; Mori, Miwako; Yamazaki, Kentaro; Haneda, Toshihiro; Koyama, Hironari; Kawahara, Masahiro

    2015-01-01

    Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer’s disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells). In this study, we evaluated the effects of essential oils on neuronal deat...

  13. Transmuted Complementary Weibull Geometric Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Z. A…fify

    2014-12-01

    Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the ‡exibility of the transmuted version versus the complementary Weibull geometric distribution.

  14. Exertion Testing in Youth with Mild Traumatic Brain Injury/Concussion.

    Science.gov (United States)

    Dematteo, Carol; Volterman, Kimberly A; Breithaupt, Peter G; Claridge, Everett A; Adamich, John; Timmons, Brian W

    2015-11-01

    The decision regarding return to activity (RTA) after mild traumatic brain injuries/concussion is one of the most difficult and controversial areas in concussion management, particularly for youth. This study investigated how youth with postconcussion syndrome (PCS) are affected by exertion and whether standardized exertion testing using the McMaster All-Out Progressive Continuous Cycling Test can contribute to clinical decision making for safe RTA. Fifty-four youth (8.5-18.3 yr) with a previously confirmed concussion participated in the study. Each participant performed exertion testing on a cycle ergometer and completed a Postconcussion Symptom scale at the following time points: before exertion (baseline), 5 and 30 min, and 24 h after exertion. A modified Postconcussion Symptom scale was administered at 2-min intervals during exertion. Participants had a mean ± SD symptom duration of 6.3 ± 6.9 months after the most recent concussive injury, with a median of 4.1 months (range, 0.7-35 months). Sixty-three percent of participants had symptoms during exertion testing. Symptom profile (number and severity) significantly affected perception of exertion at 50% peak mechanical power. During acute assessment of symptoms (30-min after exertion), headache (P = 0.39), nausea (P = 0.63), and dizziness (P = 0.35) did not change. However, both the number and severity of symptoms significantly improved over 24 h, with 56.8% of youth showing improvements. The time from the most recent injury had a significant effect on the symptom score at baseline, 30 min after exertion, and 24 h after exertion. Exertion testing has an important role in the evaluation of symptoms and readiness to RTA, particularly in youth who are slow to recover. Overall, controlled exertion seemed to lesson symptoms for most youth.

  15. Turmeric extract inhibits apoptosis of hippocampal neurons of trimethyltin-exposed rats.

    Science.gov (United States)

    Yuliani, S; Widyarini, S; Mustofa; Partadiredja, G

    2017-01-01

    The aim of the present study was to reveal the possible antiapoptotic effect of turmeric (Curcuma longa Linn.) on the hippocampal neurons of rats exposed to trimethyltin (TMT). Oxidative damage in the hippocampus can induce the apoptosis of neurons associated with the pathogenesis of dementiaMETHODS. The ethanolic turmeric extract and a citicoline (as positive control) solution were administered to the TMT-exposed rats for 28 days. The body weights of rats were recorded once a week. The hippocampal weights and imumunohistochemical expression of caspase 3 proteins in the CA1 and CA2-CA3 regions of the hippocampi were examined at the end of the experiment. Immunohistochemical analysis showed that the injection of TMT increased the expression of caspase 3 in the CA1 and CA2-CA3 regions of hippocampus. TMT also decreased the body and hippocampal weights. Furthermore, the administration of 200 mg/kg bw dose of turmeric extract decreased the caspase 3 expression in the CA2-CA3 pyramidal neurons but not in the CA1 neurons. It also prevented the decrease of the body and hippocampal weights. We suggest that the 200 mg/kg bw dose of turmeric extract may exert antiapoptotic effect on the hippocampal neurons of the TMT-exposed rats (Tab. 1, Fig. 3, Ref. 49).

  16. Exertional Rhabdomyolysis after Spinning.

    Science.gov (United States)

    Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung

    2016-11-01

    Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24-48 hours after attending a spinning class at a local gymnasium. Paired with key laboratory findings, her symptoms were suggestive of rhabdomyolysis. She required hospital admission to sustain renal function through fluid resuscitation therapy and fluid balance monitoring. Because exertional rhabdomyolysis may occur in any unfit but otherwise healthy individual who indulges in stationary cycling, the potential health risks of this activity must be considered.

  17. 20 CFR 404.1567 - Physical exertion requirements.

    Science.gov (United States)

    2010-04-01

    ... activities. If someone can do light work, we determine that he or she can also do sedentary work, unless... Physical exertion requirements. To determine the physical exertion requirements of work in the national... making disability determinations under this subpart, we use the following definitions: (a) Sedentary work...

  18. 20 CFR 416.967 - Physical exertion requirements.

    Science.gov (United States)

    2010-04-01

    ... activities. If someone can do light work, we determine that he or she can also do sedentary work, unless... Physical exertion requirements. To determine the physical exertion requirments of work in the national... making disability determinations under this subpart, we use the following definitions: (a) Sedentary work...

  19. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    Science.gov (United States)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  20. Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory.

    Science.gov (United States)

    Vetere, Gisella; Barbato, Christian; Pezzola, Silvia; Frisone, Paola; Aceti, Massimiliano; Ciotti, MariaTeresa; Cogoni, Carlo; Ammassari-Teule, Martine; Ruberti, Francesca

    2014-12-01

    Post-transcriptional gene regulation mediated by microRNAs (miRNAs) is implicated in memory formation; however, the function of miR-92 in this regulation is uncharacterized. The present study shows that training mice in contextual fear conditioning produces a transient increase in miR-92 levels in the hippocampus and decreases several miR-92 gene targets, including: (i) the neuronal Cl(-) extruding K(+) Cl(-) co-transporter 2 (KCC2) protein; (ii) the cytoplasmic polyadenylation protein (CPEB3), an RNA-binding protein regulator of protein synthesis in neurons; and (iii) the transcription factor myocyte enhancer factor 2D (MEF2D), one of the MEF2 genes which negatively regulates memory-induced structural plasticity. Selective inhibition of endogenous miR-92 in CA1 hippocampal neurons, by a sponge lentiviral vector expressing multiple sequences imperfectly complementary to mature miR-92 under the control of the neuronal specific synapsin promoter, leads to up-regulation of KCC2, CPEB3 and MEF2D, impairs contextual fear conditioning, and prevents a memory-induced increase in the spine density. Taken together, the results indicate that neuronal-expressed miR-92 is an endogenous fine regulator of contextual fear memory in mice. © 2014 Wiley Periodicals, Inc.

  1. Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons

    Science.gov (United States)

    He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming

    2005-03-01

    Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.

  2. Positive modulation of delta-subunit containing GABAA receptors in mouse neurons

    DEFF Research Database (Denmark)

    Vardya, Irina; Hoestgaard-Jensen, Kirsten; Nieto-Gonzalez, Jose Luis

    2012-01-01

    δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA(A) recep......δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA......(A) receptors in mouse neurons in vitro and in vivo. Whole-cell patch-clamp recordings were carried out in the dentate gyrus in mouse brain slices. In granule cells, AA29504 (1 μM) caused a 4.2-fold potentiation of a tonic current induced by THIP (1 μM), while interneurons showed a potentiation of 2.6-fold......-free environment using Ca²⁺ imaging in cultured neurons, AA29504 showed GABA(A) receptor agonism in the absence of agonist. Finally, AA29504 exerted dose-dependent stress-reducing and anxiolytic effects in mice in vivo. We propose that AA29504 potentiates δ-containing GABA(A) receptors to enhance tonic inhibition...

  3. Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons

    Directory of Open Access Journals (Sweden)

    Jong-Woo Sohn

    2016-08-01

    Full Text Available Objective: The ventromedial hypothalamic nucleus (VMH regulates energy balance and glucose homeostasis. Leptin and insulin exert metabolic effects via their cognate receptors expressed by the steroidogenic factor 1 (SF1 neurons within the VMH. However, detailed cellular mechanisms involved in the regulation of these neurons by leptin and insulin remain to be identified. Methods: We utilized genetically-modified mouse models and performed patch-clamp electrophysiology experiments to resolve this issue. Results: We identified distinct populations of leptin-activated and leptin-inhibited SF1 neurons. In contrast, insulin uniformly inhibited SF1 neurons. Notably, we found that leptin-activated, leptin-inhibited, and insulin-inhibited SF1 neurons are distinct subpopulations within the VMH. Leptin depolarization of SF1 neuron also required the PI3K p110β catalytic subunit. This effect was mediated by the putative transient receptor potential C (TRPC channel. On the other hand, hyperpolarizing responses of SF1 neurons by leptin and insulin required either of the p110α or p110β catalytic subunits, and were mediated by the putative ATP-sensitive K+ (KATP channel. Conclusions: Our results demonstrate that specific PI3K catalytic subunits are responsible for the acute effects of leptin and insulin on VMH SF1 neurons, and provide insights into the cellular mechanisms of leptin and insulin action on VMH SF1 neurons that regulate energy balance and glucose homeostasis. Author Video: Author Video Watch what authors say about their articles Keywords: Cellular mechanism, Conditional knockout mouse, Patch clamp technique, Functional heterogeneity, Homeostasis

  4. Unexpected neuronal protection of SU5416 against 1-Methyl-4-phenylpyridinium ion-induced toxicity via inhibiting neuronal nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Wei Cui

    Full Text Available SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2 for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP(+-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP(+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP(+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC(50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA abolished the neuroprotective effects of SU5416 against MPP(+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.

  5. Cdc42 regulates cofilin during the establishment of neuronal polarity

    DEFF Research Database (Denmark)

    Garvalov, Boyan K; Flynn, Kevin C; Neukirchen, Dorothee

    2007-01-01

    suppressed ability to form axons both in vivo and in culture. This was accompanied by disrupted cytoskeletal organization, enlargement of the growth cones, and inhibition of filopodial dynamics. Axon formation in the knock-out neurons was rescued by manipulation of the actin cytoskeleton, indicating...... that the effects of Cdc42 ablation are exerted through modulation of actin dynamics. In addition, the knock-outs showed a specific increase in the phosphorylation (inactivation) of the Cdc42 effector cofilin. Furthermore, the active, nonphosphorylated form of cofilin was enriched in the axonal growth cones of wild...

  6. Musical agency reduces perceived exertion during strenuous physical performance.

    Science.gov (United States)

    Fritz, Thomas Hans; Hardikar, Samyogita; Demoucron, Matthias; Niessen, Margot; Demey, Michiel; Giot, Olivier; Li, Yongming; Haynes, John-Dylan; Villringer, Arno; Leman, Marc

    2013-10-29

    Music is known to be capable of reducing perceived exertion during strenuous physical activity. The current interpretation of this modulating effect of music is that music may be perceived as a diversion from unpleasant proprioceptive sensations that go along with exhaustion. Here we investigated the effects of music on perceived exertion during a physically strenuous task, varying musical agency, a task that relies on the experience of body proprioception, rather than simply diverting from it. For this we measured psychologically indicated exertion during physical workout with and without musical agency while simultaneously acquiring metabolic values with spirometry. Results showed that musical agency significantly decreased perceived exertion during workout, indicating that musical agency may actually facilitate physically strenuous activities. This indicates that the positive effect of music on perceived exertion cannot always be explained by an effect of diversion from proprioceptive feedback. Furthermore, this finding suggests that the down-modulating effect of musical agency on perceived exertion may be a previously unacknowledged driving force for the development of music in humans: making music makes strenuous physical activities less exhausting.

  7. Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor

    Directory of Open Access Journals (Sweden)

    Jessica Coppens

    2017-03-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder, characterized by a loss of dopamine (DA neurons in the substantia nigra pars compacta (SNc. Caloric restriction (CR has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT and knockout (KO mice were maintained on an ad libitum (AL diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect.

  8. Microfluidic measurement of effects of ACF7/MACF1 gene on the mechanics of primary cortical neurons

    Science.gov (United States)

    Lee, Donghee; Ka, Minhan; Kim, Woo-Yang; Ryu, Sangjin

    2014-03-01

    Actin filaments and microtubules play important roles in determining the mechanics of cells, and ACF7/MACF1 (Actin Crosslinking Family 7/Microtubule And Actin Crosslinking Factor 1) gene seems to be closely related to connections between actin filaments and microtubules. To identify such roles of the ACF7/MACF1 gene of primary cortical neurons, we isolated neuronal cells from the cerebral cortex of the embryonic mouse brain, which is important in memory, language and perception. We exerted viscous shear flow to normal neuronal cells and ACF7/MACF1 gene knockout neuronal cells using rectangular microfluidic channels. While changing viscous shear stress on the cells, we recorded changes in the morphology of the two cell types using video microscopy. Having analyzed the deformation of the cells, we could quantitatively correlate differences in the morphological change between the both normal and ACF7/MACF1 gene knockout neuronal cells to the applied shear force, which will contribute toward identifying cell mechanical roles of the ACF7/MACF1 gene.

  9. The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors

    Directory of Open Access Journals (Sweden)

    Cecilia Bucci

    2014-10-01

    Full Text Available Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC and p75NTR, a member of the tumor necrosis factor (TNF receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.

  10. The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors

    Science.gov (United States)

    Bucci, Cecilia; Alifano, Pietro; Cogli, Laura

    2014-01-01

    Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways. PMID:25295627

  11. The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation.

    Science.gov (United States)

    Li, J; Qu, Y; Chen, D; Zhang, L; Zhao, F; Luo, L; Pan, L; Hua, J; Mu, D

    2013-11-12

    Telomerase reverse transcriptase (TERT) is reported to protect neurons from apoptosis induced by various stresses including hypoxia-ischemia (HI). However, the mechanisms by which TERT exerts its anti-apoptotic role in neurons with HI injury remain unclear. In this study, we examined the protective role and explored the possible mechanisms of TERT in neurons with HI injury in vitro. Primary cultured neurons were exposed to oxygen and glucose deprivation (OGD) for 3h followed by reperfusion to mimic HI injury in vivo. Plasmids containing TERT antisense, sense nucleotides, or mock were transduced into neurons at 48h before OGD. Expression and distribution of TERT were measured by immunofluorescence labeling and western blot. The expression of cleaved caspase 3 (CC3), Bcl-2 and Bax were detected by western blot. Neuronal apoptosis was measured with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). The mitochondrial reactive oxygen species (ROS) were measured by MitoSOX Red staining. Fluorescent probe JC-1 was used to measure the mitochondrial membrane potential (ΔΨm). We found that TERT expression increased at 8h and peaked at 24h in neurons after OGD. CC3 expression and neuronal apoptosis were induced and peaked at 24h after OGD. TERT inhibition significantly increased CC3 expression and neuronal apoptosis after OGD treatment. Additionally, TERT inhibition decreased the expression ratio of Bcl-2/Bax, and enhanced ROS production and ΔΨm dissipation after OGD. These data suggest that TERT plays a neuroprotective role via anti-apoptosis in neurons after OGD. The underlying mechanisms may be associated with regulating Bcl-2/Bax expression ratio, attenuating ROS generation, and increasing mitochondrial membrane potential. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. α-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats

    Directory of Open Access Journals (Sweden)

    Hong-Zai Guan

    2017-01-01

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is processed from proopiomelanocortin (POMC and acts on the melanocortin receptors, MC3 and MC4. α-MSH plays a key role in energy homeostasis. In the present study, to shed light on the mechanisms by which α-MSH exerts its anorectic effects, extracellular neuronal activity was recorded in the hypothalamus and the dorsal vagal complex (DVC of anesthetized rats. We examined the impact of α-MSH on glucose-sensing neurons and gastric distension (GD sensitive neurons. In the lateral hypothalamus (LHA, α-MSH inhibited 75.0% of the glucose-inhibited (GI neurons. In the ventromedial nucleus (VMN, most glucose-sensitive neurons were glucose-excited (GE neurons, which were mainly activated by α-MSH. In the paraventricular nucleus (PVN, α-MSH suppressed the majority of GI neurons and excited most GE neurons. In the DVC, among the 20 GI neurons examined for a response to α-MSH, 1 was activated, 16 were depressed, and 3 failed to respond. Nineteen of 24 GE neurons were activated by α-MSH administration. Additionally, among the 42 DVC neurons examined for responses to GD, 23 were excited (GD-EXC and 19 were inhibited (GD-INH. Fifteen of 20 GD-EXC neurons were excited, whereas 11 out of 14 GD-INH neurons were suppressed by α-MSH. All these responses were abolished by pretreatment with the MC3/4R antagonist, SHU9119. In conclusion, the activity of glucose-sensitive neurons and GD-sensitive neurons in the hypothalamus and DVC can be modulated by α-MSH.

  13. Fibromyalgia and Complementary Health Approaches

    Science.gov (United States)

    ... Musculoskeletal and Skin Diseases Web site . What the Science Says About Complementary Health Approaches for Fibromyalgia Mind ... Complementary and alternative medical therapies in fibromyalgia . Current Pharmaceutical Design . 2006;12(1):47–57. Sherman KJ, ...

  14. Neuron-inspired flexible memristive device on silicon (100)

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-06-18

    Comprehensive understanding of the world\\'s most energy efficient powerful computer, the human brain, is an elusive scientific issue. Still, already gained knowledge indicates memristors can be used as a building block to model the brain. At the same time, brain cortex is folded allowing trillions of neurons to be integrated in a compact volume. Therefore, we report flexible aluminium oxide based memristive devices fabricated and then derived from widely used bulk mono-crystalline silicon (100). We use complementary metal oxide semiconductor based processes to layout the foundation for ultra large scale integration (ULSI) of such memory devices to advance the task of comprehending a physical model of human brain.

  15. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    International Nuclear Information System (INIS)

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-01-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  16. Icariin Reduces Dopaminergic Neuronal Loss and Microglia-Mediated Inflammation in Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qing Wang

    2018-01-01

    Full Text Available Parkinson’s disease (PD is one of the most common neurodegenerative diseases characterized with a gradual loss of midbrain substantia nigra (SN dopamine (DA neurons. An excessive evidence demonstrated that microglia-mediated inflammation might be involved in the pathogenesis of PD. Thus, inhibition of neuroinflammation might possess a promising potential for PD treatment. Icariin (ICA, a single active component extracted from the Herba Epimedii, presents amounts of pharmacological properties, such as anti-inflammation, anti-oxidant, and anti-aging. Recent studies show ICA produced neuroprotection against brain dysfunction. However, the mechanisms underlying ICA-exerted neuroprotection are fully illuminated. In the present study, two different neurotoxins of 6-hydroxydopamine (6-OHDA and lipopolysaccharide (LPS-induced rat midbrain DA neuronal damage were applied to investigate the neuroprotective effects of ICA. In addition, primary rat midbrain neuron-glia co-cultures were performed to explore the mechanisms underlying ICA-mediated DA neuroprotection. In vitro data showed that ICA protected DA neurons from LPS/6-OHDA-induced DA neuronal damage and inhibited microglia activation and pro-inflammatory factors production via the suppression of nuclear factor-κB (NF-κB pathway activation. In animal results, ICA significantly reduced microglia activation and significantly attenuated LPS/6-OHDA-induced DA neuronal loss and subsequent animal behavior changes. Together, ICA could protect DA neurons against LPS- and 6-OHDA-induced neurotoxicity both in vivo and in vitro. These actions might be closely associated with the inhibition of microglia-mediated neuroinflammation.

  17. Underlying mechanism of regulatory actions of diclofenac, a nonsteroidal anti-inflammatory agent, on neuronal potassium channels and firing: an experimental and theoretical study.

    Science.gov (United States)

    Huang, C W; Hung, T Y; Liao, Y K; Hsu, M C; Wu, S N

    2013-06-01

    Diclofenac (DIC), a nonsteroidal anti-inflammatory drug, is known to exert anti-nociceptive and anti-convulsant actions; however, its effects on ion currents, in neurons remain debatable. We aimed to investigate (1) potential effects of diclofenac on membrane potential and potassium currents in differentiated NSC-34 neuronal cells and dorsal root ganglion (DRG) neurons with whole-cell patch-clamp technology, and (2) firing of action potentials (APs), using a simulation model from hippocampal CA1 pyramidal neurons based on diclofenac's effects on potassium currents. In the NSC-34 cells, diclofenac exerted an inhibitory effect on delayed-rectifier K⁺ current (I(KDR)) with an IC₅₀ value of 73 μM. Diclofenac not merely inhibited the I(KDR) amplitude in response to membrane depolarization, but also accelerated the process of current inactivation. The inhibition by diclofenac of IK(DR) was not reversed by subsequent application of either naloxone. Importantly, diclofenac (300 μM) increased the amplitude of M-type K⁺ current (I)(KM)), while flupirtine (10 μM) or meclofenamic acid (10 μM) enhanced it effectively. Consistently, diclofenac (100 μM) increased the amplitude of I(KM) and diminished the I(KDR) amplitude, with a shortening of inactivation time constant in DRG neurons. Furthermore, by using the simulation modeling, we demonstrated the potential electrophysiological mechanisms underlying changes in AP firing caused by diclofenac. During the exposure to diclofenac, the actions on both I(KM) and I(KDR) could be potential mechanism through which it influences the excitability of fast-spiking neurons. Caution needs to be made in attributing the effects of diclofenac primarily to those produced by the activation of I(KM).

  18. Complementary medicine in chronic pain treatment.

    Science.gov (United States)

    Simpson, Charles A

    2015-05-01

    This article discusses several issues related to therapies that are considered "complementary" or "alternative" to conventional medicine. A definition of "complementary and alternative medicine" (CAM) is considered in the context of the evolving health care field of complementary medicine. A rationale for pain physicians and clinicians to understand these treatments of chronic pain is presented. The challenges of an evidence-based approach to incorporating CAM therapies are explored. Finally, a brief survey of the evidence that supports several widely available and commonly used complementary therapies for chronic pain is provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. 1,2-Dilinoleoyl-sn-glycero-3-phosphoethanolamine ameliorates age-related spatial memory deterioration by preventing neuronal cell death

    Directory of Open Access Journals (Sweden)

    Yaguchi Takahiro

    2010-09-01

    Full Text Available Abstract Background Accumulating evidence has pointed that a variety of lipids could exert their beneficial actions against dementia including Alzheimer disease and age-related cognitive decline via diverse signaling pathways. Endoplasmic reticulum (ER stress-induced neuronal apoptosis, on the other hand, is a critical factor for pathogenesis of neurodegenerative diseases such as Alzheimer disease and Parkinson disease, senile dementia, and ischemic neuronal damage. The present study examined the effects of 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine (DLPhtEtn, a phospholipid, on ER stress-induced neuronal death and age-related cognitive disorders. Methods PC-12 cell viability was assayed before and after treatment with amyloid-β1-40 peptide or thapsigargin in the presence and absence of DLPhtEtn. A series of behavioral tests were performed for senescence-accelerated mouse-prone 8 (SAMP8 mice after 7-month oral administration with polyethylene glycol (PEG or DLPhtEtn and then, the number of hippocampal neurons was counted. Results Amyloid-β1-40 peptide or thapsigargin is capable of causing ER stress-induced apoptosis. DLPhtEtn (30 μM significantly inhibited PC-12 cell death induced by amyloid-β1-40 peptide or thapsigargin. In the water maze test, oral administration with DLPhtEtn (1 mg/kg for 7 months (three times a week significantly shortened the prolonged retention latency for SAMP8 mice. In contrast, DLPhtEtn had no effect on the acquisition and retention latencies in both the open field test and the passive avoidance test for SAMP8 mice. Oral administration with DLPhtEtn (1 mg/kg for 7 months prevented a decrease in the number of hippocampal neurons for SAMP8 mice. Conclusion The results of the present study show that DLPhtEtn ameliorates age-related spatial memory decline without affecting motor activities or fear memory, possibly by protecting hippocampal neuronal death. DLPhtEtn, thus, might exert its beneficial action against

  20. Glutamate reduces glucose utilization while concomitantly enhancing AQP9 and MCT2 expression in cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Fabio eTescarollo

    2014-08-01

    Full Text Available The excitatory neurotransmitter glutamate has been reported to have a major impact on brain energy metabolism. Using primary cultures of rat hippocampal neurons, we observed that glutamate reduces glucose utilization in this cell type, suggesting alteration in mitochondrial oxidative metabolism. The aquaglyceroporin AQP9 and the monocarboxylate transporter MCT2, two transporters for oxidative energy substrates, appear to be present in mitochondria of these neurons. Moreover, they not only co-localize but they interact with each other as they were found to co-immunoprecipitate from hippocampal neuron homogenates. Exposure of cultured hippocampal neurons to glutamate 100 µM for 1 hour led to enhanced expression of both AQP9 and MCT2 at the protein level without any significant change at the mRNA level. In parallel, a similar increase in the protein expression of LDHA was evidenced without an effect on the mRNA level. These data suggest that glutamate exerts an influence on neuronal energy metabolism likely through a regulation of the expression of some key mitochondrial proteins.

  1. Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics

    International Nuclear Information System (INIS)

    Jung, Jinwoo; Lee, Jewon; Song, Hanjung

    2011-01-01

    This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performed simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-μm single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with ±2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.

  2. Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS

    Science.gov (United States)

    Estes, Patricia S.; Boehringer, Ashley; Zwick, Rebecca; Tang, Jonathan E.; Grigsby, Brianna; Zarnescu, Daniela C.

    2011-01-01

    The RNA-binding protein TDP-43 has been linked to amyotrophic lateral sclerosis (ALS) both as a causative locus and as a marker of pathology. With several missense mutations being identified within TDP-43, efforts have been directed towards generating animal models of ALS in mouse, zebrafish, Drosophila and worms. Previous loss of function and overexpression studies have shown that alterations in TDP-43 dosage recapitulate hallmark features of ALS pathology, including neuronal loss and locomotor dysfunction. Here we report a direct in vivo comparison between wild-type and A315T mutant TDP-43 overexpression in Drosophila neurons. We found that when expressed at comparable levels, wild-type TDP-43 exerts more severe effects on neuromuscular junction architecture, viability and motor neuron loss compared with the A315T allele. A subset of these differences can be compensated by higher levels of A315T expression, indicating a direct correlation between dosage and neurotoxic phenotypes. Interestingly, larval locomotion is the sole parameter that is more affected by the A315T allele than wild-type TDP-43. RNA interference and genetic interaction experiments indicate that TDP-43 overexpression mimics a loss-of-function phenotype and suggest a dominant-negative effect. Furthermore, we show that neuronal apoptosis does not require the cytoplasmic localization of TDP-43 and that its neurotoxicity is modulated by the proteasome, the HSP70 chaperone and the apoptosis pathway. Taken together, our findings provide novel insights into the phenotypic consequences of the A315T TDP-43 missense mutation and suggest that studies of individual mutations are critical for elucidating the molecular mechanisms of ALS and related neurodegenerative disorders. PMID:21441568

  3. Resveratrol Produces Neurotrophic Effects on Cultured Dopaminergic Neurons through Prompting Astroglial BDNF and GDNF Release

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2012-01-01

    Full Text Available Increasing evidence indicated astroglia-derived neurotrophic factors generation might hold a promising therapy for Parkinson’s disease (PD. Resveratrol, naturally present in red wine and grapes with potential benefit for health, is well known to possess a number of pharmacological activities. Besides the antineuroinflammatory properties, we hypothesized the neuroprotective potency of resveratrol is partially due to its additional neurotrophic effects. Here, primary rat midbrain neuron-glia cultures were applied to investigate the neurotrophic effects mediated by resveratrol on dopamine (DA neurons and further explore the role of neurotrophic factors in its actions. Results showed resveratrol produced neurotrophic effects on cultured DA neurons. Additionally, astroglia-derived neurotrophic factors release was responsible for resveratrol-mediated neurotrophic properties as evidenced by the following observations: (1 resveratrol failed to exert neurotrophic effects on DA neurons in the cultures without astroglia; (2 the astroglia-conditioned medium prepared from astroglia-enriched cultures treated with resveratrol produced neurotrophic effects in neuron-enriched cultures; (3 resveratrol increased neurotrophic factors release in the concentration- and time-dependent manners; (4 resveratrol-mediated neurotrophic effects were suppressed by blocking the action of the neurotrophic factors. Together, resveratrol could produce neurotrophic effects on DA neurons through prompting neurotrophic factors release, and these effects might open new alternative avenues for neurotrophic factor-based therapy targeting PD.

  4. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system

    Directory of Open Access Journals (Sweden)

    Peixin Zhu

    2009-12-01

    Full Text Available The conditional expression of transgenes at high levels in sparse and specific populations of neurons is important for high-resolution optogenetic analyses of neuronal circuits. We explored two complementary methods, viral gene delivery and the iTet-Off system, to express transgenes in the brain of zebrafish. High-level gene expression in neurons was achieved by Sindbis and Rabies viruses. The Tet system produced strong and specific gene expression that could be modulated conveniently by doxycycline. Moreover, transgenic lines showed expression in distinct, sparse and stable populations of neurons that appeared to be subsets of the neurons targeted by the promoter driving the Tet activator. The Tet system therefore provides the opportunity to generate libraries of diverse expression patterns similar to gene trap approaches or the thy-1 promoter in mice, but with the additional possibility to pre-select cell types of interest. In transgenic lines expressing channelrhodopsin-2, action potential firing could be precisely controlled by two-photon stimulation at low laser power, presumably because the expression levels of the Tet-controlled genes were high even in adults. In channelrhodopsin-2-expressing larvae, optical stimulation with a single blue LED evoked distinct swimming behaviors including backward swimming. These approaches provide new opportunities for the optogenetic dissection of neuronal circuit structure and function.

  5. Differential regulation of the excitability of prefrontal cortical fast-spiking interneurons and pyramidal neurons by serotonin and fluoxetine.

    Directory of Open Access Journals (Sweden)

    Ping Zhong

    2011-02-01

    Full Text Available Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC, a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT₂ receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT₁ receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity.

  6. Homozygous mutation of focal adhesion kinase in embryonic stem cell derived neurons: normal electrophysiological and morphological properties in vitro

    Directory of Open Access Journals (Sweden)

    Komiyama NH

    2006-06-01

    Full Text Available Abstract Background Genetically manipulated embryonic stem (ES cell derived neurons (ESNs provide a powerful system with which to study the consequences of gene manipulation in mature, synaptically connected neurons in vitro. Here we report a study of focal adhesion kinase (FAK, which has been implicated in synapse formation and regulation of ion channels, using the ESN system to circumvent the embryonic lethality of homozygous FAK mutant mice. Results Mouse ES cells carrying homozygous null mutations (FAK-/- were generated and differentiated in vitro into neurons. FAK-/- ESNs extended axons and dendrites and formed morphologically and electrophysiologically intact synapses. A detailed study of NMDA receptor gated currents and voltage sensitive calcium currents revealed no difference in their magnitude, or modulation by tyrosine kinases. Conclusion FAK does not have an obligatory role in neuronal differentiation, synapse formation or the expression of NMDA receptor or voltage-gated calcium currents under the conditions used in this study. The use of genetically modified ESNs has great potential for rapidly and effectively examining the consequences of neuronal gene manipulation and is complementary to mouse studies.

  7. CART neurons in the arcuate nucleus and lateral hypothalamic area exert differential controls on energy homeostasis

    Directory of Open Access Journals (Sweden)

    Jackie Lau

    2018-01-01

    Full Text Available Objective: The cocaine- and amphetamine-regulated transcript (CART codes for a pivotal neuropeptide important in the control of appetite and energy homeostasis. However, limited understanding exists for the defined effector sites underlying CART function, as discrepant effects of central CART administration have been reported. Methods: By combining Cart-cre knock-in mice with a Cart adeno-associated viral vector designed using the flip-excision switch (AAV-FLEX technology, specific reintroduction or overexpression of CART selectively in CART neurons in the arcuate nucleus (Arc and lateral hypothalamic area (LHA, respectively, was achieved. The effects on energy homeostasis control were investigated. Results: Here we show that CART neuron-specific reintroduction of CART into the Arc and LHA leads to distinct effects on energy homeostasis control. Specifically, CART reintroduction into the Arc of otherwise CART-deficient Cartcre/cre mice markedly decreased fat mass and body weight, whereas CART reintroduction into the LHA caused significant fat mass gain and lean mass loss, but overall unaltered body weight. The reduced adiposity in ArcCART;Cartcre/cre mice was associated with an increase in both energy expenditure and physical activity, along with significantly decreased Npy mRNA levels in the Arc but with no change in food consumption. Distinctively, the elevated fat mass in LHACART;Cartcre/cre mice was accompanied by diminished insulin responsiveness and glucose tolerance, greater spontaneous food intake, and reduced energy expenditure, which is consistent with the observed decrease of brown adipose tissue temperature. This is also in line with significantly reduced tyrosine hydroxylase (Th and notably increased corticotropin-releasing hormone (Crh mRNA expressions in the paraventricular nucleus (PVN. Conclusions: Taken together, these results identify catabolic and anabolic effects of CART in the Arc and LHA, respectively, demonstrating for

  8. Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches.

    Science.gov (United States)

    Basson, Abigail R; Lam, Minh; Cominelli, Fabio

    2017-12-01

    The human gut microbiome exerts a major impact on human health and disease, and therapeutic gut microbiota modulation is now a well-advocated strategy in the management of many diseases, including inflammatory bowel disease (IBD). Scientific and clinical evidence in support of complementary and alternative medicine, in targeting intestinal dysbiosis among patients with IBD, or other disorders, has increased dramatically over the past years. Delivery of "artificial" stool replacements for fecal microbiota transplantation (FMT) could provide an effective, safer alternative to that of human donor stool. Nevertheless, optimum timing of FMT administration in IBD remains unexplored, and future investigations are essential. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Thyroid Disease and Complementary and Alternative Medicine (CAM)

    Science.gov (United States)

    ... Alternative Medicine in Thyroid Disease Complementary and Alternative Medicine in Thyroid Disease (CAM) WHAT IS COMPLEMENTARY AND ALTERNATIVE MEDICINE (CAM)? Complementary and Alternative Medicine (CAM) is defined ...

  10. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability.

    Science.gov (United States)

    Fujita, Akie; Bonnavion, Patricia; Wilson, Miryam H; Mickelsen, Laura E; Bloit, Julien; de Lecea, Luis; Jackson, Alexander C

    2017-09-27

    Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. For this purpose, we first validated a transgenic mouse line expressing cre recombinase in histidine decarboxylase-expressing neurons ( Hdc -Cre) followed by a systematic census of the membrane properties of both HA and non-HA neurons in the ventral TMN (TMNv) region. Through unsupervised hierarchical cluster analysis, we found electrophysiological diversity both between TMNv HA and non-HA neurons, and among HA neurons. To directly determine the impact of acute cessation of HA neuron activity on sleep-wake states in awake and behaving mice, we examined the effects of optogenetic silencing of TMNv HA neurons in vivo We found that acute silencing of HA neurons during wakefulness promotes slow-wave sleep, but not rapid eye movement sleep, during a period of low sleep pressure. Together, these data suggest that the tonic firing of HA neurons is necessary for the maintenance of wakefulness, and their silencing not only impairs arousal but is sufficient to rapidly and selectively induce slow-wave sleep. SIGNIFICANCE STATEMENT The function of monoaminergic systems and circuits that regulate sleep and wakefulness is often disrupted as part of the pathophysiology of many neuropsychiatric disorders. One such circuit is the posterior hypothalamic histamine (HA) system, implicated in supporting wakefulness and higher brain

  11. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons.

    Science.gov (United States)

    Xia, J X; Xiong, J X; Wang, H K; Duan, S M; Ye, J N; Hu, Z A

    2012-01-10

    Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin

  12. Complementary X-ray and neutron radiography study of the initial lithiation process in lithium-ion batteries containing silicon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fu, E-mail: fu.sun@helmholtz-berlin.de [Institute of Material Science and Technologies, Technical University Berlin, 10623 Berlin (Germany); Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Markötter, Henning [Institute of Material Science and Technologies, Technical University Berlin, 10623 Berlin (Germany); Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Manke, Ingo; Hilger, André [Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Alrwashdeh, Saad S. [Institute of Material Science and Technologies, Technical University Berlin, 10623 Berlin (Germany); Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Mechanical Engineering Department, Faculty of Engineering, Mu' tah University, P.O. Box 7, Al-Karak 61710 Jordan (Jordan); Kardjilov, Nikolay [Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Banhart, John [Institute of Material Science and Technologies, Technical University Berlin, 10623 Berlin (Germany); Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2017-03-31

    Highlights: • A radiography cell for in operando X-ray radiography was designed and built. • A self-assembled CR2032 coin cell was built for in operando neutron radiography. • In operando X-ray and neuron radiography were conducted by using Si electrode half cells. - Abstract: Complementary in operando X-ray radiography and neutron radiography measurements were conducted to investigate and visualize the initial lithiation in silicon-electrode lithium-ion batteries. By means of X-ray radiography, a significant volume expansion of Si particles and the Si electrode during the first discharge was observed. In addition, many Si particles were found that never undergo electrochemical reactions. These findings were confirmed by neutron radiography, which, for the first time, showed the process of Li alloying with the Si electrode during initial lithiation. These results demonstrate that complementary X-ray and neutron radiography is a powerful tool to investigate the lithiation mechanisms inside Si-electrode based lithium-ion batteries.

  13. Do placebo expectations influence perceived exertion during physical exercise?

    Directory of Open Access Journals (Sweden)

    Hendrik Mothes

    Full Text Available This study investigates the role of placebo expectations in individuals' perception of exertion during acute physical exercise. Building upon findings from placebo and marketing research, we examined how perceived exertion is affected by expectations regarding a the effects of exercise and b the effects of the exercise product worn during the exercise. We also investigated whether these effects are moderated by physical self-concept. Seventy-eight participants conducted a moderate 30 min cycling exercise on an ergometer, with perceived exertion (RPE measured every 5 minutes. Beforehand, each participant was randomly assigned to 1 of 4 conditions and watched a corresponding film clip presenting "scientific evidence" that the exercise would or would not result in health benefits and that the exercise product they were wearing (compression garment would additionally enhance exercise benefits or would only be worn for control purposes. Participants' physical self-concept was assessed via questionnaire. Results partially demonstrated that participants with more positive expectations experienced reduced perceived exertion during the exercise. Furthermore, our results indicate a moderator effect of physical self-concept: Individuals with a high physical self-concept benefited (in terms of reduced perceived exertion levels in particular from an induction of generally positive expectations. In contrast, individuals with a low physical self-concept benefited when positive expectations were related to the exercise product they were wearing. In sum, these results suggest that placebo expectations may be a further, previously neglected class of psychological factors that influence the perception of exertion.

  14. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  15. Neural regeneration protein is a novel chemoattractive and neuronal survival-promoting factor

    International Nuclear Information System (INIS)

    Gorba, Thorsten; Bradoo, Privahini; Antonic, Ana; Marvin, Keith; Liu, Dong-Xu; Lobie, Peter E.; Reymann, Klaus G.; Gluckman, Peter D.; Sieg, Frank

    2006-01-01

    Neurogenesis and neuronal migration are the prerequisites for the development of the central nervous system. We have identified a novel rodent gene encoding for a neural regeneration protein (NRP) with an activity spectrum similar to the chemokine stromal-derived factor (SDF)-1, but with much greater potency. The Nrp gene is encoded as a forward frameshift to the hypothetical alkylated DNA repair protein AlkB. The predicted protein sequence of NRP contains domains with homology to survival-promoting peptide (SPP) and the trefoil protein TFF-1. The Nrp gene is first expressed in neural stem cells and expression continues in glial lineages. Recombinant NRP and NRP-derived peptides possess biological activities including induction of neural migration and proliferation, promotion of neuronal survival, enhancement of neurite outgrowth and promotion of neuronal differentiation from neural stem cells. NRP exerts its effect on neuronal survival by phosphorylation of the ERK1/2 and Akt kinases, whereas NRP stimulation of neural migration depends solely on p44/42 MAP kinase activity. Taken together, the expression profile of Nrp, the existence in its predicted protein structure of domains with similarities to known neuroprotective and migration-inducing factors and the high potency of NRP-derived synthetic peptides acting in femtomolar concentrations suggest it to be a novel gene of relevance in cellular and developmental neurobiology

  16. Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model.

    Science.gov (United States)

    Russmann, Vera; Goc, Joanna; Boes, Katharina; Ongerth, Tanja; Salvamoser, Josephine D; Siegl, Claudia; Potschka, Heidrun

    2016-01-15

    The tetracycline antibiotic minocycline can exert strong anti-inflammatory, antioxidant, and antiapoptotic effects. There is cumulating evidence that epileptogenic brain insults trigger neuroinflammation and anti-inflammatory concepts can modulate the process of epileptogenesis. Based on the mechanisms of action discussed for minocycline, the compound is of interest for intervention studies as it can prevent the polarization of microglia into a pro-inflammatory state. Here, we assessed the efficacy of sub-chronic minocycline administration initiated immediately following an electrically-induced status epilepticus in rats. The treatment did not affect the development of spontaneous seizures. However, minocycline attenuated behavioral long-term consequences of status epilepticus with a reduction in hyperactivity and hyperlocomotion. Furthermore, the compound limited the spatial learning deficits observed in the post-status epilepticus model. The typical status epilepticus-induced neuronal cell loss was evident in the hippocampus and the piriform cortex. Minocycline exposure selectively protected neurons in the piriform cortex and the hilus, but not in the hippocampal pyramidal layer. In conclusion, the data argue against an antiepileptogenic effect of minocycline in adult rats. However, the findings suggest a disease-modifying impact of the tetracycline affecting the development of behavioral co-morbidities, as well as long-term consequences on spatial learning. In addition, minocycline administration resulted in a selective neuroprotective effect. Although strong anti-inflammatory effects have been proposed for minocycline, we could not verify these effects in our experimental model. Considering the multitude of mechanisms claimed to contribute to minocycline's effects, it is of interest to further explore the exact mechanisms underlying the beneficial effects in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice.

    Science.gov (United States)

    Burger, Laura L; Vanacker, Charlotte; Phumsatitpong, Chayarndorn; Wagenmaker, Elizabeth R; Wang, Luhong; Olson, David P; Moenter, Suzanne M

    2018-04-01

    Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.

  18. The Role of MAC1 in Diesel Exhaust Particle-induced Microglial Activation and Loss of Dopaminergic Neuron Function

    OpenAIRE

    Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E.; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L.

    2013-01-01

    Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson’s disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (

  19. Prostaglandin E2 facilitates neurite outgrowth in a motor neuron-like cell line, NSC-34

    Directory of Open Access Journals (Sweden)

    Hiroshi Nango

    2017-10-01

    Full Text Available Prostaglandin E2 (PGE2 exerts various biological effects by binding to E-prostanoid receptors (EP1-4. Although recent studies have shown that PGE2 induces cell differentiation in some neuronal cells such as mouse DRG neurons and sensory neuron-like ND7/23 cells, it is unclear whether PGE2 plays a role in differentiation of motor neurons. In the present study, we investigated the mechanism of PGE2-induced differentiation of motor neurons using NSC-34, a mouse motor neuron-like cell line. Exposure of undifferentiated NSC-34 cells to PGE2 and butaprost, an EP2-selective agonist, resulted in a reduction of MTT reduction activity without increase the number of propidium iodide-positive cells and in an increase in the number of neurite-bearing cells. Sulprostone, an EP1/3 agonist, also significantly lowered MTT reduction activity by 20%; however, no increase in the number of neurite-bearing cells was observed within the concentration range tested. PGE2-induced neurite outgrowth was attenuated significantly in the presence of PF-0441848, an EP2-selective antagonist. Treatment of these cells with dibutyryl-cAMP increased the number of neurite-bearing cells with no effect on cell proliferation. These results suggest that PGE2 promotes neurite outgrowth and suppresses cell proliferation by activating the EP2 subtype, and that the cAMP-signaling pathway is involved in PGE2-induced differentiation of NSC-34 cells. Keywords: Prostaglandin E2, E-prostanoid receptors, Motor neuron, Neurite outgrowth, cAMP

  20. [Complementary and alternative medicine in oncology].

    Science.gov (United States)

    Hübner, J

    2013-06-01

    Complementary and alternative medicine are frequently used by cancer patients. The main benefit of complementary medicine is that it gives patients the chance to become active. Complementary therapy can reduce the side effects of conventional therapy. However, we have to give due consideration to side effects and interactions: the latter being able to reduce the effectiveness of cancer therapy and so to jeopardise the success of therapy. Therefore, complementary therapy should be managed by the oncologist. It is based on a common concept of cancerogenesis with conventional therapy. Complement therapy can be assessed in studies. Alternative medicine in contrast rejects common rules of evidence-based medicine. It starts from its own concepts of cancerogenesis, which is often in line with the thinking of lay persons. Alternative medicine is offered as either "alternative" to recommended cancer treatment or is used at the same time but without due regard for the interactions. Alternative medicine is a high risk to patients. In the following two parts of the article, the most important complementary and alternative therapies cancer patients use nowadays are presented and assessed according to published evidence.

  1. Fluoxetine protects against IL-1β-induced neuronal apoptosis via downregulation of p53.

    Science.gov (United States)

    Shan, Han; Bian, Yaqi; Shu, Zhaoma; Zhang, Linxia; Zhu, Jialei; Ding, Jianhua; Lu, Ming; Xiao, Ming; Hu, Gang

    2016-08-01

    Fluoxetine, a selective serotonin reuptake inhibitor, exerts neuroprotective effects in a variety of neurological diseases including stroke, but the underlying mechanism remains obscure. In the present study, we addressed the molecular events in fluoxetine against ischemia/reperfusion-induced acute neuronal injury and inflammation-induced neuronal apoptosis. We showed that treatment of fluoxetine (40 mg/kg, i.p.) with twice injections at 1 h and 12 h after transient middle cerebral artery occlusion (tMCAO) respectively alleviated neurological deficits and neuronal apoptosis in a mouse ischemic stroke model, accompanied by inhibiting interleukin-1β (IL-1β), Bax and p53 expression and upregulating anti-apoptotic protein Bcl-2 level. We next mimicked neuroinflammation in ischemic stroke with IL-1β in primary cultured cortical neurons and found that pretreatment with fluoxetine (1 μM) prevented IL-1β-induced neuronal apoptosis and upregulation of p53 expression. Furthermore, we demonstrated that p53 overexpression in N2a cell line abolished the anti-apoptotic effect of fluoxetine, indicating that p53 downregulation is required for the protective role of fluoxetine in IL-1β-induced neuronal apoptosis. Fluoxetine downregulating p53 expression could be mimicked by SB203580, a specific inhibitor of p38, but blocked by anisomycin, a p38 activator. Collectively, our findings have revealed that fluoxetine protects against IL-1β-induced neuronal apoptosis via p38-p53 dependent pathway, which give us an insight into the potential of fluoxetine in terms of opening up novel therapeutic avenues for neurological diseases including stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Role of hippocampal dentate gyrus neurons in the protective effects of heat shock factor 1 on working memory

    Institute of Scientific and Technical Information of China (English)

    Min Peng; Xiongzhao Zhu; Ming Cheng; Xiangyi Chen; Shuqiao Yao

    2011-01-01

    Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis.Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.

  3. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-01-01

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles (∼ 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25–400 μg/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase Cδ (PKCδ), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: ► Mn nanoparticles activate mitochondrial cell death signaling

  4. The physiological basis of complementary and alternative medicines for polycystic ovary syndrome.

    Science.gov (United States)

    Raja-Khan, Nazia; Stener-Victorin, Elisabet; Wu, XiaoKe; Legro, Richard S

    2011-07-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder that is characterized by chronic hyperandrogenic anovulation leading to symptoms of hirsutism, acne, irregular menses, and infertility. Multiple metabolic and cardiovascular risk factors are associated with PCOS, including insulin resistance, obesity, type 2 diabetes, hypertension, inflammation, and subclinical atherosclerosis. However, current treatments for PCOS are only moderately effective at controlling symptoms and preventing complications. This article describes how the physiological effects of major complementary and alternative medicine (CAM) treatments could reduce the severity of PCOS and its complications. Acupuncture reduces hyperandrogenism and improves menstrual frequency in PCOS. Acupuncture's clinical effects are mediated via activation of somatic afferent nerves innervating the skin and muscle, which, via modulation of the activity in the somatic and autonomic nervous system, may modulate endocrine and metabolic functions in PCOS. Chinese herbal medicines and dietary supplements may also exert beneficial physiological effects in PCOS, but there is minimal evidence that these CAM treatments are safe and effective. Mindfulness has not been investigated in PCOS, but it has been shown to reduce psychological distress and exert positive effects on the central and autonomic nervous systems, hypothalamic-pituitary-adrenal axis, and immune system, leading to reductions in blood pressure, glucose, and inflammation. In conclusion, CAM treatments may have beneficial endocrine, cardiometabolic, and reproductive effects in PCOS. However, most studies of CAM treatments for PCOS are small, nonrandomized, or uncontrolled. Future well-designed studies are needed to further evaluate the safety, effectiveness, and mechanisms of CAM treatments for PCOS.

  5. Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Smith Paula L

    2011-09-01

    Full Text Available Abstract Background Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. Results Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. Conclusions Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

  6. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Asaph Zylbertal

    2017-09-01

    Full Text Available Changes in intracellular Na+ concentration ([Na+]i are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.

  7. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    Science.gov (United States)

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  8. Physical Exertion and Immediate Classroom Mental Performance Among Elementary School Children.

    Science.gov (United States)

    Gabbard, Carl

    This study was designed (1) to investigate the relationship between physical exertion and mental performance in elementary school children and (2) to determine if male or female mental performances are more affected by physical exertion. A total of 95 second graders participated in six treatments of induced physical exertion during their regularly…

  9. Exertional heat stroke management strategies in United States high school football.

    Science.gov (United States)

    Kerr, Zachary Y; Marshall, Stephen W; Comstock, R Dawn; Casa, Douglas J

    2014-01-01

    The 5-year period of 2005-2009 saw more exertional heat stroke-related deaths in organized sports than any other 5-year period in the past 35 years. The risk of exertional heat stroke appears highest in football, particularly during the preseason. To estimate the incidence of exertional heat stroke events and assess the utilization of exertional heat stroke management strategies during the 2011 preseason in United States high school football programs. Cross-sectional study; Level of evidence, 3. A self-administered online questionnaire addressing the incidence of exertional heat stroke events and utilization of exertional heat stroke management strategies (eg, removing athlete's football equipment, calling Emergency Medical Services [EMS]) was completed in May to June 2012 by 1142 (18.0%) athletic trainers providing care to high school football athletes during the 2011 preseason. Among all respondents, 20.3% reported treating at least 1 exertional heat stroke event. An average of 0.50 ± 1.37 preseason exertional heat stroke events were treated per program. Athletic trainers responding to exertional heat stroke reported using an average of 6.6 ± 1.8 management strategies. The most common management strategies were low-level therapeutic interventions such as removing the athlete's football equipment (98.2%) and clothing (77.8%) and moving the athlete to a shaded area (91.6%). Few athletic trainers reported active management strategies such as calling EMS (29.3%) or using a rectal thermometer to check core body temperature (0.9%). Athletic trainers in states with mandated preseason heat acclimatization guidelines reported a higher utilization of management strategies such as cooling the athlete through air conditioning (90.1% vs 65.0%, respectively; P football programs. The standard of care is (and should be) to treat proactively; therefore, treatment is not a perfect proxy for incidence. Nevertheless, there is an urgent need for improved education and awareness of

  10. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons.

    Science.gov (United States)

    Li, Ying; Xu, Youfen; van den Pol, Anthony N

    2013-03-01

    In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization.

  11. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  12. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability.

    Science.gov (United States)

    Allaman, Igor; Gavillet, Mathilde; Bélanger, Mireille; Laroche, Thierry; Viertl, David; Lashuel, Hilal A; Magistretti, Pierre J

    2010-03-03

    Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.

  13. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    Directory of Open Access Journals (Sweden)

    Pluchino Stefano

    2011-07-01

    Full Text Available Abstract Background Dopamine-synthesizing (dopaminergic, DA neurons in the ventral midbrain (VM constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+ neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd

  14. Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder.

    Science.gov (United States)

    Valencia Garcia, Sara; Brischoux, Frédéric; Clément, Olivier; Libourel, Paul-Antoine; Arthaud, Sébastien; Lazarus, Michael; Luppi, Pierre-Hervé; Fort, Patrice

    2018-02-05

    Despite decades of research, there is a persistent debate regarding the localization of GABA/glycine neurons responsible for hyperpolarizing somatic motoneurons during paradoxical (or REM) sleep (PS), resulting in the loss of muscle tone during this sleep state. Combining complementary neuroanatomical approaches in rats, we first show that these inhibitory neurons are localized within the ventromedial medulla (vmM) rather than within the spinal cord. We then demonstrate their functional role in PS expression through local injections of adeno-associated virus carrying specific short-hairpin RNA in order to chronically impair inhibitory neurotransmission from vmM. After such selective genetic inactivation, rats display PS without atonia associated with abnormal and violent motor activity, concomitant with a small reduction of daily PS quantity. These symptoms closely mimic human REM sleep behavior disorder (RBD), a prodromal parasomnia of synucleinopathies. Our findings demonstrate the crucial role of GABA/glycine inhibitory vmM neurons in muscle atonia during PS and highlight a candidate brain region that can be susceptible to α-synuclein-dependent degeneration in RBD patients.

  15. Determining Complementary Properties with Quantum Clones

    Science.gov (United States)

    Thekkadath, G. S.; Saaltink, R. Y.; Giner, L.; Lundeen, J. S.

    2017-08-01

    In a classical world, simultaneous measurements of complementary properties (e.g., position and momentum) give a system's state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones' state corresponds to "twins" of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the system's state, just as in the classical case. We demonstrate this experimentally using polarized single photons.

  16. Complementary Feeding: Review of Recommendations, Feeding Practices and Adequacy of Homemade Complementary Food Preparations in Developing Countries – lessons from Ethiopia

    Directory of Open Access Journals (Sweden)

    Motuma A Abeshu

    2016-10-01

    Full Text Available Breastfeeding provides the ideal food during the first 6 months of life. Complementary feeding is the process starting when breast milk alone is no longer sufficient, the target age being between 6 to 23 months. The gap between nutritional requirement and amount obtained from breast milk increases with age. For energy, 200kcal, 300kcal and 550kcal per day is expected to be covered by complementary foods at 6-8, 9-11 and 12-23 months, respectively. In addition, the complementary foods must provide relatively large proportions of micronutrients such as: iron, zinc, phosphorus, magnesium, calcium and vitamin B6. In several parts of the developing world, complementary feeding continues as a challenge to good nutrition in children. In Ethiopia, only 4.2% of breastfed children of 6–23 months of age have a minimum acceptable diet. The gaps are mostly attributed to either poor dietary quality or poor feeding practices, if not both. Commercial fortified foods are often beyond the reach of the poor. Thus, homemade complementary foods remain commonly used. However, unfortified complementary foods that are predominantly plant-based provide insufficient amounts of key nutrients (particularly iron, zinc and calcium during the age of 6 – 23 months even, when based on an improved recipe. This review thus assessed complementary feeding practice and recommendation and reviewed the level of adequacy of homemade complementary foods.

  17. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  18. Factors associated with high physical exertion during manual lifting

    DEFF Research Database (Denmark)

    Andersen, Lars L.; Sundstrup, Emil; Brandt, Mikkel

    2018-01-01

    BACKGROUND: High physical exertion during work is a risk factor for back pain and long-term sickness absence. OBJECTIVE: To investigate which factors are associated with physical exertion during manual lifting. METHODS: From 14 workplaces across Denmark, 200 blue-collar workers reported perceived...... physical exertion (Borg-CR10) during manual lifting from floor to table height of 5, 10, 20 and 30 kg at the beginning and end of the working day. The workers also responded to a questionnaire and went through testing of isometric back muscle strength. Associations were modelled using logistic regression...... during manual lifting in blue-collar workers. These factors should be considered when planning work with manual lifting for individual workers....

  19. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity

    Science.gov (United States)

    Parras, Carlos M.; Schuurmans, Carol; Scardigli, Raffaella; Kim, Jaesang; Anderson, David J.; Guillemot, François

    2002-01-01

    The neural bHLH genes Mash1 and Ngn2 are expressed in complementary populations of neural progenitors in the central and peripheral nervous systems. Here, we have systematically compared the activities of the two genes during neural development by generating replacement mutations in mice in which the coding sequences of Mash1 and Ngn2 were swapped. Using this approach, we demonstrate that Mash1 has the capacity to respecify the identity of neuronal populations normally derived from Ngn2-expressing progenitors in the dorsal telencephalon and ventral spinal cord. In contrast, misexpression of Ngn2 in Mash1-expressing progenitors does not result in any overt change in neuronal phenotype. Taken together, these results demonstrate that Mash1 and Ngn2 have divergent functions in specification of neuronal subtype identity, with Mash1 having the characteristics of an instructive determinant whereas Ngn2 functions as a permissive factor that must act in combination with other factors to specify neuronal phenotypes. Moreover, the ectopic expression of Ngn2 can rescue the neurogenesis defects of Mash1 null mutants in the ventral telencephalon and sympathetic ganglia but not in the ventral spinal cord and the locus coeruleus, indicating that Mash1 contribution to the specification of neuronal fates varies greatly in different lineages, presumably depending on the presence of other determinants of neuronal identity. PMID:11825874

  20. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jiou Wang

    2009-01-01

    Full Text Available The nature of toxic effects exerted on neurons by misfolded proteins, occurring in a number of neurodegenerative diseases, is poorly understood. One approach to this problem is to measure effects when such proteins are expressed in heterologous neurons. We report on effects of an ALS-associated, misfolding-prone mutant human SOD1, G85R, when expressed in the neurons of Caenorhabditis elegans. Stable mutant transgenic animals, but not wild-type human SOD1 transgenics, exhibited a strong locomotor defect associated with the presence, specifically in mutant animals, of both soluble oligomers and insoluble aggregates of G85R protein. A whole-genome RNAi screen identified chaperones and other components whose deficiency increased aggregation and further diminished locomotion. The nature of the locomotor defect was investigated. Mutant animals were resistant to paralysis by the cholinesterase inhibitor aldicarb, while exhibiting normal sensitivity to the cholinergic agonist levamisole and normal muscle morphology. When fluorescently labeled presynaptic components were examined in the dorsal nerve cord, decreased numbers of puncta corresponding to neuromuscular junctions were observed in mutant animals and brightness was also diminished. At the EM level, mutant animals exhibited a reduced number of synaptic vesicles. Neurotoxicity in this system thus appears to be mediated by misfolded SOD1 and is exerted on synaptic vesicle biogenesis and/or trafficking.

  1. Exertional Rhabdomyolysis after Spinning

    OpenAIRE

    Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung

    2016-01-01

    Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24?48 hours after attending a spi...

  2. Update: Exertional rhabdomyolysis, active component, U.S. Armed Forces, 2012-2016.

    Science.gov (United States)

    2017-03-01

    Among active component service members in 2016, there were 525 incident diagnoses of rhabdomyolysis likely due to physical exertion and/or heat stress ("exertional rhabdomyolysis"). The crude incidence rate in 2016 was 40.7 cases per 100,000 person-years. Annual rates of incident diagnoses of exertional rhabdomyolysis increased 46.2% between 2013 and 2016, with the greatest percentage change occurring between 2014 and 2015. In 2016, relative to their respective counterparts, the highest incidence rates of exertional rhabdomyolysis affected service members who were male; younger than 20 years of age; and black, non-Hispanic. During the surveillance period, annual incidence rates were highest among service members of the Marine Corps, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

  3. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2004-01-01

    Full Text Available The discovery of experience-dependent brain reactivation during both slow-wave (SW and rapid eye-movement (REM sleep led to the notion that the consolidation of recently acquired memory traces requires neural replay during sleep. To date, however, several observations continue to undermine this hypothesis. To address some of these objections, we investigated the effects of a transient novel experience on the long-term evolution of ongoing neuronal activity in the rat forebrain. We observed that spatiotemporal patterns of neuronal ensemble activity originally produced by the tactile exploration of novel objects recurred for up to 48 h in the cerebral cortex, hippocampus, putamen, and thalamus. This novelty-induced recurrence was characterized by low but significant correlations values. Nearly identical results were found for neuronal activity sampled when animals were moving between objects without touching them. In contrast, negligible recurrence was observed for neuronal patterns obtained when animals explored a familiar environment. While the reverberation of past patterns of neuronal activity was strongest during SW sleep, waking was correlated with a decrease of neuronal reverberation. REM sleep showed more variable results across animals. In contrast with data from hippocampal place cells, we found no evidence of time compression or expansion of neuronal reverberation in any of the sampled forebrain areas. Our results indicate that persistent experience-dependent neuronal reverberation is a general property of multiple forebrain structures. It does not consist of an exact replay of previous activity, but instead it defines a mild and consistent bias towards salient neural ensemble firing patterns. These results are compatible with a slow and progressive process of memory consolidation, reflecting novelty-related neuronal ensemble relationships that seem to be context- rather than stimulus-specific. Based on our current and previous results

  4. Detraditionalisation, gender and alternative and complementary medicines.

    Science.gov (United States)

    Sointu, Eeva

    2011-03-01

    This article is premised on the importance of locating the appeal and meaning of alternative and complementary medicines in the context of gendered identities. I argue that the discourse of wellbeing--captured in many alternative and complementary health practices--is congruent with culturally prevalent ideals of self-fulfilling, authentic, unique and self-responsible subjectivity. The discourse of wellbeing places the self at the centre, thus providing a contrast with traditional ideas of other-directed and caring femininity. As such, involvement in alternative and complementary medicines is entwined with a negotiation of shifting femininities in detraditionalising societies. Simultaneously, many alternative and complementary health practices readily tap into and reproduce traditional representations of caring femininity. It is through an emphasis on emotional honesty and intimacy that the discourse of wellbeing also captures a challenge to traditional ideas of masculinity. Expectations and experiences relating to gender add a further level of complexity to the meaningfulness and therapeutic value of alternative and complementary medicines and underlie the gender difference in the utilisation of holistic health practices. I draw on data from a qualitative study with 44, primarily white, middle-class users and practitioners of varied alternative and complementary medicines in the UK. © 2010 The Author. Sociology of Health & Illness © 2010 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  5. Homeostatic plasticity and STDP: keeping a neuron's cool in a fluctuating world

    Directory of Open Access Journals (Sweden)

    Alanna J Watt

    2010-06-01

    Full Text Available Spike-timing dependent plasticity (STDP offers a powerful means of forming and modifying neural circuits. Experimental and theoretical studies have demonstrated its potential usefulness for functions as varied as cortical map development, sharpening of sensory receptive fields, working memory, and associative learning. Even so, it is unlikely that STDP works alone. Unless changes in synaptic strength are coordinated across multiple synapses and with other neuronal properties, it is difficult to maintain the stability and functionality of neural circuits. Moreover, there are certain features of early postnatal development (e.g., rapid changes in sensory input that threaten neural circuit stability in ways that STDP may not be well placed to counter. These considerations have led researchers to investigate additional types of plasticity, complementary to STDP, that may serve to constrain synaptic weights and/or neuronal firing. These are collectively known as “homeostatic plasticity” and include schemes that control the total synaptic strength of a neuron, that modulate its intrinsic excitability as a function of average activity, or that make the ability of synapses to undergo Hebbian modification depend upon their history of use. In this article, we will review the experimental evidence for homeostatic forms of plasticity and consider how they might interact with STDP during development and learning & memory.

  6. Integrative Medicine and Complementary and Alternative Therapies

    Science.gov (United States)

    ... complementary therapies with your healthcare team: Are there complementary therapies that you would recommend? What research is available about this therapy’s safety and effectiveness? What are the benefits and risks of this ...

  7. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines: Advanced Search. Journal Home > African Journal of Traditional, Complementary and Alternative Medicines: Advanced Search. Log in or Register to get access to full text downloads.

  8. Exertional headache and coronary ischemia despite normal electrocardiographic stress testing.

    Science.gov (United States)

    Cutrer, F Michael; Huerter, Karina

    2006-01-01

    Exertional headaches may under certain conditions reflect coronary ischemia. We report the case of a patient seen in a neurology referral practice whose exertional headaches, even in the face of two normal electrocardiographic stress tests and in the absence of underlying chest pain were the sole symptoms of coronary ischemia as detected by Tc-99m Sestamibi testing SPECT stress testing. Stent placement resulted in complete resolution of headaches. Exertional headache in the absence of chest pain may reflect underlying symptomatic coronary artery disease (CAD) even when conventional electrocardiographic stress testing does not indicate ischemia.

  9. The role of MAC1 in diesel exhaust particle-induced microglial activation and loss of dopaminergic neuron function.

    Science.gov (United States)

    Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L

    2013-06-01

    Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson's disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (neuron function was assessed. All three treatments showed enhanced ameboid microglia morphology, increased H2 O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2 O2 production in microglia. However, pre-treatment with the MAC1/CD11b inhibitor antibody blocked microglial H2 O2 production in response to DEP. MAC1(-/-) mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2 O2 production and loss of DA neuron function. © 2013 International Society for Neurochemistry.

  10. Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons.

    Science.gov (United States)

    Lu, D; Yang, H; Lenox, R H; Raizada, M K

    1998-07-13

    Angiotensin II (Ang II) exerts chronic stimulatory actions on tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), and the norepinephrine transporter (NET), in part, by influencing the transcription of their genes. These neuromodulatory actions of Ang II involve Ras-Raf-MAP kinase signal transduction pathways (Lu, D., H. Yang, and M.K. Raizada. 1997. J. Cell Biol. 135:1609-1617). In this study, we present evidence to demonstrate participation of another signaling pathway in these neuronal actions of Ang II. It involves activation of protein kinase C (PKC)beta subtype and phosphorylation and redistribution of myristoylated alanine-rich C kinase substrate (MARCKS) in neurites. Ang II caused a dramatic redistribution of MARCKS from neuronal varicosities to neurites. This was accompanied by a time-dependent stimulation of its phosphorylation, that was mediated by the angiotensin type 1 receptor subtype (AT1). Incubation of neurons with PKCbeta subtype specific antisense oligonucleotide (AON) significantly attenuated both redistribution and phosphorylation of MARCKS. Furthermore, depletion of MARCKS by MARCKS-AON treatment of neurons resulted in a significant decrease in Ang II-stimulated accumulation of TH and DbetaH immunoreactivities and [3H]NE uptake activity in synaptosomes. In contrast, mRNA levels of TH, DbetaH, and NET were not influenced by MARKS-AON treatment. MARCKS pep148-165, which contains PKC phosphorylation sites, inhibited Ang II stimulation of MARCKS phosphorylation and reduced the amount of TH, DbetaH, and [3H]NE uptake in neuronal synaptosomes. These observations demonstrate that phosphorylation of MARCKS by PKCbeta and its redistribution from varicosities to neurites is important in Ang II-induced synaptic accumulation of TH, DbetaH, and NE. They suggest that a coordinated stimulation of transcription of TH, DbetaH, and NET, mediated by Ras-Raf-MAP kinase followed by their transport mediated by PKCbeta-MARCKS pathway are key in persistent

  11. Perception of risk and communication among conventional and complementary health care providers involving cancer patients' use of complementary therapies: a literature review.

    Science.gov (United States)

    Stub, Trine; Quandt, Sara A; Arcury, Thomas A; Sandberg, Joanne C; Kristoffersen, Agnete E; Musial, Frauke; Salamonsen, Anita

    2016-09-08

    Communication between different health care providers (conventional and complementary) and cancer patients about their use of complementary therapies affects the health and safety of the patients. The aim of this study was to examine the qualitative research literature on the perception of and communication about the risk of complementary therapies between different health care providers and cancer patients. Systematic searches in six medical databases covering literature from 2000 to 2015 were performed. The studies were accessed according to the level of evidence and summarized into different risk situations. Qualitative content analysis was used to analyze the text data, and the codes were defined before and during the data analysis. Twenty-nine papers were included in the primary analysis and five main themes were identified and discussed. The main risk situations identified were 1. Differences in treatment concepts and philosophical values among complementary and conventional health care providers. 2. Adverse effects from complementary products and herbs due to their contamination/toxicity and interactions with conventional cancer treatment. 3. Health care physicians and oncologists find it difficult to recommend many complementary modalities due to the lack of scientific evidence for their effect. 4. Lack of knowledge and information about complementary and conventional cancer treatments among different health care providers. The risk of consuming herbs and products containing high level of toxins is a considerable threat to patient safety (direct risk). At the same time, the lack of scientific evidence of effect for many complementary therapies and differences in treatment philosophy among complementary and conventional health care providers potentially hinder effective communication about these threats with mutual patients (indirect risk). As such, indirect risk may pose an additional risk to patients who want to combine complementary therapies with

  12. Fluoxetine Exerts Age-Dependent Effects on Behavior and Amygdala Neuroplasticity in the Rat

    Science.gov (United States)

    Homberg, Judith R.; Olivier, Jocelien D. A.; Blom, Tom; Arentsen, Tim; van Brunschot, Chantal; Schipper, Pieter; Korte-Bouws, Gerdien; van Luijtelaar, Gilles; Reneman, Liesbeth

    2011-01-01

    The selective serotonin reuptake inhibitor (SSRI) Prozac® (fluoxetine) is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg) at postnatal day (PND) 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7–14 days after the last injection when (nor)fluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (nor)fluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling) immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential fluoxetine

  13. Fluoxetine exerts age-dependent effects on behavior and amygdala neuroplasticity in the rat.

    Directory of Open Access Journals (Sweden)

    Judith R Homberg

    Full Text Available The selective serotonin reuptake inhibitor (SSRI Prozac® (fluoxetine is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg at postnatal day (PND 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7-14 days after the last injection when (norfluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (norfluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT(1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential

  14. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  15. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice.

    Science.gov (United States)

    Phumsatitpong, Chayarndorn; Moenter, Suzanne M

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.

  16. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus.

    Science.gov (United States)

    Suntsova, Natalia; Guzman-Marin, Ruben; Kumar, Sunil; Alam, Md Noor; Szymusiak, Ronald; McGinty, Dennis

    2007-02-14

    The perifornical-lateral hypothalamic area (PF/LH) contains neuronal groups playing an important role in control of waking and sleep. Among the brain regions that regulate behavioral states, one of the strongest sources of projections to the PF/LH is the median preoptic nucleus (MnPN) containing a sleep-active neuronal population. To evaluate the role of MnPN afferents in the control of PF/LH neuronal activity, we studied the responses of PF/LH cells to electrical stimulation or local chemical manipulation of the MnPN in freely moving rats. Single-pulse electrical stimulation evoked responses in 79% of recorded PF/LH neurons. No cells were activated antidromically. Direct and indirect transsynaptic effects depended on sleep-wake discharge pattern of PF/LH cells. The majority of arousal-related neurons, that is, cells discharging at maximal rates during active waking (AW) or during AW and rapid eye movement (REM) sleep, exhibited exclusively or initially inhibitory responses to stimulation. Sleep-related neurons, the cells with elevated discharge during non-REM and REM sleep or selectively active in REM sleep, exhibited exclusively or initially excitatory responses. Activation of the MnPN via microdialytic application of L-glutamate or bicuculline resulted in reduced discharge of arousal-related and in excitation of sleep-related PF/LH neurons. Deactivation of the MnPN with muscimol caused opposite effects. The results indicate that the MnPN contains subset(s) of neurons, which exert inhibitory control over arousal-related and excitatory control over sleep-related PF/LH neurons. We hypothesize that MnPN sleep-active neuronal group has both inhibitory and excitatory outputs that participate in the inhibitory control of arousal-promoting PF/LH mechanisms.

  17. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

    Science.gov (United States)

    Deshpande, Aditi; Bergami, Matteo; Ghanem, Alexander; Conzelmann, Karl-Klaus; Lepier, Alexandra; Götz, Magdalena; Berninger, Benedikt

    2013-01-01

    Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit. PMID:23487772

  18. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  19. Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory.

    Science.gov (United States)

    McClelland, James L

    2013-11-01

    The complementary learning systems theory of the roles of hippocampus and neocortex (McClelland, McNaughton, & O'Reilly, 1995) holds that the rapid integration of arbitrary new information into neocortical structures is avoided to prevent catastrophic interference with structured knowledge representations stored in synaptic connections among neocortical neurons. Recent studies (Tse et al., 2007, 2011) showed that neocortical circuits can rapidly acquire new associations that are consistent with prior knowledge. The findings challenge the complementary learning systems theory as previously presented. However, new simulations extending those reported in McClelland et al. (1995) show that new information that is consistent with knowledge previously acquired by a putatively cortexlike artificial neural network can be learned rapidly and without interfering with existing knowledge; it is when inconsistent new knowledge is acquired quickly that catastrophic interference ensues. Several important features of the findings of Tse et al. (2007, 2011) are captured in these simulations, indicating that the neural network model used in McClelland et al. has characteristics in common with neocortical learning mechanisms. An additional simulation generalizes beyond the network model previously used, showing how the rate of change of cortical connections can depend on prior knowledge in an arguably more biologically plausible network architecture. In sum, the findings of Tse et al. are fully consistent with the idea that hippocampus and neocortex are complementary learning systems. Taken together, these findings and the simulations reported here advance our knowledge by bringing out the role of consistency of new experience with existing knowledge and demonstrating that the rate of change of connections in real and artificial neural networks can be strongly prior-knowledge dependent. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  20. Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity.

    Science.gov (United States)

    Vijayan, Vinoy; Thistle, Rob; Liu, Tong; Starostina, Elena; Pikielny, Claudio W

    2014-03-01

    As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating

  1. Influence of permittivity on gradient force exerted on Mie spheres.

    Science.gov (United States)

    Chen, Jun; Li, Kaikai; Li, Xiao

    2018-04-01

    In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.

  2. A novel pseudo-complementary PNA G-C base pair

    DEFF Research Database (Denmark)

    Olsen, Anne G.; Dahl, Otto; Petersen, Asger Bjørn

    2011-01-01

    Pseudo-complementary oligonucleotide analogues and mimics provide novel opportunities for targeting duplex structures in RNA and DNA. Previously, a pseudo-complementary A-T base pair has been introduced. Towards sequence unrestricted targeting, a pseudo-complementary G-C base pair consisting...

  3. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    International Nuclear Information System (INIS)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-01-01

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1

  4. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zheng, Ruimao, E-mail: rmzheng@pku.edu.cn [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zhu, Shigong, E-mail: sgzhu@bjmu.edu.cn [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China)

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  5. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    Science.gov (United States)

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  6. Office of Cancer Complementary and Alternative Medicine

    Science.gov (United States)

    ... C Research. Information. Outreach. The Office of Cancer Complementary and Alternative Medicine (OCCAM) was established in October 1998 to coordinate ... National Cancer Institute (NCI) in the arena of complementary and alternative medicine (CAM). More about us. CAM at the NCI ...

  7. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    Science.gov (United States)

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  8. Complementary feeding practices and nutritional status of children 6 ...

    African Journals Online (AJOL)

    Objectives: Inappropriate complementary feeding practices among children aged 6-23 months is major cause of under nutrition. There is scarce information on the relationship between complementary feeding practices and nutritional status. This study aimed to determine the factors contributing to the complementary ...

  9. ApoER2 Controls Not Only Neuronal Migration in the Intermediate Zone But Also Termination of Migration in the Developing Cerebral Cortex.

    Science.gov (United States)

    Hirota, Yuki; Kubo, Ken-Ichiro; Fujino, Takahiro; Yamamoto, Tokuo T; Nakajima, Kazunori

    2018-01-01

    Neuronal migration contributes to the establishment of mammalian brain. The extracellular protein Reelin sends signals to various downstream molecules by binding to its receptors, the apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor and exerts essential roles in the neuronal migration and formation of the layered neocortex. However, the cellular and molecular functions of Reelin signaling in the cortical development are not yet fully understood. Here, to gain insight into the role of Reelin signaling during cortical development, we examined the migratory behavior of Apoer2-deficient neurons in the developing brain. Stage-specific labeling of newborn neurons revealed that the neurons ectopically invaded the marginal zone (MZ) and that neuronal migration of both early- and late-born neurons was disrupted in the intermediate zone (IZ) in the Apoer2 KO mice. Rescue experiments showed that ApoER2 functions both in cell-autonomous and noncell-autonomous manners, that Rap1, integrin, and Akt are involved in the termination of migration beneath the MZ, and that Akt also controls neuronal migration in the IZ downstream of ApoER2. These data indicate that ApoER2 controls multiple processes in neuronal migration, including the early stage of radial migration and termination of migration beneath the MZ in the developing neocortex. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Streptozotocin alters glucose transport, connexin expression and endoplasmic reticulum functions in neurons and astrocytes.

    Science.gov (United States)

    Biswas, Joyshree; Gupta, Sonam; Verma, Dinesh Kumar; Singh, Sarika

    2017-07-25

    The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. Both neuronal and astrocyte cells were treated with STZ at 10, 50, 100 and 1000μM concentrations for 48h. STZ exposure caused significant decline in cellular viability and augmented cytotoxicity of cells involving astrocytes activation. STZ treatment also disrupted the energy metabolism by altered glucose uptake and its transport in both cells as reflected with decreased expression of glucose transporters (GLUT) 1/3. The consequent decrease in ATP level and decreased mitochondrial membrane potential was also observed in both the cells. STZ caused increased intracellular calcium which could cause the initiation of endoplasmic reticulum (ER) stress. Significant upregulation of ER stress-related markers were observed in both cells after STZ treatment. The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Ghrelin decreases firing activity of gonadotropin-releasing hormone (GnRH neurons in an estrous cycle and endocannabinoid signaling dependent manner.

    Directory of Open Access Journals (Sweden)

    Imre Farkas

    Full Text Available The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca(2+-imaging revealed a ghrelin-triggered increase of the Ca(2+-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10 µM suggesting direct action of ghrelin. Estradiol (1nM eliminated the ghrelin-evoked rise of Ca(2+-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40 nM-4 μM administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1 antagonist AM251 (1µM and the intracellularly applied DAG-lipase inhibitor THL (10 µM, indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.

  12. Protective Effect of SGK1 in Rat Hippocampal Neurons Subjected to Ischemia Reperfusion

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-07-01

    Full Text Available Background/Aims: To investigate the protective effect of SGK1 (serum- and glucocorticoid-inducible protein kinase 1 in rat hippocampal neurons in vitro and in vivo following ischemia reperfusion (I/R. Methods: Isolated rat hippocampal neurons were subjected to 2 h of oxygen and glucose deprivation (OGD then returned to normoxic conditions for 10, 30 or 60 min. Cell apoptosis and protein expression of SGK1 were analyzed. To examine SGK1 function, we overexpressed SGK1 in rat hippocampal neurons. Finally we examined the involvement of PI3K/Akt/GSK3β signaling by treating the cells (untransfected or transfected with expression vector encoding SGK1 with the PI3K inhibitor LY294002. Findings were confirmed in vivo in a rat model of middle cerebral artery occlusion. Results: I/R caused a time-dependent increase in apoptosis, both in vitro and in vivo. SGK1 protein levels decreased significantly under the same conditions. Overexpression of SGK1 reduced apoptosis following OGD or I/R compared to cells transfected with empty vector and subjected to the same treatment, or sham-operated animals. Addition of LY294002 revealed that the action of SGK1 in suppressing apoptosis was mediated by the PI3K/Akt/GSK3β pathway. Conclusion: SGK1 plays a protective role in ischemia reperfusion in rat hippocampal neurons, exerting its effects via the PI3K/Akt/GSK3β pathway.

  13. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach.

    Science.gov (United States)

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  14. Exertional Rhabdomyolysis: What Is It and Why Should We Care?

    Science.gov (United States)

    Thomas, David Q.; Carlson, Kelli A.; Marzano, Amy; Garrahy, Deborah

    2012-01-01

    Exertional rhabdomyolysis gained increased attention recently when 13 football players from the University of Iowa developed this condition after an especially demanding practice session and were hospitalized. Exertional rhabdomyolysis may lead to severe kidney stress, kidney failure, and even sudden death. Anyone who does physical exercise at a…

  15. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro

    Institute of Scientific and Technical Information of China (English)

    Fang Su; An-Chen Guo; Wei-Wei Li; Yi-Long Zhao; Zheng-Yi Qu; Yong-Jun Wang; Qun Wang; Yu-Lan Zhu

    2017-01-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion;however,the underlying mechanism has not been elucidated.In the present study,we showed that expression of the neuronal large-conductance,Ca2+-activated K+ channel (BKCa) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivatior/reoxygenation (OGD/R) compared with controls.Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R,attenuated the OGD/R-induced elevation of cytosolic Ca2+ levels,and reduced the number of apoptotic neurons.Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax.The protective effect of ethanol preconditioning was antagonized by a BKCa channel inhibitor,paxilline.Inside-out patches in primary neurons also demonstrated the direct activation of the BKCa channel by 10 mmol/L ethanol.The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca2+ and preventing neuronal apoptosis,and this is mediated by BKCa channel activation.

  16. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro.

    Science.gov (United States)

    Su, Fang; Guo, An-Chen; Li, Wei-Wei; Zhao, Yi-Long; Qu, Zheng-Yi; Wang, Yong-Jun; Wang, Qun; Zhu, Yu-Lan

    2017-02-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca 2+ -activated K + channel (BK Ca ) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca 2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BK Ca channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BK Ca channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca 2+ and preventing neuronal apoptosis, and this is mediated by BK Ca channel activation.

  17. Sildenafil protects neuronal cells from mitochondrial toxicity induced by β-amyloid peptide via ATP-sensitive K+ channels.

    Science.gov (United States)

    Son, Yonghae; Kim, Koanhoi; Cho, Hyok-Rae

    2018-06-02

    To understand the molecular mechanisms underlying the beneficial effects of sildenafil in animal models of neurological disorders, we investigated the effects of sildenafil on the mitochondrial toxicity induced by β-amyloid (Aβ) peptide. Treatment of HT-22 hippocampal neuronal cells with Aβ 25∼35 results in increased mitochondrial Ca 2+ load, which is subsequently suppressed by sildenafil as well as by diazoxide, a selective opener of the ATP-sensitive K + channels (K ATP ). However, the suppressive effects of sildenafil and diazoxide are significantly attenuated by 5-hydroxydecanoic acid (5-HD), a K ATP inhibitor. The increased mitochondrial Ca 2+ overload is accompanied by decrease in the intracellular ATP concentration, increase in intracellular ROS generation, occurrence of mitochondrial permeability transition, and activation of caspase-9 and cell death. Exposure to sildenafil inhibited the mitochondria-associated changes and cell death induced by Aβ. However, the inhibitory effects of sildenafil are abolished or weakened in the presence of 5-HD, suggesting that opening of the mitochondrial K ATP is required for sildenafil to exert these effects. Taken together, these results indicate that at the mitochondrial levels, sildenafil plays a protective role towards neuronal cell in an environment rich in Aβ, and exerts its effects via the mitochondrial K ATP channels-dependent mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Osthole Stimulated Neural Stem Cells Differentiation into Neurons in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9 and Rescued the Functional Impairment of Hippocampal Neurons in APP/PS1 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Shao-Heng Li

    2017-06-01

    Full Text Available Alzheimer's disease (AD is the most serious neurodegenerative disease worldwide and is characterized by progressive cognitive impairment and multiple neurological changes, including neuronal loss in the brain. However, there are no available drugs to delay or cure this disease. Consequently, neuronal replacement therapy may be a strategy to treat AD. Osthole (Ost, a natural coumarin derivative, crosses the blood-brain barrier and exerts strong neuroprotective effects against AD in vitro and in vivo. Recently, microRNAs (miRNAs have demonstrated a crucial role in pathological processes of AD, implying that targeting miRNAs could be a therapeutic approach to AD. In the present study, we investigated whether Ost could enhance cell viability and prevent cell death in amyloid precursor protein (APP-expressing neural stem cells (NSCs as well as promote APP-expressing NSCs differentiation into more neurons by upregulating microRNA (miR-9 and inhibiting the Notch signaling pathway in vitro. In addition, Ost treatment in APP/PS1 double transgenic (Tg mice markedly restored cognitive functions, reduced Aβ plague production and rescued functional impairment of hippocampal neurons. The results of the present study provides evidence of the neurogenesis effects and neurobiological mechanisms of Ost against AD, suggesting that Ost is a promising drug for treatment of AD or other neurodegenerative diseases.

  19. Discovering complementary colors from the perspective of steam education

    Science.gov (United States)

    Karabey, Burak; Yigit Koyunkaya, Melike; Enginoglu, Turan; Yurumezoglu, Kemal

    2018-05-01

    This study explored the theory and applications of complementary colors using a technology-based activity designed from the perspective of STEAM education. Complementary colors and their areas of use were examined from the perspective of physics, mathematics and art, respectively. The study, which benefits from technology, makes the theory of complementary colors accessible to all through practical applications and provides a multidisciplinary, integrated and innovative technique of teaching the subject of colors, which could be used to teach complementary colors.

  20. Distribution of the P2X2 receptor and chemical coding in ileal enteric neurons of obese male mice (ob/ob)

    Science.gov (United States)

    Mizuno, Márcia Sanae; Crisma, Amanda Rabello; Borelli, Primavera; Schäfer, Bárbara Tavares; Silveira, Mariana Póvoa; Castelucci, Patricia

    2014-01-01

    AIM: To investigate the colocalization, density and profile of neuronal areas of enteric neurons in the ileum of male obese mice. METHODS: The small intestinal samples of male mice in an obese group (OG) (C57BL/6J ob/ob) and a control group (CG) (+/+) were used. The tissues were analyzed using a double immunostaining technique for immunoreactivity (ir) of the P2X2 receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT) and calretinin (Calr). Also, we investigated the density and profile of neuronal areas of the NOS-, ChAT- and Calr-ir neurons in the myenteric plexus. Myenteric neurons were labeled using an NADH-diaphorase histochemical staining method. RESULTS: The analysis demonstrated that the P2X2 receptor was expressed in the cytoplasm and in the nuclear and cytoplasmic membranes only in the CG. Neuronal density values (neuron/cm2) decreased 31% (CG: 6579 ± 837; OG: 4556 ± 407) and 16.5% (CG: 7796 ± 528; OG: 6513 ± 610) in the NOS-ir and calretinin-ir neurons in the OG, respectively (P < 0.05). Density of ChAT-ir (CG: 6200 ± 310; OG: 8125 ± 749) neurons significantly increased 31% in the OG (P < 0.05). Neuron size studies demonstrated that NOS, ChAT, and Calr-ir neurons did not differ significantly between the CG and OG groups. The examination of NADH-diaphorase-positive myenteric neurons revealed an overall similarity between the OG and CG. CONCLUSION: Obesity may exert its effects by promoting a decrease in P2X2 receptor expression and modifications in the density of the NOS-ir, ChAT-ir and CalR-ir myenteric neurons. PMID:25320527

  1. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  2. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Science.gov (United States)

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  3. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    Science.gov (United States)

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  4. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats.

    Science.gov (United States)

    Chu, Weihua; Yuan, Jichao; Huang, Lei; Xiang, Xin; Zhu, Haitao; Chen, Fei; Chen, Yanyan; Lin, Jiangkai; Feng, Hua

    2015-07-01

    Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.

  5. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    Science.gov (United States)

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed.

  6. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    Science.gov (United States)

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed. PMID:27900193

  7. Tetrodotoxin- and resiniferatoxin-induced changes in paracervical ganglion ChAT- and nNOS-IR neurons supplying the urinary bladder in female pigs.

    Science.gov (United States)

    Burliński, Piotr Józef; Gonkowski, Sławomir; Całka, Jarosław

    2011-12-01

    The aim of the present study was to establish the effect of intravesical administration of resiniferatoxin (RTX) and tetrodotoxin (TTX) on the chemical coding of paracervical ganglion (PCG) neurons supplying the urinary bladder in the pig. In order to identify the PCG neurons innervating the bladder, retrograde tracer Fast Blue was injected into the bladder wall prior to intravesical RTX or TTX administration. Consequent application of immunocytochemical methods revealed that in the control group 76.82% of Fast Blue positive PCG neurons contain nitric oxide synthetase (nNOS), and 66.92% contain acetylcholine transferase (ChAT). Intravesical infusion of RTX resulted in a reduction of the nNOS-IR neurons to 57.74% and ChAT-IR to 57.05%. Alternative administration of TTX induced an increase of nNOS-IR neurons up to 79.29% and a reduction of the ChAT-IR population down to 3.73% of the Fast Blue positive PCG cells. Our data show that both neurotoxins affect the chemical coding of PCG cells supplying the porcine urinary bladder, but the effects of their action are different. Moreover, these results shed light on the possible involvement of NO-ergic and cholinergic neurons in the mechanisms of therapeutic action exerted by RTX and TTX in curing the overactive bladder disorder.

  8. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction.

    Science.gov (United States)

    Kim, Mi Hye; Min, Ju-Sik; Lee, Joon Yeop; Chae, Unbin; Yang, Eun-Ju; Song, Kyung-Sik; Lee, Hyun-Shik; Lee, Hong Jun; Lee, Sang-Rae; Lee, Dong-Seok

    2017-04-27

    Glutamate-induced neurotoxicity is related to excessive oxidative stress accumulation and results in the increase of neuronal cell death. In addition, glutamate has been reported to lead to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.It is well known that Fraxinus rhynchophylla contains a significant level of oleuropein (Ole), which exerts various pharmacological effects. However, the mechanism of neuroprotective effects of Ole is still poorly defined. In this study, we aimed to investigate whether Ole prevents glutamate-induced toxicity in HT-22 hippocampal neuronal cells. The exposure of the glutamate treatment caused neuronal cell death through an alteration of Bax/Bcl-2 expression and translocation of mitochondrial apoptosis-inducing factor (AIF) to the cytoplasm of HT-22 cells. In addition, glutamate induced an increase in dephosphorylation of dynamin-related protein 1 (Drp1), mitochondrial fragmentation, and mitochondrial dysfunction. The pretreatment of Ole decreased Bax expression, increased Bcl-2 expression, and inhibited the translocation of mitochondrial AIF to the cytoplasm. Furthermore, Ole amended a glutamate-induced mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria, regulating the phosphorylation of Drp1 at amino acid residue serine 637. In conclusion, our results show that Ole has a preventive effect against glutamate-induced toxicity in HT-22 hippocampal neuronal cells. Therefore, these data imply that Ole may be an efficient approach for the treatment of neurodegenerative diseases.

  9. Qualitative content analysis of complementary topical therapies ...

    African Journals Online (AJOL)

    In order to alleviate diabetic foot problems, patients sometimes seek complementary therapies outside the professional context. This paper describes the use of complementary remedies as a topical treatment for diabetic foot ulcers among Jordanians. Qualitative content analysis was used to analyse written responses of 68 ...

  10. Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise.

    Science.gov (United States)

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2016-10-01

    To meet energy demands, dorsal root ganglion (DRG) neurons harbor high mitochondrial content, which renders them acutely vulnerable to disruptions of energy homeostasis. While neurons typically rely on mitochondrial energy production and have not been associated with metabolic plasticity, new studies reveal that meclizine, a drug, recently linked to modulations of energy metabolism, protects neurons from insults that disrupt energy homeostasis. We show that meclizine rapidly enhances glycolysis in DRG neurons and that glycolytic metabolism is indispensable for meclizine-exerted protection of DRG neurons from hypoxic stress. We report that supplementation of meclizine during hypoxic exposure prevents ATP depletion, preserves NADPH and glutathione stores, curbs reactive oxygen species (ROS) and attenuates mitochondrial clustering in DRG neurites. Using extracellular flux analyzer, we show that in cultured DRG neurons meclizine mitigates hypoxia-induced loss of mitochondrial respiratory capacity. Respiratory capacity is a measure of mitochondrial fitness and cell ability to meet fluctuating energy demands and therefore, a key determinant of cellular fate. While meclizine is an 'old' drug with long record of clinical use, its ability to modulate energy metabolism has been uncovered only recently. Our findings documenting neuroprotection by meclizine in a setting of hypoxic stress reveal previously unappreciated metabolic plasticity of DRG neurons as well as potential for pharmacological harnessing of the newly discovered metabolic plasticity for protection of peripheral nervous system under mitochondria compromising conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The water extract of Liuwei dihuang possesses multi-protective properties on neurons and muscle tissue against deficiency of survival motor neuron protein.

    Science.gov (United States)

    Tseng, Yu-Ting; Jong, Yuh-Jyh; Liang, Wei-Fang; Chang, Fang-Rong; Lo, Yi-Ching

    2017-10-15

    -LIM kinase (p-LIMK)/ phospho-cofilin (p-cofilin) pathway. Furthermore, in SMA-like mice, LWDH-WE improved muscle strength and body weight accompanied with up-regulation of SMN protein in spinal cord, brain, and gastrocnemius muscle tissues. The present study demonstrated that LWDH-WE protects motor neurons against SMN deficiency-induced neurodegeneration, and it also improves the muscle strength of SMA-like mice, suggesting the potential benefits of LWDH-WE as a complementary prescription for SMN deficiency-related diseases. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Amit Agarwal

    2014-08-01

    Full Text Available Neuregulin-1 (NRG1 gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an “optimal” level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.

  13. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    Science.gov (United States)

    Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H

    2014-08-21

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Cux1 and Cux2 regulate dendritic branching, spine morphology and synapses of the upper layer neurons of the cortex

    Science.gov (United States)

    Cubelos, Beatriz; Sebastián-Serrano, Alvaro; Beccari, Leonardo; Calcagnotto, Maria Elisa; Cisneros, Elsa; Kim, Seonhee; Dopazo, Ana; Alvarez-Dolado, Manuel; Redondo, Juan Miguel; Bovolenta, Paola; Walsh, Christopher A.; Nieto, Marta

    2010-01-01

    Summary Dendrite branching and spine formation determines the function of morphologically distinct and specialized neuronal subclasses. However, little is known about the programs instructing specific branching patterns in vertebrate neurons and whether such programs influence dendritic spines and synapses. Using knockout and knockdown studies combined with morphological, molecular and electrophysiological analysis we show that the homeobox Cux1 and Cux2 are intrinsic and complementary regulators of dendrite branching, spine development and synapse formation in layer II–III neurons of the cerebral cortex. Cux genes control the number and maturation of dendritic spines partly through direct regulation of the expression of Xlr3b and Xlr4b, chromatin remodeling genes previously implicated in cognitive defects. Accordingly, abnormal dendrites and synapses in Cux2−/− mice correlate with reduced synaptic function and defects in working memory. These demonstrate critical roles of Cux in dendritogenesis and highlight novel subclass-specific mechanisms of synapse regulation that contribute to the establishment of cognitive circuits. PMID:20510857

  15. Calcimimetic R568 inhibits tetrodotoxin-sensitive colonic electrolyte secretion and reduces c-fos expression in myenteric neurons.

    Science.gov (United States)

    Sun, Xiangrong; Tang, Lieqi; Winesett, Steven; Chang, Wenhan; Cheng, Sam Xianjun

    2018-02-01

    Calcium-sensing receptor (CaSR) is expressed on neurons of both submucosal and myenteric plexuses of the enteric nervous system (ENS) and the CaSR agonist R568 inhibited Cl - secretion in intestine. The purpose of this study was to localize the primary site of action of R568 in the ENS and to explore how CaSR regulates secretion through the ENS. Two preparations of rat proximal and distal colon were used. The full-thickness preparation contained both the submucosal and myenteric plexuses, whereas for the "stripped" preparation the myenteric plexus with the muscle layers was removed. Both preparations were mounted onto Ussing chambers and Cl - secretory responses were compared by measuring changes in short circuit current (I sc ). Two tissue-specific CaSR knockouts (i.e., neuron-specific vs. enterocyte-specific) were generated to compare the effect of R568 on expression of c-fos protein in myenteric neurons by immunocytochemistry. In full-thickness colons, tetrodotoxin (TTX) inhibited I sc , both in proximal and distal colons. A nearly identical inhibition was produced by R568. However, in stripped preparations, while the effect of TTX on I sc largely remained, the effect of R568 was nearly completely eliminated. In keeping with this, R568 reduced c-fos protein expression only in myenteric neurons of wild type mice and mutant mice that contained CaSR in neurons (i.e., villin Cre/Casr flox/flox mice), but not in myenteric neurons of nestin Cre/Casr flox/flox mice in which neuronal cell CaSR was eliminated. These results indicate that R568 exerts its anti-secretory effects predominantly via CaSR-mediated inhibition of neuronal activity in the myenteric plexus. Published by Elsevier Inc.

  16. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons.

    Science.gov (United States)

    Ali, Yousuf O; Bradley, Gillian; Lu, Hui-Chen

    2017-03-07

    Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer's, Huntington's, Parkinson's diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons.

  17. Complementary and Alternative Medicine

    Science.gov (United States)

    ... therapies are often lacking; therefore, the safety and effectiveness of many CAM therapies are uncertain. The National Center for Complementary and Alternative Medicine (NCCAM) is sponsoring research designed to fill this ...

  18. Exertional Heat Illness and Human Gene Expression

    National Research Council Canada - National Science Library

    Sonna, L.A; Sawka, M. N; Lilly, C. M

    2007-01-01

    Microarray analysis of gene expression at the level of RNA has generated new insights into the relationship between cellular responses to acute heat shock in vitro, exercise, and exertional heat illness...

  19. Exertional heat illness: emerging concepts and advances in prehospital care.

    Science.gov (United States)

    Pryor, Riana R; Roth, Ronald N; Suyama, Joe; Hostler, David

    2015-06-01

    Exertional heat illness is a classification of disease with clinical presentations that are not always diagnosed easily. Exertional heat stroke is a significant cause of death in competitive sports, and the increasing popularity of marathons races and ultra-endurance competitions will make treating many heat illnesses more common for Emergency Medical Services (EMS) providers. Although evidence is available primarily from case series and healthy volunteer studies, the consensus for treating exertional heat illness, coupled with altered mental status, is whole body rapid cooling. Cold or ice water immersion remains the most effective treatment to achieve this goal. External thermometry is unreliable in the context of heat stress and direct internal temperature measurement by rectal or esophageal probes must be used when diagnosing heat illness and during cooling. With rapid recognition and implementation of effective cooling, most patients suffering from exertional heat stroke will recover quickly and can be discharged home with instructions to rest and to avoid heat stress and exercise for a minimum of 48 hours; although, further research pertaining to return to activity is warranted.

  20. Coherence resonance in globally coupled neuronal networks with different neuron numbers

    International Nuclear Information System (INIS)

    Ning Wei-Lian; Zhang Zheng-Zhen; Zeng Shang-You; Luo Xiao-Shu; Hu Jin-Lin; Zeng Shao-Wen; Qiu Yi; Wu Hui-Si

    2012-01-01

    Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers. We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence. Furthermoremore, the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same, regardless of the neuron numbers in the neuronal networks. Therefore for all the neuronal networks with different neuron numbers in the brain, relative weak synaptic conductance (0.1 mS/cm 2 ) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding. (interdisciplinary physics and related areas of science and technology)

  1. Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity.

    Directory of Open Access Journals (Sweden)

    Jason A Pfister

    Full Text Available BACKGROUND: Growing evidence suggests that sirtuins, a family of seven distinct NAD-dependent enzymes, are involved in the regulation of neuronal survival. Indeed, SIRT1 has been reported to protect against neuronal death, while SIRT2 promotes neurodegeneration. The effect of SIRTs 3-7 on the regulation of neuronal survival, if any, has yet to be reported. METHODOLOGY AND PRINCIPAL FINDINGS: We examined the effect of expressing each of the seven SIRT proteins in healthy cerebellar granule neurons (CGNs or in neurons induced to die by low potassium (LK treatment. We report that SIRT1 protects neurons from LK-induced apoptosis, while SIRT2, SIRT3 and SIRT6 induce apoptosis in otherwise healthy neurons. SIRT5 is generally localized to both the nucleus and cytoplasm of CGNs and exerts a protective effect. In a subset of neurons, however, SIRT5 localizes to the mitochondria and in this case it promotes neuronal death. Interestingly, the protective effect of SIRT1 in neurons is not reduced by treatments with nicotinamide or sirtinol, two pharmacological inhibitors of SIRT1. Neuroprotection was also observed with two separate mutant forms of SIRT1, H363Y and H355A, both of which lack deacetylase activity. Furthermore, LK-induced neuronal death was not prevented by resveratrol, a pharmacological activator of SIRT1, at concentrations at which it activates SIRT1. We extended our analysis to HT-22 neuroblastoma cells which can be induced to die by homocysteic acid treatment. While the effects of most of the SIRT proteins were similar to that observed in CGNs, SIRT6 was modestly protective against homocysteic acid toxicity in HT-22 cells. SIRT5 was generally localized in the mitochondria of HT-22 cells and was apoptotic. CONCLUSIONS/SIGNIFICANCE: Overall, our study makes three contributions - (a it represents the first analysis of SIRT3-7 in the regulation of neuronal survival, (b it shows that neuroprotection by SIRT1 can be mediated by a novel, non

  2. Neuron-derived IgG protects neurons from complement-dependent cytotoxicity.

    Science.gov (United States)

    Zhang, Jie; Niu, Na; Li, Bingjie; McNutt, Michael A

    2013-12-01

    Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system.

  3. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain

    Science.gov (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.

    2010-01-01

    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  4. A neuron-astrocyte transistor-like model for neuromorphic dressed neurons.

    Science.gov (United States)

    Valenza, G; Pioggia, G; Armato, A; Ferro, M; Scilingo, E P; De Rossi, D

    2011-09-01

    Experimental evidences on the role of the synaptic glia as an active partner together with the bold synapse in neuronal signaling and dynamics of neural tissue strongly suggest to investigate on a more realistic neuron-glia model for better understanding human brain processing. Among the glial cells, the astrocytes play a crucial role in the tripartite synapsis, i.e. the dressed neuron. A well-known two-way astrocyte-neuron interaction can be found in the literature, completely revising the purely supportive role for the glia. The aim of this study is to provide a computationally efficient model for neuron-glia interaction. The neuron-glia interactions were simulated by implementing the Li-Rinzel model for an astrocyte and the Izhikevich model for a neuron. Assuming the dressed neuron dynamics similar to the nonlinear input-output characteristics of a bipolar junction transistor, we derived our computationally efficient model. This model may represent the fundamental computational unit for the development of real-time artificial neuron-glia networks opening new perspectives in pattern recognition systems and in brain neurophysiology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Inhibitory neurons modulate spontaneous signaling in cultured cortical neurons: density-dependent regulation of excitatory neuronal signaling

    International Nuclear Information System (INIS)

    Serra, Michael; Guaraldi, Mary; Shea, Thomas B

    2010-01-01

    Cortical neuronal activity depends on a balance between excitatory and inhibitory influences. Culturing of neurons on multi-electrode arrays (MEAs) has provided insight into the development and maintenance of neuronal networks. Herein, we seeded MEAs with murine embryonic cortical/hippocampal neurons at different densities ( 1000 cells mm −2 ) and monitored resultant spontaneous signaling. Sparsely seeded cultures displayed a large number of bipolar, rapid, high-amplitude individual signals with no apparent temporal regularity. By contrast, densely seeded cultures instead displayed clusters of signals at regular intervals. These patterns were observed even within thinner and thicker areas of the same culture. GABAergic neurons (25% of total neurons in our cultures) mediated the differential signal patterns observed above, since addition of the inhibitory antagonist bicuculline to dense cultures and hippocampal slice cultures induced the signal pattern characteristic of sparse cultures. Sparsely seeded cultures likely lacked sufficient inhibitory neurons to modulate excitatory activity. Differential seeding of MEAs can provide a unique model for analyses of pertubation in the interaction between excitatory and inhibitory function during aging and neuropathological conditions where dysregulation of GABAergic neurons is a significant component

  6. Impaired Player-Coach Perceptions of Exertion and Recovery During Match Congestion

    NARCIS (Netherlands)

    Doeven, Steven H.; Brink, Michel S.; Frencken, Wouter G. P.; Lemmink, Koen A. P. M.

    2017-01-01

    During intensified phases of competition, attunement of exertion and recovery is crucial to maintain performance. Although a mismatch between coach' and players' perceptions of training load is demonstrated, it is unknown if these discrepancies also exist for match exertion and recovery. PURPOSE:

  7. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    Sevoflurane improves gaseous exchange and exerts protective effects in ... Lung water content and cell count were estimated by standard protocols. ... It reversed LPS-induced oxidative stress, as demonstrated by increase in total antioxidant ...

  8. Neuroprotective Effect of Arctigenin via Upregulation of P-CREB in Mouse Primary Neurons and Human SH-SY5Y Neuroblastoma Cells

    Science.gov (United States)

    Zhang, Nan; Wen, Qingping; Ren, Lu; Liang, Wenbo; Xia, Yang; Zhang, Xiaodan; Zhao, Dan; Sun, Dong; Hu, Yv; Hao, Haiguang; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian; Kang, Tingguo

    2013-01-01

    Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB. PMID:24025424

  9. Neuroprotective Effect of Arctigenin via Upregulation of P-CREB in Mouse Primary Neurons and Human SH-SY5Y Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Tingguo Kang

    2013-09-01

    Full Text Available Arctigenin (Arc has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1 protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB.

  10. Healing and Preventing Pain: Complementary and Integrative Approaches

    Science.gov (United States)

    ... page please turn JavaScript on. Feature: Pain Management Healing and Preventing Pain, Complementary and Integrative Approaches Past ... Pain Management" Articles Putting A Pause In Pain / Healing and Preventing Pain Complementary and Integrative Approaches / Pain ...

  11. Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death.

    Science.gov (United States)

    Ha, Ji-Young; Kim, Ji-Soo; Kim, Seo-Eun; Son, Jin H

    2014-02-21

    Abnormal autophagy is frequently observed during dopaminergic neurodegeneration in Parkinson's disease (PD). However, it is not yet firmly established whether active autophagy is beneficial or pathogenic with respect to dopaminergic cell loss. Staurosporine, a common inducer of apoptosis, is often used in mechanistic studies of dopaminergic cell death. Here we report that staurosporine activates both autophagy and mitophagy simultaneously during dopaminergic neuronal cell death, and evaluate the physiological significance of these processes during cell death. First, staurosporine treatment resulted in induction of autophagy in more than 75% of apoptotic cells. Pharmacological inhibition of autophagy by bafilomycin A1 decreased significantly cell viability. In addition, staurosporine treatment resulted in activation of the PINK1-Parkin mitophagy pathway, of which deficit underlies some familial cases of PD, in the dopaminergic neuronal cell line, SN4741. The genetic blockade of this pathway by PINK1 null mutation also dramatically increased staurosporine-induced cell death. Taken together, our data suggest that staurosporine induces both mitophagy and autophagy, and that these pathways exert a significant neuroprotective effect, rather than a contribution to autophagic cell death. This model system may therefore be useful for elucidating the mechanisms underlying crosstalk between autophagy, mitophagy, and cell death in dopaminergic neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes.

    Science.gov (United States)

    Vauzour, David; Buonfiglio, Maria; Corona, Giulia; Chirafisi, Joselita; Vafeiadou, Katerina; Angeloni, Cristina; Hrelia, Silvana; Hrelia, Patrizia; Spencer, Jeremy P E

    2010-04-01

    The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinson's disease.

  13. Exertional Tolerance Assessments After Mild Traumatic Brain Injury: A Systematic Review.

    Science.gov (United States)

    Quatman-Yates, Catherine; Bailes, Anna; Constand, Sara; Sroka, Mary Claire; Nissen, Katharine; Kurowski, Brad; Hugentobler, Jason

    2018-05-01

    To review the literature to identify and summarize strategies for evaluating responses to physical exertion after mild traumatic brain injury (mTBI) for clinical and research purposes. PubMed and EBSCOhost through December 31, 2016. Two independent reviewers selected studies based on the following criteria: (1) inclusion of participants with mTBI/concussion, (2) use of a measurement of physiological or psychosomatic response to exertion, (3) a repeatable description of the exertion protocol was provided, (4) a sample of at least 10 participants with a mean age between 8 and 65 years, and (5) the article was in English. The search process yielded 2685 articles, of which 14 studies met the eligibility requirements. A quality assessment using a checklist was conducted for each study by 2 independent study team members and verified by a third team member. Data were extracted by one team member and verified by a second team member. A qualitative synthesis of the studies revealed that most protocols used a treadmill or cycle ergometer as the exercise modality. Protocol methods varied across studies including differences in initial intensity determination, progression parameters, and exertion duration. Common outcome measures were self-reported symptoms, heart rate, and blood pressure. The strongest evidence indicates that exertional assessments can provide important insight about mTBI recovery and should be administered using symptoms as a guide. Additional studies are needed to verify optimal modes and protocols for post-mTBI exertional assessments. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Complementary and Alternative Medicine (CAM): Expanding Horizons of Health Care

    Science.gov (United States)

    ... please turn Javascript on. The National Center for Complementary and Alternative Medicine (NCCAM) is this year celebrating 10 years of ... Photo: NCCAM This year, the National Center for Complementary and Alternative Medicine (NCCAM) celebrates its 10th anniversary. We explore complementary ...

  15. Neurons from the adult human dentate nucleus: neural networks in the neuron classification.

    Science.gov (United States)

    Grbatinić, Ivan; Marić, Dušica L; Milošević, Nebojša T

    2015-04-07

    Topological (central vs. border neuron type) and morphological classification of adult human dentate nucleus neurons according to their quantified histomorphological properties using neural networks on real and virtual neuron samples. In the real sample 53.1% and 14.1% of central and border neurons, respectively, are classified correctly with total of 32.8% of misclassified neurons. The most important result present 62.2% of misclassified neurons in border neurons group which is even greater than number of correctly classified neurons (37.8%) in that group, showing obvious failure of network to classify neurons correctly based on computational parameters used in our study. On the virtual sample 97.3% of misclassified neurons in border neurons group which is much greater than number of correctly classified neurons (2.7%) in that group, again confirms obvious failure of network to classify neurons correctly. Statistical analysis shows that there is no statistically significant difference in between central and border neurons for each measured parameter (p>0.05). Total of 96.74% neurons are morphologically classified correctly by neural networks and each one belongs to one of the four histomorphological types: (a) neurons with small soma and short dendrites, (b) neurons with small soma and long dendrites, (c) neuron with large soma and short dendrites, (d) neurons with large soma and long dendrites. Statistical analysis supports these results (pneurons can be classified in four neuron types according to their quantitative histomorphological properties. These neuron types consist of two neuron sets, small and large ones with respect to their perykarions with subtypes differing in dendrite length i.e. neurons with short vs. long dendrites. Besides confirmation of neuron classification on small and large ones, already shown in literature, we found two new subtypes i.e. neurons with small soma and long dendrites and with large soma and short dendrites. These neurons are

  16. Altered expression of IGF-I system in neurons of the inflamed spinal cord during acute experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Parvaneh Tafreshi, Azita; Talebi, Farideh; Ghorbani, Samira; Bernard, Claude; Noorbakhsh, Farshid

    2017-10-01

    There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE. © 2017 Wiley Periodicals, Inc.

  17. Use of complementary and alternative medicine by patients with arthritis.

    Science.gov (United States)

    Unsal, Ayla; Gözüm, Sebahat

    2010-04-01

    The aims of this study were to determine the prevalence of complementary and alternative medicine use in patients with arthritis, the types of complementary and alternative medicine used, pertinent socio-demographic factors associated with complementary and alternative medicine use and its perceived efficacy. Arthritis is a major health issue, and the use of complementary and alternative medicine among patients with arthritis is common. This is a descriptive cross-sectional study. Data were obtained from 250 patients with arthritis at the physiotherapy and immunology clinics Atatürk University Hospital in eastern Turkey between May-July 2005 using a questionnaire developed specifically for this study. The instrument included questions on socio-demographic information, disease specifics and complementary and alternative medicine usage. Seventy-six per cent of participants reported use of at least one form of complementary and alternative medicine in the previous year. Complementary and alternative medicine users and non-users were not significantly different in most socio-demographic characteristics including age, gender, marital status and education level with the exception of economic status. We categorised treatment into six complementary and alternative medicine categories: 62.6% of patients used thermal therapies; 41.5% used oral herbal therapies; 40.5% used hot therapies; 32.6% used externally applied (skin) therapies; 28.4% used massage and 12.6% used cold therapies. All forms of complementary and alternative medicine except thermal and oral herbal therapies were perceived as very effective by more than half of study participants. Complementary and alternative medicine therapy is widely used by patients with arthritis and has perceived beneficial effects. It is important for nurses and other health care professionals to be knowledgeable about the use of complementary and alternative medicine therapies when providing care to patients with arthritis because of

  18. Effects of Ranolazine on Astrocytes and Neurons in Primary Culture.

    Directory of Open Access Journals (Sweden)

    Martin Aldasoro

    Full Text Available Ranolazine (Rn is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10-7, 10-6 and 10-5 M. Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on pro-inflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents.

  19. Use of complementary and alternative medicines during the third trimester.

    Science.gov (United States)

    Pallivalapila, Abdul Rouf; Stewart, Derek; Shetty, Ashalatha; Pande, Binita; Singh, Rajvir; McLay, James S

    2015-01-01

    To estimate the prevalence, indications, and associated factors for complementary and alternative medicine use during the last trimester of pregnancy. A questionnaire survey was conducted of women with a live birth (N=700) admitted to the postnatal unit at the Royal Aberdeen Maternity Hospital, northeast Scotland. Outcome measures included: complementary and alternative medicine used; vitamins and minerals used; reasons for complementary and alternative medicine use; independent associated factors for use; views; and experiences. Descriptive and inferential statistical analysis was performed. The response rate was 79.6% of eligible women. Two thirds of respondents (61.4%) reported using complementary and alternative medicine, excluding vitamins and minerals, during the third trimester. Respondents reported using a total of 30 different complementary and alternative medicine modalities, of which oral herbal products were the most common (38% of respondents, 40 different products). The independent associated factors for complementary and alternative medicine use identified were: complementary and alternative medicine use before pregnancy (odds ratio [OR] 4.36, 95% confidence interval [CI] 2.39-7.95, Palternative medicine use by family or friends (OR 2.36, 95% CI 1.61-3.47, Palternative medicines were safer than prescribed medicines (P=.006), less likely to be associated with side effects (P≤.001), and could interfere with conventional medicines (P≤.001). Despite the majority of respondents, and notably users, being uncertain about their safety and effectiveness, complementary and alternative medicine modalities and complementary and alternative medicine products are widely used during the third trimester of pregnancy in this study population. Although prior use was the most significant independent associated factor, the role of family and friends, rather than health professionals, in the decision to use complementary and alternative medicine may be of concern

  20. Neuronal Migration and Neuronal Migration Disorder in Cerebral Cortex

    OpenAIRE

    SUN, Xue-Zhi; TAKAHASHI, Sentaro; GUI, Chun; ZHANG, Rui; KOGA, Kazuo; NOUYE, Minoru; MURATA, Yoshiharu

    2002-01-01

    Neuronal cell migration is one of the most significant features during cortical development. After final mitosis, neurons migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer, forming an "inside-out" gradient of maturation. Neuronal migration is guided by radial glial fibers and also needs proper receptors, ligands, and other unknown extracellular factors, requests local signaling (e.g. some emitted by the Cajal-Retz...

  1. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.

    Science.gov (United States)

    Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey

    2016-10-01

    In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.

  2. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  3. Amyloid Precursor Proteins Are Dynamically Trafficked and Processed During Neuronal Development

    Directory of Open Access Journals (Sweden)

    Jenna M. Ramaker

    2016-11-01

    Full Text Available Proteolytic processing of the Amyloid Precursor Protein (APP produces beta-amyloid (Aβ peptide fragments that accumulate in Alzheimer’s Disease (AD, but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane glycoproteins expressed by all higher organisms, including two mammalian orthologs (APLP1 and APLP2 that have complicated investigations into the specific activities of APP. By comparison, insects express only a single APP-related protein (APP-Like, or APPL that contains the same protein interaction domains identified in APP. However, unlike its mammalian orthologs, APPL is only expressed by neurons, greatly simplifying an analysis of its functions in vivo. Like APP, APPL is processed by secretases to generate a similar array of extracellular and intracellular cleavage fragments, as well as an Aβ-like fragment that can induce neurotoxic responses in the brain. Exploiting the complementary advantages of two insect models (Drosophila melanogaster and Manduca sexta, we have investigated the regulation of APPL trafficking and processing with respect to different aspects of neuronal development. By comparing the behavior of endogenously expressed APPL with fluorescently tagged versions of APPL and APP, we have shown that some full-length protein is consistently trafficked into the most motile regions of developing neurons both in vitro and in vivo. Concurrently, much of the holoprotein is rapidly processed into N- and C-terminal fragments that undergo bi-directional transport within distinct vesicle populations. Unexpectedly, we also discovered that APPL can be transiently sequestered into an amphisome-like compartment in developing neurons, while manipulations targeting APPL cleavage altered their motile behavior in cultured embryos. These data suggest that multiple mechanisms restrict the bioavailability of the holoprotein to regulate

  4. Complementary Coffee Cups

    Science.gov (United States)

    Banchoff, Thomas

    2006-01-01

    What may have been the birth of a new calculus problem took place when the author noticed that two coffee cups, one convex and one concave, fit nicely together, and he wondered which held more coffee. The fact that their volumes were about equal led to the topic of this article: complementary surfaces of revolution with equal volumes.

  5. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    mice, and exerted protective effects against acute LPS-induced lung injury. ... This is an Open Access article that uses a funding model which does not charge readers .... field microscope [20]. ... by Tukey's test were used for statistical analysis.

  6. Chronic exertional compartment syndrome with medial tibial stress syndrome in twins.

    Science.gov (United States)

    Banerjee, Purnajyoti; McLean, Christopher

    2011-06-14

    Chronic exertional compartment syndrome and medial tibial stress syndrome are uncommon conditions that affect long-distance runners or players involved in team sports that require extensive running. We report 2 cases of bilateral chronic exertional compartment syndrome, with medial tibial stress syndrome in identical twins diagnosed with the use of a Kodiag monitor (B. Braun Medical, Sheffield, United Kingdom) fulfilling the modified diagnostic criteria for chronic exertional compartment syndrome as described by Pedowitz et al, which includes: (1) pre-exercise compartment pressure level >15 mm Hg; (2) 1 minute post-exercise pressure >30 mm Hg; and (3) 5 minutes post-exercise pressure >20 mm Hg in the presence of clinical features. Both patients were treated with bilateral anterior fasciotomies through minimal incision and deep posterior fasciotomies with tibial periosteal stripping performed through longer anteromedial incisions under direct vision followed by intensive physiotherapy resulting in complete symptomatic recovery. The etiology of chronic exertional compartment syndrome is not fully understood, but it is postulated abnormal increases in intramuscular pressure during exercise impair local perfusion, causing ischemic muscle pain. No familial predisposition has been reported to date. However, some authors have found that no significant difference exists in the relative perfusion, in patients, diagnosed with chronic exertional compartment syndrome. Magnetic resonance images of affected compartments have indicated that the pain is not due to ischemia, but rather from a disproportionate oxygen supply versus demand. We believe this is the first report of chronic exertional compartment syndrome with medial tibial stress syndrome in twins, raising the question of whether there is a genetic predisposition to the causation of these conditions. Copyright 2011, SLACK Incorporated.

  7. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis.

    Science.gov (United States)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-07-18

    14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen-glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Design of organic complementary circuits and systems on foil

    CERN Document Server

    Abdinia, Sahel; Cantatore, Eugenio

    2015-01-01

    This book describes new approaches to fabricate complementary organic electronics, and focuses on the design of circuits and practical systems created using these manufacturing approaches. The authors describe two state-of-the-art, complementary organic technologies, characteristics and modeling of their transistors and their capability to implement circuits and systems on foil. Readers will benefit from the valuable overview of the challenges and opportunities that these extremely innovative technologies provide. ·         Demonstrates first circuits implemented using specific complementary organic technologies, including first printed analog to digital converter, first dynamic logic on foil and largest complementary organic circuit ·         Includes step-by-step design from single transistor level to complete systems on foil ·         Provides a platform for comparing state-of-the-art complementary organic technologies and for comparing these with other similar technologies, spec...

  9. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    Science.gov (United States)

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134

  10. Low concentrations of ketamine initiate dendritic atrophy of differentiated GABAergic neurons in culture

    International Nuclear Information System (INIS)

    Vutskits, Laszlo; Gascon, Eduardo; Potter, Gael; Tassonyi, Edomer; Kiss, Jozsef Z.

    2007-01-01

    Administration of subanesthetic concentrations of ketamine, a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) type of glutamate receptors, is a widely accepted therapeutic modality in perioperative and chronic pain management. Although extensive clinical use has demonstrated its safety, recent human histopathological observations as well as laboratory data suggest that ketamine can exert adverse effects on central nervous system neurons. To further investigate this issue, the present study was designed to evaluate the effects of ketamine on the survival and dendritic arbor architecture of differentiated γ-aminobutyric acidergic (GABAergic) interneurons in vitro. We show that short-term exposure of cultures to ketamine at concentrations of ≥20 μg/ml leads to a significant cell loss of differentiated cells and that non-cell death-inducing concentrations of ketamine (10 μg/ml) can still initiate long-term alterations of dendritic arbor in differentiated neurons, including dendritic retraction and branching point elimination. Most importantly, we also demonstrate that chronic (>24 h) administration of ketamine at concentrations as low as 0.01 μg/ml can interfere with the maintenance of dendritic arbor architecture. These results raise the possibility that chronic exposure to low, subanesthetic concentrations of ketamine, while not affecting cell survival, could still impair neuronal morphology and thus might lead to dysfunctions of neural networks

  11. Pulmonary antioxidants exert differential protective effects against ...

    Indian Academy of Sciences (India)

    Unknown

    PM collections from both urban and industrial sites caused 50% oxidative degradation of DNA in vitro at concentrations as low ... chemical analysis in order that progress can be made in ... One popular hypothesis is that PM exerts toxic effects.

  12. The initiation of complementary feeding among Qom indigenous people

    OpenAIRE

    Irene Olmedo, Sofía; Valeggia, Claudia

    2014-01-01

    As of six months of life, breastfeeding no longer covers an infant’s energy or micronutrient needs, so appropriate complementary feeding should be provided. The objective of this study was to assess the time and adequacy for introducing complementary feeding in a Qom/Toba population and analyze the sociocultural concepts of families regarding complementary feeding. Quantitative and qualitative data were collected by participant observation and semistructured surveys administered to mothers of...

  13. Complementary and alternative medicine use in children with thalassaemia.

    Science.gov (United States)

    Efe, Emine; Işler, Ayşegül; Sarvan, Süreyya; Başer, Hayriye; Yeşilipek, Akif

    2013-03-01

    The aims of this study were to: (1) determine the types of complementary and alternative medicine use among children with thalassaemia as reported by parents and (2) describe sociodemographic and medical factors associated with the use of such treatments in families residing in southern Turkey. Thalassaemia is one of the most common human genetic diseases. Despite the therapeutic efforts, patients will encounter a variety of physical and psychological problems. Therefore, the use of complementary and alternative medicines among children thalassaemia is becoming increasingly popular. This is a descriptive study of complementary and alternative medicine. This study was conducted in the Hematology Outpatient Clinic at Akdeniz University Hospital and in the Thalassemia Centre at Ministry of Health Antalya Education and Research Hospital, Antalya, Turkey, between January 2010-December 2010. Parents of 97 paediatric patients, among 125 parents who applied to the haematology outpatient clinic and thalassaemia centre between these dates, agreed to take part in the study with whom contact could be made were included. Data were collected by using a questionnaire. The proportion of parents who reported using one or more of the complementary and alternative medicine methods was 82·5%. Of these parents, 61·8% were using prayer/spiritual practice, 47·4% were using nutritional supplements and 35·1% were using animal materials. It was determined that a significant portion of the parents using complementary and alternative medicine use it to treat their children's health problems, they were informed about complementary and alternative medicine by their paediatricians and family elders, and they have discussed the use of complementary and alternative medicine with healthcare professionals. To sustain medical treatment and prognosis of thalassaemia, it is important for nurses to consult with their patients and parents regarding the use and potential risks of some complementary

  14. Have complementary therapies demonstrated effectiveness in rheumatoid arthritis?

    Science.gov (United States)

    Fernández-Llanio Comella, Nagore; Fernández Matilla, Meritxell; Castellano Cuesta, Juan Antonio

    2016-01-01

    In recent decades the treatment of rheumatoid arthritis (RA) has improved thanks to the use of highly effective drugs. However, patients usually require long term therapy, which is not free of side effects. Therefore RA patients often demand complementary medicine, they seek additional sources of relief and/or less side effects. In fact 30-60% of rheumatic patients use some form of complementary medicine. Therefore, from conventional medicine, if we want to optimally treat our patients facilitating communication with them we must know the most commonly used complementary medicines. The aim of this review is to assess, based on published scientific research, what complementary therapies commonly used by patients with RA are effective and safe. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  15. Pressure exerted by a vesicle on a surface

    International Nuclear Information System (INIS)

    Owczarek, A L; Prellberg, T

    2014-01-01

    Several recent works have considered the pressure exerted on a wall by a model polymer. We extend this consideration to vesicles attached to a wall, and hence include osmotic pressure. We do this by considering a two-dimensional directed model, namely that of area-weighted Dyck paths. Not surprisingly, the pressure exerted by the vesicle on the wall depends on the osmotic pressure inside, especially its sign. Here, we discuss the scaling of this pressure in the different regimes, paying particular attention to the crossover between positive and negative osmotic pressure. In our directed model, there exists an underlying Airy function scaling form, from which we extract the dependence of the bulk pressure on small osmotic pressures. (paper)

  16. Effects of DISC1 Polymorphisms on Resting-State Spontaneous Neuronal Activity in the Early-Stage of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Ningzhi Gou

    2018-05-01

    Full Text Available Background: Localized abnormalities in the synchrony of spontaneous neuronal activity, measured with regional homogeneity (ReHo, has been consistently reported in patients with schizophrenia (SCZ and their unaffected siblings. To date, little is known about the genetic influences affecting the spontaneous neuronal activity in SCZ. DISC1, a strong susceptible gene for SCZ, has been implicated in neuronal excitability and synaptic function possibly associated with regional spontaneous neuronal activity. This study aimed to examine the effects of DISC1 variations on the regional spontaneous neuronal activity in SCZ.Methods: Resting-state fMRI data were obtained from 28 SCZ patients and 21 healthy controls (HC for ReHo analysis. Six single nucleotide polymorphisms (SNPs of DISC1 gene were genotyped using the PCR and direct sequencing.Results: Significant diagnosis × genotype interactions were noted for three SNPs (rs821616, rs821617, and rs2738880. For rs821617, the interactions were localized to the precuneus, basal ganglia and pre-/post-central regions. Significant interactive effects were identified at the temporal and post-central gyri for rs821616 (Ser704Cys and the inferior temporal gyrus for rs2738880. Furthermore, post-hoc analysis revealed that the DISC1 variations on these SNPs exerted different influences on ReHo between SCZ patients and HC.Conclusion: To our knowledge this is the first study to unpick the influence of DISC1 variations on spontaneous neuronal activity in SCZ; Given the emerging evidence that ReHo is a stable inheritable phenotype for schizophrenia, our findings suggest the DISC1 variations are possibly an inheritable source for the altered ReHo in this disorder.

  17. A MSFD complementary approach for the assessment of pressures, knowledge and data gaps in Southern European Seas: The PERSEUS experience

    DEFF Research Database (Denmark)

    Crise, A.; Kaberi, H.; Ruiz, José Luis Martinez

    2015-01-01

    PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD......). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also...... independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional...

  18. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    Science.gov (United States)

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

  19. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons.

    Science.gov (United States)

    Kember, G C; Fenton, G A; Armour, J A; Kalyaniwalla, N

    2001-04-01

    Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance (ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any correlation between input and the output, the latter being the average firing (spiking) rate of the neuron. This lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for identifying "cause and effect" between such inputs and outputs. In this paper, the "competition between averages" model is used to determine what portion of a noisy, subthreshold input is responsible, on average, for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically relevant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average, and this amount is approximately independent of the firing rate. Hence, correlation measures are generally reduced as the firing rate is lowered even though neural control under this model is actually unaffected.

  20. An ultra-low-voltage electronic implementation of inertial neuron model with nonmonotonous Liao's activation function.

    Science.gov (United States)

    Kant, Nasir Ali; Dar, Mohamad Rafiq; Khanday, Farooq Ahmad

    2015-01-01

    The output of every neuron in neural network is specified by the employed activation function (AF) and therefore forms the heart of neural networks. As far as the design of artificial neural networks (ANNs) is concerned, hardware approach is preferred over software one because it promises the full utilization of the application potential of ANNs. Therefore, besides some arithmetic blocks, designing AF in hardware is the most important for designing ANN. While attempting to design the AF in hardware, the designs should be compatible with the modern Very Large Scale Integration (VLSI) design techniques. In this regard, the implemented designs should: only be in Metal Oxide Semiconductor (MOS) technology in order to be compatible with the digital designs, provide electronic tunability feature, and be able to operate at ultra-low voltage. Companding is one of the promising circuit design techniques for achieving these goals. In this paper, 0.5 V design of Liao's AF using sinh-domain technique is introduced. Furthermore, the function is tested by implementing inertial neuron model. The performance of the AF and inertial neuron model have been evaluated through simulation results, using the PSPICE software with the MOS transistor models provided by the 0.18-μm Taiwan Semiconductor Manufacturer Complementary Metal Oxide Semiconductor (TSM CMOS) process.

  1. [Study of neuron-protective effect and mechanism of neuregulin1β against cerebral ischemia reperfusion-induced injury in rats].

    Science.gov (United States)

    Ji, Y Q; Zhang, R; Teng, L; Li, H Y; Guo, Y L

    2017-07-18

    Objective: Thecurrent study is to explore the neuron-protective mechanism of neuregulin1β (NRG1β) in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) through inhibiting the c-Jun phosphorylation. Methods: After 24 h of MCAO/R (referring to Longa's method), neurobehavioral function was measured by modified neurological severity score (mNSS) test; the cerebral infarction volume was detected by triphenyltetrazolium chloride (TTC) staining; the blood brain barrier (BBB) permeability was measured by Evans Blue (EB); the neuron morphology of brain tissue was observed by Nissl stain; the ultra-structures of the neurons were observed by transmission electron microscopy (TEM); the apoptotic neurons were counted by in situ cell death detection kit colocalized with NeuN; the expressions of phospho-c-Jun was determined by immunofluorescent labeling and Western blot analysis. Results: Compared with the sham-operation rats, the rats receiving MCAO/R showed increased mNSS (9.7±1.2), cerebral infarction volume (41.4±3.0)%, permeability of BBB, deformation of neurons, ischemia-induced apoptosis (0.63±0.04), and enhanced expression of phospho-c-Jun protein (0.90±0.07) (all P <0.05). Our data indicated that NRG1β attenuated neurologic deficits (6.4±0.9), decreased the cerebral infarction volume (10.4±0.5), reduced EB extravasation (1.55±0.13) and the deformation of neurons, protected the ultra-structure of neurons, blocked ischemia-induced apoptosis (0.23±0.02), through down-regulated phospho-c-Jun expression (0.40±0.03) in MCAO/R rats ( P <0.05). Conclusion: NRG1β exerts neuron-protective effects against ischemia reperfusion-induced injury in rats through inhibiting the c-Jun phosphorylation.

  2. Ethical responsibilities of pharmacists when selling complementary medicines: a systematic review.

    Science.gov (United States)

    Salman Popattia, Amber; Winch, Sarah; La Caze, Adam

    2018-04-01

    The widespread sale of complementary medicines in community pharmacy raises important questions regarding the responsibilities of pharmacists when selling complementary medicines. This study reviews the academic literature that explores a pharmacist's responsibilities when selling complementary medicines. International Pharmaceutical Abstracts, Embase, PubMed, Cinahl, PsycINFO and Philosopher's index databases were searched for articles written in English and published between 1995 and 2017. Empirical studies discussing pharmacists' practices or perceptions, consumers' expectations and normative studies discussing ethical perspectives or proposing ethical frameworks related to pharmacists' responsibilities in selling complementary medicines were included in the review. Fifty-eight studies met the inclusion criteria. The majority of the studies discussing the responsibilities of pharmacists selling complementary medicines had an empirical focus. Pharmacists and consumers identified counselling and ensuring safe use of complementary medicines as the primary responsibilities of pharmacists. No formal ethical framework is explicitly employed to describe the responsibilities of pharmacists selling complementary medicines. To the degree any ethical framework is employed, a number of papers implicitly rely on principlism. The studies discussing the ethical perspectives of selling complementary medicines mainly describe the ethical conflict between a pharmacist's business and health professional role. No attempt is made to provide guidance on appropriate ways to resolve the conflict. There is a lack of explicit normative advice in the existing literature regarding the responsibilities of pharmacists selling complementary medicines. This review identifies the need to develop a detailed practice-specific ethical framework to guide pharmacists regarding their responsibilities when selling complementary medicines. © 2018 Royal Pharmaceutical Society.

  3. Does heavy physical exertion trigger myocardial infarction?

    DEFF Research Database (Denmark)

    Hallqvist, J; Möller, J; Ahlbom, A

    2000-01-01

    To study possible triggering of first events of acute myocardial infarction by heavy physical exertion, the authors conducted a case-crossover analysis (1993-1994) within a population-based case-referent study in Stockholm County, Sweden (the Stockholm Heart Epidemiology Program). Interviews were...

  4. Effects of fitness and self-confidence on time perception during exertion

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Full Text Available Aims: Human physical and psychological features influence perceptions of the environment during activity. If during exercise an individual over-estimates time, they may interpret this as spending longer than necessary under a potentially aversive state of exertion. This may in turn decrease one’s sense of exercise success and tendency to persevere with exercise. We tested if experimentally manipulating sense of exercise self-efficacy would affect time perception during standardised physical exertion. Method: Exercise Self-Efficacy (ESE of 18 -73 year olds (N=51 was measured before and after an exercise challenge of moderate intensity. Height, weight and body fat composition were measured before participants were randomly allocated to one of three groups. After a 4-minute treadmill fitness test, participants were presented with either bogus feedback about their performance (positive or negative or no feedback (control. Before and during exercise, participants estimated a prescribed 2-minute time interval. Ratings of perceived exertion were also measured periodically. Results: Feedback on performance had no significant effect on time perception, even when controlling for individual exertion level. Reported ESE was also unaffected by whether someone received positive, negative or no feedback. Age was again found to be significantly correlated with VO2max, r(51 = .62, p < .001, but in contrast to prior findings, estimates of general fitness such as VO2max, BMI and waist circumference were unrelated to changes in time perception due to exertion. Conclusions: These findings failed to support prior findings and anecdotal evidence suggesting that exertion might alter one’s perception of time. We also failed to find any support for effects on ESE when participants were given explicit performance feedback. Finally, participants’ physical characteristics appear to be unrelated to time perception whilst exercising at moderate intensity.

  5. Physical exercise at the workplace reduces perceived physical exertion during healthcare work

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Brandt, Mikkel

    2015-01-01

    BACKGROUND: High physical exertion during work is a risk factor for musculoskeletal pain and long-term sickness absence. Physical exertion (RPE) reflects the balance between physical work demands and physical capacity of the individual. Thus, increasing the physical capacity through physical......: 3.1 on a scale of 0 to 10, average WRPE: 3.6 on a scale of 0 to 10) from 18 departments at three participating hospitals. Participants were randomly allocated at the cluster level to 10 weeks of: (1) workplace physical exercise (WORK) performed in groups during working hours for 5×10 minutes per...... exercise may decrease physical exertion during work. This study investigates the effect of workplace-based versus home-based physical exercise on physical exertion during work (WRPE) among healthcare workers. METHODS: 200 female healthcare workers (age: 42.0, body mass index: 24.1, average pain intensity...

  6. Complementary structure for designer localized surface plasmons

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Youming; Zhang, Baile

    2015-11-01

    Magnetic localized surface plasmons (LSPs) supported on metallic structures corrugated by very long and curved grooves have been recently proposed and demonstrated on an extremely thin metallic spiral structure (MSS) in the microwave regime. However, the mode profile for the magnetic LSPs was demonstrated by measuring only the electric field, not the magnetic field. Here, based on Babinet's principle, we propose a Babinet-inverted, or complementary MSS whose electric/magnetic mode profiles match the magnetic/electric mode profiles of MSS. This complementarity of mode profiles allows mapping the magnetic field distribution of magnetic LSP mode profile on MSS by measuring the electric field distribution of the corresponding mode on complementary MSS. Experiment at microwave frequencies also demonstrate the use of complementary MSS in sensing refractive-index change in the environment.

  7. The initiation of complementary feeding among Qom indigenous people.

    Science.gov (United States)

    Olmedo, Sofia Irene; Valeggia, Claudia

    2014-06-01

    As of six months of life, breastfeeding no longer covers an infant's energy or micronutrient needs, so appropriate complementary feeding should be provided. The objective of this study was to assess the time and adequacy for introducing complementary feeding in a Qom/Toba population and analyze the sociocultural concepts of families regarding complementary feeding. Quantitative and qualitative data were collected by participant observation and semistructured surveys administered to mothers of 0-2 year old infants. Qom breastfeed their infants long term and on demand. Most infants have an adequate nutritional status and start complementary feeding at around 6 months old as per the local health center and international standards. However, mostly due to socioeconomic factors, foods chosen to complement breastfeeding have a relatively scarce nutritional value.

  8. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus

    Science.gov (United States)

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III. PMID:25386121

  9. BNN27, a 17-Spiroepoxy Steroid Derivative, Interacts With and Activates p75 Neurotrophin Receptor, Rescuing Cerebellar Granule Neurons from Apoptosis.

    Science.gov (United States)

    Pediaditakis, Iosif; Kourgiantaki, Alexandra; Prousis, Kyriakos C; Potamitis, Constantinos; Xanthopoulos, Kleanthis P; Zervou, Maria; Calogeropoulou, Theodora; Charalampopoulos, Ioannis; Gravanis, Achille

    2016-01-01

    Neurotrophin receptors mediate a plethora of signals affecting neuronal survival. The p75 pan-neurotrophin receptor controls neuronal cell fate after its selective activation by immature and mature isoforms of all neurotrophins. It also exerts pleiotropic effects interacting with a variety of ligands in different neuronal or non-neuronal cells. In the present study, we explored the biophysical and functional interactions of a blood-brain-barrier (BBB) permeable, C17-spiroepoxy steroid derivative, BNN27, with p75 NTR receptor. BNN27 was recently shown to bind to NGF high-affinity receptor, TrkA. We now tested the p75 NTR -mediated effects of BNN27 in mouse Cerebellar Granule Neurons (CGNs), expressing p75 NTR , but not TrkA receptors. Our findings show that BNN27 physically interacts with p75 NTR receptors in specific amino-residues of its extracellular domain, inducing the recruitment of p75 NTR receptor to its effector protein RIP2 and the simultaneous release of RhoGDI in primary neuronal cells. Activation of the p75 NTR receptor by BNN27 reverses serum deprivation-induced apoptosis of CGNs resulting in the decrease of the phosphorylation of pro-apoptotic JNK kinase and of the cleavage of Caspase-3, effects completely abolished in CGNs, isolated from p75 NTR null mice. In conclusion, BNN27 represents a lead molecule for the development of novel p75 NTR ligands, controlling specific p75 NTR -mediated signaling of neuronal cell fate, with potential applications in therapeutics of neurodegenerative diseases and brain trauma.

  10. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds.

    Science.gov (United States)

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-05-16

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  11. Heavy metals in locus ceruleus and motor neurons in motor neuron disease.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2013-12-12

    The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.

  12. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    Science.gov (United States)

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  13. GnRH Neuron Activity and Pituitary Response in Estradiol-Induced vs Proestrous Luteinizing Hormone Surges in Female Mice.

    Science.gov (United States)

    Silveira, Marina A; Burger, Laura L; DeFazio, R Anthony; Wagenmaker, Elizabeth R; Moenter, Suzanne M

    2017-02-01

    During the female reproductive cycle, estradiol exerts negative and positive feedback at both the central level to alter gonadotropin-releasing hormone (GnRH) release and at the pituitary to affect response to GnRH. Many studies of the neurobiologic mechanisms underlying estradiol feedback have been done on ovariectomized, estradiol-replaced (OVX+E) mice. In this model, GnRH neuron activity depends on estradiol and time of day, increasing in estradiol-treated mice in the late afternoon, coincident with a daily luteinizing hormone (LH) surge. Amplitude of this surge appears lower than in proestrous mice, perhaps because other ovarian factors are not replaced. We hypothesized GnRH neuron activity is greater during the proestrous-preovulatory surge than the estradiol-induced surge. GnRH neuron activity was monitored by extracellular recordings from fluorescently tagged GnRH neurons in brain slices in the late afternoon from diestrous, proestrous, and OVX+E mice. Mean GnRH neuron firing rate was low on diestrus; firing rate was similarly increased in proestrous and OVX+E mice. Bursts of action potentials have been associated with hormone release in neuroendocrine systems. Examination of the patterning of action potentials revealed a shift toward longer burst duration in proestrous mice, whereas intervals between spikes were shorter in OVX+E mice. LH response to an early afternoon injection of GnRH was greater in proestrous than diestrous or OVX+E mice. These observations suggest the lower LH surge amplitude observed in the OVX+E model is likely not attributable to altered mean GnRH neuron activity, but because of reduced pituitary sensitivity, subtle shifts in action potential pattern, and/or excitation-secretion coupling in GnRH neurons. Copyright © 2017 by the Endocrine Society.

  14. Imaging of intracranial neuronal and mixed neuronal-glial tumours

    International Nuclear Information System (INIS)

    Cui Shimin; Qin Jinxi; Zhang Leili; Liu Meili; Jin Song; Yan Shixin; Liu Li; Dai Weiying; Li Tao; Gao Man

    2001-01-01

    Objective: To investigate the characteristic clinical, imaging , and pathologic findings of intracranial neuronal and mixed neuronal-glial tumours. Methods: The imaging findings of surgery and pathobiology proved intracranial neuronal and mixed neuronal-glial tumours in 14 cases (7 male and 7 female, ranging in age from 6-56 years; mean age 33.8 years) were retrospectively analyzed. Results: Eight gangliogliomas were located in the frontal lobe (4 cases), temporal lobe (1 case), front- temporal lobe (2 cases), and pons (1 case). They appeared as iso-or low density on CT, iso-or low signal intensity on T 1 WI, and high signal intensity on T 2 WI on MR imaging. Two central neurocytomas were located in the supratentorial ventricles. Four desmoplastic gangliogliomas were seen as cystic masses, appearing as low signal intensity on T 1 WI and high signal intensity on T 2 WI. Conclusion: Intracranial neuronal and mixed neuronal-glial tumours had imaging characteristics. Combined with clinical history, it was possible to make a tendency preoperative diagnosis using CT or MR

  15. Mind-Body Medicine Practices in Complementary and Alternative Medicine

    Science.gov (United States)

    ... Visitor Information RePORT NIH Fact Sheets Home > Mind-Body Medicine Practices in Complementary and Alternative Medicine Small Text Medium Text Large Text Mind-Body Medicine Practices in Complementary and Alternative Medicine YESTERDAY ...

  16. Intrinsically active and pacemaker neurons in pluripotent stem cell-derived neuronal populations.

    Science.gov (United States)

    Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig

    2014-03-11

    Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks.

  17. Realization of a complementary medium using dielectric photonic crystals.

    Science.gov (United States)

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  18. IRSN-ANCCLI partnership. Work session on Complementary safety assessments - November 2011

    International Nuclear Information System (INIS)

    Lachaume, Jean-Luc; Lheureux, Yves; Sene, Monique; Sene, Raymond; Jorel, Martial; Lavarenne, Caroline; Rousseau, Jean-Marie; Rebour, Vincent; Baumont, David; Dupuy, Patricia

    2011-11-01

    After an overview by the ASN of complementary safety assessments and an assessment of 'post-Fukushima' inspections of basic nuclear installations, the contributions (Power Point presentations) of this seminar proposed: the opinion of the Gravelines CLI (local information commission) on the Gravelines complementary safety assessment report, an analysis and discussion by the GSIEN on reports of complementary assessment of safety of nuclear installations with respect to the Fukushima accident, an analysis by the IRSN of complementary safety assessments performed by operators, the IRSN approach to analyze complementary safety assessments, reports on installation conditions, external flooding and seismic hazard, 'meltdown prevention' aspects in the management of accidental situations in EDF reactors

  19. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    Science.gov (United States)

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  20. Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS.

    Science.gov (United States)

    Turlejski, Kris; Djavadian, Ruzanna

    2002-01-01

    In this chapter we provide an extensive review of 100 years of research on the stability of neurons in the mammalian brain, with special emphasis on humans. Although Cajal formulated the Neuronal Doctrine, he was wrong in his beliefs that adult neurogenesis did not occur and adult neurons are dying throughout life. These two beliefs became accepted "common knowledge" and have shaped much of neuroscience research and provided much of the basis for clinical treatment of age-related brain diseases. In this review, we consider adult neurogenesis from a historical and evolutionary perspective. It is concluded, that while adult neurogenesis is a factor in the dynamics of the dentate gyrus and olfactory bulb, it is probably not a major factor during the life-span in most brain areas. Likewise, the acceptance of neuronal death as an explanation for normal age-related senility is challenged with evidence collected over the last fifty years. Much of the problem in changing this common belief of dying neurons was the inadequacies of neuronal counting methods. In this review we discuss in detail implications of recent improvements in neuronal quantification. We conclude: First, age-related neuronal atrophy is the major factor in functional deterioration of existing neurons and could be slowed down, or even reversed by various pharmacological interventions. Second, in most cases neuronal degeneration during aging is a pathology that in principle may be avoided. Third, loss of myelin and of the white matter is more frequent and important than the limited neuronal death in normal aging.

  1. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics.

    Science.gov (United States)

    Hashish, Rami; Samarawickrame, Sachithra D; Baker, Lucinda; Salem, George J

    2016-06-01

    Barefoot, forefoot strike (FFS) running has recently risen in popularity. Relative to shod, rear-foot strike (RFS) running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS), and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact. Key pointsIn response to exertion, novice barefoot runners demonstrate fatigue to their soleus.In response to exertion, novice barefoot runners demonstrate a reduction in ankle energy absorptionIn response to exertion, novice barefoot runners demonstrate an increase in loading rate.

  2. Complementary and Integrative Therapies

    Science.gov (United States)

    ... include: • Acupressure and acupuncture • Aromatherapy • Art therapy and music therapy • Chiropractic medicine and massage • Guided imagery • Meditation and ... should I avoid? • Is this complementary therapy (name therapy) safe? Is there research showing it is safe? • Are there side effects ...

  3. 20 CFR 220.132 - Physical exertion requirements.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Physical exertion requirements. 220.132 Section 220.132 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT... of walking and standing is often necessary in carrying out job duties. Jobs are sedentary if walking...

  4. Hearing in action; auditory properties of neurones in the red nucleus of alert primates

    Directory of Open Access Journals (Sweden)

    Jonathan Murray Lovell

    2014-05-01

    Full Text Available The response of neurones in the Red Nucleus pars magnocellularis (RNm to both tone bursts and electrical stimulation were observed in three cynomolgus monkeys (Macaca fascicularis, in a series of studies primarily designed to characterise the influence of the dopaminergic ventral midbrain on auditory processing. Compared to its role in motor behaviour, little is known about the sensory response properties of neurons in the red nucleus; particularly those concerning the auditory modality. Sites in the RN were recognised by observing electrically evoked body movements characteristic for this deep brain structure. In this study we applied brief monopolar electrical stimulation to 118 deep brain sites at a maximum intensity of 200 µA, thus evoking minimal body movements. Auditory sensitivity of RN neurons was analysed more thoroughly at 15 sites, with the majority exhibiting broad tuning curves and phase locking up to 1.03 kHz. Since the RN appears to receive inputs from a very early stage of the ascending auditory system, our results suggest that sounds can modify the motor control exerted by this brain nucleus. At selected locations, we also tested for the presence of functional connections between the RN and the auditory cortex by inserting additional microelectrodes into the auditory cortex and investigating how action potentials and local field potentials were affected by electrical stimulation of the RN.

  5. Motivational incentives lead to a strong increase in lateral prefrontal activity after self-control exertion.

    Science.gov (United States)

    Luethi, Matthias S; Friese, Malte; Binder, Julia; Boesiger, Peter; Luechinger, Roger; Rasch, Björn

    2016-10-01

    Self-control is key to success in life. Initial acts of self-control temporarily impair subsequent self-control performance. Why such self-control failures occur is unclear, with prominent models postulating a loss of a limited resource vs a loss of motivation, respectively. Here, we used functional magnetic resonance imaging to identify the neural correlates of motivation-induced benefits on self-control. Participants initially exerted or did not exert self-control. In a subsequent Stroop task, participants performed worse after exerting self-control, but not if they were motivated to perform well by monetary incentives. On the neural level, having exerted self-control resulted in decreased activation in the left inferior frontal gyrus. Increasing motivation resulted in a particularly strong activation of this area specifically after exerting self-control. Thus, after self-control exertion participants showed more prefrontal neural activity without improving performance beyond baseline level. These findings suggest that impaired performance after self-control exertion may not exclusively be due to a loss of motivation. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  7. Interrogating the Spatiotemporal Landscape of Neuromodulatory GPCR Signaling by Real-Time Imaging of cAMP in Intact Neurons and Circuits

    Directory of Open Access Journals (Sweden)

    Brian S. Muntean

    2018-01-01

    Full Text Available Summary: Modulation of neuronal circuits is key to information processing in the brain. The majority of neuromodulators exert their effects by activating G-protein-coupled receptors (GPCRs that control the production of second messengers directly impacting cellular physiology. How numerous GPCRs integrate neuromodulatory inputs while accommodating diversity of incoming signals is poorly understood. In this study, we develop an in vivo tool and analytical suite for analyzing GPCR responses by monitoring the dynamics of a key second messenger, cyclic AMP (cAMP, with excellent quantitative and spatiotemporal resolution in various neurons. Using this imaging approach in combination with CRISPR/Cas9 editing and optogenetics, we interrogate neuromodulatory mechanisms of defined populations of neurons in an intact mesolimbic reward circuit and describe how individual inputs generate discrete second-messenger signatures in a cell- and receptor-specific fashion. This offers a resource for studying native neuronal GPCR signaling in real time. : Muntean et al. develop an in vivo reagent to study processing of neurotransmitter GPCR signals by monitoring real-time dynamics of cAMP responses. They demonstrate application of this approach, in combination with CRISPR/Cas9 gene editing and optogenetics, to interrogate the functional organization of a striatal circuit. Keywords: cAMP, GPCR, neuromodulation, dopamine, striatum, imaging, optogenetics

  8. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats.

    Science.gov (United States)

    Mucio-Ramírez, Samuel; Makeyev, Oleksandr

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats ( n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals ( p  = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses ( p  = 0.71) nor due to the delay after the last stimulation dose ( p  = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200  μ s, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  9. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Samuel Mucio-Ramírez

    2017-01-01

    Full Text Available Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats (n=36 due to the single dose or five doses (given every 24 hours of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals (p = 0.71. Moreover, it showed no statistically significant differences due to the number of stimulation doses (p = 0.71 nor due to the delay after the last stimulation dose (p = 0.96. Obtained results suggest that stimulation at current parameters (50 mA, 200 μs, 300 Hz, biphasic, charge-balanced pulses for 2 minutes does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  10. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Da-min [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Lu, Pei-Hua, E-mail: lphty1_1@163.com [Department of Medical Oncology, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Zhang, Ke; Wang, Xiang [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Sun, Min [Department of General Surgery, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Chen, Guo-Qian [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Wang, Qiong, E-mail: WangQiongprof1@126.com [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China)

    2015-02-13

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.

  11. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    International Nuclear Information System (INIS)

    Gu, Da-min; Lu, Pei-Hua; Zhang, Ke; Wang, Xiang; Sun, Min; Chen, Guo-Qian; Wang, Qiong

    2015-01-01

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R

  12. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Liu, Zhan; Huang, Yan; Cao, Bei-Bei; Qiu, Yi-Hua; Peng, Yu-Ping

    2017-12-01

    T helper (Th)17 cells, a subset of CD4 + T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP + )-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP + -treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.

  13. Role of neuronal activity in regulating the structure and function of auditory neurons

    International Nuclear Information System (INIS)

    Born, D.E.

    1986-01-01

    The role of afferent activity in maintaining neuronal structure and function was investigated in second order auditory neurons in nucleus magnocellularis (NM) of the chicken. The cochlea provides the major excitatory input to NM neurons via the eighth nerve. Removal of the cochlea causes dramatic changes in NM neurons. To determine if the elimination of neuronal activity is responsible for the changes in NM seen after cochlea removal, tetrodotoxin was used block action potentials in the cochlear ganglion cells. Tetrodotoxin injections into the perilymph reliably blocked neuronal activity in the cochlear nerve and NM. Far field recordings of sound-evoked potentials revealed that responses returned within 6 hours. Changes in amino acid incorporation in NM neurons were measured by giving intracardiac injections of 3 H-leucine and preparing tissue for autoradiographic demonstration of incorporated amino acid. Grain counts over individual neurons revealed that a single injection of tetrodotoxin produced a 40% decrease in grain density in ipsilateral NM neurons. It is concluded that neuronal activity plays an important contribution to the maintenance of the normal properties of NM neurons

  14. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    Science.gov (United States)

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  15. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors.

    Science.gov (United States)

    Borbély, Sándor; Jócsák, Gergely; Moldován, Kinga; Sedlák, Éva; Preininger, Éva; Boldizsár, Imre; Tóth, Attila; Atlason, Palmi T; Molnár, Elek; Világi, Ildikó

    2016-07-01

    Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Neuronal-glial trafficking

    International Nuclear Information System (INIS)

    Bachelard, H.S.

    2001-01-01

    Full text: The name 'glia' originates from the Greek word for glue, because astro glia (or astrocytes) were thought only to provide an anatomical framework for the electrically-excitable neurones. However, awareness that astrocytes perform vital roles in protecting the neurones, which they surround, emerged from evidence that they act as neuroprotective K + -sinks, and that they remove potentially toxic extracellular glutamate from the vicinity of the neurones. The astrocytes convert the glutamate to non-toxic glutamine which is returned to the neurones and used to replenish transmitter glutamate. This 'glutamate-glutamine cycle' (established in the 1960s by Berl and his colleagues) also contributes to protecting the neurones against a build-up of toxic ammonia. Glial cells also supply the neurones with components for free-radical scavenging glutathione. Recent studies have revealed that glial cells play a more positive interactive role in furnishing the neurones with fuels. Studies using radioactive 14 C, 13 C-MRS and 15 N-GCMS have revealed that glia produce alanine, lactate and proline for consumption by neurones, with increased formation of neurotransmitter glutamate. On neuronal activation the release of NH 4 + and glutamate from the neurones stimulates glucose uptake and glycolysis in the glia to produce more alanine, which can be regarded as an 'alanine-glutamate cycle' Use of 14 C-labelled precursors provided early evidence that neurotransmitter GABA may be partly derived from glial glutamine, and this has been confirmed recently in vivo by MRS isotopomer analysis of the GABA and glutamine labelled from 13 C-acetate. Relative rates of intermediary metabolism in glia and neurones can be calculated using a combination of [1- 13 C] glucose and [1,2- 13 C] acetate. When glutamate is released by neurones there is a net neuronal loss of TCA intermediates which have to be replenished. Part of this is derived from carboxylation of pyruvate, (pyruvate carboxylase

  17. VCE-003.2, a novel cannabigerol derivative, enhances neuronal progenitor cell survival and alleviates symptomatology in murine models of Huntington's disease.

    Science.gov (United States)

    Díaz-Alonso, Javier; Paraíso-Luna, Juan; Navarrete, Carmen; Del Río, Carmen; Cantarero, Irene; Palomares, Belén; Aguareles, José; Fernández-Ruiz, Javier; Bellido, María Luz; Pollastro, Federica; Appendino, Giovanni; Calzado, Marco A; Galve-Roperh, Ismael; Muñoz, Eduardo

    2016-07-19

    Cannabinoids have shown to exert neuroprotective actions in animal models by acting at different targets including canonical cannabinoid receptors and PPARγ. We previously showed that VCE-003, a cannabigerol (CBG) quinone derivative, is a novel neuroprotective and anti-inflammatory cannabinoid acting through PPARγ. We have now generated a non-thiophilic VCE-003 derivative named VCE-003.2 that preserves the ability to activate PPARγ and analyzed its neuroprotective activity. This compound exerted a prosurvival action in progenitor cells during neuronal differentiation, which was prevented by a PPARγ antagonist, without affecting neural progenitor cell proliferation. In addition, VCE-003.2 attenuated quinolinic acid (QA)-induced cell death and caspase-3 activation and also reduced mutant huntingtin aggregates in striatal cells. The neuroprotective profile of VCE-003.2 was analyzed using in vivo models of striatal neurodegeneration induced by QA and 3-nitropropionic acid (3NP) administration. VCE-003.2 prevented medium spiny DARPP32(+) neuronal loss in these Huntington's-like disease mice models improving motor deficits, reactive astrogliosis and microglial activation. In the 3NP model VCE-003.2 inhibited the upregulation of proinflammatory markers and improved antioxidant defenses in the brain. These data lead us to consider VCE-003.2 to have high potential for the treatment of Huntington's disease (HD) and other neurodegenerative diseases with neuroinflammatory traits.

  18. Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    Sheng-Feng eTsai

    2014-02-01

    Full Text Available Adolescence is a time of developmental changes and reorganization in the brain. It has been hypothesized that stress has a greater neurological impact on adolescents than on adults. However, scientific evidence in support of this hypothesis is still limited. We treated adolescent (4-week-old and adult (8-week-old rats with social instability stress for five weeks and compared the subsequent structural and functional changes to amygdala neurons. In the stress-free control condition, the adolescent group showed higher fear-potentiated startle responses, larger dendritic arborization, more proximal dendritic spine distribution and lower levels of truncated TrkB than the adult rats. Social instability stress exerted opposite effects on fear-potentiated startle responses in these two groups, i.e., the stress period appeared to hamper the performance in adolescents but improved it in adult rats. Furthermore, whilst the chronic social stress applied to adolescent rats reduced their dendritic field and spine density in basal and lateral amygdala neurons, the opposite stress effects on neuron morphology were observed in the adult rats. Moreover, stress in adolescence suppressed the amygdala expression of synaptic proteins, i.e., full-length TrkB and SNAP-25, whereas, in the adult rats, chronic stress enhanced full-length and truncated TrkB expressions in the amygdala. In summary, chronic social instability stress hinders amygdala neuron development in the adolescent brain, while mature neurons in the amygdala are capable of adapting to the stress. The stress induced age-dependent effects on the fear-potentiated memory may occur by altering the BDNF-TrkB signaling and neuroplasticity in the amygdala.

  19. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    Science.gov (United States)

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  20. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission.

    Science.gov (United States)

    Sengupta, Ayesha; Bocchio, Marco; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2017-02-15

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10-20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT 2A and 5-HT 1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT 1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders

  1. Energy-efficient neural information processing in individual neurons and neuronal networks.

    Science.gov (United States)

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment.

    Science.gov (United States)

    Zaretsky, Dmitry V; Kline, Hannah; Zaretskaia, Maria V; Brown, Mary Beth; Durant, Pamela J; Alves, Nathan J; Rusyniak, Daniel E

    2018-06-15

    Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

    Science.gov (United States)

    Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

    2016-12-01

    The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

  4. Self-complementary circular codes in coding theory.

    Science.gov (United States)

    Fimmel, Elena; Michel, Christian J; Starman, Martin; Strüngmann, Lutz

    2018-04-01

    Self-complementary circular codes are involved in pairing genetic processes. A maximal [Formula: see text] self-complementary circular code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 7(20):1-16 2017, J Theor Biol 380:156-177, 2015; Arquès and Michel in J Theor Biol 182:45-58 1996). In this paper, self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. (Philos Trans R Soc A 374:20150058, 2016). A directed graph [Formula: see text] associated with any code X mirrors the properties of the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size [Formula: see text] trinucleotides, in particular for maximal circular codes ([Formula: see text] trinucleotides). For codes of small-size [Formula: see text] trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecutive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, an important criterion for analyzing the X motifs in genes in the future.

  5. Cancer and Complementary Health Approaches

    Science.gov (United States)

    ... According to the 2007 National Health Interview Survey (NHIS), which included a comprehensive survey on the use ... their use of complementary health approaches. In the NHIS, survey respondents who had been diagnosed with cancer ...

  6. Complementary therapy use by women's health clinic clients.

    Science.gov (United States)

    Pettigrew, Amy C; King, Margaret O'Brien; McGee, Karen; Rudolph, Connie

    2004-01-01

    While it is known that more women than men use complementary and alternative therapies, it is important to look at women who are pregnant or possibly receiving hormonal therapy, as side effects and consequences of these therapies may have a significant effect on their health status. To assess women's knowledge, perceived effectiveness and use of 20 complementary and alternative therapies. Descriptive four-page questionnaire to obtain data on the use, reason for use, knowledge, perceived effectiveness, and sources of information of twenty complementary and alternative therapies. Women's Health Center at a large Midwestern hospital. A convenience sample of 250 women waiting to be seen by either a nurse midwife or obstetrician/gynecologist at an outpatient clinic. Sixty-nine percent of the participants used one or more complementary therapy. The most frequently used therapies included prayer, vitamins, massage, diet, and aromatherapy. The best predictor of use of each therapy was the participant's knowledge of the therapy. Participants generally rated the efficacy of the therapies higher than their knowledge level. Frequently cited sources of information were popular media and family. The least common information sources were nurse-midwives, drug stores, Internet, and other professional healthcare providers. Women in this setting use complementary therapies at a rate greater than the general population. The participants obtained a great deal of their information about the therapies from popular press, media, friends, and family members rather than from licensed healthcare providers.

  7. Real time relationship between individual finger force and grip exertion on distal phalanges in linear force following tasks.

    Science.gov (United States)

    Luo, Shi-Jian; Shu, Ge; Gong, Yan

    2018-05-01

    Individual finger force (FF) in a grip task is a vital concern in rehabilitation engineering and precise control of manipulators because disorders in any of the fingers will affect the stability or accuracy of the grip force (GF). To understand the functions of each finger in a dynamic grip exertion task, a GF following experiment with four individual fingers without thumb was designed. This study obtained four individual FFs from the distal phalanges with a cylindrical handle in dynamic GF following tasks. Ten healthy male subjects with similar hand sizes participated in the four-finger linear GF following tasks at different submaximal voluntary contraction (SMVC) levels. The total GF, individual FF, finger force contribution, and following error were subsequently calculated and analyzed. The statistics indicated the following: 1) the accuracy and stability of GF at low %MVC were significantly higher than those at high SMVC; 2) at low SMVC, the ability of the fingers to increase the GF was better than the ability to reduce it, but it was contrary at high SMVC; 3) when the target wave (TW) was changing, all four fingers strongly participated in the force exertion, but the participation of the little finger decreased significantly when TW remained stable; 4) the index finger and ring finger had a complementary relationship and played a vital role in the adjustment and control of GF. The middle finger and little finger had a minor influence on the force control and adjustment. In conclusion, each of the fingers had different functions in a GF following task. These findings can be used in the assessment of finger injury rehabilitation and for algorithms of precise control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  9. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  10. Ibuanyidanda (Complementary Reflection), Communalism and ...

    African Journals Online (AJOL)

    Fr. Prof. Asouzu

    Glossary of Igbo Terms and Phrases ihe ahụ na anya ... other words, it is in mutual dependence that the feeling of intimacy found among kindred ..... Complementary Reflection, Communalism and Theory Formulation in African Philosophy 25.

  11. Use of Complementary and Alternative Medicine for Work Related ...

    African Journals Online (AJOL)

    Conclusion: Complementary and alternative medicine therapies may improve quality of life, reduce work disruptions and enhance job satisfaction for dentists who suffer from work-related musculoskeletal disorders. It is important that dentists incorporate complementary and alternative medicine strategies into practice to ...

  12. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport

    Science.gov (United States)

    Freundt, Eric C.; Maynard, Nate; Clancy, Eileen K.; Roy, Shyamali; Bousset, Luc; Sourigues, Yannick; Covert, Markus; Melki, Ronald; Kirkegaard, Karla; Brahic, Michel

    2012-01-01

    Objective The lesions of Parkinson's disease spread through the brain in a characteristic pattern that corresponds to axonal projections. Previous observations suggest that misfolded α-synuclein could behave as a prion, moving from neuron to neuron and causing endogenous α-synuclein to misfold. Here, we characterized and quantified the axonal transport of α-synuclein fibrils and showed that fibrils could be transferred from axons to second-order neurons following anterograde transport. Methods We grew primary cortical mouse neurons in microfluidic devices to separate soma from axonal projections in fluidically isolated microenvironments. We used live-cell imaging and immunofluorescence to characterize the transport of fluorescent α-synuclein fibrils and their transfer to second-order neurons. Results Fibrillar α-synuclein was internalized by primary neurons and transported in axons with kinetics consistent with slow component-b of axonal transport (fast axonal transport with saltatory movement). Fibrillar α-synuclein was readily observed in the cell bodies of second-order neurons following anterograde axonal transport. Axon-to-soma transfer appeared not to require synaptic contacts. Interpretation These results support the hypothesis that the progression of Parkinson's disease can be caused by neuron-to-neuron spread of α-synuclein aggregates and that the anatomical pattern of progression of lesions between axonally connected areas results from the axonal transport of such aggregates. That the transfer did not appear to be transsynaptic gives hope that α-synuclein fibrils could be intercepted by drugs during the extra-cellular phase of their journey. PMID:23109146

  13. The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks.

    Science.gov (United States)

    Wilson, F A; Rolls, E T

    1993-01-01

    The function of the amygdala in behavioural responses to novel stimuli and its possible function in recognition memory were investigated by recording the responses of 659 amygdaloid neurons in monkeys performing recognition memory and visual discrimination tasks. The aim was to determine the contribution of the amygdala in the encoding of familiarity and therefore its role in supporting memory-related neuronal mechanisms in the basal forebrain. The responses of three groups of neurons reflected different forms of memory. One group (n = 10) responded maximally to novel stimuli and significantly less so to the same stimuli when they were familiar. The calculated memory spans of these neurons were in the range of 2-10 intervening trials, and this short-term retention of information may reflect the operation of a neural mechanism encoding memory for the recency of stimulus presentation. Two other groups responded to the sight of particular categories of familiar stimuli: to foods (n = 6) or to faces (n = 10). The responses of some of these stimulus-selective neurons declined with repeated presentations of foods (3/4 tests) and faces (2/6 tests). The activity of these latter two groups of neurons may be involved in behavioural responses to familiar visual stimuli, particularly when such stimuli have affective or motivational significance. We conclude that the neurophysiological data provide evidence of amygdaloid mechanisms for the recognition of recently seen visual stimuli. However, these amygdaloid mechanisms do not appear to be sufficient to support the performance of long-term recognition memory tasks without additional and complementary functions carried out by other ventromedial temporal, prefrontal and diencephalic structures which also project to the basal forebrain.

  14. Children and Complementary Health Approaches

    Science.gov (United States)

    ... review and meta-analysis. Annals of Allergy, Asthma & Immunology . 2014;112(6):503–510. Ethical Conduct of ... Print this page Health Topics A–Z Related Topics Complementary, Alternative, or Integrative Health: What’s In a ...

  15. ERF/ERFC, Calculation of Error Function, Complementary Error Function, Probability Integrals

    International Nuclear Information System (INIS)

    Vogel, J.E.

    1983-01-01

    1 - Description of problem or function: ERF and ERFC are used to compute values of the error function and complementary error function for any real number. They may be used to compute other related functions such as the normal probability integrals. 4. Method of solution: The error function and complementary error function are approximated by rational functions. Three such rational approximations are used depending on whether - x .GE.4.0. In the first region the error function is computed directly and the complementary error function is computed via the identity erfc(x)=1.0-erf(x). In the other two regions the complementary error function is computed directly and the error function is computed from the identity erf(x)=1.0-erfc(x). The error function and complementary error function are real-valued functions of any real argument. The range of the error function is (-1,1). The range of the complementary error function is (0,2). 5. Restrictions on the complexity of the problem: The user is cautioned against using ERF to compute the complementary error function by using the identity erfc(x)=1.0-erf(x). This subtraction may cause partial or total loss of significance for certain values of x

  16. [Alternative and complementary medicine from the primary care physician's viewpoint].

    Science.gov (United States)

    Soós, Sándor Árpád; Eőry, Ajándék; Eőry, Ajándok; Harsányi, László; Kalabay, László

    2015-07-12

    The patients initiate the use of complementary and alternative medicine and this often remains hidden from their primary care physician. To explore general practitioners' knowledge and attitude towards complementary and alternative medicine, and study the need and appropriate forms of education, as well as ask their opinion on integration of alternative medicine into mainstream medicine. A voluntary anonymous questionnaire was used on two conferences for general practitioners organized by the Family Medicine Department of Semmelweis University. Complementary and alternative medicine was defined by the definition of the Hungarian Academy of Sciences and certified modalities were all listed. 194 general practitioners answered the questionnaire (39.8% response rate). 14% of the responders had licence in at least one of the complementary and alternative therapies, 45% used complementary and alternative therapy in their family in case of illness. It was the opinion of the majority (91.8%) that it was necessary to be familiar with every method used by their patients, however, 82.5% claimed not to have enough knowledge in complementary medicine. Graduate and postgraduate education in the field was thought to be necessary by 86% of the responders; increased odds for commitment in personal education was found among female general practitioners, less than 20 years professional experience and personal experience of alternative medicine. These data suggest that general practitioners would like to know more about complementary and alternative medicine modalities used by their patients. They consider education of medical professionals necessary and a special group is willing to undergo further education in the field.

  17. Adoption of Enriched Local Complementary Food in Osun State ...

    African Journals Online (AJOL)

    Locally processed complementary foods, appropriately enriched can complement breast milk and traditional foods during the nutritionally vulnerable periods of a child life. The study therefore examines the adoption of enriched local complementary foods in Osun State Nigeria. Structured interview schedule was used to ...

  18. From neurons to epidemics: How trophic coherence affects spreading processes

    Science.gov (United States)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  19. Patient Use of Complementary and Alternative Medicines in an Outpatient Pediatric Neurology Clinic.

    Science.gov (United States)

    Kenney, Daniel; Jenkins, Sarah; Youssef, Paul; Kotagal, Suresh

    2016-05-01

    This article describes the use of complementary and alternative medicines in an outpatient pediatric neurology clinic, and assesses family attitudes toward the efficacy of complementary and alternative medicines versus prescription medications. Complementary and alternative medicine is an important element of the modern health care landscape. There is limited information about whether, and to what extent, families perceive its utility in childhood neurological disorders. Surveys were distributed to 500 consecutive patients at a child neurology clinic in Rochester, Minnesota. Questions pertained to the child's diagnoses, use of complementary and alternative medicines, and the specific complementary and alternative medicine modalities that were used. Opinions were also gathered on the perceived efficacy of complementary and alternative medicines and prescription medications. Data were compared using χ(2) or Fisher exact tests as indicated. A total of 484 surveys were returned, of which 327 were usable. Only 17.4% admitted to use of complementary and alternative medicine to treat neurological problems. However, in follow-up questioning, actually 41.6% of patients recognized that they were using one or more types of complementary and alternative medicines. Disorders associated with a statistically significant increased prevalence of complementary and alternative medicine use were headache (50.8% with headache used complementary and alternative medicine versus 35.7% without headache; P = 0.008, Fisher exact test), chronic fatigue (63.2% vs 38.8%; P = 0.005, Fisher exact test), and sleep disorders (77.1% vs 37.3%; P complementary and alternative medicine. Only 38.5% of these recognize themselves as using complementary and alternative medicine, underlining the need to inquire in-depth about its use. Patients who are less satisfied with their prescription medications are more likely to use complementary and alternative medicine, perhaps reflecting the less tractable

  20. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1-7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils.

    Science.gov (United States)

    Mizuno, Dai; Konoha-Mizuno, Keiko; Mori, Miwako; Yamazaki, Kentaro; Haneda, Toshihiro; Koyama, Hironari; Kawahara, Masahiro

    2015-01-01

    Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer's disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1-7 cells). In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2), aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen). Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils.

  1. Exercise, physical activity, and exertion over the business cycle.

    Science.gov (United States)

    Colman, Gregory; Dave, Dhaval

    2013-09-01

    Shifts in time and income constraints over economic expansions and contractions would be expected to affect individuals' behaviors. We explore the impact of the business cycle on individuals' exercise, time use, and total physical exertion, utilizing information on 112,000 individual records from the 2003-2010 American Time Use Surveys. In doing so, we test a key causal link that has been hypothesized in the relation between unemployment and health, but not heretofore assessed. Using more precise measures of exercise (and other activities) than previous studies, we find that as work-time decreases during a recession, recreational exercise, TV-watching, sleeping, childcare, and housework increase. This, however, does not compensate for the decrease in work-related exertion due to job-loss, and total physical exertion declines. These effects are strongest among low-educated men, which is validating given that employment in the Great Recession has declined most within manufacturing, mining, and construction. We also find evidence of intra-household spillover effects, wherein individuals respond to shifts in spousal employment conditional on their own labor supply. The decrease in total physical activity during recessions is especially problematic for vulnerable populations concentrated in boom-and-bust industries, and may have longer-term effects on obesity and related health outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases.

    Science.gov (United States)

    Costa, Marta; Manton, James D; Ostrovsky, Aaron D; Prohaska, Steffen; Jefferis, Gregory S X E

    2016-07-20

    Neural circuit mapping is generating datasets of tens of thousands of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches. We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1,052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types, including searching neurons against transgene expression patterns. Finally, we show that NBLAST is effective with data from other invertebrates and zebrafish. VIDEO ABSTRACT. Copyright © 2016 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  3. Complementary and alternative medicine use in Iranian patients with diabetes mellitus.

    Science.gov (United States)

    Hashempur, Mohammad Hashem; Heydari, Mojtaba; Mosavat, Seyed Hamdollah; Heydari, Seyyed Taghi; Shams, Mesbah

    2015-09-01

    There is increasing interest in complementary and alternative medicine generally, and especially by those affected by chronic diseases, such as diabetes mellitus. We aimed to determine the prevalence and pattern of complementary and alternative medicine use among patients suffering from diabetes mellitus in Shiraz, southern Iran. Another objective was to explore associated factors for use of complementary and alternative medicine among patients with diabetes mellitus. A 19-item semi-structured questionnaire (open- and close-ended) was administered to 239 patients with diabetes mellitus in this cross-sectional study. It was carried out in two outpatient diabetes clinics affiliated with the Shiraz University of Medical Sciences, Shiraz, Iran. One hundred and eighty patients (75.3%) used at least one type of complementary and alternative medicine in the last year prior to the interview. Patients with diabetes mellitus who were living in a large family (≥5 members), not taking insulin, and believed that complementary and alternative medicine have synergistic effects with conventional medicine, were independently and significantly (P values: 0.02, 0.04, and 0.01, respectively) more likely to use complementary and alternative medicine. Most of the users (97.7%) reported use of herbal preparations, and 89.4% of users did not change their medication, neither in medication schedule nor its dosage. The use of complementary and alternative medicine, especially herbal remedies, is popular among diabetes patients in Shiraz, Iran. This use is associated with patients' family size, type of conventional medications and their view about concomitant use of complementary and conventional medicine.

  4. Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome

    DEFF Research Database (Denmark)

    Dahl, Morten; Hansen, Philip; Stål, Per

    2011-01-01

    Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown.......Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown....

  5. A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons*

    Science.gov (United States)

    Navarro, Gemma; Aguinaga, David; Angelats, Edgar; Medrano, Mireia; Moreno, Estefanía; Mallol, Josefa; Cortés, Antonio; Canela, Enric I.; Casadó, Vicent; McCormick, Peter J.; Lluís, Carme; Ferré, Sergi

    2016-01-01

    The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling. PMID:27129257

  6. Transgenic tools to characterize neuronal properties of discrete populations of zebrafish neurons.

    Science.gov (United States)

    Satou, Chie; Kimura, Yukiko; Hirata, Hiromi; Suster, Maximiliano L; Kawakami, Koichi; Higashijima, Shin-ichi

    2013-09-01

    The developing nervous system consists of a variety of cell types. Transgenic animals expressing reporter genes in specific classes of neuronal cells are powerful tools for the study of neuronal network formation. We generated a wide variety of transgenic zebrafish that expressed reporter genes in specific classes of neurons or neuronal progenitors. These include lines in which neurons of specific neurotransmitter phenotypes expressed fluorescent proteins or Gal4, and lines in which specific subsets of the dorsal progenitor domain in the spinal cord expressed fluorescent proteins. Using these, we examined domain organization in the developing dorsal spinal cord, and found that there are six progenitor domains in zebrafish, which is similar to the domain organization in mice. We also systematically characterized neurotransmitter properties of the neurons that are produced from each domain. Given that reporter gene expressions occurs in a wide area of the nervous system in the lines generated, these transgenic fish should serve as powerful tools for the investigation of not only the neurons in the dorsal spinal cord but also neuronal structures and functions in many other regions of the nervous system.

  7. Industrial Evolution Through Complementary Convergence

    DEFF Research Database (Denmark)

    Frøslev Christensen, Jens

    2011-01-01

    The article addresses the dynamics through which product markets become derailed from early product life cycle (PLC)-tracks and engaged in complementary convergence with other product markets or industries. We compare and contrast the theories that can explain, respectively, the PLC...

  8. BASED COMPLEMENTARY FOODS USING GERMINAT

    African Journals Online (AJOL)

    user

    2010-08-08

    Aug 8, 2010 ... Malnutrition affects physical growth, morbidity, mortality, cognitive development, reproduction, and ... malnutrition. Development of complementary foods is guided by nutritional value, acceptability, availability and affordability of raw materials, and simplicity of food processing ... (Memmert, Germany) at 55. 0.

  9. Effects of various nitric oxide synthase inhibitors on AlCl3-induced neuronal injury in rats

    Directory of Open Access Journals (Sweden)

    IVANA STEVANOVIĆ

    2009-05-01

    Full Text Available The present study was aimed at determining the effectiveness of nitric oxide synthase (NOS inhibitors: N-nitro-L-arginine methyl ester, 7-nitroindazole and aminoguanidine in modulating the toxicity of AlCl3 on superoxide production and the malondialdehyde concentration of Wistar rats. The animals were sacrificed 10 min and 3 days after the treatment and the forebrain cortex was removed. The results show that AlCl3 exposure promotes oxidative stress in different neural areas. The biochemical changes observed in the neuronal tissues show that aluminum acts as pro-oxidant, while NOS inhibitors exert an anti-oxidant action in AlCl3-treated animals.

  10. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    Science.gov (United States)

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  11. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis

    Directory of Open Access Journals (Sweden)

    Vincenzo De Cicco

    2018-01-01

    Full Text Available It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS which includes the noradrenergic locus coeruleus (LC neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1 affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2 are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.

  12. Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K+ Channel Dysfunction in DRG Neurons.

    Science.gov (United States)

    Zemel, Benjamin M; Muqeem, Tanziyah; Brown, Eric V; Goulão, Miguel; Urban, Mark W; Tymanskyj, Stephen R; Lepore, Angelo C; Covarrubias, Manuel

    2017-08-23

    received significant attention, recent studies have identified peripheral nerve hyperexcitability as a driver of persistent pain signaling after SCI. However, the ion channels and signaling molecules responsible for this change in primary sensory neuron excitability are still not well defined. To address this problem, this study used complementary electrophysiological and molecular methods to determine how Kv3.4, a voltage-gated K + channel robustly expressed in dorsal root ganglion neurons, becomes dysfunctional upon calcineurin (CaN) inhibition. The results strongly suggest that CaN inhibition underlies SCI-induced dysfunction of Kv3.4 and the associated excitability changes through upregulation of the native regulator of CaN 1 (RCAN1). Copyright © 2017 the authors 0270-6474/17/378257-17$15.00/0.

  13. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module.

    Science.gov (United States)

    Roostalu, Johanna; Cade, Nicholas I; Surrey, Thomas

    2015-11-01

    Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.

  14. Discovering Complementary Colors from the Perspective of STEAM Education

    Science.gov (United States)

    Karabey, Burak; Koyunkaya, Melike Yigit; Enginoglu, Turan; Yurumezoglu, Kemal

    2018-01-01

    This study explored the theory and applications of complementary colors using a technology-based activity designed from the perspective of STEAM education. Complementary colors and their areas of use were examined from the perspective of physics, mathematics and art, respectively. The study, which benefits from technology, makes the theory of…

  15. Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    KAUST Repository

    Li, Zhong’ an; Mukhopadhyay, Sukrit; Jang, Sei-Hum; Bredas, Jean-Luc; Jen, Alex K.-Y.

    2015-01-01

    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

  16. Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    KAUST Repository

    Li, Zhong’an

    2015-09-09

    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

  17. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro.

    Science.gov (United States)

    Bardy, Cedric; van den Hurk, Mark; Eames, Tameji; Marchand, Cynthia; Hernandez, Ruben V; Kellogg, Mariko; Gorris, Mark; Galet, Ben; Palomares, Vanessa; Brown, Joshua; Bang, Anne G; Mertens, Jerome; Böhnke, Lena; Boyer, Leah; Simon, Suzanne; Gage, Fred H

    2015-05-19

    Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro.

  18. NEURON and Python.

    Science.gov (United States)

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  19. Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction

    Science.gov (United States)

    Moorman, David E.; Aston-Jones, Gary

    2015-01-01

    The prefrontal cortex (PFC) guides execution and inhibition of behavior based on contextual demands. In rodents, the dorsal/prelimbic (PL) medial PFC (mPFC) is frequently considered essential for execution of goal-directed behavior (“go”) whereas ventral/infralimbic (IL) mPFC is thought to control behavioral suppression (“stop”). This dichotomy is commonly seen for fear-related behaviors, and for some behaviors related to cocaine seeking. Overall, however, data for reward-directed behaviors are ambiguous, and few recordings of PL/IL activity have been performed to demonstrate single-neuron correlates. We recorded neuronal activity in PL and IL during discriminative stimulus driven sucrose seeking followed by multiple days of extinction of the reward-predicting stimulus. Contrary to a generalized PL-go/IL-stop hypothesis, we found cue-evoked activity in PL and IL during reward seeking and extinction. Upon analyzing this activity based on resultant behavior (lever press or withhold), we found that neurons in both areas encoded contextually appropriate behavioral initiation (during reward seeking) and withholding (during extinction), where context was dictated by response–outcome contingencies. Our results demonstrate that PL and IL signal contextual information for regulation of behavior, irrespective of whether that involves initiation or suppression of behavioral responses, rather than topographically encoding go vs. stop behaviors. The use of context to optimize behavior likely plays an important role in maximizing utility-promoting exertion of activity when behaviors are rewarded and conservation of energy when not. PMID:26170333

  20. Young children feeding and Zinc levels of complementary foods in ...

    African Journals Online (AJOL)

    Young children feeding and Zinc levels of complementary foods in Western ... localities helped to identify the recipes used for preparation of complementary foods. ... foods given to them, the cooking methods and the frequency of consumption.

  1. BigNeuron: Large-scale 3D Neuron Reconstruction from Optical Microscopy Images

    OpenAIRE

    Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane; Hill, Sean; Spruston, Nelson; Meijering, Erik; Ascoli, Giorgio A.

    2015-01-01

    textabstractUnderstanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. Understanding the structure of single neurons is critical for unde...

  2. 77 FR 52750 - National Center for Complementary & Alternative Medicine; Notice of Meeting

    Science.gov (United States)

    2012-08-30

    ... Complementary & Alternative Medicine; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Council for Complementary and Alternative Medicine. The meeting will be open to the public as indicated... privacy. Name of Committee: National Advisory Council for Complementary and Alternative Medicine. Date...

  3. 76 FR 79202 - National Center for Complementary & Alternative Medicine; Notice of Meeting

    Science.gov (United States)

    2011-12-21

    ... Complementary & Alternative Medicine; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Council for Complementary and Alternative Medicine. The meeting will be open to the public as indicated... privacy. Name of Committee: National Advisory Council for Complementary and Alternative Medicine. Date...

  4. 77 FR 73036 - National Center for Complementary & Alternative Medicine; Notice of Meeting

    Science.gov (United States)

    2012-12-07

    ... Complementary & Alternative Medicine; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Council for Complementary and Alternative Medicine. The meeting will be open to the public as indicated... privacy. Name of Committee: National Advisory Council for Complementary and Alternative Medicine. Date...

  5. Emerging issues in complementary feeding

    DEFF Research Database (Denmark)

    Michaelsen, Kim F.; Grummer-Strawn, Laurence; Bégin, France

    2017-01-01

    the complementary feeding period is summarized. The increased availability of sugar-containing beverages and unhealthy snack foods and its negative effect on young child's diet is described. Negative effects of nonresponsive feeding and force feeding are also discussed, although few scientific studies have...

  6. High Cholesterol and Complementary Health Practices: What the Science Says

    Science.gov (United States)

    ... professionals High Cholesterol and Complementary Health Practices: What the Science Says Share: February 2013 Dietary Supplements Red Yeast ... to exploring complementary health products and practices in the context of rigorous ... health researchers, and disseminating authoritative information ...

  7. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1–7 Cells for Evaluation of the Neuroendocrine Effects of Essential Oils

    Directory of Open Access Journals (Sweden)

    Dai Mizuno

    2015-01-01

    Full Text Available Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer’s disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells. In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2, aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen. Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils.

  8. Curcumin Protects Neurons from Glutamate-Induced Excitotoxicity by Membrane Anchored AKAP79-PKA Interaction Network

    Directory of Open Access Journals (Sweden)

    Kui Chen

    2015-01-01

    Full Text Available Now stimulation of AMPA receptor as well as its downstream pathways is considered as potential central mediators in antidepressant mechanisms. As a signal integrator which binds to AMPA receptor, A-kinase anchoring protein 79-(AKAP79- PKA complex is regarded as a potential drug target to exert neuroprotective effects. A well-tolerated and multitarget drug curcumin has been confirmed to exert antidepressant-like effects. To explore whether AKAP79-PKA complex is involved in curcumin-mediated antiexcitotoxicity, we detected calcium signaling, subcellular location of AKAP79-PKA complex, phosphorylation of glutamate receptor, and ERK and AKT cascades. In this study, we found that curcumin protected neurons from glutamate insult by reducing Ca2+ influx and blocking the translocation of AKAP79 from cytomembrane to cytoplasm. In parallel, curcumin enhanced the phosphorylation of AMPA receptor and its downstream pathways in PKA-dependent manner. If we pretreated cells with PKA anchoring inhibitor Ht31 to disassociate PKA from AKAP79, no neuroprotective effects were observed. In conclusion, our results show that AKAP79-anchored PKA facilitated the signal relay from AMPA receptor to AKT and ERK cascades, which may be crucial for curcumin-mediated antiexcitotoxicity.

  9. Complementary and Alternative Medicine: A Cross-Sectional Observational Study in Pediatric Inpatients.

    Science.gov (United States)

    Dhankar, Mukesh

    2018-01-01

    The aim was to study the prevalence of complementary and alternative medicine use in acutely sick hospitalized children and factors associated with it. This is a cross-sectional, hospital-based study in a tertiary care center of Delhi, India. Children admitted to a pediatric unit during the study period were assessed using a specially designed questionnaire. Out of the total 887 admitted children, 161 (18.1%) were using complementary and alternate medicine in one form or another. Of these, 113 (70.2%) were using complementary and alternate medicine for the current illness directly leading to admission and the remaining 48 (29.8%) had used complementary and alternate medicine in past. The common complementary and alternate medicine use observed in our study was combined ayurveda and spiritual approach (25.5%), ayurveda (24.8%), spiritual (21.7%), homeopathic (13%), and 47.2% of children were using spiritual approach in form of Jhada (tying piece of cloth on arm or leg or keeping a knife by the side of child). The significant factors associated with complementary and alternate medicine use were younger age, female gender, and father being employed. Complementary and alternate medicine is commonly used even in acutely sick children.

  10. DISCO Interacting Protein 2 regulates axonal bifurcation and guidance of Drosophila mushroom body neurons.

    Science.gov (United States)

    Nitta, Yohei; Yamazaki, Daisuke; Sugie, Atsushi; Hiroi, Makoto; Tabata, Tetsuya

    2017-01-15

    Axonal branching is one of the key processes within the enormous complexity of the nervous system to enable a single neuron to send information to multiple targets. However, the molecular mechanisms that control branch formation are poorly understood. In particular, previous studies have rarely addressed the mechanisms underlying axonal bifurcation, in which axons form new branches via splitting of the growth cone. We demonstrate that DISCO Interacting Protein 2 (DIP2) is required for precise axonal bifurcation in Drosophila mushroom body (MB) neurons by suppressing ectopic bifurcation and regulating the guidance of sister axons. We also found that DIP2 localize to the plasma membrane. Domain function analysis revealed that the AMP-synthetase domains of DIP2 are essential for its function, which may involve exerting a catalytic activity that modifies fatty acids. Genetic analysis and subsequent biochemical analysis suggested that DIP2 is involved in the fatty acid metabolization of acyl-CoA. Taken together, our results reveal a function of DIP2 in the developing nervous system and provide a potential functional relationship between fatty acid metabolism and axon morphogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Inhibitory neuron and hippocampal circuit dysfunction in an aged mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Anupam Hazra

    Full Text Available In Alzheimer's disease (AD, a decline in explicit memory is one of the earliest signs of disease and is associated with hippocampal dysfunction. Amyloid protein exerts a disruptive impact on neuronal function, but the specific effects on hippocampal network activity are not well known. In this study, fast voltage-sensitive dye imaging and extracellular and whole-cell electrophysiology were used on entorhinal cortical-hippocampal slice preparations to characterize hippocampal network activity in 12-16 month old female APPswe/PSEN1DeltaE9 (APdE9 mice mice. Aged APdE9 mice exhibited profound disruptions in dentate gyrus circuit activation. High frequency stimulation of the perforant pathway in the dentate gyrus (DG area of APdE9 mouse tissue evoked abnormally large field potential responses corresponding to the wider neural activation maps. Whole-cell patch clamp recordings of the identified inhibitory interneurons in the molecular layer of DG revealed that they fail to reliably fire action potentials. Taken together, abnormal DG excitability and an inhibitory neuron failure to generate action potentials are suggested to be important contributors to the underlying cellular mechanisms of early-stage Alzheimer's disease pathophysiology.

  12. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons.

    Science.gov (United States)

    Jeong, Jong Hee; Noh, Min-Young; Choi, Jae-Hyeok; Lee, Haiwon; Kim, Seung Hyun

    2016-04-01

    Bamboo salt (BS) and soy sauce (SS) are traditional foods in Asia, which contain antioxidants that have cytoprotective effects on the body. The majority of SS products contain high levels of common salt, consumption of which has been associated with numerous detrimental effects on the body. However, BS may be considered a healthier substitute to common salt. The present study hypothesized that SS made from BS, known as bamboo salt soy sauce (BSSS), may possess enhanced cytoprotective properties; this was evaluated using a hydrogen peroxide (H 2 O 2 )-induced neuronal cell death rat model. Rat neuronal cells were pretreated with various concentrations (0.001, 0.01, 0.1, 1 and 10%) of BSSS, traditional soy sauce (TRSS) and brewed soy sauce (BRSS), and were subsequently exposed to H 2 O 2 (100 µM). The viability of neuronal cells, and the occurrence of DNA fragmentation, was subsequently examined. Pretreatment of neuronal cells with TRSS and BRSS reduced cell viability in a concentration-dependent manner, whereas neuronal cells pretreated with BSSS exhibited increased cell viability, as compared with non-treated neuronal cells. Furthermore, neuronal cells pretreated with 0.01% BSSS exhibited the greatest increase in viability. Exposure of neuronal cells to H 2 O 2 significantly increased the levels of reactive oxygen species (ROS), B-cell lymphoma 2-associated X protein, poly (ADP-ribose), cleaved poly (ADP-ribose) polymerase, cytochrome c , apoptosis-inducing factor, cleaved caspase-9 and cleaved caspase-3, in all cases. Pretreatment of neuronal cells with BSSS significantly reduced the levels of ROS generated by H 2 O 2 , and increased the levels of phosphorylated AKT and phosphorylated glycogen synthase kinase-3β. Furthermore, the observed effects of BSSS could be blocked by administration of 10 µM LY294002, a phosphatidylinositol 3-kinase inhibitor. The results of the present study suggested that BSSS may exert positive neuroprotective effects against H 2 O 2

  13. Use of complementary and alternative medicine in head and neck cancer patients.

    Science.gov (United States)

    Lim, C M; Ng, A; Loh, K S

    2010-05-01

    To determine the prevalence and profile of patients who use complementary and alternative medicine, within a cohort of head and neck cancer patients. Cross-sectional survey. Ninety-three consecutive head and neck cancer patients being followed up at the department of otolaryngology head and neck surgery were surveyed using an interviewer-administered questionnaire. The prevalence of complementary and alternative medicine use was 67.8 per cent. Patients who used complementary and alternative medicine were more likely to be female, better educated and younger, compared with non-users. A total of 82.5 per cent (52/63) perceived complementary and alternative medicine to be effective, even though they were aware of the lack of research and endorsement by their physician regarding such medicine. The use of complementary and alternative medicine by head and neck cancer patients is common, regardless of efficacy or cost. Clinicians should routinely ask patients about their use of complementary and alternative medicine, to facilitate communication and enable appropriate use of such medicine.

  14. The role of GluN2A and GluN2B NMDA receptor subunits in AgRP and POMC neurons on body weight and glucose homeostasis.

    Science.gov (United States)

    Üner, Aykut; Gonçalves, Gabriel H M; Li, Wenjing; Porceban, Matheus; Caron, Nicole; Schönke, Milena; Delpire, Eric; Sakimura, Kenji; Bjørbæk, Christian

    2015-10-01

    Hypothalamic agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) expressing neurons play critical roles in control of energy balance. Glutamatergic input via n-methyl-d-aspartate receptors (NMDARs) is pivotal for regulation of neuronal activity and is required in AgRP neurons for normal body weight homeostasis. NMDARs typically consist of the obligatory GluN1 subunit and different GluN2 subunits, the latter exerting crucial differential effects on channel activity and neuronal function. Currently, the role of specific GluN2 subunits in AgRP and POMC neurons on whole body energy and glucose balance is unknown. We used the cre-lox system to genetically delete GluN2A or GluN2B only from AgRP or POMC neurons in mice. Mice were then subjected to metabolic analyses and assessment of AgRP and POMC neuronal function through morphological studies. We show that loss of GluN2B from AgRP neurons reduces body weight, fat mass, and food intake, whereas GluN2B in POMC neurons is not required for normal energy balance control. GluN2A subunits in either AgRP or POMC neurons are not required for regulation of body weight. Deletion of GluN2B reduces the number of AgRP neurons and decreases their dendritic length. In addition, loss of GluN2B in AgRP neurons of the morbidly obese and severely diabetic leptin-deficient Lep (ob/ob) mice does not affect body weight and food intake but, remarkably, leads to full correction of hyperglycemia. Lep (ob/ob) mice lacking GluN2B in AgRP neurons are also more sensitive to leptin's anti-obesity actions. GluN2B-containing NMDA receptors in AgRP neurons play a critical role in central control of body weight homeostasis and blood glucose balance via mechanisms that likely involve regulation of AgRP neuronal survival and structure, and modulation of hypothalamic leptin action.

  15. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    Science.gov (United States)

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    International Nuclear Information System (INIS)

    Morel, G.; Pelletier, G.

    1986-01-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system

  17. An Expanded Role for the RFX Transcription Factor DAF-19, with Dual Functions in Ciliated and Nonciliated Neurons.

    Science.gov (United States)

    De Stasio, Elizabeth A; Mueller, Katherine P; Bauer, Rosemary J; Hurlburt, Alexander J; Bice, Sophie A; Scholtz, Sophie L; Phirke, Prasad; Sugiaman-Trapman, Debora; Stinson, Loraina A; Olson, Haili B; Vogel, Savannah L; Ek-Vazquez, Zabdiel; Esemen, Yagmur; Korzynski, Jessica; Wolfe, Kelsey; Arbuckle, Bonnie N; Zhang, He; Lombard-Knapp, Gaelen; Piasecki, Brian P; Swoboda, Peter

    2018-03-01

    Regulatory Factor X (RFX) transcription factors (TFs) are best known for activating genes required for ciliogenesis in both vertebrates and invertebrates. In humans, eight RFX TFs have a variety of tissue-specific functions, while in the worm Caenorhabditis elegans , the sole RFX gene, daf-19 , encodes a set of nested isoforms. Null alleles of daf-19 confer pleiotropic effects including altered development with a dauer constitutive phenotype, complete absence of cilia and ciliary proteins, and defects in synaptic protein maintenance. We sought to identify RFX/ daf-19 target genes associated with neuronal functions other than ciliogenesis using comparative transcriptome analyses at different life stages of the worm. Subsequent characterization of gene expression patterns revealed one set of genes activated in the presence of DAF-19 in ciliated sensory neurons, whose activation requires the daf-19c isoform, also required for ciliogenesis. A second set of genes is downregulated in the presence of DAF-19, primarily in nonsensory neurons. The human orthologs of some of these neuronal genes are associated with human diseases. We report the novel finding that daf-19a is directly or indirectly responsible for downregulation of these neuronal genes in C. elegans by characterizing a new mutation affecting the daf-19a isoform ( tm5562 ) and not associated with ciliogenesis, but which confers synaptic and behavioral defects. Thus, we have identified a new regulatory role for RFX TFs in the nervous system. The new daf-19 candidate target genes we have identified by transcriptomics will serve to uncover the molecular underpinnings of the pleiotropic effects that daf-19 exerts on nervous system function. Copyright © 2018 by the Genetics Society of America.

  18. Complementary DNA-amplified fragment length polymorphism ...

    African Journals Online (AJOL)

    Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought.

  19. Complementary Hand Responses Occur in Both Peri- and Extrapersonal Space.

    Directory of Open Access Journals (Sweden)

    Tim W Faber

    Full Text Available Human beings have a strong tendency to imitate. Evidence from motor priming paradigms suggests that people automatically tend to imitate observed actions such as hand gestures by performing mirror-congruent movements (e.g., lifting one's right finger upon observing a left finger movement; from a mirror perspective. Many observed actions however, do not require mirror-congruent responses but afford complementary (fitting responses instead (e.g., handing over a cup; shaking hands. Crucially, whereas mirror-congruent responses don't require physical interaction with another person, complementary actions often do. Given that most experiments studying motor priming have used stimuli devoid of contextual information, this space or interaction-dependency of complementary responses has not yet been assessed. To address this issue, we let participants perform a task in which they had to mirror or complement a hand gesture (fist or open hand performed by an actor depicted either within or outside of reach. In three studies, we observed faster reaction times and less response errors for complementary relative to mirrored hand movements in response to open hand gestures (i.e., 'hand-shaking' irrespective of the perceived interpersonal distance of the actor. This complementary effect could not be accounted for by a low-level spatial cueing effect. These results demonstrate that humans have a strong and automatic tendency to respond by performing complementary actions. In addition, our findings underline the limitations of manipulations of space in modulating effects of motor priming and the perception of affordances.

  20. Complementary Hand Responses Occur in Both Peri- and Extrapersonal Space.

    Science.gov (United States)

    Faber, Tim W; van Elk, Michiel; Jonas, Kai J

    2016-01-01

    Human beings have a strong tendency to imitate. Evidence from motor priming paradigms suggests that people automatically tend to imitate observed actions such as hand gestures by performing mirror-congruent movements (e.g., lifting one's right finger upon observing a left finger movement; from a mirror perspective). Many observed actions however, do not require mirror-congruent responses but afford complementary (fitting) responses instead (e.g., handing over a cup; shaking hands). Crucially, whereas mirror-congruent responses don't require physical interaction with another person, complementary actions often do. Given that most experiments studying motor priming have used stimuli devoid of contextual information, this space or interaction-dependency of complementary responses has not yet been assessed. To address this issue, we let participants perform a task in which they had to mirror or complement a hand gesture (fist or open hand) performed by an actor depicted either within or outside of reach. In three studies, we observed faster reaction times and less response errors for complementary relative to mirrored hand movements in response to open hand gestures (i.e., 'hand-shaking') irrespective of the perceived interpersonal distance of the actor. This complementary effect could not be accounted for by a low-level spatial cueing effect. These results demonstrate that humans have a strong and automatic tendency to respond by performing complementary actions. In addition, our findings underline the limitations of manipulations of space in modulating effects of motor priming and the perception of affordances.

  1. Complementary Set Matrices Satisfying a Column Correlation Constraint

    OpenAIRE

    Wu, Di; Spasojevic, Predrag

    2006-01-01

    Motivated by the problem of reducing the peak to average power ratio (PAPR) of transmitted signals, we consider a design of complementary set matrices whose column sequences satisfy a correlation constraint. The design algorithm recursively builds a collection of $2^{t+1}$ mutually orthogonal (MO) complementary set matrices starting from a companion pair of sequences. We relate correlation properties of column sequences to that of the companion pair and illustrate how to select an appropriate...

  2. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    Science.gov (United States)

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  3. 75 FR 76019 - National Center for Complementary & Alternative Medicine; Notice of Meeting

    Science.gov (United States)

    2010-12-07

    ... Complementary & Alternative Medicine; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Complementary and Alternative Medicine (NACCAM) meeting. The meeting will be open to the public as indicated... for Complementary and Alternative Medicine. Date: February 4, 2011. Closed: February 4, 2011, 8:30 a.m...

  4. Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons.

    Science.gov (United States)

    Zurita, Hector; Feyen, Paul L C; Apicella, Alfonso Junior

    2018-01-01

    Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K + channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons.

  5. Lactate and pH evaluation in exhausted humans with prolonged TASER X26 exposure or continued exertion.

    Science.gov (United States)

    Ho, Jeffrey D; Dawes, Donald M; Cole, Jon B; Hottinger, Julie C; Overton, Kenneth G; Miner, James R

    2009-09-10

    Safety concerns about TASER Conducted Electrical Weapon (CEW) use and media reports of deaths after exposure have been expressed. CEWs are sometimes used on exhausted subjects to end resistance. The alternative is often a continued struggle. It is unclear if CEW use is metabolically different than allowing a continued struggle. We sought to determine if CEW exposure on exhausted humans caused worsening acidosis when compared with continued exertion. This was a prospective study of human volunteers recruited during a CEW training course. Volunteers were from several different occupations and represented a wide range of ages and body mass index characteristics. Medical histories, baseline pH and lactate values were obtained. Patients were assigned to one of four groups: 2 control groups consisting of Exertion only and CEW Exposure only, and the 2 experimental groups that were Exertion plus CEW Exposure and Exertion plus additional Exertion. Blood sampling occurred after Exertion and after any CEW exposure. This was repeated every 2-min until 20 min after protocol completion. Descriptive statistics were used to compare the four groups. The experimental groups and the control groups were compared individually at each time point using Wilcoxon rank sum tests. Lactate and pH association was assessed using multiple linear regression. Forty subjects were enrolled. There were no median pH or lactate differences between CEW Exposure groups at baseline, or between Exertion protocol groups immediately after completion. The CEW Exposure only group had higher pH and lower lactate values at all time points after exposure than the Exertion only group. After completing the Exertion protocol, there was no difference in the pH or lactate values between the continued Exertion group and the CEW Exposure group at any time points. Subjects who had CEW Exposure only had higher pH and lower lactate values than subjects who completed the Exertion protocol only. CEW exposure does not appear

  6. Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions

    Science.gov (United States)

    Zhang, Feng; Shi, Jing-Shan; Zhou, Hui; Wilson, Belinda; Hong, Jau-Shyong

    2010-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by a progressive loss of dopamine (DA) neurons in the substantia nigra. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. Resveratrol, a nonflavonoid polyphenol naturally found in red wine and grapes, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. Although recent studies have shown that resveratrol provided neuroprotective effects against ischemia, seizure, and neurodegenerative disorders, the mechanisms underlying its beneficial effects on dopaminergic neurodegeneration are poorly defined. In this study, rat primary midbrain neuron-glia cultures were used to elucidate the molecular mechanisms underlying resveratrol-mediated neuroprotection. The results clearly demonstrated that resveratrol protected DA neurons against lipopolysaccharide (LPS)-induced neurotoxicity in concentration- and time-dependent manners through the inhibition of microglial activation and the subsequent reduction of proinflammatory factor release. Mechanistically, resveratrol-mediated neuroprotection was attributed to the inhibition of NADPH oxidase. This conclusion is supported by the following observations. First, resveratrol reduced NADPH oxidase-mediated generation of reactive oxygen species. Second, LPS-induced translocation of NADPH oxidase cytosolic subunit p47 to the cell membrane was significantly attenuated by resveratrol. Third and most importantly, resveratrol failed to exhibit neuroprotection in cultures from NADPH oxidase-deficient mice. Furthermore, this neuroprotection was also related to an attenuation of the activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in microglia. These findings suggest that resveratrol exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and NADPH oxidase may be a major player

  7. Neuronal synchrony: peculiarity and generality.

    Science.gov (United States)

    Nowotny, Thomas; Huerta, Ramon; Rabinovich, Mikhail I

    2008-09-01

    Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their "dynamical repertoire" includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale). (c) 2008 American Institute of Physics.

  8. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  9. Special Section: Complementary and Alternative Medicine (CAM): Time to Talk

    Science.gov (United States)

    ... to discuss with your health care providers any complementary and alternative medicines you take or are thinking about starting. Photo: ... adults 50 and older use some form of complementary and alternative medicine (CAM). But less than one-third who use ...

  10. Complementary Therapies – a spiritual resource in recovery-processes?

    DEFF Research Database (Denmark)

    Lunde, Anita; Dürr, Dorte Wiwe; Johannessen, Helle

    rehabilitative treatments intends to support recovery processes of people with serious mental illness. Aim: To investigate how employees and residents perceive complementary therapies as an integral rehabilitative treatment, and to explore the recovery related implications of spirituality employed in the use...... and health as well as for the ethics of providing complementary treatment practice in social psychiatry....

  11. 76 FR 19379 - National Center for Complementary & Alternative Medicine; Notice of Meeting

    Science.gov (United States)

    2011-04-07

    ... Complementary & Alternative Medicine; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Complementary and Alternative Medicine (NACCAM) meeting. The meeting will be open to the public as indicated... for Complementary and Alternative Medicine. Date: June 3, 2011. Closed: June 3, 2011, 8:30 a.m. to 10...

  12. ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations.

    Science.gov (United States)

    Cheng, Aifang; Zhao, Teng; Tse, Kai-Hei; Chow, Hei-Man; Cui, Yong; Jiang, Liwen; Du, Shengwang; Loy, Michael M T; Herrup, Karl

    2018-01-09

    ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) are large PI3 kinases whose human mutations result in complex syndromes that include a compromised DNA damage response (DDR) and prominent nervous system phenotypes. Both proteins are nuclear-localized in keeping with their DDR functions, yet both are also found in cytoplasm, including on neuronal synaptic vesicles. In ATM- or ATR-deficient neurons, spontaneous vesicle release is reduced, but a drop in ATM or ATR level also slows FM4-64 dye uptake. In keeping with this, both proteins bind to AP-2 complex components as well as to clathrin, suggesting roles in endocytosis and vesicle recycling. The two proteins play complementary roles in the DDR; ATM is engaged in the repair of double-strand breaks, while ATR deals mainly with single-strand damage. Unexpectedly, this complementarity extends to these proteins' synaptic function as well. Superresolution microscopy and coimmunoprecipitation reveal that ATM associates exclusively with excitatory (VGLUT1 + ) vesicles, while ATR associates only with inhibitory (VGAT + ) vesicles. The levels of ATM and ATR respond to each other; when ATM is deficient, ATR levels rise, and vice versa. Finally, blocking NMDA, but not GABA, receptors causes ATM levels to rise while ATR levels respond to GABA, but not NMDA, receptor blockade. Taken together, our data suggest that ATM and ATR are part of the cellular "infrastructure" that maintains the excitatory/inhibitory balance of the nervous system. This idea has important implications for the human diseases resulting from their genetic deficiency.

  13. Spinal cord: motor neuron diseases.

    Science.gov (United States)

    Rezania, Kourosh; Roos, Raymond P

    2013-02-01

    Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Nurses' beliefs, experiences and practice regarding complementary and alternative medicine in Taiwan.

    Science.gov (United States)

    Smith, Graeme D; Wu, Shu-Chen

    2012-09-01

    To gain an insight into this issue, this study used a qualitative approach and aims to explore and describe nurses' beliefs, experiences and practice regarding complementary and alternative medicine in Taiwan. The integration of complementary and alternative medicine with conventional medicine has become more common worldwide in recent years. An increase in patient use and an expansion of nurses using complementary and alternative medicine has spawned further investigation. Most published studies have concentrated on the usage of complementary and alternative medicine in western societies and have focused principally on physicians' attitudes and practice patterns in this regard. Despite the large amount of time and the unique relationship that nurses share with their patients, little research has investigated the nurse's attitudes and practice regarding complementary and alternative medicine. Moreover, there has been no previous research into understanding this issue from the Taiwanese nursing perspective. A qualitative research design. By using an exploratory, descriptive, qualitative approach, data were collected from 11 registered nurses. The methods of the data collection were in-depth, semi-structured interviews, field notes and memos and the data were analysed using the constant comparative method. Three major categories emerged from the data; namely, a 'lack of clear definition', 'limited experience' and 'high interest' towards complementary and alternative medicine. These results suggest that the definition of complementary and alternative medicine is often unclear for nurses in Taiwan. Due to the organisational policies and personal knowledge base, very few nurses integrate complementary and alternative medicine into their daily practice. However, the nurses in Taiwan show a great desire to participate in complementary and alternative medicine continuing education programmes. This study is not only significant in filling the gap in the existing literature

  15. Determination of complementary therapies for prevention of striae gravidarum

    Directory of Open Access Journals (Sweden)

    Gamze Teskereci

    2018-03-01

    Full Text Available Background and Design: Striae gravidarum (SG has been reported to be associated with various factors, but the role of complementary therapies in the prevention of SG is still not well understood. The aim of this study was to determine complementary therapies for prevention of SG. Materials and Methods: This descriptive research was conducted on 120 pregnant women in a maternity clinic at a university hospital. Of 120 women, 49 were going through the last trimester and 71 were going through their first postpartum 24 hours. Data were collected using a 25-item-questionnaire through face-to-face interviews between June and July in 2016. Obtained data were evaluated by using descriptive statistics, chi-square test and the Kruskal-Wallis test. Results: 90.8% of women had SG. For the prevention of SG, 46.7% of women used massage, a manipulative body-based complementary therapy, 55.2% used oils, 28.6% used creams and 8.0% used a mixture of creams and oils for massaging. 42.9% of women started to use complementary therapies in their first trimester. Half of the women stated that they had received information about complementary therapies. A significantly lower rate of women using massage had SG compared to those not using massage (p=0.023. Conclusion: It was concluded that nearly half of the women used massage for the prevention of SG. In addition, massage application was found to reduce the occurrence of SG.

  16. Complementary therapies in social psychiatry

    DEFF Research Database (Denmark)

    Lunde, Anita; Dürr, Dorte Wiwe

    three residential homes (n= 51 / 91 respondents - response rate 56 %) shows that the most common used complementary therapy is music therapy 43%, and only 10% of residents do not use these therapies at all. Overall, 43% of residents strongly agree, that these therapies strengthens their recovery process...

  17. Neuroprotective Effect of β-Caryophyllene on Cerebral Ischemia-Reperfusion Injury via Regulation of Necroptotic Neuronal Death and Inflammation: In Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Mei Yang

    2017-10-01

    Full Text Available Necrotic cell death is a hallmark feature of ischemic stroke and it may facilitate inflammation by releasing intracellular components after cell-membrane rupture. Previous studies reported that β-caryophyllene (BCP mitigates cerebral ischemia-reperfusion (I/R injury, but the underlying mechanism remains unclear. We explored whether BCP exerts a neuroprotective effect in cerebral I/R injury through inhibiting necroptotic cell death and inflammation. Primary neurons with and without BCP (0.2, 1, 5, 25 μM treatment were exposed to oxygen-glucose deprivation and re-oxygenation (OGD/R. Neuron damage, neuronal death type and mixed lineage kinase domain-like (MLKL protein expression were assessed 48 h after OGD/R. Furthermore, mice underwent I/R procedures with or without BCP (8, 24, 72 mg/kg, ip.. Neurologic dysfunction, cerebral infarct volumes, cell death, cytokine levels, necroptosis core molecules, and HMGB1-TLR4 signaling were determined at 48 h after I/R. BCP (5 μM significantly reduced necroptotic neurons and MLKL protein expression following OGD/R. BCP (24, 72 mg/kg, ip. reduced infarct volumes, neuronal necrosis, receptor-interaction protein kinase-1 (RIPK1, receptor-interaction protein kinase-3 (RIPK3 expression, and MLKL phosphorylation after I/R injury. BCP also decreased high-mobility group box 1 (HMGB1, toll-like receptor 4 (TLR4, interleukin-1β (IL-1β, and tumor necrosis factor-α (TNF-α levels. Thus, BCP alleviates ischemic brain damage potentially by inhibiting necroptotic neuronal death and inflammatory response. This study suggests a novel application for BCP as a neuroprotective agent.

  18. Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-derived Human Neurons

    Science.gov (United States)

    Ren, Yong; Jiang, Houbo; Hu, Zhixing; Fan, Kevin; Wang, Jun; Janoschka, Stephen; Wang, Xiaomin; Ge, Shaoyu; Feng, Jian

    2015-01-01

    Parkinson’s disease (PD) is characterized by the degeneration of nigral dopaminergic (DA) neurons and non-DA neurons in many parts of the brain. Mutations of parkin, an E3 ubiquitin ligase that strongly binds to microtubules, are the most frequent cause of recessively inherited Parkinson’s disease. The lack of robust PD phenotype in parkin knockout mice suggests a unique vulnerability of human neurons to parkin mutations. Here, we show that the complexity of neuronal processes as measured by total neurite length, number of terminals, number of branch points and Sholl analysis, was greatly reduced in induced pluripotent stem cell (iPSC)-derived TH+ or TH− neurons from PD patients with parkin mutations. Consistent with these, microtubule stability was significantly decreased by parkin mutations in iPSC-derived neurons. Overexpression of parkin, but not its PD-linked mutant nor GFP, restored the complexity of neuronal processes and the stability of microtubules. Consistent with these, the microtubule-depolymerizing agent colchicine mimicked the effect of parkin mutations by decreasing neurite length and complexity in control neurons while the microtubule-stabilizing drug taxol mimicked the effect of parkin overexpression by enhancing the morphology of parkin-deficient neurons. The results suggest that parkin maintains the morphological complexity of human neurons by stabilizing microtubules. PMID:25332110

  19. Relationships between recall of perceived exertion and blood lactate concentration in a judo competition.

    Science.gov (United States)

    Serrano, M A; Salvador, A; González-Bono, E G; Sanchís, C; Suay, F

    2001-06-01

    Relationships between perceived exertion and blood lactate have usually been studied in laboratory or training contexts but not in competition, the most important setting in which sports performance is evaluated. The purpose of this study was to examine the relationships between psychological and physiological indices of the physical effort in a competition setting, taking into account the duration of effort. For this, we employed two Ratings of Perceived Exertion (RPE and CR-10) and lactic acid plasma concentration as a biological marker of the effort performed. 13 male judo fighters who participated in a sports club competition provided capillary blood samples to assay lactate concentrations and indicated on scale their Recall of Perceived Exertion in the total competition and again in just the Last Fight to compare the usefulness of RPE and CR-10 in assessing discrete bouts of effort and a whole session. Analysis showed that perceived exertion or the effort made during the whole competition was positively and significantly related to maximal lactate concentration and lactate increase in competition, thus extending the validity of this scale to sports contests. The Recall of Perceived Exertion scores were not significantly correlated with the duration of effort.

  20. Modulation of gene expression of adenosine and metabotropic glutamate receptors in rat's neuronal cells exposed to L-glutamate and [60]fullerene.

    Science.gov (United States)

    Giust, Davide; Da Ros, Tatiana; Martín, Mairena; Albasanz, José Luis

    2014-08-01

    L-Glutamate (L-Glu) has been often associated not only to fundamental physiological roles, as learning and memory, but also to neuronal cell death and the genesis and development of important neurodegenerative diseases. Herein we studied the variation in the adenosine and metabotropic glutamate receptors expression induced by L-Glu treatment in rat's cortical neurons. The possibility to have structural alteration of the cells induced by L-Glu (100 nM, 1 and 10 microM) has been addressed, studying the modulation of microtubule associated protein-2 (MAP-2) and neurofilament heavy polypeptide (NEFH), natively associated proteins to the dendritic shape maintenance. Results showed that the proposed treatments were not destabilizing the cells, so the L-Glu concentrations were acceptable to investigate fluctuation in receptors expression, which were studied by RT-PCR. Interestingly, C60 fullerene derivative t3ss elicited a protective effect against glutamate toxicity, as demonstrated by MTT assay. In addition, t3ss compound exerted a different effect on the adenosine and metabotropic glutamate receptors analyzed. Interestingly, A(2A) and mGlu1 mRNAs were significantly decreased in conditions were t3ss neuroprotected cortical neurons from L-Glu toxicity. In summary, t3ss protects neurons from glutamate toxicity in a process that appears to be associated with the modulation of the gene expression of adenosine and metabotropic glutamate receptors.

  1. Caspase-1 Deficiency Alleviates Dopaminergic Neuronal Death via Inhibiting Caspase-7/AIF Pathway in MPTP/p Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Qiao, Chen; Zhang, Lin-Xia; Sun, Xi-Yang; Ding, Jian-Hua; Lu, Ming; Hu, Gang

    2017-08-01

    Caspase family has been recognized to be involved in dopaminergic (DA) neuronal death and to exert an unfavorable role in Parkinson's disease (PD) pathology. Our previous study has revealed that caspase-1, as an important component of NLRP3 inflammasome, induces microglia-mediated neuroinflammation in the pathogenesis of PD. However, the role of caspase-1 in DA neuronal degeneration in the onset of PD remains unclear. Here, we showed that caspase-1 knockout ameliorated DA neuronal loss and dyskinesia in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model mice. We further found that caspase-1 knockout decreased MPTP/p-induced caspase-7 cleavage, subsequently inhibited nuclear translocation of poly (ADP-ribose) polymerase 1 (PARP1), and reduced the release of apoptosis-inducing factor (AIF). Consistently, we demonstrated that caspase-1 inhibitor suppressed caspase-7/PARP1/AIF-mediated apoptosis pathway by 1-methyl-4-phenylpyridinium ion (MPP + ) stimulation in SH-SY5Y cells. Caspase-7 overexpression reduced the protective effects of caspase-1 inhibitor on SH-SY5Y cell apoptosis. Collectively, our results have revealed that caspase-1 regulates DA neuronal death in the pathogenesis of PD in mice via caspase-7/PARP1/AIF pathway. These findings will shed new insight into the potential of caspase-1 as a target for PD therapy.

  2. Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition

    NARCIS (Netherlands)

    Agostoni, Carlo; Decsi, Tamas; Fewtrell, Mary; Goulet, Olivier; Kolacek, Sanja; Koletzko, Berthold; Michaelsen, Kim Fleischer; Moreno, Luis; Puntis, John; Rigo, Jacques; Shamir, Raanan; Szajewska, Hania; Turck, Dominique; van Goudoever, Johannes

    2008-01-01

    This position paper on complementary feeding summarizes evidence for health effects of complementary foods. It focuses on healthy infants in Europe. After reviewing current knowledge and practices, we have formulated these conclusions: Exclusive or full breast-feeding for about 6 months is a

  3. Air-stable complementary-like circuits based on organic ambipolar transistors

    NARCIS (Netherlands)

    Anthopoulos, Thomas D.; Setayesh, Sepas; Smits, Edsger; Cantatore, Eugenio; Boer ,de Bert; Blom, Paul W. M.; de Leeuw, Dago M.; Cölle, Michael

    2006-01-01

    Air stable complementary-like circuits, such as voltage inverters (see figure) and ring oscillators, are fabricated using ambipolar organic transistors based on a nickel dithiolene derivative. In addition to the complementary-like character of the circuits, the technology is very simple and fully

  4. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation.

    Science.gov (United States)

    Zheng, Xinde; Boyer, Leah; Jin, Mingji; Mertens, Jerome; Kim, Yongsung; Ma, Li; Ma, Li; Hamm, Michael; Gage, Fred H; Hunter, Tony

    2016-06-10

    How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size.

  5. Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition.

    Science.gov (United States)

    Agostoni, Carlo; Decsi, Tamas; Fewtrell, Mary; Goulet, Olivier; Kolacek, Sanja; Koletzko, Berthold; Michaelsen, Kim Fleischer; Moreno, Luis; Puntis, John; Rigo, Jacques; Shamir, Raanan; Szajewska, Hania; Turck, Dominique; van Goudoever, Johannes

    2008-01-01

    This position paper on complementary feeding summarizes evidence for health effects of complementary foods. It focuses on healthy infants in Europe. After reviewing current knowledge and practices, we have formulated these conclusions: Exclusive or full breast-feeding for about 6 months is a desirable goal. Complementary feeding (ie, solid foods and liquids other than breast milk or infant formula and follow-on formula) should not be introduced before 17 weeks and not later than 26 weeks. There is no convincing scientific evidence that avoidance or delayed introduction of potentially allergenic foods, such as fish and eggs, reduces allergies, either in infants considered at increased risk for the development of allergy or in those not considered to be at increased risk. During the complementary feeding period, >90% of the iron requirements of a breast-fed infant must be met by complementary foods, which should provide sufficient bioavailable iron. Cow's milk is a poor source of iron and should not be used as the main drink before 12 months, although small volumes may be added to complementary foods. It is prudent to avoid both early (or=7 months) introduction of gluten, and to introduce gluten gradually while the infant is still breast-fed, inasmuch as this may reduce the risk of celiac disease, type 1 diabetes mellitus, and wheat allergy. Infants and young children receiving a vegetarian diet should receive a sufficient amount ( approximately 500 mL) of breast milk or formula and dairy products. Infants and young children should not be fed a vegan diet.

  6. Protocol for culturing low density pure rat hippocampal neurons supported by mature mixed neuron cultures.

    Science.gov (United States)

    Yang, Qian; Ke, Yini; Luo, Jianhong; Tang, Yang

    2017-02-01

    primary hippocampal neuron cultures allow for subcellular morphological dissection, easy access to drug treatment and electrophysiology analysis of individual neurons, and is therefore an ideal model for the study of neuron physiology. While neuron and glia mixed cultures are relatively easy to prepare, pure neurons are particular hard to culture at low densities which are suitable for morphology studies. This may be due to a lack of neurotrophic factors such as brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and Glial cell line-derived neurotrophic factor (GDNF). In this study we used a two step protocol in which neuron-glia mixed cultures were initially prepared for maturation to support the growth of young neurons plated at very low densities. Our protocol showed that neurotrophic support resulted in physiologically functional hippocampal neurons with larger cell body, increased neurite length and decreased branching and complexity compared to cultures prepared using a conventional method. Our protocol provides a novel way to culture highly uniformed hippocampal neurons for acquiring high quality, neuron based data. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Parental concerns about complementary feeding

    DEFF Research Database (Denmark)

    Nielsen, Annemette; Michaelsen, Kim F.; Holm, Lotte

    2013-01-01

    Background/objectives:To investigate and analyze differences in parental concerns during earlier and later phases of complementary feeding.Subject/methods:Eight focus group interviews were conducted with 45 mothers of children aged 7 or 13 months. Deductive and inductive coding procedures were ap......:10.1038/ejcn.2013.165....

  8. Publishing scientifically sound papers in Traditional and Complementary Medicine.

    Science.gov (United States)

    Isidoro, Ciro; Huang, Chia-Chi; Sheen, Lee-Yan

    2016-01-01

    Non-conventional medical practices that make use of dietary supplements, herbal extracts, physical manipulations, and other practices typically associated with folk and Traditional Medicine are increasingly becoming popular in Western Countries. These practices are commonly referred to by the generic, all-inclusive term "Complementary and Alternative Medicine." Scientists, practitioners, and medical institutions bear the responsibility of testing and proving the effectiveness of these non-conventional medical practices in the interest of patients. In this context, the number of peer-reviewed journals and published articles on this topic has greatly increased in the recent decades. In this editorial article, we illustrate the policy of the Journal of Traditional and Complementary Medicine for publishing solid and scientifically sound papers in the field of Traditional and Complementary Medicine.

  9. Attitudes toward and education about complementary and alternative medicine among adult patients with depression in Taiwan.

    Science.gov (United States)

    Hsu, Mei-Chi; Moyle, Wendy; Creedy, Debra; Venturato, Lorraine; Ouyang, Wen-Chen; Sun, Gwo-Ching

    2010-04-01

    To investigate patients' attitudes toward complementary and alternative medicine, the education nurses provided about complementary and alternative medicine for treating depression and to test whether such education mediates the effect of complementary and alternative medicine use and attitudes toward complementary and alternative medicine. Although we know that attitudes influence behaviour, very few studies simultaneously explore the relationship between attitudes, education and complementary and alternative medicine use. Survey. This study was conducted as part of a larger survey, using face-to-face survey interviews with 206 adult patients aged 50 years or over and hospitalised in conventional hospitals in Taiwan for treatment of depression. The attitudes toward complementary and alternative medicine and patient education about complementary and alternative medicine instruments were specially developed for the study. Participants expressed slightly favourable attitudes toward complementary and alternative medicine. Many participants (50%) expressed that they were willing to try any potential treatment for depression. They believed that complementary and alternative medicine helped them to feel better and to live a happier life. However, 66.5% of participants reported that they had inadequate knowledge of complementary and alternative medicine. Participants with a higher monthly income, longer depression duration and religious beliefs hold more positive attitudes toward complementary and alternative medicine. Most participants were not satisfied with the education they received about complementary and alternative medicine. Patient education about complementary and alternative medicine was found to be a mediator for the use of complementary and alternative medicine. Patient education from nurses may predict patients' attitudes toward complementary and alternative medicine. Continuing nursing education is needed to enable nurses to respond knowledgeably to

  10. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms

    Science.gov (United States)

    Rodríguez, Ana R.; O'Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.

    2018-02-01

    Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.

  11. Inhibition of acid-sensing ion channels by levo-tetrahydropalmatine in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Qiu, Fang; Ren, Cuixia; Gan, Xiong; Peng, Fang; Hu, Wang-Ping

    2015-02-01

    Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP. © 2014 Wiley Periodicals, Inc.

  12. Moral injury: A new challenge for complementary and alternative medicine.

    Science.gov (United States)

    Kopacz, Marek S; Connery, April L; Bishop, Todd M; Bryan, Craig J; Drescher, Kent D; Currier, Joseph M; Pigeon, Wilfred R

    2016-02-01

    Moral injury represents an emerging clinical construct recognized as a source of morbidity in current and former military personnel. Finding effective ways to support those affected by moral injury remains a challenge for both biomedical and complementary and alternative medicine. This paper introduces the concept of moral injury and suggests two complementary and alternative medicine, pastoral care and mindfulness, which may prove useful in supporting military personnel thought to be dealing with moral injury. Research strategies for developing an evidence-base for applying these, and other, complementary and alternative medicine modalities to moral injury are discussed. Published by Elsevier Ltd.

  13. Drug-Induced Liver Injury Associated with Complementary and Alternative Medicines

    Science.gov (United States)

    Takahashi, Koji; Kanda, Tatsuo; Yasui, Shin; Haga, Yuki; Kumagai, Junichiro; Sasaki, Reina; Wu, Shuang; Nakamoto, Shingo; Nakamura, Masato; Arai, Makoto; Yokosuka, Osamu

    2016-01-01

    A 24-year-old man was admitted due to acute hepatitis with unknown etiology. After his condition and laboratory data gradually improved with conservative therapy, he was discharged 1 month later. Two months after his discharge, however, liver dysfunction reappeared. After his mother accidentally revealed that he took complementary and alternative medicine, discontinuation of the therapy caused his condition to improve. Finally, he was diagnosed with a recurrent drug-induced liver injury associated with Japanese complementary and alternative medicine. It is important to take the medical history in detail and consider complementary and alternative medicine as a cause of liver disease. PMID:28100990

  14. Juglans regia Hexane Extract Exerts Antitumor Effect, Apoptosis ...

    African Journals Online (AJOL)

    Original Research Article. Juglans regia Hexane Extract Exerts Antitumor Effect,. Apoptosis Induction and Cell Circle Arrest in Prostate. Cancer Cells In vitro. Wei Li1, De-Yuan Li2*, ... composition of walnut is juglone (5-hydroxy-1, 4- naphthoquinone), the .... extract was confirmed by studying apoptotic body formation using ...

  15. Nogo-receptor 1 antagonization in combination with neurotrophin-4/5 is not superior to single factor treatment in promoting survival and morphological complexity of cultured dopaminergic neurons.

    Science.gov (United States)

    Seiler, Stefanie; Di Santo, Stefano; Sahli, Sebastian; Andereggen, Lukas; Widmer, Hans Rudolf

    2017-08-01

    Cell transplantation using ventral mesencephalic tissue is an experimental approach to treat Parkinson's disease. This approach is limited by poor survival of the transplants and the high number of dopaminergic neurons needed for grafting. Increasing the yield of dopaminergic neurons in donor tissue is of great importance. We have previously shown that antagonization of the Nogo-receptor 1 by NEP1-40 promoted survival of cultured dopaminergic neurons and exposure to neurotrophin-4/5 increased dopaminergic cell densities in organotypic midbrain cultures. We investigated whether a combination of both treatments offers a novel tool to further improve dopaminergic neuron survival. Rat embryonic ventral mesencephalic neurons grown as organotypic free-floating roller tube or primary dissociated cultures were exposed to neurotrophin-4/5 and NEP1-40. The combined and single factor treatment resulted in significantly higher numbers of tyrosine hydroxylase positive neurons compared to controls. Significantly stronger tyrosine hydroxylase signal intensity was detected by Western blotting in the combination-treated cultures compared to controls but not compared to single factor treatments. Neurotrophin-4/5 and the combined treatment showed significantly higher signals for the neuronal marker microtubule-associated protein 2 in Western blots compared to control while no effects were observed for the astroglial marker glial fibrillary acidic protein between groups, suggesting that neurotrophin-4/5 targets mainly neuronal cells. Finally, NEP1-40 and the combined treatment significantly augmented tyrosine hydroxylase positive neurite length. Summarizing, our findings substantiate that antagonization of the Nogo-receptor 1 promotes dopaminergic neurons but does not further increase the yield of dopaminergic neurons and their morphological complexity when combined with neurotrophin-4/5 hinting to the idea that these treatments might exert their effects by activating common

  16. Complementary arsenic speciation methods: A review

    Energy Technology Data Exchange (ETDEWEB)

    Nearing, Michelle M., E-mail: michelle.nearing@rmc.ca; Koch, Iris, E-mail: koch-i@rmc.ca; Reimer, Kenneth J., E-mail: reimer-k@rmc.ca

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  17. Complementary arsenic speciation methods: A review

    International Nuclear Information System (INIS)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-01-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  18. Cyclic ADP ribose-dependent Ca2+ release by group I metabotropic glutamate receptors in acutely dissociated rat hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jong-Woo Sohn

    Full Text Available Group I metabotropic glutamate receptors (group I mGluRs; mGluR1 and mGluR5 exert diverse effects on neuronal and synaptic functions, many of which are regulated by intracellular Ca(2+. In this study, we characterized the cellular mechanisms underlying Ca(2+ mobilization induced by (RS-3,5-dihydroxyphenylglycine (DHPG; a specific group I mGluR agonist in the somata of acutely dissociated rat hippocampal neurons using microfluorometry. We found that DHPG activates mGluR5 to mobilize intracellular Ca(2+ from ryanodine-sensitive stores via cyclic adenosine diphosphate ribose (cADPR, while the PLC/IP(3 signaling pathway was not involved in Ca(2+ mobilization. The application of glutamate, which depolarized the membrane potential by 28.5±4.9 mV (n = 4, led to transient Ca(2+ mobilization by mGluR5 and Ca(2+ influx through L-type Ca(2+ channels. We found no evidence that mGluR5-mediated Ca(2+ release and Ca(2+ influx through L-type Ca(2+ channels interact to generate supralinear Ca(2+ transients. Our study provides novel insights into the mechanisms of intracellular Ca(2+ mobilization by mGluR5 in the somata of hippocampal neurons.

  19. Krebs Cycle Intermediates Protective against Oxidative Stress by Modulating the Level of Reactive Oxygen Species in Neuronal HT22 Cells

    Directory of Open Access Journals (Sweden)

    Kenta Sawa

    2017-03-01

    Full Text Available Krebs cycle intermediates (KCIs are reported to function as energy substrates in mitochondria and to exert antioxidants effects on the brain. The present study was designed to identify which KCIs are effective neuroprotective compounds against oxidative stress in neuronal cells. Here we found that pyruvate, oxaloacetate, and α-ketoglutarate, but not lactate, citrate, iso-citrate, succinate, fumarate, or malate, protected HT22 cells against hydrogen peroxide-mediated toxicity. These three intermediates reduced the production of hydrogen peroxide-activated reactive oxygen species, measured in terms of 2′,7′-dichlorofluorescein diacetate fluorescence. In contrast, none of the KCIs—used at 1 mM—protected against cell death induced by high concentrations of glutamate—another type of oxidative stress-induced neuronal cell death. Because these protective KCIs did not have any toxic effects (at least up to 10 mM, they have potential use for therapeutic intervention against chronic neurodegenerative diseases.

  20. 77 FR 31862 - National Center for Complementary & Alternative Medicine; Notice of Closed Meetings

    Science.gov (United States)

    2012-05-30

    ... Complementary & Alternative Medicine; Notice of Closed Meetings Pursuant to section 10(d) of the Federal... Scientific Review, National Center for Complementary and Alternative Medicine, NIH, 6707 Democracy Blvd... for Complementary and Alternative Medicine Special Emphasis Panel; HCS Collaboratory Pragmatic Trials...

  1. 77 FR 24971 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2012-04-26

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., [email protected] . Name of Committee: National Center for Complementary and Alternative Medicine..., Office of Scientific Review, National Center for Complementary & Alternative Medicine, NIH, 6707...

  2. 76 FR 59707 - National Center for Complementary & Alternative Medicine; Notice of Closed Meetings

    Science.gov (United States)

    2011-09-27

    ... Complementary & Alternative Medicine; Notice of Closed Meetings Pursuant to section 10(d) of the Federal... for Complementary and Alternative Medicine Special Emphasis Panel, Training and Education. Date... Complementary and Alternative Medicine Special Emphasis Panel, Clinical Studies of CAM Therapies. Date: November...

  3. The PM1 neurons, movement sensitive centrifugal visual brain neurons in the locust: anatomy, physiology, and modulation by identified octopaminergic neurons.

    Science.gov (United States)

    Stern, Michael

    2009-02-01

    The locust's optic lobe contains a system of wide-field, multimodal, centrifugal neurons. Two of these cells, the protocerebrum-medulla-neurons PM4a and b, are octopaminergic. This paper describes a second pair of large centrifugal neurons (the protocerebrum-medulla-neurons PM1a and PM1b) from the brain of Locusta migratoria based on intracellular cobalt fills, electrophysiology, and immunocytochemistry. They originate and arborise in the central brain and send processes into the medulla of the optic lobe. Double intracellular recording from the same cell suggests input in the central brain and output in the optic lobe. The neurons show immunoreactivity to gamma-amino-butyric acid and its synthesising enzyme, glutamate decarboxylase. The PM1 cells are movement sensitive and show habituation to repeated visual stimulation. Bath application of octopamine causes the response to dishabituate. A very similar effect is produced by electrical stimulation of one of an octopaminergic PM4 neuron. This effect can be blocked by application of the octopamine antagonists, mianserin and phentolamine. This readily accessible system of four wide-field neurons provides a system suitable for the investigation of octopaminergic effects on the visual system at the cellular level.

  4. Uniform and Complementary Social Interaction: Distinct Pathways to Solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H; van Mourik Broekman, Aafke

    2015-01-01

    We examine how different forms of co-action give rise to feelings of solidarity. We propose that (a) coordinated action elicits a sense of solidarity, and (b) the process through which such solidarity emerges differs for different forms of co-action. We suggest that whether solidarity within groups emerges from uniform action (e.g. synchronizing, as when people speak in unison) or from more complementary forms of action (e.g. alternating, when speaking in turns) has important consequences for the emergent position of individuals within the group. Uniform action relies on commonality, leaving little scope for individuality. In complementary action each individual makes a distinctive contribution to the group, thereby increasing a sense of personal value to the group, which should contribute to the emergence of solidarity. The predictions receive support from five studies, in which we study groups in laboratory and field settings. Results show that both complementary and uniform co-action increase a sense of solidarity compared to control conditions. However, in the complementary action condition, but not in the uniform action (or synchrony) condition, the effect on feelings of solidarity is mediated by a sense of personal value to the group.

  5. Complementary filter implementation in the dynamic language Lua

    Science.gov (United States)

    Sadowski, Damian; Sawicki, Aleksander; Lukšys, Donatas; Slanina, Zdenek

    2017-08-01

    The article presents the complementary filter implementation, that is used for the estimation of the pitch angle, in Lua script language. Inertial sensors as accelerometer and gyroscope were used in the study. Methods of angles estimation using acceleration and angular velocity sensors were presented in the theoretical part of the article. The operating principle of complementary filter has been presented. The prototype of Butterworth's analogue filter and its digital equivalent have been designed. Practical implementation of the issue was performed with the use of PC and DISCOVERY evaluation board equipped with STM32F01 processor, L3GD20 gyroscope and LS303DLHC accelerometer. Measurement data was transmitted by UART serial interface, then processed with the use of Lua software and luaRS232 programming library. Practical implementation was divided into two stages. In the first part, measurement data has been recorded and then processed with help of a complementary filter. In the second step, coroutines mechanism was used to filter data in real time.

  6. Complementary and alternative medicine use in children with cystic fibrosis.

    Science.gov (United States)

    Giangioppo, Sandra; Kalaci, Odion; Radhakrishnan, Arun; Fleischer, Erin; Itterman, Jennifer; Lyttle, Brian; Price, April; Radhakrishnan, Dhenuka

    2016-11-01

    To estimate the overall prevalence of complementary and alternative medicine use among children with cystic fibrosis, determine specific modalities used, predictors of use and subjective helpfulness or harm from individual modalities. Of 53 children attending the cystic fibrosis clinic in London, Ontario (100% recruitment), 79% had used complementary and alternative medicine. The most commonly used modalities were air purifiers, humidifiers, probiotics, and omega-3 fatty acids. Family complementary and alternative medicine use was the only independent predictor of overall use. The majority of patients perceived benefit from specific modalities for cystic fibrosis symptoms. Given the high frequency and number of modalities used and lack of patient and disease characteristics predicting use, we recommend that health care providers should routinely ask about complementary and alternative medicine among all pediatric cystic fibrosis patients and assist patients in understanding the potential benefits and risks to make informed decisions about its use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Determination of the rate constant for neuronal and extra-neuronal monoamine oxidase

    International Nuclear Information System (INIS)

    Cassis, L.; Ludwig, J.; Trendelenburg, U.

    1986-01-01

    In the rat vas deferens, neuronal deamination of 3 H-(-) noradrenaline ( 3 H-NA) to 3 H-dihydroxyphenethylglycol ( 3 HDOPEG) cannot be inhibited by pretreatment with a monoamine oxidase (MAO) inhibitor. However, in the extraneuronal compartment of the rat heart, inhibition of MAO abolishes the formation of 3 HDOPEG. To clarify this discrepancy, the authors determined the rate constant for MAO (/sup k/mao/) neuronally (rat vas deferens) and extraneuronally (rat heart). For neuronal /sup k/mao, vasa deferentia were incubated with 3 HNA for 300 minutes, and the cumulative formation of 3 HDOPEG measured. The delay in time before 3 HDOPEG achieves steady state (/sup tau/system), is inversely proportional to /sup k/mao. Because /sup tau/system is very short for neuronal MAO, an appreciable delay was only achieved after partial inhibition of MAO with various parglyline concentrations. To relate to the uninhibited enzyme, the percentage inhibition by pargyline was then determined in homogenate preparations. For extraneuronal MAO, a similar procedure was performed in perfused rat hearts. Results show a significantly greater /sup k/mao of neuronal origin, (/sup k/mao = .57min - 1) which when related to the fractional size of the neuronal compartment suggests a very high activity of neuronal MAO

  8. Use of complementary and alternative medicine by patients with lysosomal storage diseases.

    Science.gov (United States)

    Balwani, Manisha; Fuerstman, Laura; Desnick, Robert J; Buckley, Brian; McGovern, Margaret M

    2009-10-01

    To evaluate the extent of complementary and alternative medicine use and perceived effectiveness in patients with lysosomal storage diseases. A 26-item survey was distributed to 495 patients with type 1 Gaucher, Fabry, and type B Niemann-Pick diseases who were seen at the Lysosomal Storage Disease Program at the Mount Sinai School of Medicine. Survey responses were entered into an access database and analyzed using descriptive statistics. Surveys were completed by 167 respondents with an overall response rate of 34%. Complementary and alternative medicines were used by 45% of patients with type 1 Gaucher disease, 41% of patients with Fabry disease, and 47% of patients with type B Niemann-Pick for symptoms related to their disease. Complementary and alternative medicines were used most frequently by adult females (55%), in patients who reported having one or more invasive procedures due to their disease, patients who use one or more conventional medical therapies, or those with depression and/or anxiety. Overall perceived effectiveness of complementary and alternative medicine supplements was low; however, complementary and alternative medicine therapies were perceived as effective. Complementary and alternative medicines are commonly used among patients with lysosomal storage diseases. Assessment of the effectiveness of these approaches in the lysosomal storage diseases is needed, and physicians should be aware of complementary and alternative medicine therapies used by patients to evaluate safety and possible drug interactions.

  9. Factors Associated with the Early Introduction of Complementary Feeding in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Riyadh A. Alzaheb

    2016-07-01

    Full Text Available Mothers’ instigation of complementary feeding before their infant reaches 6 months old risks shortening their breastfeeding duration, and high morbidity and mortality for their child. Complementary feeding practices require further investigation in Saudi Arabia. The present study aims to evaluate complementary feeding practices, and to establish which factors are associated with the early introduction of complementary feeding in the Saudi Arabian context. Cross-sectional research was conducted with 632 mothers of infants aged between 4 and 24 months attending five primary health care centers (PHCCs between July and December 2015 in Saudi Arabia. Data on participants’ socio-demographic characteristics and complementary feeding practices were collected via structured questionnaires. A regression analysis identified the factors associated with the early introduction of solid foods, defined as before 17 weeks. 62.5% of the study’s infants received solid foods before reaching 17 weeks old. The maternal factors at higher risk of early introduction of solids were: younger age; Saudi nationality; shorter education; employment within 6 months post-birth; caesareans; not breastfeeding fully for six weeks post-birth, and living in low-income households. Complementary feeding prior to 6 months postpartum was common in Saudi Arabia. Public health interventions are needed to reduce early complementary feeding, focusing on mothers at highest risk of giving solids too early.

  10. Forces exerted by jumping children: A pilot study

    NARCIS (Netherlands)

    Moes, C.C.M.; Bakker, H.E.

    1998-01-01

    This article reports on a pilot study of the loads exerted vertically by children when jumping. The subjects of the study were 17 children, aged from two to twelve years. Measurements were made using video recordings and a force-plate. The influence of the stiffness of the base and of jumping with

  11. 75 FR 35075 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-21

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Office of Scientific Review, National Center for Complementary, & Alternative Medicine, NIH, 6707... Domestic Assistance Program Nos. 93.213, Research and Training in Complementary and Alternative Medicine...

  12. 76 FR 35227 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Scientific Review, National Center for Complementary, and Alternative Medicine, NIH, 6707 Democracy Blvd... Assistance Program Nos. 93.213, Research and Training in Complementary and Alternative Medicine, National...

  13. 78 FR 47328 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-05

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Ph.D., Scientific Review Officer, National Center For Complementary and Alternative Medicine... Training in Complementary and Alternative Medicine, National Institutes of Health, HHS) Dated: July 30...

  14. 78 FR 66755 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-06

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Scientific Review, National Center for Complementary, & Alternative Medicine, NIH, 6707 Democracy Blvd... Assistance Program Nos. 93.213, Research and Training in Complementary and Alternative Medicine, National...

  15. 78 FR 10184 - National Center For Complementary & Alternative Medicine; Notice of Closed Meetings

    Science.gov (United States)

    2013-02-13

    ... Complementary & Alternative Medicine; Notice of Closed Meetings Pursuant to section 10(d) of the Federal... Alternative Medicine Special Emphasis Panel; Clinical Studies of Complementary and Alternative Medicine. Date... Person: Hungyi Shau, Ph.D., Scientific Review Officer, National Center For Complementary, and Alternative...

  16. 76 FR 17140 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2011-03-28

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Complementary and Alternative Medicine, National Institutes of Health, 6707 Democracy Boulevard, Suite 401... Nos. 93.213, Research and Training in Complementary and Alternative Medicine, National Institutes of...

  17. Effects of harmane (1-methyl-beta-carboline) on neurons in the nucleus accumbens of the rat.

    Science.gov (United States)

    Ergene, E; Schoener, E P

    1993-04-01

    Harmane, a beta-carboline alkaloid reported to exert locomotor and psychoactive effects, is found in certain plants and also has been shown to exist in the mammalian brain as an endogenous substance. In this study, the effects of locally perfused harmane were examined on spontaneous neuronal activity in the nucleus accumbens of urethane-anesthetized rats. Extracellular single-unit recording, coupled with push-pull perfusion, enabled the discrimination of specific, dose-related effects of harmane across a wide concentration range. At lower concentrations (10(-9)-10(-11) M), excitation prevailed, while at higher concentrations (10(-8)-10(-6) M) depression was most pronounced. These findings suggest a neuromodulatory role for harmane in the forebrain reward system.

  18. High self-perceived exercise exertion before bedtime is associated with greater objectively assessed sleep efficiency.

    Science.gov (United States)

    Brand, Serge; Kalak, Nadeem; Gerber, Markus; Kirov, Roumen; Pühse, Uwe; Holsboer-Trachsler, Edith

    2014-09-01

    To assess the association between self-perceived exercise exertion before bedtime and objectively measured sleep. Fifty-two regularly exercising young adults (mean age, 19.70 years; 54% females) underwent sleep electroencephalographic recordings 1.5 h after completing moderate to vigorous exercise in the evening. Before sleeping, participants answered questions regarding degree of exertion of the exercise undertaken. Greater self-perceived exertion before bedtime was associated with higher objectively assessed sleep efficiency (r = 0.69, P associated with more deep sleep, shortened sleep onset time, fewer awakenings after sleep onset, and shorter wake duration after sleep onset. Multiple linear regression analysis showed that objective sleep efficiency was predicted by increased exercise exertion, shortened sleep onset time, increased deep sleep, and decreased light sleep. Against expectations and general recommendations for sleep hygiene, high self-perceived exercise exertion before bedtime was associated with better sleep patterns in a sample of healthy young adults. Further studies should also focus on elderly adults and adults suffering from insomnia. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man.

    Science.gov (United States)

    Morris, Rhiannon S; Simon Jones, P; Alawneh, Josef A; Hong, Young T; Fryer, Tim D; Aigbirhio, Franklin I; Warburton, Elizabeth A; Baron, Jean-Claude

    2018-05-09

    Modern ischaemic stroke management involves intravenous thrombolysis followed by mechanical thrombectomy, which allows markedly higher rates of recanalization and penumbral salvage than thrombolysis alone. However, <50% of treated patients eventually enjoy independent life. It is therefore important to identify complementary therapeutic targets. In rodent models, the salvaged penumbra is consistently affected by selective neuronal loss, which may hinder recovery by interfering with plastic processes, as well as by microglial activation, which may exacerbate neuronal death. However, whether the salvaged penumbra in man is similarly affected is still unclear. Here we determined whether these two processes affect the non-infarcted penumbra in man and, if so, whether they are inter-related. We prospectively recruited patients with (i) acute middle-cerebral artery stroke; (ii) penumbra present on CT perfusion obtained <4.5 h of stroke onset; and (iii) early neurological recovery as a marker of penumbral salvage. PET with 11C-flumazenil and 11C-PK11195, as well as MRI to map the final infarct, were obtained at predefined follow-up times. The presence of selective neuronal loss and microglial activation was determined voxel-wise within the MRI normal-appearing ipsilateral non-infarcted zone and surviving penumbra masks, and their inter-relationship was assessed both across and within patients. Dilated infarct contours were consistently excluded to control for partial volume effects. Across the 16 recruited patients, there was reduced 11C-flumazenil and increased 11C-PK11195 binding in the whole ipsilateral non-infarcted zone (P = 0.04 and 0.02, respectively). Within the non-infarcted penumbra, 11C-flumazenil was also reduced (P = 0.001), but without clear increase in 11C-PK11195 (P = 0.18). There was no significant correlation between 11C-flumazenil and 11C-PK11195 in either compartment. This mechanistic study provides direct evidence for the presence of both neuronal

  20. The straintronic spin-neuron

    International Nuclear Information System (INIS)

    Biswas, Ayan K; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2015-01-01

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a ‘spin-neuron’ realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons. (paper)

  1. Metabolic reprogramming during neuronal differentiation.

    Science.gov (United States)

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.

  2. 77 FR 28396 - National Center for Complementary & Alternative Medicine Notice of Closed Meeting

    Science.gov (United States)

    2012-05-14

    ... Complementary & Alternative Medicine Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Alternative Medicine Special Emphasis Pane,l Clinical Research of Complementary Medical Care. Date: June 5.... 93.213, Research and Training in Complementary and Alternative Medicine, National Institutes of...

  3. 78 FR 19498 - National Center for Complementary and Alternative Medicine; Notice of Meeting

    Science.gov (United States)

    2013-04-01

    ... Complementary and Alternative Medicine; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Council for Complementary and Alternative Medicine. The meeting will be open to the public as indicated... privacy. Name of Committee: National Advisory Council for Complementary and Alternative Medicine. Date...

  4. 78 FR 76635 - National Center for Complementary and Alternative Medicine; Notice of Meeting

    Science.gov (United States)

    2013-12-18

    ... Complementary and Alternative Medicine; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Council for Complementary and Alternative Medicine. The meeting will be open to the public as indicated... privacy. Name of Committee: National Advisory Council for Complementary and Alternative Medicine; NCCAM...

  5. 75 FR 43994 - National Center for Complementary and Alternative Medicine; Notice of Meeting

    Science.gov (United States)

    2010-07-27

    ... Complementary and Alternative Medicine; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Complementary and Alternative Medicine (NACCAM) meeting. The meeting will be open to the public as indicated... privacy. Name of Committee: National Advisory Council for Complementary and Alternative Medicine. Date...

  6. 77 FR 43099 - National Center For Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2012-07-23

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Council for Complementary and Alternative Medicine. The meeting will be closed to the public in accordance... of Committee: National Advisory Council for Complementary and Alternative Medicine. Date: August 27...

  7. 77 FR 25185 - National Center for Complementary and Alternative Medicine; Notice of Meeting

    Science.gov (United States)

    2012-04-27

    ... Complementary and Alternative Medicine; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Council for Complementary and Alternative Medicine. The meeting will be open to the public as indicated... privacy. Name of Committee: National Advisory Council for Complementary and Alternative Medicine. Date...

  8. 78 FR 42528 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2013-07-16

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Center for Complementary & Alternative Medicine, NIH, 6707 Democracy Blvd., Suite 401, Bethesda, MD 20892..., Research and Training in Complementary and Alternative Medicine, National Institutes of Health, HHS) Dated...

  9. 77 FR 58402 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2012-09-20

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Alternative Medicine Special Emphasis Panel; Clinical Research of Complementary Medical Care. Date: October 22...: Hungyi Shau, Ph.D., Scientific Review Officer, National Center For Complementary and Alternative Medicine...

  10. A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    Science.gov (United States)

    Wang, Yazhou; Wang, Wei; Li, Zong; Hao, Shilei; Wang, Bochu

    2016-10-01

    A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo conditions are introduced and analyzed. Second, research works in recent decades on the effects of different mechanical forces, especially compression and tension, on various neurons, including dorsal root ganglion neurons, retinal ganglion cells, cerebral cortex neurons, hippocampus neurons, neural stem cells, and other neurons, are summarized. Previous research results demonstrate that mechanical stress can not only injure neurons by damaging their morphology, impacting their electrophysiological characteristics and gene expression, but also promote neuron self-repair. Finally, some future perspectives in neuron research are discussed.

  11. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  12. Complementary Colours for a Physicist

    Science.gov (United States)

    Babic, Vitomir; Cepic, Mojca

    2009-01-01

    This paper reports on a simple experiment which enables splitting incident light into two different modes, each having a colour exactly complementary to the other. A brief historical development of colour theories and differences in a physicist's point of view with respect to an artist's one is discussed. An experimental system for producing…

  13. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    Science.gov (United States)

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-06

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  14. Progranulin is expressed within motor neurons and promotes neuronal cell survival

    Directory of Open Access Journals (Sweden)

    Kay Denis G

    2009-10-01

    Full Text Available Abstract Background Progranulin is a secreted high molecular weight growth factor bearing seven and one half copies of the cysteine-rich granulin-epithelin motif. While inappropriate over-expression of the progranulin gene has been associated with many cancers, haploinsufficiency leads to atrophy of the frontotemporal lobes and development of a form of dementia (frontotemporal lobar degeneration with ubiquitin positive inclusions, FTLD-U associated with the formation of ubiquitinated inclusions. Recent reports indicate that progranulin has neurotrophic effects, which, if confirmed would make progranulin the only neuroprotective growth factor that has been associated genetically with a neurological disease in humans. Preliminary studies indicated high progranulin gene expression in spinal cord motor neurons. However, it is uncertain what the role of Progranulin is in normal or diseased motor neuron function. We have investigated progranulin gene expression and subcellular localization in cultured mouse embryonic motor neurons and examined the effect of progranulin over-expression and knockdown in the NSC-34 immortalized motor neuron cell line upon proliferation and survival. Results In situ hybridisation and immunohistochemical techniques revealed that the progranulin gene is highly expressed by motor neurons within the mouse spinal cord and in primary cultures of dissociated mouse embryonic spinal cord-dorsal root ganglia. Confocal microscopy coupled to immunocytochemistry together with the use of a progranulin-green fluorescent protein fusion construct revealed progranulin to be located within compartments of the secretory pathway including the Golgi apparatus. Stable transfection of the human progranulin gene into the NSC-34 motor neuron cell line stimulates the appearance of dendritic structures and provides sufficient trophic stimulus to survive serum deprivation for long periods (up to two months. This is mediated at least in part through

  15. Benign vascular sexual headache and exertional headache: interrelationships and long term prognosis.

    OpenAIRE

    Silbert, P L; Edis, R H; Stewart-Wynne, E G; Gubbay, S S

    1991-01-01

    There is a definite relationship between the vascular type of benign sexual headache and benign exertional headache. Forty five patients with benign vascular sexual headache were reviewed. Twenty seven (60%) experienced benign vascular sexual headache alone and eighteen (40%) had experienced both benign vascular sexual headache and benign exertional headache on at least one occasion. The mean age was 34.3 years with a male:female ratio of 5.4:1. Thirty patients with a history of benign vascul...

  16. Complementary bowtie aperture for localizing and enhancing optical magnetic field

    Science.gov (United States)

    Zhou, Nan; Kinzel, Edward C.; Xu, Xianfan

    2011-08-01

    Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.

  17. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice

    Directory of Open Access Journals (Sweden)

    Giuseppe Tatulli

    2018-01-01

    Full Text Available Intermittent fasting (IF was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson’s disease (PD. IF (24 h alternate-day fasting was applied alone or in concomitance with Rot treatment (Rot/IF. IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn accumulation with respect to Rot group in the substantia nigra (SN. Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.

  18. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice.

    Science.gov (United States)

    Tatulli, Giuseppe; Mitro, Nico; Cannata, Stefano M; Audano, Matteo; Caruso, Donatella; D'Arcangelo, Giovanna; Lettieri-Barbato, Daniele; Aquilano, Katia

    2018-01-01

    Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.

  19. Exertional Rhabdomyolysis in a 21-Year-Old Healthy Woman: A Case Report.

    Science.gov (United States)

    McKay, Brianna D; Yeo, Noelle M; Jenkins, Nathaniel D M; Miramonti, Amelia A; Cramer, Joel T

    2017-05-01

    McKay, BD, Yeo, NM, Jenkins, NDM, Miramonti, AA, and Cramer, JT. Exertional rhabdomyolysis in a 21-year-old healthy woman: a case report. J Strength Cond Res 31(5): 1403-1410, 2017-The optimal resistance training program to elicit muscle hypertrophy has been recently debated and researched. Although 3 sets of 10 repetitions at 70-80% of the 1 repetition maximum (1RM) are widely recommended, recent studies have shown that low-load (∼30% 1RM) high-repetition (3 sets of 30-40 repetitions) resistance training can elicit similar muscular hypertrophy. Incidentally, this type of resistance training has gained popularity. In the process of testing this hypothesis in a research study in our laboratory, a subject was diagnosed with exertional rhabdomyolysis after completing a resistance training session that involved 3 sets to failure at 30% 1RM. Reviewed were the events leading up to and throughout the diagnosis of exertional rhabdomyolysis in a healthy recreationally-trained 21-year-old woman who was enrolled in a study that compared the acute effects of high-load low-repetition vs. low-load high-repetition resistance training. The subject completed a total of 143 repetitions of the bilateral dumbbell biceps curl exercise. Three days after exercise, she reported excessive muscle soreness and swelling and sought medical attention. She was briefly hospitalized and then discharged with instructions to take acetaminophen for soreness, drink plenty of water, rest, and monitor her creatine kinase (CK) concentrations. Changes in the subject's CK concentrations, ultrasound-determined muscle thickness, and echo intensity monitored over a 14-day period are reported. This case illustrates the potential risk of developing exertional rhabdomyolysis after a low-load high-repetition resistance training session in healthy, young, recreationally-trained women. The fact that exertional rhabdomyolysis is a possible outcome may warrant caution when prescribing this type of resistance

  20. Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake?

    Science.gov (United States)

    Russo, Cristina; Russo, Antonella; Pellitteri, Rosalia; Stanzani, Stefania

    2017-07-13

    Feeding is a process controlled by a complex of associations between external and internal stimuli. The processes that involve learning and memory seem to exert a strong control over appetite and food intake, which is modulated by a gastrointestinal hormone, Ghrelin (Ghre). Recent studies claim that Ghre is involved in cognitive and neurobiological mechanisms that underlie the conditioning of eating behaviors. The expression of Ghre increases in anticipation of food intake based on learned behaviors. The hippocampal Ghre-containing neurons neurologically influence the orexigenic hypothalamus and consequently the learned feeding behavior. The CA1 field of Ammon's horn of the hippocampus (H-CA1) constitutes the most important neural substrate to control both appetitive and ingestive behavior. It also innervates amygdala regions that in turn innervate the hypothalamus. A recent study also implies that Ghre effects on cue-potentiated feeding behavior occur, at the least, via indirect action on the amygdala. In the present study, we investigate the neural substrates through which endogenous Ghre communicates conditioned appetite and feeding behavior within the CNS. We show the existence of a neural Ghre dependent pathway whereby peripherally-derived Ghre activates H-CA1 neurons, which in turn activate Ghre-expressing hypothalamic and amygdaloid neurons to stimulate appetite and feeding behavior. To highlight this pathway, we use two fluorescent retrograde tracers (Fluoro Gold and Dil) and immunohistochemical detection of Ghre expression in the hippocampus. Triple fluorescent-labeling has determined the presence of H-CA1 Ghre-containing collateralized neurons that project to the hypothalamus and amygdala monosynaptically. We hypothesize that H-Ghre-containing neurons in H-CA1 modulate food-intake behavior through direct pathways to the arcuate hypothalamic nucleus and medial amygdaloid nucleus. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 76 FR 55073 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2011-09-06

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Complementary and Alternative Medicine (NACCAM) meeting. The meeting will be open to the public as indicated... Advisory Council for Complementary and Alternative Medicine. Date: October 14, 2011. Closed: October 14...

  2. 75 FR 57970 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2010-09-23

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Complementary and Alternative Medicine Special Emphasis Panel, Centers of Excellence for Research on CAM (CERC... Complementary, & Alternative Medicine, NIH, 6707 Democracy Blvd., Suite 401, Bethesda, MD 20892, 301-594-3456...

  3. Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye

    Science.gov (United States)

    Morrison, Carolyn A.; Chen, Hao; Cook, Tiffany; Brown, Stuart

    2018-01-01

    Transcriptional regulators can specify different cell types from a pool of equivalent progenitors by activating distinct developmental programs. The Glass transcription factor is expressed in all progenitors in the developing Drosophila eye, and is maintained in both neuronal and non-neuronal cell types. Glass is required for neuronal progenitors to differentiate as photoreceptors, but its role in non-neuronal cone and pigment cells is unknown. To determine whether Glass activity is limited to neuronal lineages, we compared the effects of misexpressing it in neuroblasts of the larval brain and in epithelial cells of the wing disc. Glass activated overlapping but distinct sets of genes in these neuronal and non-neuronal contexts, including markers of photoreceptors, cone cells and pigment cells. Coexpression of other transcription factors such as Pax2, Eyes absent, Lozenge and Escargot enabled Glass to induce additional genes characteristic of the non-neuronal cell types. Cell type-specific glass mutations generated in cone or pigment cells using somatic CRISPR revealed autonomous developmental defects, and expressing Glass specifically in these cells partially rescued glass mutant phenotypes. These results indicate that Glass is a determinant of organ identity that acts in both neuronal and non-neuronal cells to promote their differentiation into functional components of the eye. PMID:29324767

  4. Impact of maternal education about complementary feeding and provision of complementary foods on child growth in developing countries

    Directory of Open Access Journals (Sweden)

    Bhutta Zulfiqar A

    2011-04-01

    Full Text Available Abstract Background Childhood undernutrition is prevalent in low and middle income countries. It is an important indirect cause of child mortality in these countries. According to an estimate, stunting (height for age Z score Methods We conducted a systematic review of published randomized and quasi-randomized trials on PubMed, Cochrane Library and WHO regional databases. The included studies were abstracted and graded according to study design, limitations, intervention details and outcome effects. The primary outcomes were change in weight and height during the study period among children 6-24 months of age. We hypothesized that provision of complementary food and education of mother about complementary food would significantly improve the nutritional status of the children in the intervention group compared to control. Meta-analyses were generated for change in weight and height by two methods. In the first instance, we pooled the results to get weighted mean difference (WMD which helps to pool studies with different units of measurement and that of different duration. A second meta-analysis was conducted to get a pooled estimate in terms of actual increase in weight (kg and length (cm in relation to the intervention, for input into the LiST model. Results After screening 3795 titles, we selected 17 studies for inclusion in the review. The included studies evaluated the impact of provision of complementary foods (±nutritional counseling and of nutritional counseling alone. Both these interventions were found to result in a significant increase in weight [WMD 0.34 SD, 95% CI 0.11 – 0.56 and 0.30 SD, 95 % CI 0.05-0.54 respectively and linear growth [WMD 0.26 SD, 95 % CI 0.08-0.43 and 0.21 SD, 95 % CI 0.01-0.41 respectively]. Pooled results for actual increase in weight in kilograms and length in centimeters showed that provision of appropriate complementary foods (±nutritional counseling resulted in an extra gain of 0.25kg (±0.18 in weight

  5. HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening.

    Science.gov (United States)

    Charoenkwan, Phasit; Hwang, Eric; Cutler, Robert W; Lee, Hua-Chin; Ko, Li-Wei; Huang, Hui-Ling; Ho, Shinn-Ying

    2013-01-01

    High-content screening (HCS) has become a powerful tool for drug discovery. However, the discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen. Therefore, it is desirable to develop an automated image analysis method for analyzing multi-neuron images. We propose an automated analysis method with novel descriptors of neuromorphology features for analyzing HCS-based multi-neuron images, called HCS-neurons. To observe multiple phenotypic changes of neurons, we propose two kinds of descriptors which are neuron feature descriptor (NFD) of 13 neuromorphology features, e.g., neurite length, and generic feature descriptors (GFDs), e.g., Haralick texture. HCS-neurons can 1) automatically extract all quantitative phenotype features in both NFD and GFDs, 2) identify statistically significant phenotypic changes upon drug treatments using ANOVA and regression analysis, and 3) generate an accurate classifier to group neurons treated by different drug concentrations using support vector machine and an intelligent feature selection method. To evaluate HCS-neurons, we treated P19 neurons with nocodazole (a microtubule depolymerizing drug which has been shown to impair neurite development) at six concentrations ranging from 0 to 1000 ng/mL. The experimental results show that all the 13 features of NFD have statistically significant difference with respect to changes in various levels of nocodazole drug concentrations (NDC) and the phenotypic changes of neurites were consistent to the known effect of nocodazole in promoting neurite retraction. Three identified features, total neurite length, average neurite length, and average neurite area were able to achieve an independent test accuracy of 90.28% for the six-dosage classification problem. This NFD module and neuron image datasets are provided as a freely downloadable

  6. Results on a Binding Neuron Model and Their Implications for Modified Hourglass Model for Neuronal Network

    Directory of Open Access Journals (Sweden)

    Viswanathan Arunachalam

    2013-01-01

    Full Text Available The classical models of single neuron like Hodgkin-Huxley point neuron or leaky integrate and fire neuron assume the influence of postsynaptic potentials to last till the neuron fires. Vidybida (2008 in a refreshing departure has proposed models for binding neurons in which the trace of an input is remembered only for a finite fixed period of time after which it is forgotten. The binding neurons conform to the behaviour of real neurons and are applicable in constructing fast recurrent networks for computer modeling. This paper develops explicitly several useful results for a binding neuron like the firing time distribution and other statistical characteristics. We also discuss the applicability of the developed results in constructing a modified hourglass network model in which there are interconnected neurons with excitatory as well as inhibitory inputs. Limited simulation results of the hourglass network are presented.

  7. 78 FR 21381 - National Center for Complementary & Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-10

    ... Complementary & Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Complementary and Alternative Medicine Special Emphasis Education Panel. Date: June 21, 2013. Time: 8:00 a.m. to... Complementary and Alternative Medicine, National Institutes of Health, HHS) Dated: April 4, 2013. Michelle Trout...

  8. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    Science.gov (United States)

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana Del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Optimal advertising and pricing decisions for complementary products

    Science.gov (United States)

    Taleizadeh, Ata Allah; Charmchi, Masoud

    2015-03-01

    Cooperative advertising is an agreement between a manufacturer and a retailer to share advertising cost at the local level. Previous studies have not investigated cooperative advertising for complementary products and their main focus was only on one good. In this paper, we study a two-echelon supply chain consisting of one manufacturer and one retailer with two complementary goods. The demand of each good is influenced not only by its price but also by the price of the other product. We use two game theory approaches to model this problem; Stackelberg manufacturer and Stackelberg retailer.

  10. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?

    Science.gov (United States)

    Parker, Lindsay M; Le, Sheng; Wearne, Travis A; Hardwick, Kate; Kumar, Natasha N; Robinson, Katherine J; McMullan, Simon; Goodchild, Ann K

    2017-06-15

    Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed. © 2017 Wiley Periodicals, Inc.

  11. Attitudes towards holistic complementary and alternative medicine: a sample of healthy people in Turkey.

    Science.gov (United States)

    Erci, Behice

    2007-04-01

    This study aimed to investigate the attitude towards holistic complementary and alternative medicine of healthy people, and to evaluate the relationship between attitude towards holistic complementary and alternative medicine and the characteristics of the participants. Complementary and alternative medicines are becoming more accepted. This study used descriptive and correlational designs. The study included healthy individuals who attended or visited a primary care centre for healthcare services. The sample of the study consisted of 448 persons who responded to the questionnaire. The Attitude towards Holistic Complementary and Alternative Medicine scale consisted of 11 items on a six-point, and two subscales. The mean score of holistic complementary and alternative medicine was studied in relation to attributes and holistic complementary and alternative medicine. The mean score on the scale was 58.1 SD 4.1 point, and in terms of the mean score of the scale, the sample group showed a negative attitude towards holistic complementary and alternative medicine and one subscale. Demographic characteristics of the sample group affected attitudes towards holistic complementary and alternative medicine and both subscales. In light of these results, it is clear that healthy Turkish population have a tendency towards conventional medicine. Health professionals caring for healthy people should provide comprehensive care that addresses the physical, psychosocial and spiritual needs of the individual; they could provide the consultation regarding to different patterns of complementary therapies.

  12. Neuronal growth on L- and D-cysteine self-assembled monolayers reveals neuronal chiral sensitivity.

    Science.gov (United States)

    Baranes, Koby; Moshe, Hagay; Alon, Noa; Schwartz, Shmulik; Shefi, Orit

    2014-05-21

    Studying the interaction between neuronal cells and chiral molecules is fundamental for the design of novel biomaterials and drugs. Chirality influences all biological processes that involve intermolecular interaction. One common method used to study cellular interactions with different enantiomeric targets is the use of chiral surfaces. Based on previous studies that demonstrated the importance of cysteine in the nervous system, we studied the effect of L- and D-cysteine on single neuronal growth. L-Cysteine, which normally functions as a neuromodulator or a neuroprotective antioxidant, causes damage at elevated levels, which may occur post trauma. In this study, we grew adult neurons in culture enriched with L- and D-cysteine as free compounds or as self-assembled monolayers of chiral surfaces and examined the effect on the neuronal morphology and adhesion. Notably, we have found that exposure to the L-cysteine enantiomer inhibited, and even prevented, neuronal attachment more severely than exposure to the D-cysteine enantiomer. Atop the L-cysteine surfaces, neuronal growth was reduced and degenerated. Since the cysteine molecules were attached to the surface via the thiol groups, the neuronal membrane was exposed to the molecular chiral site. Thus, our results have demonstrated high neuronal chiral sensitivity, revealing chiral surfaces as indirect regulators of neuronal cells and providing a reference for studying chiral drugs.

  13. In situ monitoring of myenteric neuron activity using acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors.

    Science.gov (United States)

    Müntze, Gesche Mareike; Pouokam, Ervice; Steidle, Julia; Schäfer, Wladimir; Sasse, Alexander; Röth, Kai; Diener, Martin; Eickhoff, Martin

    2016-03-15

    The response characteristics of acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors (AcFETs) are quantitatively analyzed by means of a kinetic model. The characterization shows that the covalent enzyme immobilization process yields reproducible AcFET characteristics with a Michaelis constant KM of (122 ± 4) μM for the immobilized enzyme layer. The increase of KM by a factor of 2.4 during the first four measurement cycles is attributed to partial denaturation of the enzyme. The AcFETs were used to record the release of acetylcholine (ACh) by neuronal tissue cultivated on the gate area upon stimulation by rising the extracellular K(+) concentration. The neuronal tissue constituted of isolated myenteric neurons from four to 12 days old Wistar rats, or sections from the muscularis propria containing the myenteric plexus from adult rats. For both cases the AcFET response was demonstrated to be related to the activity of the immobilized acetylcholinesterase using the reversible acetylcholinesterase blocker donepezil. A concentration response curve of this blocking agent revealed a half maximal inhibitory concentration of 40 nM which is comparable to values measured by complementary in vitro methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease.

    Science.gov (United States)

    Valenza, M; Marullo, M; Di Paolo, E; Cesana, E; Zuccato, C; Biella, G; Cattaneo, E

    2015-04-01

    In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte-neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD.

  15. Neuronal Migration Disorders

    Science.gov (United States)

    ... Understanding Sleep The Life and Death of a Neuron Genes At Work In The Brain Order Publications ... birth defects caused by the abnormal migration of neurons in the developing brain and nervous system. In ...

  16. Systematic reviews of complementary therapies - an annotated bibliography. Part 3: homeopathy

    NARCIS (Netherlands)

    Linde, K.; Hondras, M.; Vickers, A.; ter Riet, G.; Melchart, D.

    2001-01-01

    BACKGROUND: Complementary therapies are widespread but controversial. We aim to provide a comprehensive collection and a summary of systematic reviews of clinical trials in three major complementary therapies (acupuncture, herbal medicine, homeopathy). This article is dealing with homeopathy.

  17. Evaluation of a complementary cyber education program for a pathophysiology class.

    Science.gov (United States)

    Yoo, Ji-Soo; Ryue, Sook-Hee; Lee, Jung Eun; Ahn, Jeong-Ah

    2009-12-01

    The goal of this study was to develop and evaluate a complementary cyber education program for a required pathophysiology class for nursing students. The cyber education program comprised electronic bulletin boards, correspondence material storage, an announcement section, a report submission section, reference sites, and statistics on learning rates. Twelve online lectures complemented five lectures in the classroom. To evaluate the course's educational effectiveness, we performed an online objective questionnaire and an open questionnaire survey anonymously, and compared the complementary cyber education program with traditional classroom education. The complementary cyber education program effected significant improvements in scores for importance with regard to major, clarity of goals and education plans for courses, professor readiness, preciseness and description of lectures, amount and efficiency of assignments, and fairness in appraisal standards compared with the traditional classroom education group. This study indicates that a complementary cyber education program provides nursing students with the flexibility of time and space, the newest information through updated lectures, efficient motivational aids through intimacy between the lecturer and students, and concrete and meaningful tasks. The complementary cyber education course also increased student effort toward studying and student satisfaction with the class.

  18. [Obesity and complementary feeding time: a period at risk].

    Science.gov (United States)

    Vidailhet, M

    2010-12-01

    Relation between rapid growth during the first months of life and secondary risk of excessive adiposity is well demonstrated. Many works have indicated a birth feeding effect on weight gain during the first year of life and a protective effect towards later childhood and adult obesity. However all these studies are observational and several works denied this protective effect. Concerning complementary feeding, 3 interventional, randomized, studies achieved between 4 and 6 months of age, showed a good regulation of caloric intake and no weight gain modification due to complementary foods. Most of others studies are observational and don't show any relation between time of introduction of complementary foods and later fat mass. However 3 recent studies indicate, respectively at 7, 10 and 42 years of age, an increased adiposity, suggesting the possibility of a programmed excessive fat gain induced by an early complementary foods introduction. Very few studies have evaluated, besides the time of weaning, the kind, quantity and caloric density of foods used as complements, whereas other recent studies show the importance of appetite differences since the first months of life and the importance of genetic influence on these variations. Others works have emphasized the possible role of an excessive protein intake during the first 2 years of life. So, it appears that it may be necessary to pay attention not only on the date, but also on the kind and quantity of complementary foods, particularly in infants at risk for obesity, because of parental obesity, rapid weight growth or an excessive appetite. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  20. Update: Exertional rhabdomyolysis, active component, U.S. Army, Navy, Air Force, and Marine Corps, 2011-2015.

    Science.gov (United States)

    Armed Forces Health Surveillance Branch

    2016-03-01

    Among active component members of the U.S. Army, Navy, Air Force, and Marine Corps in 2015, there were 456 incident episodes of rhabdomyolysis likely due to physical exertion or heat stress ("exertional rhabdomyolysis"). Annual rates of incident diagnoses of exertional rhabdomyolysis increased 17% between 2014 and 2015. In 2015, the highest incidence rates occurred in service members who were male; younger than 20 years of age; black, non-Hispanic; members of the Marine Corps and Army; recruit trainees; and in combat-specific occupations. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain and swelling, limited range of motion, or the excretion of dark urine (e.g., myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

  1. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.

    Science.gov (United States)

    Dong, Qiulei; Wang, Hong; Hu, Zhanyi

    2018-02-01

    Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automatically predict V4 neuron responses. Currently, deep neural networks (DNNs) in the field of computer vision have reached image object categorization performance comparable to that of human beings on ImageNet, a data set that contains 1.3 million training images of 1000 categories. We explore whether the DNN neurons (units in DNNs) possess image object representational statistics similar to monkey IT neurons, particularly when the network becomes deeper and the number of image categories becomes larger, using VGG19, a typical and widely used deep network of 19 layers in the computer vision field. Following Lehky, Kiani, Esteky, and Tanaka ( 2011 , 2014 ), where the response statistics of 674 IT neurons to 806 image stimuli are analyzed using three measures (kurtosis, Pareto tail index, and intrinsic dimensionality), we investigate the three issues in this letter using the same three measures: (1) the similarities and differences of the neural response statistics between VGG19 and primate IT cortex, (2) the variation trends of the response statistics of VGG19 neurons at different layers from low to high, and (3) the variation trends of the response statistics of VGG19 neurons when the numbers of stimuli and neurons increase. We find that the response statistics on both single-neuron selectivity and population sparseness of VGG19 neurons are fundamentally different from those of IT neurons in most cases; by increasing the number of neurons in different layers and the number of stimuli, the response statistics of neurons at different layers from low to high do not substantially change; and the estimated intrinsic dimensionality values at the low

  2. Development of posterior hypothalamic neurons enlightens a switch in the prosencephalic basic plan.

    Directory of Open Access Journals (Sweden)

    Sophie Croizier

    Full Text Available In rats and mice, ascending and descending axons from neurons producing melanin-concentrating hormone (MCH reach the cerebral cortex and spinal cord. However, these ascending and descending projections originate from distinct sub-populations expressing or not "Cocaine-and-Amphetamine-Regulated-Transcript" (CART peptide. Using a BrdU approach, MCH cell bodies are among the very first generated in the hypothalamus, within a longitudinal cell cord made of earliest delaminating neuroblasts in the diencephalon and extending from the chiasmatic region to the ventral midbrain. This region also specifically expresses the regulatory genes Sonic hedgehog (Shh and Nkx2.2. First MCH axons run through the tractus postopticus (tpoc which gathers pioneer axons from the cell cord and courses parallel to the Shh/Nkx2.2 expression domain. Subsequently generated MCH neurons and ascending MCH axons differentiate while neurogenesis and mantle layer differentiation are generalized in the prosencephalon, including telencephalon. Ascending MCH axons follow dopaminergic axons of the mesotelencephalic tract, both being an initial component of the medial forebrain bundle (mfb. Netrin1 and Slit2 proteins that are involved in the establishment of the tpoc and mfb, respectively attract or repulse MCH axons.We conclude that first generated MCH neurons develop in a diencephalic segment of a longitudinal Shh/Nkx2.2 domain. This region can be seen as a prosencephalic segment of a medial neurogenic column extending from the chiasmatic region through the ventral neural tube. However, as the telencephalon expends, it exerts a trophic action and the mfb expands, inducing a switch in the longitudinal axial organization of the prosencephalon.

  3. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks

    Science.gov (United States)

    Amin, Hayder; Maccione, Alessandro; Nieus, Thierry

    2017-01-01

    Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity. PMID:28749937

  4. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Davide Lonardoni

    2017-07-01

    Full Text Available Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs, interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  5. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Huang Li-Yen

    2007-08-01

    Full Text Available Abstract Prostaglandin E2 (PGE2 is a well-known inflammatory mediator that enhances the excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are abundantly expressed in dorsal root ganglia (DRG neurons and participate in the transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors has not been well delineated. We studied the actions of PGE2 on ATP-activated currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no effects on P2X2/3 receptor-mediated responses, but significantly potentiated fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its action by activating EP3 receptors. To study the mechanism underlying the action of PGE2, we found that the adenylyl cyclase activator, forskolin and the membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The protein kinase A (PKA inhibitors, H89 and PKA-I blocked the PGE2 effect. In contrast, the PKC inhibitor, bisindolymaleimide (Bis did not change the potentiating action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced allodynia and hyperalgesia and the enhancement was blocked by H89. These observations suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated ATP responses in DRG neurons.

  6. Prolactin-sensitive neurons express estrogen receptor-α and depend on sex hormones for normal responsiveness to prolactin.

    Science.gov (United States)

    Furigo, Isadora C; Kim, Ki Woo; Nagaishi, Vanessa S; Ramos-Lobo, Angela M; de Alencar, Amanda; Pedroso, João A B; Metzger, Martin; Donato, Jose

    2014-05-30

    Estrogens and prolactin share important target tissues, including the gonads, brain, liver, kidneys and some types of cancer cells. Herein, we sought anatomical and functional evidence of possible crosstalk between prolactin and estrogens in the mouse brain. First, we determined the distribution of prolactin-responsive neurons that express the estrogen receptor α (ERα). A large number of prolactin-induced pSTAT5-immunoreactive neurons expressing ERα mRNA were observed in several brain areas, including the anteroventral periventricular nucleus, medial preoptic nucleus, arcuate nucleus of the hypothalamus, ventrolateral subdivision of the ventromedial nucleus of the hypothalamus (VMH), medial nucleus of the amygdala and nucleus of the solitary tract. However, although the medial preoptic area, periventricular nucleus of the hypothalamus, paraventricular nucleus of the hypothalamus, retrochiasmatic area, dorsomedial subdivision of the VMH, lateral hypothalamic area, dorsomedial nucleus of the hypothalamus and ventral premammillary nucleus contained significant numbers of prolactin-responsive neurons, these areas showed very few pSTAT5-immunoreactive cells expressing ERα mRNA. Second, we evaluated prolactin sensitivity in ovariectomized mice and observed that sex hormones are required for a normal responsiveness to prolactin as ovariectomized mice showed a lower number of prolactin-induced pSTAT5 immunoreactive neurons in all analyzed brain nuclei compared to gonad-intact females. In addition, we performed hypothalamic gene expression analyses to determine possible post-ovariectomy changes in components of prolactin signaling. We observed no significant changes in the mRNA expression of prolactin receptor, STAT5a or STAT5b. In summary, sex hormones exert a permissive role in maintaining the brain's prolactin sensitivity, most likely through post-transcriptional mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  8. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Complementary Medicine Journal of Faculty of Nursing and Midwifery

    OpenAIRE

    Seraji; Vakilian

    2011-01-01

    Introduction: Half of the pregnant women suffer from the excruciating degrees of labor pain. Nowadays, however, the use of painkillers for decreasing labor pain due to their adverse effects on the mother and child is less common and attention has been shifted towards non-medical methods and complementary medicine such as message therapy, acupuncture, hydrotherapy, and herbal medicine. One of the branches of complementary medicine is hydrotherapy with herbal essences. Breathing techniques, on ...

  10. Reward-dependent learning in neuronal networks for planning and decision making.

    Science.gov (United States)

    Dehaene, S; Changeux, J P

    2000-01-01

    Neuronal network models have been proposed for the organization of evaluation and decision processes in prefrontal circuitry and their putative neuronal and molecular bases. The models all include an implementation and simulation of an elementary reward mechanism. Their central hypothesis is that tentative rules of behavior, which are coded by clusters of active neurons in prefrontal cortex, are selected or rejected based on an evaluation by this reward signal, which may be conveyed, for instance, by the mesencephalic dopaminergic neurons with which the prefrontal cortex is densely interconnected. At the molecular level, the reward signal is postulated to be a neurotransmitter such as dopamine, which exerts a global modulatory action on prefrontal synaptic efficacies, either via volume transmission or via targeted synaptic triads. Negative reinforcement has the effect of destabilizing the currently active rule-coding clusters; subsequently, spontaneous activity varies again from one cluster to another, giving the organism the chance to discover and learn a new rule. Thus, reward signals function as effective selection signals that either maintain or suppress currently active prefrontal representations as a function of their current adequacy. Simulations of this variation-selection have successfully accounted for the main features of several major tasks that depend on prefrontal cortex integrity, such as the delayed-response test, the Wisconsin card sorting test, the Tower of London test and the Stroop test. For the more complex tasks, we have found it necessary to supplement the external reward input with a second mechanism that supplies an internal reward; it consists of an auto-evaluation loop which short-circuits the reward input from the exterior. This allows for an internal evaluation of covert motor intentions without actualizing them as behaviors, by simply testing them covertly by comparison with memorized former experiences. This element of architecture

  11. Integrating Complementary and Alternative Medicine Into Conventional Health Care System in Developing Countries

    DEFF Research Database (Denmark)

    Mishra, Shiva Raj; Neupane, Dinesh; Kallestrup, Per

    2015-01-01

    Complementary and alternative medicine has been a part of human life and practices since the beginning of time. The role of complementary and alternative medicine for the health of humans is undisputed particularly in light of its role in health promotion and well-being. This article discusses wa...... through which complementary and alternative medicine can be promoted and sustained as an integrated element of health care in developing countries. We specifically present the exemplary of Amchi traditional doctors of Northern Himalayas......Complementary and alternative medicine has been a part of human life and practices since the beginning of time. The role of complementary and alternative medicine for the health of humans is undisputed particularly in light of its role in health promotion and well-being. This article discusses ways...

  12. A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons.

    Science.gov (United States)

    Navarro, Gemma; Aguinaga, David; Angelats, Edgar; Medrano, Mireia; Moreno, Estefanía; Mallol, Josefa; Cortés, Antonio; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Lluís, Carme; Ferré, Sergi

    2016-06-17

    The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Motor Neuron Diseases

    Science.gov (United States)

    ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ...

  14. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  15. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats.

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    Full Text Available Acetamiprid (ACE and imidacloprid (IMI belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs. Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment-including proliferation, migration, differentiation, and morphological and functional maturation-can be observed in vitro. Using these cultures, an excitatory Ca(2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca(2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca(2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the

  16. The dynamic brain: from spiking neurons to neural masses and cortical fields.

    Directory of Open Access Journals (Sweden)

    Gustavo Deco

    2008-08-01

    Full Text Available The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space-time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI, electroencephalogram (EEG, and magnetoencephalogram (MEG. Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the

  17. Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons

    OpenAIRE

    Vong, Linh; Ye, Chianping; Yang, Zongfang; Choi, Brian; Chua, Streamson; Lowell, Bradford B.

    2011-01-01

    Leptin acts in the brain to prevent obesity. The underlying neurocircuitry responsible for this is poorly understood, in part due to incomplete knowledge regarding first order, leptin-responsive neurons. To address this, we and others have been removing leptin receptors from candidate first order neurons. While functionally relevant neurons have been identified, the observed effects have been small suggesting that most first order neurons remain unidentified. Here we take an alternative appro...

  18. 76 FR 6487 - National Center for Complementary and Alternative Medicine; Announcement of Workshop on...

    Science.gov (United States)

    2011-02-04

    ... Complementary and Alternative Medicine; Announcement of Workshop on Clarifying Directions and Approaches to...: The National Center for Complementary and Alternative Medicine (NCCAM) invites the research [email protected] . Background: The National Center for Complementary and Alternative Medicine (NCCAM) was...

  19. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.

    Science.gov (United States)

    Glessner, Joseph T; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W; Bradfield, Jonathan P; Imielinski, Marcin; Frackelton, Edward C; Reichert, Jennifer; Crawford, Emily L; Munson, Jeffrey; Sleiman, Patrick M A; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M; Rudd, Danielle S; Zurawiecki, Danielle; McDougle, Christopher J; Davis, Lea K; Miller, Judith; Posey, David J; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M; Bernier, Raphael; Levy, Susan E; Schultz, Robert T; Dawson, Geraldine; Owley, Thomas; McMahon, William M; Wassink, Thomas H; Sweeney, John A; Nurnberger, John I; Coon, Hilary; Sutcliffe, James S; Minshew, Nancy J; Grant, Struan F A; Bucan, Maja; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Schellenberg, Gerard D; Hakonarson, Hakon

    2009-05-28

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with approximately 550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 x 10(-3)). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 x 10(-3)). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 x 10(-6)). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.

  20. Complementary and alternative medicine use in dermatology in the United States.

    Science.gov (United States)

    Landis, Erin T; Davis, Scott A; Feldman, Steven R; Taylor, Sarah

    2014-05-01

    Complementary and alternative medicine (CAM) has an increasing presence in dermatology. Complementary therapies have been studied in many skin diseases, including atopic dermatitis and psoriasis. This study sought to assess oral CAM use in dermatology relative to medicine as a whole in the United States, using the National Ambulatory Medical Care Survey. Variables studied include patient demographic characteristics, diagnoses, and CAM documented at the visits. A brief literature review of the top 5 CAM treatments unique to dermatology visits was performed. Most CAM users in both dermatology and medicine as a whole were female and white and were insured with private insurance or Medicare. Fish oil, glucosamine, glucosamine chondroitin, and omega-3 were the most common complementary supplements used in both samples. CAM use in dermatology appears to be part of a larger trend in medicine. Knowledge of common complementary therapies can help dermatologists navigate this expanding field.

  1. Learning of time series through neuron-to-neuron instruction

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Y [Department of Physics, Kyoto University, Kyoto 606-8502, (Japan); Kinzel, W [Institut fuer Theoretische Physik, Universitaet Wurzburg, 97074 Wurzburg (Germany); Shinomoto, S [Department of Physics, Kyoto University, Kyoto (Japan)

    2003-02-07

    A model neuron with delayline feedback connections can learn a time series generated by another model neuron. It has been known that some student neurons that have completed such learning under the instruction of a teacher's quasi-periodic sequence mimic the teacher's time series over a long interval, even after instruction has ceased. We found that in addition to such faithful students, there are unfaithful students whose time series eventually diverge exponentially from that of the teacher. In order to understand the circumstances that allow for such a variety of students, the orbit dimension was estimated numerically. The quasi-periodic orbits in question were found to be confined in spaces with dimensions significantly smaller than that of the full phase space.

  2. Learning of time series through neuron-to-neuron instruction

    International Nuclear Information System (INIS)

    Miyazaki, Y; Kinzel, W; Shinomoto, S

    2003-01-01

    A model neuron with delayline feedback connections can learn a time series generated by another model neuron. It has been known that some student neurons that have completed such learning under the instruction of a teacher's quasi-periodic sequence mimic the teacher's time series over a long interval, even after instruction has ceased. We found that in addition to such faithful students, there are unfaithful students whose time series eventually diverge exponentially from that of the teacher. In order to understand the circumstances that allow for such a variety of students, the orbit dimension was estimated numerically. The quasi-periodic orbits in question were found to be confined in spaces with dimensions significantly smaller than that of the full phase space

  3. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    Science.gov (United States)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure.

    Science.gov (United States)

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo; Rydbirk, Rasmus; Olesen, Mikkel Vestergaard; Hay-Schmidt, Anders; Pakkenberg, Bente; Aznar, Susana

    2017-05-30

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT 2A receptor (5-HT 2A R) dependent. Here, we further investigated how blockade of 5-HT 2A Rs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT 2A R blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT 2A R activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT 2A R blockade does not seem to affect the amygdala-striatal projection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Systematic review: Complementary and alternative medicine in the irritable bowel syndrome.

    LENUS (Irish Health Repository)

    Hussain, Z

    2012-02-03

    BACKGROUND: Complementary and alternative medical therapies and practices are widely employed in the treatment of the irritable bowel syndrome. AIM: To review the usage of complementary and alternative medicine in the irritable bowel syndrome, and to assess critically the basis and evidence for its use. METHODS: A systematic review of complementary and alternative medical therapies and practices in the irritable bowel syndrome was performed based on literature obtained through a Medline search. RESULTS: A wide variety of complementary and alternative medical practices and therapies are commonly employed by irritable bowel syndrome patients both in conjunction with and in lieu of conventional therapies. As many of these therapies have not been subjected to controlled clinical trials, some, at least, of their efficacy may reflect the high-placebo response rate that is characteristic of irritable bowel syndrome. Of those that have been subjected to clinical trials most have involved small poor quality studies. There is, however, evidence to support efficacy for hypnotherapy, some forms of herbal therapy and certain probiotics in irritable bowel syndrome. CONCLUSIONS: Doctors caring for irritable bowel syndrome patients need to recognize the near ubiquity of complementary and alternative medical use among this population and the basis for its use. All complementary and alternative medicine is not the same and some, such as hypnotherapy, forms of herbal therapy, specific diets and probiotics, may well have efficacy in irritable bowel syndrome. Above all, we need more science and more controlled studies; the absence of truly randomized placebo-controlled trials for many of these therapies has limited meaningful progress in this area.

  6. Neurons of self-defence: neuronal innervation of the exocrine defence glands in stick insects.

    Science.gov (United States)

    Stolz, Konrad; von Bredow, Christoph-Rüdiger; von Bredow, Yvette M; Lakes-Harlan, Reinhard; Trenczek, Tina E; Strauß, Johannes

    2015-01-01

    Stick insects (Phasmatodea) use repellent chemical substances (allomones) for defence which are released from so-called defence glands in the prothorax. These glands differ in size between species, and are under neuronal control from the CNS. The detailed neural innervation and possible differences between species are not studied so far. Using axonal tracing, the neuronal innervation is investigated comparing four species. The aim is to document the complexity of defence gland innervation in peripheral nerves and central motoneurons in stick insects. In the species studied here, the defence gland is innervated by the intersegmental nerve complex (ISN) which is formed by three nerves from the prothoracic (T1) and suboesophageal ganglion (SOG), as well as a distinct suboesophageal nerve (Nervus anterior of the suboesophageal ganglion). In Carausius morosus and Sipyloidea sipylus, axonal tracing confirmed an innervation of the defence glands by this N. anterior SOG as well as N. anterior T1 and N. posterior SOG from the intersegmental nerve complex. In Peruphasma schultei, which has rather large defence glands, only the innervation by the N. anterior SOG was documented by axonal tracing. In the central nervous system of all species, 3-4 neuron types are identified by axonal tracing which send axons in the N. anterior SOG likely innervating the defence gland as well as adjacent muscles. These neurons are mainly suboesophageal neurons with one intersegmental neuron located in the prothoracic ganglion. The neuron types are conserved in the species studied, but the combination of neuron types is not identical. In addition, the central nervous system in S. sipylus contains one suboesophageal and one prothoracic neuron type with axons in the intersegmental nerve complex contacting the defence gland. Axonal tracing shows a very complex innervation pattern of the defence glands of Phasmatodea which contains different neurons in different nerves from two adjacent body segments

  7. [Poor tolerance of exertion during sports and bronchial hyperreactivity].

    Science.gov (United States)

    Potiron-Josse, M; Boutet, S; Ginet, J

    1992-11-01

    135 sportsmen and women, 55 girls, 80 boys, aged from 7 to 30 years, from various sports, who complained of bad tolerance of exertion were examined with an exercise test and isocapnic spontaneous hyperventilation. 61, about 45%, during a hyperventilation test had a fall of V.E.M.S. greater than or equal to 20%, showing bronchial hyperreactivity. After three tests, this fall index was greater than or equal to 50%. 68% of the positive responses were seen in boys and 2/3 of the subjects with a positive response were atopics. No other argument could be maintained from the questioning or clinical history to predict the positive or negative character of the hyperventilation (age, sporting level, symptoms, previous asthma or asthmatic, allergy). H.S.V.I. of the chests of a sporting population that complains of exertion intolerance, therefore allows verification of an H.R.B. assessment of its severity and to follow evolution after treatment.

  8. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines. ... extracts of three Togolese medicinal plants against ESBL Klebsiella pneumoniae strains ... Ethnobotanical survey of medicinal plants used in the management of ...

  9. Self-reported post-exertional fatigue in Gulf War veterans: roles of autonomic testing

    Science.gov (United States)

    Li, Mian; Xu, Changqing; Yao, Wenguo; Mahan, Clare M.; Kang, Han K.; Sandbrink, Friedhelm; Zhai, Ping; Karasik, Pamela A.

    2014-01-01

    To determine if objective evidence of autonomic dysfunction exists from a group of Gulf War veterans with self-reported post-exertional fatigue, we evaluated 16 Gulf War ill veterans and 12 Gulf War controls. Participants of the ill group had self- reported, unexplained chronic post-exertional fatigue and the illness symptoms had persisted for years until the current clinical study. The controls had no self-reported post-exertional fatigue either at the time of initial survey nor at the time of the current study. We intended to identify clinical autonomic disorders using autonomic and neurophysiologic testing in the clinical context. We compared the autonomic measures between the 2 groups on cardiovascular function at both baseline and head-up tilt, and sudomotor function. We identified 1 participant with orthostatic hypotension, 1 posture orthostatic tachycardia syndrome, 2 distal small fiber neuropathy, and 1 length dependent distal neuropathy affecting both large and small fiber in the ill group; whereas none of above definable diagnoses was noted in the controls. The ill group had a significantly higher baseline heart rate compared to controls. Compound autonomic scoring scale showed a significant higher score (95% CI of mean: 1.72–2.67) among ill group compared to controls (0.58–1.59). We conclude that objective autonomic testing is necessary for the evaluation of self-reported, unexplained post-exertional fatigue among some Gulf War veterans with multi-symptom illnesses. Our observation that ill veterans with self-reported post-exertional fatigue had objective autonomic measures that were worse than controls warrants validation in a larger clinical series. PMID:24431987

  10. Frontoethmoidal Schwannoma with Exertional Cerebrospinal Fluid Rhinorrhea: Case Report and Review of Literature.

    Science.gov (United States)

    Yoneoka, Yuichiro; Akiyama, Katsuhiko; Seki, Yasuhiro; Hasegawa, Go; Kakita, Akiyoshi

    2018-03-01

    Frontoethmoidal schwannomas are rare. No case manifesting exertional cerebrospinal fluid (CSF) rhinorrhea has ever been reported to the best of our knowledge. In this report, we describe an extremely rare case of frontoethmoidal schwannoma extending through the olfactory groove with exertional CSF rhinorrhea as the initial symptom. A 50-year-old woman was presented to our clinic for frequent nasal discharge on exertion. A postcontrast computed tomographic scan demonstrated heterogeneously enhanced tumor from the anterior cranial fossa to the anterior ethmoid sinus. A gadolinium-enhanced T1-weighted magnetic resonance image revealed a well-defined heterogeneously enhanced tumor situated in the midline anterior cranial fossa and anterior ethmoid sinus. After the resection, the defect of the right anterior skull base was reconstructed with a fascia graft and adipose tissue taken from the abdomen, as well as a pedicle periosteum flap. A histologic examination revealed the tumor as schwannoma. Her rhinorrhea completely resolved. She regained her sense of smell and taste 1 month after the operation. According to previous reports, olfactory groove, and paraolfactory groove/periolfactory groove schwannomas can be divided into 4 types: subfrontal, nasoethmoidal, frontoethmoidal, and ethmofrontal. Among them, a frontoethmoidal schwannoma can manifest exertional CSF rhinorrhea as an initial symptom. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. An FPGA-based silicon neuronal network with selectable excitability silicon neurons

    Directory of Open Access Journals (Sweden)

    Jing eLi

    2012-12-01

    Full Text Available This paper presents a digital silicon neuronal network which simulates the nerve system in creatures and has the ability to execute intelligent tasks, such as associative memory. Two essential elements, the mathematical-structure-based digital spiking silicon neuron (DSSN and the transmitter release based silicon synapse, allow the network to show rich dynamic behaviors and are computationally efficient for hardware implementation. We adopt mixed pipeline and parallel structure and shift operations to design a sufficient large and complex network without excessive hardware resource cost. The network with $256$ full-connected neurons is built on a Digilent Atlys board equipped with a Xilinx Spartan-6 LX45 FPGA. Besides, a memory control block and USB control block are designed to accomplish the task of data communication between the network and the host PC. This paper also describes the mechanism of associative memory performed in the silicon neuronal network. The network is capable of retrieving stored patterns if the inputs contain enough information of them. The retrieving probability increases with the similarity between the input and the stored pattern increasing. Synchronization of neurons is observed when the successful stored pattern retrieval occurs.

  12. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    Science.gov (United States)

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  13. 75 FR 63498 - National Center for Complementary and Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2010-10-15

    ... Complementary and Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal...: Hungyi Shau, Scientific Review Officer, National Center for Complementary and Alternative Medicine... Training in Complementary and Alternative Medicine, National Institutes of Health, HHS) Dated: October 5...

  14. Complementary Theories to Supply Chain Management

    DEFF Research Database (Denmark)

    Halldorsson, Arni; Hsuan, Juliana; Kotzab, Herbert

    Borrowing from complementary theories has become an important part of theorizing SCM. We build upon principal-agent theory (PAT), transaction cost analysis (TCA), network theory (NT), and resource-based view (RBV) to provide insights on how to structure a supply chain and manage it. Through...

  15. Neuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field.

    Science.gov (United States)

    Ye, Hui; Steiger, Amanda

    2015-08-12

    In laboratory research and clinical practice, externally-applied electric fields have been widely used to control neuronal activity. It is generally accepted that neuronal excitability is controlled by electric current that depolarizes or hyperpolarizes the excitable cell membrane. What determines the amount of polarization? Research on the mechanisms of electric stimulation focus on the optimal control of the field properties (frequency, amplitude, and direction of the electric currents) to improve stimulation outcomes. Emerging evidence from modeling and experimental studies support the existence of interactions between the targeted neurons and the externally-applied electric fields. With cell-field interaction, we suggest a two-way process. When a neuron is positioned inside an electric field, the electric field will induce a change in the resting membrane potential by superimposing an electrically-induced transmembrane potential (ITP). At the same time, the electric field can be perturbed and re-distributed by the cell. This cell-field interaction may play a significant role in the overall effects of stimulation. The redistributed field can cause secondary effects to neighboring cells by altering their geometrical pattern and amount of membrane polarization. Neurons excited by the externally-applied electric field can also affect neighboring cells by ephaptic interaction. Both aspects of the cell-field interaction depend on the biophysical properties of the neuronal tissue, including geometric (i.e., size, shape, orientation to the field) and electric (i.e., conductivity and dielectricity) attributes of the cells. The biophysical basis of the cell-field interaction can be explained by the electromagnetism theory. Further experimental and simulation studies on electric stimulation of neuronal tissue should consider the prospect of a cell-field interaction, and a better understanding of tissue inhomogeneity and anisotropy is needed to fully appreciate the neural

  16. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors

    Science.gov (United States)

    Dietrich, Marcelo O; Bober, Jeremy; Ferreira, Jozélia G; Tellez, Luis A; Mineur, Yann S; Souza, Diogo O; Gao, Xiao-Bing; Picciotto, Marina R; Araújo, Ivan; Liu, Zhong-Wu; Horvath, Tamas L

    2012-01-01

    It is not known whether behaviors unrelated to feeding are affected by hypothalamic regulators of hunger. We found that impairment of Agouti-related protein (AgRP) circuitry by either Sirt1 knockdown in AgRP-expressing neurons or early postnatal ablation of these neurons increased exploratory behavior and enhanced responses to cocaine. In AgRP circuit–impaired mice, ventral tegmental dopamine neurons exhibited enhanced spike timing–dependent long-term potentiation, altered amplitude of miniature postsynaptic currents and elevated dopamine in basal forebrain. Thus, AgRP neurons determine the set point of the reward circuitry and associated behaviors. PMID:22729177

  17. NEBIVOLOL IN TREATMENT OF STABLE EXERTIONAL ANGINA PECTORIS

    Directory of Open Access Journals (Sweden)

    Y. V. Gavrilov

    2015-12-01

    Full Text Available Aim. To evaluate antianginal and antiischemic efficiency of nebivolol in patients with stable angina pectoris.Material and methods. 100 patients with ischemic heart disease showing stable exertional angina pectoris and having no contraindications to beta-blockers were studied. After 5-7 days of control period 50 randomly selected patients began to take nebivolol in initial dose of 5mg once daily and 50 patients started to take metoprolol in initial dose of 50 mg twice daily. Duration of treatment was 8 weeks. Efficiency of treatment was assessed according to the results of control treadmill assessment and control daily ECG monitoring.Results. 56-day therapy with nebivolol at a dose of 7,5 mg per day results in increase in duration of treadmill test before angina or ST depression (p<0.05. Antianginal and antiischemic effect of nebivolol 7.5 mg once daily is rather similar with that of metoprolol in average daily dose of 175 mg. Nebivolol compared to metoprolol significantly (p<0.05 more effectively reduces the number of silent myocardial ischemia.Conclusion. Nebivolol is an efficient antianginal and antiischemic drug for patients with stable exertional angina pectoris.

  18. 77 FR 69869 - National Center for Complementary and Alternative Medicine; Notice of Closed Meeting

    Science.gov (United States)

    2012-11-21

    ... Complementary and Alternative Medicine; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... Alternative Medicine Special Emphasis Panel, PAR 12-151: Centers of Excellence for Research on Complementary... Review, National Center for Complementary, & Alternative Medicine, NIH, 6707 Democracy Blvd., Suite 401...

  19. 75 FR 30039 - National Center for Complementary and Alternative Medicine; Notice of Closed Meetings

    Science.gov (United States)

    2010-05-28

    ... Complementary and Alternative Medicine; Notice of Closed Meetings Pursuant to section 10(d) of the Federal... Complementary and Alternative Medicine Special Emphasis Panel; Education Panel. Date: June 24-25, 2010. Time: 5... of Committee: National Center for Complementary and Alternative Medicine Special Emphasis Panel; RFA...

  20. The inverse F-BAR domain protein srGAP2 acts through srGAP3 to modulate neuronal differentiation and neurite outgrowth of mouse neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Yue Ma

    Full Text Available The inverse F-BAR (IF-BAR domain proteins srGAP1, srGAP2 and srGAP3 are implicated in neuronal development and may be linked to mental retardation, schizophrenia and seizure. A partially overlapping expression pattern and highly similar protein structures indicate a functional redundancy of srGAPs in neuronal development. Our previous study suggests that srGAP3 negatively regulates neuronal differentiation in a Rac1-dependent manner in mouse Neuro2a cells. Here we show that exogenously expressed srGAP1 and srGAP2 are sufficient to inhibit valporic acid (VPA-induced neurite initiation and growth in the mouse Neuro2a cells. While ectopic- or over-expression of RhoGAP-defective mutants, srGAP1(R542A and srGAP2(R527A exert a visible inhibitory effect on neuronal differentiation. Unexpectedly, knockdown of endogenous srGAP2 fails to facilitate the neuronal differentiation induced by VPA, but promotes neurite outgrowth of differentiated cells. All three IF-BAR domains from srGAP1-3 can induce filopodia formation in Neuro2a, but the isolated IF-BAR domain from srGAP2, not from srGAP1 and srGAP3, can promote VPA-induced neurite initiation and neuronal differentiation. We identify biochemical and functional interactions of the three srGAPs family members. We propose that srGAP3-Rac1 signaling may be required for the effect of srGAP1 and srGAP2 on attenuating neuronal differentiation. Furthermore, inhibition of Slit-Robo interaction can phenocopy a loss-of-function of srGAP3, indicating that srGAP3 may be dedicated to the Slit-Robo pathway. Our results demonstrate the interplay between srGAP1, srGAP2 and srGAP3 regulates neuronal differentiation and neurite outgrowth. These findings may provide us new insights into the possible roles of srGAPs in neuronal development and a potential mechanism for neurodevelopmental diseases.